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Ellis Semigroups and Ellis Actions

We write for a map Φ : S ×X → X

px = Φ(p, x) = Φp(x) = Φx(p) for (p, x) ∈ S ×X.
AB = {px : p ∈ A and x ∈ B} for A×B ⊂ S ×X.

Φ# : S → XX is defined by p 7→ Φp.

Φ# : X → XS is defined by x 7→ Φx.
(1)

A semigroup S is a set equipped with M : S × S → S which
is an associative multiplication, i.e.

Mp ◦M q = Mpq for all p, q ∈ S. (2)

An action of a semigroup S on a nonempty set X is a map
Φ : S ×X → X which is an action, i.e.

Φp ◦ Φq = Φpq for all p, q ∈ S. (3)
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Our spaces are all Hausdorff. Our subsets are assumed
nonempty unless otherwise mentioned.

Our examples are monoids, i.e. S has an identity e and our
actions are monoid actions, i.e. Φe = 1X .

Called the translation action, M is an action of S on itself.
Second coordinate projection S ×X → X is the trivial action
with Φp = 1X for all p ∈ S.

K ⊂ X is invariant when SK ⊂ K.

H ⊂ S is a subsemigroup when HH ⊂ H.
We do not assume e ∈ H.

H is an ideal when SH ⊂ H, i.e. it is invariant.

An element u ∈ S is idempotent when uu = u, i.e. {u} is a
subsemigroup.



Our spaces are all Hausdorff. Our subsets are assumed
nonempty unless otherwise mentioned.

Our examples are monoids, i.e. S has an identity e and our
actions are monoid actions, i.e. Φe = 1X .

Called the translation action, M is an action of S on itself.
Second coordinate projection S ×X → X is the trivial action
with Φp = 1X for all p ∈ S.

K ⊂ X is invariant when SK ⊂ K.

H ⊂ S is a subsemigroup when HH ⊂ H.
We do not assume e ∈ H.

H is an ideal when SH ⊂ H, i.e. it is invariant.

An element u ∈ S is idempotent when uu = u, i.e. {u} is a
subsemigroup.



Our spaces are all Hausdorff. Our subsets are assumed
nonempty unless otherwise mentioned.

Our examples are monoids, i.e. S has an identity e and our
actions are monoid actions, i.e. Φe = 1X .

Called the translation action, M is an action of S on itself.

Second coordinate projection S ×X → X is the trivial action
with Φp = 1X for all p ∈ S.

K ⊂ X is invariant when SK ⊂ K.

H ⊂ S is a subsemigroup when HH ⊂ H.
We do not assume e ∈ H.

H is an ideal when SH ⊂ H, i.e. it is invariant.

An element u ∈ S is idempotent when uu = u, i.e. {u} is a
subsemigroup.



Our spaces are all Hausdorff. Our subsets are assumed
nonempty unless otherwise mentioned.

Our examples are monoids, i.e. S has an identity e and our
actions are monoid actions, i.e. Φe = 1X .

Called the translation action, M is an action of S on itself.
Second coordinate projection S ×X → X is the trivial action
with Φp = 1X for all p ∈ S.

K ⊂ X is invariant when SK ⊂ K.

H ⊂ S is a subsemigroup when HH ⊂ H.
We do not assume e ∈ H.

H is an ideal when SH ⊂ H, i.e. it is invariant.

An element u ∈ S is idempotent when uu = u, i.e. {u} is a
subsemigroup.



Our spaces are all Hausdorff. Our subsets are assumed
nonempty unless otherwise mentioned.

Our examples are monoids, i.e. S has an identity e and our
actions are monoid actions, i.e. Φe = 1X .

Called the translation action, M is an action of S on itself.
Second coordinate projection S ×X → X is the trivial action
with Φp = 1X for all p ∈ S.

K ⊂ X is invariant when SK ⊂ K.

H ⊂ S is a subsemigroup when HH ⊂ H.
We do not assume e ∈ H.

H is an ideal when SH ⊂ H, i.e. it is invariant.

An element u ∈ S is idempotent when uu = u, i.e. {u} is a
subsemigroup.



Our spaces are all Hausdorff. Our subsets are assumed
nonempty unless otherwise mentioned.

Our examples are monoids, i.e. S has an identity e and our
actions are monoid actions, i.e. Φe = 1X .

Called the translation action, M is an action of S on itself.
Second coordinate projection S ×X → X is the trivial action
with Φp = 1X for all p ∈ S.

K ⊂ X is invariant when SK ⊂ K.

H ⊂ S is a subsemigroup when HH ⊂ H.
We do not assume e ∈ H.

H is an ideal when SH ⊂ H, i.e. it is invariant.

An element u ∈ S is idempotent when uu = u, i.e. {u} is a
subsemigroup.



Our spaces are all Hausdorff. Our subsets are assumed
nonempty unless otherwise mentioned.

Our examples are monoids, i.e. S has an identity e and our
actions are monoid actions, i.e. Φe = 1X .

Called the translation action, M is an action of S on itself.
Second coordinate projection S ×X → X is the trivial action
with Φp = 1X for all p ∈ S.

K ⊂ X is invariant when SK ⊂ K.

H ⊂ S is a subsemigroup when HH ⊂ H.
We do not assume e ∈ H.

H is an ideal when SH ⊂ H, i.e. it is invariant.

An element u ∈ S is idempotent when uu = u, i.e. {u} is a
subsemigroup.



Our spaces are all Hausdorff. Our subsets are assumed
nonempty unless otherwise mentioned.

Our examples are monoids, i.e. S has an identity e and our
actions are monoid actions, i.e. Φe = 1X .

Called the translation action, M is an action of S on itself.
Second coordinate projection S ×X → X is the trivial action
with Φp = 1X for all p ∈ S.

K ⊂ X is invariant when SK ⊂ K.

H ⊂ S is a subsemigroup when HH ⊂ H.
We do not assume e ∈ H.

H is an ideal when SH ⊂ H, i.e. it is invariant.

An element u ∈ S is idempotent when uu = u, i.e. {u} is a
subsemigroup.



S is an Ellis semigroup and Φ is an Ellis action when S and X
are compact spaces with M# and Φ# continuous, i.e. Mq and
Φx are continuous for each q ∈M,x ∈ X.

With S = XX with the product topology, define composition
and evaluation:

Comp : S × S → S by (p, q) 7→ p ◦ q,
Eval : S ×X → X by (p, x) 7→ p(x).

(4)

If S0 is a discrete semigroup and φ : S0 ×X → X is a
continuous action on X, the enveloping semigroup of φ,
denoted E(φ), is the closure in XX of the image φ#(S0), with
M and Φ the restrictions of Comp and Eval.

If T is a homeomorphism on X, then for the cascade (X,T ),
the enveloping semigroup for the Z action is denoted E(X,T ).
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The surprisingly powerful Ellis-Numakura Lemma says that
any closed subsemigroup of an Ellis semigroup contains an
idempotent.

We will call a cascade (X,T ) topologically transitive if there
exists x ∈ X a transitive point, i.e. a point whose orbit
O(x) = {T n(x) : n ∈ Z} is dense in X. We denote by
Trans(X,T ) the -possibly empty- set of transitive points for a
cascade (X,T ).

Let Iso(X) be the -possibly empty- set of isolated points of
X. If (X,T ) is topologically transitive and Iso(X) 6= ∅ then
Iso(X) is a single dense orbit and so equals Trans(X,T ).

If X is countable then Iso(X) is dense in X.
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WAP Systems

Let φ : S0 ×X → X be a continuous action with S0 a
discrete, abelian semigroup.

The maps p ∈ E(φ) are usually not continuous and while
pT = Tp for T ∈ S0, E(φ) is usually not abelian.

The system φ is weakly almost periodic (= WAP) when every
p ∈ E(φ) is continuous on X and so M , Φ are separately
continuous, i.e. continuous in each variable separately. If
(X,T ) is WAP , then E(φ) is abelian.

The converse holds for a topologically transitive cascade
(X,T ) . In fact, if x∗ ∈ Trans(X,T ) and pqx∗ = qpx∗ for all
p, q ∈ E(X,T ), then (X,T ) is WAP.

The condition that M and Φ are jointly continuous is almost
periodicity. E(X,T ) is a compact topological group and Φ is
an equicontinuous topological action.
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The Space of Labels

It was the search for interesting examples of countable WAP
systems which led us to the discovery of the space of labels.

We will call m ∈ ZN
+ an N-vector when it has finite support,

i.e. supp m = {` : m` > 0} is finite. We call #supp m the
size of m and call |m| = Σ` m` the norm of m. The countable
set FIN(N) of N vectors is a monoid under addition. We
think of the domain N as an infinite set of colors.

If S ⊂ N we let χ(S) be the characteristic function of S.

For an N-vector m and a positive integer `∗ we define
m ∧ [1, `∗]

(m ∧ [1, `∗])` =

{
m` for ` ≤ `∗,

0 for ` > `∗.
(5)
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Definition A -possibly empty- set M of N-vectors is called a
label when
• Heredity Condition 0 ≤ m1 ≤ m and m ∈M imply
m1 ∈M.

A label M is bounded if
• Bound Condition There exists µ ∈ ZN

+ such that
0 ≤ m ≤ µ for all m ∈M.

A label M is of finite type if
• Finite Chain Condition There does not exist an infinite

increasing sequence in M, or equivalently, any infinite
nondecreasing sequence in M is eventually constant.

A label M is size bounded if it satisfies the following
• Size Bound Condition There exists n ∈ N such that
size(m) ≤ n for all m ∈M.

For example, ∅ and 0 = {0} are finite labels. M 6= ∅ iff
0 ∈M. M is a positive label when it is neither empty nor 0.
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If a label M is of finite type then it is bounded. If a label is
bounded and size bounded then it is of finite type.

For a label M and `∗ ∈ N

M∧[1, `∗] =

{
∅ when `∗ = 0,

{ m ∧ [1, `∗] : m ∈M } when `∗ > 0.

(6)
Thus, M∧ [1, `∗] = { m ∈M : supp m ⊂ [1, `∗] }.

For a label M and an N-vector r

M− r = { w ∈ FIN(N) : w + r ∈M}. (7)

Thus, M− r = {(m− r) ∨ 0 : m ∈M}.
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Given N ∈ Z+, define the finite label

BN = {m ∈ ZN
+ : m < N and supp m ⊂ [1, N ]}. (8)

We denote by LAB the space of labels.

On LAB we define an ultrametric by

d(M1,M2) = inf { 2−N : N ∈ Z+ andM1∩BN =M2∩BN }.
(9)

Notice that since B0 = ∅, M1∩B0 =M2∩B0 is always true.

Let Mi be a sequence of labels. Define the labels

LIMSUP Mi =
⋂
i

[
⋃
j≥i

{Mj} ],

LIMINF Mi =
⋃
i

[
⋂
j≥i

{Mj} ].
(10)

Clearly, m ∈ LIMSUP iff frequently m ∈Mi and
m ∈ LIMINF iff eventually m ∈Mi and so
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A sequence Mi is Cauchy iff Mi ∩N is eventually constant
for any finite label N . In that case, LIMSUP = LIMINF
is the limit, which we denote LIM Mi.

The countable set of finite labels is dense in LAB and every
sequence admits a convergent subsequence.

Theorem LAB is a compact, zero-dimensional metric space
with ∅ the only isolated point.

Theorem Let L ⊂ LAB be either the set of bounded labels
or the set of labels of finite type. A subset Φ ⊂ L is compact
iff Φ is closed in the relative topology of L and

⋃
Φ ∈ L.
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Theorem For r ∈ FIN(N) the map Pr on LAB , given by
Pr(M) =M− r is continuous. The map
P : FIN(N)× LAB → LAB given by
P (r,M) =M− r = Pr(M) is a continuous monoid action of
FIN(N) on LAB.

Let Θ(M) be the closure in the space of labels of the set
{ M− r : r ∈ FIN(N)}. That is, Θ(M) is the orbit closure
of M with respect to the FIN(N) action.

Let Θ′(M) be the closure in the space of labels of the set
{ M− r : r ∈ FIN(N) with r > 0}. Thus,
Θ(M) = Θ′(M) ∪ {M}. A label M is called recurrent when
M∈ Θ′(M). The set of recurrent labels is a dense Gδ subset
of LAB.

Θ(M) and Θ′(M) are compact, FIN(N) invariant subsets.
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Definition A label M is finitary if it is bounded and

• Finitary condition Whenever {Si} is a sequence of finite
subsets of N with

⋃
i Si infinite, there are only finitely

many subsets S of N such that eventually
S ∪ Si ∈ SuppM.

A label M is finitary iff whenever ri is a sequence in FIN(N)
with

⋃
i supp ri infinite and {M− ri} convergent then then

LIM {M− ri} is a finite label.

A finitary label is of finite type and so is bounded.

For a finitary M the compact set Θ(M) consists of
{M− r : r ∈ FIN(N)} and certain additional finite labels.
Furthermore, the action of FIN(N) on Θ(M) is WAP.

Technical as the condition seems it is not hard to construct a
rich supply of examples.
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Labeled subshifts

If B is an odd positive integer and k : Z→ Z is an odd
function with k(n) = Bn−1 for all n ∈ N then every integer t
has a unique symmetric base B expansion t = Σ∞i=1 εik(i)
with εi ∈ Z such that |εi| < B/2 and εi 6= 0 for finitely many i.
Fix B ≥ 5.

Definition An expansion of length r ≥ 0 for t ∈ Z is a finite
sequence j1, . . . , jr ∈ Z such that |ji| > |ji+1| > 0 for
i = 1, . . . , r − 1 and with

t = k(j1) + k(j2) + · · ·+ k(jr).

0 ∈ Z has the empty expansion with length 0.
When there is an expansion for t we will say that t is
expanding or that t is an expanding time. We let IP (k)
denote the set of expanding times.
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Thus, the expanding times are the integers with a base B
expansion such that |εi| ≤ 1 for all i. So IP (k) is a rather
sparse subset of Z. It can be shown to have Banach density
zero.

We now fix an infinite coloring of N, a partition of N by an
infinite sequence

D = {D` : ` ∈ N}

of infinite sets, numbered so that minD` < minD`+1. Hence,
minD1 = 1 and minD` ≥ `.

The support map n 7→ `(n) associates to each n ∈ N the
member of D which contains it, so that n ∈ D`(n). That is,
`(n) is the color of n.
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Definition If j1, . . . , jr ∈ Z is the expansion of t ∈ IP (k),

t = k(j1) + k(j2) + · · ·+ k(jr),

then the length vector for the expansion is the N-vector

r = r(t) = χ(`(|j1|)) + χ(`(|j2|)) + · · ·+ χ(`(|jr|)),

Thus, |r| is the length r(t).

0 ∈ IP (k) has the empty expansion with length vector 0.

Thus, r(t) counts the number of colors which occur at places
where there is a nonzero term in the expansion of t.
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Definition For a label M define A[M] ⊂ Z to consist of
those t ∈ IP (k) which have length vector r(t) ∈M.

Let x[M] ∈ {0, 1}Z be the characteristic function of A[M].
Thus,

x[M]t = 1 ⇐⇒ r(t) ∈M.

With T the shift homeomorphism on {0, 1}Z, let X(M) be
the T orbit closure of x[M].

Theorem The map x[·] defined by M 7→ x[M] is a
homeomorphism from LAB onto its image in {0, 1}Z.
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The key result which relates the T dynamics on X(M) with
the FIN(N) dynamics on Θ(M) is the following.

Lemma Let {ti} be a sequence of expanding times with ri the
length of ti. If {|jri(ti)|} → ∞ then

Limi→∞ supM∈LAB d(T t
i

(x[M]) , x[M−r(ti)] ) = 0. (11)

That is, the pair of sequences ({T ti(x[M])} and
{x[M− r(ti)]}) are uniformly asymptotic in {0, 1}Z.

The condition {|jri(ti)|} → ∞ says that the place lowest
nonzero digit of ti tends to infinity with i.



The key result which relates the T dynamics on X(M) with
the FIN(N) dynamics on Θ(M) is the following.

Lemma Let {ti} be a sequence of expanding times with ri the
length of ti. If {|jri(ti)|} → ∞ then

Limi→∞ supM∈LAB d(T t
i

(x[M]) , x[M−r(ti)] ) = 0. (11)

That is, the pair of sequences ({T ti(x[M])} and
{x[M− r(ti)]}) are uniformly asymptotic in {0, 1}Z.

The condition {|jri(ti)|} → ∞ says that the place lowest
nonzero digit of ti tends to infinity with i.



The key result which relates the T dynamics on X(M) with
the FIN(N) dynamics on Θ(M) is the following.

Lemma Let {ti} be a sequence of expanding times with ri the
length of ti. If {|jri(ti)|} → ∞ then

Limi→∞ supM∈LAB d(T t
i

(x[M]) , x[M−r(ti)] ) = 0. (11)

That is, the pair of sequences ({T ti(x[M])} and
{x[M− r(ti)]}) are uniformly asymptotic in {0, 1}Z.

The condition {|jri(ti)|} → ∞ says that the place lowest
nonzero digit of ti tends to infinity with i.



From this one is able to prove:

Theorem Let M be a label of finite type.
X(M) = {T k(x[N ]) : k ∈ Z, N ∈ Θ(M)}, and in X(M)
the fixed point e = x[∅] is the only recurrent point.

If M is a finitary label then (X(M), T ) is a countable WAP
subshift.

M is a recurrent label iff x[M] is a recurrent point. If M is
not of finite type, then X(M) contains non-periodic recurrent
points.

By using constructions of finitary labels, one is thus able to
get a large collection of interesting WAP examples.
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For example, there are two transfinite approaches to the
Birkhoff Center, the closure of the set of recurrent points.

For a system (X,T ) let X ′ be the closed set of nonwandering
points and X ′′ ⊂ X ′ be the closure of union the sets of omega
and alpha limit points.

With X0 = X we can let Xα+1 = X ′α (the high road) or
Xα+1 = X ′′α (the low road) and in either case Xβ =

⋂
α<β Xα

for β a limit ordinal. Each stabilizes at the Birkhoff Center.

In 2000, Shapovalov constructed countable WAP subshifts
which a require arbitrarily large countable ordinals to stabilize
via the high road, but his examples stabilize after two steps via
the low road. Using finitary labels we construct examples of
countable WAP subshifts which a require arbitrarily large
countable ordinals to stabilize via the low road.
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For a subshift (X,T ) a subset K ⊂ Z is called an independent
set if the restriction to X of the projection
πK : {0, 1}Z → {0, 1}K is surjective.

The subshift is called null if there is a finite bound on the size
of the independent sets for (X,T ). It is called tame if there is
no infinite independent set for (X,S).

In a private conversation Tomasz Downarowicz asked us
whether it is the case that every WAP system is null. Using
labels, we can obtain

(a) topologically transitive, WAP subshifts which are non-null;

(b) subshifts arising from finite type labels which are not tame.
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Thank you.


