< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## **Aperiodic Order: Schrödinger Operators**

David Damanik Rice University

### dsaperiodic2016: Dynamical Systems for Aperiodicity

Université Claude Bernard Lyon 1, Campus de la Doua

January 7, 2016







**3** The Fibonacci Hamiltonian



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# The Schrödinger Equation

The fundamental equation of quantum mechanics is the Schrödinger equation

$$i\partial_t \psi = H\psi.$$

Here,  $\psi$  is a time-dependent element of a Hilbert space  $\mathcal{H}$  and H is a self-adjoint operator in  $\mathcal{H}$ .

Typically,  $\mathcal{H}$  is given by  $L^2(\mathbb{R}^d)$  or  $\ell^2(\mathbb{Z}^d)$ , but in the context of aperiodic order, it is also useful to consider  $\ell^2(\Lambda)$  with a suitable countable  $\Lambda \subset \mathbb{R}^d$ . In these cases, there is a natural notion of a space variable.

The state  $\psi$  is normalized (a property which is preserved by the time evolution), so that its modulus squared serves as a probability distribution on  $\mathbb{R}^d$  or  $\Lambda$ . That is,

Prob(state is in A) = 
$$\int_A |\psi|^2$$
.

# The Schrödinger Operator

Just as  $\mathcal{H}$  is in practice a concrete space such as  $L^2(\mathbb{R}^d)$  or  $\ell^2(\Lambda)$ , the self-adjoint operator H appearing in

$$i\partial_t \psi = H\psi$$

is in practice a concrete operator of the form

$$H=-\Delta+V.$$

Here,  $\Delta$  is the Laplace operator and V is a multiplication operator. Schrödinger operators H studied in the context of aperiodic order often come in two standard forms:

- The space is  $\mathbb{R}^d$  or  $\mathbb{Z}^d$  and the aperiodic order is encoded in the potential V.
- The space is an aperiodically ordered point set Λ and the potential is for simplicity set equal to zero.

### Transport Exponents

If we wish to study the solutions of the Schrödinger equation

$$i\partial_t \psi = H\psi$$

with initial state  $\psi(0) = \psi_0$ , the spectral theorem says that we need to consider  $e^{-itH}\psi_0$ . We ask whether  $\psi(t)$  spreads out in space over time. For example, if the Hilbert space in question is  $\ell^2(\Lambda)$ , then  $n \in \Lambda$  is the natural space variable.

Spreading is then studied via the growth of

$$\langle |X|_{\psi_0}^p \rangle(t) = \sum_n |n|^p |\langle e^{-itH}\psi_0, \delta_n \rangle|^2.$$

### **Transport Exponents**

If the spectral measure of  $(H, \psi_0)$  is singular continuous, Wiener's theorem suggests that we average in time. We do this as follows. If f(t) is a function of t > 0 and T > 0 is given, we denote the time-averaged function at T by  $\langle f \rangle(T)$ :

$$\langle f \rangle(T) = rac{2}{T} \int_0^\infty e^{-2t/T} f(t) \, dt.$$

Then, the corresponding upper and lower transport exponents  $\tilde{\beta}^+_{\psi_0}(p)$  and  $\tilde{\beta}^-_{\psi_0}(p)$  are given, respectively, by

$$\begin{split} \tilde{\beta}^+_{\psi_0}(p) &= \limsup_{T \to \infty} \frac{\log \langle \langle |X|^p_{\psi_0} \rangle \rangle(T)}{p \log T}, \\ \tilde{\beta}^-_{\psi_0}(p) &= \liminf_{T \to \infty} \frac{\log \langle \langle |X|^p_{\psi_0} \rangle \rangle(T)}{p \log T}. \end{split}$$

### **Transport Exponents**

The transport exponents  $\tilde{\beta}^{\pm}_{\psi_0}(p)$  belong to [0,1] and are non-decreasing in p, and hence the following limits exist:

$$\begin{split} & \tilde{lpha}_I^\pm = \lim_{p o 0} \tilde{eta}_{\psi_0}^\pm(p), \ & \tilde{lpha}_u^\pm = \lim_{p o \infty} \tilde{eta}_{\psi_0}^\pm(p). \end{split}$$

Theorem (Last 96, Guarneri-Schulz-Baldes 99)

If  $\mathcal{H} = \ell^2(\mathbb{Z}^d)$ , then  $\tilde{\alpha}_I^- \ge d^{-1} \dim_H \mu_{H,\psi_0}$  and  $\tilde{\alpha}_I^+ \ge d^{-1} \dim_P \mu_{H,\psi_0}$ .

## **Existence of the IDS**

The integrated density of states (IDS) arises in a variety of ways. For example:

- One can restrict H to a finite box B and count the number of eigenvalues of H|<sub>B</sub> that are less than E ∈ ℝ, normalized by the volume of the box. As B exhausts space, the limit is called N(E).
- One can embed the operator H in an ergodic family of operators and average suitable spectral measures with respect to the ergodic measure. The distribution function of the resulting (density of states) measure dν is N : ℝ → ℝ.

This works out particularly nicely if there is a unique ergodic probability measure. Corresponding uniform convergence statements have been studied by Hof, Lenz, Stollmann, and others.

## Zero-Measure Spectrum in 1D

Consider a finite alphabet  $\mathcal{A}$  and the full shift  $\mathcal{A}^{\mathbb{Z}}$ , equipped with discrete/product topology, together with the shift transformation  $(T\omega)_n = \omega_{n+1}$ . A closed *T*-invariant subset  $\Omega$  of  $\mathcal{A}^{\mathbb{Z}}$  is called a subshift.

Given a subshift  $\Omega$ , choose some continuous  $f: \Omega \to \mathbb{R}$  and define potentials  $\{V_{\omega}\}_{\omega \in \Omega}$  via

$$V_{\omega}(n)=f(T^{n}\omega).$$

This gives rise to Schrödinger operators  $\{H_{\omega}\}_{\omega\in\Omega}$  in  $\ell^2(\mathbb{Z})$ .

For any ergodic probability measure  $\mu$ , there is an associated spectrum  $\Sigma$  (so that  $\sigma(H_{\omega}) = \Sigma$  for  $\mu$ -a.e.  $\omega \in \Omega$ ).

# Zero-Measure Spectrum in 1D

Let  $\Omega \subset \mathcal{A}^{\mathbb{Z}}$  be a strictly ergodic subshift with unique *T*-invariant Borel probability measure  $\mu$ . It satisfies the *Boshernitzan condition* (B) if

$$\limsup_{n\to\infty}\left(\min_{w\in\mathcal{W}_{\Omega}(n)}n\cdot\mu\left([w]\right)\right)>0.$$

Here,  $W_{\Omega}(n)$  denotes the set of words of length n that occur in elements of  $\Omega$ , and [w] denotes the cylinder set associated with a finite word w, that is,  $[w] = \{ \omega \in \Omega : \omega_1 \dots \omega_{|w|} = w \}.$ 

#### Theorem (D.-Lenz 06)

Suppose the subshift  $\Omega$  is strictly ergodic and satisfies (B), the sampling function  $f : \Omega \to \mathbb{R}$  is locally constant, and the resulting potentials  $V_{\omega}$  are aperiodic. Then,  $\Sigma$  is a Cantor set of zero Lebesgue measure.

## A Case Study: The Fibonacci Hamiltonian

The Fibonacci Hamiltonian is the following family of discrete one-dimensional Schrödinger operators,

$$[H_{\lambda,\omega}u](n) = u(n+1) + u(n-1) + \lambda\chi_{[1-\alpha,1)}(n\alpha + \omega \mod 1)u(n),$$

acting in  $\ell^2(\mathbb{Z})$ , where  $\lambda > 0$  is the coupling constant,  $\alpha = \frac{\sqrt{5}-1}{2}$  is the frequency, and  $\omega \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$  is the phase. Alternatively, the potential of this operator can be generated by the Fibonacci substitution  $a \mapsto ab$ ,  $b \mapsto a$ .

# The Spectrum of the Fibonacci Hamiltonian

The spectrum of  $H_{\lambda,\omega}$  does not depend on  $\omega$ , let us denote it by  $\Sigma_{\lambda}$ .

### Theorem (Sütő 89)

For every  $\lambda > 0$ ,  $\Sigma_{\lambda}$  is a Cantor set of zero Lebesgue measure.

### Theorem (Casdagli 86, D.-Gorodetski 09, D.-G.-Yessen 16+)

For every  $\lambda > 0$ ,  $\Sigma_{\lambda}$  is a dynamically defined Cantor set. In particular, its box counting dimension exists, coincides with its Hausdorff dimension, and belongs to (0, 1).

## The Spectrum of the Fibonacci Hamiltonian

Here is a plot of a numerical approximation of the spectrum:



**Figure:** The set  $\{(E, \lambda) : E \in \Sigma_{\lambda}, 0 \le \lambda \le 3\}$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

# The Spectrum of the Fibonacci Hamiltonian

Theorem (D.-Embree-Gorodetski-Tcheremchantsev 08, D.-Gorodetski 11)

We have  $\lim_{\lambda\to 0} \dim_H \Sigma_{\lambda} = 1$  and

$$\lim_{\lambda \to \infty} \dim_H \Sigma_\lambda \cdot \log \lambda = \log(1 + \sqrt{2}) \approx 1.83156 \, \log \varphi$$

Moreover, as the coupling is turned on, all gaps open linearly. That is, given any one-parameter continuous family  $\{U_{\lambda}\}_{\lambda>0}$  of gaps of  $\Sigma_{\lambda}$ , we have that

$$\lim_{\lambda \to 0} \frac{|U_{\lambda}|}{|\lambda|}$$

exists and belongs to  $(0,\infty)$ .

### The Density of States of the Fibonacci Hamiltonian

By the spectral theorem, there are Borel probability measures  $\mu_{\lambda,\omega}$  on  $\mathbb R$  such that

$$\langle \delta_0, g(\mathcal{H}_{\lambda,\omega}) \delta_0 
angle = \int g(E) \, d\mu_{\lambda,\omega}(E)$$

for all bounded measurable functions g. The density of states measure  $\nu_{\lambda}$  is given by the  $\omega$ -average of these measures with respect to Lebesgue measure, that is,

$$\int_{\mathbb{T}} \langle \delta_0, g(H_{\lambda,\omega}) \delta_0 
angle \, d\omega = \int g(E) \, d
u_\lambda(E)$$

for all bounded measurable functions g.

## The Density of States of the Fibonacci Hamiltonian

By general principles, the density of states measure is non-atomic and its topological support is  $\Sigma_{\lambda}$ . The fact that  $\Sigma_{\lambda}$  has zero Lebesgue measure therefore implies that  $\nu_{\lambda}$  is singular continuous for every  $\lambda > 0$ .

Moreover, by an 07 result of Simon,  $\nu_{\lambda}$  is the equilibrium measure in the sense of logarithmic potential theory associated with the set  $\Sigma_{\lambda}$ . Motivated by results of Makarov and Volberg for the standard Cantor set, Simon conjectured the following: dim<sub>H</sub>  $\nu_{\lambda} < \dim_{H} \Sigma_{\lambda}$ .

### Theorem (D.-Gorodetski 12, D.-Gorodetski-Yessen 16+)

For every  $\lambda > 0$ , dim<sub>H</sub>  $\nu_{\lambda} < \dim_{H} \Sigma_{\lambda}$ .

## The Density of States of the Fibonacci Hamiltonian

The asymptotics of the dimension of the density of states measure are given in the following theorem.

### Theorem (D.-Gorodetski 12, D.-Gorodetski-Yessen 16+)

For every  $\lambda > 0$ , the density of states measure  $\nu_{\lambda}$  is exact-dimensional. Namely, for every  $\lambda > 0$ , the limit (called the scaling exponent of  $\nu_{\lambda}$  at E)

$$\lim_{\varepsilon \downarrow 0} \frac{\log \nu_{\lambda}(E - \varepsilon, E + \varepsilon)}{\log \varepsilon}$$

 $\nu_{\lambda}$ -almost everywhere exists and is constant. Moreover, denoting this almost everywhere limit by  $d_{\lambda}$ , we have  $\lim_{\lambda \to 0} d_{\lambda} = 1$  and

$$\lim_{\lambda o \infty} d_\lambda \cdot \log \lambda = rac{5+\sqrt{5}}{4} \log arphi$$

### Transport Exponents of the Fibonacci Hamiltonian

It had been conjectured since the mid-1980's that the transport associated with the Fibonacci Hamiltonian is anomalous, which means that the transport exponents are different from 1, 1/2, 0. That is, transport is neither ballistic, nor diffusive, nor absent.

Here is a *p*-dependent lower bound that improves on the general Guarneri-Last estimate:

### Theorem (D.-Tcheremchantsev 05)

Suppose  $\lambda > 0$  and set  $\gamma = D \log(2 + \sqrt{8 + \lambda^2})$  (where D is some universal constant) and  $\kappa = \log \left[\frac{\sqrt{17}}{20 \log \varphi}\right]$ . Then,

$$ilde{eta}_{\delta_0}^{\pm}({\pmb{p}}) \geq egin{cases} rac{{\pmb{p}}+2\kappa}{({\pmb{p}}+1)(\gamma+\kappa+1/2)}, & {\pmb{p}} \leq 2\gamma+1; \ rac{1}{\gamma+1}, & {\pmb{p}} > 2\gamma+1. \end{cases}$$

## Transport Exponents of the Fibonacci Hamiltonian

Here is a result that concerns the regime of large  $\lambda$  and p:

Theorem (D.-Tcheremchantsev 07/08)

For  $\lambda > \sqrt{24}$ , we have

$$\tilde{\alpha}_u^{\pm} \geq \frac{2\log\varphi}{\log(2\lambda + 22)}$$

and for  $\lambda \geq 8$ , we have

$$\tilde{\alpha}_{u}^{\pm} \leq \frac{2\log\varphi}{\log\left(\frac{1}{2}\left[(\lambda-4) + \sqrt{(\lambda-4)^{2} - 12}\right]\right)}$$

In particular,

$$\lim_{\lambda \to \infty} \tilde{\alpha}_u^{\pm} \cdot \log \lambda = 2\log \varphi$$

## Transport Exponents of the Fibonacci Hamiltonian

The transport exponents are expected to approach the value 1 as  $\lambda \rightarrow 0$ . Notice that the lower bound from the '05 result does not imply this. Using different methods an improved lower bound can be shown, which does give the desired consequence.

#### Theorem (Damanik-Gorodetski 15)

There is a constant c > 0 such that for  $\lambda > 0$  sufficiently small, we have

$$1 - c\lambda^2 \le \tilde{\alpha}_u^{\pm} \le 1$$

## The Square Fibonacci Hamiltonian

The square Fibonacci Hamiltonian is the bounded self-adjoint operator

$$\begin{aligned} [H_{\lambda_1,\lambda_2,\omega_1,\omega_2}\psi](m,n) &= \psi(m+1,n) + \psi(m-1,n) + \\ &+ \psi(m,n+1) + \psi(m,n-1) + \\ &+ \left(\lambda_1\chi_{[1-\alpha,1)}(m\alpha + \omega_1 \mod 1) + \lambda_2\chi_{[1-\alpha,1)}(n\alpha + \omega_2 \mod 1)\right)\psi(m,n) \end{aligned}$$

in  $\ell^2(\mathbb{Z}^2)$ , with  $\alpha = \frac{\sqrt{5}-1}{2}$ , coupling constants  $\lambda_1, \lambda_2 > 0$  and phases  $\omega_1, \omega_2 \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$ .

The spectrum is again independent of the phases and may be denoted by  $\Sigma_{\lambda_1,\lambda_2}$ . The associated density of states measure will be denoted by  $\nu_{\lambda_1,\lambda_2}$ .

## The Square Fibonacci Hamiltonian

The theory of separable operators implies that

$$\Sigma_{\lambda_1,\lambda_2} = \Sigma_{\lambda_1} + \Sigma_{\lambda_2}$$
 and  $\nu_{\lambda_1,\lambda_2} = \nu_{\lambda_1} * \nu_{\lambda_2}$ ,

where the sum of sets is defined by

$$S+T=\{s+t:s\in S,\ t\in T\}$$

and the convolution of measures is defined by

$$\int_{\mathbb{R}} g(E) d(\mu * \nu)(E) = \int_{\mathbb{R}} \int_{\mathbb{R}} g(E_1 + E_2) d\mu(E_1) d\nu(E_2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

## The Spectrum of the Square Fibonacci Hamiltonian

Recall the plot of a numerical approximation of  $\Sigma_{\lambda}$ :



**Figure:** The set  $\{(E, \lambda) : E \in \Sigma_{\lambda}, 0 \le \lambda \le 3\}$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

## The Spectrum of the Square Fibonacci Hamiltonian

This gives rise to a numerical approximation of  $\Sigma_{\lambda,\lambda} = \Sigma_{\lambda} + \Sigma_{\lambda}$ :



**Figure:** The set  $\{(E, \lambda) : E \in \Sigma_{\lambda,\lambda}, 0 \leq \lambda \leq 3\}$ .

# The Spectrum of the Square Fibonacci Hamiltonian

### Theorem (D.-Embree-Gorodetski-Tcheremchantsev 08)

If  $\lambda_1, \lambda_2$  are large enough, then  $\Sigma_{\lambda_1, \lambda_2}$  is a Cantor set of zero Lebesgue measure.

### Theorem (D.-Gorodetski 11)

If  $\lambda_1, \lambda_2$  are small enough, then  $\sum_{\lambda_1, \lambda_2}$  is an interval.

### Theorem (D.-Gorodetski-Solomyak 15)

For Lebesgue almost all sufficiently small  $\lambda_1, \lambda_2, \nu_{\lambda_1, \lambda_2}$  is absolutely continuous.

# The Spectrum of the Square Fibonacci Hamiltonian

### Theorem (D.-Gorodetski 16+)

Suppose that for all pairs  $(\lambda_1, \lambda_2)$  in some open set  $U \subset \mathbb{R}^2_+$ , we have dim<sub>H</sub>  $\Sigma_{\lambda_1}$  + dim<sub>H</sub>  $\Sigma_{\lambda_2} > 1$ . Then, for Lebesgue almost all pairs  $(\lambda_1, \lambda_2) \in U$ ,  $\Sigma_{\lambda_1, \lambda_2}$  has positive Lebesgue measure.

#### Theorem (D.-Gorodetski 16+)

Suppose that dim<sub>H</sub>  $\nu_{\lambda_1}$  + dim<sub>H</sub>  $\nu_{\lambda_2} < 1$ . Then,  $\nu_{\lambda_1,\lambda_2}$  is singular, that is, it is supported by a set of zero Lebesgue measure.

## The Spectrum of the Square Fibonacci Hamiltonian

Recall that for every  $\lambda > 0$ , we have

 $0 < \dim_{\mathrm{H}} \nu_{\lambda} < \dim_{\mathrm{H}} \Sigma_{\lambda} < 1.$ 

Thus the curves

$$\begin{split} \{(\lambda_1,\lambda_2)\in\mathbb{R}^2_+:\dim_{\mathrm{H}}\nu_{\lambda_1}+\dim_{\mathrm{H}}\nu_{\lambda_2}=1\}\\ \{(\lambda_1,\lambda_2)\in\mathbb{R}^2_+:\dim_{\mathrm{H}}\Sigma_{\lambda_1}+\dim_{\mathrm{H}}\Sigma_{\lambda_2}=1\}\\ \text{are disjoint. Consider the following three regions in } \mathbb{R}^2_+:\\ U_{\mathrm{acds}}=\{(\lambda_1,\lambda_2)\in\mathbb{R}^2_+:\dim_{\mathrm{H}}\nu_{\lambda_1}+\dim_{\mathrm{H}}\nu_{\lambda_2}>1\}, \end{split}$$

$$\begin{split} \mathcal{U}_{\text{acds}} &= \{ (\lambda_1, \lambda_2) \in \mathbb{R}_+^2 : \dim_H \mathcal{V}_{\lambda_1} + \dim_H \mathcal{V}_{\lambda_2} > 1 \}, \\ \mathcal{U}_{\text{pmsd}} &= \{ (\lambda_1, \lambda_2) \in \mathbb{R}_+^2 : \dim_H \Sigma_{\lambda_1} + \dim_H \Sigma_{\lambda_2} > 1 \text{ and} \\ \dim_H \mathcal{V}_{\lambda_1} + \dim_H \mathcal{V}_{\lambda_2} < 1 \}, \\ \mathcal{U}_{\text{zmsp}} &= \{ (\lambda_1, \lambda_2) \in \mathbb{R}_+^2 : \dim_H \Sigma_{\lambda_1} + \dim_H \Sigma_{\lambda_2} < 1 \}. \end{split}$$

# The Spectrum of the Square Fibonacci Hamiltonian

### Theorem (D.-Gorodetski 16+)

- (a) Each of the regions  $U_{acds}$ ,  $U_{pmsd}$ ,  $U_{zmsp}$  is open and non-empty.
- (b) The regions  $U_{acds}$ ,  $U_{pmsd}$ ,  $U_{zmsp}$  are disjoint and the union of their closures covers the parameter space  $\mathbb{R}^2_+$ .
- (c) For Lebesgue almost every  $(\lambda_1, \lambda_2) \in U_{acds}$ ,  $\nu_{\lambda_1, \lambda_2}$  is absolutely continuous, and hence  $\Sigma_{\lambda_1, \lambda_2}$  has positive Lebesgue measure.
- (d) For every  $(\lambda_1, \lambda_2) \in U_{pmsd}$ ,  $\nu_{\lambda_1, \lambda_2}$  is singular, but for Lebesgue almost every  $(\lambda_1, \lambda_2) \in U_{pmsd}$ ,  $\Sigma_{\lambda_1, \lambda_2}$  has positive Lebesgue measure.
- (e) For every  $(\lambda_1, \lambda_2) \in U_{\text{zmsp}}$ ,  $\Sigma_{\lambda_1, \lambda_2}$  has zero Lebesgue measure, and hence  $\nu_{\lambda_1, \lambda_2}$  is singular.