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The Schrödinger Equation

The fundamental equation of quantum mechanics is the
Schrödinger equation

i∂tψ = Hψ.

Here, ψ is a time-dependent element of a Hilbert space H and H is
a self-adjoint operator in H.

Typically, H is given by L2(Rd) or `2(Zd), but in the context of
aperiodic order, it is also useful to consider `2(Λ) with a suitable
countable Λ ⊂ Rd . In these cases, there is a natural notion of a
space variable.

The state ψ is normalized (a property which is preserved by the
time evolution), so that its modulus squared serves as a probability
distribution on Rd or Λ. That is,

Prob(state is in A) =

∫
A
|ψ|2.
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The Schrödinger Operator

Just as H is in practice a concrete space such as L2(Rd) or `2(Λ),
the self-adjoint operator H appearing in

i∂tψ = Hψ

is in practice a concrete operator of the form

H = −∆ + V .

Here, ∆ is the Laplace operator and V is a multiplication operator.
Schrödinger operators H studied in the context of aperiodic order
often come in two standard forms:

The space is Rd or Zd and the aperiodic order is encoded in
the potential V .

The space is an aperiodically ordered point set Λ and the
potential is for simplicity set equal to zero.
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Transport Exponents

If we wish to study the solutions of the Schrödinger equation

i∂tψ = Hψ

with initial state ψ(0) = ψ0, the spectral theorem says that we
need to consider e−itHψ0. We ask whether ψ(t) spreads out in
space over time. For example, if the Hilbert space in question is
`2(Λ), then n ∈ Λ is the natural space variable.

Spreading is then studied via the growth of

〈|X |pψ0
〉(t) =

∑
n

|n|p|〈e−itHψ0, δn〉|2.
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Transport Exponents

If the spectral measure of (H, ψ0) is singular continuous, Wiener’s
theorem suggests that we average in time. We do this as follows.
If f (t) is a function of t > 0 and T > 0 is given, we denote the
time-averaged function at T by 〈f 〉(T ):

〈f 〉(T ) =
2

T

∫ ∞
0

e−2t/T f (t) dt.

Then, the corresponding upper and lower transport exponents
β̃+
ψ0

(p) and β̃−ψ0
(p) are given, respectively, by

β̃+
ψ0

(p) = lim sup
T→∞

log〈〈|X |pψ0
〉〉(T )

p logT
,

β̃−ψ0
(p) = lim inf

T→∞

log〈〈|X |pψ0
〉〉(T )

p logT
.
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Transport Exponents

The transport exponents β̃±ψ0
(p) belong to [0, 1] and are

non-decreasing in p, and hence the following limits exist:

α̃±l = lim
p→0

β̃±ψ0
(p),

α̃±u = lim
p→∞

β̃±ψ0
(p).

Theorem (Last 96, Guarneri-Schulz-Baldes 99)

If H = `2(Zd), then

α̃−l ≥ d−1 dimH µH,ψ0 and α̃+
l ≥ d−1 dimP µH,ψ0 .
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Existence of the IDS

The integrated density of states (IDS) arises in a variety of ways.
For example:

One can restrict H to a finite box B and count the number of
eigenvalues of H|B that are less than E ∈ R, normalized by
the volume of the box. As B exhausts space, the limit is
called N(E ).

One can embed the operator H in an ergodic family of
operators and average suitable spectral measures with respect
to the ergodic measure. The distribution function of the
resulting (density of states) measure dν is N : R→ R.

This works out particularly nicely if there is a unique ergodic
probability measure. Corresponding uniform convergence
statements have been studied by Hof, Lenz, Stollmann, and others.
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Zero-Measure Spectrum in 1D

Consider a finite alphabet A and the full shift AZ, equipped with
discrete/product topology, together with the shift transformation
(Tω)n = ωn+1. A closed T -invariant subset Ω of AZ is called a
subshift.

Given a subshift Ω, choose some continuous f : Ω→ R and define
potentials {Vω}ω∈Ω via

Vω(n) = f (T nω).

This gives rise to Schrödinger operators {Hω}ω∈Ω in `2(Z).

For any ergodic probability measure µ, there is an associated
spectrum Σ (so that σ(Hω) = Σ for µ-a.e. ω ∈ Ω).
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Zero-Measure Spectrum in 1D

Let Ω ⊂ AZ be a strictly ergodic subshift with unique T -invariant
Borel probability measure µ. It satisfies the Boshernitzan condition
(B) if

lim sup
n→∞

(
min

w∈WΩ(n)
n · µ ([w ])

)
> 0.

Here, WΩ(n) denotes the set of words of length n that occur in
elements of Ω, and [w ] denotes the cylinder set associated with a
finite word w , that is, [w ] = {ω ∈ Ω : ω1 . . . ω|w | = w}.

Theorem (D.-Lenz 06)

Suppose the subshift Ω is strictly ergodic and satisfies (B), the
sampling function f : Ω→ R is locally constant, and the resulting
potentials Vω are aperiodic. Then, Σ is a Cantor set of zero
Lebesgue measure.
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A Case Study: The Fibonacci Hamiltonian

The Fibonacci Hamiltonian is the following family of discrete
one-dimensional Schrödinger operators,

[Hλ,ωu](n) = u(n + 1) + u(n− 1) + λχ[1−α,1)(nα+ ω mod 1)u(n),

acting in `2(Z), where λ > 0 is the coupling constant, α =
√

5−1
2 is

the frequency, and ω ∈ T = R/Z is the phase. Alternatively, the
potential of this operator can be generated by the Fibonacci
substitution a 7→ ab, b 7→ a.
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The Spectrum of the Fibonacci Hamiltonian

The spectrum of Hλ,ω does not depend on ω, let us denote it by
Σλ.

Theorem (Sütő 89)

For every λ > 0, Σλ is a Cantor set of zero Lebesgue measure.

Theorem (Casdagli 86, D.-Gorodetski 09, D.-G.-Yessen 16+)

For every λ > 0, Σλ is a dynamically defined Cantor set. In
particular, its box counting dimension exists, coincides with its
Hausdorff dimension, and belongs to (0, 1).
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The Spectrum of the Fibonacci Hamiltonian

Here is a plot of a numerical approximation of the spectrum:
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Figure: The set {(E , λ) : E ∈ Σλ, 0 ≤ λ ≤ 3}.
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The Spectrum of the Fibonacci Hamiltonian

Theorem (D.-Embree-Gorodetski-Tcheremchantsev 08,
D.-Gorodetski 11)

We have limλ→0 dimH Σλ = 1 and

lim
λ→∞

dimH Σλ · log λ = log(1 +
√

2) ≈ 1.83156 logϕ

Moreover, as the coupling is turned on, all gaps open linearly. That
is, given any one-parameter continuous family {Uλ}λ>0 of gaps of
Σλ, we have that

lim
λ→0

|Uλ|
|λ|

exists and belongs to (0,∞).
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The Density of States of the Fibonacci Hamiltonian

By the spectral theorem, there are Borel probability measures µλ,ω
on R such that

〈δ0, g(Hλ,ω)δ0〉 =

∫
g(E ) dµλ,ω(E )

for all bounded measurable functions g . The density of states
measure νλ is given by the ω-average of these measures with
respect to Lebesgue measure, that is,∫

T
〈δ0, g(Hλ,ω)δ0〉 dω =

∫
g(E ) dνλ(E )

for all bounded measurable functions g .
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The Density of States of the Fibonacci Hamiltonian

By general principles, the density of states measure is non-atomic
and its topological support is Σλ. The fact that Σλ has zero
Lebesgue measure therefore implies that νλ is singular continuous
for every λ > 0.

Moreover, by an 07 result of Simon, νλ is the equilibrium measure
in the sense of logarithmic potential theory associated with the set
Σλ. Motivated by results of Makarov and Volberg for the standard
Cantor set, Simon conjectured the following: dimH νλ < dimH Σλ.

Theorem (D.-Gorodetski 12, D.-Gorodetski-Yessen 16+)

For every λ > 0, dimH νλ < dimH Σλ.
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The Density of States of the Fibonacci Hamiltonian

The asymptotics of the dimension of the density of states measure
are given in the following theorem.

Theorem (D.-Gorodetski 12, D.-Gorodetski-Yessen 16+)

For every λ > 0, the density of states measure νλ is
exact-dimensional. Namely, for every λ > 0, the limit (called the
scaling exponent of νλ at E )

lim
ε↓0

log νλ(E − ε,E + ε)

log ε

νλ-almost everywhere exists and is constant. Moreover, denoting
this almost everywhere limit by dλ, we have limλ→0 dλ = 1 and

lim
λ→∞

dλ · log λ =
5 +
√

5

4
logϕ
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Transport Exponents of the Fibonacci Hamiltonian

It had been conjectured since the mid-1980’s that the transport
associated with the Fibonacci Hamiltonian is anomalous, which
means that the transport exponents are different from 1, 1/2, 0.
That is, transport is neither ballistic, nor diffusive, nor absent.

Here is a p-dependent lower bound that improves on the general
Guarneri-Last estimate:

Theorem (D.-Tcheremchantsev 05)

Suppose λ > 0 and set γ = D log(2 +
√

8 + λ2) (where D is some

universal constant) and κ = log
[ √

17
20 logϕ

]
. Then,

β̃±δ0
(p) ≥

{
p+2κ

(p+1)(γ+κ+1/2) , p ≤ 2γ + 1;

1
γ+1 , p > 2γ + 1.



Outline Quantum Mechanics General Results The Fibonacci Hamiltonian The Square Fibonacci Hamiltonian

Transport Exponents of the Fibonacci Hamiltonian

Here is a result that concerns the regime of large λ and p:

Theorem (D.-Tcheremchantsev 07/08)

For λ >
√

24, we have

α̃±u ≥
2 logϕ

log(2λ+ 22)

and for λ ≥ 8, we have

α̃±u ≤
2 logϕ

log
(

1
2

[
(λ− 4) +

√
(λ− 4)2 − 12

])
In particular,

lim
λ→∞

α̃±u · log λ = 2 logϕ



Outline Quantum Mechanics General Results The Fibonacci Hamiltonian The Square Fibonacci Hamiltonian

Transport Exponents of the Fibonacci Hamiltonian

The transport exponents are expected to approach the value 1 as
λ→ 0. Notice that the lower bound from the ’05 result does not
imply this. Using different methods an improved lower bound can
be shown, which does give the desired consequence.

Theorem (Damanik-Gorodetski 15)

There is a constant c > 0 such that for λ > 0 sufficiently small, we
have

1− cλ2 ≤ α̃±u ≤ 1
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The Square Fibonacci Hamiltonian

The square Fibonacci Hamiltonian is the bounded self-adjoint
operator

[Hλ1,λ2,ω1,ω2ψ](m, n) = ψ(m + 1, n) + ψ(m − 1, n)+

+ ψ(m, n + 1) + ψ(m, n − 1)+

+
(
λ1χ[1−α,1)(mα+ω1mod 1)+λ2χ[1−α,1)(nα+ω2mod 1)

)
ψ(m, n)

in `2(Z2), with α =
√

5−1
2 , coupling constants λ1, λ2 > 0 and

phases ω1, ω2 ∈ T = R/Z.

The spectrum is again independent of the phases and may be
denoted by Σλ1,λ2 . The associated density of states measure will
be denoted by νλ1,λ2 .
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The Square Fibonacci Hamiltonian

The theory of separable operators implies that

Σλ1,λ2 = Σλ1 + Σλ2 and νλ1,λ2 = νλ1 ∗ νλ2 ,

where the sum of sets is defined by

S + T = {s + t : s ∈ S , t ∈ T}

and the convolution of measures is defined by∫
R
g(E ) d(µ ∗ ν)(E ) =

∫
R

∫
R
g(E1 + E2) dµ(E1) dν(E2).
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The Spectrum of the Square Fibonacci Hamiltonian

Recall the plot of a numerical approximation of Σλ:
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Figure: The set {(E , λ) : E ∈ Σλ, 0 ≤ λ ≤ 3}.
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The Spectrum of the Square Fibonacci Hamiltonian

This gives rise to a numerical approximation of Σλ,λ = Σλ + Σλ:
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Figure: The set {(E , λ) : E ∈ Σλ,λ, 0 ≤ λ ≤ 3}.
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The Spectrum of the Square Fibonacci Hamiltonian

Theorem (D.-Embree-Gorodetski-Tcheremchantsev 08)

If λ1, λ2 are large enough, then Σλ1,λ2 is a Cantor set of zero
Lebesgue measure.

Theorem (D.-Gorodetski 11)

If λ1, λ2 are small enough, then Σλ1,λ2 is an interval.

Theorem (D.-Gorodetski-Solomyak 15)

For Lebesgue almost all sufficiently small λ1, λ2, νλ1,λ2 is
absolutely continuous.
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The Spectrum of the Square Fibonacci Hamiltonian

Theorem (D.-Gorodetski 16+)

Suppose that for all pairs (λ1, λ2) in some open set U ⊂ R2
+, we

have dimH Σλ1 + dimH Σλ2 > 1. Then, for Lebesgue almost all
pairs (λ1, λ2) ∈ U, Σλ1,λ2 has positive Lebesgue measure.

Theorem (D.-Gorodetski 16+)

Suppose that dimH νλ1 + dimH νλ2 < 1. Then, νλ1,λ2 is singular,
that is, it is supported by a set of zero Lebesgue measure.
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The Spectrum of the Square Fibonacci Hamiltonian

Recall that for every λ > 0, we have

0 < dimH νλ < dimH Σλ < 1.

Thus the curves

{(λ1, λ2) ∈ R2
+ : dimH νλ1 + dimH νλ2 = 1}

{(λ1, λ2) ∈ R2
+ : dimH Σλ1 + dimH Σλ2 = 1}

are disjoint. Consider the following three regions in R2
+:

Uacds = {(λ1, λ2) ∈ R2
+ : dimH νλ1 + dimH νλ2 > 1},

Upmsd = {(λ1, λ2) ∈ R2
+ : dimH Σλ1 + dimH Σλ2 > 1 and

dimH νλ1 + dimH νλ2 < 1},
Uzmsp = {(λ1, λ2) ∈ R2

+ : dimH Σλ1 + dimH Σλ2 < 1}.
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The Spectrum of the Square Fibonacci Hamiltonian

Theorem (D.-Gorodetski 16+)

(a) Each of the regions Uacds, Upmsd, Uzmsp is open and
non-empty.

(b) The regions Uacds, Upmsd, Uzmsp are disjoint and the union of
their closures covers the parameter space R2

+.

(c) For Lebesgue almost every (λ1, λ2) ∈ Uacds, νλ1,λ2 is
absolutely continuous, and hence Σλ1,λ2 has positive Lebesgue
measure.

(d) For every (λ1, λ2) ∈ Upmsd, νλ1,λ2 is singular, but for
Lebesgue almost every (λ1, λ2) ∈ Upmsd, Σλ1,λ2 has positive
Lebesgue measure.

(e) For every (λ1, λ2) ∈ Uzmsp, Σλ1,λ2 has zero Lebesgue
measure, and hence νλ1,λ2 is singular.
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