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Definitions

I Let G be a topological group, X a compact (usually metric)
space. A dynamical system (DS) is a pair (X ,G) with a
jointly continuous action of G on X .

I A factor map π : (X ,G)→ (Y ,G) is a continuous onto
map intertwining the G actions. We also say that (X ,G) is
an extension of (Y ,G).

I A DS (X ,G) is topologically transitive if every invariant
open set is dense (for metric systems this is equivalent to
the existence of a dense orbit; we call the latter property
point transitivity). The system is minimal if every orbit is
dense.

I When the acting group G = Z is the group of integers we
will write (X ,G) as (X ,T ), where T : X → X is the
homeomorphism which corresponds to 1 ∈ Z. We call
such system a cascade.



Hereditary Almost Equicontinuity (HAE)

Definition
I A DS (X ,G) is equicontinuous at x0 ∈ X if for every ε > 0

there exists a neighborhood O of x0 such that for every
x ∈ O and every g ∈ G we have d(gx ,gx0) < ε.

I A DS is almost equicontinuous (AE) if it is
equicontinuous at a dense set of points.

I (X ,G) is hereditarily almost equicontinuous (HAE) if
every subsystem is AE.

I It is not hard to see that a minimal AE system is actually
equicontinuous.



Weak mixing and AE

Definition
A DS (X ,G) is weakly mixing if the product system (X × X ,G)
(with diagonal action g(x , x ′) = (gx ,gx ′)) is topologically
transitive.

I A DS which is both weakly mixing and almost
equicontinuous is necessarily trivial.

I To see this observe that, given ε > 0 there is, by the AE
property, a nonempty open set U such that for any
(x , x ′) ∈

⋃
g∈G gU × gU we have d(x , x ′) < ε. However, by

weak mixing, this set is dense in X × X . Thus the diameter
of X is zero.



HAE and Rigidity for cascades

Definition
A cascade (X ,T ) is uniformly rigid if the there is a sequence
ni ↗∞ such that the corresponding sequence of maps T ni

tends uniformly to the identity.

Theorem

1. An AE cascade with no isolated points is uniformly rigid.
2. Every topologically transitive, uniformly rigid cascade

admits an AE extension.
3. There exist nontrivial weakly mixing, minimal, uniformly

rigid cascades.

Corollary
The AE property need not be inherited by either factors or
subsystems.



HAE and WAP
On the other hand it is not hard to see that the HAE property is
inherited by factors. It is also preserved by products and, by
definition, by subsystems. This persistence of properties makes
HAE a convenient class to work with. In particular this shows
that there is a universal point transitive HAE dynamical system.

Definition
A DS (X ,T ) is weakly almost periodic (WAP) if the orbit
{f ◦ g : g ∈ G} of each f ∈ C(X ) is weakly precompact in the
Banach space C(X ).
Recall that (X ,G) is equicontinuous iff in the definition above
we require precompactness in the norm topology. Thus (X ,G)
is equicontinuous iff it is Bohr almost periodic (AP).

Theorem

1. Every WAP cascade is HAE [Akin-Auslaner-Berg].
2. There exist recurrent, topologically transitive, HAE

cascades which are not WAP [Gl-Weiss].



Enveloping semigroups

Definition
I The enveloping semigroup E(X ,G) is defined as the

closure of the set of g-translations, g ∈ G, in the compact
space X X .

I It is not hard to check that E(X ,G) is a right topological
semigroup compactification of G (i.e. E(X ,G) is a
compact semigroup where right multiplication Rp : q 7→ qp
is continuous.

I On the other hand, left multiplication Lp : q 7→ pq is
continuous iff p : X → X is a continuous map.

I Note in particular that left multiplication by elements of G
are therefore continuous and this makes (E(X ),G) a point
transitive dynamical system.



Theorem

1. A subset M of E is a minimal (left) ideal of the semigroup
E iff it is a minimal subsystem of (E ,G). Minimal ideals M
in E exist and for each such ideal the set of idempotents in
M, denoted by J = J(M), is non-empty.

2. Let M be a minimal ideal and J its set of idempotents then:
(a) For v ∈ J and p ∈ M, pv = p.
(b) For each v ∈ J, vM = {vp : p ∈ M} is a subgroup of M with

identity element v. For every w ∈ J the map p 7→ wp is a
group isomorphism of vM onto wM.

(c) {vM : v ∈ J} is a partition of M. Thus if p ∈ M then there
exists a unique v ∈ J such that p ∈ vM; we denote by p−1

the inverse of p in vM.

3. Let K ,L, and M be minimal ideals of E. Let v be an
idempotent in M, then there exists a unique idempotent v ′

in L such that vv ′ = v ′ and v ′v = v. (We write v ∼ v ′ and
say that v ′ is equivalent to v.) If v ′′ ∈ K is equivalent to v ′,
then v ′′ ∼ v. The map p 7→ pv ′ of M to L is an
isomorphism of G-systems.



We have the following connections between the dynamical
properties of the system (X ,G) and the algebraic properties of
E(X ,G).

I For every x ∈ X , Gx = Ex
I Gx is minimal iff for every minimal ideal M in E , Gx = Mx ,

iff in every minimal ideal there is an idempotent v such that
vx = x .

I The pair (x , x ′) is proximal iff px = px ′ for some p ∈ E iff
there exists a minimal ideal M in E with px = px ′ for every
p ∈ M.

I If (X ,G) is minimal, then

P[x ] = {x ′ ∈ X : (x , x ′) ∈ P} = {vx : v ∈ Ĵ}.

In particular x ∈ X is a distal point iff vx = x for every
v ∈ Ĵ.



I The relation P is an equivalence relation iff E contains a
unique minimal ideal.

I (X ,G) is distal iff E is a group.
I A distal system is pointwise minimal.
I (X ,G) is distal iff X × X is pointwise minimal. Hence a

factor of a distal system is distal.
I (X ,G) is equicontinuous iff E is a compact topological

group.



Examples

I For the Bernoulli scheme Ω = {0,1}Z (a cascade under
the shift) the enveloping semigroup is the Čech-Stone
compactification βZ. As a DS it is the universal point
transitive Z system.

I For the transformation T (x , y) = (x + α, y + x) on the
2-torus, with irrational α, we have E = {Sβ,γ,φ},
S(x , y) = (x + β, y + φ(x) + γ), where β, γ are arbitrary
points in T = R/Z and φ : T→ T is any map with
φ(x + x ′) = φ(x) + φ(x ′) and φ(α) = β.



Enveloping semigroup characterizations

Theorem
I (X ,G) is WAP ⇐⇒ every element of E(X ,G) is

continuous [Ellis-Nerurkar].
I (X ,G) is HAE ⇐⇒ E(X ,G) is metrizable [Gl-Meg-Usp].

Note that in the latter case, as every element of E(X ,G) is the
pointwise limit of a sequence of elements of G, it follows that
each element p of E is a Baire-class-1 map; i.e. the inverse
image {x ∈ X : px ∈ U} of an open subset U ⊂ X , is Fσ subset
of X . Alternatively the restriction of p to every closed subset
has a point of continuity.



Rosenthal compacta

Definition
I Recall that a compact space K is called a Rosenthal

compactum if it is homeomorphic to a compact subset of
the space B1(X ) of Baire-class-1 real-valued functions on
a Polish space X , equipped with the pointwise
convergence topology.

I A topological space K is a Fréchet space if for every
A ⊂ K and every x ∈ A there is a sequence an ∈ A with
x = limn→∞ an.

In a famous work Bourgain Fremlin and Talagrand have shown,
among many other striking results, that every Rosenthal
compactum is Fréchet.



A dynamical Bourgain-Fremlin-Talagrand dichotomy

We have the following dynamical version of the
Bourgain-Fremlin-Talagrand dichotomy theorem.

Theorem (A dynamical BFT dichotomy, Köhler, Gl-Meg)
Let (X ,G) be a metric dynamical system and let E(X ) be its
enveloping semigroup. We have the following dichotomy. Either

1. E(X ) is a separable Rosenthal compactum, hence with
cardinality card E(X ) ≤ 2ω; or

2. the compact space E contains a homeomorphic copy of
βN, hence card E(X ) = 22ω

.



Tame dynamical systems

I Definition
A DS is called tame if the first alternative occurs, i.e. E(X ) is
Rosenthal compact.

I One can measure the usefulness of a new mathematical
notion by the number of seemingly unrelated ways by
which it can be characterized. According to this principle
the notion of tameness stands rather high. Tameness can
be characterized by the lack of a certain “independence”
property — where combinatorial Ramsey type arguments
take a leading role, by the fact that the elements of the
enveloping semigroup of a tame system are Baire class 1
maps. Finally a dynamical system is tame iff it can be
represented on a Banach space which does not contain an
isomorphic copy of `1.



Theorem
The following conditions on a metric dynamical system (X ,T )
are equivalent:

1. (X ,T ) is tame.
2. card(E(X ,T )) = 2ℵ0 .
3. E(X ,T ) is a Fréchet space.
4. Every element of E(X ,T ) is of Baire class 1.
5. Every element of E(X ,T ) is Borel measurable.



I Given a DS (X ,G) each of the dynamical properties
defined above defines a C∗-subalgebra of C(X ), and
therefore also a maximal factor with the corresponding
property:

AP(X ) ⊂WAP(X ) ⊂ HAE(X ) ⊂ Tame(X ).

Globally, i.e. in the C∗-algebra BRUC(G), we have:

AP(G) ⊂WAP(G) ⊂ HAE(G) ⊂ Tame(G).



Entropy, tame and null systems

Recall the basic definitions of topological (sequence) entropy.
Let (X ,T ) be a cascade, i.e., a Z-dynamical system, and
A = {a0 < a1 < . . .} a sequence of integers. Given an open
cover U define

hA
top(T ,U) = lim sup

n→∞

1
n

N(
n−1∨
i=0

T−ai (U))

The topological entropy along the sequence A is then
defined by

hA
top(T ) = sup{hA

top(T ,U) : U an open cover of X}.



When the phase space X is zero-dimensional, one can replace
open covers by clopen partitions. We recall that a dynamical
system (T ,X ) is called null if hA

top(T ) = 0 for every infinite
A ⊂ Z. Finally when Y ⊂ {0,1}Z, and A ⊂ Z is a given subset
of Z, we say that Y is free on A or that A is an interpolation
set for Y , if

{y |A : y ∈ Y} = {0,1}A.



By a theorem of Huang and Kerr and Li every null system is
tame. From results of Glasner-Weiss and Kerr-Li, the following
results can be easily deduced.

Theorem

1. A subshift X ⊂ {0,1}Z has positive topological entropy iff
there is a subset A ⊂ Z of positive density such that X is
free on A.

2. A subshift X ⊂ {0,1}Z is not tame iff there is an infinite
subset A ⊂ Z such that X is free on A.

3. A subshift X ⊂ {0,1}Z is not null iff for every n ∈ N there is
a finite subset An ⊂ Z with |An| ≥ n such that X is free on
An.



Minimal tame systems

Theorem (A structure theorem for minimal tame DS,
Huang, Kerr-Li, Gl)
Let (X ,G) be a tame minimal metrizable DS with G abelian.
Then:

I (X ,G) is an almost 1-1 extension of an equicontinuous
system.

I (X ,G) is uniquely ergodic and the corresponding measure
preserving system is isomorphic to Haar measure on the
equicontinuous factor.



I will next describe some key points in the proof of this theorem.
Unless I say otherwise Γ is assumed to be abelian.

Theorem
Let (X , Γ) be a metric tame dynamical system. Let M(X )
denote the compact convex set of probability measures on X
(with the weak∗ topology). Then each element p ∈ E(X , Γ)
defines an element p∗ ∈ E(M(X ), Γ) and the map p 7→ p∗ is
both a dynamical system and a semigroup isomorphism of
E(X , Γ) onto E(M(X ), Γ).



Proof.
Since E(X , Γ) is Fréchet we have for every p ∈ E a sequence
γi → p of elements of Γ converging to p. Now for every
f ∈ C(X ) and every probability measure ν ∈M(X ) we get, by
the Riesz representation theorem and Lebesgue’s dominated
convergence theorem,

γiν(f ) = ν(f ◦ γi)→ ν(f ◦ p) := p∗ν(f ).

This defines the map p 7→ p∗. It is easy to see that this map is
an isomorphism of dynamical systems, whence a semigroup
isomorphism. Finally as Γ is dense in both enveloping
semigroups, it follows that this isomorphism is onto.



As we have seen, when (X , Γ) is a metrizable tame system
each element p ∈ E is a limit of a sequence of elements of Γ,
p = limn→∞ γn.

Note that under our assumptions (minimality and commutativity
of Γ) the set pX is always a dense subset of X .

It follows that the subset C(p) of continuity points of each p ∈ E
is a dense Gδ subset of X .



Lemma
Let (X , Γ) be a metrizable tame dynamical system, E = E(X , Γ)
its enveloping semigroup.

1. For every p ∈ E the set C(p) ⊂ X is a dense Gδ subset of
X .

2. For every idempotent v ∈ E, we have C(v) ⊂ vX.



Proof.
1. As remarked above.

2. Given x ∈ C(v) choose a sequence xn ∈ vX with
limn→∞ xn = x . We then have
vx = limn→∞ vxn = limn→∞ xn = x ,

hence C(v) ⊂ vX .



Point distality

A homomorphism π : (X , Γ)→ (Y , Γ) is called semiopen if the
interior of π(U) is nonempty for every nonempty open subset U
of X . When X is minimal every π : (X , Γ)→ (Y , Γ) is semiopen.
We will say that a subset W ⊂ X × X is a S-set if it is closed,
invariant, topologically transitive, and the restriction to W of the
projection maps are semiopen.

Theorem (van der Woude)
A metric minimal system (X , Γ) is point distal iff every S-set in
X × X is minimal.



Proposition
Let (X , Γ) be a metric tame minimal system, then (X , Γ) is point
distal.



Proof.
We will prove that the condition in the above theorem holds; i.e.
that every S-set in X × X is minimal. So let W ⊂ X × X be an
S-set.

Let v be a minimal idempotent in E(X , Γ). By the above Lemma
and Proposition the set C(v) of continuity points of v is a dense
Gδ subset of X and moreover C(v) ⊂ vX , so that vX is residual
in X . Since by assumption the projection maps πi : W → X are
semiopen, it follows that the sets π−1

i (vX ) are residual in W .
Since Wtr , the set of transitive points in W , is a dense Gδ

subset of W we conclude that the set
(π−1

1 (vX ) ∩ π−1
2 (vX )) ∩Wtr = (vX × vX ) ∩Wtr is residual in W

and in particular it is nonempty. Now if (x , x ′) is any point in this
intersection then v(x , x ′) = (vx , vx ′) = (x , x ′) and (x , x ′) is a
minimal point. Therefore W = OΓ(x , x ′) is minimal.



Theorem (Veech)
A metric minimal dynamical system is point distal iff it is an
AI-system.



Once we know that (X ,G) is point distal it is possible, using
Veech’s theorem, to reduce the proof to the case discussed in
the following proposition:

Proposition
Let (X , Γ) be a minimal metric system and let
φ : (X , Γ)→ (Y , Γ) be its maximal equicontinuous factor.
Suppose further that Y is infinite and that we have the following
diagram

(X , Γ)
π→ (Y ∗, Γ)

θ→ (Y , Γ),

where π is an isometric extension, θ is an almost 1-1 extension
and φ = θ ◦ π.



For every y∗ ∈ Y ∗ the fiber π−1(y∗) has the structure of a
homogeneous space of a compact Hausdorff topological group
and we let λy∗ be the corresponding Haar measure on this
fiber. Thus π is a RIM and open extension and y∗ 7→ λy∗ ,
Y ∗ →M(X ), is the corresponding section. Let
Λ : M(Y ∗)→M(X ), defined by

Λ(ν) =

∫
Y∗
λy∗ dν(y∗),

be the associated affine injection. Set
Mm(X ) = {Λ(ν) : ν ∈M(Y ∗)}. Then the set

R = {ν ∈M(X ) : the orbit closure of ν meets Mm(X )}

is a dense Gδ subset of M(X ).



A minimal dynamical system (X , Γ) is called almost
automorphic if it is an almost 1-1 extensions of its largest
equicontinuous factor.

Toeplitz systems and generalized Sturmian systems are almost
automorphic.



Almost automorphy
Now recall that when (X ,G) is tame we have
E(X ,G) = E(M(X ),G). In particular we have that

S := CM(X)(u) ∩ R

is a dense Gδ subset of M(X ).
Now if ν ∈ S then uν = ν and, u being a minimal idempotent,
the closure of the Γ orbit of ν in M(X ) is a minimal set, whence
this entire orbit closure is contained in Mm(X ). In particular
ν ∈Mm(X ) and we conclude that

S = CM(X)(u) ∩ R ⊂Mm(X ).

Therefore S is dense in Mm(X ) and in turn, this implies the
equality:

Mm(X ) = M(X ).

Finally, this means that π is an isomorphism; i.e. (X ,G) is
almost automorphic.



Unique ergodicity

Suppose that µ1 and µ2 are two invariant probability measures
on X . Then, (X , Γ) being tame, u∗µi = µi and we conclude that
µi(uX ) = 1, for i = 1,2.

Since θ is a proximal extension, for every y ∈ Y = uY the fiber
θ−1(y) intersects uX at exactly one point: θ−1(y) ∩ uX = {x}.
Now by disintegrating each µi over η, inside the set uX , we
conclude that µ1 = µ2. This proves the unique ergodicity of
(X , Γ) .

It is also clear from the proof that the map
θ : (X , µ, Γ)→ (Y , η, Γ), where µ is the unique invariant
measure on X , is an isomorphism of measure preserving
systems.



Examples

I As we have seen above the enveloping semigroup of an
HAE system is metrizable, whence of course Rosenthal.
Thus every HAE system is tame.

I Consider an irrational rotation (T,Rα). Choose x0 ∈ T and
split each point of the orbit xn = x0 + nα into two points x±n .
This procedure results in a generalized Sturmian
dynamical system (X ,T ) which is a minimal almost 1-1
extension of (T,Rα). The enveloping semigroup E(X ,T ) is
homeomrphic to the “two arrows” space, a basic example
of a non-metrizble Rosenthal compactum. Thus (X ,T ) is
tame but not HAE.



Examples

I Every null dynamical system is Tame.
I The actions of G = SLn(R) on both the sphere Sn−1 and

the projective space Pn−1 (n ≥ 2) are tame. In both cases
the enveloping semigroup is Rosenthal but not metrizable.
In the case of the projective space it is not even first
countable. Again we conclude that these systems are tame
but not HAE.



HNS and Tame subshifts

For a discrete group G and a finite alphabet L = {1, . . . , l} let
Ω = LG. A closed G-invariant subset X ⊂ Ω is called a
subshift.

Theorem
Let X ⊂ Ω be a subshift. The following conditions are
equivalent:

1. (X ,G) is HAE.
2. X is countable.



Theorem
Let X ⊂ Ω be a subshift. The following conditions are
equivalent:

1. (X ,G) is tame.
2. For every infinite subset L ⊆ G there exists an infinite

subset K ⊆ L such that πK (X ) is a countable subset of LK .



Asplund and Radon–Nikodým Banach spaces

Definition
I A Banach space V is Asplund if for every separable

subspace U ⊂ V its dual U∗ is separable. Reflexive
spaces and spaces of type c0(Γ) are Asplund.

I The Banach space V is Radon–Nikodým if it is of the form
V ∗, where V is an Asplund space.

I The Banach space V is Rosenthal if it does not contain an
isomorphic copy of the space `1.



Banach representations

Definition
I A representation of a DS (X ,G) on a Banach space V

consists of a pair

h : G→ Iso (V ) and α : X → B∗1,

where h is a group homomorphism, B∗1 is the unit ball in V ∗

and α is a factor map of DS:

α(gx) = h(g)∗α(x) ∀g ∈ G, x ∈ X .

I A representation is proper if α is an embedding.



The standard representation

Trivially every DS (X ,G) has a proper representation on C(X ).
Namely

α(x) = δx ,

where δx is the point mass at x viewed as an element of C(X )∗.

Finding representations on geometrically “nicer” Banach
spaces (Hilbert, Reflexive, Asplund, Rosenthal ...) is a more
difficult task.



A theorem of Megrelishvili

Theorem
Let (X ,G) be a compact metric DS. The following conditions
are equivalent:

I (X ,G) is WAP.
I (X ,G) admits a proper representation on a Reflexive

Banach space.
I Every element of E(X ,G) is continuous.



RN systems

Definition
A DS is Radon–Nikodým (RN) if it admits a proper
representation on an Asplund Banach space. It is weak
Radon–Nikodým (WRN) if it admits a proper representation on
a Rosenthal Banach space.

Note that when G = {e}, i.e. there is no group action, we
recover the definition of Radon–Nikodým compact spaces due
to Namioka.



The equivalence of RN and HAE

Theorem (Gl-Meg-Usp)
Let (X ,G) be a compact metric DS. The following conditions
are equivalent:

I (X ,G) is HAE.
I (X ,G) is RN; i.e. it admits a proper representation on an

Asplund spce.
I E(X ,G) is metrizable.



Tame dynamical systems

Theorem (Gl-Meg)
Let (X ,G) be a compact metric DS. The following conditions
are equivalent:

I (X ,G) is tame.
I (X ,G) is WRN or Rosenthal representable; i.e. it admits a

proper representation on a Banach space which does not
contain `1.

I Every element of E(X ,G) is of Baire-class-1.



The hierarchy of Banach representations

• Let X be a compact metrizable G-space,
• E(X ) the corresponding enveloping semigroup.
• f stands for an arbitrary function in C(X ).
• fG = {f ◦ g : g ∈ G} denotes its orbit.
• fG is the pointwise closure of fG in RX .

Dynamical characterization Enveloping semigroup Banach representation
WAP fG is a subset of C(X) Every element is continuous Reflexive
HNS fG is metrizable E(X) is metrizable Asplund
Tame fG is Fréchet Every element is Baire 1 Rosenthal

Table: The hierarchy of Banach representations



A dynamical approach to the examples of James and
Lindenstrauss

I One of the important problems in Banach space theory in
the mid 70’s was how to construct a separable Rosenthal
space (i.e. a Banach space not containing `1) which is not
Asplund.

I The first counterexamples were given independently by
James and Lindenstrauss.

I We will show next how counterexamples to the Banach
space problem can be easily obtained from our dynamical
results.



The Banach space examples
I We want to construct a Banach space which is Rosenthal

(i.e. does not contain `1) but not Asplund.
I In view of the above dynamical results, all one needs to do

is to construct a DS (X ,G) which is tame but not HAE.
This system will then be representable on a Rosenthal
Banach space V which can not possibly be Asplund. For
otherwise (X ,G) would be HAE.

I Now recall that we have many examples of DS of this type;
e.g. the generalized Sturmian cascades or GLn(R) acting
on the sphere or the projective space.
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