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torus parametrisation

— motivation |

Randomness of primes and the Mobius function

m u:N—{-1,0,1} defined by (1) =1 and

u(n) = (=1)" if nis a product of t distinct primes

|
m u(n) = 0if nis not squarefree

e.g., 1(15) = p(3-5) = (—1)> = 1 and u(20) = p(22-5) =0

u consider the Mertens function M(n) = %3/ _; ju(k)

m u “orthogonal” to constant sequence:
M(n) = o(n) < PNT

(LLN, Landau 1906, compare Tao 2009)
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torus parametrisation

— motivation |

Mobius randomness principle

u sequence & = (£(n))nen with values in finite A < R
u for £ € AV consider shift T¢(n) = £(n + 1) and define compact flow

F(&) ={Tké - ke N} c AY

m F(&) called deterministic if & has zero topological entropy

1 is orthogonal to any sequence in any deterministic flow.

m trivial flows, i.e., card(F(£)) = 1: prime number theorem

u Kronecker flows, i.e., F(£) = G cpct abelian group with T, group
translations: Vinogradov—Davenport (1937)

u distal flows, i.e., infieny d( T x, TKy) > 0 for distinct x,y € F(€)
for certain “homogeneous nilflows” Green—Tao (2008)
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torus parametrisation

— motivation |

Mobius flow and squarefree flow

Sarnak (2011): interpret p itself dynamically
= Mébius flow F(u) = {-1,0,1}N
u squarefree flow F(o) < {0, 1} where o = 12 = (1(n)?) pen
m squaring yields factor map from F(u) to F(o)

Lemanczyk et al (2013): generalise o to so-called B-free integers

B B={b <b<...} ©{2,3,...} pairwise coprime such that

m B-free integers Vi < Z consist of all integers having no factor in B

u squarefree integers Vi obtained with B = {p? : p prime}
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torus parametrisation

— motivation |

flows of weak model sets

explicit calculations of B-free flows F(V3z), e.g.:
m topological entropy of (F(Vz), T)

= pure point dynamical spectrum of (F(Vgz), T) with respect to
pattern frequency measure

m obtained by comparison with a certain torus rotation

m simplex of invariant probability measures on (F(Vg), T)

analysis via weak model sets (Meyer 73, Baake-Moody—Pleasants 99, ...)
m structural insight into above results through underlying cp scheme

m extends theory of regular model sets
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torus parametrisation

— motivation |l

cut-and-project schemes and weak model sets

G physical space, H internal space, LCA groups, L lattice in G x H
infinite strip parallel to G defined by compact window W < H
weak model set A (W) by projecting lattice points inside strip to G
assume wlog that projection of L is dense in H

assume that distinct lattice points have distinct G-projection
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torus parametrisation

L motivation |l

cp scheme for squarefree integers
(cf. Meyer 73, Baake~Moody—Pleasants 99, Sing 05, ...)

m n squarefree <= n mod p? # 0 for all primes p
= consider the compact product group H = HP(Z/p2Z)
m dense embedding of Z into H:

n—i(n)=(n mod p?),,

m take G =Z and L = {(n,u(n)) :neZ}c G x H

Lemma

(G,H, L) is a cp scheme, i.e., L is a lattice in G x H, €|, is 1-1 and
7"(L) is dense in H.
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torus parametrisation

— motivation |l

squarefree integers as a weak model set

squarefree integers weak model set in (G, H, L) with window
w =[1(z/p°2)\{05}
P

m W closed as every component closed
m int(W) = &, as no component of W is maximal

m hence W =o0W

taking the canonical Haar measure my on H, we have

Density of squarefree integers is volume of window! (generally <)
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torus parametrisation

— motivation |l

diffraction of squarefree integers

diffraction theory:

m diffraction measure describes intensity of diffraction in a physical
diffraction experiment.

explicit calculation for squarefree integers:
= pure point diffraction, i.e., no continuous component
m Bragg peak positions: rationals x with cubefree denominator g
m intensity of Bragg peak at x:
= op H
plg

(e.g., Baake-Moody—Pleasants 1999, Pleasants—Huck 2013)

p—1

Squarefree integers are pure point diffractive!
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torus parametrisation

—weak model set dynamical systems

torus parametrisation of weak model sets

green: FD of torus X, red: (£ + x) n (G x W) = supp(vw (X))
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torus parametrisation

—weak model set dynamical systems

torus parametrisation of weak model sets

green: FD of torus X, red: 76((£ +x) n (G x W)) = supp(v/§,(X))
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torus parametrisation

—weak model set dynamical systems

description of weak model sets

torus parametrisation (Robinson 93, Baake, Pleasants et al 95, ...)
m fix cp scheme (G, H, L), Haar measures mg, my, window W < H
m weak model sets 7°((£ + x) n (G x W)) for any xe G x H

= parametrisation by cpct torus X = (G x H)/L via & = x + £

torus dynamics (e.g. Moody 02)
= T,% = %+ (g,0) minimal G-action on X
n ()A(, 7A') uniquely ergodic, pure point dynamical spectrum
m induces dynamics on weak model sets

= Haar measure mg: any weak model set equally probable

We revisit and extend these approaches.
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torus parametrisation

—weak model set dynamical systems

description of weak model sets

weak model sets as measures
m describe weak model set as measure via its Dirac comb

= measure v, (X) on G x H, ie,

vw(X) = > Oy
YE(L+Xx)N(Gx W)

= projected measure 5 (X) on G, i.e.,

V(%) = > 8r6(y)
YE(L+Xx)N(Gx W)

m induced dynamics on G x H easier than on projection to G

first analyse dynamics in G x H and then transfer results to G
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torus parametrisation

—weak model set dynamical systems

flows from weak model sets

n flow of measure v, (%) on G x H

My (R) ={Tgrw(X) : g€ G}

m flow of projected measure v (X) on G

M%) = {Tgv(%) - g € G}

m consider first the simpler flow spaces
My = My (X), M = M (X)

B as v, : X > M, and v, : X — M, are measurable maps, we may
lift the torus Haar measure mg to My, and to My, via

-1 G\—1
QM=m)A<oz/W s QMG=m)A<O(VW)
Let us call these ergodic measures Mirsky measures.
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torus parametrisation

‘—measure-theoretic results

measure-theoretic results: discrete spectrum

Assume my(W) > 0. Then
i (X, mg, T) and (M,,, Qu, T) are measure theoretically isomorphic.
(i) (MS, Quqs, T) is a factor of (X, mg, T).

(i) If my(0W) =0, then (M, T) and (MS,, T) are uniquely ergodic.

In particular, (MS,, Quqc, T) has pure point dynamical spectrum.

remarks
m implies that diffraction measure of Q¢ is pure point (Dworkin)

m extends results on B-free systems (ii) and regular model sets (jii)

(previous results explicit calculation and different measure definition)
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torus parametrisation

— measure-theoretic results

pure point spectrum: arguments

measure-theoretic isomorphism from X to M,, via the map vy
m 1-1 except on Z,, = {X € X: vw(X) = 0}
u mg(Zy) = 0if and only if my(W) >0 as

RK=x+LeZ, = xye€ ﬂ(WC—EH)= (U(W—EH)>

el el
m hence also Qa(vw(Zw)) = 0 since

Qm(rw(Zw)) = mg © Vm_/l(VW(ZW)) = m)“((ZW)

measure-theoretic factor map from X to M, via v, = 75 oy,

= need not be 1-1 as 7§ : M, — M, need not be 1-1

A~

dynamical properties of (M, T, Quqc) are inherited from (X, T, mg)
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torus parametrisation

— measure-theoretic results

injectivity properties of 7¢ :

for W < H recall
m W irredundant (aperiodic) if h+ W = W implies h = 0
= W topologically regular if W = int(W)

Let W be topologically regular. Then the following are equivalent.
u W is irredundant.

# W # @ and g : My, — M, is a homeomorphism.

for B-free integers, there is a full measure subset where 7§ is 1-1 (below)
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torus parametrisation

— measure-theoretic results

flows of weak model sets v, (%)

configurations of maximal density:
m for averaging in G, fix any tempered van Hove sequence (A,),
® vy (X) has maximal density if

i Ve84

n—w  mg(An) = dens(£) - mu(W)

(lim sup with < always true)

Lemma (Moody 02, maximal density is generic)

Let Xmax = {& € X : 1(R) has maximal density}. Then Xpmax is
T-invariant and has full Haar measure.

Moody also shows that pure point diffractivity is generic.
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torus parametrisation

— measure-theoretic results

flows of weak model sets v, (%)

m There is a full measure subset )A(OAQ )A(,,,E,X such that
My, (X) = supp(Quq) for all X € Xo. We may choose

A

)A<O = Xmax N (VW)_I(SUPP(QM))

u Qn is the pattern frequency measure.

B-free integers:
» choose W such that Vig = supp(v5(0))
# Xo = Xmax and MS,(X) = MG, for all X € Xpmax
(X, mg, T) isomorphic to (MS,(X), Que, T) for any & € Xpax.

As y,fv(f)) has maximal density, it has pure point spectrum.
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torus parametrisation

— measure-theoretic results

B-free integers: injectivity properties of ¢ : M,, — M,

For A < Z write Ax = {gk : g € A} where gx = g mod by.

Y ={veM, :card supp(riv)x = by — 1 for all k € No}

m Y < M,, measurable, consists of all measures such that “every
b-reduction misses exactly one coset”.

m 75 (Y) studied before:

= Xi for square-free integers (Peckner 12)
m Y for B-free systems (Kulaga-Przymus 14)
m A; for visible lattice points (Baake—Huck 14)

The next lemmas have close analogues in the above publications.
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torus parametrisation

— measure-theoretic results

B-free integers: injectivity properties of ¢ : M,, — M,

Lemma

wg is 1-1 on Y. Hence nl|y : Y — w5 (V) is a Borel isomorphism.

(Assume v, v’ € Y such that w{rv = w51’. By the coset condition, v,/
must be supported on the same shifted lattice. Hence v = 1/.)

Lemma

We have vy (Xmax) € Y. Hence, Y has full Mirsky measure.

(Two missing cosets contradicts maximal density.)
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torus parametrisation

— measure-theoretic results

the approach Baake-Huck-Strungaru (2015)

= consider weak model sets of maximal (or minimal) density

m different technique: approximate weak model set from above
(below) by regular model sets, i.e., my(dW) =0

results:
m expressions for pattern frequencies as in the regular case
m yield autocorrelation and diffraction measure

m ergodicity of measure on M, defined by pattern frequencies
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torus parametrisation

—topological results

topological results: the map vy : X — M,

consider the following T-invariant subsets of X:
» Cy < X set of continuity points of v, wrt vague convergence.

m C, residual in )A( in particular dense in X
m X = x + £ continuity point iff xy generic, i.e.,

(OW —xp) N 7"(L) = @ <= xu € [ (W — Iy)
el

w Z, < X set of zero points of vy, i.e., X for which v, (%) = 0.

m vy X —> M, is 1-1 on )A(\ZW
m Z, empty if int(W) # &
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torus parametrisation

Ltopological results

the map v X — M,

Proposition (Upper semicontinuity of vy)

i) Iflim,_ e X" = X, then v < v, (X) for all vague limit points v of
(vw(X™))n, and dv/dv,(X) takes only values 0 and 1.
%€ Cy ifand only if {v e My, : v < vy (X)} = {vw(X)}.

iv

ii)
i) Cy is residual in X, ie., the complement of C,, in X is meagre.
) Ifint(W) # &, then Z,, = & and, even more, 0 ¢ M,,.

)

v) Ifint(W) = @, then Z,, = C, is residual in X. If in addition

W + @, then 0 € v, (X\Zy).
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torus parametrisation

—topological results

topological results

= we have the graph dynamical systems (with canonical group actions)

GM,y, = {(K,vw(R) 1 ke X},  GMS = {({,v5(X)) : k€ X}

m working on graph advantageous to working on projection

Proposition

) |

7% (GMy,S) — (X, T) is a topological almost 1-1 extension of its
maximal equicontinuous factor.

argument:
o (7)) 7H&Y = {(&, 1w (X))} for all X € Cy and C,, dense in X
= hence 7% almost 1-1 extension of an equicontinuous factor (X, T)
= as factor map from maximal equicontinuous factor to (X, T) has

one-point fibre, it must coincide with (X, T) 25 /28



torus parametrisation

‘—topological results

topological results

Theorem (Topological factors and extensions)

) Ifint(W) # @, then 7% o (r&")™1: (M, T) = (X, T) is a
topological almost 1-1 extension of its maximal equicontinuous
factor.

1) Ifint(W) # @, then the restriction of T to the subsystem
vw(Cw) € M, is an almost automorphic extension of (X, T), and
it is the only minimal subsystem of (M, T).

i) Ifint(W) = @ and if (M,,, T) is topologically transitive, then
(M, T) has no nontrivial equicontinuous factor.

results ii), iii) translate to (MS,, S) if 75 : M, — Mg, is 1-1
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torus parametrisation

—topological results

topological properties of flows

i) Ifint(W) # @, then v, (Cy) = My(R) for all X € C.

1) IF mp(0W) = 0, then 1y, (Cy) = supp(Qu)

m hence for my(0W) = 0 the relevant topological and
measure-theoretic dynamical systems coincide.

m results transfer to G for topologically regular windows
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torus parametrisation

—outlook

graphs versus skew products

move all information about lattice shift into first component!

GM,, = {(X,vw(8)) : K € X}

m fix fundamental domain X of £ and define

G = {(x,S_vw(X)) 1 xe X} < X x {0,1}*

corresponding G-action on 2" factor of GQ,, piecewise continuous
u defines skew product dynamical system G, over base X

m G, is extension of GM,, with injective factor map

skew products with actions of countable amenable groups
= entropy theory (cf. Huck-R 15)
m thermodynamic formalism (Ward-Zhang 92, Bogenschiitz 93)
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