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torus parametrisation

motivation I

Randomness of primes and the Möbius function

µ : NÑ t´1, 0, 1u defined by µp1q “ 1 and

µpnq “ p´1qt if n is a product of t distinct primes
µpnq “ 0 if n is not squarefree

e.g., µp15q “ µp3 ¨ 5q “ p´1q2 “ 1 and µp20q “ µp22 ¨ 5q “ 0

consider the Mertens function Mpnq “
řn

k“1 µpkq

µ “orthogonal” to constant sequence:

Mpnq “ opnq ðñ PNT

(LLN, Landau 1906, compare Tao 2009)
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torus parametrisation

motivation I

Möbius randomness principle

sequence ξ “ pξpnqqnPN with values in finite A Ă R
for ξ P AN consider shift T ξpnq “ ξpn ` 1q and define compact flow

Fpξq “ tT kξ : k P Nu Ď AN

Fpξq called deterministic if ξ has zero topological entropy

Conjecture

µ is orthogonal to any sequence in any deterministic flow.

trivial flows, i.e., cardpFpξqq “ 1: prime number theorem

Kronecker flows, i.e., Fpξq “ G cpct abelian group with Tg group
translations: Vinogradov–Davenport (1937)

distal flows, i.e., infkPN dpT kx ,T kyq ą 0 for distinct x , y P Fpξq
for certain “homogeneous nilflows” Green–Tao (2008)
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torus parametrisation

motivation I

Möbius flow and squarefree flow

Sarnak (2011): interpret µ itself dynamically

Möbius flow Fpµq Ă t´1, 0, 1uN

squarefree flow Fpσq Ă t0, 1uN where σ “ µ2 “ pµpnq2qnPN

squaring yields factor map from Fpµq to Fpσq

Lemanczyk et al (2013): generalise σ to so-called B-free integers

B “ tb1 ă b2 ă . . .u Ă t2, 3, . . .u pairwise coprime such that

ÿ

kPN

1

bk
ă 8.

B-free integers VB Ă Z consist of all integers having no factor in B

squarefree integers VB obtained with B “ tp2 : p primeu

4 / 28



torus parametrisation

motivation I

flows of weak model sets

explicit calculations of B-free flows FpVBq, e.g.:

topological entropy of pFpVBq,T q

pure point dynamical spectrum of pFpVBq,T q with respect to
pattern frequency measure

obtained by comparison with a certain torus rotation

simplex of invariant probability measures on pFpVBq,T q

analysis via weak model sets (Meyer 73, Baake–Moody–Pleasants 99, ...)

structural insight into above results through underlying cp scheme

extends theory of regular model sets
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torus parametrisation

motivation II

cut-and-project schemes and weak model sets

G

H

W

G physical space, H internal space, LCA groups, L lattice in G ˆ H

infinite strip parallel to G defined by compact window W Ă H

weak model set NpW q by projecting lattice points inside strip to G

assume wlog that projection of L is dense in H

assume that distinct lattice points have distinct G -projection
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torus parametrisation

motivation II

cp scheme for squarefree integers
(cf. Meyer 73, Baake–Moody–Pleasants 99, Sing 05, ...)

n squarefree ðñ n mod p2 ‰ 0 for all primes p

consider the compact product group H “
ś

ppZ{p2Zq

dense embedding of Z into H:

n ÞÑ ιpnq “ pn mod p2qp,

take G “ Z and L “ tpn, ιpnqq : n P Zu Ă G ˆ H

Lemma

pG ,H,Lq is a cp scheme, i.e., L is a lattice in G ˆ H, πG |L is 1-1 and
πHpLq is dense in H.
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torus parametrisation

motivation II

squarefree integers as a weak model set

squarefree integers weak model set in pG ,H,Lq with window

W “
ź

p

pZ{p2Zqzt0pu

W closed as every component closed

intpW q “ ∅, as no component of W is maximal

hence W “ BW

taking the canonical Haar measure mH on H, we have

mHpW q “
ź

p

ˆ

1´
1

p2

˙

“
1

ζp2q
« 0.6079...

Density of squarefree integers is volume of window! (generally ď)
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torus parametrisation

motivation II

diffraction of squarefree integers

diffraction theory:

diffraction measure describes intensity of diffraction in a physical
diffraction experiment.

explicit calculation for squarefree integers:

pure point diffraction, i.e., no continuous component

Bragg peak positions: rationals x with cubefree denominator q

intensity of Bragg peak at x :

I pxq “
1

ζp2q2

ź

p|q

1

pp2 ´ 1q2

(e.g., Baake–Moody–Pleasants 1999, Pleasants–Huck 2013)

Squarefree integers are pure point diffractive!
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torus parametrisation

weak model set dynamical systems

torus parametrisation of weak model sets

H

W

G
x

green: FD of torus X̂ , red: pL` xq X pG ˆW q “ supppνW px̂qq
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torus parametrisation

weak model set dynamical systems

torus parametrisation of weak model sets

H

W

G

green: FD of torus X̂ , red: πGppL` xq X pG ˆW qq “ supppνG
W px̂qq
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torus parametrisation

weak model set dynamical systems

description of weak model sets

torus parametrisation (Robinson 93, Baake, Pleasants et al 95, ...)

fix cp scheme pG ,H,Lq, Haar measures mG ,mH , window W Ă H

weak model sets πGppL` xq X pG ˆW qq for any x P G ˆ H

parametrisation by cpct torus X̂ “ pG ˆ Hq{L via x̂ “ x ` L

torus dynamics (e.g. Moody 02)

T̂g x̂ “ x̂ ` pg , 0q minimal G -action on X̂

pX̂ , T̂ q uniquely ergodic, pure point dynamical spectrum

induces dynamics on weak model sets

Haar measure mX̂ : any weak model set equally probable

We revisit and extend these approaches.
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torus parametrisation

weak model set dynamical systems

description of weak model sets

weak model sets as measures

describe weak model set as measure via its Dirac comb

measure νW px̂q on G ˆ H, i.e.,

νW px̂q “
ÿ

yPpL`xqXpGˆW q

δy

projected measure νG
W px̂q on G , i.e.,

νG

W px̂q “
ÿ

yPpL`xqXpGˆW q

δπG pyq

induced dynamics on G ˆ H easier than on projection to G

first analyse dynamics in G ˆ H and then transfer results to G
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torus parametrisation

weak model set dynamical systems

flows from weak model sets

flow of measure νW px̂q on G ˆ H

MW px̂q “ tTgνW px̂q : g P Gu

flow of projected measure νG
W px̂q on G

MG

W px̂q “ tTgνG
W px̂q : g P Gu

consider first the simpler flow spaces

MW :“MW pX̂ q, MG

W :“MG

W pX̂ q

as νW : X̂ ÑMW and νG
W : X̂ ÑMG

W are measurable maps, we may
lift the torus Haar measure mX̂ to MW and to MG

W via

QM “ mX̂ ˝ ν
´1
W , QMG “ mX̂ ˝ pν

G

W q
´1

Let us call these ergodic measures Mirsky measures.
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torus parametrisation

measure-theoretic results

measure-theoretic results: discrete spectrum

Theorem

Assume mHpW q ą 0. Then

(i) pX̂ ,mX̂ , T̂ q and pMW ,QM,T q are measure theoretically isomorphic.

(ii) pMG
W ,QMG ,T q is a factor of pX̂ ,mX̂ , T̂ q.

(iii) If mHpBW q “ 0, then pMW ,T q and pMG
W ,T q are uniquely ergodic.

In particular, pMG
W ,QMG ,T q has pure point dynamical spectrum.

remarks

implies that diffraction measure of QMG is pure point (Dworkin)

extends results on B-free systems (ii) and regular model sets (iii)

(previous results explicit calculation and different measure definition)
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torus parametrisation

measure-theoretic results

pure point spectrum: arguments

measure-theoretic isomorphism from X̂ to MW via the map νW

1-1 except on ZW “ tx̂ P X̂ : νW px̂q “ 0u

mX̂ pZW q “ 0 if and only if mHpW q ą 0 as

x̂ “ x ` L P ZW ðñ xH P
č

`PL

pW c ´ `Hq “

˜

ď

`PL

pW ´ `Hq

¸c

hence also QMpνW pZW qq “ 0 since

QMpνW pZW qq “ mX̂ ˝ ν
´1
W pνW pZW qq “ mX̂ pZW q

measure-theoretic factor map from X̂ to MG
W via νG

W “ πG
˚ ˝ νW

need not be 1-1 as πG
˚ : MW ÑMG

W need not be 1-1

dynamical properties of pMG
W ,T ,QMG q are inherited from pX̂ , T̂ ,mX̂ q
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torus parametrisation

measure-theoretic results

injectivity properties of πG
˚ : MW Ñ MG

W

for W Ă H recall

W irredundant (aperiodic) if h `W “ W implies h “ 0

W topologically regular if W “ intpW q

Lemma

Let W be topologically regular. Then the following are equivalent.

W is irredundant.

W ‰ ∅ and πG
˚ : MW ÑMG

W is a homeomorphism.

for B-free integers, there is a full measure subset where πG
˚ is 1-1 (below)
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torus parametrisation

measure-theoretic results

flows of weak model sets νWpx̂q

configurations of maximal density:

for averaging in G , fix any tempered van Hove sequence pAnqn

νW px̂q has maximal density if

lim
nÑ8

νW px̂qpAnq

mG pAnq
“ denspLq ¨mHpW q

(lim sup with ď always true)

Lemma (Moody 02, maximal density is generic)

Let X̂max “ tx̂ P X̂ : νW px̂q has maximal densityu. Then X̂max is
T̂ -invariant and has full Haar measure.

Moody also shows that pure point diffractivity is generic.
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torus parametrisation

measure-theoretic results

flows of weak model sets νWpx̂q

Theorem

There is a full measure subset X̂0 Ď X̂max such that
MW px̂q “ supppQMq for all x̂ P X̂0. We may choose

X̂0 “ X̂max X pνW q
´1psupppQMqq

QM is the pattern frequency measure.

B-free integers:

choose W such that VB “ supppνG
W p0̂qq

X̂0 “ X̂max and MG
W px̂q “MG

W for all x̂ P X̂max

pX̂ ,mX̂ , T̂ q isomorphic to pMG
W px̂q,QMG ,T q for any x̂ P X̂max .

As νG
W p0̂q has maximal density, it has pure point spectrum.
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torus parametrisation

measure-theoretic results

B-free integers: injectivity properties of πG
˚ : MW Ñ MG

W

For A Ď Z write Ak “ tgk : g P Au where gk “ g mod bk .

Definition

Y “ tν PMW : card supppπG
˚νqk “ bk ´ 1 for all k P N0u

Y ĎMW measurable, consists of all measures such that “every
b-reduction misses exactly one coset”.

πG
˚pYq studied before:

X1 for square-free integers (Peckner 12)
Y for B-free systems (Kulaga-Przymus 14)
A1 for visible lattice points (Baake–Huck 14)

The next lemmas have close analogues in the above publications.
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torus parametrisation

measure-theoretic results

B-free integers: injectivity properties of πG
˚ : MW Ñ MG

W

Lemma

πG
˚ is 1-1 on Y. Hence πG

˚|Y : Y Ñ πG
˚pYq is a Borel isomorphism.

(Assume ν, ν1 P Y such that πG
˚ν “ πG

˚ν
1. By the coset condition, ν, ν1

must be supported on the same shifted lattice. Hence ν “ ν1.)

Lemma

We have νW pX̂maxq Ď Y. Hence, Y has full Mirsky measure.

(Two missing cosets contradicts maximal density.)
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torus parametrisation

measure-theoretic results

the approach Baake–Huck–Strungaru (2015)

consider weak model sets of maximal (or minimal) density

different technique: approximate weak model set from above
(below) by regular model sets, i.e., mHpBW q “ 0

results:

expressions for pattern frequencies as in the regular case

yield autocorrelation and diffraction measure

ergodicity of measure on MG
W defined by pattern frequencies
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torus parametrisation

topological results

topological results: the map νW : X̂ Ñ MW

consider the following T̂ -invariant subsets of X̂ :

CW Ă X̂ set of continuity points of νW wrt vague convergence.

CW residual in X̂ , in particular dense in X̂
x̂ “ x ` L continuity point iff xH generic, i.e.,

pBW ´ xHq X π
HpLq “ ∅ðñ xH P

č

`PL

pBW c ´ `Hq

ZW Ă X̂ set of zero points of νW , i.e., x̂ for which νW px̂q “ 0.

νW : X̂ ÑMW is 1-1 on X̂ zZW

ZW empty if intpW q ‰ ∅
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torus parametrisation

topological results

the map νW : X̂ Ñ MW

Proposition (Upper semicontinuity of νW )

i) If limnÑ8 x̂n “ x̂ , then ν ď νW px̂q for all vague limit points ν of
pνW px̂

nqqn, and dν{dνW px̂q takes only values 0 and 1.

ii) x̂ P CW if and only if tν PMW : ν ď νW px̂qu “ tνW px̂qu.

iii) CW is residual in X̂ , i.e., the complement of CW in X̂ is meagre.

iv) If intpW q ‰ ∅, then ZW “ ∅ and, even more, 0 RMW .

v) If intpW q “ ∅, then ZW “ CW is residual in X̂ . If in addition

W ‰ ∅, then 0 P νW pX̂ zZW q.
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torus parametrisation

topological results

topological results

we have the graph dynamical systems (with canonical group actions)

GMW “ tpx̂ , νW px̂qq : x̂ P X̂ u, GMG

W “ tpx̂ , ν
G
W px̂qq : x̂ P X̂ u

working on graph advantageous to working on projection

Proposition

πX̂
˚ : pGMW ,Sq Ñ pX̂ , T̂ q is a topological almost 1–1 extension of its

maximal equicontinuous factor.

argument:

pπX̂
˚q
´1tx̂u “ tpx̂ , νW px̂qqu for all x̂ P CW and CW dense in X̂

hence πX̂
˚ almost 1–1 extension of an equicontinuous factor pX̂ , T̂ q

as factor map from maximal equicontinuous factor to pX̂ , T̂ q has
one-point fibre, it must coincide with pX̂ , T̂ q
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torus parametrisation

topological results

topological results

Theorem (Topological factors and extensions)

i) If intpW q ‰ ∅, then πX̂
˚ ˝ pπ

GˆH
˚ q´1 : pMW ,T q Ñ pX̂ , T̂ q is a

topological almost 1–1 extension of its maximal equicontinuous
factor.

ii) If intpW q ‰ ∅, then the restriction of T to the subsystem
νW pCW q ĎMW is an almost automorphic extension of pX̂ , T̂ q, and
it is the only minimal subsystem of pMW ,T q.

iii) If intpW q “ ∅ and if pMW ,T q is topologically transitive, then
pMW ,T q has no nontrivial equicontinuous factor.

results ii), iii) translate to pMG
W ,Sq if πG

˚ : MW ÑMG
W is 1–1
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torus parametrisation

topological results

topological properties of flows

Theorem

i) If intpW q ‰ ∅, then νW pCW q “MW px̂q for all x̂ P CW .

ii) If mHpBW q “ 0, then νW pCW q “ supppQMq

hence for mHpBW q “ 0 the relevant topological and
measure-theoretic dynamical systems coincide.

results transfer to G for topologically regular windows
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torus parametrisation

outlook

graphs versus skew products

move all information about lattice shift into first component!

GMW “ tpx̂ , νW px̂qq : x̂ P X̂ u

fix fundamental domain X of L and define

GΩW “ tpx ,S´xνW px̂qq : x P X u Ă X ˆ t0, 1uL

corresponding G -action on 2nd factor of GΩW piecewise continuous

defines skew product dynamical system GΩW over base X

GΩW is extension of GMW with injective factor map

skew products with actions of countable amenable groups

entropy theory (cf. Huck–R 15)

thermodynamic formalism (Ward–Zhang 92, Bogenschütz 93)
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