Dynamics on the graph of the torus parametrisation

Christoph Richard, Erlangen Dynamical Systems for Aperiodicity Lyon, 4–8 January 2016 joint work with Gerhard Keller (Erlangen) arXiv:1511.06137

Randomness of primes and the Möbius function

•
$$\mu: \mathbb{N} \to \{-1, 0, 1\}$$
 defined by $\mu(1) = 1$ and

μ(n) = (-1)^t if n is a product of t distinct primes
 μ(n) = 0 if n is not squarefree

e.g.,
$$\mu(15) = \mu(3 \cdot 5) = (-1)^2 = 1$$
 and $\mu(20) = \mu(2^2 \cdot 5) = 0$

- consider the Mertens function $M(n) = \sum_{k=1}^{n} \mu(k)$
- μ "orthogonal" to constant sequence:

$$M(n) = o(n) \iff \mathsf{PNT}$$

(LLN, Landau 1906, compare Tao 2009)

Möbius randomness principle

- sequence $\xi = (\xi(n))_{n \in \mathbb{N}}$ with values in finite $A \subset \mathbb{R}$
- for $\xi \in A^{\mathbb{N}}$ consider shift $T\xi(n) = \xi(n+1)$ and define compact flow $\mathcal{F}(\xi) = \overline{\{T^k\xi : k \in \mathbb{N}\}} \subseteq A^{\mathbb{N}}$
- $\mathcal{F}(\xi)$ called *deterministic* if ξ has zero topological entropy

Conjecture

 μ is orthogonal to any sequence in any deterministic flow.

- trivial flows, i.e., $card(\mathcal{F}(\xi)) = 1$: prime number theorem
- Kronecker flows, i.e., $\mathcal{F}(\xi) = G$ cpct abelian group with T_g group translations: Vinogradov–Davenport (1937)
- distal flows, i.e., $\inf_{k \in \mathbb{N}} d(T^k x, T^k y) > 0$ for distinct $x, y \in \mathcal{F}(\xi)$ for certain "homogeneous nilflows" Green–Tao (2008)

torus parametrisation

Möbius flow and squarefree flow

Sarnak (2011): interpret μ itself dynamically

- Möbius flow $\mathcal{F}(\mu) \subset \{-1, 0, 1\}^{\mathbb{N}}$
- squarefree flow $\mathcal{F}(\sigma) \subset \{0,1\}^{\mathbb{N}}$ where $\sigma = \mu^2 = (\mu(n)^2)_{n \in \mathbb{N}}$
- squaring yields factor map from $\mathcal{F}(\mu)$ to $\mathcal{F}(\sigma)$

Lemanczyk et al (2013): generalise σ to so-called \mathcal{B} -free integers

• $\mathcal{B} = \{b_1 < b_2 < \ldots\} \subset \{2, 3, \ldots\}$ pairwise coprime such that

$$\sum_{k\in\mathbb{N}}\frac{1}{b_k}<\infty$$

B-free integers V_B ⊂ Z consist of all integers having no factor in B
squarefree integers V_B obtained with B = {p² : p prime}

flows of weak model sets

explicit calculations of \mathcal{B} -free flows $\mathcal{F}(V_{\mathcal{B}})$, e.g.:

- topological entropy of $(\mathcal{F}(V_{\mathcal{B}}), T)$
- pure point dynamical spectrum of (*F*(*V*_B), *T*) with respect to pattern frequency measure
- obtained by comparison with a certain torus rotation
- simplex of invariant probability measures on $(\mathcal{F}(V_{\mathcal{B}}), T)$

analysis via weak model sets (Meyer 73, Baake-Moody-Pleasants 99, ...)

- structural insight into above results through underlying cp scheme
- extends theory of regular model sets

torus	parametrisation	
	otivation II	

cut-and-project schemes and weak model sets

- G physical space, H internal space, LCA groups, \mathcal{L} lattice in $G \times H$
- infinite strip parallel to G defined by compact window $W \subset H$
- weak model set $\wedge(W)$ by projecting lattice points inside strip to G
- assume wlog that projection of L is dense in H
- assume that distinct lattice points have distinct G-projection

cp scheme for squarefree integers (cf. Meyer 73, Baake-Moody-Pleasants 99, Sing 05, ...)

- *n* squarefree \iff *n* mod $p^2 \neq 0$ for all primes *p*
- consider the compact product group $H = \prod_{p} (\mathbb{Z}/p^2\mathbb{Z})$

• dense embedding of \mathbb{Z} into H:

$$n \mapsto \iota(n) = (n \mod p^2)_p,$$

take
$$G = \mathbb{Z}$$
 and $\mathcal{L} = \{(n, \iota(n)) : n \in \mathbb{Z}\} \subset G \times H$

Lemma

 (G, H, \mathcal{L}) is a cp scheme, i.e., \mathcal{L} is a lattice in $G \times H$, $\pi^{G}|_{\mathcal{L}}$ is 1-1 and $\pi^{H}(\mathcal{L})$ is dense in H.

squarefree integers as a weak model set

squarefree integers weak model set in $({\it G},{\it H},{\it L})$ with window

$$W = \prod_{p} (\mathbb{Z}/p^2\mathbb{Z}) \setminus \{\mathbf{0}_{p}\}$$

W closed as every component closed

• $int(W) = \emptyset$, as no component of W is maximal

hence $W = \partial W$

taking the canonical Haar measure m_H on H, we have

$$m_H(W) = \prod_p \left(1 - \frac{1}{p^2}\right) = \frac{1}{\zeta(2)} \approx 0.6079...$$

Density of squarefree integers is volume of window! (generally \leq)

torus parametrisation

diffraction of squarefree integers

diffraction theory:

 diffraction measure describes intensity of diffraction in a physical diffraction experiment.

explicit calculation for squarefree integers:

- pure point diffraction, i.e., no continuous component
- Bragg peak positions: rationals x with cubefree denominator q
- intensity of Bragg peak at x:

$$I(x) = \frac{1}{\zeta(2)^2} \prod_{p|q} \frac{1}{(p^2 - 1)^2}$$

(e.g., Baake-Moody-Pleasants 1999, Pleasants-Huck 2013)

Squarefree integers are pure point diffractive!

torus parametrisation of weak model sets

green: FD of torus \hat{X} , red: $(\mathcal{L} + x) \cap (\mathcal{G} \times \mathcal{W}) = \operatorname{supp}(\nu_{\scriptscriptstyle \mathcal{W}}(\hat{x}))$

torus parametrisation of weak model sets

green: FD of torus \hat{X} , red: $\pi^{G}((\mathcal{L} + x) \cap (G \times W)) = \operatorname{supp}(\nu_{W}^{G}(\hat{x}))$

description of weak model sets

torus parametrisation (Robinson 93, Baake, Pleasants et al 95, ...)

- fix cp scheme (G, H, \mathcal{L}) , Haar measures m_G, m_H , window $W \subset H$
- weak model sets $\pi^{c}((\mathcal{L} + x) \cap (\mathcal{G} \times \mathcal{W}))$ for any $x \in \mathcal{G} \times \mathcal{H}$
- parametrisation by cpct torus $\hat{X} = (G \times H)/\mathcal{L}$ via $\hat{x} = x + \mathcal{L}$

torus dynamics (e.g. Moody 02)

- $\hat{T}_{g}\hat{x} = \hat{x} + (g, 0)$ minimal *G*-action on \hat{X}
- (\hat{X}, \hat{T}) uniquely ergodic, pure point dynamical spectrum
- induces dynamics on weak model sets
- Haar measure $m_{\hat{\chi}}$: any weak model set equally probable

We revisit and extend these approaches.

description of weak model sets

weak model sets as measures

- describe weak model set as measure via its Dirac comb
- measure $u_{\scriptscriptstyle W}(\hat{x})$ on $G \times H$, i.e.,

$$\nu_{W}(\hat{x}) = \sum_{y \in (\mathcal{L} + x) \cap (\mathcal{G} \times W)} \delta_{y}$$

• projected measure $\nu_{W}^{G}(\hat{x})$ on G, i.e.,

$$\nu_{W}^{G}(\hat{x}) = \sum_{y \in (\mathcal{L}+x) \cap (G \times W)} \delta_{\pi^{G}(y)}$$

induced dynamics on $G \times H$ easier than on projection to G

first analyse dynamics in $G \times H$ and then transfer results to G

flows from weak model sets

• flow of measure $\nu_w(\hat{x})$ on $G \times H$

$$\mathcal{M}_{\scriptscriptstyle W}(\hat{x}) = \overline{\{T_g\nu_{\scriptscriptstyle W}(\hat{x}):g\in G\}}$$

• flow of projected measure $\nu_{\scriptscriptstyle W}^{\scriptscriptstyle G}(\hat{x})$ on G

$$\mathcal{M}_{W}^{G}(\hat{x}) = \overline{\{T_{g}\nu_{W}^{G}(\hat{x}) : g \in G\}}$$

consider first the simpler flow spaces

$$\mathcal{M}_w := \mathcal{M}_w(\hat{X}), \quad \mathcal{M}^{\scriptscriptstyle G}_w := \mathcal{M}^{\scriptscriptstyle G}_w(\hat{X})$$

• as $\nu_w : \hat{X} \to \mathcal{M}_w$ and $\nu_w^G : \hat{X} \to \mathcal{M}_w^G$ are measurable maps, we may lift the torus Haar measure $m_{\hat{X}}$ to \mathcal{M}_w and to \mathcal{M}_w^G via

$$Q_{\mathcal{M}} = m_{\hat{X}} \circ \nu_w^{-1}, \qquad Q_{\mathcal{M}^G} = m_{\hat{X}} \circ (\nu_w^G)^{-1}$$

Let us call these ergodic measures Mirsky measures.

measure-theoretic results: discrete spectrum

Theorem

Assume $m_H(W) > 0$. Then (i) $(\hat{X}, m_{\hat{X}}, \hat{T})$ and $(\mathcal{M}_w, Q_{\mathcal{M}}, T)$ are measure theoretically isomorphic. (ii) $(\mathcal{M}_w^G, Q_{\mathcal{M}^G}, T)$ is a factor of $(\hat{X}, m_{\hat{X}}, \hat{T})$. (iii) If $m_H(\partial W) = 0$, then (\mathcal{M}_w, T) and (\mathcal{M}_w^G, T) are uniquely ergodic. In particular, $(\mathcal{M}_w^G, Q_{\mathcal{M}^G}, T)$ has pure point dynamical spectrum.

remarks

- implies that diffraction measure of $Q_{\mathcal{M}^G}$ is pure point (Dworkin)
- extends results on B-free systems (ii) and regular model sets (iii) (previous results explicit calculation and different measure definition)

pure point spectrum: arguments

measure-theoretic isomorphism from \hat{X} to $\mathcal{M}_{\scriptscriptstyle W}$ via the map $u_{\scriptscriptstyle W}$

- 1-1 except on $Z_w = \{\hat{x} \in \hat{X} : \nu_w(\hat{x}) = \underline{0}\}$
- $m_{\hat{X}}(Z_w) = 0$ if and only if $m_H(W) > 0$ as

$$\hat{x} = x + \mathcal{L} \in Z_{W} \Longleftrightarrow x_{H} \in \bigcap_{\ell \in \mathcal{L}} (W^{c} - \ell_{H}) = \left(\bigcup_{\ell \in \mathcal{L}} (W - \ell_{H})\right)^{c}$$

• hence also $Q_{\mathcal{M}}(\nu_w(Z_w)) = 0$ since

$$Q_{\mathcal{M}}(\nu_w(Z_w)) = m_{\hat{X}} \circ \nu_w^{-1}(\nu_w(Z_w)) = m_{\hat{X}}(Z_w)$$

measure-theoretic factor map from \hat{X} to $\mathcal{M}^{\scriptscriptstyle G}_{\scriptscriptstyle W}$ via $\nu^{\scriptscriptstyle G}_{\scriptscriptstyle W}=\pi^{\scriptscriptstyle G}_*\circ\nu_{\scriptscriptstyle W}$

• need not be 1-1 as $\pi^{\mathsf{G}}_* : \mathcal{M}_{\mathsf{W}} \to \mathcal{M}^{\mathsf{G}}_{\mathsf{W}}$ need not be 1-1

dynamical properties of $(\mathcal{M}_{\scriptscriptstyle W}^{\scriptscriptstyle G}, \mathcal{T}, \mathcal{Q}_{\mathcal{M}^{\scriptscriptstyle G}})$ are inherited from $(\hat{X}, \hat{\mathcal{T}}, m_{\hat{X}})$

injectivity properties of $\pi^{G}_{*}: \mathcal{M}_{W} \to \mathcal{M}^{G}_{W}$

for $W \subset H$ recall

- W irredundant (aperiodic) if h + W = W implies h = 0
- W topologically regular if $W = \overline{int(W)}$

Lemma

Let W be topologically regular. Then the following are equivalent.

- W is irredundant.
- $W \neq \emptyset$ and $\pi_*^{\mathsf{G}} : \mathcal{M}_w \to \mathcal{M}_w^{\mathsf{G}}$ is a homeomorphism.

for \mathcal{B} -free integers, there is a full measure subset where π_*^{G} is 1-1 (below)

flows of weak model sets $\nu_w(\hat{x})$

configurations of maximal density:

- for averaging in G, fix any tempered van Hove sequence $(A_n)_n$
- $\nu_w(\hat{x})$ has maximal density if

$$\lim_{n\to\infty}\frac{\nu_w(\hat{x})(A_n)}{m_G(A_n)}=\operatorname{dens}(\mathcal{L})\cdot m_H(W)$$

(lim sup with \leq always true)

Lemma (Moody 02, maximal density is generic)

Let $\hat{X}_{max} = {\hat{x} \in \hat{X} : \nu_w(\hat{x}) \text{ has maximal density}}.$ Then \hat{X}_{max} is \hat{T} -invariant and has full Haar measure.

Moody also shows that pure point diffractivity is generic.

flows of weak model sets $\nu_w(\hat{x})$

Theorem

There is a full measure subset $\hat{X}_0 \subseteq \hat{X}_{max}$ such that $\mathcal{M}_w(\hat{x}) = \operatorname{supp}(Q_{\mathcal{M}})$ for all $\hat{x} \in \hat{X}_0$. We may choose

$$\hat{X}_0 = \hat{X}_{max} \cap (
u_w)^{-1}(\operatorname{supp}(\mathcal{Q}_\mathcal{M}))$$

 \mathcal{B} -free integers:

- choose W such that $V_{\mathcal{B}} = \operatorname{supp}(\nu_{W}^{G}(\hat{0}))$
- $\hat{X}_0 = \hat{X}_{max}$ and $\mathcal{M}^{\scriptscriptstyle G}_{\scriptscriptstyle W}(\hat{x}) = \mathcal{M}^{\scriptscriptstyle G}_{\scriptscriptstyle W}$ for all $\hat{x} \in \hat{X}_{max}$
- $(\hat{X}, m_{\hat{X}}, \hat{T})$ isomorphic to $(\mathcal{M}_{w}^{\scriptscriptstyle G}(\hat{x}), \mathcal{Q}_{\mathcal{M}^{\scriptscriptstyle G}}, T)$ for any $\hat{x} \in \hat{X}_{max}$.
- As $\nu_w^{G}(\hat{0})$ has maximal density, it has pure point spectrum.

\mathcal{B} -free integers: injectivity properties of $\pi^{G}_{*}: \mathcal{M}_{W} \to \mathcal{M}^{G}_{W}$

For
$$A \subseteq \mathbb{Z}$$
 write $A_k = \{g_k : g \in A\}$ where $g_k = g \mod b_k$.

Definition	
$\mathcal{Y} = \{ \nu \in \mathcal{M}_w : card supp(\pi^{G}_*\nu)_k = b_k - 1 \text{ for all } k \in \mathbb{N}_0 \}$	

- $\mathcal{Y} \subseteq \mathcal{M}_w$ measurable, consists of all measures such that "every *b*-reduction misses exactly one coset".
- $\pi_*^{\mathsf{G}}(\mathcal{Y})$ studied before:
 - X_1 for square-free integers (Peckner 12)
 - *Y* for *B*-free systems (Kulaga-Przymus 14)
 - A₁ for visible lattice points (Baake–Huck 14)

The next lemmas have close analogues in the above publications.

\mathcal{B} -free integers: injectivity properties of $\pi^{\mathsf{G}}_*: \mathcal{M}_w \to \mathcal{M}^{\mathsf{G}}_w$

Lemma

 $\pi^{\scriptscriptstyle G}_*$ is 1-1 on \mathcal{Y} . Hence $\pi^{\scriptscriptstyle G}_*|_{\mathcal{Y}}: \mathcal{Y} \to \pi^{\scriptscriptstyle G}_*(\mathcal{Y})$ is a Borel isomorphism.

(Assume $\nu, \nu' \in \mathcal{Y}$ such that $\pi_*^{\mathsf{G}}\nu = \pi_*^{\mathsf{G}}\nu'$. By the coset condition, ν, ν' must be supported on the same shifted lattice. Hence $\nu = \nu'$.)

Lemma

We have $\nu_w(\hat{X}_{max}) \subseteq \mathcal{Y}$. Hence, \mathcal{Y} has full Mirsky measure.

(Two missing cosets contradicts maximal density.)

the approach Baake–Huck–Strungaru (2015)

- consider weak model sets of maximal (or minimal) density
- different technique: approximate weak model set from above (below) by regular model sets, i.e., $m_H(\partial W) = 0$

results:

- expressions for pattern frequencies as in the regular case
- yield autocorrelation and diffraction measure
- ergodicity of measure on $\mathcal{M}^{\scriptscriptstyle G}_{\scriptscriptstyle W}$ defined by pattern frequencies

topological results: the map $u_w : \hat{X} \to \mathcal{M}_w$

consider the following \hat{T} -invariant subsets of \hat{X} :

C_W ⊂ X̂ set of continuity points of ν_W wrt vague convergence.
 C_W residual in X̂, in particular dense in X̂
 x̂ = x + L̂ continuity point iff x_H generic, i.e.,
 (∂W - x_H) ∩ π^H(L) = Ø ⇔ x_H ∈ ⋂_{ℓ∈L}(∂W^c - ℓ_H)

Z_w ⊂ X̂ set of zero points of ν_w, i.e., x̂ for which ν_w(x̂) = 0.
 ν_w : X̂ → M_w is 1-1 on X̂\Z_w
 Z_w empty if int(W) ≠ Ø

the map
$$u_w : \hat{X} \to \mathcal{M}_w$$

Proposition (Upper semicontinuity of ν_w)

- i) If $\lim_{n\to\infty} \hat{x}^n = \hat{x}$, then $\nu \leq \nu_w(\hat{x})$ for all vague limit points ν of $(\nu_w(\hat{x}^n))_n$, and $d\nu/d\nu_w(\hat{x})$ takes only values 0 and 1.
- ii) $\hat{x} \in C_w$ if and only if $\{\nu \in \mathcal{M}_w : \nu \leq \nu_w(\hat{x})\} = \{\nu_w(\hat{x})\}.$
- iii) C_w is residual in \hat{X} , i.e., the complement of C_w in \hat{X} is meagre.
- iv) If $int(W) \neq \emptyset$, then $Z_w = \emptyset$ and, even more, $\underline{0} \notin \mathcal{M}_w$.
- v) If $int(W) = \emptyset$, then $Z_w = C_w$ is residual in \hat{X} . If in addition $W \neq \emptyset$, then $\underline{0} \in \overline{\nu_w(\hat{X} \setminus Z_w)}$.

topological results

we have the graph dynamical systems (with canonical group actions)

$$\mathcal{GM}_{\scriptscriptstyle W} = \overline{\{(\hat{x}, \nu_{\scriptscriptstyle W}(\hat{x})) : \hat{x} \in \hat{X}\}}, \qquad \mathcal{GM}_{\scriptscriptstyle W}^{\scriptscriptstyle G} = \overline{\{(\hat{x}, \nu_{\scriptscriptstyle W}^{\scriptscriptstyle G}(\hat{x})) : \hat{x} \in \hat{X}\}}$$

working on graph advantageous to working on projection

Proposition

 $\pi_*^{\hat{x}} : (\mathcal{GM}_w, S) \to (\hat{X}, \hat{T})$ is a topological almost 1–1 extension of its maximal equicontinuous factor.

argument:

- $(\pi^{\hat{x}}_*)^{-1}{\hat{x}} = {(\hat{x}, \nu_w(\hat{x}))}$ for all $\hat{x} \in C_w$ and C_w dense in \hat{X}
- hence $\pi_*^{\hat{x}}$ almost 1–1 extension of an equicontinuous factor (\hat{X}, \hat{T})
- as factor map from maximal equicontinuous factor to (\hat{X}, \hat{T}) has one-point fibre, it must coincide with (\hat{X}, \hat{T})

topological results

Theorem (Topological factors and extensions)

- i) If int(W) ≠ Ø, then π^x_{*} ∘ (π^{G×H})⁻¹ : (M_w, T) → (X̂, T̂) is a topological almost 1–1 extension of its maximal equicontinuous factor.
- ii) $\frac{If \operatorname{int}(W) \neq \emptyset}{\nu_w(C_W) \subseteq \mathcal{M}_w}$ is an almost automorphic extension of (\hat{X}, \hat{T}) , and it is the only minimal subsystem of (\mathcal{M}_w, T) .
- iii) If $int(W) = \emptyset$ and if (\mathcal{M}_w, T) is topologically transitive, then (\mathcal{M}_w, T) has no nontrivial equicontinuous factor.

results ii), iii) translate to (\mathcal{M}_{W}^{G}, S) if $\pi_{*}^{G} : \mathcal{M}_{W} \to \mathcal{M}_{W}^{G}$ is 1–1

topological properties of flows

Theorem

i) If $int(W) \neq \emptyset$, then $\overline{\nu_w(C_w)} = \mathcal{M}_w(\hat{x})$ for all $\hat{x} \in C_w$.

ii) If
$$m_H(\partial W) = 0$$
, then $\overline{\nu_w(C_w)} = \operatorname{supp}(Q_M)$

- hence for $m_H(\partial W) = 0$ the relevant topological and measure-theoretic dynamical systems coincide.
- results transfer to G for topologically regular windows

graphs versus skew products

move all information about lattice shift into first component!

$$\mathcal{GM}_w = \overline{\{(\hat{x}, \nu_w(\hat{x})) : \hat{x} \in \hat{X}\}}$$

■ fix fundamental domain X of L and define

$$\mathcal{G}\Omega_{w} = \overline{\{(x, \mathcal{S}_{-x}\nu_{w}(\hat{x})) : x \in X\}} \subset X \times \{0, 1\}^{\mathcal{L}}$$

- corresponding G-action on 2^{nd} factor of $\mathcal{G}\Omega_w$ piecewise continuous
- defines skew product dynamical system GΩ_w over base X
- $\mathcal{G}\Omega_W$ is extension of \mathcal{GM}_W with injective factor map

skew products with actions of countable amenable groups

- entropy theory (cf. Huck–R 15)
- thermodynamic formalism (Ward–Zhang 92, Bogenschütz 93)