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What do we want to know?

Suppose Ω, Ω′ are tiling spaces and h : Ω→ Ω′ is a
homeomorphism.

If we understand Ω, what can we say about Ω′? About h?

First setting: Ω and Ω′ are FLC tiling spaces.

Second setting: Ω and Ω′ may not have FLC, but h still
preserves translational orbits.

Third setting: h isn’t necessarily a homeomorphism, but is a
general orbit-preserving continuous map.

This talk mostly about FLC setting. Others are similar.
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Main FLC result

Theorem

If h : Ω→ Ω′ is a homeomorphism of FLC tiling spaces, and if Ω is
uniquely ergodic, then h is the composition of a “weak
translation”, a shape change, and an MLD equivalence.

Corollary

The relation “is homeomorphic to” is generated by shape changes
and MLD transformations.
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Main ILC result

Theorem

If h : Ω→ Ω′ is an orbit-preserving homeomorphism of general
tiling spaces, and if Ω is uniquely ergodic, then h is the
composition of a “weak translation”, a shape change, and a
topological conjugacy.

Corollary

The relation “is orbit-equivalent to” is generated by shape changes
and topological conjugacies.
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Result for general maps

Theorem

Suppose f : Ω→ Ω′ is an orbit-preserving surjection of tiling
spaces, and Ω is uniquely ergodic.

If Ω and Ω′ are FLC, then h is homotopic to the composition
of a shape change and a local derivation.

In general, h is homotopic to the composition of a shape
change and a factor map.

Corollary

To understand arbitrary orbit-preserving maps, study (a) shape
changes, (b) factor maps, and (c) maps homotopic to the identity.
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Examples of homeomorphisms 1: MLD maps

An MLD transformation is an invertible locally defined change.

Example: Splitting each A tile into two smaller A′ tiles.

Example: In the Thue-Morse tiling, changing each A tile to a
B and vice-versa.

Example: Moving every tiling 3 inches to the right.

Example: In a Delone set, moving each point a distance
determined by the local configuration.

All MLD transformations are topological conjugacies, but not
all conjugacies are MLD (Petersen, Radin-S).
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Examples of homeomorphisms 2: topological conjugacies
and shape changes

A topological conjugacy is a homeomorphism that commutes
with translation.

Trivial example: MLD

Nontrivial example: Shape changes.

Given continuous F : Ω→ Rd , move vertex at x in tiling T by
F (T − x).

“Continuous” means F (T − x) is arbitrarily well-approximated
by local pattern around x .

If F (T − x)− F (T − y) is determined exactly by local pattern
around x and y , FLC is preserved, but shapes and sizes of
tiles may change.
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Shape conjugacies

δF defines class in H1(Ω,Rd).

If F is bounded, resulting map is a “shape conjugacy”. Class
is “asymptotically negligible”. (Gottschalk-Hedlund,
Kellendonk-S)

Theorem (Kellendonk-S)

Every topological conjugacy is the composition of an MLD
transformation and a shape conjugacy.
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Examples of homeomorphisms 3: Weak translations

F : Ω→ Rd continuous.

h : Ω→ Ω; T 7→ T − F (T ).

Homeomorphism as long as
|F (T − x)− F (T − y)| ≤ c |x − y | with c < 1.

Homotopic to the identity (hs(T ) = T − sF (T )).

(Subject of Samuel Petite’s talk?)
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That’s everything!

Reminder:

Theorem

If h : Ω→ Ω′ is a homeomorphism of FLC tiling spaces, and if Ω is
uniquely ergodic, then h is the composition of a “weak
translation”, a shape change, and an MLD equivalence.
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PE cohomology

View tiling as collection of vertices, edges, faces, etc.

A k-cochain α (with values in Abelian A) assigns elements of
A to k-cells.

δα(c) = α(δc); δ2 = 0.

α is (strongly) PE if α(c) depends only on finite region
around c .

α is weakly PE if α is uniform limit of strongly PE cochains.

H∗PE (Ω,A) is cohomology of PE co-chains.

Theorem: H∗PE (Ω,A) ' Ȟ∗(Ω,A).
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The fundamental shape class

F = PE 1-cochain with values in Rd .

F(e) gives displacement along e.

δF(f ) = F(∂f ) = 0.

[F(Ω)] gives class in H1
PE (Ω,Rd) ' Ȟ1(Ω,Rd).
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One question; 3 settings
Homeomorphisms of FLC tiling spaces

The cohomological invariant [h]
The structure theorem

The Ruelle-Sullivan map
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The cohomological invariant

If h : Ω→ Ω′ is homeomorphism, define

[h] = h∗(F(Ω′)).

Example: Ω and Ω′ are Fibonacci tilings and h is shape
change. H1(Ω,R) = R2 is generated by indicators iA and iB
of A and B tiles. F(Ω′) = L′1iA′ + L′2iB′ . [h] = L′1iA + L′2iB .

[h] pulls geometric data from Ω′ back to Ω.
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One question; 3 settings
Homeomorphisms of FLC tiling spaces

The cohomological invariant [h]
The structure theorem

The Ruelle-Sullivan map
The other cases

How do you pull back PE cochains?

A priori, h∗(F) may not be PE. Only if h preserves
transversals.

2 ways to define h∗[F ]:

1) Work with Čech cohomology: [F(Ω′)] ∈ H1
PE (Ω′,Rd) '

Ȟ1(Ω′,Rd)→ Ȟ1(Ω,Rd) ' H1
PE (Ω,Rd).

2) Use homotopy. h ∼ hs , where hs preserves transversals.
(Rand-S, Julien) Define [h] = h∗s [F(Ω′)] directly in PE
cohomology.

hs = h ◦ τs , where τs is a weak translation.
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1) Work with Čech cohomology: [F(Ω′)] ∈ H1
PE (Ω′,Rd) '
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Statement of the theorem

Theorem

Let hi : Ω→ Ωi be two homeomorphisms (i ∈ {1, 2}) of FLC tiling
spaces. If [h1] = [h2], then there exists a continuous s : Ω→ Rd

such that τs : T 7→ T − s(T ) is a homeomorphism, and there
exists an MLD equivalence φ : Ω1 → Ω2 such that h2 ◦ τs = φ ◦ h1.

Ω
h1−−−−→ Ω1

τs

y yφ

Ω
h2−−−−→ Ω2
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Homeomorphisms of FLC tiling spaces

The cohomological invariant [h]
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Sketch of proof

Ω
h1−−−−→ Ω1

τs

y yφ

Ω
h2−−−−→ Ω2

Since [h1] = [h2], displacements in Ω1 and Ω2 agree, up to
local correction.

After correcting by weak translation, positions in Ω1 and Ω2

agree, up to local correction.

φ is local derivation.

But φ = h2 ◦ τs ◦ h−1
1 is homeomorphism, so φ is MLD map.
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One question; 3 settings
Homeomorphisms of FLC tiling spaces

The cohomological invariant [h]
The structure theorem

The Ruelle-Sullivan map
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The RS map and PE cohomology (per
Kellendonk-Putnam)

Represent cohomology classes with PE forms. α(c) =

∫
c
α.

Pick invariant measure µ on tiling space. (Best if Ω uniquely
ergodic)

Cµ(α) =

∫
Ω
α(0)dµ.

Depends only on class of α: Cµ(dβ) = 0.

Ergodic theorem: if µ ergodic, Cµ([α]) = average value of
α(x) for generic tiling.

If Ω uniquely ergodic, Cµ([α]) = average value of α(x) for
every tiling.
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Cµ(H1(Ω,Rd))

If α ∈ H1(Ω,Rd), Cµ(α) is d × d matrix.

Example: F represented by constant 1-form d~x . Cµ(F) = I .

Cµ([h]) = linear transformation of Rd = large scale distortion
induced on orbits by h.
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One question; 3 settings
Homeomorphisms of FLC tiling spaces

The cohomological invariant [h]
The structure theorem

The Ruelle-Sullivan map
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Classes of homeomorphisms are non-singular

Theorem

If Ω is unique ergodic and h : Ω→ Ω′ is a homeomorphism, then
Cµ[h] is invertible.

Sketch of proof:

Suppose Cµ[h]~v = 0.

Restrict attention to how h acts on a single translational orbit.

Asymptotically, h collapses Rd in ~v direction.

For h to be onto, fluctuations must be large, but then h isn’t
1:1.
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The Ruelle-Sullivan map
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Shape changes implement all non-singular classes

Theorem

If Ω is uniquely ergodic, [α] ∈ H1(Ω,Rd) and Cµ([α]) is invertible,
there is a shape change homeomorphism whose class is [α].

Sketch of proof:

WLOG assume Cµ[α] = I .

Represent α with differential form.

Convolve α with wide bump function ρ s.t. ρ ∗ α is pointwise
close to I .

As long as ρ compactly supported, ρ ∗ α still PE and
[ρ ∗ α] = [α].

Deform one orbit by x →
∫ x

0
α. Extend by continuity.
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Homeomorphisms of FLC tiling spaces

The cohomological invariant [h]
The structure theorem

The Ruelle-Sullivan map
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Proof of main theorem

If h : Ω→ Ω′ is homeomorphism, then

Cµ([h]) is invertible.

There is a shape change h2 : Ω→ Ω2 with [h2] = [h].

Ω
h−−−−→ Ω′

τs

y yφ

Ω
h2−−−−→ Ω2

h = φ−1 ◦ h2 ◦ τs .
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One question; 3 settings
Homeomorphisms of FLC tiling spaces

The cohomological invariant [h]
The structure theorem

The Ruelle-Sullivan map
The other cases

ILC tilings

Without FLC, MLD and “strongly PE” no longer make sense in
general. However,

Weakly PE still makes sense. Just means “continuous”.

Shape changes don’t have to preserve FLC, so can be given by
weakly PE 1-cochains.

Homeomorphisms don’t always preserve orbits. (Pinwheel
rotation). Added assumption.

Structure theorem same as before, only with φ topological
conjugacy.

Theorems about Ruelle-Sullivan exactly same as before.
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One question; 3 settings
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General maps

Pullback of F still makes sense.

For structure theorem, must assume that h1 is orbit
equivalence. Weak translation τs is chosen to go up, but does
not have to be invertible. Lack on injectivity of h2 can come
either from τs or from factor map φ.

Ω
h1−−−−→ Ω′

τs

x yφ

Ω
h2−−−−→ Ω2

As long as h is surjective, Cµ[h] is still invertible.

In applying structure theorem, h2 = h and h1 is shape change
with same class.
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Recap

Theorem

If h : Ω→ Ω′ is a homeomorphism of FLC tiling spaces, and if Ω is
uniquely ergodic, then h is the composition of a “weak
translation”, a shape change, and an MLD equivalence. There is a
class [h] ∈ H1(Ω,Rd) that characterizes the shape change (up to
MLD).

Theorem

If h : Ω→ Ω′ is an orbit-preserving homeomorphism of general
tiling spaces, and if Ω is uniquely ergodic, then h is the
composition of a “weak translation”, a shape change, and a
topological conjugacy. There is a class [h] ∈ H1

w (Ω,Rd) that
characterizes the shape change (up to conjugacy).
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More recap

Theorem

Suppose f : Ω→ Ω′ is an orbit-preserving surjection of tiling
spaces, and Ω1 is uniquely ergodic.

If Ω and Ω′ are FLC, then h is homotopic to the composition
of a shape change and a local derivation.

In general, h is homotopic to the composition of a shape
change and a factor map.

There is a distinguished class [h]in H1 or H1
w that

parametrizes the shape change.
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