Homeomorphisms of Tiling Spaces

Lorenzo Sadun

Joint work with Antoine Julien

Workshop on Dynamical Systems and Aperiodic Order, January 6, 2016

< 1 →

Outline

э

< 日 > < 同 > < 三 > < 三 >

Outline

2 Homeomorphisms of FLC tiling spaces

< □ > < 同 > < 三 >

-

Outline

- 2 Homeomorphisms of FLC tiling spaces
- 3 The cohomological invariant [h]

- ▲ 🖓 🕨 - ▲ 🖻

Outline

- 2 Homeomorphisms of FLC tiling spaces
- 3 The cohomological invariant [h]
- 4 The structure theorem

< 同 ▶

Outline

- 2 Homeomorphisms of FLC tiling spaces
- 3 The cohomological invariant [h]
- 4 The structure theorem
- 5 The Ruelle-Sullivan map

Outline

- 2 Homeomorphisms of FLC tiling spaces
- 3 The cohomological invariant [h]
- 4 The structure theorem
- 5 The Ruelle-Sullivan map
- 6 The other cases

Table of Contents

- One question; 3 settings
- 2 Homeomorphisms of FLC tiling spaces
- 3 The cohomological invariant [h]
- 4 The structure theorem
- 5 The Ruelle-Sullivan map
- 6 The other cases

What do we want to know?

• Suppose Ω , Ω' are tiling spaces and $h: \Omega \to \Omega'$ is a homeomorphism.

- ▲ 🖓 🕨 - ▲ 🖻

What do we want to know?

- Suppose Ω , Ω' are tiling spaces and $h: \Omega \to \Omega'$ is a homeomorphism.
- If we understand Ω , what can we say about Ω' ? About *h*?

< A >

What do we want to know?

- Suppose Ω , Ω' are tiling spaces and $h: \Omega \to \Omega'$ is a homeomorphism.
- If we understand Ω , what can we say about Ω' ? About *h*?
- First setting: Ω and Ω' are FLC tiling spaces.

What do we want to know?

- Suppose Ω , Ω' are tiling spaces and $h: \Omega \to \Omega'$ is a homeomorphism.
- If we understand Ω , what can we say about Ω' ? About *h*?
- First setting: Ω and Ω' are FLC tiling spaces.
- Second setting: Ω and Ω' may not have FLC, but *h* still preserves translational orbits.

What do we want to know?

- Suppose Ω , Ω' are tiling spaces and $h: \Omega \to \Omega'$ is a homeomorphism.
- If we understand Ω , what can we say about Ω' ? About *h*?
- First setting: Ω and Ω' are FLC tiling spaces.
- Second setting: Ω and Ω' may not have FLC, but h still preserves translational orbits.
- Third setting: *h* isn't necessarily a homeomorphism, but is a general orbit-preserving continuous map.

What do we want to know?

- Suppose Ω , Ω' are tiling spaces and $h: \Omega \to \Omega'$ is a homeomorphism.
- If we understand Ω , what can we say about Ω' ? About h?
- First setting: Ω and Ω' are FLC tiling spaces.
- Second setting: Ω and Ω' may not have FLC, but *h* still preserves translational orbits.
- Third setting: *h* isn't necessarily a homeomorphism, but is a general orbit-preserving continuous map.
- This talk mostly about FLC setting. Others are similar.

Main FLC result

Theorem

If $h: \Omega \to \Omega'$ is a homeomorphism of FLC tiling spaces, and if Ω is uniquely ergodic, then h is the composition of a "weak translation", a shape change, and an MLD equivalence.

Image: A = A

Main FLC result

Theorem

If $h: \Omega \to \Omega'$ is a homeomorphism of FLC tiling spaces, and if Ω is uniquely ergodic, then h is the composition of a "weak translation", a shape change, and an MLD equivalence.

Corollary

The relation "is homeomorphic to" is generated by shape changes and MLD transformations.

Main ILC result

Theorem

If $h: \Omega \to \Omega'$ is an orbit-preserving homeomorphism of general tiling spaces, and if Ω is uniquely ergodic, then h is the composition of a "weak translation", a shape change, and a topological conjugacy.

< 🗇 🕨 <

Main ILC result

Theorem

If $h: \Omega \to \Omega'$ is an orbit-preserving homeomorphism of general tiling spaces, and if Ω is uniquely ergodic, then h is the composition of a "weak translation", a shape change, and a topological conjugacy.

Corollary

The relation "is orbit-equivalent to" is generated by shape changes and topological conjugacies.

< □ > < 同 > < 三

Result for general maps

Theorem

Suppose $f : \Omega \to \Omega'$ is an orbit-preserving surjection of tiling spaces, and Ω is uniquely ergodic.

- If Ω and Ω' are FLC, then h is homotopic to the composition of a shape change and a local derivation.
- In general, h is homotopic to the composition of a shape change and a factor map.

- ∢ ≣ ▶

< 17 ▶

Result for general maps

Theorem

Suppose $f : \Omega \to \Omega'$ is an orbit-preserving surjection of tiling spaces, and Ω is uniquely ergodic.

- If Ω and Ω' are FLC, then h is homotopic to the composition of a shape change and a local derivation.
- In general, h is homotopic to the composition of a shape change and a factor map.

Corollary

To understand arbitrary orbit-preserving maps, study (a) shape changes, (b) factor maps, and (c) maps homotopic to the identity.

Table of Contents

- One question; 3 settings
- 2 Homeomorphisms of FLC tiling spaces
- 3 The cohomological invariant [h]
- 4 The structure theorem
- 5 The Ruelle-Sullivan map
- 6 The other cases

Examples of homeomorphisms 1: MLD maps

• An MLD transformation is an invertible locally defined change.

< A >

< ∃ >

Examples of homeomorphisms 1: MLD maps

- An MLD transformation is an invertible locally defined change.
- Example: Splitting each A tile into two smaller A' tiles.

Examples of homeomorphisms 1: MLD maps

- An MLD transformation is an invertible locally defined change.
- Example: Splitting each A tile into two smaller A' tiles.
- Example: In the Thue-Morse tiling, changing each A tile to a B and vice-versa.

A 1

Examples of homeomorphisms 1: MLD maps

- An MLD transformation is an invertible locally defined change.
- Example: Splitting each A tile into two smaller A' tiles.
- Example: In the Thue-Morse tiling, changing each A tile to a B and vice-versa.
- Example: Moving every tiling 3 inches to the right.

Examples of homeomorphisms 1: MLD maps

- An MLD transformation is an invertible locally defined change.
- Example: Splitting each A tile into two smaller A' tiles.
- Example: In the Thue-Morse tiling, changing each A tile to a B and vice-versa.
- Example: Moving every tiling 3 inches to the right.
- Example: In a Delone set, moving each point a distance determined by the local configuration.

< A >

Examples of homeomorphisms 1: MLD maps

- An MLD transformation is an invertible locally defined change.
- Example: Splitting each A tile into two smaller A' tiles.
- Example: In the Thue-Morse tiling, changing each A tile to a B and vice-versa.
- Example: Moving every tiling 3 inches to the right.
- Example: In a Delone set, moving each point a distance determined by the local configuration.
- All MLD transformations are topological conjugacies, but not all conjugacies are MLD (Petersen, Radin-S).

• □ ▶ • □ ▶ • □ ▶ •

Examples of homeomorphisms 2: topological conjugacies and shape changes

• A topological conjugacy is a homeomorphism that commutes with translation.

Examples of homeomorphisms 2: topological conjugacies and shape changes

- A topological conjugacy is a homeomorphism that commutes with translation.
- Trivial example: MLD

Examples of homeomorphisms 2: topological conjugacies and shape changes

- A topological conjugacy is a homeomorphism that commutes with translation.
- Trivial example: MLD
- Nontrivial example: Shape changes.
- Given continuous $F : \Omega \to \mathbb{R}^d$, move vertex at x in tiling T by F(T x).

Examples of homeomorphisms 2: topological conjugacies and shape changes

- A topological conjugacy is a homeomorphism that commutes with translation.
- Trivial example: MLD
- Nontrivial example: Shape changes.
- Given continuous $F : \Omega \to \mathbb{R}^d$, move vertex at x in tiling T by F(T x).
- "Continuous" means F(T x) is arbitrarily well-approximated by local pattern around x.

Image: A = A

Examples of homeomorphisms 2: topological conjugacies and shape changes

- A topological conjugacy is a homeomorphism that commutes with translation.
- Trivial example: MLD
- Nontrivial example: Shape changes.
- Given continuous $F : \Omega \to \mathbb{R}^d$, move vertex at x in tiling T by F(T x).
- "Continuous" means F(T x) is arbitrarily well-approximated by local pattern around x.
- If F(T x) F(T y) is determined exactly by local pattern around x and y, FLC is preserved, but shapes and sizes of tiles may change.

・ロト ・同ト ・ヨト ・ヨト

Shape conjugacies

• δF defines class in $H^1(\Omega, \mathbb{R}^d)$.

Lorenzo Sadun Homeomorphisms of Tiling Spaces

▲ 同 ▶ → 三 ▶

-

Shape conjugacies

- δF defines class in $H^1(\Omega, \mathbb{R}^d)$.
- If *F* is bounded, resulting map is a "shape conjugacy". Class is "asymptotically negligible". (Gottschalk-Hedlund, Kellendonk-S)

Image: A image: A

Shape conjugacies

- δF defines class in $H^1(\Omega, \mathbb{R}^d)$.
- If F is bounded, resulting map is a "shape conjugacy". Class is "asymptotically negligible". (Gottschalk-Hedlund, Kellendonk-S)

Theorem (Kellendonk-S)

Every topological conjugacy is the composition of an MLD transformation and a shape conjugacy.

< ロ > < 同 > < 回 > < 回 >

Examples of homeomorphisms 3: Weak translations

- $F: \Omega \to \mathbb{R}^d$ continuous.
- $h: \Omega \to \Omega;$ $T \mapsto T F(T).$

< (□)

< ∃ >
Examples of homeomorphisms 3: Weak translations

- $F: \Omega \to \mathbb{R}^d$ continuous.
- $h: \Omega \to \Omega;$ $T \mapsto T F(T).$
- Homeomorphism as long as $|F(T-x) F(T-y)| \le c|x-y|$ with c < 1.

- A - E - M

Examples of homeomorphisms 3: Weak translations

- $F: \Omega \to \mathbb{R}^d$ continuous.
- $h: \Omega \to \Omega;$ $T \mapsto T F(T).$
- Homeomorphism as long as $|F(T-x) F(T-y)| \le c|x-y|$ with c < 1.
- Homotopic to the identity $(h_s(T) = T sF(T))$.

Examples of homeomorphisms 3: Weak translations

- $F: \Omega \to \mathbb{R}^d$ continuous.
- $h: \Omega \to \Omega;$ $T \mapsto T F(T).$
- Homeomorphism as long as $|F(T-x) F(T-y)| \le c|x-y|$ with c < 1.
- Homotopic to the identity $(h_s(T) = T sF(T))$.
- (Subject of Samuel Petite's talk?)

That's everything!

Lorenzo Sadun Homeomorphisms of Tiling Spaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

That's everything!

Reminder:

Theorem

If $h: \Omega \to \Omega'$ is a homeomorphism of FLC tiling spaces, and if Ω is uniquely ergodic, then h is the composition of a "weak translation", a shape change, and an MLD equivalence.

< 1 →

Table of Contents

- One question; 3 settings
- 2 Homeomorphisms of FLC tiling spaces
- 3 The cohomological invariant [h]
- 4 The structure theorem
- 5 The Ruelle-Sullivan map
- 6 The other cases

PE cohomology

- View tiling as collection of vertices, edges, faces, etc.
- A k-cochain α (with values in Abelian A) assigns elements of A to k-cells.

Image: A = A

PE cohomology

- View tiling as collection of vertices, edges, faces, etc.
- A k-cochain α (with values in Abelian A) assigns elements of A to k-cells.

•
$$\delta \alpha(c) = \alpha(\delta c); \ \delta^2 = 0.$$

Image: A = A

PE cohomology

- View tiling as collection of vertices, edges, faces, etc.
- A k-cochain α (with values in Abelian A) assigns elements of A to k-cells.

•
$$\delta \alpha(c) = \alpha(\delta c); \ \delta^2 = 0.$$

 α is (strongly) PE if α(c) depends only on finite region around c.

PE cohomology

- View tiling as collection of vertices, edges, faces, etc.
- A k-cochain α (with values in Abelian A) assigns elements of A to k-cells.

•
$$\delta \alpha(c) = \alpha(\delta c); \ \delta^2 = 0.$$

- α is (strongly) PE if α(c) depends only on finite region around c.
- α is weakly PE if α is uniform limit of strongly PE cochains.

PE cohomology

- View tiling as collection of vertices, edges, faces, etc.
- A k-cochain α (with values in Abelian A) assigns elements of A to k-cells.

•
$$\delta \alpha(c) = \alpha(\delta c); \ \delta^2 = 0.$$

- α is (strongly) PE if α(c) depends only on finite region around c.
- α is weakly PE if α is uniform limit of strongly PE cochains.
- $H^*_{PE}(\Omega, A)$ is cohomology of PE co-chains.

・ロト ・同ト ・ヨト ・ヨト

PE cohomology

- View tiling as collection of vertices, edges, faces, etc.
- A k-cochain α (with values in Abelian A) assigns elements of A to k-cells.

•
$$\delta \alpha(c) = \alpha(\delta c); \ \delta^2 = 0.$$

- α is (strongly) PE if α(c) depends only on finite region around c.
- α is weakly PE if α is uniform limit of strongly PE cochains.
- $H^*_{PE}(\Omega, A)$ is cohomology of PE co-chains.
- Theorem: $H^*_{PE}(\Omega, A) \simeq \check{H}^*(\Omega, A)$.

イロト イポト イヨト イヨト

The fundamental shape class

- $\mathcal{F} = \mathsf{PE}$ 1-cochain with values in \mathbb{R}^d .
- $\mathcal{F}(e)$ gives displacement along e.

< (□)

The fundamental shape class

- $\mathcal{F} = \mathsf{PE}$ 1-cochain with values in \mathbb{R}^d .
- $\mathcal{F}(e)$ gives displacement along e.
- $\delta \mathcal{F}(f) = \mathcal{F}(\partial f) = 0.$

< (□)

The fundamental shape class

- $\mathcal{F} = \mathsf{PE}$ 1-cochain with values in \mathbb{R}^d .
- $\mathcal{F}(e)$ gives displacement along e.
- $\delta \mathcal{F}(f) = \mathcal{F}(\partial f) = 0.$
- $[\mathcal{F}(\Omega)]$ gives class in $H^1_{PE}(\Omega, \mathbb{R}^d) \simeq \check{H}^1(\Omega, \mathbb{R}^d)$.

< A > < 3

The cohomological invariant

If $h: \Omega \to \Omega'$ is homeomorphism, define

 $[h] = h^*(\mathcal{F}(\Omega')).$

Lorenzo Sadun Homeomorphisms of Tiling Spaces

▲ 同 ▶ → ● 三

3.5

The cohomological invariant

If $h: \Omega \to \Omega'$ is homeomorphism, define

 $[h] = h^*(\mathcal{F}(\Omega')).$

Example: Ω and Ω' are Fibonacci tilings and h is shape change. H¹(Ω, ℝ) = ℝ² is generated by indicators i_A and i_B of A and B tiles. F(Ω') = L'₁i_{A'} + L'₂i_{B'}. [h] = L'₁i_A + L'₂i_B.

The cohomological invariant

If $h: \Omega \to \Omega'$ is homeomorphism, define

 $[h] = h^*(\mathcal{F}(\Omega')).$

- Example: Ω and Ω' are Fibonacci tilings and h is shape change. H¹(Ω, ℝ) = ℝ² is generated by indicators i_A and i_B of A and B tiles. F(Ω') = L'₁i_{A'} + L'₂i_{B'}. [h] = L'₁i_A + L'₂i_B.
- [h] pulls geometric data from Ω' back to Ω .

How do you pull back PE cochains?

• A priori, $h^*(\mathcal{F})$ may not be PE. Only if *h* preserves transversals.

Image: A image: A

How do you pull back PE cochains?

- A priori, $h^*(\mathcal{F})$ may not be PE. Only if *h* preserves transversals.
- 2 ways to define $h^*[\mathcal{F}]$:
- 1) Work with Čech cohomology: $[\mathcal{F}(\Omega')] \in H^1_{PE}(\Omega', \mathbb{R}^d) \simeq \check{H}^1(\Omega', \mathbb{R}^d) \to \check{H}^1(\Omega, \mathbb{R}^d) \simeq H^1_{PE}(\Omega, \mathbb{R}^d).$

A (1) < (1) < (1) </p>

How do you pull back PE cochains?

- A priori, $h^*(\mathcal{F})$ may not be PE. Only if *h* preserves transversals.
- 2 ways to define $h^*[\mathcal{F}]$:
- 1) Work with Čech cohomology: $[\mathcal{F}(\Omega')] \in H^1_{PE}(\Omega', \mathbb{R}^d) \simeq \check{H}^1(\Omega', \mathbb{R}^d) \to \check{H}^1(\Omega, \mathbb{R}^d) \simeq H^1_{PE}(\Omega, \mathbb{R}^d).$
- 2) Use homotopy. h ~ h_s, where h_s preserves transversals. (Rand-S, Julien) Define [h] = h^{*}_s[F(Ω')] directly in PE cohomology.

Image: A image: A

How do you pull back PE cochains?

- A priori, $h^*(\mathcal{F})$ may not be PE. Only if *h* preserves transversals.
- 2 ways to define $h^*[\mathcal{F}]$:
- 1) Work with Čech cohomology: $[\mathcal{F}(\Omega')] \in H^1_{PE}(\Omega', \mathbb{R}^d) \simeq \check{H}^1(\Omega', \mathbb{R}^d) \to \check{H}^1(\Omega, \mathbb{R}^d) \simeq H^1_{PE}(\Omega, \mathbb{R}^d).$
- 2) Use homotopy. h ~ h_s, where h_s preserves transversals. (Rand-S, Julien) Define [h] = h^{*}_s[F(Ω')] directly in PE cohomology.
- $h_s = h \circ \tau_s$, where τ_s is a weak translation.

Table of Contents

- One question; 3 settings
- 2 Homeomorphisms of FLC tiling spaces
- 3 The cohomological invariant [h]
- 4 The structure theorem
- 5 The Ruelle-Sullivan map
- 6 The other cases

Statement of the theorem

Theorem

Let $h_i : \Omega \to \Omega_i$ be two homeomorphisms $(i \in \{1, 2\})$ of FLC tiling spaces. If $[h_1] = [h_2]$, then there exists a continuous $s : \Omega \to \mathbb{R}^d$ such that $\tau_s : T \mapsto T - s(T)$ is a homeomorphism, and there exists an MLD equivalence $\phi : \Omega_1 \to \Omega_2$ such that $h_2 \circ \tau_s = \phi \circ h_1$.

$$\begin{array}{ccc} \Omega & \stackrel{h_1}{\longrightarrow} & \Omega_1 \\ & & & \downarrow^{\phi} \\ & & & \downarrow^{\phi} \\ \Omega & \stackrel{h_2}{\longrightarrow} & \Omega_2 \end{array}$$

Sketch of proof

Since [h₁] = [h₂], displacements in Ω₁ and Ω₂ agree, up to local correction.

- 4 同 6 4 日 6 4 日 6

э

Sketch of proof

- Since [h₁] = [h₂], displacements in Ω₁ and Ω₂ agree, up to local correction.
- After correcting by weak translation, positions in Ω_1 and Ω_2 agree, up to local correction.

- 4 同 6 4 日 6 4 日 6

Sketch of proof

- Since [h₁] = [h₂], displacements in Ω₁ and Ω₂ agree, up to local correction.
- After correcting by weak translation, positions in Ω_1 and Ω_2 agree, up to local correction.
- ϕ is local derivation.

- 4 同 6 4 日 6 4 日 6

Sketch of proof

- Since [h₁] = [h₂], displacements in Ω₁ and Ω₂ agree, up to local correction.
- After correcting by weak translation, positions in Ω_1 and Ω_2 agree, up to local correction.
- ϕ is local derivation.

• But $\phi = h_2 \circ \tau_s \circ h_1^{-1}$ is homeomorphism, so ϕ is MLD map.

· • E • • E • E

Table of Contents

- One question; 3 settings
- 2 Homeomorphisms of FLC tiling spaces
- 3 The cohomological invariant [h]
- 4 The structure theorem
- 5 The Ruelle-Sullivan map
- 6 The other cases

The RS map and PE cohomology (per Kellendonk-Putnam)

• Represent cohomology classes with PE forms. $\alpha(c) = \int_{c} \alpha$.

< 67 ▶

The RS map and PE cohomology (per Kellendonk-Putnam)

- Represent cohomology classes with PE forms. $\alpha(c) = \int \alpha$.
- Pick invariant measure μ on tiling space. (Best if Ω uniquely ergodic)

The RS map and PE cohomology (per Kellendonk-Putnam)

- Represent cohomology classes with PE forms. $\alpha(c) = \int \alpha$.
- Pick invariant measure μ on tiling space. (Best if Ω uniquely ergodic)

•
$$C_{\mu}(\alpha) = \int_{\Omega} \alpha(0) d\mu.$$

The RS map and PE cohomology (per Kellendonk-Putnam)

- Represent cohomology classes with PE forms. $\alpha(c) = \int \alpha$.
- Pick invariant measure μ on tiling space. (Best if Ω uniquely ergodic)

•
$$C_{\mu}(\alpha) = \int_{\Omega} \alpha(0) d\mu.$$

• Depends only on class of α : $C_{\mu}(d\beta) = 0$.

The RS map and PE cohomology (per Kellendonk-Putnam)

- Represent cohomology classes with PE forms. $\alpha(c) = \int \alpha$.
- Pick invariant measure μ on tiling space. (Best if Ω uniquely ergodic)

•
$$C_{\mu}(\alpha) = \int_{\Omega} \alpha(0) d\mu.$$

- Depends only on class of α : $C_{\mu}(d\beta) = 0$.
- Ergodic theorem: if μ ergodic, $C_{\mu}([\alpha]) =$ average value of $\alpha(x)$ for generic tiling.
- If Ω uniquely ergodic, C_µ([α]) = average value of α(x) for every tiling.

- 4 同 2 4 日 2 4 日 2

• If $\alpha \in H^1(\Omega, \mathbb{R}^d)$, $C_{\mu}(\alpha)$ is $d \times d$ matrix.

Lorenzo Sadun Homeomorphisms of Tiling Spaces

э

- If $\alpha \in H^1(\Omega, \mathbb{R}^d)$, $C_{\mu}(\alpha)$ is $d \times d$ matrix.
- Example: \mathcal{F} represented by constant 1-form $d\vec{x}$. $C_{\mu}(\mathcal{F}) = I$.

<ロト < 同ト < 三ト

- If $\alpha \in H^1(\Omega, \mathbb{R}^d)$, $C_{\mu}(\alpha)$ is $d \times d$ matrix.
- Example: \mathcal{F} represented by constant 1-form $d\vec{x}$. $C_{\mu}(\mathcal{F}) = I$.
- C_µ([h]) = linear transformation of ℝ^d = large scale distortion induced on orbits by h.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Classes of homeomorphisms are non-singular

Theorem

If Ω is unique ergodic and $h : \Omega \to \Omega'$ is a homeomorphism, then $C_{\mu}[h]$ is invertible.

Sketch of proof:

< 4 → < 三

Classes of homeomorphisms are non-singular

Theorem

If Ω is unique ergodic and $h : \Omega \to \Omega'$ is a homeomorphism, then $C_{\mu}[h]$ is invertible.

Sketch of proof:

• Suppose $C_{\mu}[h]\vec{v} = 0$.

< 4 → < 三

Classes of homeomorphisms are non-singular

Theorem

If Ω is unique ergodic and $h : \Omega \to \Omega'$ is a homeomorphism, then $C_{\mu}[h]$ is invertible.

Sketch of proof:

- Suppose $C_{\mu}[h]\vec{v} = 0$.
- Restrict attention to how *h* acts on a single translational orbit.

- - ◆ 同 ▶ - ◆ 目 ▶

Classes of homeomorphisms are non-singular

Theorem

If Ω is unique ergodic and $h : \Omega \to \Omega'$ is a homeomorphism, then $C_{\mu}[h]$ is invertible.

Sketch of proof:

- Suppose $C_{\mu}[h]\vec{v} = 0$.
- Restrict attention to how *h* acts on a single translational orbit.
- Asymptotically, h collapses \mathbb{R}^d in \vec{v} direction.

Classes of homeomorphisms are non-singular

Theorem

If Ω is unique ergodic and $h : \Omega \to \Omega'$ is a homeomorphism, then $C_{\mu}[h]$ is invertible.

Sketch of proof:

- Suppose $C_{\mu}[h]\vec{v} = 0$.
- Restrict attention to how *h* acts on a single translational orbit.
- Asymptotically, h collapses \mathbb{R}^d in \vec{v} direction.
- For *h* to be onto, fluctuations must be large, but then *h* isn't 1:1.

Shape changes implement all non-singular classes

Theorem

If Ω is uniquely ergodic, $[\alpha] \in H^1(\Omega, \mathbb{R}^d)$ and $C_{\mu}([\alpha])$ is invertible, there is a shape change homeomorphism whose class is $[\alpha]$.

Sketch of proof:

< 17 ▶

- ∢ ≣ ▶

Shape changes implement all non-singular classes

Theorem

If Ω is uniquely ergodic, $[\alpha] \in H^1(\Omega, \mathbb{R}^d)$ and $C_{\mu}([\alpha])$ is invertible, there is a shape change homeomorphism whose class is $[\alpha]$.

Sketch of proof:

• WLOG assume $C_{\mu}[\alpha] = I$.

< A >

- ∢ ≣ ▶

Shape changes implement all non-singular classes

Theorem

If Ω is uniquely ergodic, $[\alpha] \in H^1(\Omega, \mathbb{R}^d)$ and $C_{\mu}([\alpha])$ is invertible, there is a shape change homeomorphism whose class is $[\alpha]$.

Sketch of proof:

- WLOG assume $C_{\mu}[\alpha] = I$.
- Represent α with differential form.

< A >

Shape changes implement all non-singular classes

Theorem

If Ω is uniquely ergodic, $[\alpha] \in H^1(\Omega, \mathbb{R}^d)$ and $C_{\mu}([\alpha])$ is invertible, there is a shape change homeomorphism whose class is $[\alpha]$.

Sketch of proof:

- WLOG assume $C_{\mu}[\alpha] = I$.
- Represent α with differential form.
- Convolve α with wide bump function ρ s.t. $\rho * \alpha$ is pointwise close to *I*.

- 4 同 6 4 日 6 4 日 6

Shape changes implement all non-singular classes

Theorem

If Ω is uniquely ergodic, $[\alpha] \in H^1(\Omega, \mathbb{R}^d)$ and $C_{\mu}([\alpha])$ is invertible, there is a shape change homeomorphism whose class is $[\alpha]$.

Sketch of proof:

- WLOG assume $C_{\mu}[\alpha] = I$.
- Represent α with differential form.
- Convolve α with wide bump function ρ s.t. $\rho * \alpha$ is pointwise close to *I*.
- As long as ρ compactly supported, $\rho * \alpha$ still PE and $[\rho * \alpha] = [\alpha]$.

・ロト ・同ト ・ヨト ・ヨト

Shape changes implement all non-singular classes

Theorem

If Ω is uniquely ergodic, $[\alpha] \in H^1(\Omega, \mathbb{R}^d)$ and $C_{\mu}([\alpha])$ is invertible, there is a shape change homeomorphism whose class is $[\alpha]$.

Sketch of proof:

- WLOG assume $C_{\mu}[\alpha] = I$.
- Represent α with differential form.
- Convolve α with wide bump function ρ s.t. $\rho * \alpha$ is pointwise close to *I*.
- As long as ρ compactly supported, $\rho * \alpha$ still PE and $[\rho * \alpha] = [\alpha]$.
- Deform one orbit by $x \to \int_0^x \alpha$. Extend by continuity.

Proof of main theorem

- If $h: \Omega \to \Omega'$ is homeomorphism, then
 - $C_{\mu}([h])$ is invertible.

< 4 → < 三

3.5

Proof of main theorem

If $h: \Omega \to \Omega'$ is homeomorphism, then

- $C_{\mu}([h])$ is invertible.
- There is a shape change $h_2 : \Omega \to \Omega_2$ with $[h_2] = [h]$.

< 1 →

Proof of main theorem

If $h: \Omega \to \Omega'$ is homeomorphism, then

• $C_{\mu}([h])$ is invertible.

۲

• There is a shape change $h_2 : \Omega \to \Omega_2$ with $[h_2] = [h]$.

• $h = \phi^{-1} \circ h_2 \circ \tau_s$.

□→ < □→</p>

Table of Contents

- One question; 3 settings
- 2 Homeomorphisms of FLC tiling spaces
- 3 The cohomological invariant [h]
- 4 The structure theorem
- 5 The Ruelle-Sullivan map

6 The other cases

ILC tilings

Without FLC, MLD and "strongly $\mathsf{PE}"$ no longer make sense in general. However,

< 日 > < 同 > < 三 > < 三 >

э

ILC tilings

Without FLC, MLD and "strongly PE" no longer make sense in general. However,

• Weakly PE still makes sense. Just means "continuous".

<ロト < 同ト < 三ト

ILC tilings

Without FLC, MLD and "strongly PE" no longer make sense in general. However,

- Weakly PE still makes sense. Just means "continuous".
- Shape changes don't have to preserve FLC, so can be given by weakly PE 1-cochains.

ILC tilings

Without FLC, MLD and "strongly PE" no longer make sense in general. However,

- Weakly PE still makes sense. Just means "continuous".
- Shape changes don't have to preserve FLC, so can be given by weakly PE 1-cochains.
- Homeomorphisms don't always preserve orbits. (Pinwheel rotation). Added assumption.

ILC tilings

Without FLC, MLD and "strongly PE" no longer make sense in general. However,

- Weakly PE still makes sense. Just means "continuous".
- Shape changes don't have to preserve FLC, so can be given by weakly PE 1-cochains.
- Homeomorphisms don't always preserve orbits. (Pinwheel rotation). Added assumption.
- Structure theorem same as before, only with ϕ topological conjugacy.

ILC tilings

Without FLC, MLD and "strongly PE" no longer make sense in general. However,

- Weakly PE still makes sense. Just means "continuous".
- Shape changes don't have to preserve FLC, so can be given by weakly PE 1-cochains.
- Homeomorphisms don't always preserve orbits. (Pinwheel rotation). Added assumption.
- Structure theorem same as before, only with ϕ topological conjugacy.
- Theorems about Ruelle-Sullivan exactly same as before.

General maps

 \bullet Pullback of ${\cal F}$ still makes sense.

э

< 日 > < 同 > < 三 > < 三 >

General maps

- Pullback of \mathcal{F} still makes sense.
- For structure theorem, must assume that h_1 is orbit equivalence. Weak translation τ_s is chosen to go up, but does not have to be invertible. Lack on injectivity of h_2 can come either from τ_s or from factor map ϕ .

$$\begin{array}{ccc} \Omega & \stackrel{h_1}{\longrightarrow} & \Omega' \\ & & & \downarrow^{\phi} \\ \Omega & \stackrel{h_2}{\longrightarrow} & \Omega_2 \end{array}$$

General maps

- Pullback of \mathcal{F} still makes sense.
- For structure theorem, must assume that h_1 is orbit equivalence. Weak translation τ_s is chosen to go up, but does not have to be invertible. Lack on injectivity of h_2 can come either from τ_s or from factor map ϕ .

$$\begin{array}{ccc} \Omega & \stackrel{h_1}{\longrightarrow} & \Omega' \\ & & & \downarrow^{\phi} \\ \Omega & \stackrel{h_2}{\longrightarrow} & \Omega_2 \end{array}$$

• As long as h is surjective, $C_{\mu}[h]$ is still invertible.

▲□ ► ▲ □ ►

General maps

- Pullback of \mathcal{F} still makes sense.
- For structure theorem, must assume that h_1 is orbit equivalence. Weak translation τ_s is chosen to go up, but does not have to be invertible. Lack on injectivity of h_2 can come either from τ_s or from factor map ϕ .

$$\begin{array}{ccc} \Omega & \stackrel{h_1}{\longrightarrow} & \Omega' \\ \\ \tau_s \uparrow & & \downarrow \phi \\ \Omega & \stackrel{h_2}{\longrightarrow} & \Omega_2 \end{array}$$

- As long as h is surjective, $C_{\mu}[h]$ is still invertible.
- In applying structure theorem, $h_2 = h$ and h_1 is shape change with same class.

Recap

Theorem

If $h: \Omega \to \Omega'$ is a homeomorphism of FLC tiling spaces, and if Ω is uniquely ergodic, then h is the composition of a "weak translation", a shape change, and an MLD equivalence. There is a class $[h] \in H^1(\Omega, \mathbb{R}^d)$ that characterizes the shape change (up to MLD).

< 67 ▶

Recap

Theorem

If $h: \Omega \to \Omega'$ is a homeomorphism of FLC tiling spaces, and if Ω is uniquely ergodic, then h is the composition of a "weak translation", a shape change, and an MLD equivalence. There is a class $[h] \in H^1(\Omega, \mathbb{R}^d)$ that characterizes the shape change (up to MLD).

Theorem

If $h: \Omega \to \Omega'$ is an orbit-preserving homeomorphism of general tiling spaces, and if Ω is uniquely ergodic, then h is the composition of a "weak translation", a shape change, and a topological conjugacy. There is a class $[h] \in H^1_w(\Omega, \mathbb{R}^d)$ that characterizes the shape change (up to conjugacy).

More recap

Theorem

Suppose $f : \Omega \to \Omega'$ is an orbit-preserving surjection of tiling spaces, and $\Omega 1$ is uniquely ergodic.

- If Ω and Ω' are FLC, then h is homotopic to the composition of a shape change and a local derivation.
- In general, h is homotopic to the composition of a shape change and a factor map.
- There is a distinguished class [h]in H¹ or H¹_w that parametrizes the shape change.