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Preface

We present here a collection of articles about aperiodic systems which exhibit long
range order. By aperiodic systems we mean infinite systems which serve as mathe-
matical models for the description of physical structures which are not the periodic
repetition of an “elementary block”. Typically aperiodic systems are point patterns
in Euclidean space or their functional counterparts, like measures or physical po-
tential functions.

With the discovery of quasicrystals rose the awareness that an aperiodic
system may have long range order. Vaguely speaking this means that there is
strong coherence between the local structure of the system at different positions in
space so that collective phenomena, like diffraction, look very different from those
of random systems and rather like those of periodic systems. Ways of making this
idea mathematically precise form part of the research program of Aperiodic Order
and constitute the topic of this book.

Originally, long range order arose as a concept from X-ray diffraction. The
diffraction spectrum of certain materials shows sharp peaks (called Bragg peaks)
revealing that light is diffracted by local configurations of atoms which “repeat
homogeneously” enough in the material to lead to constructive interferences. This
happens for crystals, but not only for them and so a material is considered long
range ordered if it shows sharp Bragg peaks under diffraction.

Nowadays one does not base the definition of (long range) order on diffractive
properties alone – one does not even insist that the system can be described by a
model for which diffraction makes sense – but simply asks: what are the mathe-
matical features which suggest to call an infinite structure ordered, as opposed
to random, and how can one quantify the degree of order. In such a context, the
notion of order has to be reinvented properly.

In most aperiodic systems the underlying long range order structure is en-
coded in a point pattern in Euclidean space. Whether these point patterns should
be considered as discrete point sets (Delone sets), or tilings, or as discrete mea-
sures is not of importance. These are just different approaches to describe the
same structure. The point patterns can either be considered as ordered because
they are constructed by deterministic rules. The reader will find here in particular
hierarchical rules, like substitution rules, or the cut & project method producing
quasiperiodic point patterns. Or point patterns are ordered because they satisfy
specific mathematical properties, like being pure point diffractive, or highly repeti-
tive, or having finitely generated cohomology groups, or by their dynamical system
being close to equicontinuous. The interplay between these two conceptions of or-
der forms part of the theory discussed in this book.

For many years the evolution of the topic has been recorded (and stimulated)
by collections of articles rather than monographs. The last such collection, entitled
Directions in Mathematical Quasicrystals, dates from 2000. Certainly, our research
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has benefited tremendously from these collections. Considerable progress has been
obtained in the last fifteen years. This makes us hope that the present collection
can serve a similar purpose as earlier works of this type. In this context, it is our
great pleasure to point out to the interested reader that very recently the first
volume of a monographic introduction with the title Aperiodic Order written by
two of the authors contributing to this collection has appeared. This shows clearly
that the topic is a most flourishing one and we wish our readers lots of fun with it.
We are very grateful to Sarah Kellendonk for here beautiful drawings, which add
an artistic touch to the aesthetics of aperiodic tilings.

c© 2015 Sarah Kellendonk
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Short description of the chapters. We start with where it began over 30 years
ago: the mathematical theory of diffraction of point sets. It was X-ray diffraction
analysis which led to the discovery of quasicrystals and as a consequence to the
famous question “Which distributions of matter diffract?”, a question with sub-
sequently led to the development of the mathematical theory of diffraction. The
first chapter presents the new developments in this theory discussing point sets
whose diffraction measures have continuous components.

One of the surprising results of the mathematical theory of diffraction is that
the diffraction spectrum is related to another kind of spectrum, namely that of the
dynamical system associated with the point pattern. In particular, a point pattern
is pure point diffractive (its diffraction measure has no continuous part) if and only
if the dynamical spectrum is purely discrete (contains only eigenvalues). In that
case the group of eigenvalues is generated by the set of Bragg peaks. Therefore,
the question as to whether a point pattern is purely diffractive becomes a question
about their dynamical system.

For point patterns (or tilings) constructed from substitutions the above ques-
tion is even of topological nature. There is a famous conjecture in topological
dynamics, still open at the time of writing this book, which asks whether point
patterns coming from irreducible Pisot substitutions have purely discrete dynam-
ical spectrum. Chapter two is devoted to a review about what is known to be true
in relation to this “Pisot substitution conjecture”. It includes recent attempts to
replace the irreducibility assumption by a topological condition.

In the next chapters one of the most fruitful mathematical ideas for the study
of point patterns is reviewed, namely that one should not consider a given point
pattern on its own but rather the space of all point patterns which look locally
like that pattern. This space is called the hull of the pattern, or sometimes the
pattern space (or tiling space). It carries a natural topology. This brings in the
possibility of applying topological methods to study point patterns. A big runner
is cohomology. There are various ways to associate a cohomology group to a point
pattern, the quickest to say but least practical being the Čech cohomology of its
hull. In Chapters three and four these various versions of cohomology for point
patterns are explained and applied. More specifically, in Chapter three the reader
will find a discussion of what cohomology is useful for and how it can be computed
using the technique of approximating the pattern space by simpler spaces via
inverse limits. This is particularly well adapted to compute the cohomology of
hierarchical tilings. In Chapter four a formulation of pattern cohomology via group
cohomology is presented and employed to calculate the cohomology for almost
canonical cut & project patterns. In both chapters results from several past years
is reviewed but chapter four presents also some background material in detail
which so far has only been implicit in the literature, such as the question why the
Čech cohomology of a pattern space is the group cohomology of something.

Since our point patterns are subsets of the Euclidean space they may be
shifted in the space and this defines the action of the group of translations on the
hull of the point pattern. It turns out that the translation action is continuous
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and this way we have a topological dynamical system associated with the point
pattern. This brings in the possibility of applying methods from topological dy-
namics systems theory to study point patterns. Chapter five is devoted to this.
The spectrum of a dynamical system is explained in detail with an emphasis on
the role of topological eigenvalues and the maximal equicontinuous factor. These
are part of a circle of ideas known in dynamical systems theory for more than 50
years which turn out very useful to study point patterns. In particular a hierarchy
of point patterns can be obtained by studying how close their dynamical system
is to an equicontinuous one.

The next chapter is devoted to a combinatorial property of point patterns in
Euclidean space which is usually considered to describe highly ordered aperiodic
materials: linear repetitivity (linear recurrence). In an arbitrarily chosen point
pattern a given local configuration might never occur again, or only in one corner
of the space. A repetitive point pattern is one where any local configuration appears
everywhere again with bounded distance. More precisely, for any radius r there
is some (bigger) radius R such that any ball of radius R contains an occurrence
(or rather a translated copy) of any local configuration of size r. If there is some
constant L such that R ≤ Lr the point set is called linearly repetitive. This
is the strongest possible case for an aperiodic structure: the point pattern must
be periodic if R is bounded by a function of r which grows slower than linearly
with r. Chapter six discusses the consequences of this property for the underlying
dynamical system of point sets. The system is strictly ergodic, never measurably
mixing and admits a subadditive ergodic theorem. The continuous and measurable
eigenvalues are characterized. It is shown that the dynamics admits only finitely
many factors (up to conjugation). Deformation of linearly repetitive point patterns
are also studied and related to Lipschitz rectifiability of lattices.

Many of the results discussed in this book hold under the assumption that
the point patterns have finite local complexity. This means that, up to translation,
there are only finitely many local configurations of a given size. The contribution
of Chapter seven goes beyond that framework. Methods for the construction of
point patterns which have infinite local complexity are discussed, their properties
analysed, and many examples given.

Non-commutative geometry has played an early role in the discussion of ape-
riodic systems, in particular in the attempt to define an analogue of the Brillouin
zone for aperiodic solids. The ordinary Brilluoin zone is the dual of the lattice of
periods and so shrinks to a point if the lattice of periods is trivial. It has been
quickly realised that there exists, however, a non-commutative version in form of
a non-commutative C∗-algebra. This has been developped in the 80s and 90s into
a fully fledged theory of the non-commutative topology of aperiodic systems. Only
relatively recently succesful attempts were made to construct the fundamental el-
ement of non-commutative geometry, namely a spectral triple for aperiodic tilings.
So far, convincing constructions of spectral triples have only been obtained for
commutative tiling algebras, but they have led to new insight into these tilings.
Poles of associated zeta functions are related to the combinatorial complexity of
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the tiling, interesting Laplace-type operators may be defined, and a combinatorial
property standing for high order (bounded powers) may be characterized by means
of these spectral triples. This is reviewed in Chapter eight.

A very important aspect of a theory of aperiodic materials is the study of
the quantum mechanical motion of a particle in the material. One wishes to solve
the Schrödinger equation with a potential created by the sum of atomic poten-
tials for an aperiodic arrangement of atoms, the arrangement being however not
random but showing high order. Although this subject has been investigated as
early as 1979, the paradigm being that one-dimensional quasiperiodic operators
have singular continuous spectrum, it is far from being settled and even relatively
crude results need heavy machinery. Chapter nine presents a general outline on the
type of Schrödinger operators used in quasicrystal physics and then provides an
overview on the latest results for one dimensional examples in which the method
of trace maps can be successfully applied.

With Chapter ten on arithmetic properties of subshifts we include a link
between tiling theory and number theory. Arithmetic and combinatorial properties
of words are related to dynamical and diffraction properties of associated subshifts.
Specifically, this chapter studies the class of central sets and IP-sets of the natural
numbers, which have very rich additive properties. In particular it is shown how one
can produce a central set as set of occurrences of suitable factors of an infinite word
over a finite alphabet with a sufficiently rich combinatorial structure. Moreover, a
relation between central sets and the strong coincidence conjecture is discussed (the
latter is relevant for the Pisot substitution conjecture, the subject of Chapter two).

The final Chapter eleven outlines how a realistic theory of solids or liquid
physical systems would have to be based on Delone sets of infinite local complexity.
This contribution is a particular one because it is rather a view into the future
than a review: it sets out a program to study the dynamics of atoms in solid or
liquid phases with the help of Delone sets and their graphs.

February 2, 2015 Johannes Kellendonk
Daniel Lenz
Jean Savinien
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Non-Periodic Systems with
Continuous Diffraction Measures

Michael Baake, Matthias Birkner and Uwe Grimm

Abstract. The present state of mathematical diffraction theory for systems
with continuous spectral components is reviewed and extended. We begin
with a discussion of various characteristic examples with singular or absolutely
continuous diffraction, and then continue with a more general exposition of
a systematic approach via stationary stochastic point processes. Here, the
intensity measure of the Palm measure takes the role of the autocorrelation
measure in the traditional approach. We furthermore introduce a ‘Palm-type’
measure for general complex-valued random measures that are stationary and
ergodic, and relate its intensity measure to the autocorrelation measure.

Mathematics Subject Classification (2010). Primary 42A38, 37A50; Secondary
37B10, 52C23.

Keywords. Kinematic diffraction, (random) dynamical systems, stationary
stochastic processes.

1. Introduction

The (mathematical or kinematic) diffraction theory of systems in Euclidean space
with pure point spectrum is rather well understood. Ultimately, this is due to the
availability of Poisson’s summation formula and its generalisations to the setting
of measures (or to tempered distributions); see [12, Sec. 9.2] for a systematic
exposition. Beyond results on the spectral nature, this often also provides explicit
formulas for the diffraction measure, such as in the cases of lattice-periodic systems
and model sets. For these systems, there is also a well-understood connection with
the Halmos–von Neumann theorem for the corresponding pure point dynamical
spectrum; see [55, 16, 60, 18, 20] for details as well as [12] and references therein
for general background.

As soon as one enters the realm of systems with continuous diffraction spectra
(or at least with continuous spectral components), the situation changes drasti-
cally. As in the case of Schrödinger operator spectra [31], much less is known about
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the plethora of possibilities, and there rarely are explicit formulas for the diffrac-
tion measures of specific examples. Until recently, explicit results were restricted
to simple systems of Bernoulli type (hence with disorder that leads to indepen-
dent random variables) or to some paradigmatic examples in one dimension (and
product systems built from them).

There has now been some progress towards explicitly computable examples
in various directions [62, 4, 15]. In particular, both for singular and for absolutely
continuous cases, constructive approaches have been more successful than previ-
ously anticipated; compare [12, Ch. 10]. Consequently, there is some hope that
more systems can be understood in this way. This view is also supported by the
recent progress in the understanding of the connection between the dynamical
and the diffraction spectrum in this more general situation; see [20] and references
therein. At the same time, such examples will improve our intuition about systems
with continuous diffraction. Below, this will be reflected by several short sketches
of characteristic examples (which are covered in more detail in [12]), before we
embark on a more systematic setting via general point process theory. Our focus
is on systems in Rd, which is the primary situation to understand, particularly
from the applications point of view. Extensions to more general locally compact
Abelian groups are possible, but will not be discussed here.

2. Diffraction measures – a brief reminder

Let ω be a locally finite (and possibly complex) measure on Rd, which we primar-
ily view as a linear functional on the space Cc(Rd) of continuous functions with
compact support on Rd, together with some mild extra conditions. In favourable
cases, ω will be translation bounded. By the classic Riesz–Markov representation
theorem, we may identify the measures defined by this approach with regular Borel
measures; for a systematic exposition, we refer to [44, 16] as well as [12, Chs. 8
and 9] and references therein. Particularly important examples comprise the Dirac
measure δx, defined by δx(g) := g(x) for g ∈ Cc(Rd), and measures of the form

δS :=
∑
x∈S

δx , (2.1)

which are known as Dirac combs, where S ⊂ Rd is uniformly discrete. More gener-
ally, we will also consider objects of the form

∑
x∈S w(x)δx, which can be a measure

for a general countable set S, then under suitable conditions on the weight function
w. Such measures are referred to as weighted Dirac combs.

Recall from [44] or [12] that, if ω is a measure on Rd, the (inverted-conjugate)
measure ω̃ is defined by ω̃(g) := ω(g̃) for g ∈ Cc(Rd), where g̃(x) := g(−x). Given
a measure ω, consider its autocorrelation measure

γ = γω := ω � ω̃ , (2.2)
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where � denotes the volume averaged (or Eberlein) convolution. The latter is
defined by

ω � ω̃ := lim
r→∞

ωr ∗ ω̃r
vol(Br(0))

with Br(0) the (open) ball of radius r around the origin and ωr := ω|Br(0)
. At this

stage, we assume the existence of the limit. This will be discussed in more detail
later.

If (as in many of our examples) ω is a Dirac comb with lattice support, also
γ will be supported on the same lattice (or a subset of it). Concretely, if

ω = w δZ :=
∑
n∈Z

w(n) δn ,

with a bounded weight function w say, one finds γ = ηδ
Z
with the positive definite

function η : Z −→ C being defined by

η(m) := lim
N→∞

1

2N + 1

N∑
n=−N

w(n)w(n −m)

= lim
N→∞

1

2N + 1

N∑
n=−N

w(n)w(n + m),

(2.3)

provided that all limits exist. In our exposition below, this existence will follow
by suitable applications of Birkhoff’s ergodic theorem, applied to the dynamical
system of the shift action on the orbit closure of the sequence w or to a similar
type of dynamical system; compare [16] for a more general setting. One benefit of
this approach will emerge via the Herglotz–Bochner theorem [50].

The autocorrelation measure γ is positive definite (or of positive type) by
construction, which means that γ(g ∗ g̃) ≥ 0 for all g ∈ Cc(Rd). It is thus Fourier
transformable [27], and the Fourier transform γ̂ is a positive measure, called the
diffraction measure of ω; see [29] for the physics behind this notion, and [44] as
well as [12, Ch. 9] for the mathematical theory. Within the framework of kinematic
diffraction, it describes the outcome of a scattering experiment by quantifying how
much intensity is scattered into a given volume of d-space, and thus is the central
object of our interest. By the Lebesgue decomposition theorem, there is a unique
splitting

γ̂ = γ̂pp + γ̂sc + γ̂ac

of the diffraction measure into its pure point part γ̂pp, its singular continuous
part γ̂sc and its absolutely continuous part γ̂ac, with respect to Lebesgue measure
λ. The pure point part comprises the ‘Bragg peaks’ (of which there are at most
countably many, so γ̂pp is a sum over at most countably many Dirac measures with
positive weights), while the absolutely continuous part corresponds to the diffuse
‘background’ scattering which is given by a locally integrable density relative to
λ. The singular continuous part is whatever remains – if present, it is a measure
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that gives no weight to single points, but is still concentrated to an (uncountable)
set of zero Lebesgue measure.

Measures ω which lead to a diffraction γ̂ = γ̂pp are called pure point diffrac-
tive; examples include lattice-periodic measures and measures based on model
sets. These have been studied in detail in the context of diffraction of crystals
and quasicrystals; see [9] for a recent review and [12, Chs. 8 and 9] for a sys-
tematic exposition. Here, we are concentrating on the other two spectral compo-
nents, which may also carry important information on the (partial) order which
is present in the underlying structure. Pure point spectra are discussed in detail
in [23, 16, 17, 18, 12, 59, 57, 58]; for related spectral problems in the context of
Schrödinger operators, we refer to [31].

3. Guiding examples

As mentioned above, the understanding of systems with continuous diffraction
components is less developed than that of pure point diffractive ones. Still, a
better intuition will emerge from a sample of characteristic examples. It is the
purpose of this section to provide some of them, while we refer to the literature
for further ones [13, 22, 4, 9, 15, 12].

3.1. Thue–Morse sequences

Let us begin with a classic example from the theory of substitution systems that
leads to a singular continuous diffraction measure with rather different features in
comparison with the Cantor measure, the latter being illustrated in Figure 1. Our
example has a long history, which can be extracted from [79, 61, 47, 1]. We confine
ourselves to a brief summary of the results, and refer to [7, 12] and references
therein for proofs and details.

The classic Thue–Morse (TM) sequence can be defined via the one-sided
fixed point v = v0v1v2 . . . (with v0 = 1) of the primitive substitution rule

� :
1 	→ 11̄
1̄ 	→ 1̄1

on the binary alphabet {1, 1̄}. The fixed point is the limit (in the obvious product
topology) of the (suitably embedded) iteration sequence

1
�	−→ 11̄

�	−→ 11̄1̄1
�	−→ 11̄1̄11̄111̄

�	−→ · · · −→ v = �(v) = v0v1v2v3 . . .

and has a number of distinctive properties [1, 68], for instance

• vi = (−1)sum of the binary digits of i

• v2i = vi and v2i+1 = vi, for all i ∈ N0;
• v = v0v2v4 . . . and v̄ = v1v3v5 . . .
• v is (strongly) cube-free (and hence non-periodic).
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Figure 1. The distribution function F of the classic middle-thirds Can-
tor measure. The construction of the underlying Cantor set is sketched
in the inset.

Here, we define ¯̄1 = 1 and identify 1̄ with −1, also for the later calculations with
Dirac combs. A two-sided sequence w can be defined by

w(i) =

{
vi, for i ≥ 0,

v−i−1, for i < 0,

which is a fixed point of �2, because the seed w−1|w0 = 1|1 is a legal word (it occurs

in �3(1)) and w = �2(w). The (discrete) hull X = XTM of the TM substitution is
the closure of the orbit of w under the shift action, which is a subset of {±1}Z and
hence a compact space. The orbit of any of its members is dense in X. We thus have
a topological dynamical system (X,Z) that is minimal. When equipped with the
standard Borel σ-algebra, the system admits a unique shift-invariant probability
measure ν, so that the corresponding measure theoretic dynamical system (X,Z, ν)
is strictly ergodic [47, 68].

Any given w ∈ X is mapped to a signed Dirac comb ω via

ω =
∑
n∈Z

w(n) δn .

The image of X is a space of translation bounded measures that is compact in
the vague topology. We inherit strict ergodicity via conjugacy, and thus obtain an
autocorrelation of the form of Eq. (2.2) with coefficients η(m) as in Eq. (2.3). In
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fact, this autocorrelation does not depend on the choice of the element from X, so
that we may choose the fixed point w from above for the concrete analysis. Due
to the nature of w, the coefficients can alternatively be expressed as

η(m) = lim
N→∞

1

N

N−1∑
n=0

vn vn+m

for m ≥ 0, together with η(−m) = η(m). It is clear that η(0) = 1, and the scaling
relations of v lead to the recursions [47]

η(2m) = η(m) and

η(2m+1) = − 1
2

(
η(m) + η(m+1)

)
,

(3.1)

which are valid for all m ∈ Z. In particular, the second relation, used with m = 0,
implies η(1) = − 1

3 , which can also be calculated directly.

Since η : Z −→ C is a positive definite function with η(0) = 1, there is a
unique probability measure μ on the unit circle (which we identify with the unit
interval here) such that

η(m) =

∫ 1

0

e2πimy dμ(y) , (3.2)

which is a consequence of the Herglotz–Bochner theorem [50, Thm. I.7.6]. Since
ω is supported on Z, the corresponding diffraction measure γ̂ is 1-periodic, which
follows from [3, Thm. 1]; see also [12, Sec. 10.3.2]. One then finds the relation

γ̂ = μ ∗ δZ

with the measure μ from Eq. (3.2), appropriately interpreted as a measure on [0, 1)
and hence also on R. Clearly, one also has μ = γ̂|[0,1). One can now analyse the

spectral type of γ̂ via that of the finite measure μ, where we follow [47]; see also
[68, 20].

Defining Σ(N) =
∑N

m=−N
(
η(m)

)2
, a two-step calculation with the recur-

sion (3.1) establishes the inequality Σ(4N) ≤ 3
2Σ(2N) for all N ∈ N. This im-

plies limN→∞Σ(N)/N = 0, wherefore Wiener’s criterion [79, 50], see also [12,
Prop. 8.9], tells us that μ is a continuous measure, so that γ̂ cannot have any pure
point component. Note that the absence of the ‘trivial’ pure point component of γ̂
on Z is due to the use of balanced weights, in the sense that 1 and −1 are equally
frequent. Consequently, the average weight is zero, and the claim follows from [12,
Prop. 9.2].

Let us now define the distribution function F by F (x) = μ
(
[0, x]

)
for any

x ∈ [0, 1], which is a continuous function that defines a Riemann–Stieltjes measure
[53, Ch. X], so that dF = μ. The recursion relation for η now implies [47] the two
functional relations

dF
(
x
2

)
± dF

(
x+1
2

)
=

{
1

− cos(πx)

}
dF (x) ,



Continuous Diffraction 7

Figure 2. The strictly increasing distribution function of the classic,
purely singular continuous TM measure on [0, 1].

which have to be satisfied by the ac and sc parts of F separately, because we have
μac ⊥ μsc in the measure-theoretic sense; see [72, Thm. I.20] or [53, Thm. VII.2.4].
Therefore, defining

ηac(m) =

∫ 1

0

e2πimx dFac(x) ,

we know that the coefficients ηac(m) must satisfy the same recursions (3.1) as η(m),
possibly with a different initial condition ηac(0). The classic Riemann–Lebesgue
lemma [50, Thm. I.2.8] states that limm→±∞ ηac(m) = 0. But this limit is only
compatible with ηac(0) = 0, because ηac(1) = − 1

3ηac(0) and ηac(2m) = ηac(m)
for all m ∈ N, so that we must have ηac ≡ 0. This means Fac = 0 by the Fourier
uniqueness theorem, wherefore μ and hence γ̂ (neither of which is the zero measure)
are purely singular continuous. The resulting distribution function F is illustrated
in Figure 2. Note that F can consistently be extended to a continuous function
on R via F (x + n) = F (x) + n for n ∈ Z and then defines γ̂ via dF = γ̂ in the
Lebesgue–Stieltjes sense. The function F can efficiently be calculated by means of
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the uniformly converging Volterra iteration

Fn+1(x) =
1

2

∫ 2x

0

(
1− cos(πy)

)
F ′n(y) dy (3.3)

with F0(x) = x. In contrast to the Devil’s staircase of Figure 1, the TM distribution
function is strictly increasing, which means that there is no plateau (which would
indicate a gap in the support of γ̂); see [7, 12] and references therein for details
and further properties of F . So far, we have obtained the following result.

Theorem 3.1. Let w be any element of the Thue–Morse hull X = XTM, the latter
represented as a closed subshift of {±1}Z, and consider the corresponding Dirac
comb wδ

Z
. Then, its autocorrelation γ exists and is given by γ = ηδ

Z
with η being

defined by Eq. (3.1) together with the initial condition η(0) = 1.
The diffraction measure is γ̂ = μ ∗ δ

Z
, where μ is the purely singular contin-

uous probability measure from Eq. (3.2). In particular, γ̂ is purely singular contin-
uous as well. �

To go one step further, Eq. (3.3) defines an iteration sequence of distribu-
tion functions for absolutely continuous measures that converges towards the TM
measure in the vague topology. Writing dFn(x) = fn(x) dx, one finds

fn(x) =

n−1∏
m=0

(
1− cos(2m+1πx)

)
,

which, in the vague limit as n→∞, gives the well-known Riesz product represen-
tation of the TM measure; compare [68] for details and [80] for general background
on Riesz products.

The TM sequence is closely related to the limit-periodic period doubling (pd)
sequence, compare [5, 12] and references therein, via the (continuous) sliding block
map defined by

φ : 11̄, 1̄1 	→ a , 11, 1̄1̄ 	→ b , (3.4)

which results in an exact 2-to-1 surjection from the hull XTM to Xpd. The latter
is the hull of the period doubling substitution defined by

�pd : a 	→ ab , b 	→ aa . (3.5)

Viewed as topological dynamical systems, this means that (Xpd,Z) is a factor

of (XTM,Z). Since both are strictly ergodic, this extends to the corresponding
measure-theoretic dynamical systems. The period doubling sequence can be de-
scribed as a regular model set with a 2-adic internal space [24, 23] and is thus
pure point diffractive. This pairing also explains a phenomenon observed in [78],
namely that the dynamical spectrum of the TM system is richer than its diffraction
spectrum. By the dynamical (or von Neumann) spectrum, we mean the spectrum
of the unitary operator induced by the shift on the Hilbert space L2(X, ν), where
ν is the unique shift-invariant probability measure on X; see [68] for more. Here,
the pure point part of the dynamical spectrum is the ring Z[ 12 ], which is not even
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finitely generated (and only the ‘trivial’ part Z is detected by the diffraction mea-
sure of the TM system with general weights). In fact, our above measure μ from
Theorem 3.1 represents the maximal spectral measure in the ortho-complement
of the pure point sector [68, 20]. The missing pure point part, however, is fully
recovered via the diffraction measure of Xpd; see [12] for details and [20] for a
general discussion of this phenomenon.

Various generalisations of this result are known by now. First of all, and
perhaps not surprisiningly, this generalises to an entire family of bijective, binary
substitutions [5]. Moreover, extensions to higher dimensions are also possible, in-
cluding the explicit nature of the resulting diffraction measure; compare [40, 11]
and references therein.

3.2. Rudin–Shapiro sequence

The (binary) Rudin–Shapiro (RS) chain is a bi-infinite deterministic sequence,
with polynomial (in fact linear) complexity function and thus zero entropy. It
can be described recursively as w = (w(n))n∈Z with w(n) ∈ {±1}, with initial
conditions w(−1) = −1, w(0) = 1 and the recursion

w(4n + ) =

{
w(n), for  ∈ {0, 1},
(−1)n+�w(n), for  ∈ {2, 3},

(3.6)

which determines w(n) for all n ∈ Z. The orbit closure of w under the shift
action is the (discrete) RS hull XRS. Alternatively, one can start from a primitive
substitution on a 4-letter alphabet (via a 	→ ac, b 	→ dc, c 	→ ab and d 	→ db)
and define a quaternary hull, which then maps to the binary hull via a simple
reduction to two letters (for instance via a, c 	→ 1 and b, d 	→ −1); compare [1, 68] or
[12, Sec. 4.7.1] for details. The two hulls define topologically conjugate dynamical
systems, with local derivation rules in both directions; see [12, Rem. 4.11].

The shift action on XRS is strictly ergodic, so that one can define functions
η, ϑ : Z −→ C via

η(m) = lim
N→∞

1

2N + 1

N∑
n=−N

w(n)w(n −m) and

ϑ(m) = lim
N→∞

1

2N + 1

N∑
n=−N

(−1)nw(n)w(n −m),

where all limits exist due to unique ergodicity (which is best formulated on the
level of the 4-letter alphabet mentioned above). In particular, one finds η(0) = 1
and ϑ(0) = 0. The recursive structure of Eq. (3.6) now implies the validity of a
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closed set of recursive equations [8, 9], namely

η(4m) = 1+(−1)m
2 η(m),

η(4m+1) = 1−(−1)m
4 η(m) + (−1)m

4 ϑ(m)− 1
4 ϑ(m+1),

η(4m+2) = 0,

η(4m+3) = 1+(−1)m
4 η(m+1)− (−1)m

4 ϑ(m) + 1
4ϑ(m+1),

together with

ϑ(4m) = 0,

ϑ(4m+1) = 1−(−1)m
4 η(m)− (−1)m

4 ϑ(m) + 1
4 ϑ(m+1),

ϑ(4m+2) = (−1)m
2 ϑ(m) + 1

2 ϑ(m+1),

ϑ(4m+3) = − 1+(−1)m
4 η(m+1)− (−1)m

4 ϑ(m) + 1
4 ϑ(m+1),

which hold for all m ∈ Z; see [12, Sec. 10.2] for details. A careful inspection
shows that the unique solution of this set of equations, with the initial conditions
mentioned above, is η(m) = δm,0 together with ϑ(m) = 0 for all m ∈ Z. Hence,
despite the deterministic nature of the RS sequence, the autocorrelation measure
is simply given by γRS = δ0, so that γ̂RS = λ, where λ again denotes Lebesgue
measure. Alternatively, the result also follows from the exposition in [68, 67].

Theorem 3.2. Let w be any element of the Rudin–Shapiro hull XRS ⊂ {±1}Z, and
consider the corresponding Dirac comb wδ

Z
. Then, its autocorrelation exists and

is given by γRS = δ0, with diffraction measure γ̂RS = λ. �

As in the case of the TM sequence, the non-trivial pure point part of the
dynamical spectrum (which is Z[ 12 ] once again) is not ‘seen’ by the diffraction
measure, while λ (with multiplicity 2) represents once again the maximal spectral
measure in the ortho-complement of the pure point sector. However, the missing
pure point component can be recovered by a suitable factor system, the latter
obtained via the block map defined by Eq. (3.4). The corresponding factor is
represented by a limit-periodic substitution rule that is somewhat reminiscent of
the paper folding sequence [1]; see [12, Sec. 10.2] for a complete discussion and
[20] for the general connection between dynamical and diffraction spectra. The
structure underlying the RS sequence can be generalised to higher-dimensional
lattice substitutions in a rather systematic way; see [39] for details.

3.3. Bernoullisation

Let us begin this discussion by recalling the structure of the full Bernoulli shift
from the viewpoint of kinematic diffraction. The classic coin tossing process leads
to the Dirac comb

ω =
∑
n∈Z

X(n) δn ,
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where the (X(n))n∈Z form an i.i.d. family of random variables, each taking values
1 and −1 with probabilities p and 1 − p, respectively. By an application of the
strong law of large numbers (SLLN, see [36] for a favourable formulation), almost
every realisation has the autocorrelation measure

γ = (2p− 1)2 δZ + 4p(1− p) δ0 ,

and hence (via Fourier transform) the diffraction measure

γ̂ = (2p− 1)2 δZ + 4p(1− p)λ .

Here, we have used the classic Poisson summation formula δ̂
Z
= δ

Z
; compare [9]

and references therein, as well as [12, Sec. 9.2] for a formulation in the diffrac-
tion context. When p = 1

2 , the diffraction boils down to γ̂ = λ. Here, the point
part is extinct because the average scattering strength vanishes. For proofs, we
refer the reader to [22, 4], while [51, 52] contain several important and non-trivial
generalisations and extensions; see also [56] for important related material.

The Bernoulli chain has (metric) entropy [28, 35]

h(p) = −p log(p)− (1−p) log(1−p),

which is maximal for p = 1
2 , with h(12 ) = log(2). It vanishes for the deterministic

limiting cases p ∈ {0, 1}. For the latter, we have ω = ∓δ
Z
, and consequently obtain

the pure point diffraction measure γ̂ = δ
Z
, again via Poisson’s summation formula.

Now, the theory of random variables allows for an interpolation between de-
terministic (binary) sequences and coin tossing sequences as follows. If an element
w ∈ {±1}Z denotes a deterministic sequence (which we assume to be uniquely
ergodic for simplicity), consider the random Dirac comb [8]

ωp =
∑
n∈Z

w(n)X(n) δn , (3.7)

where (X(n))n∈Z is, as above, an i.i.d. family of random variables with values in
{±1} and probabilities p and 1− p. This ‘Bernoullisation’ of w can be viewed as a
‘model of second thoughts’, where the sign of the weight at position n is changed
with probability 1− p; compare [12, Sec. 11.2.2].

Let w now be the Rudin–Shapiro sequence from above. By a (slightly more
complicated) application of the SLLN, it can be shown [8] that the autocorrelation
γp of the Dirac comb ωp is then almost surely given by

γp = (2p− 1)2 γRS + 4p(1− p) δ0 = δ0 ,

irrespective of the value of the parameter p ∈ [0, 1]. Recall that two measures with
the same autocorrelation are called homometric; see [12, Sec. 9.6] for background.
Our observation thus establishes the following classic result; see [8, 9, 12] for details.

Theorem 3.3. The random Dirac combs ωp of Eq. (3.7) with real parameter values
p ∈ [0, 1] are (almost surely) homometric, with absolutely continuous diffraction
measure γ̂p = γ̂RS = λ, irrespective of the value of p. In other words, the family{
ωp | p ∈ [0, 1]

}
is (almost surely) isospectral. �
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This result shows that diffraction can be insensitive to entropy, because the
family of Dirac combs ωp of Eq. (3.7) continuously interpolates between the de-
terministic Rudin–Shapiro case with zero entropy and the completely random
Bernoulli chain with maximal entropy log(2). Clearly, the Bernoullisation pro-
cedure can be applied to other sequences as well, and can be generalised to higher
dimensions. For further aspects of entropy versus diffraction, we refer to [8, 10, 19].

3.4. Random dimers on the line

Another instructive example [25] is based on certain dimer configurations on Z. To
formulate it, we follow the exposition in [10] and partition Z into a close-packed
arrangement of ‘dimers’ (pairs of neighbours), without gaps or overlaps. Clearly,
there are just two possibilities to do so, because the position of the first dimer
fixes that of all others. Next, decorate each dimer randomly with either (1,−1) or
(−1, 1), with equal probability. This results in patches such as

· · · [+ −][− +][− +][+ −][− +][− +][− +][+ −][+ −] · · ·
· · · [− +][+ −][+ −][− +][+ −][+ −][+ −][− +][− +][+ −] · · ·

where the dimer boxes are indicated by brackets. The set of all decorated sequences
defined in this way is given by

X =
{
w ∈ {±1}Z |M(w) ⊂ 2Z or M(w) ⊂ 2Z+ 1

}
,

where M(w) := {n ∈ Z | w(n) = w(n+1)}. Note that M(w) is empty precisely for
the two periodic sequences that are defined by w(n) = ±(−1)n for n ∈ Z. Clearly,
X ⊂ {±1}Z is closed and hence compact.

Let w ∈ X and consider the corresponding signed Dirac comb on Z with
weights w(n) ∈ {±1}. One can then show (again via the SLLN) that the corre-
sponding autocorrelation almost surely exists and is given by [25]

γ = δ0 −
1

2
(δ1 + δ−1) . (3.8)

The corresponding diffraction measure is then

γ̂ =
(
1− cos(2πk)

)
λ , (3.9)

which is again purely absolutely continuous. Here, the (smooth) Radon–Nikodym
density relative to λ is written as a function of k. Note that the diffraction measure
for general weights h+ and h− is given by

γ̂± =
|h+ + h−|2

4
δZ +

|h+ − h−|2
4

γ̂

with γ̂ as in Eq. (3.9). In particular, the measure γ̂± shows only the ‘trivial’ pure
point diffraction contribution that arises as the consequence of Z being the support
of the weighted measure under consideration. The same phenomenon also occurs
for general (non-balanced) TM and RS sequences; compare [12, Rems. 10.3 and
10.5].

On first sight, the system looks disordered, with entropy 1
2 log(2). This seems

(qualitatively) reflected by the diffraction. However, the system also defines a
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measure-theoretic dynamical system under the action of Z, as generated by the
shift. As such, it has a dynamical spectrum that does contain a pure point part,
with eigenvalues 0 and 1

2 ; we refer to [68] for general background on this concept,
and to [25] for the actual calculation of the eigenfunctions. The extension to a
(continuous) dynamical system Xc under the general translation action of R is
done via suspension; see [28, Ch. 11.1] (where the suspension is called a special
flow) or [35] for general background.

This finding suggests that some degree of order must be present that is neither
visible from the entropy calculation nor from the diffraction measure alone. Indeed,
in analogy with the situation of the TM and the RS sequence, one can define a
factor of the system by a sliding block map φ : X −→ {±1}Z which is defined by
(φw)(n) = −w(n)w(n + 1). It maps X globally 2:1 onto

Y = φ(X) =
{
v ∈ {±1}Z | v(n) = 1 for all n ∈ 2Z or for all n ∈ 2Z+ 1

}
.

The suspension Yc (for the action of R) is defined as above. The mapping φ extends
accordingly.

The autocorrelation and diffraction measures of the signed Dirac comb vδ
Z

for an element v ∈ Y are almost surely given by

γ =
1

2
δ0 +

1

2
δ2Z and γ̂ =

1

2
λ +

1

4
δ
Z/2 .

The diffraction of the factor system Y uncovers the ‘hidden’ pure point part of
the dynamical spectrum, which was absent in the purely absolutely continuous
diffraction of the signed Dirac comb wδ

Z
with w ∈ X. In summary, we have the

following situation [25, 20].

Theorem 3.4. The diffraction measure of the close-packed dimer system X with
balanced weights is purely absolutely continuous and given by Eq. (3.9), which
holds almost surely relative to the natural invariant measure of the system.

The dynamical spectrum of the continuous close-packed dimer system Xc un-
der the translation action of R contains the pure point part Z/2 together with a
countable Lebesgue spectrum.

The non-trivial part Z+ 1
2 of the dynamical point spectrum is not reflected by

the diffraction spectrum of Xc, but can be recovered via the diffraction spectrum of
a suitable factor, such as Yc. �

As in the case of the Thue–Morse system, where the missing pure point
part of the dynamical spectrum is recovered by the diffraction measure of the
period doubling factor, we thus see that and how we can recover the missing
eigenvalue via a generalised 2-point function. This observation can be extended
to symbolic systems over finite alphabets and also to uniquely ergodic Delone
dynamical systems of finite local complexity; see [20] for details.
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3.5. Ledrappier’s shift space

For a long time, people had expected that higher dimensions are perhaps more
difficult, but not substantially different. This turned out to be a false premise
though, as can be seen from the now classic monograph [73].

In our present context, we pick one characteristic example, the system due to
Ledrappier [54], to demonstrate a new phenomenon. We follow the brief exposition

in [10] and consider a specific subset of the full shift space {±1}Z2

, defined by

XL =
{
w ∈ {±1}Z2 | w(x)w(x + e1)w(x + e2) = 1 for all x ∈ Z2

}
, (3.10)

where e1 and e2 denote the standard Euclidean basis vectors in the plane. On top of
being a closed subshift, XL is also an Abelian group (here written multiplicatively),
which then comes with a unique, normalised Haar measure. The latter is also shift
invariant, and the most natural measure to be considered in our context; see also
the reformulation in terms of Gibbs (or equilibrium) measures in [74].

The system is interesting because the number of patches of a given radius
(up to translations) grows exponentially in the radius rather than in the area of
the patch. This phenomenon is called entropy of rank 1, and indicates a new class
of systems in higher dimensions. More precisely, along any lattice direction of Z2,
the linear subsystems essentially behave like one-dimensional Bernoulli chains. It is
thus not too surprising that the diffraction measure satisfies the following theorem,
though its proof [26] has to take care of the special directions connected with the
defining relations of XL.

Theorem 3.5. If w is an element of the Ledrappier subshift XL of Eq. (3.10), the
corresponding weighted Dirac comb wδ

Z2 has diffraction measure λ, which holds
almost surely relative to the Haar measure of XL. �

So, the Ledrappier system is homometric to the (full) Bernoulli shift on

{±1}Z2

, which means that an element of either system almost surely has diffrac-
tion measure λ. As mentioned before, via a suitable product of two Rudin–Shapiro
chains, also a deterministic system with diffraction λ exists. This clearly demon-
strates the insensitivity of pair correlations to the (entropic) type of order or disor-
der in the underlying system; see also [8]. Due to the defining relation in Eq. (3.10),
it is clear that certain three-point correlations in the Ledrappier system cannot
vanish, and thus make it distinguishable from the Bernoulli shift.

Although correlation functions of third order can resolve the situation in this
case (and in many other examples as well [32, 57]), one can consider other dy-
namical systems (such as the (×2,×3)-shift [26]) that share almost all correlation

functions with the Bernoulli shift on [0, 1]Z
2

. This is a clear indication that our
present understanding of ‘order’ is incomplete, and that we still lack a good set of
tools for the detection and classification of order. For a recent alternative based
on direct space statistics, we refer to [6].
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3.6. Random matrix ensembles

Another interesting class of random point sets derives from the (scaled) eigenvalue
distribution of certain random matrix ensembles; see [14] and references therein.
The global eigenvalue distribution of random orthogonal, unitary or symplectic ma-
trix ensembles is known to asymptotically follow the classic semi-circle law. More
precisely, this law describes the eigenvalue distribution of the underlying ensem-
bles of symmetric, Hermitian or (symplectically) self-dual matrices with Gaussian
distributed entries. The corresponding random matrix ensembles are called GOE,
GUE and GSE, with attached β-parameters 1, 2 and 4, respectively. They permit
an interpretation as a Coulomb gas, where β is the power in the central potential;
see [2, 63] for general background and [34, 38] for the results that are relevant here.

For matrices of dimension N , the semi-circle has radius
√
2N/π and area

N . Note that, in comparison with [63], we have rescaled the density by a factor
1/
√

π, so that we really have a semi-circle (and not a semi-ellipse). To study the
local eigenvalue distribution for diffraction, we rescale the central region (between

±1, say) by
√
2N/π. This leads, in the limit as N → ∞, to an ensemble of point

sets on the line that can be interpreted as a stationary, ergodic point process of
intensity 1; for β = 2, see [2, Ch. 4.2] and references therein for details. Since the
underlying process is simple (meaning that, almost surely, no point is occupied
twice), almost all realisations are point sets of density 1.

It is possible to calculate the autocorrelation of these processes, on the basis
of Dyson’s correlation functions [34]. Though these functions originally apply to
the circular ensembles, they have been adapted to the other ensembles by Mehta
[63]. For all three ensembles mentioned above, this leads to an autocorrelation of
the form

γ = δ0 +
(
1− f(|x|)

)
λ (3.11)

where f is a locally integrable function that depends on β; see [14] for the explicit
formulas, and the left panel of Figure 3 for an illustration.

The diffraction measure is the Fourier transform of γ, which has also been

calculated in [34, 63]. Recalling δ̂0 = λ and λ̂ = δ0, the result is always of the form

γ̂ = δ0 +
(
1− b(k)

)
λ = δ0 + h(k)λ, (3.12)

where b = f̂ . The Radon–Nikodym density h depends on β and is summarised in
[14]. Figure 3 illustrates the result for the three ensembles.

A similar approach is possible on the basis of the eigenvalues of general
complex random matrices. This leads to the ensemble studied by Ginibre [63],
which is also discussed in [14]. One common feature of the resulting point sets is
the effectively repulsive behaviour of the points, which leads to the ‘dip’ around
0 for γ̂. For the two systems mentioned in this section, we omit the formulation
of the full results and refer the reader to [14] for details. Further developments
around determinantal and related point processes are described in [15].
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Figure 3. Absolutely continuous part of the autocorrelation (left) and
the diffraction (right) for the three random matrix derived point set
ensembles on the line, with β ∈ {1, 2, 4}. On the left, the oscillatory
behaviour increases with β. On the right, β = 2 corresponds to the
piecewise linear function with bends at 0 and ±1, while β = 4 shows
a locally integrable singularity at ±1. The latter reflects the slowly de-
caying oscillations on the left.

4. The renewal process

A large and interesting class of processes in one dimension can be described as a
renewal process [37, 4, 14]. Here, one starts from a probability measure μ on R+

(the positive real line) and considers a machine that moves at constant speed along
the real line and drops a point on the line with a waiting time that is distributed
according to μ. Whenever this happens, the internal clock is reset and the process
resumes. Let us (for simplicity) assume that both the velocity of the machine and
the expectation value of μ are 1, so that we end up with realisations that are,
almost surely, point sets in R of density 1 (after we let the starting point of the
machine move to −∞, say).

Clearly, the resulting process is stationary and can thus be analysed by con-
sidering all realisations which contain the origin. Moreover, there is a clear (distri-
butional) symmetry around the origin, so that we can determine the corresponding
autocorrelation γ of almost all realisations from studying what happens to the right
of 0. Indeed, if we want to know the frequency per unit length of the occurrence
of two points at distance x (or the corresponding density), we need to sum the
contributions that x is the first point after 0, the second point, the third, and so
on. In other words, we almost surely obtain the autocorrelation

γ = δ0 + ν + ν̃ (4.1)

with ν = μ + μ ∗ μ + μ ∗ μ ∗ μ + · · · , where the proper convergence of the sum of
iterated convolutions follows from [4, Lemma 4] or from [12, Sec. 11.3]. Note that
the point measure at 0 simply reflects the fact that the almost sure density of the
resulting point set is 1. Indeed, ν is a translation bounded positive measure, and
satisfies the renewal relations (compare [37, Ch. XI.9] or [4, Prop. 1] for a proof)

ν = μ + μ ∗ ν and (1 − μ̂ ) ν̂ = μ̂ , (4.2)
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where μ̂ is a uniformly continuous and bounded function onR. The second equation
emerges from the first by Fourier transform, but has been rearranged to highlight
the relevance of the set S = {k | μ̂(k) = 1} of singularities. In this setting, the
measure γ of Eq. (4.1) is both positive and positive definite.

Based on the structure of the support of the underlying probability measure
μ, one can determine the diffraction of the renewal process explicitly. To do so for
a probability measure μ on R+ with mean 1, we assume the existence of a moment
of μ of order 1+ ε for some ε > 0; we refer to [4] for details on this condition. The
diffraction measure of the point set realisations of the stationary renewal process
based on μ almost surely is of the form

γ̂ = γ̂pp + (1− h)λ,

where h is a locally integrable function on R that is continuous almost everywhere.
The pure point part is trivial, meaning γ̂ = δ0, unless the support of μ is contained
in a lattice. The details are stated below in Theorem 4.1. Proofs of these claims
as well as further results can be found in [4, 14, 12].

The renewal process is a versatile method to produce interesting point sets
on the line. These include random tilings with finitely many intervals (which are
Delone sets) as well as the homogeneous Poisson process on the line (where μ is
the exponential distribution with mean 1); see [4, Sec. 3] for explicit examples
and applications. In particular, if one employs a suitably normalised version of the
Gamma distribution, one can formulate a one-parameter family of renewal pro-
cesses that continuously interpolates between the Poisson process (total positional
randomness) and the lattice Z (perfect periodic order); see [4, Ex. 3] for more. The
general result reads as follows.

Theorem 4.1. Let � be a probability measure on R+ with mean 1, and assume that
a moment of � of order 1+ ε exists for some ε > 0. Then, the point sets obtained
from the stationary renewal process based on � almost surely have a diffraction
measure of the form

γ̂ = γ̂pp + (1 − h)λ ,

where h is a locally integrable function on R that is continuous except for at most
countably many points (namely those of the set S = {k | �̂(k) = 1}). On R \ S,
the function h is given by

h(k) =
2
(
|�̂(k)|2 − Re(�̂(k))

)
|1− �̂(k)|2 .

Moreover, the pure point part is

γ̂pp =

{
δ0, if supp(�) is not a subset of a lattice,

δ
Z/b, otherwise,

where bZ is the coarsest lattice that contains supp(�). �
In one dimension, the renewal process allows an efficient derivation of the

diffraction of random tilings, which we briefly summarise now.
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5. Random tilings

The deterministic Fibonacci chain can be defined by the primitive substitution
rule a 	→ ab, b 	→ a, which defines a strictly ergodic (discrete) hull. When a

and b are replaced by intervals of length τ = 1
2 (1 +

√
5 ) and 1, respectively, the

left endpoints of the intervals define a model set (or cut and project set). The
corresponding Dirac comb leads to the pure point diffraction measure

γ̂F =
∑

k∈ 1√
5
Z[τ ]

I(k) δk

with intensities I(k) =
(
τ√
5

sin(πτk′)
πτk′

)2
. Here, τ√

5
= τ+2

5 is the density of the point

set, and k′ denotes the algebraic conjugate of k, which is defined on the field Q(
√
5 )

by
√
5 	→ −

√
5 and acts as the �-map for the underlying model set description.

In particular, the diffraction is the same for all Dirac combs of the Fibonacci hull;
see [12, Sec. 9.4.1] and references therein for details. An illustration is shown in
the upper panel of Figure 4.

The corresponding random tiling ensemble consists of all tilings of the real
line by the two types of intervals. For a direct comparison, it makes more sense to
only consider those tilings with the same relative frequency of interval types, which
means frequencies 1/τ and 1/τ2 for the long and the short interval, respectively.

The diffraction of a typical Dirac comb out of this class was originally derived
in [13], but can also be obtained via an application of the renewal structure from
Theorem 4.1. This leads to

γ̂rt =
τ + 1

5
δ0 + hλ

with the Radon–Nikodym density

h(k) =
τ + 2

5

(sin(πk/τ))2

τ2(sin(πkτ))2 + τ(sin(πk))2 − (sin(πk/τ))2
.

Except for the trivial Bragg peak at k = 0, the diffraction measure is thus abso-
lutely continuous. Still, the resemblance between this function and the diffraction
of the perfect Fibonacci chain is remarkable, as can be seen from Figure 4.

The situation in dimensions d ≥ 2 is less favourable from a mathematical
perspective, although one has a rather clear intuition of what one should expect
[43, 70], based on solid scaling arguments. In dimensions d ≥ 3, a mixed spectrum
with pure point and absolutely continuous components is conjectured, while d = 2
is the critical dimension in the sense that random tilings with non-crystallographic
symmetries should display a singular continuous component; see [12, Sec. 11.6.2]
for an example.

Unfortunately, only few results have been proved so far. Among them are a
rigorous treatment of planar random tiling ensembles with crystallographic sym-
metries (such as the lozenge tiling and several relatives, see [13, 45, 46]), a group-
theoretic approach to one of the random tiling hypotheses [69, 70] and a treatment
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Figure 4. The pure point diffraction measure of the perfect Fibonacci
chain (upper panel) and the absolutely continuous part of the corre-
sponding random tiling (lower panel). Bragg peaks (in the upper pic-
ture) are shown as lines, where the height is the intensity, while the
smooth Radon–Nikodym density in the lower picture is truncated at a
value of 20 to illustrate the spikyness. The central peak (of intensity
τ+1
5 ) is omitted in both diagrams.
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of dense Dirac combs with pure point diffraction [71, 59] that is needed to under-
stand the pure point part of the random tiling diffraction in dimensions d ≥ 3. The
remaining questions are still open, though there is little doubt that the original
analysis from [43] is essentially correct.

Let us now leave the realm of explicit examples and turn our attention to
a more general approach of systems with randomness, formulated with methods
from the theory of point processes; compare [42, 57, 58, 4] for related aproaches
and results.

6. Stochastic point processes and the Palm measure

In this section, we take the viewpoint of a general shift-invariant random measure
and relate its realisation-wise diffraction to its second moment measure. As such,
this section is a complex-valued extension of [4, Sec. 5].

Let μ = μ� + iμ	 be a locally finite complex-valued measure on Rd (which
means that μ� and μ	 are both locally finite signed measures). A short calculation
reveals that, for f ∈ Cc(Rd,C) of the form f = g + ih with real-valued g and h,
the measure μ̃ can consistently be defined via

μ̃(f) := μ(f̃ ) = μ(f−) = μ�(f−)− iμ	(f−),

where f̃(x) = f−(x) with f−(x) = f(−x). In particular, note that

μ = μ� − iμ	 and μ(f) = μ(f )

hold as expected. The point here is that, after having dealt with the case of real (or
signed) measures, the extension to complex measures is canonical and consistent.

To continue, recall the polar representation of a complex measure from [33,
Ch. XIII.16]; see also [12, Prop. 8.3]. Given μ, there is a measurable function
αμ : R

d → [0, 2π) such that, for f ∈ Cc(Rd,C), one has∫
Rd

f(x) dμ(x) =

∫
Rd

f(x) eiαμ(x) d|μ|(x),

where |μ| is the total variation measure of μ. This means that |μ| is the smallest
non-negative measure such that |μ(A)| ≤ |μ|(A) for any bounded and measurable
A, where |μ| ≤ |μ�|+ |μ	|; compare [12, Sec. 8.5.1] and references therein.

Let M denote the C-vector space of all locally finite, complex-valued mea-
sures φ on Rd, so φ ∈ M means |φ(A)| < ∞ for any bounded Borel set A. A
sequence (φn)n∈N ⊂ M converges vaguely to φ if φn(f) −→ φ(f) as n → ∞ for
all f ∈ Cc(Rd). The space M is closed in the topology of vague convergence of
measures (in fact, M is a Polish space with this topology). We let ΣM denote
the σ-algebra of Borel sets of M. The latter can be described as the σ-algebra
of subsets of M generated by the requirement that, for all bounded Borel sets
A ⊂ Rd, the mapping φ 	→ φ(A) is measurable.
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For each t ∈ Rd, let Tt denote the translation operator onRd, as defined by the
mapping x 	→ t+ x. Clearly, TtTs = Tt+s, and the inverse of Tt is given by T−1t =
T−t. For functions f on Rd, the corresponding translation action is defined via
Ttf = f ◦T−t, so that (Ttf)(x) = f(x− t). Similarly, for φ ∈M, let Txφ := φ◦T−x
be the image measure under the translation, so that (Txφ)(A) = φ(T−x(A)) =
φ(A−x) for any measurable subset A ⊂ Rd, and (Txφ)(f) =

∫
Rd f(y) d(Txφ)(y) =∫

Rd f(x+ z) dφ(z) = φ(T−xf) for functions. This means that there is a translation

action of Rd on M. Finally, we also have a translation action on P(M), the
probability measures on M, via (TxQ)(A) = Q(T−xA) for any A ∈ ΣM and
Q ∈ P(M). A set A ∈ ΣM is called invariant (under translations) if T−xA = A
for all x ∈ Rd.

A (complex-valued) random measure Φ is a random variable (defined on
some probability space (Θ,F , π)) with values in M, which formally means that
Φ : Θ −→ M is an (F −ΣM)-measurable function. Its distribution is then
Q = π ◦ Φ−1 ∈ P(M), i.e., the image measure of π under Φ. We will follow
the usual practice in probability theory and not make the underlying probabil-
ity space explicit (a canonical choice can in many cases simply be Θ = M and
Φ = IdM). We will also usually suppress the dependence of Φ on θ ∈ Θ in the
notation. Integrals over Θ w.r.t. the probability measure π will be denoted by E,
the expectation value.

Φ is called stationary if its distribution Q satisfies TxQ = Q for all x ∈ Rd.
A stationary random measure is called ergodic if the shift-invariant σ-algebra is
trivial, which means that any invariant A has probability 0 or 1 (more generally,
one requires Q(A) ∈ {0, 1} whenever Q

(
(T−xA)�A

)
= 0 for all x ∈ Rd; compare

[30, Def. 10.3.I and Prop. 10.3.III]).

In what follows, we generally assume that

Φ is a (possibly) complex-valued, stationary and
ergodic random measure on Rd,

(6.1)

which means that there is a decomposition Φ = Φ� + iΦ	 where both Φ� and Φ	
are signed, real-valued, stationary, ergodic random measures on Rd. To verify the
last statement, note that, since for any bounded measurable A ⊂ Rd, the mapping
θ 	→ Φ(A) (= Φ(θ, A)) ∈ C is measurable, also Φ�(A) and Φ	(A) are measurable as
functions of θ. Consider any shift-invariant measurable B ⊂Mreal (Mreal denotes
the locally finite signed measures on Rd), then {Φ | Φ� ∈ B} is shift invariant and
measurable as well, so P(Φ� ∈ B) ∈ {0, 1}, and analogously for Φ	. We further
assume that Φ is locally square integrable in the sense that

E
[(
|Φ�|(A)

)2
+
(
|Φ	|(A)

)2]
< ∞ for all bounded A ⊂ Rd, (6.2)

where |Φ�| and |Φ	| denote the total variation measures of Φ� and Φ	, respectively.
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In analogy with the real-valued case in [4, Sec. 5.2], we define μ(2), the second
moment measure of Φ, via

μ(2)(A×A′) = E
[
Φ(A)Φ(A′)

]
for bounded A,A′ ∈ B(Rd), (6.3)

hence, for f ∈ Cc(Rd × Rd,C),

μ(2)(f) = E

[∫
Rd

∫
Rd

f(x, y) dΦ(x) dΦ(y)

]
.

By the shift invariance of the distribution of Φ, we have∫
Rd×Rd

f(x, y) dμ(2)(x, y) =

∫
Rd×Rd

f(x+ z, y + z) dμ(2)(x, y)

for all z ∈ Rd, and hence we can factor out this symmetry to obtain the reduced

second moment measure μ
(2)
red. The latter is a locally finite complex-valued measure

that is characterised by∫
Rd×Rd

f(x, y) dμ(2)(x, y) =

∫
Rd

∫
Rd

f(u + v, u) dμ
(2)
red(v) dλ(u) (6.4)

for f ∈ Cc(Rd × Rd,C). By the shift invariance of Lebesgue measure on Rd, we
equivalently have∫

Rd×Rd

f(x, y) dμ(2)(x, y) =

∫
Rd

∫
Rd

f(u, u− v) dμ
(2)
red(v) dλ(u). (6.5)

To prove the existence of μ
(2)
red, one can decompose μ(2) = μ

(2)
� + iμ

(2)
	 into real

and imaginary parts and then use the well-known real-valued results (compare

[30, Lemma 10.4.III]) to obtain μ
(2)
red = μ

(2)
�,red + iμ

(2)
	,red.

Note that μ
(2)
red is uniquely defined and is a positive definite measure, since

μ(2)
(
f ⊗ g

)
=

∫
Rd

∫
Rd

f(u + v) g(u) dμ
(2)
red(v) dλ(u)

=

∫
Rd

∫
Rd

f(v − w) g(−w) dλ(w) dμ
(2)
red(v) (6.6)

=

∫
Rd

(
f ∗ g̃

)
(v) dμ

(2)
red(v) = μ

(2)
red

(
f ∗ g̃

)
,

so that

μ
(2)
red

(
f ∗ f̃

)
= μ(2)

(
f ⊗ f

)
= E

[∫
f dΦ

∫
f dΦ

]
= E

[∫
f dΦ

∫
f dΦ

]
= E

[
|Φ(f)|2

]
≥ 0.

Remark 6.1 (see also [4, Rem. 13]). One can alternatively define

μ(2,alt)(A×A′) = E
[
Φ(A)Φ(A′)

]
for bounded A,A′ ∈ B(Rd),
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and then obtain μ
(2,alt)
red from this as above, via∫

Rd×Rd

f(x, y) dμ(2,alt)(x, y) =

∫
Rd

∫
Rd

f(u + v, u) dμ
(2,alt)
red (v) dλ(u)

=

∫
Rd

∫
Rd

f(u, u− v) dμ
(2,alt)
red (v) dλ(u).

Then, we have μ(2,alt) = μ(2) and μ
(2,alt)
red = μ

(2)
red. Since∫

Rd×Rd

f(y, x) dμ(2)(x, y) =

∫
Rd×Rd

f(x, y) dμ(2)(x, y)

=

∫
Rd×Rd

f(x, y) dμ(2,alt)(x, y),

we see that the alternative choice of factoring out the shift invariance in Eq. (6.4),
namely integrating f(u, u + v) on the right-hand side of this equation, leads to

μ
(2,alt)
red , where∫

Rd×Rd

f(x, y) dμ(2)(x, y) =

∫
Rd

∫
Rd

f(u, u+ v) dμ
(2,alt)
red (v) dλ(u) . (6.7)

We choose the definitions as in Eqs. (6.3) and (6.4) because these fit well to the

formulation of the limit in Eq. (6.8) below. Note that, in the real-valued case, μ
(2)
red

and μ
(2,alt)
red agree.

The ‘complex-valued’ analogue of [4, Thm. 5] now reads as follows.

Theorem 6.2. Assume that conditions (6.1) and (6.2) are satisfied, and let Φn :=
Φ|Bn

denote the restriction of Φ to the open ball of radius n around 0. Then,
the natural autocorrelation of Φ, which is defined with an averaging sequence of
nested, centred balls, almost surely exists and satisfies

γ(Φ) := lim
n→∞

Φn∗ Φ̃n
λ(Bn)

= lim
n→∞

Φn∗ Φ̃

λ(Bn)
= μ

(2)
red , (6.8)

where the limit refers to the vague topology. In particular, the autocorrelation is
non-random.

Proof. The proof is a suitable ‘complex-valued interpretation’ of the proof of [4,
Thm. 5]. Fix a continuous function f : Rd −→ C with compact support. We have
to check that

1

λ(Bn)

(
Φn∗ Φ̃n

)
(f)

n→∞−−−−→ μ
(2)
red(f) (a.s.). (6.9)

Since both sides are locally finite (complex-valued) measures, it actually suffices
to check Eq. (6.9) for real-valued f . For x ∈ Rd, define

F (x) :=

∫
Rd

f(x− y) dΦ(y) =

∫
Rd

f(x + y) dΦ̃(y).
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Clearly, F inherits stationarity and ergodicity from Φ, wherefore F is a (complex-
valued) ergodic random function on Rd in the sense that shift-invariant events for
F have ‘trivial’ probabilities (0 or 1), and we obtain

E

[∫
A

∣∣F (x)
∣∣ d|Φ|(x)] < ∞

for any bounded and measurable A ⊂ Rd.
Define a (complex-valued) additive covariant spatial process X(A) in the

sense of [66], indexed by a bounded and measurable A ⊂ Rd, via

X(A) :=

∫
A

F (x) dΦ(x) .

Covariant in this context means that X behaves ‘naturally’ under translations:
When Rd acts on X via (TuX)(A) :=

∫
A F (x) d(TuΦ)(x), for u ∈ Rd, then

(TuX)(A + u) = X(A).
Decomposing X into its real and imaginary parts (by decomposing F and Φ

and suitably grouping terms) we can apply [66, Cor. 4.9] to obtain a.s.

lim
n→∞

1

λ(Bn)

(
Φn ∗ Φ̃

)
(f) = lim

n→∞

1

λ(Bn)

∫
Bn

F (x) dΦ(x) = lim
n→∞

X(Bn)

λ(Bn)

= E

[
X(B1)

λ(B1)

]
=

1

λ(B1)
E

[∫
B1

∫
Rd

f(x− y) dΦ(y) dΦ(x)

]

=
1

λ(B1)

∫
Rd×Rd

1B1
(x) f(x − y) dμ(2)(x, y)

=
1

λ(B1)

∫
Rd

∫
Rd

1B1
(x) f(z) dμ

(2)
red(z) dλ(x) =

∫
Rd

f dμ
(2)
red .

The difference between Φn ∗ Φ̃ and Φn ∗ Φ̃n is a (random) ‘boundary term’ that
almost surely vanishes in the limit as n → ∞. To prove this formally, decompose

Φ = Φ� + iΦ	, Φ̃ = Φ̃� − iΦ̃	 and then argue as in the proof of [4, Thm. 3] for

each of the four terms appearing in Φn ∗
(
Φ̃− Φ̃n

)
. �

Remark 6.3. Theorem 6.2 allows to reformulate Theorem 4 and Corollary 1 from
[4] for complex-valued clusters as follows. If Φ is a stationary ergodic point process,
i.e., Φ is a random sum of Dirac measures, with distribution P satisfying Eq. (6.2),
and if we replace each point independently by a random complex-valued measure
with distribution Q, then the formulas describing the autocorrelation and the
diffraction of the resulting cluster process given in [4, Thm. 4 and Cor. 1] continue
to hold.

Let us also mention that, by specialising Φ to a renewal process, Theorem 6.2
allows to recover Eq. (4.1) and, in particular, Theorem 4.1 from this more general
perspective; see [4] for further details, and how this can be used to formulate the
renewal process also for more general ‘dropping’ distributions.
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6.1. A ‘Palm-type distribution’ for complex-valued random measures

In the case of a positive random measure Φ, Eq. (6.8) can be interpreted via the
Palm distribution P0 of the law of Φ, which is a probability measure on locally
finite measures (intuitively, the law of Φ viewed relative to a typical point of its
support) via

μ
(2)
red = ρ IP0 (6.10)

where ρ > 0 is the intensity and IP0 the first moment measure of P0; compare
[4, Sec. 5.2]. This interpretation breaks down in general in the signed or complex-

valued case because μ
(2)
red will not be a positive measure. One way to extend this line

of thought is to re-interpret the Palm distributions in a way suited for complex-
valued random measures as follows.

Recalling the structure of the polar decomposition, the random measure Φ
can equivalently be described via (|Φ|, Φph), where |Φ| is the total variation measure
and Φph : Rd −→ [0, 2π) the ‘phase function’:∫

Rd

f(x) dΦ(x) =

∫
Rd

f(x) eiΦph(x) d|Φ|(x). (6.11)

Note that Φ 	→ (|Φ|, Φph) is measurable, so (|Φ|, Φph) is in fact a random variable.
Define a positive σ-finite measure C on Rd ×M (this is the equivalent of the so-
called Campbell measure for the complex-valued context and agrees with the usual
Campbell measure if Φ is a positive random measure) via∫

Rd×M
g(x, ϕ) dC(x, ϕ) := E

[ ∫
Rd

g
(
x, e−iΦph(x)Φ

)
d|Φ|(x)

]
,

whenever the right-hand side is defined (which will for instance always be the case
when g is measurable and non-negative). By the shift invariance of Φ, and hence
that of |Φ|, the projection of C to Rd is ρ times Lebesgue measure (with ρ ∈ [0,∞)
being the intensity of |Φ|), hence there is a family of probability measures Px on
M, with Px ∈ P(M) for all x ∈ Rd, so that we can disintegrate (compare [48,
Thm. 15.3.3]) ∫

g dC =

∫
Rd

∫
P(M)

g(x, ϕ) dPx(ϕ) ρ dλ(x). (6.12)

Definition 6.4. We call the elements of the family
{
Px | x ∈ Rd

}
the Palm distri-

butions in the complex-valued case.

Let, for A ⊂ Rd bounded and measurable,

IPx(A) :=

∫
M

ϕ(A) dPx(ϕ)

be the expectation (or first moment) measure of Px. By shift invariance, we have
Px = TxP0, x ∈ Rd, and hence IPx = TxIP0

. The connection between the (reduced)
second moment measure and the Palm distribution carries over to the complex-
valued case as follows.
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Proposition 6.5. For the extended definition of the Palm distribution, one has

μ
(2)
red = ρ IP0

,

so Eq. (6.10) also holds in this case.

Sketch of proof. Consider g(x, ϕ) = 1A′(x)ϕ(A) with 1 denoting the characteristic
function and with A,A′ ⊂ Rd bounded and measurable. Then,∫

g dC = E
[ ∫

Rd

1A′(x)e−iΦph(x)Φ(A) d|Φ|(x)
]

(6.13)

= E
[
Φ(A)

∫
Rd

1A′(x)e−iΦph(x) d|Φ|(x)
]
= E

[
Φ(A)Φ(A′)

]
by definition, whereas the disintegration formula yields∫

g dC =

∫
Rd

∫
M

1A′(x)ϕ(A) dPx(ϕ) ρ dλ(x) = ρ

∫
A′

IPx(A) dλ(x)

= ρ

∫
A′

IP0(A− x) dλ(x) = ρ

∫
Rd

∫
Rd

1A′(x)1A−x(y) dIP0 (y) dλ(x)

= ρ

∫
Rd

∫
Rd

1A′(x)1A(y + x) dλ(x) dIP0
(y) (6.14)

= ρ

∫
Rd

∫
Rd

1A′(−x)1A(y − x) dλ(x) dIP0
(y) = ρ IP0

(
1A ∗ 1̃A′

)
.

Comparing Eqs. (6.13)–(6.14) with Eq. (6.6) yields the claim. �

If Φ is ergodic, the viewpoint that P0 describes the configuration relative to
a point in the support drawn according to Φ is corroborated by

1

λ(Bn)

∫
Bn

g
(
e−iΦph(x)T−xΦ

)
d|Φ|(x) n→∞−−−−→

∫
M

g(ϕ) dP0(ϕ) (a.s.)

for any bounded measurable g : M−→ R.

The viewpoint of (possibly complex-valued) ergodic random measures for
diffraction is a useful one since it provides a connection to the large literature
on random measures and on stochastic geometry; see [30, 49, 51, 52, 62, 4] and
references therein, as well as [75] for a recent generalisation that can also be con-
sidered from the diffraction point of view. However, our approach also shows a
limitation that one encounters when trying to infer properties of a random config-
uration of scatterers from its kinematic diffraction: As is evident from Eq. (6.8) in
Theorem 6.2, the only ‘datum’ from a random Φ visible in its autocorrelation, and
hence also in the corresponding diffraction, is the second moment measure. It is
well known that second moments are generally insufficient to determine the distri-
bution of Φ unless further structural properties are known. This inverse problem
is known as the homometry problem in crystallography and the inference problem
in the theory of stochastic processes.
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7. Outlook

Our exposition provides a snapshot of the present knowledge about systems with
continuous diffraction components; see [12, Chs. 10 and 11] as well as [4, 15] for
additional examples, and [20, 15] for connections with the dynamical spectrum.
Nevertheless, as is apparent from a comparison with the pure point diffraction
case [23, 12, 58, 77, 76], the status of general results is lagging behind. Even for
many important examples, some of the most obvious questions are still open from
a mathematical point of view. In particular, this is so for random tiling ensembles
in dimensions d ≥ 2, or for equilibrium systems just beyond the complexity of the
(planar) Ising model.

Apart from the systems considered here, an interesting class is provided by
random substitution and inflation systems, as introduced in [41]. The randomness
present here is compatible with the long-range order of Meyer sets with entropy
[21, 64, 65], which means that one obtains interesting mixtures of pure point and
absolutely continuous diffraction measures. Though this direction has not attracted
much attention so far, it is both tractable and practically relevant.

From a more general perspective, one lacks some kind of analogue to the
key theorems in pure point diffraction (such as the Poisson summation formula or
the Halmos–von Neumann theorem). While there is at least the theory of Riesz
products [80, 68] for self-similar systems with singular spectra, a general approach
to stochastic systems is only at its beginning. Methods from point process theory
[30], such as the Palm measure and its connection to the autocorrelation (via its
intensity measure), look promising, but have not produced many concrete results
so far. The latter, however, are needed to make some progress with the complicated
inverse problem for such systems. Though there is substantial knowledge from the
inference approach [49], it is not clear at present how this can be used, and how
reasonable restrictions could be included.
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Abstract. Our goal is to present a unified and reasonably complete account
of the various conjectures, known as Pisot conjectures, that assert that cer-
tain dynamical systems arising from substitutions should have pure discrete
dynamical spectrum. We describe the various contexts (symbolic, geometri-
cal, arithmetical) in which substitution dynamical systems arise and review
the relevant properties of these systems. The Pisot Substitution Conjecture
is stated in each context and the relationships between these statements, and
with several related conjectures, are discussed. We survey the special cases in
which the Pisot Substitution Conjecture has been verified and present algo-
rithmic procedures for checking pure discrete spectrum. We conclude with a
discussion of possible extensions to higher dimensions.
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1. Introduction

Substitutive dynamics. Substitutions are replacement rules that can be of either a
symbolic or a geometric nature: by iteration, they produce hierarchically ordered
structures (infinite words, point sets, tilings) that display strong self-similarity
properties. A symbolic substitution is a morphism on a free monoid defined by
replacing letters by finite words, while a geometric substitution inflates each tile
in some finite collection of tiles and subdivides the inflated tile into translates of the
original tiles (the tiles are like letters and the inflated and subdivided tiles are like
higher-dimensional words). Iterating a substitution on a letter (or tile) produces
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longer and longer words (or larger and larger ‘patches’), any subword (or subpatch)
of such a word (or patch) is said to be allowed for the substitution. The space of all
bi-infinite words (or tilings), all of whose finite subwords (or patches) are allowed
for a substitution is called a substitutive system (or substitution tiling space).

The idea of a substitution as a replacement rule is central in symbolic dynam-
ics and tiling theory (see, for instance, [96, 95, 99, 113, 16]). Indeed, substitutions
are closely related to the process of induction. For a measure-preserving dynam-
ical system, the Poincaré recurrence theorem guarantees that almost every point
in any given set eventually returns to that set. An induced system is then defined
by first return to the set and a system is self-induced if there is a subset with pos-
itive measure for which the induced system is isomorphic to the original system.
Self-induced dynamics underlies periodic expansions with respect to various algo-
rithms. For example, the continued fraction expansion of a quadratic irrational
is derived from successive induction on irrational rotation of the circle. In this
case the maximal eigenvalue of the matrix associated with the inverse applica-
tion for the self-inducing structure is a quadratic Pisot unit and this fact is used
to effectively find the fundamental unit of a real quadratic number field. Similar
phenomena occur for piecewise isomorphisms and outer billiards.

The field of symbolic dynamics has its origins in the coding of concrete (ge-
ometrical) dynamical systems (see, e.g., [90, 91]). Given a partition of the phase
space of a dynamical system there is an associated space consisting of the collec-
tion of all itineraries of the system with respect to the partition. The symbolic
dynamical system consisting of the shift map on the space of itineraries is then a
model of the original system. We are interested here in the inverse problem: given
a symbolic dynamical system or a tiling system, is there a geometrical dynami-
cal system that it codes? More particularly, we are interested in the geometrical
interpretation of symbolic systems consisting of infinite words (or tilings) created
by a substitution. In order to have a chance to find the nicest sort of geometrical
interpretation – translation on a compact abelian group – of a substitutive sym-
bolic system, it is necessary to restrict to substitutions that create a hierarchical
structure with a significant amount of long range order. As translation on a com-
pact abelian group is almost periodic, the substitutions we consider must create
sequences, or tilings, with a similar structure.

A (primitive) substitution φ stretches words, on average, by some factor λ:
if w is a long (allowed) word then the word φ(w) has roughly λ times the number
of letters as has w. The number λ is the expansion factor of φ. For the infinite
words in the substitutive system associated with φ to be shift-periodic, λ must be
an integer (e.g., φ(a) = ab, φ(b) = ab, λ = 2). It turns out that for the infinite
words making up the substitutive system associated with φ to be nearly enough
periodic in order that the substitutive system be a coding of a translation on a
compact abelian group, it is necessary that higher and higher powers of λ are
more and more nearly integers. Pisot characterized such λ ([92]): if λ > 1 is an
algebraic integer, then the distance from λn to the nearest integer goes to zero as
n goes to infinity if and only if all of the algebraic conjugates of λ (other than λ)
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lie strictly inside the unit circle. Such λ are called Pisot numbers (or sometimes
Pisot–Vijayaraghavan numbers).

Pisot substitutions. For the above reasons, we restrict ourselves here to substi-
tutions whose expansion factor is a Pisot number. Tiling substitutions also have
an associated linear expansion: for one-dimensional tiling substitutions we will as-
sume that this expansion is a Pisot number and in higher dimensions that it has
the Pisot property (see Section 7.1 for a definition).

By a geometrical interpretation of a symbolic (or tiling) system we mean
a factor map from the system onto some system of a geometrical nature. If the
geometrical system is translation on a compact abelian group, the existence of
such a (non-trivial) factorization is equivalent to the symbolic system having a
non-trivial dynamical spectrum. A dynamical system has pure discrete spectrum
if it factors almost everywhere one-to-one onto a translation on a compact abelian
group. The connections between Pisot substitutions and discrete spectrum first
appear in [42, 43, 112, 97, 117] and it is shown in [113] that for a one-dimensional
substitutive system to have pure discrete spectrum it is necessary that the expan-
sion λ be a Pisot number. Our main focus in this chapter is on the question: what
conditions must be placed on a Pisot substitution in order to guarantee that the
associated substitutive system (or tiling system) has pure discrete spectrum? The
Pisot Substitution Conjecture, and its variants, are proposed answers.

Organization of the chapter. Section 2 introduces various types of substitutions
and their associated dynamical systems. These include substitutions acting on
words, tilings and point sets. We also consider the related framework of beta-
numeration.

In Section 3 we discuss the notions of discreteness of the dynamical and
diffraction spectra of the substitutive systems. In particular, the Meyer property
is introduced in Section 3.2, and in Section 3.3 we give a general definition of
cut-and-project schemes and model sets.

The various (one-dimensional) Pisot Substitution Conjectures are then dis-
cussed in Section 4. Techniques for detecting pure discrete spectrum are reviewed
in Section 5 and partial results related to the Pisot Substitution Conjectures are
listed in Section 6. In the final Section 7 we propose extensions of the conjectures
to higher-dimensional substitutions.

2. Substitutions

In this section we review basic material concerning the dynamical systems gener-
ated by substitutions. For more detail on symbolic systems see [96, 95]; standard
references for tiling systems are [113, 13, 99, 100].

2.1. Symbolic substitutions

Let A be a finite set, called the alphabet, usually A = {1, . . . ,m}; its elements
are called symbols or letters. Endowed with the concatenation of words as product
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operation, the set A∗ of all finite words over A is the free monoid generated by
A. If a finite or infinite word u can be factored as u = vzw (v or w may be empty)
we say that z is a subword of u.

A morphism of the free monoid A∗ is called a substitution on A. Such a sub-
stitution φ is said to be primitive if there exists a positive integer k such that,
for all i, j ∈ A, the word φk(i) contains at least one occurrence of the letter j.
For any word w ∈ A∗, we denote by |w|j the number of occurrences of the letter
j in w and by |w| :=

∑
j∈A |w|j the length of w. The map f : A∗ → Nd, w 	→

(|w|1, |w|2, . . . , |w|m) is called the abelianization map, or Parikh mapping. The
substitution (or incidence or abelianization) matrix, denoted by Mφ, is the matrix
whose jth column is f(φ(j)): its ijth entry is |φ(j)|i, the number of occurrences
of the letter i in φ(j). Note that the substitution φ is primitive if and only if Mφ

is primitive (that is, some power of Mφ is strictly positive). If the characteris-
tic polynomial of Mφ is irreducible over Q then φ is said to be irreducible, and
if detMφ = ±1, then φ is unimodular. If φ is primitive, the Perron–Frobenius
Theorem asserts that Mφ has a simple positive eigenvalue λ, which we call the
PF-eigenvalue of φ, that is larger than the absolute value of all other eigenvalues.
The language of φ is the subset L ⊂ A∗ consisting of all subwords of words of the
form φk(i), i ∈ A, k ∈ N; the elements of L are called admissible words for φ.

To associate a symbolic dynamical system with a substitution φ, we give A
the discrete topology, endow AZ with the corresponding product topology and
‘extend’ φ to AZ by φ((· · · u−1 · u0u1 · · · )) = (· · ·φ(u−1) · φ(u0)φ(u1) · · · ), where
· indicates the location of the 0th letter. A substitution-periodic point for φ, or
φ-periodic point, is a point u = (un)n∈Z ∈ AZ for which φk(u) = u for some
k > 0, and has the property that u−1u0 belongs to L. Let s stand for the shift

on AZ, i.e., s((un)n∈Z) = (un+1)n∈Z. For a φ-periodic point u, let O(u) be the
orbit closure of u under the action of the shift s, i.e., the closure in AZ of the set
O(u) = {sj(u) : j ∈ Z}.

It is not hard to see that every primitive substitution has at least one substi-
tution-periodic point. Furthermore, the collection of all finite subwords of any
substitution-periodic point of a primitive substitution equals L ([96]). Hence, if

φ is a primitive substitution, then Xφ := O(u) does not depend on the choice of
the φ-periodic point u: Xφ is the space of all bi-infinite words all of whose finite
subwords belong to L. The elements of Xφ are called allowed words for φ. The set
Xφ is a closed, shift-invariant subset of AZ and the subshift obtained by restricting
the shift s to Xφ is denoted by (Xφ, s) and called the symbolic dynamical system,
or substitutive system, associated with φ. The system (Xφ, s) is minimal (every
non-empty closed shift-invariant subset equals the whole set) and uniquely ergodic
(there is a unique, ergodic, shift-invariant Borel probability measure on Xφ – see
[96] for more detail).

2.2. Tile substitutions

We now consider substitutions acting on tiles, rather than letters. General refer-
ences on this subject are [81, 99, 100, 114, 120].
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We begin with a set of types (or labels, or colors) {1, . . . ,m}. A tile in Rn is a
pair T = (A, i) where A = supp(T ), the support of T , is a compact set in Rn which
is the closure of its interior, and i = l(T ) ∈ {1, . . . ,m} is the type of T . For x ∈ Rn,
define T − x := (A− x, i). We say that a set P of tiles is a patch if the number of
tiles in P is finite and the tiles of P have mutually disjoint interiors. A tiling of
Rn is a set T of tiles such that Rn = ∪T∈T supp(T ) and distinct tiles have disjoint
interiors. We assume that any two T -tiles of the same type are translationally
equivalent, hence there are finitely many T -tiles up to translation.

A tiling T is said to have finite local complexity (FLC) if for each R > 0
there are, up to translation, only finitely many distinct patches in T with support
of diameter less than 2R and T is said to be repetitive if for each patch P ⊂ T ,
translates of P occur with bounded gap in T , i.e., the set {x : P − x ⊂ T } is
relatively dense in Rn.

Let Λ be an expanding linear map of Rn (meaning all eigenvalues of Λ have
absolute value greater than 1) and let A = {T1, . . . , Tm}, Ti = (Ai, i), be a finite
collection of tiles in Rn. The Ti will be called prototiles. Let A+ denote the collec-
tion of all patches made of translates of prototiles. We say that Φ : A → A+ is a
tile substitution (or simply a substitution) with expansion map Λ if there are finite
sets Dij ⊂ Rn, 1 ≤ i, j ≤ m, called digit sets, such that

Φ(Tj) = {Ti + v : v ∈ Dij , i = 1, . . . ,m}, for 1 ≤ j ≤ m, (2.1)

with

ΛAj =
m⋃
i=1

(Ai +Dij) =
m⋃
i=1

⋃
d∈Dij

(Ai + d), (2.2)

where the sets in the last unions of (2.2) have disjoint interiors (some of the Dij
may be empty).

When distinct tiles have translationally inequivalent supports, labeling is not
necessary to distinguish tiles and we may simply identify a tile with its support.
In this case, Equation (2.2) alone suffices to define a tile substitution.

The substitution (2.1) is extended to translates of prototiles by Φ(Tj − x) =
Φ(Tj) − Λx, and to patches and tilings by Φ(P) = ∪ T∈PΦ(T ) and Φ(T ) =
∪ T∈T Φ(T ). If Φ(T ) = T , T is said to be a fixed point of the substitution Φ
and T is Φ-periodic if Φk(T ) = T for some k ≥ 0. The substitution Φ may be iter-
ated, producing larger and larger patches Φk(Tj − x), and by taking appropriate
limits, tilings of Rn.

As for symbolic substitutions, we associate with Φ its m × m substitution
matrix MΦ with ijth entry �Dij . The substitution Φ is said to be primitive if
MΦ is primitive. A patch P is admissible for Φ if there are k, j and x so that
P ⊂ Φk(Tj − x). The substitution tiling space associated with Φ is the collection
ΩΦ of all tilings of Rn each of whose patches is admissible for Φ: such tilings are
said to be allowed for Φ. There is a natural metric topology (generated by the
tiling metric) on ΩΦ in which two tilings are close if one agrees exactly with a
small translate of the other in a large neighborhood of the origin in Rn. Clearly,
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Rn acts on ΩΦ by translation and if Φ is primitive, and any T ∈ ΩΦ has FLC,
then the dynamical system (ΩΦ,Rn) is compact, connected, minimal, and uniquely
ergodic. In this latter case, let μ be the unique invariant Borel probability measure
for the Rn-action; then we get a measure-preserving system (ΩT ,Rn, μ). Moreover,
when T is non-periodic (meaning T − x = T =⇒ x = 0), Φ : ΩΦ → ΩΦ is a
homeomorphism that interacts with the Rn-action via Φ(T −x) = T −Λx ([114]).
For more on substitution tilings and associated dynamical systems, see [99, 113].

We will occasionally consider a space associated with a single tiling T of Rn.
The hull of T is the set ΩT := {T − v : v ∈ Rn}, the closure being taken with
respect to the tiling metric. If Φ is a primitive tile substitution and T ∈ ΩΦ has
FLC, then ΩT = ΩΦ by minimality of the Rn-action. When we say that an FLC
tiling T is a primitive substitution tiling, we will mean that T ∈ ΩΦ for some
primitive tile substitution Φ. In particular, such T are repetitive.

From symbolic substitutions to tile substitutions. A symbolic substitution natu-
rally gives rise to a one-dimensional tile substitution as follows. Given a primitive
substitution φ on the alphabet A = {1, . . . ,m}, let  = (1, . . . , m) be a positive
left eigenvector of Mφ for the PF-eigenvalue λ. The prototiles for the associated
tile substitution Φ are the labeled intervals Ti := ([0, i], i), i = 1, . . . ,m, and Φ

is given by Φ(Tj) := {Tjk +
∑k−1

i=1 ji : k = 1, . . . , |φ(j)|}, where ji denotes the
ith letter of φ(j). Effectively, the jth prototile is stretched by a factor of λ and
subdivided into translates of prototiles following the pattern φ(j). (The set Dij of
(2.1) consists of all v =

∑k−1
s=1 js for which jk = i, so the matrix MΦ for the tile

substitution equals the matrix Mφ for the symbolic substitution φ.) The elements
of the substitution tiling space Ωφ := ΩΦ are tilings of the real line whose tiles
follow the pattern of some allowed bi-infinite word in Xφ. Tilings T ∈ Ωφ can
be thought of as interpolates of elements of Xφ: formally, the system (Ωφ,R) is

topologically conjugate with the suspension system (X̂φ,R) of (Xφ, s) with roof
function given by  (see, e.g., [51, Chap.2] for a discussion of suspension). As φ is
primitive, so is Φ, and (Ωφ,R) is compact, connected, minimal and uniquely er-
godic. Moreover, Φ is a homeomorphism of Ωφ and Φ(T − t) = T −λt for T ∈ Ωφ
and t ∈ R.

2.3. Point set substitutions

Point sets provide the most flexible context for studying substitutive dynamics.
A Delone set is a relatively dense and uniformly discrete subset of Rn. We say
that Γ =

⋃m
i=1 Γi × {i} is a Delone multi-color set in Rn if each Γi is Delone

and supp(Γ ) :=
⋃m
i=1 Γi ⊂ Rn is Delone. We call such Γ a substitution Delone

multi-color set if Γ is a Delone multi-color set and there exist an expanding map
Λ : Rn → Rn and finite sets Dij (the digit sets), for 1 ≤ i, j ≤ m, such that

Γi =

m⋃
j=1

(ΛΓj +Dij), 1 ≤ i ≤ m, (2.3)
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where the union on the right-hand side is disjoint. The substitution Delone multi-
color set Γ is said to be primitive if the matrix (�Dij)m×m is primitive. For more
on substitution Delone sets, see, e.g., [74, 81].

For any given substitution Delone multi-color set Γ =
⋃m
i=1 Γi×{i}, we define

Φij to be the collection of affine functions from Rn × {j} to Rn × {i}

Φij := {f : (x, j) 	→ (Λx + a, i) : a ∈ Dij}. (2.4)

Then Φij(Γj × {j}) :=
⋃
f∈Φij

f(Γj × {j}) = (ΛΓj + Dij) × {i}. We denote by

Φ the m × m array with ijth entry Φij and call Φ a matrix function system
(MFS). For any S =

⋃m
i=1 Si × {i}, Si ⊂ Rn, we define Φ(S) to be the collection⋃m

i=1(
⋃m
j=1 Φij(Sj ×{j}))×{i}. We may then iterate Φ, obtaining, for any k ∈ N,

Φk(Γ ) = Γ and Φk(Γj × {j}) =
⋃

1≤i≤m(ΛkΓj + (Dk)ij)× {i} where

(Dk)ij =
⋃

1≤n1,n2,...,n(k−1)≤m
(Din1 + ΛDn1n2 + · · ·+ Λk−1Dn(k−1)j).

A cluster of Γ is a collection P =
⋃
i=1,...,m Pi × {i} where Pi ⊂ Γi is finite for all

1 ≤ i ≤ m. We say that a cluster P is legal if it is a translate of a subcluster of
a cluster generated from one point of Γ , i.e., a + P ⊂ Φk((x, i)) for some k ∈ N,
a ∈ Rn and x ∈ Γi.

As for tilings, we may consider the hull ΩΓ of a Delone multi-color set and
the associated dynamical system (ΩΓ ,Rn).

The equations (2.3) and (2.2) are formally the same. Indeed, one may pass
back and forth between substitution tilings and substitution Delone multi-color
sets with a fair amount of freedom as we now describe.

From a substitution tiling to a substitution Delone multi-color set. From a given
substitution tiling which is a fixed point of a substitution, one easily constructs
a substitution Delone multi-color set by taking a representative point from each
tile, choosing points in the same relative position in tiles of the same color. In
fact, if T is a repetitive tiling that is a fixed point of a substitution for which T =⋃m
i=1{Ti + x : x ∈ Γi}, then Γ =

⋃m
i=1 Γi × {i} is a primitive substitution Delone

multi-color set. We call ΓT an associated substitution Delone multi-color set of T .
A particularly nice selection of associated Delone multi-color set is as follows.

For each T ∈ T , let τ(T ) ∈ Φ(T ) be chosen in such a way that if S = T + x then
τ(S) = τ(T )+Λx. Since we are assuming that T is a fixed point of the substitution,
τ : T → T . Let

Γi :=
⋃

T∈T , T of type i

∞⋂
k=0

Λ−ksupp(τk(T )).

For Γi so defined, C :=
⋃m
i=1 Γi is called a set of control points for T .
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From a substitution Delone multi-color set to a substitution tiling. On the other
hand, it is not so obvious how to reconstruct a substitution tiling from a substi-
tution Delone multi-color set. Lagarias and Wang give a canonical way to carry
out such a construction in a restricted setting (see [74, 81] for more detail). We
briefly describe the context in which this construction applies. We say that a De-
lone multi-color set Γ =

⋃m
i=1 Γi ×{i} is representable (by tiles) if there exist tiles

Ti = (Ai, i), 1 ≤ i ≤ m, so that

{x + Ti : x ∈ Γi, 1 ≤ i ≤ m} is a tiling of Rn, (2.5)

that is, Rn =
⋃

1≤i≤m
⋃
x∈Γi

(x + Ai), and the sets in this union have disjoint
interiors. In the case that Γ is a primitive substitution Delone multi-color set, we
will understand the term representable to mean relative to tiles Ti = (Ai, i), 1 ≤
i ≤ m, that satisfy the adjoint equations (2.2) formed by the digit sets Dij . In
[74, Lemma 3.2] it is shown that if Γ is a substitution Delone multi-color set, then
there is a finite multi-color set (cluster) P ⊂ Γ for which Φn−1(P ) ⊂ Φn(P ) for
n ≥ 1 and Γ = limn→∞Φn(P ). We call such a multi-color set P a generating
set for Γ . It is shown in [81] that if a generating multi-color set of a primitive
substitution Delone multi-color set Γ is legal, then Γ is representable.

2.4. Beta-shifts

The final context for substitution dynamics that we consider arises from trans-
formations of the interval associated with beta-numeration. For more detail, the
reader is referred to [85].

Let β > 1 be a real number. The beta transformation, Tβ : [0, 1) → [0, 1),
is defined by Tβ(x) = βx − d(x) with d(x) = �βx� ∈ [0, β) ∩ Z. Putting dn(x) =
d(T n−1(x)) for n = 0, 1, . . . , we obtain the β-expansion of x:

x =
d1(x)

β
+

d2(x)

β2
+

d3(x)

β3
+ · · · .

Define a function dβ : [0, 1] → AN by dβ(x) = d1(x)d2(x)d3(x) · · · with A =
[0, β) ∩ Z. For x > 1, we can find the minimum non-negative integer m with
β−mx ∈ [0, 1). Putting d−m+k(x) = dk(β

−mx), we obtain:

x = d−m(x)βm + d−m+1(x)β
m−1 + · · ·+ d0(x) +

d1(x)

β
+

d2(x)

β2
+

d3(x)

β3
+ · · ·

which we denote by d−m(x)d−m+1(x) · · · d0(x)d1(x)d2(x)d3(x) · · · . It is sometimes
convenient to introduce a special symbol •, the ‘decimal point’, to indicate the
initial position: d−m(x)d−m+1(x) · · · d0(x) • d1(x)d2(x)d3(x) · · · Here • appears
only once in the expansion and we ignore • when we treat this bi-infinite word as
an element of AZ. Note that the mark here appears to the right of the 0th element.

Not every word in AN is realized as a beta expansion, as, for example, 9∞ is
not allowed in the tail of a decimal expansion. A word in AN is called admissible if
it is a beta expansion of some x ≥ 0. We also say a finite word ω ∈ A∗ is admissible
if ω0∞ = ω00 . . . is admissible.
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The beta shift Xβ is the subshift of the full shift on AZ consisting of the
collection of bi-infinite words over A, all of whose finite subwords are admissible.
The function Tβ is a discontinuous piecewise linear transform on [0, 1) and its
discontinuities are essential in describing admissibility. A nice feature of beta-
expansion is that admissibility, as we now describe, is easily computed through
consideration of the expansion of one:

dβ(1−) = lim
ε↓0

dβ(1 − ε)

where the limit is in the topology of AN. The expansion dβ(1−) = c1c2 · · · is
made concrete in the following way. We have c1 = �β� and if T n(β − �β�) �= 0
for all n ≥ 0, then cn+2 = �βT n(β − �β�)�. If there is n with T n(β − �β�) = 0,
then take the smallest n with this property, in which case we have dβ(1−) =
(c1c2 · · · cn(cn+1 − 1))∞. The admissibility condition, called the Parry condition
is then: a word x ∈ AN is admissible if and only if sn(x) � dβ(1−), where �
is the lexicographic order (see [98, 66]) and s denotes the shift on AN. By this
characterization, we see that Xβ is the set of all bi-infinite sequences of labels of
bi-infinite walks on a finite labeled directed graph. More precisely, Xβ is a subshift
of finite type if and only if dβ(1−) is purely periodic, and it is sofic if and only
if dβ(1−) is eventually periodic. If Xβ is sofic, then β is a Perron number, and
if β is a Pisot number, then Xβ must be sofic. Assume that Xβ is sofic and put
dβ(1−) = c1c2 · · · cm(cm+1cm+2 · · · cm+�)

∞. Note that we always have  > 0, and
if Xβ is a subshift of finite type, then m = 0. Figure 1 shows examples of such
graphs for Xβ with dβ(1−) as above.

0,...,c1-1 0,...,c2-1

0,...,c3-1 0,...,c4

c1 c2 c3

(a) (c1c2c3c4)∞

0,...,c1-1

c1

0,...,c2-1

0,...,c3-1

c3

0,...,c4-1

c4

c2

(b) c1c2(c3c4)∞

Figure 1. Graph of Xβ

We write an element x = (an)n∈Z ∈ Xβ as x = · · ·a−2a−1a0 • a1a2 · · · and
say that xI := · · · a−2a−1a0 (resp. xF := a1a2 · · · ) is the integer part (resp. the
fractional part) of x. The future of the integer part xI = · · · a−2a−1a0 is defined by:

F(xI) = {b1b2 · · · ∈ AN | · · · a−2a−1a0 • b1b2 · · · ∈ Xβ}
and the past of the fractional part xF = a1a2 · · · is defined by:

P(xF ) = {· · · b−2b−1b0 ∈ AN| · · · b−2b−1b0 • a1a2 · · · ∈ Xβ}.
By the above graph characterization, it is clear that Xβ is sofic if and only if
there are only finitely many distinct future sets F(xI) and past sets P(xF ). If
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Xβ is sofic, we may associate with β a tile substitution with expansion β and
(unlabeled) prototiles F(xI) by means of the natural map

π : a1a2 · · · 	→
∞∑
i=1

aiβ
−i (2.6)

that satisfies

βπ(F(xI)) =
⋃

xIa is admissible

π(F(xIa)) + π(a•) (2.7)

where xIa denotes the concatenation of xI and a ∈ A and π(a•) is just the inte-
ger a.

From a beta-shift to a symbolic substitution. A symbolic substitution, denoted
φβ , and called the β-substitution, may be associated with a sofic beta-shift. This
β-substitution is defined by:

φβ(1) = 1c12

φβ(2) = 1c23

...

φβ(m) = 1cm

for the shift of finite type case
with dβ(1−) = (c1 · · · cm)∞,

φβ(1) = 1c12

φβ(2) = 1c23

...

φβ(m + − 1) = 1cm+�−1(m + )

φβ(m + ) = 1cm+�(m + 1)

for the general sofic case.

It is easy to see that φβ is primitive, although it may not be irreducible. By
primitivity, we get minimal and uniquely ergodic substitutive symbolic and tiling
dynamical systems, (Xφβ

, s) and (Ωφβ
,R). Up to a rescaling of the R-action and

the labeling of tiles, the system (Ωφβ
,R) is just the system derived from the tiling

substitution (2.7).

3. Discreteness of the dynamical and diffraction spectra

3.1. Eigenvalues and coincidence rank

Recall that an eigenfunction for an Rn-action on a space Ω with invariant measure
μ is an L2(Ω, μ) function1 f for which there is an associated eigenvalue α ∈ Rn

so that f(T − v) = e2πi〈α,v〉f(T ) for all v ∈ Rn and T ∈ Ω. The Rn-action is said
to have pure discrete spectrum2 or pure point spectrum if the linear span of the
eigenfunctions is dense in L2(Ω, μ). When the Rn-action is ergodic, eigenfunctions
must have constant absolute value and eigenvalues are simple: if f and g are eigen-
functions with eigenvalue α, then f = cg for some c ∈ C. In this situation we may
choose eigenfunctions to have values in the unit circle T1. Furthermore, if Ω = ΩΦ

1In this measure-theoretical framework, statements about eigenfunctions should be interpreted
to hold a.e.
2Note that here ‘discrete’ refers to a property of the span of the eigenfunctions and not to
discreteness of the eigenvalues as a set.
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is a substitution tiling space, eigenfunctions can be chosen to be continuous ([115]).
We may view each continuous eigenfunction as a semi-conjugacy, or factor map, be-
tween (Ω,Rn) and an action of Rn by translation on the compact abelian group T1.

The definitions for a Z-action on a space are analogous: for example, an
eigenfunction f for the shift s on a symbolic space X with associated eigenvalue
α ∈ R satisfies f(sn(x)) = e2πiαnf(x) for all n ∈ Z and x ∈ X .

It is a consequence of the Halmos-von Neumann theory that the Rn-action on
a tiling space (likewise, the shift on a symbolic space) has pure discrete spectrum if
and only if the action is measurably conjugate to translation on a compact abelian
group (see [121, 96], and see Theorems 5.2 and 7.8 for illustrations).

Every primitive FLC substitution tiling dynamical system (ΩΦ,Rn) has a

maximal equicontinuous factor (T̂,Rn) with factor map g : Ω → T̂ and g is a.e.

m-to-1 for some m ∈ N ∪ {∞}. (Here T̂ is a torus or solenoid, the Rn-action is
a Kronecker action, and the map g is obtained by considering all eigenfunctions.)
The number m is called the coincidence rank of Φ and is denoted by cr(Φ): by
the Halmos-von Neumann theory, (ΩΦ,Rn) has pure discrete spectrum if and only
if cr(Φ) = 1. It follows from [113, 29, 21] that, for one-dimensional primitive tile
substitutions Φ, cr(Φ) <∞ if and only if the expansion λ for Φ is a Pisot number.

If the dynamical spectrum of a tiling T is pure discrete, the eigenvalues for the
dynamical system (ΩT ,Rn) span Rn. Since every additive combination of eigenval-
ues for the dynamical system is also an eigenvalue, the eigenvalues are relatively
dense. In the next section we translate this necessary condition for pure discrete
spectrum (that is, relative denseness of the eigenvalues) into a condition expressed
in terms of substitution Delone multi-color sets, namely, the Meyer property.

3.2. The Meyer property

For the study of the discreteness of the dynamical spectrum of a tiling space,
the so-called Meyer property plays an important role. A Delone set Y is called a
Meyer set if Y −Y is uniformly discrete. Necessarily, if Y is a Meyer set, then Y has
FLC. Suppose that T is a primitive FLC substitution tiling in Rn and that Γ T =⋃m
i=1 Γi × {i} is a substitution Delone multi-color set associated with T , as de-

scribed in Section 2.3. When ΓT = ∪1≤i≤mΓi is a Meyer set, we say that the tiling
T has the Meyer property. For characterizations of the Meyer property, see [73] for
Rn, and [20] for the general case of a σ-compact, locally compact abelian group.

The connection between Meyer sets and the spectrum of an FLC substitution
tiling can be viewed through the mathematical concept of diffraction measure
developed by Hof [61, 62]. For a Delone set Γ , consider δΓ =

∑
x∈Γ δx. Let γ(δΓ )

denote its autocorrelation (assuming it is unique), that is, the vague limit3

γ(δΓ ) = lim
r→∞

1

Vol(Br)

(
δΓ |Br ∗ δ̃Γ |Br

)
, (3.1)

3Recall that if f is a function in Rn, then f̃ is defined by f̃(x) = f(−x). If μ is a measure, μ̃ is

defined by μ̃(f) = μ(f̃) for all f ∈ C0(Rn).
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where Br is a ball of radius r. The Fourier transform γ̂(δΓ ) is called the diffraction
measure for δΓ . We say that the measure δΓ , or the Delone set Γ has pure point

diffraction spectrum, if γ̂(δΓ ) is a pure point or discrete measure. The point masses
of the diffraction measure are called Bragg peaks.

There is a close correspondence between pure pointedness of the diffraction
measure and pure discrete spectrum of the associated dynamical system. For ex-
ample, if T is a primitive FLC substitution tiling in Rn and Γ T =

⋃m
i=1 Γi × {i}

is a substitution Delone multi-color set associated with T , then each Γi has pure
point diffraction spectrum if and only if (ΩT ,Rn) has pure discrete spectrum
([17, 18, 48, 60, 80, 81, 82, 102]).

The following theorem is due to Strungaru [116] and Lee–Solomyak [77].

Theorem 3.1 ([116, 77]). Suppose that T is a primitive FLC substitution tiling in
Rn and that Γ T =

⋃m
i=1 Γi×{i} is a substitution Delone multi-color set associated

with T . The following are equivalent:

(i) The set of locations of Bragg peaks for each Γi is relatively dense in Rn.
(ii) The set of eigenvalues for (ΩT ,Rn, μ) is relatively dense in Rn.
(iii) Γ = ∪1≤i≤mΓi is a Meyer set.

In particular, if T is a primitive FLC substitution tiling for which the dy-
namical system (ΩT ,Rn, μ) has pure discrete spectrum, then ΓT = ∪1≤i≤mΓi is
a Meyer set. In other words, the Meyer property is necessary for pure discrete
spectrum of an FLC substitution tiling space. This is not generally true for the
hull of a tiling that does not arise from a substitution: it fails, for example, for
modulated lattices (see [16, 79, 110, 118]).

3.3. Cut-and-project schemes and model sets

We now endeavor to fill the gap between relative density for eigenvalues and pure
discreteness of the dynamical spectrum. This is the aim of the present section
where the notions of regular model set and inter-model set are introduced in the
setting of cut-and-project schemes. For more about model sets see, e.g., the surveys
[88, 89] and [16, Chap. 7] where an explicit discussion with the silver mean as an
example can be found.

A cut-and-project scheme (or CPS for short) consists of a triple (G,H, L̃)

where G and H are σ-compact, locally compact abelian groups, L̃ is a lattice, i.e.,

a discrete subgroup for which the quotient group (G×H)/L̃ is compact, such that

the restriction of the canonical projection π1 : G×H → G to L̃ is injective and the

image L = π2(L̃) of L̃ under the canonical projection π2 : G ×H → H is dense

in H . Schematically, we summarize the situation as follows by setting L = π1(L̃):

G
π1←− G×H

π2−→ H
∪ ∪ ∪ dense

L
1−1←− L̃ −→ L

(3.2)
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For a subset W ⊂ H , called the acceptance window, let

Γ (W ) = {π1(x) ∈ G : x ∈ L̃, π2(x) ∈W} .

A subset of G of the form Γ = Γ (W )+g, where g ∈ G and W ⊂ H has non-empty
interior and compact closure, is called amodel set. The non-empty interior property
yields that any model set is relatively dense in G ([109]). Intuitively, being a model
set means that all the points in Γ are obtained through the selection process by
the window W .

Models sets are deeply connected to Meyer sets. In fact all model sets are
Meyer sets ([78]). The converse reads as follows: a relatively dense set in G is a
Meyer set if and only if it is a subset of a model set of G ([88]). See [19, 20, 76,
89, 101] for more on model sets.

Applying Theorem 3.1, we obtain the following.

Corollary 3.2. Suppose that T is a primitive substitution tiling in Rn and that
Γ T =

⋃m
i=1 Γi × {i} is the substitution Delone multi-color set associated with T .

If Γ = ∪1≤i≤mΓi is a model set, then the set of eigenvalues for (ΩT ,Rn, μ) is
relatively dense in Rn.

Note that additional conditions are needed to guarantee pure discrete spec-
trum. We say that a model set Γ is regular if the boundary ∂W = W \W ◦ of W
is of (Haar) measure 0.

Theorem 3.3 ([102]). If Γ ⊂ Rn is a regular model set, then (ΩΓ ,Rn) has pure
discrete spectrum.

Theorem 3.4 ([81]). Let T be a primitive substitution tiling in Rn with associated
Delone multi-color set ΓT =

⋃m
i=1(Γi ×{i}) and suppose that L =

⋃
1≤i≤m Γi is a

lattice. Then each Γi is a regular model set for 1 ≤ i ≤ m if and only if (ΩT ,Rn)
has pure discrete spectrum.

In the general case, we define an inter-model set as a subset Γ of G for which
s + Γ (W ◦) ⊂ Γ ⊂ s + Γ (W ) for some s ∈ Rn, where W is compact in H and
W = W ◦ �= ∅. Inter-model sets are Delone sets, and all regular model sets also are
inter-model sets (see [109] for more detail).

Theorem 3.5 ([75]). Let T be a primitive substitution tiling in Rn with FLC and
Γ T =

⋃m
i=1(Γi × {i}) be an associated substitution Delone multi-color set. Then

Γi is an inter-model set if and only if (ΩT ,Rn) has pure discrete spectrum.

Dynamical systems generated by regular or inter-model sets coming from
primitive substitutions thus have pure discrete spectrum. Sections 3.4 and 3.5 ex-
hibit natural candidates for acceptance windows and cut-and-project schemes to
be associated with symbolic substitutions and beta-numeration. Their particular
structure allows a convenient formulation of sufficient conditions ensuring that
these constructions indeed yield regular model sets. As will be discussed in Sec-
tion 5, pure discrete substitution tiling systems can be viewed as inter-model sets.
This will require the introduction of intermediary conditions based on notions of
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coincidences (see in particular Theorems 5.4 and 5.5). Checking whether these ad-
ditional conditions are satisfied is at the core of the Pisot Substitution Conjecture.

3.4. Rauzy fractals and symbolic substitutions

In the case of a symbolic substitution φ, there is a natural way to exhibit a cut-
and-project scheme for the associated substitution tiling Φ. This approach was
initiated by Rauzy in the seminal paper [97] and is based on the notion of Rauzy
fractal, an object that will be our candidate both for being an acceptance window
for a cut-and-project scheme such as defined in (3.2), and equivalently, for being
a fundamental domain for the Kronecker action in case of pure discrete spectrum.

Suppose that φ is a symbolic Pisot substitution, and, for ease of exposition,
that φ is also unimodular and irreducible. Thus, if d is the degree of the PF-
eigenvalue, λ, of Mφ (d is also equal to the cardinality of the alphabet), then
Mφ is d × d and Rd splits as the direct sum Rd = Es ⊕ Eu of d − 1 and one-
dimensional Mφ-invariant subspaces. Let πs : Rd → Es and πu : Rd → Eu denote
the corresponding projections and let r be a positive right PF-eigenvector for Mφ

(so Eu = {t r : t ∈ R}). Let u be a φ-periodic point. The ith Rauzy piece for φ is
the subset of Es

Ri := {πs(f(u0 · · ·uj)) : j ≥ 0, uj+1 = i}
and the Rauzy fractal for φ is the union of the pieces

R := ∪di=1Ri.
The Ri do not depend on u, each is the closure of its interior and has zero measure
boundary. For general properties of Rauzy fractals, see, e.g., [97, 14, 95, 35, 39].

As constructed above, the Rauzy fractal is obtained as the closure of the
stable projection of a certain subset of points from the integer lattice Zd. We
will see in Section 3.5 below, in the context of beta-numeration, that the Rauzy
fractal can also be obtained using the Minkowski embedding of Q(λ) in Rd. This
is the approach of [117] and has been extended through the use of non-Euclidean
representation spaces to allow for a definition of the Rauzy fractal when the Pisot
number λ (the PF-eigenvalue) is not a unit (see [107, 109]).

Rauzy fractals and cut-and-project schemes. Given an irreducible unimodular
Pisot substitution φ on d letters, the d entries of left and right PF-eigenvectors of
the substitution matrix Mφ are linearly independent over Q. It follows that the
projection πu : Rd = Es ⊕ Eu → Eu � R is one-to-one on the lattice Zd and that
πs(Zd) is dense in Es � Rd−1. Using the Rauzy fractal R ⊂ Es as an acceptance
window, we may define a Delone set Γ (R) ⊂ Eu by projecting into Eu, via πu,
those elements of Zd that lie in π−1s (R):

Γ (R) := {πu(x) ∈ Eu : x ∈ Zd, πs(x) ∈ R}.
Let V := {f(u0 · · ·uk−1) : k ∈ N} ∪ {−f(u−k · · ·u−1) : k ∈ N}. (The set V is the
set of vertices of the strand Su to be defined in Section 5.2 below.) One sees easily
from the definition of R that πu(V ) ⊂ Γ (R).
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Delone sets that arise from such a cut-and-project procedure have particularly
nice spectral properties and it thus becomes relevant for the study of the dynamical
systems (Xφ, s) and (Ωφ,R) to ask the question: is πu(V ) essentially the same as
Γ (R)? By observing that the boundary of R has zero measure, a positive answer
yields that (Xφ, s) has pure discrete spectrum. Hence, most conditions ensuring
pure discrete spectrum expressed in terms of Rauzy fractals can be reformulated
as sufficient conditions for the associated substitution Delone multi-color set to be
a regular model set with acceptance window given by the Rauzy fractal R. As an
illustration, the equality between πu(V ) and Γ (R) can be proved in particular cases
by studying the way that particular polygonal approximations of the boundary of
R converge to this boundary ([52, 65, 84]).

Periodic multi-tilings in Rd. In order to make explicit the fact that the Rauzy
fractal is a natural candidate for a fundamental domain for the Kronecker action
for the maximal equicontinuous factor of Ωφ, we endeavor to construct tilings of
Es by translates of the Ri. For each i = 1, . . . , d, let ei denote the ith standard
unit vector. Let us fix a vector y ∈ Eu. Let ti ∈ R+ be such that ti y = πu(ei),
and let Ci := {x + t y : x ∈ Ri and 0 ≤ t ≤ ti}. The collection M := {Ci + v :
0 ≤ i ≤ d and v ∈ Zd} is a periodic multi-tiling of Rd by translations of the Ci:
there is m ∈ N, called the degree, or multiplicity of the multi-tiling so that almost
every x ∈ Rd lies in exactly m tiles of M. In fact, the degree m is equal to the
coincidence rank cr(φ) of φ introduced in Section 3.1 (see [30]).

Theorem 3.6 ([65, 30]). Let φ be a primitive Pisot substitution that is also unimod-
ular and irreducible. The spaces (Xφ, s) and (Ωφ,R) have pure discrete spectrum
if and only if the degree m of the multi-tiling associated with φ is 1.

(For φ primitive, Pisot, and irreducible, pure discreteness of (Xφ, s) and
(Ωφ,R) are equivalent ([45]) – see Section 4.)

Several approaches have been developed in order to make the tiling condition
of Theorem 3.6 algorithmic. Indeed, the intersections between the sets Ci+ v have
a self-similar structure that can be described in terms of finite graphs (see the
monograph [108] and the bibliography therein for more detail). Another approach
consists in studying the dual multi-tiling associated with φ, that is, the multi-
tiling of Es given by {T ∩ Es : T ∈ M}. This dual multi-tiling of the (d − 1)-
dimensional space Es can be described via a discrete combinatorial action, namely
a generalized (also called dual) substitution ([14, 30]). Each prototile of this dual
multi-tiling can be characterized by a pair made of a Rauzy piece and a face of
the discrete plane associated with the contracting space Es. This discrete plane
is stable under the action of the associated dual substitution. As a consequence,
further combinatorial formulations of the pure discrete spectrum property can be
stated in effective terms (see [14, 39] for more detail). These conditions are dual
versions of the notions of geometric coincidence developed in Section 5.2 (where
the tilings live in the unstable space Eu). Observe also that the terminology ‘dual’
is here consistent with the notion of star-duality for self-similar cut-and-project
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tilings such as developed in [117, 55]; see also [37] for an illustration of these
connections in the two-letter case.

3.5. Cut-and-project schemes and beta-numeration

We present here an arithmetical version of the previous construction for the beta
shift due originally to Thurston [117], which was itself inspired by Rauzy’s con-
struction [97]. For more on these constructions, see [1, 3, 5, 58].

Let β be a Pisot unit of degree d with real algebraic conjugates β = β1, . . . , βr,
and complex algebraic conjugates βr+1, β̄r+1, . . . , βr+s, β̄r+s. The conjugate map
Ψ : Q(β)→ Rr−1×Cs � Rd−1 is defined by x 	→ (x(2), . . . , x(r), x(r+1), . . . , x(r+s))
where x(i) denotes the image of x under the embedding of Q(β) into C that takes
β to βi. Hereafter, we identify Rr−1 × Cs with Rd−1.

Beta-tiles. Given a fractional part xF of an element x ∈ Xβ , and given · · · b−2b−1b0
in the past set P(xF ) (see Section 2.4), we define Ψ̃(· · · b−2b−1b0) ∈ Rd−1 by

Ψ̃(· · · b−2b−1b0) :=
∑∞
i=0 b−iΨ(βi). The series converges since the conjugates of

β have absolute value less than 1 and the prototiles Ψ̃(P(xF )) correspond to the
Rauzy pieces. More generally, versions of the Rauzy fractal and arithmetical coding
when the Pisot number β is not a unit require either the inclusion of a non-
archimedean component in the conjugate map (in the arithmetical setting) or the
use of inverse limits (in the topological setting). See [109, 35, 21, 10] for more
detail.

Non-periodic multi-tilings. Beta-tiles are analogues of Rauzy pieces. As in the
symbolic substitution case, there is a natural multi-tiling that can be formed with
the beta-tiles. The difference here is that this multi-tiling is not periodic. In fact, it
is strongly connected with the dual multi-tiling of Es discussed above for symbolic
substitutions and as highlighted in [35, 36].

For xF = a1a2 · · · finite (that is, ai = 0 for all i bigger than some k), the tile

T (xF ) := Ψ̃(P(xF )) + Ψ(π(xF ))

is a translate of a prototile. (We recall that π is defined in (2.6).) Let points i ∈
[0, 1] be determined by {0 = 0 < 1 < · · · < m+�=1} = {0} ∪ {π(sn(dβ(1−)))}.
Then, if x, y ∈ Xβ have finite fractional parts and if π(xF ), π(yF ) ∈ [i−1, i), we
have P(xF ) = P(yF ) so that T (yF ) = T (xF ) + Ψ(π(yF )− π(xF )) and thus there
are (at most) m +  different tiles up to translation.

The linear isomorphism of Q(β) given by multiplication by 1/β extends, after
embedding Q(β) in Rd−1 via Ψ, to an expanding linear isomorphism G of Rd−1

and the tiles T (xF ) satisfy the substitution rule:

G(T (xF ))) =
⋃

axF is admissible

T (axF ).

The collection {T (xF ) : xF finite} is a multi-tiling of Rd−1 invariant under this
substitution rule ([3]). We will see in Section 6 equivalent arithmetic formulations
of the following result.
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Theorem 3.7 ([3, 21, 6]). Let β be a Pisot unit of degree d. If the collection {T (xF ) :
xF finite} is a tiling of Rd−1, then (Ωφβ

,R) has pure discrete spectrum.

Markov partitions. A Markov partition for a hyperbolic toral automorphism pro-
vides an explicit measurable conjugacy with a subshift of finite type by recording
the itinerary of a point under the action of the automorphism with respect to the
partition. According to [44], all hyperbolic toral automorphisms admit Markov
partitions, but they can be rather difficult to find.

Sidorov describes in [105] the following procedure for constructing Markov
partitions for certain total automorphisms (see also [93] and [103, 104]). In [70]
and [106] this construction arises in the general framework of arithmetic dynamics
and arithmetic codings. Given a Pisot unit β of degree d, let M be the companion
matrix of its minimal polynomial. There is then an associated hyperbolic auto-
morphism, FM , of the d-torus Td = Rd/Zd defined by FM (x + Zd) := Mx+ Zd.

With Es and Eu denoting the stable and unstable spaces of M , the stable
and unstable manifolds of 0 ∈ Td under FM are W s(0) := Es + Zd and Wu(0) :=
Eu + Zd, and the homoclinic group of 0 is the intersection H = W s(0) ∩Wu(0).
A point ȳ ∈ H is a fundamental homoclinic point if its orbit {Fn

M (ȳ) : n ∈ Z}
generates the group H. Given any ȳ ∈ H, let hȳ : Xβ → Td be defined by

hȳ(· · ·x−1x0 • x1 · · · ) :=
∑
n∈Z

xnF
−n
M (ȳ).

The map hȳ, called an arithmetical coding of FM , is continuous, a.e. m-to-1 for
some m ∈ N, and semi-conjugates the shift s on Xβ with FM . Moreover, if x, y,
and x + y denote the (greedy) β-expansions of the non-negative real numbers x, y
and x + y, then hȳ(x + y) = hȳ(x) + hȳ(y).

For each past set P , let

[P ] := hȳ({x ∈ Xβ : xP = P}).

The intersections of Es � Rd−1 with the sets [P ] under the immersion which maps
x ∈ Es to x + Zd ∈ W s(0) determine a degree m multi-tiling. If m = 1, the sets
[P ], where P are past sets constructed from a fundamental homoclinic point ȳ,
form a Markov partition for the hyperbolic automorphism FM associated with M
([105]). When the associated beta-substitution φβ is irreducible, the sets [P ] actu-
ally match with the sets Ci of the periodic multi-tiling of Rd built from the Rauzy
pieces Ri introduced in Section 3.4. One similarly determines Markov partitions
for toral automorphisms provided by the substitution matrix of unimodular irre-
ducible Pisot substitutions when the tiling system has pure discrete spectrum; see,
e.g., [95, 65, 15].

It is proved in [105] that m = 1 (for a fundamental homoclinic point ȳ) if
and only if (Ωφβ

,R) has pure discrete spectrum ([3, 21]). This property is itself
equivalent to β satisfying the Property (W) discussed in Section 6 (see also [93] in
the same vein).
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4. The Pisot Substitution Conjecture

In this section, we focus on the one-dimensional case n = 1, that is, we consider
either symbolic substitutions, beta-numeration, or tile substitutions defined in R.

Recall that an algebraic integer λ > 1 is a Pisot number if all its algebraic
conjugates α other than λ itself satisfy |α| < 1. In terms of its influence on spectral
properties of associated dynamical systems, the key property of a Pisot number
λ is that the distance from λn to the nearest integer tends to zero as n tends to
infinity. (Conversely, if λ is any algebraic number bigger than 1 with this property,
then λ must be a Pisot number ([92]); it is a conjecture of Pisot that no transcen-
dental number has this property.) A primitive substitution φ is said to be Pisot if
its Perron–Frobenius eigenvalue λ is a Pisot number. By Pisot dynamics we mean,
loosely, the shift dynamics on the symbolic space associated with a Pisot substi-
tution, or the translation dynamics on a substitution tiling space with expansion
Λ = (λ), λ a Pisot number (or, more generally, Λ with the Pisot property, see
Section 7), etc.

For the shift, or translation, dynamics associated with a substitution to have
pure discrete spectrum a Pisot condition is necessary. The Pisot Substitution Con-
jectures have grown out of attempts to answer the question: what additional con-
ditions guarantee that Pisot dynamics have pure discrete spectrum? In previous
sections we have considered several types of Pisot dynamical systems, all arising
from substitutions in a symbolic or geometrical context. The most easily recog-
nized feature shared by all known examples that fail to have pure discrete spec-
trum is reducibility of the characteristic polynomial of the substitution matrix.
Correspondingly, the most basic of the Pisot Substitution Conjectures, formulated
separately for the symbolic and tiling contexts, are the following.

Conjecture 4.1 (Pisot Substitution Conjecture: symbolic substitutive case). If φ
is an irreducible Pisot substitution then the substitutive system (Xφ, s) has pure
discrete spectrum.

Conjecture 4.2 (Pisot Substitution Conjecture: tiling of the line case). If φ is an
irreducible Pisot substitution then the tiling dynamical system (Ωφ,R) has pure
discrete spectrum.

That these two conjectures are equivalent is a consequence of a theorem of
Clark and Sadun ([45]). Indeed, (Xφ, s) has pure discrete spectrum if and only if

the R-action on the suspension X̂φ, with constant roof function, has pure discrete
spectrum. If the constant value c of the roof function is chosen so that c(1, . . . , 1)−,
 the positive left eigenvector of the substitution matrix Mφ giving the tile lengths,
is in the left-contracting space of the substitution matrix Mφ (so that (c(1, . . . , 1)−
)Mm

φ → 0 as m → ∞) then, according to Theorem 3.1 of [45], the R-actions on

X̂φ and Ωφ are topologically conjugate. Such a choice of c is always possible in the
irreducible case as then the left contracting space has codimension one.

The Thue–Morse substitution (1 	→ 12, 2 	→ 21) provides a simple example
showing that the above conjectures are false if the hypothesis of irreducibility is
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dropped. No such examples have been found for β-substitutions (see Section 2.4)
and in this setting there is a stronger conjecture.

Conjecture 4.3 (Pisot Substitution Conjecture: β-substitution case). If β is a
Pisot number with associated β-substitution φβ then the tiling dynamical system
(Ωφβ

,R) has pure discrete spectrum.

For counterexamples to the above (with reducible substitution matrix Mφβ
)

for the substitutive system (Xφβ
, s), rather than the tiling dynamics, see [49]. If

the tiling dynamical system (Ωφβ
,R) has pure discrete spectrum, these examples

show that the symbolic substitutive system (Xφβ
, s) may not. Nonetheless, in this

situation (Xφβ
, s) is at least measurably isomorphic with an induced system of a

group translation (see [21]).
The assumption of ‘irreducibility’ in Conjectures 4.1 and 4.2 is unnatural in

the following sense. It is easy to take an irreducible Pisot substitution and ‘rewrite’
it to obtain another substitution that is not irreducible but has topologically con-
jugate dynamics ([24]). One substitution will satisfy the hypotheses while the other
won’t, yet their spectral properties are identical. In fact, if two one-dimensional
substitution tiling spaces are homeomorphic, then the corresponding R-actions are
(up to rescaling) conjugate ([31], and [71] for higher dimensions). It is thus desir-
able to find a topological condition to replace the assumption of irreducibility of
the substitution matrix.

The substitution homeomorphism Φ : Ωφ → Ωφ induces a linear isomorphism

Φ∗ : H1(Ωφ) → H1(Ωφ) on the (Čech, with rational coefficients) cohomology of
Ωφ. The expansion λ is an eigenvalue of this isomorphism so the dimension of
H1(Ω) is at least the algebraic degree d of λ ([26]). Thus Φ∗ is irreducible (that is,
its characteristic polynomial is irreducible over Q) if and only if the dimension of
H1(Ωφ) equals d. If Φ∗ is irreducible, we will say that φ is homologically irreducible
and that φ is a homological Pisot substitution if φ is also a Pisot substitution.

Conjecture 4.4 (Homological Pisot Substitution Conjecture). If φ is a homological
Pisot substitution whose expansion is an algebraic unit then the tiling dynamical
system (Ωφ,R) has pure discrete spectrum.

By [46], and as in the comments above following Conjecture 4.2, if φ is homo-
logical Pisot, then (Xφ, s) has pure discrete spectrum if and only if (Ωφ,R) does:
a similar remark applies to the Coincidence Rank Conjecture below.

Conjecture 4.4 is neither weaker nor stronger than Conjectures 4.1 and 4.2
(with an additional assumption of unimodularity). However, the only way an ir-
reducible substitution φ can fail to be homologically irreducible is for there to be
an ‘asymptotic cycle’ of arc components in Ωφ which is associated with a root of
unity eigenvalue for Φ∗ ([25]).

There are counterexamples to Conjecture 4.4 if the expansion is not assumed
to be a unit ([33]) but the conjecture can be extended in the following way. The
norm of an algebraic integer λ is the product of λ with all its algebraic conjugates.
So λ is a unit if and only if its norm is ±1 and if λ is the PF-eigenvalue of a
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substitution matrix with irreducible characteristic polynomial Mφ, then the norm
of λ is ± det(Mφ).

See Section 3.1 for the definition of the ‘coincidence rank’ of a substitution
and recall that the coincidence rank of a Pisot substitution equals one if and only
if the system (Ωφ,R) has pure discrete spectrum. Thus the following conjecture
extends the Homological Pisot Substitution Conjecture to the non-unit case.

Conjecture 4.5 (Coincidence Rank Conjecture). If φ is a homological Pisot sub-
stitution with expansion λ then the coincidence rank of φ divides the norm of λ.

5. Coincidences

We present here several variations of the notion of coincidence. Strong coinci-
dences (see Section 5.1), geometric coincidences (Section 5.2) and balanced pairs
(Section 5.3) are defined in the one-dimensional case n = 1, whereas coincidences
in higher dimensions are handled in Section 5.4 with the notions of modular coin-
cidence, overlap coincidence and algebraic coincidence. We then revisit the notion
of algebraic coincidence in the particular case of beta-numeration in Section 5.5.

5.1. Strong coincidences

A primitive substitution φ is said to satisfy the strong coincidence condition if
each pair of φ-periodic points x = (· · ·x−1x0x1 · · · ), y = (· · · y−1y0y1 · · · ) ∈ Xφ

are strongly coincident, i.e., there is n ∈ N so that xn = yn and the abelianizations
f(x0 · · ·xn) and f(y0 . . . yn) are equal. This combinatorial condition, originally due
to Arnoux and Ito [14], is an extension of a similar condition considered by Kamae
[67] and Dekking [47] in the case of constant length substitutions (that is, when
|φ(a)| = |φ(b)| for all a, b ∈ A). In [47], Dekking proves that a constant length
substitution having trivial height satisfies the strong coincidence condition if and
only if (Xφ, s) has pure discrete spectrum.

Conjecture 5.1 (Strong coincidence Conjecture). Every irreducible Pisot substi-
tution satisfies the strong coincidence condition.

It is not known whether or not the Coincidence Conjecture is equivalent
to the Pisot Substitution Conjecture (that is, if strong coincidence implies pure
discrete spectrum). We formulate now a geometrical version of coincidence that is
equivalent to pure discrete spectrum.

5.2. Geometric coincidences

The idea of associating a geometrical strand with an element of a symbolic substi-
tution space originates with Arnoux and Itô in [14]. There, the authors present a
geometrical version of a substitution: letters become segments in Rd with integer
vertices, and their images under substitution become ‘broken lines’. This allows
for a dualization of the substitution: dual to a segment is a d− 1 cell which, under
the dual substitution becomes a piece of a broken hyperplane. With these tools,
the authors prove that if an irreducible unimodular Pisot substitution satisfies



On the Pisot Substitution Conjecture 53

the strong coincidence condition, then its substitutive system is measurably con-
jugate to a domain exchange in Rd−1 and semi-conjugate to a rotation on the
(d − 1)-torus. The idea is further developed in [30, 21], where the segments are
no longer required to have vertices on the integer lattice. With this innovation,
the tiling space itself, in the form of strand space, emerges as the global attractor
of a geometrical substitution. Each element of the tiling space now corresponds
uniquely to a strand in Rd and the map taking the tiling to a vertex of its strand,
modulo Zd, semi-conjugates the tiling flow with a Kronecker action on Td and the
substitution homeomorphism with a hyperbolic automorphism of Td.

For simplicity in what follows, we assume that φ is an irreducible and uni-
modular Pisot substitution on d letters; also, we construct strand space as an orbit
closure, rather than as a global attractor.

To begin with, for x ∈ Rd and ei a standard unit vector, we call the set

[x, i] := {x+ tei : 0 ≤ t ≤ 1}
a segment of type i with initial vertex x and terminal vertex x + ei. Suppose that
u ∈ Xφ is φ-periodic. Employing the abelianization map f , the strand associated
with u is the union of segments:

Su =
⋃
N∈N

[f(u0 · · ·uN−1), uN ] ∪
⋃
N∈N

[−f(u−N−1 · · ·u−1), u−N−1] .

The tiling Tu is recovered from the strand Su by projection onto the un-
stable space Eu = {tr : t ∈ R} spanned by the right PF-eigenvector r of the
abelianization Mφ of φ [34].

The strand space associated with φ is the translation-orbit closure

Σφ := {Su − tr : t ∈ R},
the closure being taken in the topology in which two strands are close if their
intersections with a large closed ball about the origin are Hausdorff-close. Given a
segment [x, i], let

Φ([x, i]) := ∪j=1,...,k[Mφx + f(i1 · · · ij−1), ij ],
where φ(i) = i1 · · · ik. Then, for S = ∪j [xj , lj] ∈ Σφ, Φ(S) := ∪jΦ([xj , lj ]) defines
a self-homeomorphism of Σφ. Strand space is simply another presentation of tiling
space: the R-action S 	→ S − tr and the homeomorphism Φ are conjugated with
the corresponding dynamics on Ωφ through projection of strands to tilings of Eu.
Strand space has two advantages: there is an easily defined geometric realization,
g : Σφ → Td = Rd/Zd by g(S) = x + Zd, where x is a vertex of a segment in
S; and there is a geometric coincidence condition, by means of which pure dis-
crete spectrum can be checked. To formulate the latter, we say that segments [x, i]
and [y, j] are coincident if there is n ∈ N so that Φn([x, i]) ∩ Φn([y, j]) contains
a segment. The substitution φ satisfies the geometric coincidence condition if for
all i ∈ A and for all x ∈ Zd and j ∈ A so that the interior of [x, j] meets the
stable space, Es, of Mφ, it happens that [0, i] and [x, j] are coincident. This condi-
tion is called super coincidence in [65]. The equivalence of pure discrete spectrum
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and geometric/super coincidence for irreducible unimodular Pisot substitutions
appears in [30] and [65] and is generalized to the reducible and non-unimodular
setting in [21] and [50].

Theorem 5.2 (Geometric coincidence condition and geometric realization). If φ
is an irreducible unimodular Pisot substitution then the geometric realization g :
Σφ → Td semi-conjugates Φ with the automorphism of Td induced by Mφ and the
R-action on Σφ with a Kronecker action on Td. The following are equivalent:

(i) (Ωφ,R) has pure discrete spectrum,

(ii) g is almost everywhere one-to-one,

(iii) φ satisfies the geometric coincidence condition.

The Kronecker action in Theorem 5.2 is the maximal equicontinuous factor
of the R-action on Ωφ mentioned in Section 3.1; more will be said about this in
Section 7.1. Equivalence of the geometric coincidence condition with measurable
conjugacy of the tiling and Kronecker dynamical systems can be found in [30] and
[21]. The map g in Theorem 5.2 is, in general, almost everywhere m-to-one with m
equal to the maximal cardinality of a collection of segments {[xi, ji]} having the
properties: each of these segments meets Es in its interior; xi−xk ∈ Zd for all i, k;
and [xi, ji] and [xk, jk] are not coincident for i �= k. This m is the coincidence rank
of φ (see Section 3.1 for the definition and Conjecture 4.5). The geometric and super
coincidence conditions are versions of the more general overlap coincidence condi-
tion introduced in [113] for tilings of the plane and specialized to one-dimensional
tilings in [111]. Akiyama and Lee have automated an overlap coincidence algo-
rithm in [6]. According to the formalism of dual substitutions developed in [14],
dual versions of these conditions have been expressed in [14, 65, 108, 39].

5.3. The balanced pair algorithm

The following balanced pair algorithm is a purely combinatorial adaptation of over-
lap coincidence presented in [111] for application to Pisot substitutive systems.

The balanced pair algorithm for establishing pure discrete spectrum orig-
inated with [87, 83, 96]. A pair of finite words (x, y) ∈ A∗ ×A∗ is said to be a
balanced pair if the abelianizations f(x) and f(y) are equal. A coincidence is a one-
letter balanced pair (a, a). A balanced pair is irreducible if it cannot be properly
factored as a product (with respect to the multiplication (x, y)(u, v) := (xu, yv)) of
balanced pairs. Clearly, each balanced pair can be factored uniquely as a product
of irreducible balanced pairs. Suppose that u = vwv · · · is a fixed (or periodic)
word for the substitution φ. One says that the balanced pair algorithm for φ ter-
minates with coincidence if only finitely many distinct irreducible factors occur in
factorizations of all balanced pairs of the form (φn(vw), φn(wv)), n ∈ N, and for
each such occurring irreducible factor (x, y), (φk(x), φk(y)) has a coincidence in its
irreducible factorization for some k ∈ N. For more on the balanced pair algorithm,
and the theorem below, see [111].
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Theorem 5.3 (Balanced pair algorithm). Given an irreducible Pisot substitution
φ, the substitutive dynamical system (Xφ, s) has pure discrete spectrum if and only
if the balanced pair algorithm for φ terminates with coincidence.

In fact, it suffices to check termination with coincidence of the balanced pair
algorithm starting from any particular seed of the form (ij, ji), i �= j ∈ A. For this,
and extensions to the reducible setting, as well as geometric versions for tilings in
arbitrary dimension, see [86] and [32].

5.4. Coincidences in higher dimensions

There are various notions of coincidence for n-dimensional substitution tilings
which characterize pure discrete spectrum of the tiling dynamical system. We
mention a few of these here.

Modular coincidence. In the case that the underlying structure of a substitution
tiling is a lattice (this is the analog of a constant length substitution tiling in one-
dimension), it is easy to check whether or not the tiling system has pure discrete
spectrum by checking for ‘modular coincidence’, as we explain now.

Suppose that Γ =
⋃m
i=1 Γi × {i} is a primitive substitution Delone multi-

color set with expansion map Λ and that L =
⋃

1≤i≤m Γi is a lattice (that is, a

co-compact discrete subgroup of Rn). Let Li := 〈Γi − Γi〉 be the Abelian group
generated by Γi − Γi and let L′ := L1 +L2 + · · ·+Lm. For a ∈ L, Φij as in (2.4),
and f ∈ Φij , let t(f) ∈ Dij be so that f(x, j) = (Λx + t(f), i). Set

Φij [a] := {f ∈ Φij : Λy + t(f) ≡ a mod ΛL′, (5.1)

where Γj ⊂ y + L′}
= {f ∈ Φij : supp(Γj × {j}) ⊂ a + ΛL′)}.

Then ⋃
i,j≤m

⋃
f∈Φij [a]

supp(Γj × {j}) = a + ΛL′.

Let Φ[a] := ∪1≤i,j≤mΦij [a].
We say that Γ admits a modular coincidence relative to ΛL′ if Φ[a] is con-

tained entirely in one row of Φ for some a ∈ L. It is easy to see that Γ admits
a modular coincidence relative to ΛL′ if and only if (a + ΛL′) ⊂ Γi for some
1 ≤ i ≤ m.

Theorem 5.4 ([76]). Let T be a primitive substitution tiling in Rn with associated
Delone multi-color set ΓT =

⋃m
i=1(Γi ×{i}) and suppose that L =

⋃
1≤i≤m Γi is a

lattice. Let L′ = L1+ · · ·+Lm, where Li = 〈Γi−Γi〉. The following are equivalent:

(i) (ΩT ,Rn) has pure discrete spectrum.
(ii) A modular coincidence relative to ΛML′ occurs in ΦM for some M .
(iii) Each Γi is a regular model set for 1 ≤ i ≤ m.

The upper bound for the number of iterations to check modular coincidence
is given in [56] where the underlying structure is on a lattice and in [6] for more
general substitution tilings.
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Algebraic coincidences. For substitution tilings in Rn whose associated Delone sets
may not be on lattices, the notion of algebraic coincidence (defined below) gener-
alizes the notion of modular coincidence and provides an opportunity for a concise
expression of the connection between model sets and pure discrete spectrum for
substitution tiling spaces.

Let Γ be a primitive substitution Delone multi-color set with an expansive
map Λ. Let Ξ(Γ ) =

⋃
j≤m(Γj−Γj). We say that Γ admits an algebraic coincidence

if there exist M ∈ Z+ and ξ ∈ Γi for some i ≤ m such that ξ + ΛMΞ(Γ ) ⊂ Γi.

Theorem 5.5 ([75]). Let T be a primitive substitution tiling with FLC and let
Γ T =

⋃m
i=1(Γi × {i}) be an associated substitution Delone multi-color set. Then

the following are equivalent:

(1) (ΩT ,Rn) has pure discrete spectrum.
(2) Γ T admits an algebraic coincidence.
(3) Each Γi is an inter-model set.

Overlap coincidences. Unlike modular coincidence, algebraic coincidence (for sub-
stitution tilings whose associated Delone sets are not on lattices) is not so easily
checked. For the computation of pure discrete spectrum, the condition of ‘overlap
coincidence’, which we define now, proves to be more convenient.

Let T be a tiling and let

Ξ(T ) := {v ∈ Rn : there is T ∈ T with T + v ∈ T } (5.2)

be the set of return vectors for T . A triple (T, y, S), with T, S ∈ T and y ∈ Ξ(T ),
is called an overlap if supp(y + T ) ∩ supp(S) has non-empty interior.

An overlap (T, y, S) is a coincidence if y + T = S. The support of an overlap
(T, y, S) is supp(T, y, S) = supp(y+T ) ∩ supp(S). Let O = (T, y, S) be an overlap.
Recall that for a tile-substitution Φ, Φ(y + T ) = Λy +Φ(T ) is a patch of Λy + T ,
and Φ(S) is a T -patch; moreover,

supp(Λy +Φ(T )) ∩ supp(Φ(S)) = Λ(supp(T, y, S)).

For each l ∈ Z+,

Λl(O) = {(T ′,Λly, S′) : T ′ ∈ Φl(T ), S′ ∈ Φl(S),

supp(Λly + T ′) ∩ supp(S′) �= ∅}.

We say that a substitution tiling T admits an overlap coincidence if there exists
l ∈ Z+ such that for each overlap O in T , Λl(O) contains a coincidence. We recall
that the Meyer property was introduced in Section 3.2.

Theorem 5.6 ([81, Thm. 4.7 and LemmaA.9]). Let T be a primitive substitution
tiling which has the Meyer property. Then (ΩT ,Rn) has pure discrete spectrum if
and only if T admits an overlap coincidence.
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When a tiling has the Meyer property, the number of equivalence classes of
overlaps is finite. Thus, once all equivalences of overlaps are found, by applying
the substitution to each overlap it can be determined if the overlap coincidence
condition holds. When the dimension of the tiling is more than 2, however, it is not
easy to check if a given triple O = (T, y, S) is an overlap. Instead, one can consider
potential overlaps (T ′, x, S′) for which T ′ + x and S′ are within certain distance.
Then, computing how many potential overlaps come from each potential overlap
after substitution, one can tell which potential overlaps are actually overlaps by
simple computation of spectral radii. This easy procedure is justified by proving
that the (slightly modified) Hausdorff dimension of the tile boundary of the self-
affine tiling is strictly less than the dimension of the space. This leads to the
algorithm of Akiyama and Lee ([6]) for determining overlap coincidence. We recall
that Ξ(T ) is the set of return vectors for the tiling T such as defined in (5.2).

Theorem 5.7. Let T be a primitive substitution tiling for which Ξ(T ) is a Meyer set
and the digit sets of the tile substitution are provided. Then there is a terminating
algorithm determining overlap coincidence.

5.5. Beta-numeration: Property (W) and algebraic coincidences

We now return to the one-dimensional case in the particular framework of beta-
numeration with the introduction of the condition called Property (W), which,
while not directly stated in terms of coincidences, is nonetheless closely related to
the notion of algebraic coincidence introduced in the previous section.

The β-expansion dβ(x) is finite, if there is n0 such that dn(x) = 0 for
n > n0. The image by π (defined in (2.6)) of such an element is written as
d−m(x)d−m+1(x) · · · dn0(x) for simplicity. Let Fin(β) denote the set of all x ≥ 0
whose β-expansion is finite. We consider several properties concerning Fin(β).

• (W) For each x ∈ Z[1/β] ∩ [0,∞) and each ε > 0, there are y, z ∈ Fin(β)
with z < ε and x = y − z.

• (H) Z[1/β] ∩ [0, 1) ⊂ (Fin(β) ∩ [0, β))− (Fin(β) ∩ [0, 1)).

The conditions (W) and (H) are equivalent (see [9]). The notation (H) derives
from Hollander [63], who showed that the slightly stronger property Z[1/β] ∩
[0, 1) = (Fin(β) ∩ [0, 1))− (Fin(β) ∩ [0, 1)) implies that (Xφβ

, s) has pure discrete
spectrum when Xβ is a subshift of finite type and φβ is irreducible.

Recall from Section 3.5 that if β is a Pisot unit of degree d then {T (xF ) :
xF finite} is a multi-tiling ofRd−1. The system (Ωφβ

,R) has pure discrete spectrum
if and only if the degree (multiplicity) of this multi-tiling is one. If φβ is irreducible,
that is, if d = n, this is equivalent to saying that the system (Xφβ

, s) has pure
discrete spectrum.

We now introduce a topological criterion:

• (Ex) There is an exclusive inner point in T (xF ) for some finite fractional part
xF (i.e., π(xF ) ∈ Z[1/β] ∩ [0, 1)) of an x ∈ Xβ .

Here an exclusive inner point means it does not lie in any tile T (yF ) with yF �= xF .
It is shown in [3] that the degree of the multi-tiling is one if and only if (Ex) holds,



58 S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel

and that (W) and (Ex) are equivalent, that is, (W), (Ex), and pure discreteness
of (Ωφβ

,R) are equivalent.
Indeed, let us call an element of P(xF ) finite if it has the form 0∞y. The

map π extends to such finite elements and ΓxF = {π(y) | 0∞y ∈ P(xF )} is a
set of control points for the tiling of the half-line obtained by iterating the tile
substitution (2.7) on the tile π(F(xI )) with I = · · · 000. Let P = {x ∈ Z[β] ∩
[0, 1) | (T nβ (x))n=0,1,... is purely periodic}. When β is a Pisot number, we easily

see that P is a finite set and for each x ∈ Z[1/β] ∩ [0,∞) there is k ∈ Z such that
T kβ (x) ∈ P. In fact, there is a uniform k so that every non-negative element z in

ΓxF −ΓxF satisfies T kβ (z) ∈ P. From this we are able to see the connection between

(Ex) and the algebraic coincidence formulated by Lee [75] (and discussed in Section
5.4) as follows. By Proposition 1 of [3], (Ex) is equivalent to the existence of an
element x ∈ Z[β] and a constantK0 so that π(x) ∈ P(0∞) and π(βKu+x) ∈ P(0∞)
for any integer K ≥ K0 and any u ∈ P. One readily sees that this condition is a
special form of algebraic coincidence of the one-dimensional tiling. Thus Property
(W) is equivalent to pure discreteness of the translation action on the hull of a
one-dimensional tiling generated by β-expansion.

On the other hand, once we have a Pisot dual tiling (see Section 3.5), i.e.,
the degree of the dual multi-tiling is one, we can immediately show algebraic
coincidence for such a (d− 1)-dimensional tiling. We see that π(F(0∞)) = Z[β] ∩
[0, 1) and Φ(Z[β]∩ [0, 1)) is the union of control points of Pisot dual tilings. Taking
algebraic conjugates into consideration, to have algebraic coincidence, we only
need to find another constant K1 and an element x ∈ Z[β] ∩ [0, 1) such that
x+ β−K(Z[β] ∩ [0, 1)−Z[β] ∩ [0, 1)) ⊂ Z[β] ∩ [0, 1) for K ≥ K1. This turns out to
be trivial from the Parry condition introduced in Section 2.4.

Summing up, the Pisot Substitution Conjecture for β-substitutions is equiv-
alent to (W) which is equivalent to the associated dual multi-tiling having degree
one. Once the multi-tiling has degree one, the associated (d−1)-dimensional tiling
dynamical system is pure discrete, as is (Ωφβ

,R).

6. Partial results toward pure discrete spectrum

Substitution case. Conjectures 4.1 and 4.2 have been established for symbolic
substitutions on two letters ([111]) and are known to hold for some families of
substitutions, such as, e.g., the Arnoux–Rauzy substitutions ([32, 38, 41, 23]) and
the substitutions associated with the Brun and Jacobi-Perron continued fraction
algorithms ([40, 64, 41, 23]). They have also been checked, mainly by the methods
of Section 5.3, for many more-or-less randomly chosen substitutions and special
cases of substitutions on three letters ([7]). Otherwise, they remain wide open.

The Coincidence Rank Conjecture 4.5 is verified for degree one (that is, when
the expansion factor λ is an integer) in [33] and for all Pisot λ in the case that
the coincidence rank is two in [22]. Thus there are no counterexamples to the
Homological Pisot Substitution Conjecture with coincidence rank two and any
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coincidence rank two counterexample to the Pisot Substitution Conjectures 4.1
and 4.2 must have an asymptotic cycle of arc components.

Beta-numeration case. The context of beta-substitutions, being narrower, has seen
more progress. Here we list known sufficient conditions for the validity of the beta-
substitution case of the Pisot Substitution Conjecture which make use only of

algebraic conditions on the Pisot number β. Let xd −
∑d−1
i=0 kix

i be the minimal
polynomial of β. We recall that Property (W), which is equivalent to pure discrete
spectrum of the tiling system, has been introduced in Section 5.5.

• The condition kd−1 >
∑d−2
i=0 |ki| implies (W) (see [9]).

• Pisot units with d ≤ 3 satisfy (W) (see [9]).
• The condition dβ(1−) = (c1c2 · · · cm)∞ implies (W) (see [23]).

Moreover, recall that Fin(β) denotes the set of all x ≥ 0 whose β-expansion
is finite. In addition to the (W) and (H) properties introduced in Section 5.5, we
consider two stronger properties concerning Fin(β):

• (F) Fin(β) ⊃ Z[1/β] ∩ [0,∞);
• (PF) Fin(β) ⊃ Z+[1/β] where Z+ = Z ∩ [0,∞).

The conditions (F) and (PF) imply (W) (see [9]). They were introduced by
Frougny and Solomyak in [57] who proved the following:

• c1 ≤ c2 ≤ c3 · · · implies (F) or (PF) ([57]).

Those β with property (PF) but not (F) are characterized in [4].

The finiteness condition (F) means all possible candidates have finite β-
expansion and it is equivalent to state Fin(β) = Z[1/β] ∩ [0,∞). It is useful in
many situations with ergodic and number theoretical flavor: Akiyama showed in
[1] that every sufficiently small rational number has purely periodic Tβ-orbit under
(F) and, in [93], Praggastis constructed Markov partitions for toral automorphisms
related to β-expansion under condition (F).

The property Z+ ⊂ Fin(β) implies that β is a Pisot number (Proposition 1
in [2]), thus a number β satisfying (F) is a Pisot number, but the converse is false.
For example, if β has property (F) then it cannot have another positive conjugate.
The characterization problem of Pisot numbers with property (F) is difficult and
has been transformed into a problem of shift radix systems (see [12, 11]). The idea
of a shift radix system is essentially due to Gilbert [59] and Hollander [63] (see
[8]). For a version of the finiteness property (F) in the symbolic substitution case
and its relation with topological properties of Rauzy fractals, see [35, 108, 39].

7. The Pisot property and hyperbolicity in higher dimensions

For the R-action on a one-dimensional substitution tiling space to have pure dis-
crete spectrum it is necessary that the expansion λ be a Pisot number ([113]).
Generally, for the Rn-action on an n-dimensional substitution tiling space to have
pure discrete spectrum it is necessary that the total number (with multiplicity) of
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algebraic conjugates η of eigenvalues of the linear expansion Λ with |η| > 1, equals
n. The term Pisot property is designed to capture this condition.

7.1. Pisot families and the Pisot property

First let us remark that if Φ is an n-dimensional primitive tiling substitution with
expansion Λ then the eigenvalues of Λ are all algebraic integers, so speaking of
their algebraic conjugates makes sense (see [69] for the diagonalizable case and
[72] for the general result). Let J [λ, r] denote a real Jordan block with either real
eigenvalue λ and size r× r or complex eigenvalues λ, λ̄ and size 2r× 2r. Then Λ is
said to have the Perron property if, whenever J [λ, r] occurs in the real Jordan form
of Λ with multiplicity k and λ′ is an algebraic conjugate of λ with |λ′| ≥ |λ|, then
J [λ′, r] is also a block in the real Jordan form of Λ with multiplicity at least k (we
consider J [λ, r] and J [λ̄, r] to be the same). The terminology is due to Kwapisz
who proves in [72], generalizing a result of Kenyon and Solomyak [69], that linear
expansions for primitive tile substitutions must have the Perron property. Let us
say that Λ has the Pisot property if, whenever J [λ, r] is a block in the real Jordan
form of Λ with multiplicity k and λ′ is an algebraic conjugate of λ with |λ′| ≥ 1,
then J [λ′, r] also occurs in the real Jordan form of Λ and with multiplicity k.

If, in the definition of the Pisot property, one drops reference to Jordan blocks
and speaks instead only of eigenvalues, the Pisot family condition results (we
caution the reader that the definition of Pisot family is somewhat variable in the
literature). But the Pisot family condition plus the Perron property is equivalent
to the Pisot property, so in light of the Kwapisz result cited above, if Λ is the
expansion for a primitive FLC tile substitution, then Λ has the Pisot property if
and only if Λ satisfies the Pisot family condition.

Every primitive FLC substitution tiling dynamical system (ΩΦ,Rn) has a

maximal equicontinuous factor (T̂,Rn) with factor map g : ΩΦ → T̂ with g a.e.

m-to-1 for some m ∈ N∪{∞}, where T̂ is a torus or solenoid and the Rn-action is a
Kronecker action. The number m = cr(Φ) is the coincidence rank of Φ ([28]). Also,
by [113, 29, 21], for one-dimensional primitive tile substitutions Φ, cr(Φ) < ∞ if
and only if the expansion λ for Φ is a Pisot number.

Conjecture 7.1. If Φ is a primitive FLC tile substitution then cr(Φ) < ∞ if and
only if Φ has the Pisot property.

7.2. Pisot families and discrete spectrum

We sketch below the sufficiency of a strong form of the Pisot property in Conjecture
7.1; it is reasonable to expect that the full conjecture will follow along the lines
of [72].

Let us consider two additional conditions on the expansion Λ:

[A1] The expansion map Λ is diagonalizable over C.
[A2] All eigenvalues of Λ are algebraic conjugates with the same multiplicity.
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Let J be the multiplicity of each eigenvalue of Λ. After a linear change of
coordinates, we may write

Λ =

⎡⎢⎣ Ψ1 · · · O
...

. . .
...

O · · · ΨJ

⎤⎥⎦
where Ψj = Ψ for any 1 ≤ j ≤ J , Ψ is an m×m matrix, and O is the m×m zero
matrix. For each 1 ≤ j ≤ J , let

Hj = {0}(j−1)m × Rm × {0}n−jm .

We define αj ∈ Hj such that for each 1 ≤ d ≤ n,

(αj)d =

{
1 if (j − 1)m + 1 ≤ d ≤ jm;
0 else .

(7.1)

In the following theorem, which is key for the proof of Theorem 7.3, C is a
set of control points for T (see Section 2.3).

Theorem 7.2 ([78]). Let T be a primitive FLC substitution tiling of Rn with
expansion Λ satisfying [A1] and [A2]. Then there exists a linear isomorphism
ρ : Rn → Rn such that

ρΛ = Λρ and C ⊂ ρ(Z[Λ]α1 + · · ·+ Z[Λ]αJ ) , (7.2)

where the αj, 1 ≤ j ≤ J , are as above.

As a consequence of the containment (7.2), one has the following rigid struc-
ture property of T (we recall that Ξ(T ) stands for the set of return vectors of the
tiling T as defined in (5.2)):

Ξ(T ) ⊂ ρ(Z[Λ]α1 + · · ·+ Z[Λ]αJ ). (7.3)

Theorem 7.3 ([78]). Let T be a primitive FLC substitution tiling of Rn with ex-
pansion Λ satisfying [A1] and [A2]. Then the following are equivalent.

(i) Spec(Λ) is a Pisot family: if λ ∈ Spec(Λ) is of multiplicity k and λ′ is a
conjugate of λ with |λ′| ≥ 1, then λ′ ∈ Spec(Λ) and λ′ has multiplicity at
least k.

(ii) The set of eigenvalues of (ΩT ,Rn) is relatively dense in Rn.
(iii) (ΩT ,Rn) is not weakly mixing (i.e., it has a non-zero eigenvalue).
(iv) Ξ(T ) is a Meyer set.

Under the assumptions of Theorem 7.3, it is shown in [28] that the coincidence
rank of the underlying substitution is finite, establishing sufficiency in Conjecture
7.1 in case [A1] and [A2] hold.

Proof. Let us sketch the proof of Theorem 7.3. The proof of (i)⇒ (ii) is based on
the rigid structure property of T ; we sketch the argument in a simple case. Assume
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that Λ has only real eigenvalues, λi, of multiplicity one and T has no translational
periods. There is then a vector α ∈ Rn such that C ⊂ Z[Λ]α. Observe that

Ξ(T ) ⊂ C − C ⊂ Z[Λ]α.

The set of control points C is relatively dense, consequently the vector α :=
[a1, . . . , an]

T must have all non-zero coordinates. Consider now the vector β :=
[a−11 , . . . , a−1n ]T . We claim that the set {Λjβ}n−1j=0 is contained in the set of eigenval-

ues of (ΩT ,Rn). This set is a basis for Rn (over R), and, since the set of eigenvalues
forms an additive group, we may conclude that the eigenvalues are relatively dense.
For x = Λiα, γ = Λjβ we have:

〈Λlx,γ〉 = 〈Λl+iα,Λjβ〉 =
n∑
k=1

λl+i+jk −−−→
l→∞

0 (mod Z). (7.4)

The convergence follows from the Pisot family property: the numbers λ1, . . . , λn
are all roots of the same integer polynomial, and the ‘missing roots’ in (7.4) are
all less than one in modulus. The sum of (l + i + j)th powers over all roots of an
integer polynomial is an integer, yielding (7.4). It follows from (7.4) that

lim
l→∞

e2πi〈Λ
lx,γ〉 = 1 for all x ∈ Ξ(T ), (7.5)

which means that γ ∈ Rd is an eigenvalue from [113].
The proof of (ii) ⇒ (iii) is trivial. The necessity (iii) ⇒ (i) was proved by

Robinson [99] in a more general case; it is a consequence of [113]. For the equiva-
lence of (iv) with the rest, see [77]. �

7.3. Examples

The tile substitutions of the following two examples are primitive and two-dim-
ensional but without FLC. Under the additional assumptions [A1] and [A2] on a
substitution, FLC implies the rigid structure property. Example 7.5 shows that the
converse is not true, hence substitution tilings with the rigid structure property
constitute a strictly larger class than substitution tilings with FLC. The rigid
structure property (7.3) is easy to check from the digit sets of the substitution and
one can study various spectral properties of tiling systems in this larger class.

Example 7.4 ([68, 78]). Consider the substitution tiling T in R2 with a single

prototile T and expansion Λ =

(
3 0
0 3

)
such that

ΛT =
⋃
d∈D

(T + d)

where

D = {(0,−1), (0, 0), (0, 1), (−1,−1), (−1, 0), (−1, 1), (1,−1+ a), (1, a), (1, 1 + a)}
is a digit set and a ∈ R is irrational. Note that

Ξ(T ) ⊂ Z[Λ](1, 0) + Z[Λ](0, 1) + Z[Λ](0, a)
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Figure 2. The non-FLC Frank–Robinson substitution.

and Z[Λ](1, 0)+Z[Λ](0, 1)+Z[Λ](0, a) is the minimal module over Z[Λ] containing
Ξ(T ). Thus T does not have the rigid structure property.

Example 7.5 ([53]). The Frank–Robinson substitution is pictured in Figure 2, in
which b, the scalar expansion, is the largest (and non-Pisot) root of x2−x−3 = 0.
The digit sets Dij satisfy Dij ⊂ Z[b](1, 0) + Z[b](0, 1). Hence

Ξ(T ) ⊂ Z[b](1, 0) + Z[b](0, 1)

and the rigid structure property holds. See also [16, Example 5.8] for a discussion
of the Frank–Robinson tiling and see [94] for more examples of non-FLC ‘fusion’
tilings.

7.4. The Pisot property and hyperbolicity

In one dimension, the construction of tile substitutions is purely combinatorial.
In higher dimensions, there is geometry to deal with (tile shapes) making it much
more difficult to construct examples. And then it is more time-consuming to check
their spectral properties. For these reasons, possible extensions of the Pisot Sub-
stitution Conjecture to higher-dimensional tile substitutions have not been well
vetted. We nevertheless discuss the possibilities. The most straightforward route is:

Conjecture 7.6. Suppose that Φ is an n-dimensional primitive FLC tile substitution
whose expansion Λ has the Pisot property. If the characteristic polynomial of the
substitution matrix MΦ is irreducible, then (ΩΦ,Rn) has pure discrete spectrum.

It seems to be a fairly stringent requirement, in higher dimensions, that the
characteristic polynomial of the substitution matrix MΦ be irreducible and the
irreducibility hypothesis suffers the same unnaturality as in one dimension (a dif-
ferent ‘presentation’ of the tiling space may well change the irreducibility of the
characteristic polynomial of the substitution matrix). By considering a homolog-
ical condition instead, we will at least be led to an interesting connection with
hyperbolic dynamics. Suppose that Φ is an n-dimensional primitive FLC tile sub-
stitution with expansion Λ. Let us say that Φ is unimodular if every eigenvalue
of Λ is an algebraic unit, and hyperbolic if no eigenvalue of Λ has an algebraic
conjugate on the unit circle. Let 〈Ξ(Φ)〉, called the module of generalized return
vectors of Φ, be the additive subgroup of Rn generated by the return vectors Ξ(Φ)
(that is, Ξ(Φ) := Ξ(T ) for any T ∈ ΩΦ). If v ∈ Ξ(Φ), say T, T − v ∈ T ∈ ΩΦ,
then Φ(T ),Φ(T ) − Λv ⊂ Φ(T ) ∈ ΩΦ, so that Λv ∈ Ξ(Φ). Thus Λ induces a ho-
momorphism Λ : 〈Ξ(Φ)〉 → 〈Ξ(Φ)〉. If Φ is unimodular, then 〈Ξ(Φ)〉 is a finitely
generated free Z-module: let D = D(Φ) := rank(〈Ξ(Φ)〉). The following is proved
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in [27] using the global shadowing technique in hyperbolic dynamics pioneered by
Franks [54].

Theorem 7.7 ([27]). If Φ is a primitive n-dimensional FLC unimodular hyperbolic
tile substitution with linear expansion Λ, and module of generalized return vectors
〈Ξ(Φ)〉, there is a continuous and boundedly finite-to-one map G : ΩΦ → TD

so that G ◦ Φ = FA ◦ G. Here A is an integral unimodular hyperbolic matrix
representing Λ : 〈Ξ(Φ)〉 → 〈Ξ(Φ)〉, and FA : TD → TD is the hyperbolic toral
automorphism associated with A. The map G is topologically essential in that the
homomorphism G∗ : H1(TD) → H1(Ωφ) induced on first cohomology is injective
and there is r ∈ N so that G is a.e. r-to-1 with respect to the translation invariant
measure μ on ΩΦ.

If the unstable dimension of A (the sum of the dimensions of all the general-
ized eigenspaces of A corresponding to eigenvalues of modulus greater than one) is
greater than n, then G does not semi-conjugate the translation action on ΩΦ with
a Kronecker action by Rn on TD: the map v 	→ G(T − v) wiggles around in a very
jagged (probably nowhere smooth) manner in the unstable manifold of G(T ) in
TD. If the unstable dimension of A equals n, leaving no room for such wiggling, it
seems plausible that G would also semi-conjugate Rn-actions. This appears to be
what happens if Λ has the Pisot property (note that if Λ has the Pisot property,
then Φ is hyperbolic).

Let us partition the eigenvalues of Λ into conjugacy classes Fi and, for each
i, let di be the algebraic degree of the elements of Fi and let Ji be the maximum
multiplicity (as eigenvalues of Λ) of the elements of Fi. The generalized degree
of Λ is

d(Λ) :=
∑

Jidi.

One can show that D(Φ) ≥ d(Λ). Thus, if Λ has the Pisot property, D(Φ) =
d(Λ) forces the unstable dimension of A to be n, the dimension of the substitution.
We know of no Pisot property substitution with D(Φ) > d(Λ).

Theorem 7.8 ([27]). Suppose that Φ is a primitive FLC n-dimensional unimodular
substitution whose expansion has the Pisot property. If the rank D of the module
〈Ξ(Φ)〉 of generalized return vectors for Φ equals the generalized degree d(Λ) of Λ,
then the map G : ΩΦ → TD of Theorem 7.7 is surjective and also semi-conjugates
the translation action on ΩΦ with a Kronecker action by Rn on TD. Furthermore,
G is the maximal equicontinuous factor map for (ΩΦ,Rn). That is, G=g, and hence
r = cr(Φ) <∞.

In the proof of Theorem 7.7 a universal abelian cover, Ω̃Φ, is constructed and
the map Φ on ΩΦ is lifted to Φ̃ on Ω̃Φ. It is shown that the structure relation for
G, denoted ∼gs, is the global shadowing relation: G(T ) = G(T ′) if and only if

T ∼gs T ′ if and only if there are T̃ , T̃ ′ ∈ Ω̃Φ, lying over T , T ′ so that the distance

between Φ̃k(T̃ ) and Φ̃k(T̃ ′) is uniformly bounded for k ∈ Z. It is a fundamental
theorem of Veech [119] that the structure relation for the maximal equicontinuous
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factor map g is regional proximality: tilings T , T ′ ∈ ΩΦ are regionally proximal,
T ∼rp T ′, if and only if, for each ε > 0 there are S,S ′ ∈ ΩΦ and v ∈ Rn so
that: (i) d(T ,S) < ε, (ii) d(T ′,S ′) < ε, and (iii) d(S − v,S ′ − v) < ε. (For a
general discussion of regional proximality in tiling spaces see [28].) In the context
of Theorem 7.7 one can show that T ∼gs T ′ =⇒ T ∼rp T ′. Under the hypotheses
of Theorem 7.8, the global shadowing and regional proximal relations are the same.

The rank of 〈Ξ(Φ)〉 is bounded above by the dimension of H1(ΩΦ) so, in
light of Theorem 7.8, a natural generalization to higher dimensions of the one-
dimensional Homological Pisot Substitution Conjecture is:

Conjecture 7.9. Suppose that Φ is an n-dimensional primitive FLC unimodular
tile substitution whose expansion Λ has the Pisot property and has generalized
degree d(Λ). If dim(H1(ΩΦ)) = d(Λ), then (ΩΦ,Rn) has pure discrete spectrum.

An extension of this to the more general hyperbolic setting is:

Conjecture 7.10. Suppose that Φ is a primitive FLC unimodular and hyperbolic
tile substitution and that the induced isomorphism Φ∗ : H1(Ωφ) → H1(Ωφ) is
hyperbolic on H1(ΩΦ). There is then a continuous, μ-a.e. one-to-one, topologi-
cally essential map G : ΩΦ → TD, D = dim(H1(ΩΦ)), and a hyperbolic toral
automorphism FA : TD → TD, with G ◦ Φ = FA ◦G.

Just as it is rare that characteristic polynomials of substitution matrices are
irreducible in higher dimensions, it is unusual for the first cohomology of the tiling
space to have the minimal dimension required to accommodate the generalized
degree of the expansion. This limits the range of the above conjectures. They can
be strengthened, as can Conjectures 4.4 and 4.5, by replacing the cohomology of ΩΦ

by its essential cohomology, which does not see, for example, the contributions of
asymptotic cycles (see [27]). The resulting conjectures imply the non-homological
conjectures in the unimodular case.
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[77] J.-Y. Lee and B. Solomyak, “Pure point diffractive substitution Delone sets have
the Meyer property,” Discrete Comput. Geom., vol. 39, no. 1-3, pp. 319–338, 2008.

[78] J.-Y. Lee and B. Solomyak, “Pisot family self-affine tilings, discrete spectrum, and
the Meyer property,” Discrete Contin. Dyn. Syst., vol. 32, no. 3, pp. 935–959, 2012.

[79] J.-Y. Lee, D. Lenz, and B. Sing, “Strongly almost periodic measures and diffraction
theory for modulated structures.” Preprint, 2015.

[80] J.-Y. Lee, R.V. Moody, and B. Solomyak, “Pure point dynamical and diffraction
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Laboratoire d’Informatique Algorithmique:
Fondements et Applications,
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Cohomology of Hierarchical Tilings
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Abstract. We go over different versions of tiling cohomology (Čech, pattern-
equivariant, PV, quotient) with emphasis on the inverse limit constructions
used to compute these cohomologies. We then consider the uses of tiling coho-
mology to distinguish spaces, to understand deformations, and to help under-
stand maps between tiling spaces. The emphasis of this chapter is on substitu-
tion tilings and their generalizations, but the underlying ideas apply equally
well to cut-and-project tilings and to tilings defined by local matching rules.
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Algebraic invariants, such as homotopy groups, homology groups, and cohomology
groups, are used to study topological spaces and maps between them. The best-
known of these is homology. In a homology theory, we associate Abelian groups
Ck(X) of chains to a topological space X , and define a boundary operator ∂k :
Ck(X) → Ck−1(X) such that ∂k−1 ◦ ∂k = 0. Chains in the kernel of ∂k are
called closed, and chains in the image of ∂k+1 are called boundaries. The kth
homology of X in this setup is Hk(X) = Ker(∂k)/ Im(∂k+1). A continuous map
f : X → Y induces push-forward maps f∗ : Ck(X) → Ck(Y ). (Strictly speaking
there is one such map for each integer k, but they are all denoted f∗). This in turn
induces a map (also denoted f∗) from Hk(X) to Hk(Y ). Homotopic maps induce
the same map on homology. Homology groups can then help us classify spaces,
and the pushforward f∗ : Hk(X) → Hk(Y ) helps classify maps up to homotopy,
and hence the relation between X and Y . There are many different homology
theories, including simplicial, singular and cellular. For CW complexes they all
yield isomorphic groups, so we often get lazy and speak of the homology of a space
X without specifying the theory.

In a cohomology theory, we associate Abelian groups Ck(X) of cochains to X

and define a coboundary operator δk : Ck(X)→ Ck+1(X) such that δk+1 ◦ δk = 0.

Given such a setup, the kth cohomology group ofX is Hk(X) = Ker(δk)/ Im(δk−1).
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A continuous map f : X → Y induces pullback maps f∗ : Ck(Y ) → Ck(X) and

f∗ : Hk(Y )→ Hk(X).
One way to get a cohomology theory is to start with a homology theory and

dualize everything1. We can define Ck(X) to be the dual space of Ck(X), and δk
to be the transpose of ∂k+1. That is, if α is a k-cochain and c is a (k + 1)-chain,
then

(δkα)(c) := α(∂k+1c), (1)

since the boundary ∂c of c is a k-chain2. This is how simplicial, singular, and
cellular cohomology are defined. However, there are also cohomology theories that
are defined intrinsically rather than via homology. In de Rham cohomology, if
X is a smooth manifold, then Ck(X) is the set of k-forms on X , and δk is the
exterior derivative. In Čech cohomology, the cochains are defined via open covers
of X . Regardless of the setup, we call elements of Ker δk co-closed and elements
of Im δk−1 co-exact , and define

Hk(X) = (Ker δk)/(Im δk−1). (2)

Since the 1990s, Čech cohomology has been used to study tiling spaces3. This
began with work of Kellendonk [Kel1], and really took off after the seminal work
of Anderson and Putnam [AP]. This chapter will address three essential questions,
all of which have generated a host of papers: (1) What is tiling cohomology? (2)
How do you compute it? (3) What is it good for? Most of this chapter is review
material, but the content of Sections 3.1.1 and 3.1.2 is new and is joint work with
John Hunton.

1. What is tiling cohomology?

Many algebraic invariants that are used to classify topological spaces do not work
very well with tiling spaces. Tiling spaces (with finite local complexity) are “match-
box manifolds”; foliated spaces that locally look like the product of Euclidean space
and a Cantor set. Tiling spaces have uncountably many path components. Most
of the standard algebraic invariants are then useless, since they look at each path
component separately, without regard to how the path components approximate
one another. For instance, in singular homology, H0 of a tiling space is a free group
with uncountably many generators, while all higher homology groups vanish. The
fundamental group and all higher homotopy groups also vanish.

To get around these difficulties, we need to employ less familiar cohomology
theories, especially Čech cohomology, which is well adapted to tiling theory. In
Subsection 1.1 we describe how to view tiling spaces as inverse limits. In Subsec-
tion 1.2 we describe Čech cohomology and explain how to view the cohomology

1This is where the prefix “co” for objects related to cohomology comes from.
2When the dimension of a chain or cochain is clear, we often omit the subscript from ∂k or δk .
3All tilings in this chapter will be assumed to have finite local complexity, and in particular to
have tiles that meet full-edge to full-edge. Cohomology can also be used to study tiling spaces of
infinite local complexity, but both the calculations and the interpretations are more complicated.
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of an inverse limit space. In Subsection 1.3 we go over pattern-equivariant coho-
mology. This is a theory, isomorphic to Čech cohomology, in which the cochains
and cocycles can be viewed as functions on a single tiling. PV cohomology, de-
scribed in subsection 1.4, is another reformulation of the Čech complex, only now
the cochains are functions on Cantor sets. Finally, in subsection 1.5 we describe
quotient cohomology, an analogue of relative cohomology that is very useful in
computations.

1.1. Inverse limit spaces

Let Γ0,Γ1,Γ2, . . . be a sequence of topological spaces, and for each n > 0 let let
ρn : Γn → Γn−1 be a continuous map. The inverse limit lim←−(Γ

n, ρn) is a subset of

the product space
∏
n

Γn. It is the set of all sequences (x0, x1, x2, . . .) ∈
∏
n

Γn such

that for each n > 0, ρn(xn) = xn−1. The spaces Γ
n are called approximants to the

inverse limit, since knowing xn ∈ Γn determines the first n+1 terms (x0, . . . , xn) in
the sequence, and thus approximates the entire sequence in the product topology.

A simple example is the dyadic solenoid Sol2. Each Γn is the circle R/Z,
and each ρn is the doubling map. A point in Sol2 = lim←−(S

1,×2) is a point x0 on
the unit circle, together with a choice between two possible preimages x1, another
choice between possible preimages x2 of x1, another choice of x3, etc. Infinitely
many discrete choices make a Cantor set, and Sol2 is a Cantor set bundle over the
circle.

There are many descriptions of tiling spaces as inverse limits, and we will
present a few of the constructions in Section 2. If the tilings have finite local
complexity, then the approximants are branched manifolds or branched orbifolds
[AP, BBG, Sa1]. Even if the tilings do not have finite local complexity, it is usually
possible to construct reasonable approximants. The approximants Γn parametrize
the possible restrictions of a tiling to a ball of radius rn, with lim

n→∞
rn = ∞, and

the maps ρn are obtained by restricting the tiling to a smaller region. A point in
the inverse limit is a set of consistent instructions for tiling bigger and bigger balls
around the origin, which is tantamount to a tiling of the entire plane.

1.2. Čech cohomology

The precise definition of the Čech cohomology Ȟ∗(Ω) of a topological space Ω
involves the combinatorics of open covers of Ω, and how the combinatorics change
with refinements of the open covers. The (complicated!) details can be found in
an algebraic topology text [BT, Hat, Sa3] and need not concern us here. What do
concern us are some standard properties of Čech cohomology.

Theorem 1.1. If X is a CW complex, then the Čech cohomology Ȟ∗(X) is naturally
isomorphic, as a ring, to the singular cohomology H∗(X), and also to the cellular
cohomology. If X is a manifold, then the Čech cohomology with real coefficients is
isomorphic to the de Rham cohomology H∗dR(X).
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Recall that if we have a sequence G0, G1, . . . of groups, and a collection of
homomorphisms η∗n : Gn → Gn+1, then the direct limit lim−→(Gn, ηn) is the disjoint

union of the Gn’s, modulo the relation that xn ∈ Gn is identified with ηn(xn) ∈
Gn+1. Every element x ∈ lim−→(Gn, ηn) is the equivalence class of an element of
an approximating group Gn; there are no additional elements “at infinity”. For
instance, Z[1/2] := lim−→(Z,×2) is isomorphic to the set of dyadic rational numbers
whose denominators are powers of 2. The element k ∈ Gn is associated with the
rational number k/2n, and k ∈ Gn equals 2k ∈ Gn+1 (as it must). The rational
number 5/16 can be represented as 5 ∈ G4, 10 ∈ G5, or 20 ∈ G6, etc., but has no
representative in G0, G1, G2 or G3.

Theorem 1.2. If Ω is the inverse limit lim←−(Γ
n, ρn) of a sequence of spaces Γn under

a sequence of maps ρn : Γn → Γn−1, then Ȟ∗(Ω) is isomorphic to the direct limit
lim−→(Ȟ∗(Γn), ρ∗n+1).

In other words, all cohomology theories on a nice space are the same, and the
Čech cohomology of an inverse limit is the direct limit of the Čech cohomologies
of the approximants.

This is how tiling cohomology is most frequently viewed in practice. Every
element of Ȟ∗(Ω) can be represented by a class in Ȟk(Γn) on some approximant
Γn, and hence by a singular or cellular cochain on Γn. Instead of working with
arbitrary open covers of the tiling space itself, we write everything in terms of the
cells that compose the approximants.

As an example, consider the dyadic solenoid. H0(S1) = H1(S1) = Z. Since ρn
wraps the circle twice around itself, ρ∗n is the identity on H0 and multiplication by
2 on H1. Thus Ȟ0(Sol2) = lim−→(Z,×1) = Z and Ȟ1(Sol2) = lim−→(Z,×2) = Z[1/2].

If we view S1 as consisting of one 0-cell and one 1-cell, then for each m ≥ n, the
element 2−n ∈ Ȟ1(Sol2) can be represented by a cochain on Γm that evaluates to
2m−n on the 1-cell.

1.3. Pattern-equivariant cohomology

Tiling cohomology can also be understood in terms of the properties of a single
tiling of T ∈ Ω. This approach, called pattern-equivariant (PE) cohomology, was
developed by Kellendonk and Putnam [Kel2, KP] using differential forms, and
extended to integer-valued cohomology in [Sa2].

Suppose that f : Rd → R is a smooth function. We say that f is pattern-
equivariant (or PE) with radius R if the value of f(x) depends only on what the

tiling T looks like in a ball of radius R around x. That is, if x, y ∈ Rd, and if T−x
and T − y agree exactly on a ball of radius R around the origin, then f(x) must
equal f(y). A function is called strongly PE if it is PE with some finite radius R. A
function is weakly PE if it and all of its derivatives are uniform limits of strongly
PE functions.

PE forms are defined similarly. Let ΛkPE(T) denote the k-forms on Rd that
are strongly PE with respect to the tiling T. It is easy to see that the exterior
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derivative dk maps ΛkPE(T) to Λk+1
PE (T), and we define

Hk
PE(T,R) = (Ker dk)/(Im dk−1). (3)

Theorem 1.3 ([KP]). If T is a tiling with finite local complexity with respect to

translations, and if Ω is the continuous hull of T, then Hk
PE(T,R) is naturally

isomorphic to the Čech cohomology of Ω with real coefficients, denoted Ȟk(Ω,R).

To get a PE interpretation of integer-valued cohomology, we use the fact that
a tiling T is itself a decomposition of Rd into 0-cells (vertices), 1-cells (edges). etc.
A PE k-cochain α is a function that assigns an integer to each oriented k-cell in a
PE way. More precisely, there must be a radius R such that, if c1 and c2 are two
k-cells with centers of mass x and y, and if T−x and T−y agree on a ball of radius
R around the origin, then α(c1) = α(c2). (For integer-valued functions, there is

no distinction between strong and weak pattern-equivariance.) Let Ck
PE(T) denote

the set of PE k-cochains. Instead of the exterior derivative, we consider the cellular
coboundary map δk that maps Ck

PE(T) to Ck+1
PE (T), and define

Hk
PE(T) = (Ker δk)/(Im δk−1). (4)

Theorem 1.4 ([Sa2]). If T is a tiling with finite local complexity with respect to

translations, and if Ω is the continuous hull of T, then Hk
PE(T) is naturally iso-

morphic to the Čech cohomology of Ω with integer coefficients.

Sketch of proof. T induces a map π from Rd to Ω, sending x ∈ Rd to the tiling
T − x. Composing with the natural projection from Ω to each approximant Γn,
we obtain a sequence of maps πn : Rd → Γn. The orbit of T is dense in Ω, so
these maps are surjective. Since Γn parametrizes the central patch of a tiling, a
function on Rd is (strongly) pattern-equivariant if and only if it is the pullback of a
function on one of the approximants Γn, and the same goes for cochains. Studying
PE cochains of arbitrary radius is equivalent to studying cochains on Γn and
taking a limit as n→∞. In other words, Hk

PE(T) = lim−→Hk(Γn) � Ȟk(Ω). �

Example 1. Let T be a Fibonacci tiling . . . babaabaa . . . of R by long (a) and short
(b) tiles. Let ia be a 1-cochain that evaluates to 1 on each a tile and 0 on each
b tile, and let ib evaluate to 1 on each b and to 0 on each a. Since there are no
2-cells, δia = δib = 0, so ia and ib define classes in H1

PE(T). Once we develop the
machinery of Barge–Diamond collaring, we will see that these classes correspond
to the generators of Ȟ1(Ω) = Z2.

Example 2. If T is a Thue–Morse tiling . . . abbabaabbaababba . . ., obtained from
the substitution a → ab, b → ba, one can similarly define indicator 1-cochains ia
and ib that count a and b tiles. However, these cochains are cohomologous. To see
this, divide the tiling T into 1-supertiles,4 with each being either ab or ba. Let γ
be a PE 0-cochain that evaluates to zero on the vertices that mark the beginning

4Recall that if a substitution tiling is non-periodic, then it can be decomposed into supertiles in

a unique way, and that this decomposition is a local operation. In the Thue–Morse tiling, every
patch of size 5 or greater contains either the sub-word aa or the sub-word bb. The boundaries
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or end of such a supertile, to 1 on the vertex in the middle of an ab supertile, and
to −1 on the vertex in the middle of a ab supertile. Then δγ evaluates to 1 on
every a tile (since the boundary of an a tile is either the middle vertex of an ab
supertile minus the beginning of that supertile, or the end vertex of a ba supertile
minus the middle vertex) and −1 on every b tile, so δγ = ia − ib.

The first Čech cohomology of the Thue–Morse tiling space is known to be
Z[1/2]⊕ Z. The generators can be chosen as follows. Let αn be a 1-cochain that
evaluates to 1 on the first tile of each n-supertile and to 0 on the other 2n−1 tiles.
The cochain αn basically counts n-supertiles. Since there are two n-supertiles in
each (n + 1)-supertile, αn is cohomologous to 2αn+1. Let β be a 1-cochain that
evaluates to 1 on each a tile that is followed by a b tile, and to zero on b tiles or on
a tiles that are followed by a tiles. This is not cohomologous to any combination
of the αn tiles since, on average, β applied to a long interval yields a third of the
length of the interval, something that no finite linear combination of the αn’s can
do. The αn cochains and β generate all of Ȟ1. In this example, the cochains ia
and ib are both cohomologous to α1.

1.4. PV cohomology

Another cohomology theory, called PV cohomology after the Pimsner–Voiculscu
exact sequence, was developed by Savinien and Bellissard [SB]. This theory is
based on the structure of the transversal to the tiling space. Since the C∗ algebra
associated with a tiling space is constructed from the transversal and the associated
groupoid, this provides a more intuitive link between the cohomology of a tiling
space and the K-theory of the C∗ algebra.

We associate a distinguished point, called a puncture, to each type of tile.
Usually these are chosen in the interior of the tile, say at the center of mass, but
the precise choice of puncture is unimportant. The canonical transversal Ξ of a
tiling space is the set of tilings for which there is a puncture at the origin. This is
a Cantor set, and we can study the ring of continuous integer-valued functions on
Ξ, denoted C(Ξ,Z). If α is a d-cochain, we define an associated function fα on Ξ
as follows: if T ∈ Ξ, then fα(T) equals α applied to the tile of T that lies at the
origin. This map induces an isomorphism (as an additive group) between C(Ξ,Z)
and Cd

PE(T).
Similarly, we can define punctures for all of the lower-dimensional faces and

edges and vertices of different tiles, with the condition that if (say) an edge is on
the boundary of two tiles, then its puncture viewed as the boundary of the first
tile is the same as its puncture viewed as the boundary of the second tile. For k
ranging from 0 to d, let ΞkΔ be the set of tilings where the origin sits at a puncture
of an k-cell. As with Ξ = ΞdΔ, C(ΞkΔ,Z) is isomorphic to Ck

PE(T).

In PV cohomology, the group of k-cochains is C(ΞkΔ,Z) and the coboundary
maps are built from the geometry of the specific tiles. After untangling the defi-
nitions, these coboundary maps turn out to be identical to the coboundary maps

between 1-supertiles sit in the middle of these sub-words, and at all points at even distance from
these middles.
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in PE-cohomology. Thus, PV theory and PE theory not only have the same co-
homologies, but have isomorphic cochain complexes. For details of this argument,
see [BK].

1.5. Quotient cohomology

So far we have been discussing the absolute cohomology of each tiling space. How-
ever, cohomology is also a functor that concerns maps between spaces. Inclusions
give rise to relative cohomology (see [Hat]), while surjections give rise to a less-
known construction called quotient cohomology.

Let f : ΩX → ΩY be a factor map of tiling spaces. As long as the tilings have
finite local complexity with respect to translations, the pullback map f∗ is an in-
jection on cochains. (This argument applies both to Čech cochains and to pattern-
equivariant cochains.) We then define the quotient cochain complex Ck

Q(ΩX ,ΩY )

to be Ck(ΩX)/f∗(Ck(ΩY )), and the quotient cohomology Hk
Q(ΩX ,ΩY ) to be the

cohomology of this complex. The short exact sequence of cochain complexes:

0→ Ck(ΩY )
f∗
−→ Ck(ΩX)→ Ck

Q(ΩX ,ΩY )→ 0 (5)

induces a long exact sequence of cohomology groups

· · · → Ȟk(ΩY )
f∗
−→ Ȟk(ΩX)→ Hk

Q(ΩX ,ΩY )→ Ȟk+1(ΩY )→ · · · . (6)

As with ordinary relative (co)homology, there is an excision principle:

Theorem 1.5 ([BSa]). Let f : X → Y be a quotient map such that f∗ is an injection
on cochains. If Z ⊂ X is an open set such that f is injective on the closure of Z,
then Hk

Q(X,Y ) is isomorphic to Hk
Q(X − Z, Y − f(Z)).

For factor maps between tiling spaces, excision cannot be used directly. Every
orbit is dense, so there are no open sets where f is injective on the closure. However,
it is often the case that a factor map ΩX → ΩY is injective apart from a small
set of tilings. In such circumstances, one can use homotopy to convert the tiling
spaces into spaces where excision does apply.

Example 3. Let ΩX be the one-dimensional tiling space obtained from the period-
doubling substitution a→ ab, b→ aa, and let ΩY be the dyadic solenoid Sol2 which
can be viewed formally as coming from a substitution c→ cc. (The dyadic solenoid
is not actually a tiling space, but it has similar topological properties, being an
inverse limit space, allowing us to apply the machinery of quotient cohomology.)
There is a factor map f : ΩX → ΩY that identifies two translational orbits but is
otherwise injective. This map sends a tiling T to the sequence (x0, x1, . . .), where

xk is the location of the endpoints of the k-supertiles (mod 2k). In other words,
f(T) gives the locations of the supertiles of all order in T, but does not indicate
which supertiles are of type a or type b. However, in a period-doubling tiling the
nth order supertiles are identical except on the very last entry. Unless the tiling
T consists of two infinite-order supertiles, f(T) determines T. If the tiling T does
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consist of two infinite-order supertiles, then there is exactly one other tiling T′,
differing from T only at a single letter, such that f(T′) = f(T).

In that last instance, we say that T and T′ have a zero-dimensional feature,
namely the boundary of an infinite-order supertile, and agree away from that
feature. Let ΩX0 = {T,T′}, and let ΩY0 = f(T). The map f is basically a quotient
map, identifying the orbit of T with the orbit of T′. This identification is the
suspension of a map from the 2-point set ΩX0 to the 1-point set ΩY0 .

The situation of this example is quite common. There are many situations
where a factor map f : ΩX → ΩY between tiling spaces (or solenoids) is injective
except on the translational orbits of a set ΩX0 of tilings. Furthermore, ΩX0 has

the structure of a d − -dimensional tiling space, admitting an Rd−� action and
locally being the product of Rd−� and a totally disconnected set. Defining ΩY0 to
be f(ΩX0), the following theorem relates the quotient cohomologies of (ΩX ,ΩY )
and (ΩX0 ,ΩY0).

Theorem 1.6 ([BSa]). Let f : ΩX → ΩY be a quotient map of tiling spaces such that
f∗ is injective on cochains. Suppose that f is injective aside from the translational
orbits of a codimension- set ΩX0 ⊂ ΩX of tilings. Let ΩY0 = f(ΩX0). Then

Hk
Q(ΩX ,ΩY ) = Hk−�

Q (ΩX0 ,ΩY0).

In our example,  = 1, ΩX0 consists of two points, ΩY0 is a single point,
H0
Q(ΩX0 ,ΩY0) = Z, and so H1

Q(ΩX ,ΩY ) = Z. Since Ȟ1(ΩY ) = Z[1/2], the long

exact sequence (6) shows that Ȟ1(ΩX) = Z[1/2] ⊕ Z. This is in fact the first
cohomology of the period-doubling space.

An extension of Theorem 1.6 relates the generators of Hk−�
Q (ΩX0 ,ΩY0) to

the generators of Hk
Q(ΩX ,ΩY ). This allows us to construct generators for Hk(ΩX)

from generators of Hk(ΩY ) and from generators of H∗Q(ΩX0 ,ΩY0).

2. How do you compute tiling cohomology?

As with other topological spaces, there is no single “best” method for computing
the cohomology of a tiling space. Different tiling spaces are best addressed with
different methods.

Cut-and-project tiling spaces are measurably conjugate to Kronecker flows
on higher-dimensional tori. As topological spaces, they are obtained from the tori
by removing some hyperplanes and gluing them back in multiple times. Forrest,
Hunton and Kellendonk [FHK], and later Kalugin [Kal] developed ways to compute
the cohomology of Ω from the geometry of the “window” used in the cut-and-
project scheme.

Substitution tilings can easily be expressed as inverse limits spaces in which
all the approximants Γn are homeomorphic to a single space Γ0, and where the
substitution σ can be viewed as a map from Γ0 to itself. For these spaces, com-
puting the cohomology boils down to understanding the cohomology of Γ0 and
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tracking how the classes evolve under the pullback map σ∗. There are many ways
to do this, and each inverse limit scheme gives rise to a calculational method. In
this section we develop several such schemes, beginning with the original ideas of
Anderson and Putnam, and working our way through Gähler’s construction and
the more recent ideas of Barge, Diamond, Hunton and Sadun. Variants of the
Anderson–Putnam and Barge–Diamond methods are then applied to tilings with
rotational symmetry and to hierarchical tilings that are not substitutions (e.g., the
“generalized substitutions” of [F, AFHI]).

Tilings that come from local matching rules are harder to understand. How-
ever, they can sometimes be related to substitution tilings [Moz, GS, Rad]. When
a substitution tiling space ΩY is the quotient of a local matching rules tiling space
ΩX , we can study the cohomology of ΩX via the cohomology of ΩY and the quo-
tient cohomology Hk

Q(ΩX ,ΩY ).

2.1. The Anderson–Putnam complex

Suppose that we have a substitution tiling whose tiles are polygons that meet
full-edge to full-edge. We construct an inverse limit space whose approximants Γn

describe partial tilings. Specifically, a point in Γn describes where the origin sits
within an n-supertile. Since this also determines where the origin sits within an
(n − 1)-supertile, we have a natural map σ : Γn → Γn−1 and can consider the
inverse limit space Ω0 = lim←−(Γ

n, σ).

Since the origin can sit anywhere in a supertile of any type, Γn consists of
one copy of each type of supertile. However, there is an ambiguity when the origin
sits on the boundary of a supertile. If the origin sits on the boundary between
supertile A and supertile B, do we consider it as part of A or B? The answer is
to identify the two edges.

Specifically, Γn is obtained by taking the disjoint union of one copy of each
kind of (closed) n-supertile, and then applying the relation that, if somewhere in
an admissible tiling an edge e1 of supertile A coincides with an edge e2 of supertile
B, then e1 and e2 are identified.

These identifications do not just come in pairs. It may happen that the right
edge of A is identified with the left edges of both B and C, and that the left edge
of C is identified with the right edges of both A and D. In that case, the left
edges of B and C and the right edges of A and D would all be identified. The
information contained in that point in Γn would indicate that the origin either sits
at a particular spot on the right edge of A, or at that spot on the right edge of D,
and also that it sits at the corresponding spot on the left edge of either B or C.

The set of possible n-supertiles looks just like the set of possible tiles, only
scaled up by a factor of λn. As a result, Γn is just a scaled-up version of Γ0. Γ0

is called the (uncollared) Anderson–Putnam complex of the substitution σ, and
is denoted ΓAP . Furthermore, the decomposition of n-supertiles into constituent
(n− 1)-supertiles is combinatorially the same for all n. After rescaling, there is a
single map (which we again call σ) from ΓAP to itself. This map involves stretching
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each tile in ΓAP by a factor of λ, dividing it into tiles via the substitution rule,
and then identifying pieces. We then define Ω0 = lim←−(ΓAP , σ).

2.1.1. Forcing the border. Forcing the border was defined by Johannes Kellendonk
in his study [Kel1] of the Penrose tiling. As we shall see, if a substitution forces
the border, then Ω0 is homeomorphic to the tiling space Ω, allowing for an easy
computation of the cohomology of Ω. If a substitution doesn’t force the border,
then there are a variety of collaring techniques for describing the tiling space via
a slightly different substitution that does force the border. By combining collar-
ing with the Anderson–Putnam construction, we can compute the cohomology of
arbitrary substitution tiling spaces.

Suppose we have a non-periodic substitution tiling space, so that σ : Ω→ Ω
is a homeomorphism [Mos, Sol]. This means that we can decompose each tiling T
uniquely into a collection of non-overlapping 1-supertiles, and by extension we can
decompose T uniquely into non-overlapping k-supertiles for every k. The substi-
tution is said to force the border at level k if any two k-supertiles of the same type
not only have the same decomposition into tiles, but also have the same pattern of
ordinary tiles surrounding them (i.e., the pattern of tiles that touch the supertiles
at 1 or more points). Moreover, any two n-supertiles with n > k have the same
pattern of (n− k)-supertiles surrounding them.

Figure 1. In bold face, a half-hex tile, an order-1 supertile, and an
order-2 supertile. In dotted lines, the nearby tiles that these determine.

The half-hex substitution is shown in Figure 1. The solid lines indicate the
tiles within a supertile, and the dotted lines indicate the neighboring tiles that must
also appear. This substitution forces the border at level 2, since the 2-supertile
is completely surrounded by determined tiles, but does not force the border at
level 1, since some of the tiles that touch the four vertices of the 1-supertile are
undetermined. By contrast, the chair tiling does not force the border at all, since
tiles near the southwest corner of a chair supertile of arbitrary order can appear
in either of the patterns shown in Figure 2.

If a substitution forces the border at level k, then a point in Γn not only
determines where the origin sits in a supertile of level n, but it determines all of
the (n − k)-supertiles surrounding the supertile that contains the origin. If the
origin sits on the boundary between two or more n-supertiles, then there is some
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Figure 2. There are two ways to extend a high-order chair supertile
around the southwest corner.

ambiguity on the nature of the n-supertiles that surround the origin. However,
there is no ambiguity about the (n− k)-supertiles that surround the origin.

The inverse limit Ω0 = lim←−(Γ
n
AP , σ) is a sequence of consistent instructions

for placing higher and higher-order supertiles in a growing region containing the
origin. The union of these regions is all of Rd. This is tantamount to

Theorem 2.1. If σ is a substitution that forces the border and has finite local
complexity with respect to translations, then the corresponding tiling space Ω is
homeomorphic to Ω0.

2.1.2. Anderson–Putnam collaring. If the substitution σ does not force the bor-
der, then Ω0 is typically not homeomorphic to Ω. There is still a map Ω → Ω0,
whose nth coordinate is a description of the n-supertile containing the origin. Fur-
thermore, this map is surjective. However, it is typically not injective. Even if the
origin is not on a boundary, knowing the supertiles to all orders containing the
origin may not describe the entire tiling, since the union of these supertiles may be
a quarter-plane or a half-plane. If there is more than one extention of this infinite
partial-tiling to the entire plane, then there is more than one preimage in Ω.

To remedy this, we construct a new substitution using collared tiles. Take a
tiling T, and identify tiles that are (a) of the same type and (b) whose nearest
neighbors are all of the same type. That is, tiles t1 and t2 are identified if, for some
points x ∈ t1 and y ∈ t2, the tilings T − x and T − y agree exactly on the tile
containing the origin and on all tiles touching this central tile. A collared tile is
an equivalence class of tiles under this identification. Note that a collared tile has
the same size and shape as an ordinary uncollared tile. The difference is that the
label of the collared tile carries extra information about its surroundings.

Example 4. In the Fibonacci tiling, every b tile is preceded and followed by an a tile,
while an a tile has three possibilities for its neighbors. There are thus four collared
tiles, which we denote A1 = (a)a(b), A2 = (b)a(a), A3 = (b)a(b) and B = (a)b(a),
where the notation (x)y(z) means a y tile that is preceded by an x and followed
by a z. Under substitution, A1 → (ab)ab(a) = A3B, A2 → (a)ab(ab) = A1B,
A3 → (a)ab(a) = A1B, and B → (ab)a(ab) = A2.
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We can relabel all of our tiles according to their neighbors to obtain a
new tiling by collared tiles. For instance, in the Fibonacci tiling the pattern
. . . babaabaababaa . . . becomes . . . BA3BA2A1BA2A1BA3BA2A1 . . ..

Theorem 2.2 ([AP]). Rewriting a substitution in terms of collared tiles always
yields a system that forces the border.

Sketch of proof. A collared tile is a tile together with a pattern of nearest neigh-
bors, thereby determining all the tiles in at least an ε-neighborhood. After substi-
tuting n times, we obtain an n-supertile together with a pattern of neighboring
n-supertiles, thereby determining all the tiles within a distance λnε. Pick n big
enough that λnε is more than twice the diameter of the largest tile. The n-times
substituted (collared) tile then determines its neighboring uncollared tiles and
the neighbors of these neighbors , and hence determines its neighboring collared
tiles. �

For instance, in the Fibonacci example,

σ2(A1) = (aba)aba(ab) = (BA2)A1BA2(A1),

σ2(A2) = (ab)aba(aba) = (B)A3BA2(A1B),

σ2(A3) = (ab)aba(ab) = (B)A3BA2(A1),

σ2(B) = (aba)ab(aba) = (BA2)A1B(A3B).

(7)

In each case, substituting a collared tile twice determines at least two extra tiles on
each side of the 2-supertile, and so determines the collared tile on each side of the
supertile. Combining this theorem with the first Anderson–Putnam construction
yields the following

Theorem 2.3 ([AP]). Let Ω be a tiling space derived from a substitution σ. Assume
that there are only finitely many tile types, up to translation, and that the tiles
are polygons (or polyhedra) that meet full edge to full edge (or full face to full

face). Then Ω is homeomorphic to lim←−(Γ̃AP , σ), where Γ̃AP is constructed using
once-collared tiles.

2.2. Gähler’s construction

One can iterate the collaring construction, rewriting an arbitrary tiling space Ω
in terms of collared tiles, then in terms of collared collared tiles (i.e., two tiles of
the same type are identified only if they have the same pattern of nearest and
second-nearest neighbors), and more generally n-times collared tiles. Let ΓnG be
the Anderson–Putnam complex constructed from the n-times collared tiles. There
is a natural quotient map qn : ΓnG → Γn−1G that merely forgets about the nth
nearest neighbors.

Theorem 2.4. Let Ω be any space of tilings that have finite local complexity with
respect to translation. Then Ω is homeomorphic to the inverse limit of the approx-
imants ΓnG under the forgetful maps qn.
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Sketch of proof. (see [Gah, Sa1]) A point pn ∈ ΓnG is either a point in an n-collared
tile, or is the identification of several possible points on the boundary of an n-
collared tile. Either way, at least n − 1 rings of tiles around pn are specified.
The point pn can then be viewed as instructions for building a patch around the
origin. A sequence p0, p1, . . . is then a consistent set of instructions for building
larger and larger patches around the origin, whose union is Rd. Hence lim←−(Γ

n
G, qn)

parametrizes tilings in Ω. �

Gähler’s construction is extremely useful for theoretical arguments, as it ap-
plies to all tiling spaces, not just to substitution tiling spaces. For instance, the
identification of integer-valued pattern-equivariant cohomology with Čech coho-
mology [Sa2] is based on this construction. Unfortunately, it has not proven ef-
fective in computing cohomology. Ȟ∗(Ω) does equal lim−→H∗(ΓnG), but there is no

general procedure for computing H∗(ΓnG). The number of cells in ΓnG grows with n,
and it is difficult to do computations that apply simultaneously to all values of n.

2.3. Barge–Diamond collaring

The Anderson–Putnam and Gähler constructions are based on collared tiles . The
Barge–Diamond construction [BD2, BDHS] is based on collared points.

Let T ∈ Ω be a non-periodic substitution tiling. Recall that non-periodicity
implies that the substitution σ has an inverse on Ω. Pick a radius r and consider
the equivalence relation on Rd: x ∼ y if the tilings T − x and T − y agree out to
distance r around the origin. Likewise, let x ∼n y if the tilings σ−n(T − x) and
σ−n(T − y) agree out to distance r. That is, if T − x and T − y have the same
structure of n-supertiles out to distance λnr. (In particular, they also have the
same structure of ordinary tiles out to distance λnr.) Let ΓnBD be the quotient of
Rd by∼n. A priori this would seem to depend on the tilingT, but for minimal tiling
spaces all tilings have the same patterns and give rise to identical approximants.
Since x ∼n y implies x ∼n−1 y, there is a natural quotient map qn : ΓnBD → Γn−1BD .
Furthermore, the complexes ΓnBD are all homeomorphic. Indeed, if T is a self-
similar tiling with σ(T) = T, then x ∼ y if and only if λnx ∼n λny, so ΓnBD is just
an enlarged copy of a single space ΓBD and the quotient maps qn are all induced
from the substitution σ.

The radius r is arbitrary, but for many applications it is convenient to take r
extremely small. The complex ΓBD is then a CW complex comprised of pieces of
tiles. For instance, suppose that T is a one-dimensional tiling. Points x and y are
identified if either (1) they are in corresponding places in tiles of the same type,
and are farther than r from the nearest vertex, or (2) they are in corresponding
places in tiles of the same type, within distance r of a vertex, and the tiles on
the other side of the vertices are the same. If the tiles all have length 1, then the
equivalence classes of the first type form 1-cells of length 1− 2r, one for each tile
type. We call these tile cells . The equivalence classes of the second type form 1-cells
of length 2r, called vertex flaps , one for each possible transition from one tile to
another. For instance, in the Fibonacci tiling, the possible 2-tile patches are aa, ab,
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Figure 3. Barge–Diamond Complexes for the Fibonacci and Thue–
Morse Substitutions

and ba, so ΓBD consists of two tile cells (a and b) and three vertex flaps, arranged
as in Figure 3. In the Thue–Morse tiling, all four transitions {aa, ab, ba, bb} are
possible, so we have two edge cells and four vertex flaps, also shown in Figure 3.

In a two-dimensional tiling, there are three kinds of 2-cells. Tile cells corre-
spond to the interiors of tiles, edge flaps correspond to points that are within r of
an edge, and contain information about what tile is on the other side of the edge,
and vertex polygons describe what is happening near a vertex, and have informa-
tion about all of the tiles touching the vertex. If the tiles are unit squares meeting
edge-to-edge, then the tile cells are (1− 2r)× (1− 2r) squares, the edge flaps are
2r×(1−2r) rectangles, and the vertex polygons are 2r×2r squares. (Strictly speak-
ing, this requires using the L∞ metric on R2 rather than the Euclidean metric, to
avoid having arcs of circles on the boundaries of cells.)

Theorem 2.5 ([BD2, BDHS]). For any positive radius r, Ω is homeomorphic to the
inverse limit lim←−(ΓBD, σ).

Proof. As with the Anderson–Putnam construction, a point in the inverse limit is
a sequence of instructions for tiling larger and larger regions of the plane, insofar as
the nth approximant determines the structure of a tiling out to distance λnr. �

The complexes ΓnBD are all the same (up to scale), so it is relatively easy
to compute H∗(ΓnBD) = H∗(ΓBD). Unfortunately, the map σ : ΓBD → ΓBD is
typically not a cellular map. For instance, for a square tiling σ takes a 2r × 2r
vertex polygon to a 2λr× 2λr square, which is a vertex polygon plus a small piece
of the adjacent edge flaps and tile cells. To do our computations we need to use
a map σ̃ that is cellular and homotopic to σ. (One way to get such a map σ̃ is
to compose σ with a flow that expands tile cells slightly at the expense of the
edge cells and vertex polygons. The details are not important.) The map σ̃ sends
vertex polygons to vertex polygons, edge flaps to a union of edge flaps and vertex
polygons, and tile cells to a union of all three kinds of cells. Let Ω̃ = lim←−(ΓBD, σ̃).
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Theorem 2.6. The Čech cohomology of Ω̃ is isomorphic to the Čech cohomol-
ogy of Ω.

Proof. Since σ and σ̃ are homotopic, σ̃∗ = σ∗ as operators on H∗(ΓBD). Then

Ȟ∗(Ω̃) = Ȟ∗(lim←−(ΓBD, σ̃)) = lim−→H∗(ΓBD, σ̃∗) = lim−→H∗(ΓBD, σ∗) (8)

= Ȟ∗(lim←−(ΓBD, σ)) = Ȟ∗(Ω). �

This theorem does not say that Ω̃ and Ω are homeomorphic. In many cases
they are not. However, their cohomologies are the same, so we can always use the
inverse limit structure of Ω̃ to compute the cohomology of Ω.

2.3.1. One-dimensional results ([BD2]). Let S0 ⊂ ΓBD be the sub-complex of
vertex flaps, and let S1 = ΓBD. Since σ̃ maps S0 to S0 and S1 to S1, we can
consider the inverse limit space Si = lim←−(Si, σ̃). Since S0 ⊂ S1, we can compute

Ȟ∗(Ω) = Ȟ∗(S1) by computing Ȟ∗(S0) and the relative cohomology Ȟ∗(S1,S0)
and then combining them with the long exact sequence

0→ Ȟ0(S1,S0)→ Ȟ0(S1)→ Ȟ0(S0)→ Ȟ1(S1,S0)→ Ȟ1(S1)→ Ȟ1(S0)→ 0
(9)

We examine each of these terms. Ȟ0(S1,S0) is the direct limit (under σ̃∗) of
H0(S1, S0). Since S1 is connected, this is zero. Likewise, Ȟ0(S1) = lim−→H0(S1) =
Z. Since σ̃ maps each cell of S0 to a single cell, σ̃ merely permutes the cells of
the eventual range SER0 . Thus lim−→H∗(S0) = H∗(SER0 ). If SER0 has k connected

components and has  loops, then Ȟ0(S0) = Zk and Ȟ1(S0) = Z�. Meanwhile the
quotient space S1/S0 is a wedge of circles, one for each tile type. H1(S1, S0) = ZN ,
where N is the number of tile types, and Ȟ1(S1,S0) = lim−→(ZN , AT ), where A is
the substitution matrix. Combining these observations, we have the long exact
sequence

0→ Z→ Zk → lim−→(ZN , AT )→ Ȟ1(Ω)→ Z� → 0. (10)

Using reduced cohomology, this can be further simplified to

0→ Zk−1 → lim−→(ZN , AT )→ Ȟ1(Ω)→ Z� → 0. (11)

In the Fibonacci tiling, A = ( 1 1
1 0 ) and S0 consists of three vertex flaps:

aa, ab, and ba. These form a contractible set, so k − 1 =  = 0, and Ȟ1(Ω) =

lim−→(Z2, AT ) = Z2. In fact, whenever SER0 is contractible, H̃0(SER0 ) and H1(SER0 )

vanish and H1(Ω) is isomorphic to lim−→(ZN , AT ).

We can also describe the Fibonacci tiling using collared tiles A1 = (a)a(b),
A2 = (b)a(a), A3 = (b)a(b), and B = (a)b(a). Collaring the Fibonacci tiles and
then applying the Barge–Diamond construction is overkill, but this example shows
the interplay of the substitution matrix and the cohomology of SER0 . Our complex
ΓBD has four tile cells and five vertex flaps, namely A1B, A2A1, A3B, BA2, and
BA3. However, A1B and A3B are not in SER0 , since all supertiles start with A1,
A2, or A3. SER0 consists of just the flaps A2A1, BA2 and BA3, yielding k = 2
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and  = 0. The substitution matrix is

(
0 1 1 0
0 0 0 1
1 0 0 0
1 1 1 0

)
. This matrix has rank 3, with

eigenvalues (1±
√
5)/2, −1, and 0, and lim−→(Z4, AT ) = Z3. We then have 0→ Z→

Z3 → Ȟ1(Ω) → 0. After checking that the quotient of Z3 by Z is Z2 (with no
torsion terms), we again obtain Ȟ1(Ω) = Z2.

In the Thue–Morse tiling, M = ( 1 1
1 1 ) and S0 consists of four vertex flaps that

form a loop. Now lim−→(Z2, AT ) = Z[1/2] and k =  = 1, so we have 0→ Z[1/2]→
Ȟ1(Ω)→ Z→ 0. Since Z is free, this sequence splits, so Ȟ1(Ω) = Z[1/2]⊕ Z.

2.3.2. Higher dimensions ([BDHS]). In higher dimensions the procedure is similar,
but the results cannot be expressed in a single exact sequence such as (11). In two
dimensions, we consider the complex S0 of vertex polygons, S1 of vertex polygons
and edge flaps, and S2 = ΓBD. We also consider the inverse limits Si = lim←−(Si, σ̃).
As in one dimension, σ̃ maps each vertex polygon to a single vertex polygon, so
Ȟ∗(S0) = H∗(SER0 ). However, S0 is a two-dimensional complex, so computing the
cohomology of SER0 is more than just counting connected components and loops.

The next step is to consider Ȟ∗(S1,S0) = lim−→(H̃∗(S1/S0), σ̃
∗). This involves

only the eventual range of S1, but is typically a complicated calculation. The
quotient space S1/S0 breaks into several pieces, one for each direction that an
edge can point. In general, the pieces are not particularly simple, and it takes
work to understand how σ̃∗ acts on H̃∗(S1/S0). Once Ȟ∗(S1,S0) is computed, we
combine it with Ȟ∗(S0) via the long exact sequence

· · · → Ȟk(S1,S0)→ Ȟk(S1)→ Ȟk(S0)→ Ȟk+1(S1,S0)→ · · · (12)

to compute Ȟ∗(S1).
The relative cohomology Ȟ∗(S2,S1) is simpler. The quotient space S2/S1 is

a wedge of spheres, so H̃0 = H̃1 = 0 and H̃2 = ZN . Ȟk(S2,S1) equals lim−→(Zn, AT )

when k = 2, and vanishes when k = 0 or 1. The final stage is combining Ȟ∗(S1)
and Ȟ∗(S2,S1) with the long exact sequence

· · · → Ȟk(S2,S1)→ Ȟk(S2)→ Ȟk(S1)→ Ȟk+1(S2,S1)→ · · · . (13)

Example 5. Consider a tiling of R2 featuring three square tiles A, B, and C, and

generated by the substitution * →
A *

B C
, where “∗” is shorthand for A, B or C.

This substitution does not force the border, so collaring is needed to compute its
cohomology. S0 involves many vertex polygons, but each of these maps to a vertex

polygon of the form
C B

* A
. SER0 is contractible, consisting of three squares glued

together at their north and east edges, so Ȟ0(S0) = Z and Ȟ1(S0) = Ȟ2(S0) = 0.
S1/S0 consists of vertical and horizontal edge flaps. The vertical edge flaps

are B|C, C|B, A|∗ and ∗|A, but only C|B and ∗|A survive to the eventual range.

This portion of SER1 /S0 retracts to the wedge of two circles, and σ̃∗ acts on its first
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cohomology by the matrix ( 1 1
1 1 ), yielding a direct limit of Z[1/2]. The horizontal

edge flaps are similar, giving another factor of Z[1/2], so Ȟ1(S1,S0) = Z[1/2]2 and
Ȟ0(S1,S0) = Ȟ2(S1,S0) = 0.

S2/S0 is a wedge of three spheres, and the only nontrivial cohomology is

H2 = Z3. This transforms via AT =
(

2 1 1
1 2 1
1 1 2

)
, so Ȟ2(S2,S1) = lim−→(Z3, AT ) and

Ȟ0(S2,S1) = Ȟ1(S2,S1) = 0.
We combine these relative cohomologies using the long exact sequences (12)

and (13). The first of these yields:

0→ 0→ Ȟ0(S1)→ Z→ Z[1/2]2 → Ȟ1(S1)→ 0, (14)

so Ȟ0(S1) = Z and Ȟ1(S1) = Z[1/2]2 (and Ȟ2(S1) = 0). The second yields:

0→ Ȟ1(S2)→ Z[1/2]2 → lim−→(Z3, AT )→ Ȟ2(S2)→ 0. (15)

All maps commute with σ̃∗. Since the Z[1/2]2 terms double with substitution, and
since the eigenvalues of AT are 1, 1, and 4, the map from Z[1/2]2 to lim−→(R3, AT )
must be zero. We then have

Ȟ0(S2) = Z, Ȟ1(S2) = Z[1/2]2, Ȟ2(S2) = lim−→(Z3, AT ) = Z[1/4]⊕ Z2.

(16)
(We write Z[1/4] rather than Z[1/2] in Ȟ2 to emphasize that this term scales by
4 under substitution.) This is the same cohomology as the half-hex substitution.
In fact, this tiling space is homeomorphic to the half-hex tiling space.

2.4. Rotations and other symmetries

A natural question about any pattern is “what are its symmetries?” An aperi-
odic tiling cannot have any translational symmetries, but it can have rotational
or reflectional symmetries. We consider actions of reflection and rotation (and
translation, of course) on the tiling space Ω, and examine how various quantities
transform under that group action.

2.4.1. Decomposing by representation. Rotating a tile and then taking its bound-
ary is the same as taking the boundary and then rotating. Likewise, rotations com-
mute with coboundaries, and in most cases rotations commute with substitution,
so it makes sense to decompose our cochain complexes, and the cohomology of our
tiling space, into representations of whatever rotation group G acts on our tiling
space. By Schurr’s Lemma, neither the coboundary nor substitution can mix differ-
ent representations, and our calculations can proceed one representation at a time.

The trouble with this approach is that representations are vector spaces, and
our cochain complexes take values in Z. We therefore consider the cohomology of
tiling spaces with values in R rather than Z. In the process we lose information
about torsion and divisibility, but that’s the price we have to pay.

For example, the tiles and substitution rules for the Penrose tilings are shown
in Figures 4 and 5. There are four types of tiles, each in 10 orientations, and four
types of edges, each in 10 orientations. There are only four kinds of vertices a, b, c, d
each of which can sit in the center of a pattern with 5-fold rotational symmetry.
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This means that a = t2a, b = t2b, c = t2c and d = t2d, where t is a rotation by
π/5. In fact, a = tb and b = ta, as can be seen from the fact that the α edge of
A runs from b to a while the tα edge of B runs from a to b. Likewise, c = td and
d = tc. This tiling forces the border, so we do not need to collar.

The group G = Z10 acts on the Anderson–Putnam complex Γ by permuting
the tiles, and the eigenvalues of the generator t are the 10th roots of unity. Each
tile type, and each edge type, can be described by the module R[t]/(t10 − 1). The
polynomial t10−1 factors as (t−1)(t+1)(t4+t3+t2+t+1)(t4−t3+t2−t+1), with
the factors corresponding to the primitive first, second, 5th and 10th roots, respec-
tively. Each factor also corresponds to a representation. Since t2 acts trivially on
the vertices, only the representations with t = ±1 appear in C0. More specifically,
when working with the Anderson–Putnam complex, our chains complexes are:

C0(Γ) = [R[t]/(t2 − 1)]2

= [R[t]/(t− 1)]2 ⊕ [R[t]/(t + 1)]2

C1(Γ) = [R[t]/(t10 − 1)]4

=
[
R[t]/(t− 1)⊕ R[t]/(t + 1)⊕ R[t]/(t4 + t3 + t2 + t + 1)⊕ R[t]

/(t4 − t3 + t2 − t + 1)
]4

C2(Γ) = [R[t]/(t10 − 1)]4

=
[
R[t]/(t− 1)⊕ R[t]/(t + 1)⊕ R[t]/(t4 + t3 + t2 + t + 1)⊕ R[t]

/(t4 − t3 + t2 − t + 1)
]4

(17)

The complexes Ck(Γ) are the dual spaces of Ck(Γ).
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The matrices for the boundary maps ∂1 : C1 → C0 and ∂2 : C2 → C1 are:

∂1 =

(
1− t −1 −t −1
0 1 1 t

)
; ∂2 =

⎛⎜⎜⎝
−1 t t4 −t7

−1 t9 −t t8

1 −t5 0 0
0 0 1 −t5

⎞⎟⎟⎠ (18)

in the representations t = ±1. In the other representations ∂2 is the same, but ∂1 is
identically zero (since C0 = 0). The coboundary maps δ0 and δ1 are the transposes
of ∂1 and ∂2, only with t replaced by t−1.

In the t = 1 representation, δ1 has rank 2 and δ0 has rank 1, and we get
H0 = H1 = R and H2 = R2. These are the elements of cohomology that are
invariant under rotation. We say that this portion of the cohomology rotates like
a scalar.

In the t = −1 representation, δ0 and δ1 are each rank 2, and we get H2 = R2

and H1 = H0 = 0. This portion of the cohomology rotates like a pseudoscalar,
flipping sign with every 36 degree rotation.

In the representation with t5 = 1 but t �= 1 (that is, with t4+t3+t2+t+1 = 0),
δ1 is a rank-4 isomorphism, so all cohomologies vanish. In the representations with
t5 = −1 (but t �= −1), δ1 has rank 3, so H1 = H2 = R[t]/(t4− t3+ t2− t+1). This
portion of the cohomology rotates like a vector, flipping sign after a 180 degree
rotation.

Substitution acts on 2-cells by the matrix

(
t7 0 0 t4

0 t3 t6 0
t3 0 t4 1
0 t7 1 t6

)
and on 1-cells by(

0 0 0 t8

t4 0 −t7 0
−t7 0 0 0
0 −t3 0 −t3

)
. Both of these matrices are invertible for all representations (in

fact, both have determinant 1), so Ȟk(Ω) = Hk(Γ) for k = 0, 1, 2. In summary:

Ȟ0(Ω) = H0(Γ) = R[t]/(t− 1)

Ȟ1(Ω) = H1(Γ) = R[t]/(t− 1)⊕ R[t]/(t4 − t3 + t2 − t + 1) (19)

Ȟ2(Ω) = H2(Γ) = (R[t]/(t− 1))2 ⊕ (R[t]/(t + 1))2 ⊕ R[t]/(t4 − t3 + t2 − t + 1)

The upshot is that Ȟ0(Ω) = R and is rotationally invariant, which is no
surprise, since the generator is the constant function. Ȟ1(Ω) = R5, of which 4
dimensions rotate like vectors, with t5 = −1, and one is rotationally invariant.
Ȟ2(Ω) = R8, consisting of a rotationally invariant R2, a piece R2 that rotates like
a pseudoscalar, and a piece R4 that rotates like a vector.

2.4.2. Three tiling spaces. For two-dimensional substitution like the Penrose tiling
and the chair tiling, there are actually three tiling spaces to be considered. We have
been considering the space Ω that is the (translational) orbit closure of a single
tiling. This would be, for instance, the set of all chair tilings where the edges are
parallel to the coordinate axes. We can also consider a larger space Ωrot of all
rotations of tilings in Ω. Finally we can consider the quotient space Ω0 of tilings
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modulo rotations. Ω0 can either be viewed as Ωrot/S
1 or as the quotient of Ω by

the discrete group of rotations that acts on Ω. For the Penrose space, we would
have Ω0 = Ω/Z10, while for the chair tiling we would have Ω0 = Ω/Z4.

The cohomologies of the three spaces are related as follows [ORS, BDHS]:

Theorem 2.7. Working with real or complex coefficients, the cohomology of Ω0 is
isormorphic to the rotationally invariant part of the cohomology of Ω. The coho-
mology of Ωrot is isomorphic to the cohomology of Ω0 × S1.

The upshot of this theorem is that Ω is the space with the richest cohomology,
while Ωrot and Ω0 have less cohomological structure. This is because all rotations
on Ωrot are homotopic to the trivial rotation, and so act trivially on Ȟ∗(Ωrot).
Thus, only the rotationally invariant parts of the cohomology of Ω can manifest
themselves in the cohomology of Ωrot.

In general, Ωrot is not homeomorphic to Ω0 × S1, since the action of S1 on
Ωrot is typically not free. There are some tilings in Ωrot that have discrete k-fold
rotational symmetry. For these tilings, rotation by 2π/k brings us back to the same
tiling. Ωrot has the structure of a circle bundle over Ω0 with some exceptional fibers
corresponding to these symmetric tilings. (Seifert fibered 3-manifolds have a very
similar structure.) When working with integer coefficients, these exceptional fibers
can give rise to torsion in Ȟ2(Ωrot).[BDHS]

These relations can also be used to compute the cohomology of the pin-
wheel tiling space. When there are tiles that point in all directions, the only two
well-defined spaces are Ωrot and Ω0. For the pinwheel, the cohomology of Ω0 can
be computed with Barge–Diamond collaring, with the result that Ȟ0(Ω0) = Z,
Ȟ1(Ω0) = Z and Ȟ2(Ω0) = Z[1/5]⊕ Z[1/3]⊕ Z5 ⊕ Z2. This then determines the
real cohomology of Ω0, and, by Theorem 2.7, the real cohomology of Ωrot. To com-
pute the integer cohomology of Ωrot, we have to consider the exceptional fibers.
There are 6 pinwheel tilings with 2-fold rotational symmetry, as shown in Figure
9 below; these give rise to a Z5

2 term in a spectral sequence

�

�

Z Z⊕ Z5
2 Z[1/5]⊕ Z[1/3]2 ⊕ Z5 ⊕ Z2

Z Z Z[1/5]⊕ Z[1/3]2 ⊕ Z5 ⊕ Z2

that computes the cohomology of Ωrot. Furthermore, the d2 map in the spectral
sequence involves the torsion elements in a non-trivial way. The end result is
that Ȟ1(Ωrot) = Z2, Ȟ2(Ωrot) = Z[1/5] ⊕ Z[1/3]2 ⊕ Z6 ⊕ Z5

2 and Ȟ3(Ωrot) =
Z[1/5]⊕ Z[1/3]2 ⊕ Z5 ⊕ Z2. For details of this calculation, see [BDHS] or [Sa3].
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3. What is cohomology good for?

3.1. Distinguishing spaces

The most obvious use of topological invariants such as Čech cohomology is to dis-
tinguish spaces. If tiling spaces Ω and Ω′ have cohomologies that are not isomorphic
(as rings), then Ω and Ω′ cannot be homeomorphic. If a group G of isometries of

Rd (such as Z10 or Z4) acts on Ω and Ω′, then we can decompose each cohomology
group into representations of G. For each irreducible representation ρ of G, let
Ȟk
ρ (Ω) be the part of Ȟk(Ω) that transforms under ρ. If Ω and Ω′ are homeo-

morphic via a map that intertwines the action of G, then for each representation
ρ we must have Ȟk

ρ (Ω) = Ȟk
ρ (Ω

′). In particular, if a tiling space Ω′ is related to
the Penrose tiling Ω by a Z10-equivariant homeomorphism, then not only must
Ȟ1(Ω′,R) equal R5, but Ȟ1(Ω′,R) must consist of a one-dimensional rotationally
invariant piece and a four-dimensional piece that rotates like a vector.

For each subgroup H < G, we can also consider the topology of the set ΩH of
tilings in Ω that are fixed by H . If Ω and Ω′ are tiling spaces with the same rotation
group G, and if there exists an isomorphism that commutes with the action of G,
then ΩH and Ω′H must be homeomorphic. In this sense, the structure of ΩH is a
topological invariant of the tiling space Ω. If H1 < H2, then ΩH2 ⊂ ΩH1 . The way
that these different spaces nest within one another is also manifestly invariant.

If d = 2 and G is a subgroup of SO(2), then ΩH is not especially interesting.
If N is the normalizer of H in G, then N acts on ΩH , and there are typically only
finitely many orbits. Understanding ΩH boils down to counting these orbits and
identifying how much symmetry a point in each orbit has.

Things get more interesting if d > 2, or if H involves reflections. In that case,
there may be a subspace V ⊂ Rd whose vectors are fixed by the action of H . ΩH
is invariant under translation by elements of V , and can often be realized as a
space of tilings of V , or as a disjoint union of several such lower-dimensional tiling
spaces. In such cases, the Čech cohomology of ΩH yields an interesting invariant.

We present two worked examples. We first consider the chair tiling of the
plane, with G = D8 = O(2,Z), the group generated by rotation by 90 degrees and
by reflection about the x axis. We compute the structure of ΩH for every nontrivial
subgroup H < G. We then consider the pinwheel tilings, with G = O(2).

3.1.1. The chair tiling. We work with the “arrow” version of the chair tiling. This
is a two-dimensional substitution tiling in which the tiles are all unit squares
that meet full-edge to full-edge. Each square is decorated with an arrow pointing
northeast, southeast, northwest or southwest. Rotation and reflection act naturally
on arrows, so a counterclockwise rotation by 90 degrees would send a northeast
arrow to a northwest, a northwest to a southwest, a southwest to a southeast,
and a southeast to a northeast. Likewise, reflection about the x axis interchanges
northeast and southeast arrows, and interchanges northwest and southwest arrows.
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a

b c

d

Figure 6. The approximant for ΩH7

The substitution on northeast arrows is

↗ −→
↘ ↗
↗ ↖

,

and the substitution on all other arrow tiles is obtained by rotating or reflecting
this picture.

There are nine nontrivial subgroups of G = D8. These include H1 = G itself,
the rotation groups H2 = Z4 and H3 = Z2, the dihedral group H4 = D4 generated
by reflections about the x and y axes, and the 2-element groups H5 generated
by reflection about the x axis, H6 generated by reflection about the y axis, H7

generated by reflection about the line y = x, and H8 generated by reflection about
the line y = −x. Finally, there is the dihedral group H9 generated by H7 and H8.

There is only one tiling that is invariant under all of G, namely the fixed
point of the substitution whose central patch involves four arrows pointing out

from the origin:
↖ ↗
↙ ↘

. This is also the only tiling that is invariant under H2 or

H3 or H4 or H9. H5 and H6 are conjugate, so ΩH5 and ΩH6 are homeomorphic,
with rotation by 90 degrees taking each set to the other. Likewise, ΩH7 and ΩH8

are homeomorphic. We therefore restrict our attention to ΩH5 and ΩH7 .

We begin with ΩH5 . Since all vertices with incoming and outgoing arrows
have either 3 or 0 incoming arrows, and since vertices with 3 incoming arrows
cannot be symmetric under H5, the tiles along the x axis must alternate between

the form
↗
↘

and
↖
↙

. Although the pattern along the x axis is periodic, there is

a hierachy from the way that tiles along the x axis join with tiles once removed
from the x axis to form clusters of four tiles, which join tiles even farther away
to form clusters of 16, and so on. ΩH5 is connected and is homeomorphic to the
dyadic solenoid Sol2, so Ȟ1(ΩH5) = Z[1/2].

To understand ΩH7 , we look at symmetric configurations of tiles along the
line y = x. All vertices take one of three forms:

↘ ↙
↙ ↖

,
↖ ↗
↙ ↘

, and
↘ ↗
↗ ↖

,
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Figure 7. The pinwheel substitution

Figure 8. Central patches of pinwheel tilings with dihedral symmetry

and the second of these patterns can occur at most once. In other words, either
all of the arrows along the line x = y point northeast, or all point southwest, or
all point outwards from a special point where four infinite-order supertiles meet.

Reading from southwest to northeast along the line x = y, there are four
kinds of collared tiles that appear, which we label a, b, c and d. The label a means
(SW)SW(SW), while b means (SW)SW(NE), c means (SW)NE(NE) and d means
(NE)NE(NE). An a can be followed by an a or a b, a b is always followed by a c, a c
is always followed by a c, and a d is always followed by a d. The Anderson–Putnam
complex is then given by the “eyeglasses” graph shown in Figure 6.

Substitution sends edge a to aa, edge b to ab, edge c to cd and edge d to dd.
The graph has H0 = Z and H1 = Z2, and substitution acts trivially on H0 and
by multiplication by 2 on H1, so Ȟ0(ΩH7) = Z and Ȟ1(ΩH7) = Z[1/2]2.

One can apply a similar analysis to chair tilings in higher dimensions. For
the three-dimensional chair tiling, the relevant group is the 24-element group G of
symmetries of the cube, and there are significant subgroups of order 2, 3, 4, 6, and
12. Each cyclic subgroup H gives rise to a space ΩH with non-trivial Ȟ1, while
the non-Abelian subgroups H < G have ΩH finite. For each non-Abelian H , the
only invariant is Ȟ0(ΩH) = Z|ΩH |.

3.1.2. The pinwheel tilings. The pinwheel tilings are based on a single tile, up to

reflection, rotation and translation. It is a 1-2-
√
5 right triangle with substitution

rule shown in Figure 7.
The maximal symmetry group for any pinwheel tiling is H1 = D4 (say, in-

variance under reflection about both the x and y axes). There are four such tilings,
all closely related. Each is a fixed point of the square of the pinwheel substitution,
with central patches shown in Figure 8.

There are two subgroups (up to conjugacy) of H1, namely H2 generated by
180 degree rotation, and H3 generated by reflection about the x axis. There are six
H2-invariant tilings (plus rotations of the same), whose central patches are shown
in Figure 9. All are periodic points of the substitution, the first four of period four
and the last two of period two. In other words, ΩH2 consists of six disjoint circles,
so Ȟ1(ΩZ2) = Ȟ0(ΩZ2) = Z6. These six circles are the same exceptional fibers in

the fibration Ωrot → Ω0 that gave rise to torsion in Ȟk(Ωrot).
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Figure 9. Central patches of pinwheel tilings with rotational symmetry

Finally, we consider tilings that are H3-invariant. Since no tiles are themselves
reflection-symmetric, there must be edges along the x axis, and these edges are
either all hypotenuses or all of integer length.

For the symmetric tilings with hypotenuses along the x axis, we get a one-
dimensional tiling space that comes from the substitution a → aabba, b → baabb,
where a and b represent hypotenuses pointing in the two obvious directions. This
edge substitution actually comes from the square of the pinwheel substitution,
since the pinwheel substitution swaps hypotenuses and integer legs. A one-dimen-
sional Barge–Diamond calculation shows that this set of tilings has Ȟ1 = Z2 ⊕
Z[1/5]. Pinwheel substitution, applied only once, swaps this space with the space
of symmetric tilings involving integer edges along the x axis, which therefore has
the same cohomology. The upshot is that H1(ΩH3) = Z4 ⊕ Z[1/5]2.

3.1.3. Asymptotic structures. A key difference between solenoids and spaces of
one-dimensional non-periodic tilings is that tilings may be forward or backwards
asymptotic. Suppose that T1 and T2 are tilings in the same tiling space Ω, but
that the restrictions of T1 and T2 to the half-line [0,∞) are identical. Then T1− t
and T2 − t agree on a larger half-line [−t,∞), and lim

t→∞
d(T1 − t,T2 − t) = 0,

where d is the metric on Ω. We say that T1 and T2 are forward asymptotic.
Likewise, two tilings can be backwards asymptotic. The orbits of T1 and T2 are
called asymptotic composants. Every substitution tiling space has a finite number
of asymptotic composants, and the structure of these composants is reflected in
the cohomology of Ω.

For instance, in the Thue–Morse tiling space there are four periodic points
of the substitution of the form T1 = . . . a.a . . ., T2 = . . . a.b . . ., T3 = . . . b.a . . .
and T4 = . . . b.b . . ., where the central dot indicates the location of the origin.
The tilings T1 and T2 are backwards asymptotic, as are T3 and T4. Likewise,
T1 and T3 are forward asymptotic, as are T2 and T4. If we imagine asymptotic
composants to be “joined at infinity”, then the orbits of these four tilings form an
asymptotic cycle. This asymptotic cycle manifests itself as the closed loop on ΓBD
that generated a Z term in Ȟ1(Ω).

By studying asymptotic structures, Barge and Diamond [BD1] were able to
construct a complete homeomorphism invariant of one-dimensional substitution
tilings. Unfortunately, this invariant is extremely difficult to compute in practice.
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As a practical alternative, Barge and Smith [BSm] constructed an augmented co-
homology of one-dimensional substitution tilings. The precise definition involves
the inverse limit of a variant of the Anderson–Putnam complex, but the basic
idea is to identify all forward asymptotic tilings that are periodic points of the
substitution, and separately to identify all backwards asymptotic periodic points.
The cohomology of the resulting space, while not a complete invariant, yields finer
information than the ordinary Čech cohomology.

In higher dimensions, asymptotic structures are more subtle, since there are
(potentially) infinitely many directions to check. In 2 dimensions (with results that
generalize somewhat to still higher dimensions), Barge and Olimb [BO] examined
the periodic branch locus of a substitution, namely the set of pairs of tilings, each
periodic under the substitution, that agree on at least a half-plane. From this locus,
and from translates of these pairs along certain special directions, they construct a
larger branch locus that can have a structure similar to that of a one-dimensional
tiling space. The cohomology of the branch locus is a homeomorphism invariant
of a tiling space.

With the chair tiling, as with a number of other examples, the branch lo-
cus seems to be closely related to the tilings that are symmetric under certain
reflections, and the calculation of the cohomology of the branch locus resembles
the computations of Ȟ1(ΩH5 ) and Ȟ1(ΩH7). These in turn are related to the quo-
tient cohomology of the chair tiling space relative to the two-dimensional dyadic
solenoid. While it might be a coincidence, all three computations seem to be telling
the same story! Unfortunately, the general relation between cohomology of branch
loci, cohomology of tilings with symmetry and quotient cohomology is not yet
understood.

3.2. Gap labeling

For tilings of Rd with finite local complexity (with respect to translations), there

is a natural trace map from the highest cohomology Ȟd(Ω) to R. Each class α ∈
Ȟd(Ω) can be represented by a pattern-equivariant d-cochain iα. Pick any bounded
region R of a tiling T, let iα(R) be the sum of the values of iα on all of the tiles in
R. If iα and i′α are cohomologous, then iα− i′α = δiβ for some pattern-equivariant
cochain iβ, and iα(R)− i′α(R) = iβ(∂R). Define

Tr(α) = lim
r→∞

iα(Br)

Vol(Br)
,

where Br is the ball of radius r around the origin in a fixed tiling T . Since
Vol(∂Br)/Vol(Br)→ 0 as r →∞, different representatives for the class α yield the
same limit. Likewise, if Ω is uniquely ergodic, then all tilingsT yield the same limit.

For instance, in a Fibonacci tiling where the a tiles have length φ = (1+
√
5)/2

and the b tiles have length 1, there are on average φ a tiles for every b tile, so the
indicator cochain ia has trace φ/(φ2 + 1) and the cochain ib has trace 1/(φ2 + 1).
Since ia and ib generate Ȟ1, the image of the trace map is (φ2 + 1)−1Z[φ].
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The image of the trace map is called the frequency module of the tiling space.
The frequency module is isomorphic to the gap-labeling group, which in K-theory
is the image of a trace map in K0. Besides being an invariant of topological con-
jugacies, the gap-labeling group is used (as the name implies) to label gaps in the
spectra of Schrödinger operators associated with a tiling. The key theorem is due
to Bellissard ([Bel], see also [BBG, BHZ, BKL]):

Theorem 3.1. Let T be a tiling in a minimal and uniquely ergodic tiling space
X, and let V : Rd → R be a strongly pattern-equivariant function. Consider the
Schrödinger operator

H = − �2

2m
Δ+ V.

Let E0 be a point that is not in the spectrum of H. (That is, E0 lies in a gap in
the spectrum.) Then the integrated density of states up to energy E0 is an element
of the gap-labeling group of Ω.

Elements of the frequency module (or gap-labeling group) should not be
viewed as pure numbers. Rather, they have units of (Volume)−1, being the ratio
of iα(Br) (a pure number) and Vol(Br). Likewise, the integrated density of states
gives the number of eigenstates of H up to energy E0 (a pure number) per unit
volume.

Traces of cohomologies in all dimensions were studied in [KP], and are known
as Ruelle–Sullivan maps. These traces give a ring homomorphism from Ȟ∗(Ω) to
the exterior algebra of Rd.

3.3. Tiling deformations

Some properties of a tiling are consequences of the geometry of the tiles, while oth-
ers follow from the combinatorics of how tiles fit together. To distinguish between
the two, we consider different tiling spaces that have the same combinatorics, and
parametrize the possible tile shapes.

Let X be a tiling space. To specify the shapes of the tiles involved, we must
indicate the displacement associated to every edge of every possible tile. Further-
more, if two tiles share an edge, then those two edges must be described by the
same vector, and the vectors for all the edges around a tile must sum to zero.

In other words, the shapes of all the tiles is described by a co-closed vector-
valued 1-cochain on a space obtained by taking one copy of each tile type and
identifying edges that can meet. That is, a cochain on the Anderson–Putnam
complex ΓAP ! Different geometric versions of the same combinatorial tiling space
are described by different shape covectors on the same Anderson–Putnam complex.

Theorem 3.2 ([CS]). Let Ω be a tiling space with shape cochain α0. There is a neigh-
borhood U of α0 in C1(ΓAP ,Rd) such that, for any two co-closed shape cochains
α1,2 ∈ U , the tiling spaces Ωα1 and Ωα2 obtained from α1 and α2 are mutually
locally derivable (MLD) if and only if α1 and α2 are cohomologous.

This theorem says that the first cohomology of ΓAP , with values in Rd,
parametrizes local deformations of the shapes and sizes of the tiles, up to lo-
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cal equivalence. By considering changes in the shapes and sizes of collared tiles
and taking a limit of repeated collaring (as in Gähler’s construction), we obtain

Theorem 3.3 ([CS]). Infinitesimal shape deformations of tiling spaces, modulo local

equivalence, are parametrized by the vector-valued cohomology Ȟ1(Ω,Rd).

Among all shape changes, there are some that yield topological conjugacies.
We call such a shape change a shape conjugacy. Shape conjugacies correspond to
a subgroup Ȟ1

an(Ω,Rd) of Ȟ1(Ω,Rd) called the asymptotically negligible classes.
These classes are neatly described in terms of pattern-equivariant functions:

Theorem 3.4 ([Kel3]). A class in Ȟ1(Ω,Rd) is asymptotically negligible if and only
if it can be represented as a strongly pattern-equivariant vector-valued 1-form that
is the differential of a weakly pattern-equivariant vector-valued function.

Asymptotically negligible classes don’t just describe shape conjugacies. They
essentially describe all topological conjugacies, thanks to

Theorem 3.5 ([KS1]). If f : ΩX → ΩY is a topological conjugacy of tiling spaces,
then we can write f as the composition f1 ◦f2 of two maps, such that f1 is a shape
conjugacy and f2 is an MLD equivalence.

The importance of this theorem is that it allows us to check when a property
of a tiling (e.g., having its vertices form a Meyer set) is invariant under topological
conjugacies. One merely has to check whether the property is preserved by MLD
maps (a local computation) and whether it is preserved by shape conjugacies.
(The Meyer property turns out to be preserved by MLD maps but not by shape
conjugacies[KS1].)

For substitution tilings, the asymptotically negligible classes are easy to char-
acterize:

Theorem 3.6 ([CS]). Let Ω be a substitution tiling space generated from a sub-

stitution σ. Let σ∗ denote the action of σ on the vector space Ȟ1(Ω,Rd). The
asymptotically negligible classes are the span of the generalized eigenvectors of σ∗

with eigenvalues strictly inside the unit circle.

For example, for the Fibonacci tiling we have Ȟ1(Ω) = Z2, so Ȟ1(Ω,R) = R2.
The substitution acts via the matrix ( 1 1

1 0 ), with eigenvalues λ1 = φ and λ2 = 1−φ

and eigenvectors
(
λ1,2

1

)
. Deformations proportional to the second eigenvector are

asymptotically negligible, so all deformations are locally equivalent to an overall
rescaling followed by an asymptotically negligible deformation. In particular, any
two Fibonacci tiling spaces are topologically conjugate, up to an overall rescaling.

Similar arguments apply to any one-dimensional substitution tiling space
where σ∗ acts on Ȟ1 via a Pisot matrix. The asymptotically negligible classes have
codimension 1, so all deformations yield spaces that are topologically conjugate
up to scale. In particular, for these substitutions, suspensions of subshifts (with
all tiles having size 1) have the same qualitative properties as self-similar tilings.

For the Penrose tiling, Ȟ1(Ω,R2) = R5⊗R2 = R10. The eigenvalues of σ∗ are
φ and 1 − φ, each with multiplicity 4, and −1 with multiplicity 2. The multiplic-
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ity 4 for the large eigenvalue corresponds to the four-dimensional family of linear
transformations that can be applied to R2. (For self-similar tilings of Rd, the lead-
ing eigenvalue of σ∗ always has multiplicity d2.) Meanwhile, the two deformations
with eigenvalue −1 break the 180-degree rotational symmetry of the tiling space.
Thus, any combinatorial Penrose tiling space that maintains 180-degree rotational
symmetry must be topologically conjugate to a linear combination applied to the
“standard” Penrose tiling space.

For cut-and-project tilings, the asymptotically negligible classes depend on
the shape of the “window”. When the window is not too complicated, there is an
explicit description of these classes. This theorem applies even when Ȟ1(Ω,Rd) is
infinite-dimensional.

Theorem 3.7 ([KS2]). If the window of a cut-and-project scheme of codimension

n is a polytope, or a finite union of polytopes, then dim(Ȟ1
an(Ω,Rd)) = nd. The

elements of Ȟ1
an(Ω,Rd) correspond to projections from Rn+d to Rd, and all shape

conjugacies amount to simply changing the projection by which points in the ac-
ceptance strip are sent to Rd.

Besides the cohomology of strongly PE functions and forms, we can consider
the weak PE cohomology of weakly PE functions and forms, and the mixed coho-
mology [Kel3]. We call a strongly PE form weakly exact if it can be written as d
of a weakly PE (k − 1)-form. The kth mixed cohomology Hk

PE,m(T) of a tiling
T is the quotient of the closed strongly PE k-forms by the weakly exact k-forms.
This should not be viewed as a subgroup of Hk

PE(T) ≡ Ȟk(Ω,R). Rather, it is
a quotient of Hk

PE(T) by those classes that can be representedy by weakly exact

forms. This can be identified with a quotient of Ȟk(Ω,R). In dimension 1,

H1
PE,m(T) ≡ Ȟ1(Ω,R)/H1

an(Ω,R).

Since H1
an(Ω,Rd) parametrizes shape conjugacies, this means that H1

PE,m(T)
parametrized deformations of a tiling space ΩT up to topological conjugacy rather
than up to MLD equivalence [Kel3].

3.4. Exact regularity

A measure on a tiling space is equivalent to specifying the frequencies of all pos-
sible patches. Specifically, let P be a patch in a specific location (say, centered at

the origin). Let U be an open set in Rd. Let ΩP,U be the set of all tilings T such
that, for some x ∈ U , T−x contains the patch P . In other words, T must contain
the patch P at location x. As long as U is chosen small enough, there is at most
one x ∈ U that works. For any tiling T, let freqT (P ) be the number of occurrences
of P , per unit are, in T. That is, restrict T to a large ball, divide by the volume of
the ball, and take a limit as the radius goes to infinity. The ergodic theorem says
that this limit exists for μ-almost every T, with freqT(P ) = μ(ΩP,U )/Vol(U). If
the tiling space is uniquely ergodic, then this statement applies to every T, not
just to almost every T.
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There are two natural questions. First, what are the possible values of
freqT(P )? Second, as we consider larger and larger balls, how quickly does the
number of occurrences of P per unit area approach freqT(P )? Both questions
have cohomological answers.

Theorem 3.8. For each patch P and each sufficiently small open subset U of Rd,
μ(ΩP,U )/Vol(U) takes values in the frequency module of X.

Proof. Let iP be a pattern-equivariant d-cochain that equals 1 on one of the tiles
of P and is zero on all other tiles. Being of the top dimension, iP is co-closed, and
so represents a cohomology class. For any region R, iP (R) is just the number of
occurrences of P in R. The limiting number per unit area freqT(P ) is then the
trace of the class of iP . �

Theorem 3.9 ([Sa4]). Suppose that Ȟd(Ω,Q) = Qk for some integer k. Then there
exist patches P1, . . . , Pk with the following property: for any other patch P , there
exist rational numbers c1(P ), . . . , ck(P ) such that, for any region R in any tiling

T ∈ X, the number of appearances of P in R equals
∑k

i=1
ci(P )ni(R) + e(P,R),

where ni(R) is the number of appearances of Pi in R, and e(P,R) is an error term
computable from the patterns that appear on the boundary of R. In particular, the
magnitude of e(P,R) is bounded by a constant (that may depend on P ) times the

measure of the boundary of R. Furthermore, if Ȟd(Ω) = Zk is finitely generated
over the integers, then we can pick the coefficients ci to be integers.

Corollary 3.10. If the patches P1, . . . , Pk have well-defined frequencies, then Ω is
uniquely ergodic and there exist uniform bounds for the convergence of all patch
frequencies to their ergodic averages. If the regions R are chosen to be balls, whose

radii we denote r, then the number of P ’s per unit area approaches
∑

ci freq(Pi)

at least as fast as one the frequency of one of the Pi’s approaches freq(Pi), or as
fast as r−1, whichever is slower.

Note that this theorem and its corollary apply to all tiling spaces, and not
just to substitution tiling spaces.

Proof. Using the isomorphism between Čech and pattern-equivariant cohomology,
pick patches P1, . . . , Pk such that the cohomology classes of iPi are linearly in-

dependent. These classes then form a basis for Hd
PE(X) = Qk, and we can write

[iP ] =
∑

ci[iPi ], where [α] denotes the cohomology class of the cochain α. This

means that there is a (d− 1)-cochain β such that iP =
∑

i
ciiPi + δβ. Then

number of P in R = iP (R) =
∑

ciiPi(R) + δβ(R) =
∑

cini(R) + β(∂R). (20)

Since β is pattern-equivariant there is a maximum value that it takes on any
(d − 1)-cell, so the error term β(∂R) is bounded by a constant times the area of
the boundary of R. Dividing by the volume of R, the deviation of the left-hand
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side from freq(P ) is bounded by the deviation of ni(R)/Vol(R) from freq(Pi) or
by |∂R|/Vol(R) ∼ r−1.

If Ȟd(Ω) = Zk, then the same argument applies with the patches chosen such

that [iPi ] are generators of Zk and with integral coefficients ci. �
When Ω is a one-dimensional tiling space, it is possible to pick R such that

∂R is homologically trivial. Let β be pattern-equivariant with radius r0, and let
W be a word of length at least 2r0. Pick R to be an interval that starts in the
middle of one occurrence of W and ends in the corresponding spot of another
occurrence. Then δβ(R) = β(∂R) vanishes, and the number of P ’s in R is exactly∑

i
ci(P )ni(R). This is called exact regularity [BBJS, Sa4].

3.5. Invariant measures and homology

Exact regularity is dual to an earlier description [BG] of invariant measures in
terms of the real-valued homology Hd(Γ

n,R) of the approximants. Recall that
measures do not pull back, but instead push forward like homology classes: Given
a measure μ on a space X and a continuous map f : X → Y , there is a measure
f∗μ on Y . For any measurable set S ⊂ Y , f∗μ(S) := μ(f−1(S)). Thus, a measure
μ on a tiling space gives rise to a sequence of measures μn on the approximants
Γn, with (ρn)∗μn = μn−1.

Integration gives a pairing between indicator d-cochains and measures.
〈μ, iP 〉 = freq(P ). This extends to a pairing between measures and cohomology,
both for the tiling space and for each approximant. By the universal coefficients
theorem, the dual space to the top cohomology group Hd(Γn,R) is the top homol-
ogy group Hd(Γ

n,R), so we can view μn as living in Hd(Γ
n,R), and μ as living

in the inverse limit space lim←−(Hd(Γ
n,R), (ρn)∗). (The identification of μd as an

element of Hd(Γ
n,R) can also be seen more directly. A measure can be viewed

as a chain satisfying certain “switching rules”, or “Kirchoff-like laws”. These rules
are equivalent to saying that the boundary operator applied to μd is zero, i.e., that
μd defines a homology class.)

The measure of any cylinder set is non-negative, so each μd must lie in the
positive cone of Hd(Γ

n,R). Not only is μ constrained to lie in the inverse limit of
the top homologies of the approximants, but μ must lie in the inverse limit of the
positive cones. All of the invariant measures on a tiling space can be determined
from the transition matrices (ρn)∗, and in particular we can tell whether the tiling
space is uniquely ergodic.
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tion. Theor. Comput. Sci. 99 (1992) 327–334.

[Moz] S. Mozes, Tilings, substitution systems and dynamical systems generated by
them, J. Analyse Math. 53 (1989), 139–186.

[ORS] N. Ormes C. Radin and L. Sadun, A Homeomorphism Invariant for Substitution
Tiling Spaces, Geometriae Dedicata 90 (2002), 153–182.

[Rad] C. Radin, The pinwheel tilings of the plane, Annals of Math. 139 (1994) 661–702.

[Sa1] L. Sadun, Tiling spaces are inverse limits, J. Math. Phys. 44 (2003) 5410–5414.

[Sa2] L. Sadun, Pattern Equivariant Cohomology with Integer Coefficients, Ergodic
Theory Dynan. Sys. 27 (2007) 1991–1998.

[Sa3] L. Sadun, “Topology of Tiling Spaces”, University Lecture Series, Vol. 46, Amer-
ican Mathematical Society, Providence, RI 2008.

[Sa4] L. Sadun, Exact Regularity and the Cohomology of Tiling Spaces, Ergodic Theory
and Dynamical Systems 31 (2011) 1819–1834.

[SB] J. Savinien and J. Bellissard, A spectral sequence for the K-theory of tiling spaces,
Ergod. Th. & Dynam. Sys. 29 (2009) 997–1031

[Sol] B. Solomyak, Nonperiodicity implies unique decomposition for self-similar trans-
lationally finite tilings. Disc. & Comp. Geom. 20 (1998), 265–279.

Lorenzo Sadun
Department of Mathematics
The University of Texas at Austin
Austin, TX 78712, USA
e-mail: sadun@math.utexas.edu



Progress in Mathematics, Vol. 309, 105–135
c© 2015 Springer International Publishing

Spaces of Projection Method Patterns
and their Cohomology

John Hunton

Abstract. We explain from the basics why the Čech cohomology of a tiling
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1. Introduction

The aim of this article is provide a relatively simple explanation of the methods of
Forrest, Gähler, Hunton and Kellendonk for the description and computation of
the Čech cohomology of spaces of projection method tilings. The relevant published
papers which present these methods and results include [5, 6, 7, 12, 10, 11] among
others, but generally these either present computations with sparse detail of the
theory behind them, or else present the theory in such full detail as to make the
overarching ideas transparent to the reader only after significant study. This article
attempts to provide a ‘middle way’, in which the important underlying ideas and
structure of our approach is laid out, but many of the technical details are left for
the interested reader to pursue in the original articles.

We take the opportunity also to cover a specific part of the programme that
though addressed in part in [5], and at points in [7], has not had as complete
treatment as it could have. This is the issue of why the Čech cohomology of a
tiling space (any tiling space, but in particular that of a projection tiling) can be
realised in terms of group homology or cohomology. This is a crucial part of the
analysis of [7] et al. and one we intend to return to elsewhere.

The structure of the article is as follows. In Part I we address this last issue,
explaining some of the underlying algebraic-topological approach that underpins
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the main discussion of projection patterns, though this part is written in much
greater generality. We explain why a space which can be described as a Cantor bun-
dle over a torus has its Čech cohomology given by a certain group (co)homology.
We know of course by [19] that in theory every tiling with translationally finite
local complexity has this property, but to utilise this approach to actually com-
pute requires the bundle structure to be given in a tangible and very describable
manner: we show in Part II that for projection patterns this is the case1.

In Part I we begin, Section 2, with a simple example, explaining how the
cohomology of the space associated to a one-dimensional Z sub-shift can be de-
scribed as a group cohomology, and in Section 3 consider the more general case of
the cohomology of any space which can be presented as a Cantor bundle over a
d-torus. The reader may also wish to read these sections in conjunction with the
Appendix, which covers the basics of group homology and cohomology needed in
this article. (This appendix also contains a short collection of the basic facts about
Čech cohomology needed for the work in hand.)

In Part II we turn explicitly to projection patterns. Our discussion falls into
three phases. In Section 4, after setting up the definition of what we mean by a
projection pattern, we show how the defining data gives rise to a description of the
associated pattern space Ω, and a certain map μ : Ω → T to a high-dimensional
torus. This is not the map giving the necessary bundle structure to Ω allowing us
to use the machinery of Part I, but in Section 5 we use it to derive such a bundle
structure, and give a couple of ways of describing H∗(Ω) in terms of a group
homology H∗(G;C) for certain groups G and coefficients C. As noted earlier, this
in itself is not good enough in order to be able to compute unless one has a good
description of the G module C and of the G action on it. This is the aim of Section
6 where we introduce a filtration of the fibre, described very explicitly in terms
of the geometry of the initial projection scheme data. This section outlines the
specific programme of computation for H∗(Ω) via this approach.

However, the reader may find it helpful to read Part II, especially this last
section of it, alongside Part III Section 7 which presents in great detail the com-
putation of an actual example (that of Ammann–Beenker). The results for this
example have of course appeared several times in the literature already, but are
presented here annotated with a full commentary, and will hopefully allow the
reader to see the theory of Part II worked out very explicitly.

In addition to this explicit computation, Part III contains also Section 8 in
which we collect a number of remarks and observations concerning the method
described here, including some discussion of the complications which arise in more
complex examples.

1There is an analogue here with the computation of the Čech cohomology of a tiling space in
terms of an inverse limit. Again, we know from [8] and elsewhere that any tiling space can be
written as an inverse limit of finite CW complexes Ω = lim←Xr, and hence its cohomology as

the direct limit H∗(Ω) = lim→H∗(Xr), but this does you little good unless you have a strong
hold on the tower {Xr}, for example if the underlying tiling is generated by a substitution.
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Perhaps it is worth noting what we do not discuss in this article. We do not
discuss the many examples of projection patterns and their properties, applications
or role in other aspects of the field. We do not discuss the more high-powered ma-
chinery needed to discuss the more complex computations, including the methods
of machine computation that are frequently needed for all but the simplest cases,
or the more sophisticated homological algebra that can be utilised: for these the
reader should consult respectively [11] §5 and §3. We only hint (Section 6) at
Kalugin’s approach [15] to the subject and how this fits into the scheme described
here, again a far more detailed discussion of this point can be found in [11] §3
and §4. Finally, we do not look at the non-commutative geometry approach to
these patterns, though the reader interested in computing the K-theory of these
patterns will find much in the current work to aid efforts, at least for patterns in
small (< 4) dimensions. (Again, see [11], end of §6, and Putnam’s work [18].)

Part I: Cantor dynamics and cohomology
2. A very simple example

The purpose of this part is to sketch the perspective from which the cohomology of
a tiling space may be seen as a group cohomology. Our particular interest, where
this becomes an especially useful viewpoint, is with the projection tilings of Part
II, but here we illustrate the general principle, starting in this section with an
elementary, one-dimensional example.

Suppose we have a one-dimensional Z sub-shift, say generated by a bi-infinite
word T in some finite alphabet A. For now, we make no assumptions about prop-
erties such as repetitively, or even aperiodicity. Let us think of T as a tiling of R by
unit length tiles, each labeled by an element of A. In the usual fashion, as detailed
elsewhere in this volume, we can construct a ‘tiling space’, ΩT , for example as
the completion under one of the usual metrics of the set T + R of all translated
images of T . Let us denote by X a copy of, say, the transversal given by those
tilings in ΩT with tile boundaries at integer points, a totally disconnected space.
Translation of a tiling in ΩT by an integer defines a Z-action on ΩT :

ψ : Z× ΩT → ΩT

which restricts to a Z action on X , which we also denote by ψ.
There is an obvious map π : ΩT → R/Z = S1 to the circle given by declaring

π(t) to be the position of the origin within (any) tile in the tiling t ∈ ΩT . This gives
ΩT a structure of a fibre bundle over the circle, with fibre X . Clearly π commutes
with the action of Z as given by ψ on ΩT and the trivial action on S1; the action ψ
on X is the monodromy action of this bundle (i.e., the action of the fundamental
group of the base space S1 on the total space).

Now consider S1 cut into two (closed) semicircles, and denote by A and B
their pre-images in ΩT under π. The total disconnectedness of X means that each
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of A and B are just copies of I×X for a closed interval I, and so, up to homotopy
equivalence, they are just copies of X . Their intersection is a disjoint pair of copies
of X , and the resulting Mayer–Vietoris decomposition of ΩT gives a long exact
sequence in Čech cohomology

· · · → Hn(ΩT )→ Hn(X)⊕Hn(X)
Ψ−→ Hn(X)⊕Hn(X)→ Hn+1(ΩT )→ · · · .

(2.1)

The map Ψ is given by the matrix

(
1 1
1 ψ∗

)
, where ψ∗ denotes the homomor-

phism in Hn(−) given by the map

X → X, x 	→ ψ(1, x) .

Of course the total disconnectedness of X means that Hn(X) is only non-trivial
if n = 0 and there are only 4 potentially non-trivial terms in our sequence (2.1).

The nature of the matrix Ψ means that we can simplify this sequence: for
example,

kerΨ = {(a, b) ∈ Hn(X)⊕Hn(X) | (a + b, a + ψ∗(b)) = (0, 0)}
that is, {(a, b) | a = −b, a− ψ∗(a) = 0} and so we can identify

kerΨ ∼= ker (1− ψ∗ : Hn(X)→ Hn(X)) .

Similarly, cokerΨ may be identified with coker (1− ψ∗) : Hn(X)→ Hn(X)) and
(2.1) reduces to a long exact sequence

0→ H0(ΩT ) −→ H0(X)
(1−ψ∗)
−−−−−→ H0(X) −→ H1(ΩT )→ 0 ,

a structure not unrelated to the Pimsner-Voiculescu sequence in K-theory for
crossed products of algebras by Z. In particular, we obtain

Proposition 2.1.

H0(ΩT ) = ker(1− ψ∗)

= the ψ∗-invariant elements of H0(X)

=H0(Z;H0(X))

H1(ΩT ) = coker (1 − ψ∗)

= the ψ∗-coinvariant elements of H0(X)

= H1(Z;H0(X))

The identifications in this statement of the group cohomologies H0(Z;−)
and H1(Z;−) as invariants and coinvariants of the arguments are elaborated on
in the Appendix. We note there also that the Čech cohomology H0(−) may be
interpreted as the set C(−;Z), of continuous functions from the argument space
to Z.

In the case of T aperiodic and repetitive, the transversal X is a Cantor set
and the action ψ is minimal. In this situation, the only ψ-invariant continuous
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functions X → Z are the constant ones, and we recover the well-known fact that
H0(ΩT ) = Z. The other cohomology group, H1(ΩT ), identified as the group

C(X ;Z)/〈f−f◦ψ〉 ,

may be a good deal more complicated.
In the case that T is periodic, say of period m, the transversal X consists

of m points, which if we identify with the points of Z/m, realises the action of
ψ as the usual (quotient) action of Z on Z/m. In this case, it is easy to check
that the only ψ-invariant functions Z/m → Z are the constant ones, and again
H0(ΩT ) = Z. For the coinvariants, note that C(Z/m;Z) is generated by the m
indicator functions χp, p ∈ Z/m, that is, χp denoting the function Z/m → Z
taking value 1 on p ∈ Z/m and 0 elsewhere. The action ψ gives χp+1 = χp ◦ ψ, so
in the group of coinvariants, all the χp are equivalent, and we obtain H1(ΩT ) = Z,
which of course should be expected since ΩT is circle and the map π is the m-fold
cover of S1.

3. Zd dynamics

The data involved in the model of the tiling space for the one-dimensional subshift
in the last section amounted to a disconnected transversal X with a homeomor-
phism ψ. Such data is equivalent to an action of the group Z on X via the map

Z×X −→ X (n, x) 	→ ψ(n)(x) .

In turn, this information is equivalent to a fibre bundle

Mψ −→ S1

where Mψ denotes the mapping torus of ψ : X → X , the quotient space

Mψ = I ×X/(0,x)∼(1,ψ(x)) = R×X/(r,x)∼(r+1,ψ(x)) .

In the previous section, Mψ was what we were calling ΩT .
In this section we turn attention to computations for higher-dimensional ac-

tions. Bearing in mind these three equivalent ways of encoding the data we need
to consider, we suppose given a system, perhaps a tiling space Ω, that has the
structure of a fibre bundle over a d-torus Td, again with totally disconnected2

fibre (transversal) X . Again, this is equivalent to having an action of Zd on X

2The reader may reasonably wonder about the assumption that the transversal X be totally
disconnected, especially if, for example, she is interested in tilings with infinite local complexity
(ILC) where the transversal could indeed have a richer topological structure. In short, yes, the
ideas here can indeed be adapted to cover this case, but as might be expected, at the expense
of becoming considerably more complicated. The first complication (assuming of course that one
already has one’s tiling space described as a fibre bundle over Td in any sort of useful way) is
when the Čech cohomology H∗(X) of the transversal is non-trivial in positive dimensions, and
this extra cohomology clearly needs to be taken into account, but then later exact sequences

in what follows here will need to be replaced by spectral sequences, with potentially non-trivial
differentials and extensions. We intend to address these issues further elsewhere.
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(the monodromy action), and this is equivalent to having d commuting homeo-
morphisms ψ = {ψ1, . . . , ψd} acting on X .

Let us denote again by Mψ the mapping torus in this situation: we define
Mψ as the quotient space Rd ×X/∼ for the equivalence relation

((r1, . . . , ri, . . . , rd), x) ∼ ((r1, . . . , ri + 1, . . . , rd), ψi(x)) , i = 1, . . . , d .

(Alternatively, as the corresponding quotient of Id ×X .)

The fibre bundle structure Mψ
π−→ Td is then induced by the projection

mapping the transversal X to a single point

Rd ×X/∼→ Td [(r1, . . . , ri, . . . , rd), x] 	→ [r1, . . . , ri, . . . , rd] .

The fibre (pre-image of a point in Td) is then of course X .

Theorem 3.1 ([5]). There is an isomorphism Hn(Mψ) ∼= Hn(Zd;C(X ;Z)), between
the Čech cohomology of the mapping torus and the group cohomology on the right-
hand side.

Sketch of proof. The ‘high-tech’ proof of this is as a straightforward application of
the Serre spectral sequence (SSS) for the fibre bundle X → Mψ → Td, and using
the fact, as in the previous section, that Hn(X) = C(X ;Z) for n = 0 and vanishes
for positive n (a point where we use the total disconnectedness of X).

However, a more ‘bare hands’ explanation is also possible (which actually is
really just the SSS again, written out from first principles). First consider Td as

a cell complex, say with the usual product structure of 1 0-cell, d 1-cells, . . .,
(
d
n

)
n-cells, and so on. The torus is the union of these cells. Let us write R∗ for the
associated chain complex. Then the (dual) cochain complex

0→ R0 → R1 → · · · → Rd → 0

where Rn denotes H∗(the n-cells) = hom(Rn;Z), the cohomology (all in degree
0) of the disjoint union of the n-cells (of course, Rn =

⊕
n-cells Z) encodes the

construction of Td from these cells, with the ‘gluing’ information on how to put the
cells together coded in the coboundary maps Rn → Rn+1. Further, this cochain
complex computes, by taking its homology, the cohomology H∗(Td) (for any co-
homology theory, Čech or otherwise, as this is a finite cell complex, so all theories
are equivalent).

Now consider the induced decomposition of the space Mψ , where we think
of the component pieces being the π-preimage of each n-cell in Td. Let us write
An for the disjoint union of the pieces π−1(λ) for each n-cell λ; as for the torus,
Mψ can be constructed by gluing together the An’s with appropriate data, given
by the same data as that needed for gluing the boundaries of the n-cells in Td,
together with the monodromy information provided by the action of the ψi’s.

As each π−1(λ) is, up to homotopy equivalence, just a copy of the fibre X
(the n-cell λ being contractable), we see that

H∗(An) =
⊕

n-cells

H∗(X) =
⊕

n-cells

C(X ;Z) concentrated in degree 0.
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Putting this information together, we have the cohomology of Mψ given as
the homology of the diagram

0→
⊕

0-cells

C(X ;Z)→
⊕

1-cells

C(X ;Z)→ · · · →
⊕

d-cells

C(X ;Z)→ 0

which is just the homology of homZZd(R∗⊗Z ZZd;C(X ;Z)), that is, by definition,
the group cohomology H∗(Zd;C(X ;Z)) (see Appendix), by virtue of the fact that
our exact sequence R∗ ⊗Z ZZd is a projective (in fact free) resolution for Zd. In
fact it is precisely the resolution discussed in Example 9.9. �

As in the previous section, the identification of the cohomology H∗(Mψ) with
this group cohomology allows some immediate corollaries, just from the nature of
group cohomology of free abelian groups (again, see the Appendix).

Corollary 3.2.

1. Hn(Mψ) is non-trivial only for 0 � n � d.
2. H0(Mψ) is the group of Zd-invariant elements of C(X ;Z). If the Zd-action

is minimal, this is just a single copy of Z.
3. Hd(Mψ) is the group of Zd-coinvariant elements of C(X ;Z).

Remark 3.3. If ψ′ denotes some subset of ψ = {ψ1, . . . , ψd}, say a collection of
0 � n < d of the homeomorphisms, then there is also a fibre bundle structure

Mψ
π′
−→ Td−n

with fibre Mψ′ . We demonstrate this in the special case where n = d− 1, but the
general case is very similar. So, suppose ψ′ leaves out precisely one of the ψi, say
the last one, ψ′ = {ψ1, . . . , ψd−1}. Then the fibration

Mψ′ −→Mψ
π′
−→ S1 (3.1)

can be viewed as an iterated construction of Mψ given by first constructing the
mapping torus for the first d − 1 homeomorphisms, to obtain Mψ′ , then forming
the full mapping torus as

Mψ = R×Mψ′/∼′ where ∼′ is given by
(r, [(r1, . . . , rd−1), x]) ∼′ (r + 1, [(r1, . . . , rd−1), ψd(x)])

and the map π′ given by sending Mψ′ to a point.

This provides an iterative approach to the computation of the groups
H∗(Mψ). Supposing one has a computation for the cohomology of the mapping
torus associated to the first d−1 homeomorphisms, the bundle (3.1), via a decom-
position as in Section 2, gives short exact sequences

0→ coker
[
Hn−1(Mψ′)

(1−ψ∗
d)−−−→ Hn−1(Mψ′ )

]
−→ Hn(Mψ) −→

−→ ker
[
Hn(Mψ′ )

(1−ψ∗
d)−−−→ Hn(Mψ′)

]
→ 0 .

(3.2)
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If we write Ci and Ii for respectively the coinvariant and invariant functors with
respect to the action ψ∗i on the relevant modules, the sequence (3.2) becomes

0→ Cd(Hn−1(Mψ′))→ Hn(Mψ)→ Id(Hn(Mψ′ ))→ 0

and this iterates to express Hn(Mψ) via a series of extensions of the form

FdFd−1 · · · F1(C(X ;Z))

where each Fi is either Ci or Ii, and exactly n of them are C’s. The reader should
be warned however that the extensions in this iteration, such as (3.2) do not
necessarily split. However, if one is working with coefficients over a field, such as
with rational cohomology, then all the extensions will be trivial, and we obtain

Theorem 3.4.

Hn(Mψ ;Q) ∼=
⊕

exactly n C’s
FdFd−1 · · · F1(C(X ;Z) ⊗Q) .

Remark 3.5. Before leaving this part, let us reiterate that the group cohomological
interpretation for the cohomology of a tiling space Ω we have sketched has relied
on first representing Ω as a fibre bundle over a torus, presenting the cohomology in
terms of the cohomology of the fibre and the monodromy action of Zd, the funda-
mental group of the base space. As a practical method for computing cohomology,
this then stands or falls on being able to have a practical description of Ω as such
a bundle and of the corresponding action ψ. While we know theoretically [19] that
a wide class of tilings can be written (at least up to homeomorphism, which is
quite good enough for cohomological calculations) as fibre bundles over tori, the
need for a tangible description of the monodromy, good enough to be able to use
to do calculations, is a much bigger demand. The essence of Part II of this article
is that, remarkably, for cut and project patterns one does have good descriptions
of this information, and computations are certainly possible.

Part II: Cut and project patterns
and their pattern spaces

4. Projection method patterns

We now turn to consideration of cut and project patterns, their pattern spaces
and the analysis of their cohomology. In this section we begin with a description
of the basic paraphernalia needed for a cut and project pattern, explain how this
data gives a direct construction of a large part of the pattern space Ω, and passing
to a completion, to the whole of Ω.

The following data is needed to define such a pattern.

Definition 4.1. A cut and project scheme consists of data

1. E an N -dimensional Euclidean space;
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2. Γ ⊂ E a discrete, cocompact subgroup of E , which we shall also refer to as
our lattice. The quotient space E/Γ is then an N -dimensional torus, which
we denote T.

3. A linear decomposition E = E ⊕ F into subspaces E ∼= Rd and F ∼= Rn (so
N = d + n), which we assume to be irrationally positioned with respect to
Γ, meaning that the linear projections πE : E → E and πF : E → F are each
one-to-one and with dense image on the lattice Γ.

4. An acceptance domain K ⊂ F which, for our purposes here, will always be
a finite union of compact, non-degenerate polyhedra3 in F . The boundary
∂K of K consists of a union of finite (n− 1)-dimensional faces; we use fi to
denote such a face, with i running over some finite indexing set.

In what follows it will be convenient to define also the associated acceptance
strip, the subspace Σ = K+E ⊂ E . We shall say that the strip Σ, or the acceptance
domain K, is in non-singular position if Γ ∩ (∂K + E) = ∅, i.e., the boundary of
the strip contains no lattice points, or, equivalently, if πF (Γ) ∩ ∂K = ∅.

Definition 4.2. The cut and project point pattern defined by the data above is the
subset

P = {πE(x) |x ∈ Σ ∩ Γ} ⊂ E .

Alternatively, but equivalently, P can be considered as the set E∩(Γ−K). Clearly
P is a subset of the d-dimensional space E; we refer to d as the dimension of the
pattern, and n, the dimension of F , as its codimension.

These notions were used respectively, for example, in the articles of Forrest,
Hunton and Kellendonk [7] and of Kalugin [15] in their analyses of cohomology, but
other variations exist too, such as the dual method using Laguerre complexes which
is more elegant for some tilings such as the Penrose tilings, and was utilised in [6].
See Moody’s work, for example [17], for a wide ranging discussion of approaches
to cut and project patterns and their properties.

Remark 4.3. The data and constructions given automatically imply that the pat-
terns generated are aperiodic and of finite local complexity. In particular, ape-
riodicity follows directly from the irrational position assumption. The patterns
formed are however not necessarily repetitive, and it can be checked that they are
repetitive if and only if the acceptance strip Σ is in non-singular position.

Remark 4.4. Note that the lattice Γ clearly acts on E by translation; it also acts,
via the projections πE , πF on E and F . The latter will play an important role in
this article, and we note explicitly the action as given by

γ · x := x + πF (γ) for γ ∈ Γ and x ∈ F .

3In this article, a polyhedron in an n-dimensional euclidean space R is a compact subspace with
non-empty interior given as the intersection of a finite number of half-spaces, where a half-space

means a subset of R consisting of all points on or to one side of some affine (n− 1)-dimensional
linear subspace of R.
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Unless necessary, we shall not usually distinguish notationally between the Γ action
the whole space E and the (projected) Γ action on F .

In fact, a cut and project scheme, that is, the data given by Γ ⊂ E = E⊕F and
the translation class in E of the acceptance strip Σ defines a whole parameterised
family of point patterns in E: for each choice of where we embed Σ in E we obtain
a, possibly distinct, point pattern. One way of describing this is as follows.

Definition 4.5. Suppose given the data Γ ⊂ E = E⊕F and a particular acceptance
domain K ⊂ F , as in Definition 4.1. For each point v ∈ E define the point set

Pv = {πE(x) |x ∈ Σ ∩ (Γ + v)}
= E ∩ (Γ + v −K).

Remark 4.6. It is worth noting that the usual translation action on a point pattern
has a simple representation in this perspective. Suppose Pv ⊂ E is some point
pattern given by this data, and x ∈ E. Then the x-translate of the pattern Pv is
just Pv+x.

Remark 4.7. We note also that the pattern Pv depends only on the class of v in
E/Γ = T. In fact Pv = Pv′ if and only if v − v′ ∈ Γ. In particular, it will be useful
to define q : E → T as the quotient map

q : E → E/Γ .

Thus the points of T paramaterise a large class of patterns, but these are not
exactly the set of patterns comprising the pattern space Ω of any given Pv: in fact
not all of these patterns in this parameterisation will necessarily be points in Ω,
and nor does every point in Ω appear in this parameterisation. Nevertheless, we
will use this parameterisation to conveniently model the pattern space Ω; key will
be a distinction between two classes of types of points v ∈ E .

Definition 4.8. Define the set S of singular points in E as

S = {v ∈ E |πF (v) ∈ ∂K + πF (Γ)} = E + Γ+ ∂K .

Denote by NS its complement, the set of non-singular points. In the terminology
above, the acceptance strip Σ is in non-singular position if and only if 0 ∈ NS, in
fact, if and only if E ⊂ NS.

Remark 4.9. It may be checked that if v ∈ NS then the corresponding Pv is
repetitive; moreover, two patterns Pv and Pv′ with both v and v′ ∈ NS are locally
indistinguishable, in the sense that arbitrarily large, compact patches in one occur
also in the other, and hence each pattern lies in the other’s pattern space. These
statements are generally not true without the requirement that the parameters
v, v′ are non-singular.

The upshot of this is that if v ∈ NS, with its coset v+Γ in the parameterising
torus T representing the pattern Pv, then

Pv + E = q(E + v) ⊂ q(NS) ⊂ Ω . (4.1)
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Thus the non-singular points in the torus parameterisation give a large portion
of Ω, and to obtain the full pattern space we need to complete this subset in the
usual manner.

As noted, if v and v′ are both non-singular points of E , then the resulting
patterns Pv and Pv′ are locally equivalent, repetitive Delone sets, and hence share
the same pattern space Ω. It suffices therefore to work with a single choice of non-
singular v, and for simplicity of notation we shall assume from now on that 0 ∈ E
is non-singular and take v = 0; as in Definition 4.2 we shall denote the resulting
pattern just by P .

Recall that the space Ω may be considered as the completion of the set of
all E-translates of P with respect to some appropriate pattern metric, such as
the following. We may define a metric on subsets of E by declaring, for subsets
C,D ⊂ E,

d(C,D) = inf

{
1

r + 1

∣∣∣∣ there exists x, y ∈ B 1
r
with(

Br ∩ (C − x)
)
∪ ∂Br =

(
Br ∩ (D − y)

)
∪ ∂Br

}
where Br is the closed ball around 0 of radius r in E. In essence this metric is
declaring C and D to be close if, up to a small translation, they are identical up
to a long distance from the origin. The precise values or form of this metric will
not be important for our discussion, indeed there are many possible variations, as
discussed elsewhere, but rather the topology it generates.

As observed above, the set of all E-translates of P is given by

P + E = {Pv | v ∈ E}
and all these v are of course non-singular since 0 is. In terms of the torus pa-
rameterisation, Remark 4.7, this set corresponds to an irrationally sloped copy of
E embedded in T: the embedding property follows from the irrational position
assumption made for the cut and project scheme, Definition 4.1(c). We arrive at
our first two, equivalent descriptions of the pattern space Ω for P , working along
the lines indicated in Rermark 4.9.

Theorem 4.10.

1. The pattern space Ω for P is given by the completion of q(E) ⊂ T with respect
to the pattern metric.

2. The pattern space Ω for P is given by the completion of q(NS) ⊂ T with
respect to the pattern metric.

Proof. The first statement is really the definition of Ω under the assumption that
q is one-to-one on E. The second statement follows from the inclusions (4.1). �

Remark 4.11. The reader may find it helpful to consider the following perspective.
The set of patterns corresponding to points of q(E) in the parameter space (which
are also in 1 to 1 correspondence to the points E ⊂ E) give all the translates of P
in Ω. If P is obtained by placing the acceptance strip Σ at some point in E , these
can be conceived as the set of all patterns obtained by sliding the acceptance strip
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along itself inside E . The larger set of points, q(NS), correspond to all patterns in
Ω which may be obtained by placing the acceptance strip somewhere in E , with
the only constraint that no lattice point is allowed to lie on the boundary of Σ.
What of the points corresponding to placing Σ in a position which does have a
lattice point on its boundary, i.e., in a singular position? Such a positioning of Σ
can be considered as a limit of a sequence of non-singular positions of the strip
(or in fact of a sequence of points in P + E since q(E) is dense in q(NS)), and so
at first thought could correspond to a pattern that is a limit (i.e., a point in the
completion of q(E)) of points in P+E. However, a little more thought shows that
the limit pattern actually depends on how the non-singular point is approached
through singular points: if Σ has a lattice point, γ say, on its boundary, and we
approximate this via a sequence of strip positions all of which have γ inside the
strip, we will get a different limit pattern than if we approximate though a sequence
which all have γ outside of the strip. The conclusion of this is that the points on
q(S), the image of the singular points in T, correspond to multiple points in Ω.
Moreover, the map μ : Ω → T, while it is 1 to 1 on the patterns corresponding to
non-singular points, is multiple to 1 over the singular points.

5. A bundle structure on the pattern space Ω

In this section we develop the models for Ω of Section 4 so as to build descriptions
of Ω as bundles over tori, and in due course be able to apply the ideas of Part I
to obtain workable approaches to analysing H∗(Ω).

We start with the decomposition of E as E⊕F . Let us define FNS as F ∩NS,
the set of non-singular points on the subspace F . As the E-translate of a non-
singular point is non-singular, we have a decomposition of NS as the product
E×FNS ⊂ E . The lattice Γ of course acts on E , but as it takes non-singular points
to non-singular points, it also acts on E × FNS . In turn, it induces an action on
FNS by projection, as in Remark 4.4. Let us denote by Fc the completion of FNS
in the metric given by the sum of the pattern metric with the (usual) euclidean
metric on F .4 Following from the irrational position assumption of the projection
scheme, the space Fc is totally disconnected; the closure (in Fc) of the interior of
the acceptance domain K is a clopen set, and a basis of clopen sets is given by
unions, intersections and complements of Γ-translates of this set. As in the case of
F and of FNS , the lattice Γ acts on Fc.

4This construction, which is crucial to the development of the models used to compute, and is
integral to the discussion for the rest of this Part, can be thought of as follows. The subspace FNS

is obtained from F by removing the singular points; a Cauchy sequence in FNS in the euclidean
metric will converge to some, possibly singular, point of F and completion with the euclidean
metric alone will just recover F again. However, two Cauchy sequences which converge in the
euclidean metric to the same singular point could well converge to distinct points when we add
in the pattern metric, depending on how they approach the singular point – exactly as in the

discussion of Remark 4.11 above. As in that remark, there is a map Fc → F which is 1 to 1 on
points in FNS , and multiple to 1 over the singular points.



Spaces of Projection Method Patterns and their Cohomology 117

A diagrammatic view of all this is given by the following pullback diagram.

ZN ZN⏐⏐⏐6 ⏐⏐⏐6
E × Fc −→ E × F⏐⏐⏐6 q

⏐⏐⏐6
Ω

μ−→ T

Here ZN → E × F → T is the fibration representing the quotient T = E/ZN and
the left-hand column is the pullback via the map μ. In short, we have Ω as the
quotient (E × Fc)/ZN .

Remark 5.1. The direct realisation of Ω as a bundle over a d-torus now proceeds
as follows. As Γ acts on Fc by translation, we can split Γ as Zd⊕Zn where the Zn

acts freely on Fc. If we denote Fc/Zn by Xc, a compact set (in fact a Cantor set)
which still carries the remaining Zd action, we obtain, using the relevant projection
actions, the description

Ω = (E ×Xc)/Z
d .

The map Xc → (point) now induces a map

Ω = (E ×Xc)/Z
d → E/Zd = Td ,

giving Ω the structure of a bundle over the d-torus with fibre Xc. As in Part I we
obtain a relation

H∗(Ω) = H∗(Zd;C(Xc;Z)) = Hd−∗(Z
d;C(Xc;Z)) (5.1)

where the second equality comes from Poincaré duality (Appendix, Theorem 9.10).

It will turn out more convenient to pursue the homology version in this equa-
tion, in order not to get the indices too complicated: this is a purely book-keeping
simplification, and maybe not one that seems that plausible to the reader given
we have already had to supply the homology index as d− ∗, but bear with us, its
convenience will be explained more later on.

However, in practice, neither of these equalities turns out to be exactly the
most convenient way to analyse H∗(Ω) from the geometric data of the projection
scheme. Instead, first note that the group homology of the equality (5.1) may be
rewritten, using Remark 9.8

H∗(Ω) = Hd−∗(Z
d;C(Xc;Z)) = Hd−∗

(
Zd ⊕ Zn;C(Xc;Z)⊗ Z[Zn]

)
.

We may identify C(Xc;Z)⊗Z[Zn] with Co(Fc;Z), the compactly supported, con-
tinuous, integer-valued functions on Fc. While philosophically this description is
to be preferred as it removes the apparently arbitrary choice of splitting of ZN ,
it has the further practical advantage that the space Fc is somewhat easier to
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describe than Xc, a description we shall turn to in a moment. The following sum-
marises our main computational tool, one that is essentially reflecting the descrip-
tion Ω = (E × Fc)/ZN .

Theorem 5.2.
H∗(Ω) = Hd−∗(Z

N ;Co(Fc;Z)) .

Let us turn now to the question of identifying Fc and the function space
Co(Fc;Z). We approach Co(Fc;Z) through FNS and the function space Co(FNS ;Z).
Here, we consider the space FNS as the complement in F , with the euclidean
topology, of the singular points in F ; these latter are simply the points

Γ + ∂K,

the Γ orbit (in F ) of the boundary of the acceptance domain. As the Γ orbit of
any point in F is dense in F , it is immediate from this that the space FNS is
also totally disconnected. We would like to identify the ZΓ-algebras Co(Fc;Z) and
Co(FNS ;Z); there is however a topological subtlety to be addressed first.

The space Co(FNS ;Z)) can be thought of as the compactly supported, integer-
valued functions on F with discontinuities only at points of the subspace Γ+ ∂K.
In [7, 11] we introduced the notion of a C-tope, a compact, polyhedral region of F
with boundary contained in this singular set Γ + ∂K. The Γ action on F , which
takes singular points to singular points, clearly takes C-topes to C-topes, and this
realises the Γ action on Co(FNS ;Z)). On the other hand, Co(Fc;Z)) can be identi-
fied with the algebra generated by indicator functions on certain specific examples
of C-topes, namely those given by unions and intersections of Γ-translates of the
actual acceptance domain K and its complement: why should this be the same
algebra? In practice it need not be, though for large classes of examples these two
algebras do agree, and even when they don’t there is still much that can be said
(see Remark 5.9 below). For now let us make the definition

Definition 5.3. Say that a projection scheme is topially correct if every C-tope can
be constructed via a finite sequence of unions, intersections and complements of
polyhedra of the form K + πF (γ), for γ ∈ Γ.

If a scheme is topially correct then the algebras Co(Fc;Z) and Co(FNS ;Z)
will agree and we can describe the algebra Co(Fc;Z) purely in terms of C-topes.
We return below to when this property holds, but its advantage is that the algebra
of all C-topes admits in many standard cases a good description, and one we will
exploit in the next section.

In principle, the information needed to understand the algebra of C-topes
is completely described given the data defining the particular projection scheme,
but let us introduce a couple of further assumptions on the projection schemes we
will consider. These will allow for a very tractable understanding of this set and
so of the coefficient module needed by Theorem 5.2 to describe H∗(Ω). Schemes
satisfying the first assumption, Definition 5.4, receive a traditional name; it is
nominally the case studied in [7], though the analysis there actually covers a much
wider class of patterns, as we note below.
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Definition 5.4. Suppose we take for E the vector space RN , and the lattice Γ as
the corresponding integer lattice ZN ⊂ RN . Suppose the acceptance domain K is
the πF image of any translate of a unit cube IN of RN , and that the translate is
such that K is in non-singular position. Then the resulting pattern is known as a
canonical cut and project pattern.

Lemma 5.5 ([7]). Any canonical cut and project pattern is topially correct.

Lemma 5.6. Suppose we have a canonical cut and project pattern. Then for each
face fi of K, the set fi + πF (Γ) contains the affine space spanned by fi.

Proof. This follows, for example, by noting that as K is the πF -projection of some
unit cube Q = IN + v, the Γ-translates Q+Γ tessellate RN , and in particular, the
boundary faces of Q lie in the affine (N − 1)-dimensional spaces they span. �

This lemma presents a property crucial to the accessible computation of
cohomology developed in [7] and is worthy of abstraction, as found in [11]. In
fact, the methods of [7] are immediately applicable to any cut and project pattern
satisfying the following definition, Lemma 5.6 being one of the basic properties
upon which the constructions of [7] are based.

Definition 5.7. We call a cut and project scheme almost canonical if it is topially
correct and if for each face fα of K, the set fα + πF (Γ) contains the affine space
spanned by fα.

Of course any canonical pattern is almost canonical in this sense by virtue of
Lemmas 5.5 and 5.6, but the class of almost canonical patterns was first formally
introduced by Julien in [14] in his study of the asymptotic complexity of cut and
project patterns and is certainly much larger.

Remark 5.8. Apart from allowing us to identify the algebras Co(Fc;Z) and
Co(FNS ;Z), the crucial point of the almost canonical assumption is that the sub-
space Γ+∂K (and hence the algebra of C-topes) can be described more simply via
a collection of affine hyperplanes in F . Specifically, for each face fα of the accep-
tance domain K, let Wα be the (n − 1)-dimensional affine subspace spanned by
fα. Then FNS is the complement of the Γ orbits of the set of Wα. Of course two or
more Wα’s may be in the same Γ orbit as each other. We let In−1 be an indexing
set for a complete (but non-redundant) set of Wα’s, with just one representative
from each Γ orbit. Then

FNS = F \

⎛⎝Γ +
⋃

α∈In−1

Wα

⎞⎠ and NS = E \

⎛⎝E + Γ+
⋃

α∈In−1

Wα

⎞⎠ .

We will use this in the next section to develop a systematic approach to comput-
ing H∗(ZN ;Co(Fc;Z)) via the geometry and combinatorics of the Wα and their
intersections.
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Remark 5.9. It remains to be asked, when will a cut and project scheme that sat-
isfies the analogue of Lemma 5.6, that is, each set fα+πF (Γ) containing the affine
space spanned by fα, also be topially correct? It can be shown that one sufficient
condition for this is that the subgroups of Γ which stabilise all the various sin-
gular spaces (see next section) act densely on their respective spaces, a condition
readily checked in all the standard examples. Moreover, when this condition does
not hold, it may also be shown that the resulting cohomology H∗(Ω) is then infin-
itely generated, and so in such cases rather obviates the need for the calculational
machinery anyway.

6. Filtrations and exact sequences

Our aim is to compute, for an almost canonical pattern, the group homology
H∗(ZN ;Co(Fc;Z)), being identified with the Čech cohomology Hd−∗(Ω). Our main
tool is to place the coefficients in this group homology, Co(Fc;Z), into an exact
sequence whose other terms are more simply related to the geometry of the affine
hyperplanes Wα. From a homological point of view, we shall replace Co(Fc;Z) by
a resolution, obtained from the natural dimensional filtration of F given by the
singular set Γ +

⋃
α∈In−1

Wα.

Intersections of some of the Γ-translates of the Wα may be empty, or they
may be affine subspaces of F of smaller dimension. We shall call all the translates
of the Wα’s, and all the lower-dimensional intersections, by the common name
singular spaces. Let Pr denote the set of all singular spaces of dimension r (so,
Pn−1 is just the set of all γ + Wα).

Definition 6.1. Let Cr, for 0 � r < n denote the ZΓ module generated by indicator
functions on r-dimensional facets of C-topes. An element of Cr may be thought of
as a (finite sum of) compactly supported, integer-valued functions on a singular
r-space, with discontinuities at lower-dimensional singular subspaces. We denote
Co(Fc;Z) by Cn.

Theorem 6.2. For an almost canonical pattern, there is an exact sequence of ZΓ-
modules and Γ-equivariant boundary maps

0→ Cn
δ→ Cn−1

δ→ · · · δ→ C0
ε→ Z→ 0, (6.1)

where δ is given by the cellular boundary map on C-topes and ε the augmentation
map defined as follows. The module C0 is generated by indicator functions on zero-
dimensional singular spaces; denote such a function by 1p for some p ∈ P0. Then
ε is given by ε(1p) = 1.

Proof. Consider the singular set Γ +
⋃
α∈In−1

Wα as a limit of collections of these

hyperplanes, where at each stage we take only a locally finite number of the γ+Wα.
Considered as a ‘decoration’ of F = Rn, this can be thought of as a cellular
decomposition of F , and as such there is an associated cellular chain complex,
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similar to the sequence (6.1): its exactness and the final copy of Z correspond to
the fact that the cellular homology of Rn is Z in degree 0 and 0 otherwise. The
exact sequence (6.1) now follows by passing to the limit. �

This is a powerful computational tool, though it is perhaps best illustrated
by working some examples. Before that, let us sketch two of the ways in which
such a state of affairs may be utilised.

The first way, and the one followed in [7, 6] and the initial way used in [11]
is to split (6.1) into a set of short exact sequences of ZΓ modules

0→ C0
0 → C0 → Z → 0 ,

0→ C0
1 → C1 → C0

0 → 0 ,

· · ·
0→ Cn → Cn−1 → C0

n−2 → 0 .

(6.2)

where C0
r denotes the kernel of the homomorphism Cr

δ→ Cr−1. As noted in the
Appendix (Theorem 9.6), a short exact sequence ZΓ modules gives a long exact
sequence in group homology. Then the set (6.2) gives an inductive process of work-
ing up from knowledge of the singular 0-spaces, the singular 1-spaces, and so on, to
a final calculation of H∗(Γ;Cn). Clearly the complexity of this operation increases
with the codimension, n, though there is relatively little increase in complexity
for fixed n with an increase in the dimension parameter d, a fact in contrast to,
for example, the standard approaches to computing cohomology for substitution
patterns.

The final exact sequence of this family runs

· · · → H∗+1(Γ;C
0
n−2)→ H∗(Γ;Cn)→ H∗(Γ;Cn−1)→ H∗(Γ;C

0
n−2)→ · · · (6.3)

and gives the last part of a computation for Hd−∗(Ω) = H∗(Γ;Cn); indeed, for
codimension 2 patterns, it is the principal stage of the computation.

The full detailed application of this approach is provided in [11] Sections 5
and 6 (see also [7] Chapter V), and we shall illustrate a particular example of this
method in the next section, but let us also note a second approach to computation
that can be gained from the sequence (6.1).

The sequence (6.1) can be viewed as having three main parts: mentally
bracket the sequence

0→ Cn
δ→
[
Cn−1

δ→ · · · δ→ C0

]
ε→ Z→ 0 . (6.4)

Moving to a slightly wider perspective of homological algebra (detailed, for
example, in [11]) this gives rise to a single exact sequence

· · · → H∗+n(Γ;A∗)
j∗−→ H∗+n(Γ;T ∗)

m∗−→ H∗(Γ;Cn)→ H∗+n−1(Γ;A∗)→ · · · ;
(6.5)

see [11] Section 3.3 for definitions of the terms involved, but the relevant fact is
that H∗+n(Γ;T ∗) may be identified with the homology of the N -torus, with a shift
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in dimension, and the other term, H∗+n(Γ;A∗), a group associated to the middle
part of the sequence (6.4), specifically, the total homology of the bigraded complex

P ∗ ⊗ZΓ

[
Cn−1

δ→ · · · δ→ C0

]
for P ∗ some projective ZΓ resolution of Z. Under a further assumption on the
projection schemes considered (the rationality assumptions of [11] Section 4) this
sequence can be identified as the long exact sequence

· · · → Hr(A)
α∗−→ Hr(T)

m∗−−→ Hr−n(Γ;Cn) −→ Hr−1(A) → · · ·
|| ||

HN−r(T)
μ∗
−→ HN−r(Ω)

where μ : Ω→ T is the quotient map of Remark 4.11, and A is a certain subspace
of T defined in terms of the projection data (specifically, a union of subtori, one for
each element of In−1). Moreover, this is the same sequence as Kalugin constructs,
via a rather different approach, in [15].

Not surprisingly, given their common origin, the long exact sequences (6.3)
and (6.5) are related, and a ‘ladder’ of exact sequence can be made from them
allowing both to be utilised together in computations. An example of this can be
found in the discussion of codimension 3 computations in [11].

Part III: Doing the computations
7. Ammann–Beenker

In this section we employ the ideas of Part II to work through the computations
of a particular example. The one we choose is that of Ammann–Beenker [2], a
two-dimensional tiling with codimension 2. The results for this example have al-
ready appeared several times in the literature, see for example [11, 12], but the
computations here are presented in an annotated form for the novice calculator,
and we hope will contribute to the accessibility of these types of calculation as
well as shedding light on the theory of Part II above.

As can be seen from [11] many more examples have already been computed,
including ones of both higher dimension and codimension. As noted earlier, the
higher the codimension, the more complex the computation, and the interested
reader will find a full discussion in [11] of the sort of treatment needed for a codi-
mension 3 example, however many of the essential ideas are covered in the codi-
mension 2 case. In the next section we make some notes on the sort of phenomena
and problems that have to be faced in more general situation.

The Ammann–Beenker (sometimes also known as the Octagonal tiling) is,
like the Penrose tilings, a pattern that can be described as a canonical projection
pattern, a substitution or via matching rules. Here we sketch its description using
a projection scheme.
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Consider the following scheme. We take E = R4 with Γ = Z4 ⊂ R4 the integer
lattice. Let vα for α = 1, . . . , 4 be the four unit vectors

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)

which both generate Γ and form a basis for E . Consider the linear map R4 → R4

given with respect to this basis by the matrix⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

⎞⎟⎟⎠ .

This is a rotation of order 8 and has two two-dimensional eigenplanes, one where
the action is rotation by π/4, the other by 3π/4; take the former for E and the
latter for F . The acceptance domain K is given by the projection to F of the
standard unit cube I4 in R4. The special symmetries of this example mean that
K is a perfect octagon.

As for any canonical pattern, the singular points Γ + ∂K form complete
affine hyperplanes in F – of course in this case, of codimension 2, that means one-
dimensional lines. As in Remark 5.8 this singular set can be described as the Γ orbit
of a finite set of lines, here it will be 4 lines corresponding to the four directions
of the sides of the acceptance domain, which in turn are the projections of the
four unit vectors vα. Explicitly, we let Wα, α = 1, . . . , 4, be the one-dimensional
subspace of F spanned by πF (vα). The Wα form four rotationally symmetric lines
in F with Wα+1 the rotation of Wα through π

4 . The full singular set in F may
be envisaged (perhaps after enough beer) as the subset of F given by taking the
projected lattice πF (Γ), a dense subset of F , and for each point of this lattice
placing a copy of the four singular lines passing though that point.

It will be the geometry and combinatorics of this arrangement of lines and
their intersections that gives the necessary information to allow us to compute,
so a few further details should be given. We will not prove our assertions, but
they can all be readily checked with the aid of a few simple diagrams, which we
encourage the reader to sketch.

First, as noted before, Γ acts on F by translation, and, as the singular lines
are precisely the Γ orbits of the Wα, this action takes singular lines to singular
lines. As Γ = Z4, we will use the vα, α = 1, . . . , 4 also to denote a set of generators
of Γ. It will be useful to have a description of the stabiliser subgroups of the
singular lines; these are as follows. The stabiliser of each Wα is of rank 2, and
specifically the stabilisers are given by

ΓW1 = 〈v1, v2 − v4〉 , ΓW2 = 〈v2, v1 + v3〉 ,
ΓW3 = 〈v3, v2 + v4〉 , ΓW4 = 〈v4, v1 − v3〉 .

Next, we consider the intersections of the lines. By an intersection point
we mean a point in F where two or more of the lines γ + Wα cross. Clearly
(by construction) there are the lattice points πF (Γ) at each of which there are
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precisely four singular lines meeting. There are other intersection points as well,
where precisely two singular lines meet. Examples of these are

(v1 + W4) ∩W2 and (v2 + W3) ∩W1 .

These three examples of intersection points lie in distinct Γ orbits, and the three
resulting orbits contain all intersection points. The Γ action on the intersection
points is clearly free.

We are now ready to begin computing. We use the method of short exact
sequences sketched after Theorem 6.2. Here there are just two sequences

0→ C0
0 → C0 → Z → 0 ,

0→ C2 → C1 → C0
0 → 0 .

(7.1)

The first gives rise to a long exact sequence in group homology

· · · → Hr(Γ;C0)→ Hr(Γ;Z)→ Hr−1(Γ;C
0
0 )→ Hr−1(Γ;C0)→ · · · . (7.2)

We take the terms in turn. The coefficient module C0 is the ZΓ module of indicator
functions on the intersection points: we have already noted that there are three
distinct orbits of intersection points, and the Γ action on them is free. So C0 is
the free ZΓ module of rank 3. In particular, H0(Γ;C0) is then Z3, one copy of Z
for each orbit, and, by Remark 9.7, Hr(Γ;C0) vanishes for r > 0.

The next term, Hr(Γ;Z) is simply the group homology of Γ with constant
coefficients Z. As discussed towards the end of the Appendix, this is equivalent to
the homology of the 4-torus, and indeed it will be useful to write this homology
in terms of the exterior power operation:

Hr(Γ;Z) = Hr(T
4) = Λr(Z4) = Z(

4
r) .

Putting this together gives us a computation for the third term, H∗(Γ;C
0
0 ),

which we can then use as part of the computation of Hr(Ω) = H2−r(Γ;C2) via the
second sequence in (7.1). The vanishing of Hr(Γ;C0) for r > 0 gives isomorphisms

Hr(Γ;C
0
0 ) = Hr+1(Γ;Z) = Z(

4
r+1) for r � 1 ,

and in low dimensions an exact sequence

0→ H1(Γ;Z)→ H0(Γ;C
0
0 )→ H0(Γ;C0)→ H0(Γ;Z)→ 0,

i.e.,

0→ Z4 → H0(Γ;C
0
0 )→ Z3 → Z→ 0 .

Basic algebra (in particular using the fact that Z is projective) solves this sequence
and we obtain

Hr(Γ;C
0
0 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if r > 3
Z if r = 3
Z4 if r = 2
Z6 if r = 1
Z6 if r = 0.

(7.3)



Spaces of Projection Method Patterns and their Cohomology 125

We now turn to the second long exact sequence, that arising from the second
line of (7.1). This runs

· · · → Hr(Γ;C1)→ Hr(Γ;C
0
0 )→ Hr−1(Γ;C2)→ Hr−1(Γ;C1)→ · · · . (7.4)

We have a computation for Hr(Γ;C
0
0 ), but we need also a computation for

Hr(Γ;C1). To do this we consider geometrically what the module C1 is repre-
senting. This module is the set of (compactly supported, integer-valued) functions
on the singular lines γ + Wα, with discontinuities at the intersection points on
these lines. As such we can decompose C1, first as

C1 =

4⊕
i=1

{Functions on lines parallel to Wα}

and this allows us to decompose the homology as

Hr(Γ;C1) =

4⊕
i=1

Hr

(
Γ; {Functions on lines parallel to Wα}

)
.

We can simplify this still further: the lines parallel to Wα are given by γ +Wα as
γ ranges over Γ/ΓWα , thus Γ/ΓWα acts freely on the module of functions on lines
parallel to Wα and we can write

{Functions on lines parallel to Wα} = C1(Wα;Z))⊗Z Z[Γ/ΓWα ]

where C1(Wα;Z)) denotes the compactly supported, integer-valued functions on
the single line Wα with discontinuities at the intersection points on that line.
Hence, by Remark 9.8, we have

Hr (Γ; {Functions on lines parallel to Wα}) = Hr(Γ
Wα ;C1(Wα;Z)) .

Recall from our discussion of intersection points earlier that each stabiliser
ΓWα is of rank 2, and each line Wα has precisely two distinct orbit classes of
intersection point.

We can compute Hr(Γ
Wα ;C1(Wα;Z)) in much the same way as we computed

Hr(Γ
Wα ;C0

0 ): as in the complex in Theorem 6.2, there is an exact sequence

0→ C1(Wα;Z)
δ→ C0(Wα;Z)

ε→ Z→ 0,

where C0(Wα;Z) denotes the functions on the intersection points on Wα. We get
an induced long exact sequence in group homology5, now taking homology for the
group ΓWα . We obtain

· · · → Hr(Γ
Wα ;C0(Wα;Z))→ Hr(Γ

Wα ;Z)→ Hr−1(Γ
Wα ;C1(Wα;Z))→

→ Hr−1(Γ
Wα ;C0(Wα;Z))→ · · · .

5It is here that it pays to work in homology, not cohomology: if we were to perform these
computations for the lower-dimensional parts of the singular set in group cohomology then the
indices would become a mess. The situation would become still worse in higher codimensions

where there were multiple values of r for which we would have to carry out similar operations
on modules Cr with n > r > 0.
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Just as in the earlier case, Hr(Γ
Wα ;C0(Wα;Z)) vanishes for r > 0, is Z2 for

r = 0 (there are two orbits of intersection points on each Wα) and Hr(Γ
Wα ;Z) is

essentially the homology of the 2-torus (as ΓWα is of rank 2). We conclude

Hr(Γ
Wα ;C1(Wα;Z)) =

⎧⎨⎩
0 if r > 1
Z if r = 1
Z3 if r = 0

(7.5)

and hence

Hr(Γ;C1) =

4⊕
i=1

Hr(Γ
Wα ;C1(Wα;Z)) =

⎧⎨⎩
0 if r > 1
Z4 if r = 1
Z12 if r = 0.

(7.6)

We turn to the final computation, for H∗(Γ;C2) from the short exact sequence
0→ C2 → C1 → C0

0 → 0. The fact that Hr(Γ;C1) = 0 for r > 1 yields an isomor-
phism Hr(Γ;C2) = Hr+1(Γ;C

0
0 ) in this range, but this just gives Hr(Γ;C2) = Z

for r = 2 and vanishes for higher r. The more problematic part is the lower end
of the sequence, which runs

0 = H2(Γ;C1)→ H2(Γ;C
0
0 )→

→ H1(Γ;C2)→ H1(Γ;C1)→ H1(Γ;C
0
0 )→

→ H0(Γ;C2)→ H0(Γ;C1)→ H0(Γ;C
0
0 )→ 0

which by the computations above becomes

0→ Z4 → H1(Γ;C2)→ Z4 ρ−→ Z6 → H0(Γ;C2)→ Z12 → Z6 → 0 . (7.7)

This sequence does not have a unique solution without further knowledge6 of the
homomorphism ρ.

The homomorphism ρ : H1(Γ;C1)→ H1(Γ;C
0
0 ) can be identified by retracing

the analysis of these particular homology groups above. It can be shown that there
is a commutative diagram

Λ2Z4 === H2(Γ;Z)
∼=

−−−−→ H1(Γ;C
0
0 )

i∗

;⏐⏐⏐ i∗

;⏐⏐⏐ ρ

;⏐⏐⏐⊕4
i=1 Λ

2Z2 ===
⊕4

i=1 H2(Γ
Wα ;Z)

∼=−→
⊕4

i=1 H1(Γ
Wα ;C1(Wα;Z))
||

H1(Γ;C1)

where the right-hand horizontal maps marked ∼= are the homomorphisms in the
sequence (7.2) and the corresponding one for H∗(Γ

Wα ;C1(Wα;Z)). The homomor-
phism marked i∗ is that induced from the inclusions ΓWα ⊂ Γ. Thus i∗ and hence
ρ are completely computable, and the kernel is a rank 1 subgroup of Z4.

6We’ll pick up on this further in the next section, but one might note that this sequence does
determine the Euler characteristic – the alternating sum of the ranks of the groups for H∗(Ω):
changing the rank of ρ changes the ranks of H1 and H0 equally, keeping the sum rkH0(Γ;C2)−
rkH1(Γ;C2) + rkH2(Γ;C2) equal at 5.



Spaces of Projection Method Patterns and their Cohomology 127

We can now finalise the calculation from the exact sequence (7.4): the groups
involved are all free abelian and there are no extension problems to solve. We
obtain

Theorem 7.1. The Čech cohomology of the pattern space for the Ammann–Beenker
projection scheme is

Hr(Ω) = H2−r(Γ;C2) =

⎧⎪⎪⎨⎪⎪⎩
0 if r > 2
Z9 if r = 2
Z5 if r = 1
Z if r = 0.

8. Further remarks

We conclude with some short remarks on further topics concerning the cohomology
of projection patterns.

8.1. Finite generation

We omit a detailed discussion of what sort of answers are likely to arise as the
cohomology of a projection pattern, but there are some simple things that can be
said about whether or not the cohomology groups that arise are finite or infinitely
generated. After all, by identifying H∗(Ω) in terms of the group homology of the
infinitely generated module Cn, it is not a priori clear that the answers will be
finitely generated.

The first result to note is

Theorem 8.1 ([7, IV.6.7]). A necessary condition for H∗(Ω) to be finitely generated
is that n divides N .

Indeed, the number ν = N
n = 1 + d

n is an important constant related to the
order of stabiliser groups of the singular spaces in the full analysis of [11]. For now
we note that the requirement that n divides N , and hence d, means that the only
projection patterns with finitely generated cohomology of dimension 2 are those
of codimension 1 or 2, and for d = 3 the only patterns will be of codimension 1 or
3. The cohomology of patterns as defined in Definition 4.1 of codimension 1 are
always finitely generated.

While this is a necessary condition, apart from the case of codimension 1, it
is not sufficient, indeed in some sense almost every (almost canonical) projection
pattern of codimension n > 1 will have infinitely generated cohomology. A com-
plete condition is given by the following. We denote by L0 the number of Γ orbits
of intersection points in the singular set of F .

Theorem 8.2 ([7, IV.2.9, V.2.4]). H∗(Ω) ⊗ Q is a finite dimension, graded vector
space if and only if L0 is finite.

It is this result that lies behind the final observation in Remark 5.9. Also, it
may be easily checked, for example, see [13], that a projection scheme that does
not satisfy the conclusion of Lemma 5.6 will fail to have L0 finite.
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8.2. Torsion

For rather trivial reasons, the cohomology of any tiling of dimension 1 is free
of torsion. To see this consider, for example, the fact that any tiling space of
dimension d may be written as an inverse limit

Ω = lim
←
{· · · → Xr → Xr−1 → · · · → X1}

for d-dimensional CW complexes Xr. Then H∗(Ω) is the direct limit of the H∗(Xr).
In the case d = 1 the spaces Xr are, up to homotopy equivalence, one point unions
of circles, and so each H∗(Xr) is free abelian; the direct limit of free abelian groups
cannot contain torsion.

For higher dimensions, there may be torsion. The ‘smallest’ examples oc-
cur with n = d = 2 and include, for example, the Tübingen Triangle Tiling
[1, 16]; see [9, 11] for a discussion. For these parameters torsion may appear in
H2(Ω) = H0(Z4;C2), and it arises through the analogue of the map ρ in (7.7) hav-
ing torsion in its cokernel. Computationally this is straightforward – it just comes
out in the computations and is no more problematic than computing a dimension
2 codimension 2 example without torsion. The story is rather different in higher
codimensional examples (see next subsection).

As of this writing, it is not clear that the existence of torsion in the cohomol-
ogy of a tiling space has any very significant implications or geometric ‘meaning’.

8.3. The complications of higher codimensions

The codimension 2 example detailed in Section 7 demonstrated all the essential
ingredients needed to be considered for the computation of any codimension 2
projection scheme. For n = 2 but higher dimension d there is more to be done,
more cohomology groups to compute, but the method goes over and no significantly
new ideas are needed (this is not to underestimate however the computational
complexity of sorting out, for example, the singular spaces, their stabiliser groups
and their intersections).

Moving up just one more codimension, to n = 3, introduces significant com-
plications; these fall into two types. The fundamental complex (6.1) now gives
rise to three short exact sequences of coefficients; the first two can be addressed
using techniques similar to those used for n = 2, but by the time we consider the
final resulting long exact sequence, there are problems. Both types of problems
relate to the solving of exact sequences. In the codimension 2 case we already saw
that it was necessary to use further geometric information to compute the action
of the homomorphism we labelled ρ; in the more complex cases there are similar
homomorphisms that need describing, but which no longer have such simple for-
mulations in terms of the underlying geometric data. The second type of problem
concerns the solution of extension problems. A short exact sequence of abelian
groups

0→ A→ B → C → 0 (8.1)
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has unique solution B = A⊕C if C is free abelian: this was a fact we used several
times in the codimension 2 calculation. By the time we compute codimension 3
examples, exact sequences such as (8.1) occur in which C can contain torsion; here
the solution is no longer unique, and further arguments are needed to establish
which of the possible solutions is the correct one. The reader will glimpse some of
the issues from the discussion of the integral cohomology calculations of [11] §6.

Of course if we limit ourselves to computing rational cohomology, these ex-
tension problems go away, and even the first problems become tractable. In [11]
Theorem 6.5 we give a complete formulaic answer to H∗(Ω;Q) for any dimension
3, codimension 3 almost canonical projection pattern.

8.4. Euler characteristic

Finally, we saw in the footnote to Section 7 that the Euler characteristic of the
Ammann–Beenker tiling could be easily read off our machinery, without even pur-
suing it to the final cohomology calculations. This is true in general (and for higher
codimension 3 as well, assuming one can successfully describe all the singular sub-
spaces and their stabiliser groups). The diligent reader who follows the calculations
of Section 7 will have no problem proving the following result. The number L0 is
the number of Γ orbits of intersection points in the singular set in F , while Lα0
denotes the number of ΓWα orbits of intersection points in Wα.

Theorem 8.3. The Euler characteristic χ of a dimension 2, codimension 2 almost
canonical projection pattern is (

∑
i L

α
0 )− L0. In particular χ � 1.

The observation about χ being positive follows from the fact that an inter-
section point has to be the intersection of at least two of the Wα’s, so each orbit
contributes 1 to L0, but it also contributes 1 to at least two of the Lα0 ’s.

The smallest possible value of χ, namely 1, may indeed be realised. Consider
the following variation on the Ammann–Beenker example [13]. We keep the same
E, F and lattice Γ in E = R4, but replace the acceptance domain K by the
parallelogram with sides πF (v1) and πF (v2). This is not a canonical pattern, but
it is still almost canonical. Then there is precisely one orbit of intersection points,
so L0 = L1

0 = L2
0 = 1, giving χ = 2− 1 = 1.

Appendix
9. Notes on Čech and group cohomology

9.1. Čech cohomology

This is not a formal introduction and definition of Čech cohomology, rather it is
what is needed for the job in hand. We assume throughout that the space X is
compact, and of course are essentially thinking of either Cantor sets or tiling space
like objects. The most essential facts are
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Theorem 9.1.

1. On any finite CW complex, Čech cohomology, singular cohomology and cel-
lular cohomology all agree.

2. The Čech cohomology (unlike the other two above) satisfies the continuity
axiom, that if the space X is given as an inverse limit

X = lim
←

{
· · · → Xi → · · ·X2 → X1 → X0

}
then the Čech cohomology of X is the direct limit of the cohomologies of
the Xn,

Hn(X) = lim
→

{
Hn(X0)→ Hn(X1)→ · · · → Hn(Xi)→ · · ·

}
.

Corollary 9.2. If X is a totally disconnected space, then the Čech cohomology
Hn(X) vanishes for n > 0 and H0(X) may be identified with the continuous Z-
valued functions C(X ;Z) on X.

Proof. Any such space may be written as an inverse limit X = lim←Xi of finite
CW complexes Xi with the homotopy type of a finite set of points. The continu-
ity axiom and standard calculations for discrete spaces immediately tell us that
Hn(X) must vanish for n > 0; the result for degree 0 follows from the identifica-
tion of H0(Y )as C(Y ;Z) for any finite discrete space Y , and the definition of the
inverse limit topology on X . �

Remark 9.3. A note is in order for when considering, for example, rational Čech
cohomology. A moment’s thought shows that C(X ;Q) and C(X ;Z) ⊗ Q are not
the same: if X contains an infinite number of points then the latter will contain
functions taking an infinite number of distinct values, while the latter will not.
Following the argument of the corollary above, we see that in this case, the correct
identification is

H0(X ;Q) = C(X ;Z)⊗Q .

9.2. Group cohomology

We collect here the details and properties of group homology and cohomology
which we have used in the main sections of this article. Necessarily, this can only
be a brief tour through the facts, and the reader interested in seeing more detail or
proofs of the results below should consult one of the principal texts. Good sources
that cover this material, from various viewpoints, include [3, 4, 20, 21].

The perspective that is particularly close to the motivation for group coho-
mological techniques we have sketched in this article is that of groups of invariants
and coinvariants, and their corresponding derived functors. We begin with intro-
ducing these notions. In what follows, a G-module M refers to an abelian group
which is a module over the group-ring ZG.7

7Recall, the group-ring ZG is the free Z-module on basis elements {g | g ∈ G}, and the ring

structure is generated by declaring the product of two basis elements, g1 and g2 say, to be the
basis element corresponding to the group product g1g2; this extends linearly. Thus a typical
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Definition 9.4. Suppose G is a group and M a G-module. Define the subgroup of
G-invariants as

MG = {m ∈ M | gm = m} = homZG(Z;M)

where Z carries the trivial G-action, and the group of coinvariants as the quotient

MG = M/〈m− gm〉 = Z⊗ZG M,

i.e., the quotient of M by the submodule generated by all elements of the form
m− gm as m and g run over all elements of M and G respectively.

Considered as functors from the category of G-modules to abelian groups, the
invariants and coinvariants are half-exact, meaning that if 0→M → N → Q→ 0
is a short exact sequence of G modules and G-maps, the sequences

0→MG → NG → QG and MG → NG → QG → 0

are both exact, but NG → QG is not necessarily surjective, and MG → NG is not
necessarily injective. Group cohomology and homology can be seen as a remedy
for this: indeed, with the addition of certain normalising assumptions, this can
be taken as the defining property of each, see, for example, [20] for an elegant
introduction along these lines.

Theorem 9.5. For each group G and n = 0, 1, 2, . . . there are functors Hn(G;−)
from G-modules to abelian groups satisfying the properties

(i) H0(G;M) = MG, the G-invariants of M , and

(ii) if 0 → M → N → Q → 0 is a short exact sequence of G modules and
G-maps, then there is a long exact sequence of abelian groups

0→ H0(G;M)→ H0(G;N)→ H0(G;Q)→ H1(G;M)→ · · ·
· · · → Hn(G;M)→ Hn(G;N)→ Hn(G;Q)→ Hn+1(G;M)→ · · · .

Similarly, for homology, we have

Theorem 9.6. For each group G and n = 0, 1, 2, . . . there are functors Hn(G;−)
from G-modules to abelian groups satisfying the properties

(i) H0(G;M) = MG, the G-coinvariants of M , and

(ii) if 0 → M → N → Q → 0 is a short exact sequence of G modules and
G-maps, then there is a long exact sequence of abelian groups

· · · →Hn(G;M)→ Hn(G;N)→ Hn(G;Q)→ Hn−1(G;M)→ · · ·
· · · → H1(G;M)→ H0(G;M)→ H0(G;N)→ H0(G;Q)→ 0 .

element of ZG is a sum of the form
∑

gi∈G nigi, where the ni ∈ Z and only a finite number of

them are non-zero.



132 J. Hunton

There are various approaches to establishing the existence of the functors
H∗(G;−) and H∗(G;−), perhaps the most familiar being via projective resolu-
tions. We suppose that P ∗ is a projective resolution of Z as ZG modules, that is,
an exact sequence of ZG modules and ZG module maps

· · · → Pn → Pn−1 → · · · → P2 → P1 → P0 → Z→ 0 .

(Recall that a module is projective if and only if it is a direct summand of a free
module; the free modules are thus themselves projective. In practice, in the situa-
tions we are interested in, it is usually more convenient to consider free resolutions,
where the Pn are free ZG modules.)

We may then construct the homology and cohomology groups as the homol-
ogy of the associated complexes

H∗(G;M) = Homology of
· · · ← homZG(Pn,M)← homZG(Pn−1,M)← · · · ← homZG(P0,M);

H∗(G;M) = Homology of
· · · → Pn ⊗ZG M → Pn−1 ⊗ZG M → · · · → P0 ⊗ZG M.

It is precisely the fact noted above that the invariant and coinvariant functors (i.e.,
the functors homZG(−,M) and − ⊗ZG M) do not take exact sequences to exact
sequences that makes these homologies non-trivial.

Remark 9.7. It may be easily checked from this construction that if M is itself a
free (or even projective)ZG module, then these functors are exact and in particular
Hn(G;M) vanishes for all n > 0.

Remark 9.8. An extension of this observation provides an important simplification
in many of our calculations for the cut and project tilings. Suppose G decomposes
as G = K × G/K for some summand K, and the G module M takes the form
N ⊗ Z[G/K] where G/K acts trivially on the K-module N and G acts in the
obvious way on Z[G/K], (i.e., M is the free Z[G/K] module induced from the
K-module N). Then there is an equivalence

H∗(G;M) ∼= H∗(K;N) .

Example 9.9. There are many ways to construct a projective resolution of Z by
ZG modules, and for computational purposes the smaller and simpler the better.
We consider a straightforward, but relevant, family of examples, that of the free
abelian groups G = Zd.

(a) First let us consider the case where G is the group of integers Z. A particularly
convenient ZZ resolution, here in fact by free ZZ modules, of Z is given by the
sequence

0→ ZZ
1−s
−−→ ZZ

ε−→ Z→ 0 . (9.1)

We explain the homomorphisms involved. Recall that ZZ is a free Z module on
a countable generating set indexed by the elements of Z; let us denote the mth
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such basis element by m. Then s is the shift map, sending m to m+1, and the
‘augmentation’ homomorphism ε : ZZ→ Z acts sending each m to 1.

As the resolution we have been able to use contains non-trivial modules Pn
only for n = 0 and 1, and Pn = 0 for all n � 2, it is immediate that Hn(Z;M)
and Hn(Z;M) vanish for all n � 2, for any M .

Computing, say the homology with coefficients M the constant module Z, in
the remaining dimensions proceeds as follows. Tensoring the resolution above by
−⊗ZZ Z yields the chain complex

0→ ZZ⊗ZZ Z = Z
(1−s)⊗1
−−→ ZZ⊗ZZ Z = Z→ 0

and it is easy to check that the ‘boundary’ homomorphism (1 − s) ⊗ 1 is zero,
yielding H0(Z;Z) = H1(Z;Z) = Z. The calculation for cohomology is similar.

(b) To handle the case of G = Zd for d > 1, we note that resolutions of products of
groups can be given by (tensor) products of resolutions of the individual groups.
In particular, we may take products of d copies of the resolution (9.1) above to
obtain a free ZZd resolution of Z, obtaining a sequence where the nth module Pn
is of the form

ZZd⊕
(dn)· · · ⊕ZZd . (9.2)

In principal this can be used to compute: as in the case d = 1, all the bound-
ary homomorphisms after tensoring with − ⊗ZZd Z vanish and the homology and
cohomology may be simply idenifitied: in the case of homology,

Hn(Z
n;Z) =

(
ZZd⊕

(dn)· · · ⊕ZZd
)
⊗ZZd Z = Z⊕

(dn)· · · ⊕Z .

(In general, homology and cohomology of products of groups may be deduced from
the application of Künneth theorems which in this case are particularly simple
taking the (co)homology of the product of copies of Z to the tensor product of
copies of the (co)homology of a single Z; other groups can give more complicated
relationships.) However, the next observation links this calculation to a better
known computation.

There is an important topological analogue of the algebraic construction of
a resolution. For each group G there is a topological space, the classifying space
of G, denoted BG, enjoying various properties. In fact, just as there are many
possible projective resolutions for any given G, so too are there many possible
spaces which are perfectly good candidates for being called BG: nevertheless, they
are all homotopy equivalent to each other, and the space BG is only defined up to
homotopy equivalence.

What the space BG classifies does not concern us here, but two facts are
pertinent. The first is that for any group G and G module M there are (natural)
equivalences

Hn(G;M) ∼= Hn(BG;M) and Hn(G;M) ∼= Hn(BG;M)
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the right-hand object in each equivalence being (singular) (co)homology with co-
efficients in the module M .

The second point to bear in mind is that there can be drawn very close
parallels between cell complex structures of possible BG’s and free ZG resolutions
(in fact, this is one way in which the equivalences just noted may be demonstrated).
Given a free ZG resolution of Z, that is one where the nth group Pn is a direct
sum of copies of ZG, a cell complex may be constructed (the geometric realisation
of P ∗) which has one n-cell for each ZG summand in Pn; similarly the boundary
maps from the n-cells to the n − 1 cells are determined by the data coded in the
homomorphism Pn → Pn−1 (again, see texts such as [3, 20] for details).

In the case of G = Z and the resolution (9.1) above, we construct a space BZ
using just one 0-cell, and one 1-cell, whose ends must of course be both attached
to the single 0-cell: we obtain a copy of the circle S1. Similarly, taking products
as sketched above, we find that a model of B(Zd) is given by the d-torus Td =

S1× d· · · ×S1.
The final important fact about group cohomology which we use in this article

is that the finitely generated, free abelian groups Zd are so-called Poincaré duality
groups.8 This means that they satisfy

Theorem 9.10. For any Zd module M , there are isomorphisms

Hr(Zd;M) ∼= Hd−r(Z
d;M) .

Note that in particular, since H0 and H0 are respectively the invariant and
coinvariant functions, we may identify the top-dimensional cohomology Hd(Zd;M)
with the coinvariants MG, and the top dimensional homology Hd(Zd;M) with the
invariants MG. We used this fact in Section 2.
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Abstract. We discuss the application of various concepts from the theory of
topological dynamical systems to Delone sets and tilings. In particular, we
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the proximality relation and the enveloping semigroup of such systems.

Mathematics Subject Classification (2010). 37B50, 52C22.

Keywords. Tiling, Delone set, maximal equicontinuous factor, dynamical spec-
trum, proximal relation, Ellis semigroup.

1. Introduction

Recurrence properties of patterns in a Euclidean point set may be effectively stud-
ied by means of an associated dynamical system. The idea, due originally to Dan
Rudolph ([66]) and analogous to the notion of a sub-shift in Symbolic Dynamics,
is as follows: Given a point set L ⊂ RN , let ΩL, the hull of L, be the collection
of all point sets in RN , each of which is locally indistinguishable from L. There is
a natural local topology on ΩL, RN acts on ΩL by translation, and the structure
of L is encoded in the topological dynamics of the system (ΩL,RN ). In this arti-
cle we consider the correspondence between properties of the point set L and the
closeness to equicontinuity of the system (ΩL,RN ). (For an excellent survey of the
dynamical properties of the hull of a point set, with an emphasis on sets arising
from substitutions, see [65].)

Consider, for example, the ‘crystalline’ case of a completely periodic set L =
{a + kvi : i = 1, . . . , N, k ∈ Z} ⊂ RN with a ∈ RN and linearly independent vi ∈
RN . The hull of L is in this case just the set of translates ΩL = {L − t : t ∈ RN}.
Letting L be the lattice spanned by the basis {vi}Ni=1, we may identify ΩL with the
torus RN/L by L− t↔ L− t, and we see that the dynamical system (ΩL,RN ) is
simply the translation action on a compact abelian group. This is an equicontinuous
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action, that is, the collection of homeomorphisms {αt : L′ 	→ L′ − t}t∈Rn of ΩL is
an equicontinuous family; in particular, if L′,L′′ ∈ ΩL are proximal (that is, the
distance between L′ − t and L′′− t is not bounded away from zero) then L′ = L′′.

We are of course more interested in L that are highly structured (in this
article, always Delone with finite local complexity, usually repetitive, and often
Meyer) but not periodic. The hull will no longer be a group, and there will be dis-
tinct elements which are proximal so the action is no longer equicontinuous, but
we can begin to understand the system (ΩL,RN), and thus the structure of L, by
comparing (ΩL,RN ) with its largest (maximal) equicontinuous factor (Ωmax,RN).
Existence of a maximal equicontinuous factor is immediate: Let Rmax be the inter-
section of all closed invariant equivalence relations R on ΩL for which the action
on ΩL/R is equicontinuous. Then Ωmax := ΩL/Rmax is a maximal equicontinuous
factor; uniqueness of Ωmax (up to topological conjugacy) is a consequence of maxi-
mality. But understanding what is collapsed in passing from ΩL to Ωmax requires a
more concrete formulation of the equicontinuous structure relation Rmax. It is clear
that elements L′,L′′ ∈ ΩL which are proximal must be identified in Ωmax, and for
many of the familiar L, Rmax is just the proximal relation. Clearly, the equicon-
tinuous structure relation is a closed equivalence relation; in general, however, the
proximal relation is neither closed nor transitive. To illustrate this, consider the ex-
ample1 with L := −2N∪N ⊂ R. The hull ΩL is the disjoint union of three R-orbits,
namely it contains besides the translates of L also those of L+ := Z and L− := 2Z.
It thus consists of two circles {L+−t : t ∈ R} = R/Z, {L−−t : t ∈ R} = R/2Z and
the curve {L − t : t ∈ R} winding from one to the other. Notice that the distance
between L− t and L+− t goes to zero as t→ +∞ and the distance between L− t
and L−− t goes to zero as t→ −∞. Thus L is proximal with each of L− and L+,
but these latter are not proximal with each other. So the proximal relation is not
transitive. Note also that, for m ∈ Z, L− = L−− 2m is proximal with L− 2m and
the latter tends to L+ as m→∞. Thus the proximal relation is not topologically
closed. The maximal equicontinuous factor is the circle Ωmax = R/Z with ∞-to-1
factor map πmax : ΩL → Ωmax given by π(L′ − t) = Z− t for L′ ∈ {L−,L,L+}.

In Section 3 we show that points of ΩL are identified in Ωmax if and only
if they have the same image under all continuous eigenfunctions of (ΩL,RN ) (see
Theorem 3.10) and in Section 4, several intrinsically defined variants of the prox-
imal relation are discussed. These include a uniform version of proximality called
syndetic proximality and regional proximality, which for minimal systems always
agrees with the equicontinuous structure relation. Each of the proximal, syndetic
proximal and regional proximal relations takes a ‘strong’ form for hulls of repet-
itive Meyer sets (repetitive Delone sets L for which L − L is also Delone). For
hulls of repetitive Delone sets, if the regional proximal relation is equal to a sta-
tistical version of proximality called statistical coincidence, all of these relations

1This example is not repetitive and hence is a bit misleading in its simplicity: the hull of any

repetitive and non-periodic Delone set is considerably more complicated, having uncoutably
many RN -orbits and being locally the product of a Cantor set with a Euclidean disk (see, for
example, [67]).
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are the same and the system is close to being equicontinuous in a specified sense
(Corollary 4.15).

To measure the closeness of the system (ΩL,RN ) to equicontinuity, one can
consider the cardinality of a fiber π−1max(ξ), ξ ∈ Ωmax, of the equicontinuous factor
map πmax. But which ξ? By ergodicity of (Ωmax,RN ) there is m ∈ N ∪ {∞} such
that �π−1max(ξ) = m for Haar-almost all ξ, but there are other useful notions for
the rank of πmax. Two obvious ones are the minimal rank and maximal rank:
mr := infξ∈Ωmax �π−1max(ξ) and Mr := supξ∈Ωmax

�π−1max(ξ). A third, which turns out
to be extremely useful, is the coincidence rank, cr, defined as the supremum, over
ξ ∈ Ωmax, of the supremum of cardinalities of subsets of π−1max(ξ) whose elements
are pairwise non-proximal. For a repetitive Delone set L with hull ΩL, the proximal
relation and the equicontinuous structure relation Rmax are the same if and only if
cr = 1 (Theorem 4.7). If mr <∞, then the proximality relation and Rmax are the
same if and only if the proximality relation is closed (Theorem 2.15 of [11]) and if
cr < ∞, then the proximal relation is closed if and only if cr = 1 (Theorem 4.11).
The meaning of the coincidence rank is revealed most clearly when ΩL is the hull
of a repetitive Meyer set and the fiber distal points have full Haar measure: For
R sufficiently large, for each ξ ∈ Ωmax, there is a set A ⊂ RN of density 1 so that
there are exactly cr distinct sets of the form L′ ∩ BR(v), L′ ∈ π−1max(ξ), for each
v ∈ A (see Theorem 4.20). That is to say, viewed out to radius R, a fiber typically
appears to have cardinality cr.

Due to its connection with pure point diffraction spectrum of L (see [17] and
[46, 5]), the mr = 1 case (that is, πmax is somewhere 1-1) has received the most
attention. The following results (the first two due to Baake, Lenz, and Moody [6]
and the third to Aujogue [2]) for the hull of a repetitive Meyer set L are discussed
in Section 3.3:

• πmax is everywhere 1-1 if and only if L is completely periodic (Theorem 3.14);
• πmax is almost everywhere 1-1 if and only if L is a regular complete Meyer
set (Theorem 3.15); and

• πmax is somewhere 1-1 if and only if L is a complete Meyer set (Theorem
3.16).

In the above, a complete Meyer set is a repetitive inter-model set whose window is
the closure of its interior; such a set is regular if the boundary of the window has
zero measure. This hierarchy gives a rather satisfying picture of the correspondence
between injectivity properties of πmax and structural properties of the set L.

When the coincidence rank is greater than 1, the equicontinuous structure re-
lation is no longer given by proximality and the situation is considerably more com-
plicated. We are able to make a few observations in Section 4 when the coincidence
rank is known to be finite (as is the case for ‘Pisot type’ substitutive systems).
For example, if cr < ∞ for the dynamical system on the hull of an N -dimensional
repetitive Delone set with finite local complexity, then the system is topologically
conjugate to that on the hull of a repetitive Meyer set. Moreover, if the Delone set

has no periods, then its topological eigenvalues are dense in R̂N (Theorem 4.13).
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Also, for repetitive Delone sets whose system (ΩL,RN ) has finite coincidence rank,
if the set of points ξ in Ωmax with the property that the points in the fiber π−1max(ξ)
are pairwise non-proximal has full Haar measure, and if μ is any ergodic prob-
ability measure on ΩL, then the continuous eigenfunctions generate L2(ΩL, μ) if
and only if cr = 1, and these conditions imply unique ergodicity of (ΩL,RN ) (see
Theorem 4.12). But a systematic understanding of the structure of (ΩL,RN ) when
the minimal rank is greater than 1 remains a challenging problem for the future.

One can view the hull of L and its maximal equicontinuous factor as com-
pactifications of the acting group RN (at least when L has no periods, so that RN

acts faithfully). Another compactification, which preserves more of the topology
of ΩL than does Ωmax, while still introducing additional algebraic structure, is
provided by the Ellis semigroup E(ΩL,RN ). This is defined as the closure of the

set of homeomorphisms {αt : L′ 	→ L′ − t | t ∈ Rn} ⊂ ΩΩL
L in the Tychonov topol-

ogy with semigroup operation given by composition. For our considerations, two
algebraic properties of the Ellis semigroup are particularly relevant: E(ΩL,RN)
has a unique minimal ideal if and only if the proximal relation is an equiva-
lence relation; and two elements of ΩL are proximal if and only if they have the
same image under some idempotent belonging to a minimal ideal of E(ΩL,RN).
Consider the example above with L := −2N ∪ N. The sequence (α2m)m∈N con-
verges to the element α− ∈ E(ΩL,R): α− is the identity on each of the circles
T± := {L± − t : t ∈ R} and collapses the curve {L − t : t ∈ R} onto T− by
L− t 	→ L−− t. In particular, α− is an idempotent (α− ◦α− = α−) and α− identi-
fies the proximal points L and L−. There is a similarly defined idempotent α+ that
identifies L and L+, and the Ellis semigroup is isomorphic with the disjoint union:
E(ΩL,R) � T× {α−} ∪ R× {id} ∪ T× {α+}, where T = Ωmax which is a group,
and the operation is coordinate-wise (and non-abelian, since α− ◦ α+ = α− while
α+ ◦ α− = α+). There are two minimal (left) ideals, corresponding to T × {α+}
and T× {α−}, reflecting the fact that proximality is not transitive.

The Ellis semigroup is typically a very complicated gadget. One can’t even ex-
pect countable neighborhood bases for the topology. It is thus surprising that there
is a relatively simple algebraic and topological description of the Ellis semigroup
of the hull of any almost canonical cut-and-project set, similar to that given in
the previous paragraph. In this description, found by Aujogue in [2] and explained
here in Section 5 (see also [3]), the finite submonoid of idempotents effectively cap-
tures the proximal structure of the hull. This family of examples suggests that the
deep and well-developed abstract theory of the Ellis semigroup may find significant
further application in the study of highly structured Delone sets.

We begin this article with a review of relevant facts from dynamics and basic
constructions of Delone sets in Section 2. Maximal equicontinuous factors associ-
ated with Delone sets are considered in Section 3 and variants of the proximal rela-
tion are discussed in Section 4. The final Section 5 introduces the Ellis semigroup
and concludes with the example of the semigroup of the hull of the Octagonal tiling.
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2. Background

2.1. General background

In this article we consider actions of topological groups on topological spaces. The
spaces, often denoted by X , will be compact Hausdorff spaces. The groups will be
locally compact, σ-compact abelian groups and mostly denoted by G. The group
composition will generally be written additively as +. The neutral element will be
denoted by e. The dual of a group G consists of all continuous homomorphisms
from G to the unit circle. It is equipped with the compact open topology, which
means that a sequence of homomorphisms converges if it converges uniformly on
every compact subset of G. The dual group is again a locally compact abelian

group and will be denoted by Ĝ. As the elements of Ĝ are maps on G there is a

dual pairing between a group G and its dual group Ĝ. It will be denoted as (·, ·).
We will assume metrizability of X in some cases in order to ease the pre-

sentation of certain concepts. If the corresponding results are valid without the
metrizability assumption we have stated them without this assumption. In certain
cases we will also need the groups to be compactly generated. The main appli-
cation we have in mind are Delone dynamical systems in Euclidean space. These
systems are metrizable and the underlying group (Euclidean space) is compactly
generated. Thus, all our results below apply in this situation.

2.2. Background on dynamical systems

Whenever the locally compact abelian group G acts on the compact space X by
a continuous action

α : G×X −→ X , (t, x) 	→ αtx ,

where G×X carries the product topology, the triple (X,G, α) is called a topological
dynamical system over G. We will mostly suppress the action α in our notation
and write

t · x := αtx.

Accordingly, we will then also suppress α in the notation for the dynamical system
and just write (X,G) instead of (X,G, α).

A dynamical system (X,G) is called minimal if, for all x ∈ X , the G-orbit
{t · x : t ∈ G} is dense in X .

Let two topological dynamical systems (X,G) and (Y,G) over G be given.
Then, a continuous map � : X −→ Y is called a G-map if �(t · x) = t · �(x) holds
for all x ∈ X and t ∈ G. A G-map is called a factor map if it is onto. In this case,
(Y,G) is called a factor of (X,G). Factor maps will mostly denoted by π. A G-map
is called a conjugacy if it is a homeomorphism. Then, the dynamical systems are
called conjugate. In this case, of course, each system is a factor of the other.

An important role in our subsequent considerations will be played by dy-
namical systems in which X is a compact group and the action is induced by a
homomorphism into this group. In order to simplify the notation we provide a
special name for such systems.
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Definition 2.1 (Rotation on a compact abelian group). A dynamical system (X,G)
is called a rotation on a compact abelian group if X is a compact abelian group
and the action of G on X is induced by a homomorphism j : G −→ X such that
t · x = j(t) + x for all t ∈ G and x ∈ X .

Remarks

• The name of rotation on a compact group comes from the example of a
rotation by the angle α ∈ R on the unit circle. In that case X is given by
the unit circle S1 = {z ∈ C : |z| = 1} and j is the map from the group Z of
integers into S1 mapping n to eiαn.

• If G = R such systems are also known as Kronecker flows. More generally,
for G arbitrary they are known as Kronecker systems.

• We will think of the compact group as a form of torus. Accordingly, in the
sequel we will often denote rotations on a compact group by (T, G).

• A rotation on a compact group is minimal if and only if j has dense range.

Whenever (X,G) is a dynamical system then χ ∈ Ĝ is called a continuous
eigenvalue if there exists a continuous f on X with f �= 0 and

f(t · x) = (χ, t)f(x)

for all t ∈ G and x ∈ X . Such an f is then called an continuous eigenfunction (to
the eigenvalue χ).

If (X,G) is minimal short arguments show the following: Firstly, any contin-
uous eigenfunction has constant modulus and therefore does not vanish anywhere.
Secondly, two continuous eigenfunctions to the same eigenvalue are linear depen-
dent. In particular, the dimension of the space of all continuous eigenfunctions to
a fixed eigenvalue is always one.

The set of all continuous eigenvalues is a subgroup of Ĝ. Indeed, the constant
function 1 is always a continuous eigenfunction to the eigenvalue 0, the prod-
uct of two continuous eigenfunction is a continuous eigenfunction (to the product
of the eigenvalues) and the complex conjugate of a continuous eigenfunction is
a continuous eigenfunction (to the inverse of the eigenvalue). The group of con-
tinuous eigenvalues of the dynamical system (X,G), equipped with the discrete
topology, plays a crucial role in the subsequent considerations and we denote it by
Etop(X,G).

There is a strong connection between the group of continuous eigenvalues and
a certain rotation on a compact group, called the maximal equicontinuous factor.
This factor is at the heart of the investigations of this chapter. In fact, Section
3.3 is devoted to how the maximal equicontinuous factor controls the original
dynamical system and Section 4 deals with the fine analysis of the equivalence
relation induced by this factor.

For our investigations to be meaningful we will need non-triviality of the
group of continuous eigenvalues. Dynamical systems without non-trivial continu-
ous eigenvalues are called topologically weakly mixing. This property can be seen
to be equivalent to transitivity of the product system with the diagonal action.
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In the present description of dynamical systems we have so far been con-
cerned with the topological point of view. Indeed, this is the main focus of our
considerations. However, for certain issues we will need measure theoretical aspects
as well.

As a compact space the set X underlying the dynamical system (X,G) carries
naturally the Borel-σ-algebra which is the smallest σ-algebra containing all com-
pact sets. A measure m on X is called invariant if m(αtB) = m(B) for any Borel
measurable set B and any t ∈ G. An invariant probability measure is a called er-
godic if any Borel set B with αt(B) = B for all t ∈ G satisfies m(B) = 0 or m(B) =
1. Any dynamical system admits invariant probability measures and the ergodic
measures can be shown to be the extremal points of the set of invariant probability
measures (see, for example, the monographs [16, 76]). In particular, if a dynam-
ical system admits only one invariant probability measure, then this measure is
automatically ergodic. In this case the dynamical system is called uniquely ergodic.

Whenever m is an invariant probability measure on (X,G) the triple
(X,G,m) is called a measure-preserving dynamical system. The action of G in-
duces a unitary representation on L2(X,m) as follows: For any t ∈ G there is a
unitary map

Tt : L
2(X,m) −→ L2(X,m), Ttf(x) = f(t · x).

The behaviour of the action can be analysed through the behaviour of the repre-
sentation T . This is sometimes known as Koopmanism.

As usual an element f ∈ L2(X,m) is called a measurable eigenfunction to

the measurable eigenvalue χ ∈ Ĝ if

Ttf = (χ, t)f

holds for all t ∈ G. Here, the equality is meant in the sense of L2.
Ergodicity implies that the modulus of any measurable eigenfunction is con-

stant almost surely and that two measurable eigenfunctions to the same eigenvalue
are linearly dependent. The set of all measurable eigenvalues forms a subgroup of

Ĝ. This subgroup, equipped with the discrete topology, is denoted by Emeas(X,T ).
If the closed subspace of L2(X,m) generated by the eigenfunctions agrees with
L2(X,m) then (X,G,m) is said to have pure point spectrum.

2.3. Background on Delone sets

Let G be a locally compact abelian group. We will deal with subsets L of G. A
subset L of G is called uniformly discrete if there exists an open neighborhood U
of the identity in G such that

(x + U) ∩ (y + U) = ∅
for all x, y ∈ L with x �= y. A subset L of G is called relatively dense if there exists
a compact neighborhood K of the identity of G such that

G =
⋃
x∈L

(x + K).
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A subset L of G is called a Delone set if it is both uniformly discrete and relatively
dense. There is a natural action of G on the set U(G) of uniformly discrete sets in
G via

G× U(G) −→ U(G), (t,L) 	→ L − t := {x− t : x ∈ L}.
We refer to it as translation action.

Most prominent is the case G = RN . In that case one can express the above
definitions using balls with respect to Euclidean distance. The open set U is ex-
pressed by an open ball and the compact set K by a closed ball. We denote the
open ball with radius r around x ∈ RN by Ur(x) and the closed ball around x
with radius R by BR(x). Then, L ⊂ RN is uniformly discrete if and only if there
exists an r > 0 with Ur(x) ∩Ur(y) = ∅ for all x, y ∈ L with x �= y, i.e., if and only
if there exists an r > 0 such that the distance between any two different points
of L is at least 2r. Such a set will then be called r-discrete. The set L ⊂ RN is
relatively dense if and only if there exists an R > 0 with RN = ∪x∈LBR(x), that
is, if and only if any point of RN has distance not exceeding R to L.

Whenever L is a uniformly discrete subset of G a set of the form (L−x)∩K
with x ∈ L and K compact is called a patch of L. A uniformly discrete subset L in
G is said to have finite local complexity (FLC) if for any compact K in G the set

{(L − x) ∩K : x ∈ L}
is finite. This just means that there are only finitely many patches for fixed ‘size’
K. It is not hard to see that L has finite local complexity if and only if the set

L − L = {x− y : x, y ∈ L}
is locally finite, i.e., has finite intersection with any compact subset of G. This in
turn is equivalent to L−L being closed and discrete. A Delone set with finite local
complexity will be referred to as an FLC Delone set.

For an FLC Delone set L we define the hull ΩL to be the set of all Delone
sets whose patches are also patches of L. This set is obviously invariant under
the translation action of G given above. Moreover, it is compact in a natural
topology (discussed below). So, when equipped with the translation action, ΩL
becomes a dynamical system, (ΩL, G), which we refer to as the dynamical system
associated to L.

When G = RN it is possible to further characterize finite local complexity.
A Delone set L ⊂ RN with RN = ∪x∈LBR(x) for some R > 0 has finite local
complexity if and only if the set

{(L − x) ∩B2R(0) : x ∈ L}
is finite [40]. Thus, in this case one needs to test for finiteness of the number of
patches only for patches of a certain fixed size. For this reason, the hull of a Delone
set with finite local complexity in RN can be thought of as a geometric analogue
to a subshift over a finite alphabet.

An occurrence of the patch (L − x) ∩K in a Delone set L is an element of

{y ∈ L : (L − x) ∩K ⊂ (L − y)}.
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A Delone set L is called repetitive if for any nonempty patch the set of occurrences
is relatively dense. For an FLC Delone set L, repetitivity is equivalent to minimality
of the associated system (ΩL, G).

There are various equivalent approaches to define a topology on the set of
all uniformly discrete sets. One is based on the identification of point sets with
measures and the vague topology [13, 5], another uses uniform structures [5]. If
G = RN one can also make precise the idea of defining a metric by the principle
that two sets are the ε-close if they coincide up to an error of ε on the 1

ε -ball
around 0 [66, 71, 22]. In general the error of coincidence is measured with the help
of the Hausdorff distance. A particularily elegant formulation of this idea uses the
stereographic projection and has been worked out in detail in [52].

If the sets in question have finite local complexity, which is the only case which
we consider in more detail here, then the description of the topology simplifies. A
net 2 (Lι)ι in the hull ΩL of an FLC Delone set converges to L′ if and only if there
exists a net (tι)ι in G converging to e and for all compact K ⊂ G an ιK such that

(Lι − tι) ∩K = L′ ∩K for all ι > ιK . Moreover, if G = RN then the topology on
hull ΩL of a Delone set with finite local complexity is induced by the metric [1]

d(L,L′) = inf

{
ε

ε + 1
: ∃t, t′ ∈ Bε(0) : B 1

ε
[L − t] = B 1

ε
[L′ − t′]

}
.

Here BR[L] = L ∩ BR(0) is the R-patch of L at 0, i.e., the patch defined by the
closed R-ball at 0.

2.4. Background on lattices, Model sets and Meyer sets

Meyer sets can be thought of as (quite natural) generalizations of lattices. They
have been introduced by Meyer in [54] in the purely theoretical context of ‘ex-
panding sets via Fourier transforms’. After the discovery of quasicrystals they
have become a most prominent class of examples for such structures. Our discus-
sion follows [56, 57, 68] to which we refer for further details and references. For
the topic of regular complete Meyer sets we also highlight [58], which gives an
introduction into the topic by surveying the results of [6].

A lattice in a group G is a uniformly discrete subgroup such that the quotient
of G by this subgroup is compact. Thus, any lattice is a Delone set. It is not hard
to see that a Delone set L is a lattice if and only if it satisfies

L− L = L.

Obviously, this gives that L − L is uniformly discrete and hence locally finite.
Thus, a lattice is a Delone set of finite local complexity. Moreover, whenever L is
a lattice then

L∗ := {χ ∈ Ĝ : (χ, x) = 1 for all x ∈ L}

2A net in a topological space X is a function from a directed set A to X: the image of α ∈ A is
denoted xα and the net is denoted (xα)α. The net converges to x ∈ X if for each neighborhood

U of x there is β ∈ A so that xα ∈ U for all α ≥ β. Convergence of nets completely describes the
topology of X – see [34].
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is a lattice in Ĝ. It is called the dual lattice. Thus, whenever L is a lattice the set
of its ε-dual characters

Lε := {χ ∈ Ĝ : |(χ, x) − 1| ≤ ε for all x ∈ L}
is relatively dense. Meyer sets are generalizations of lattices. It turns out that they
can be characterized by suitable relaxations of each of the features discussed so far.
In fact, each of the features given in the next theorem can be seen as a weakening
of a corresponding feature of a lattice.

Theorem 2.2. Let L be a Delone set in G. Then, the following assertions are
equivalent:

(i) L − L ⊂ L+ F for some finite set F ⊂ G.
(ii) For any ε > 0 the set

Lε = {χ ∈ Ĝ : |(χ, x) − 1| ≤ ε for all x ∈ L}

of ε-dual characters of L is relatively dense in Ĝ.
(iii) There exists a cut-and-project scheme (H, L̃) over G together with a compact

W with L ⊂ �(W ).

Here, the last point requires some explanation. A cut-and-project scheme

over G consists of a locally compact abelian group H together with a lattice L̃ in
G × H such that the two natural projections p1 : G × H −→ G, (t, h) 	→ t, and
p2 : G×H −→ H , (t, h) 	→ h, satisfy the following properties:

• The restriction p1|L̃ of p1 to L̃ is injective.

• The image p2(L̃) is dense in H .

Let L := p1(L̃) and (.) : L −→ H be the mapping p2 ◦ (p1|L̃)−1. Note that 

is indeed well defined on L. Given an arbitrary (not necessarily compact) subset
W ⊂ H , we define �(W ) via

�(W ) := {x ∈ L : x ∈ W}.
The set W is then sometimes referred to as the window.

The preceding discussion explains all notation needed in the third point of
the above theorem. While we do not give a complete proof of the theorem here,
we will include some explanation in order to give the reader some of the ideas
involved. In particular, we will provide a sketch of how (iii) implies (i). To do so
we first highlight two very crucial features of the construction via �.

Proposition 2.3. Let (H, L̃) be a cut-and-project scheme over G. Then,

• �(W ) is relatively dense if the interior of W is non-empty.
• �(W ) is uniformly discrete if the closure of W is compact.

Now, whenever a Delone set L is contained in �(W ) with W compact, then
L−L is contained in�(W )−�(W ) ⊂ �(W−W ). As W−W is compact, we infer
uniform discreteness of L−L. In fact, this argument can be extended to give that
any set of the form L ± · · · ± L (with finitely many terms) is uniformly discrete.



Equicontinuous Factors, Proximality and Ellis Semigroup 147

We can now provide a proof for (iii)=⇒ (i) as follows. As L is a Delone set,
there exists a compact K ⊂ G with L+K = G. By (iii) and the argument we just
gave we have that

F := (L − L− L) ∩K

is finite. Consider now arbitrary x, y ∈ L. Then,
x− y = z + k

for some k ∈ K and z ∈ L (as L + K = G). Now k satisfies k = x − y − z and
hence belongs to L − L − L as well. These considerations show that k belongs to
the finite set F , finishing the proof.

Remark. If the group G is compactly generated (as is the case for G = RN ) even
more is known. In this case the Delone set L satisfies L−L ⊂ L+F for some finite
F if and only if L − L is uniformly discrete. This was first shown by Lagarias for
G = RN [39]. As discussed in [6] the proof carries over to compactly generated G.

Definition 2.4 (Meyer set). A Delone set L ⊂ G is called Meyer if it satisfies one of
the equivalent properties of the preceding theorem. The dynamical system induced
by a Meyer set is called a Meyer dynamical system.

It is worth noting that any Meyer set is an FLC-Delone set. Indeed, it is a
Delone set by definition. Moreover, by the first property in Theorem 2.2 it satisfies
L−L ⊂ L+F for a finite F . This immediately implies that L−L is locally finite
and, hence, L has finite local complexity. Let us also emphasize that the Meyer
property is substantially stronger than the FLC property.

Meyer sets can be further distinguished depending on properties of W :

An inter model set, associated with the cut-and-project scheme (H, L̃), is a
non-empty subset L of G of the form

x +�(y + W ◦) ⊂ L ⊂ x +�(y + W ),

where x ∈ G, y ∈ H , and W ⊂ H is compact with

W = W ◦.

Such an inter model set is called regular if the Haar measure of the boundary ∂W
of W is zero.

Observe that any inter model set is a Meyer set, i.e., a Delone set contained
in some �(W ) for W compact. Indeed, by construction it is contained in some
�(W ) with W compact and the Delone property follows from Proposition 2.3.

Our results below show that it is worth providing special names for inter
model sets which are repetitive.

Definition 2.5 (Complete Meyer set). A set L in G is called a complete Meyer set

if it is repetitive and there exists a cut and project scheme (H, L̃) and a compact
W ⊂ H with W = W ◦ such that x + �(y + W ◦) ⊂ L ⊂ x + �(y + W ). If
furthermore the Haar measure of the boundary of W is zero, the set L is called a
regular complete Meyer set.
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Remark. Given y ∈ H , if y + ∂W does not intersect L∗ one has �(y + W ◦) =
�(y + W ) and so the inter model set defined by such parameters y and x ∈ G
equals x +�(y + W ) and is repetitive. It is then referred to as a model set (or
a cut-and-project set). Any repetitive model set is thus a complete Meyer set. In
order to carefully state our results also in the case of singular choices for y (that
is, y for which y + ∂W meets L∗) we use the new name ‘complete Meyer set’. So
strictly speaking, some complete Meyer sets are not model sets (for the given CPS
and window)3. Furthermore, the name complete Meyer set suggests a process of
completing a Meyer set, namely to a repetitive inter model set it sits in. Concrete
ideas about that can be found in [2].

Remark. Regular complete Meyer sets have been a prime source of models for
quasicrystals. The reason is that these sets have (pure) point diffraction and this
is a characteristic feature of quasicrystals. Indeed, a rigorous mathematical frame-
work for diffraction was given by Hof in [28]. In this work it is also shown that
regular complete Meyer sets have a lot of point diffraction. That this spectrum is
pure was then shown later in [29, 68]. These works actually prove that the dynam-
ical systems arising from regular complete Meyer sets have pure point dynamical
spectrum (with continuous eigenfunctions). This is then combined with a result
originally due to Dworkin [17] giving that pure point dynamical spectrum implies
pure point diffraction. Recent years have seen quite some activity towards a fur-
ther understanding of this result of Dworkin. In this context we mention results on
a converse (i.e., that pure point diffraction implies pure point spectrum) obtained
in [46, 5, 26, 53]. The relevance of regular complete Meyer sets in the study of
quasicrystals has been underlined by recent results showing that the other main
class of examples – those arising from primitive substitutions – is actually a sub-
class if pure point diffraction is assumed (compare Corollary 4.26 and subsequent
discussion).

As is clear from the discussion, any lattice L in G is a Meyer set as well. In
this case we can take H to be the trivial group and W = H and this gives that a
lattice is a regular complete Meyer set. Later we will also encounter Delone sets L
whose periods

P (L) := {t ∈ G : L − t = L}
form a lattice. Such a Delone set is called completely periodic (or crystalline).
Note that the periods of a Delone set automatically form a discrete subgroup of
G. Thus, the requirement of complete periodicity is really that the periods form a
relatively dense set. It is not hard to see that any completely periodic Delone set
L has the form

L = L + F

3In some works the terminology repetitive model set is used for any element in the hull of a

model set with non-singular parameter y. With this usage a complete Meyer set and a repetitive
model set are the same thing.
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with a lattice L (viz the periods) and a finite set F . This easily gives that any
completely periodic Delone set is a Meyer set again.

Any Meyer set over G gives rise to a rotation on an compact abelian group.
This will play quite a role in the subsequent analysis. By (iii) of Theorem 2.2,

given a Meyer set there exists a cut-and-project scheme (H, L̃) over G. As L̃ is a
discrete and co-compact subgroup of G×H , the quotient

T := (G×H)/L̃

is a compact abelian group and there is a natural group homomorphism

G −→ T, t 	→ (t, 0) + L̃.

In this way, there is natural action of G on T and (T, G) is a rotation over G. The
system (T, G) is sometimes referred to as the canonical torus associated to the
cut-and-project scheme [8].

3. Equicontinuous factors and Delone dynamical systems

In this section we will deal with special dynamical systems. When defining the con-
cepts of equicontinuity and of almost periodicity we will assume that the topology
of X comes from a metric d. We will then refer to the corresponding dynamical
systems as metrizable dynamical systems. This assumption of metrizability is not
necessary for the subsequent results to hold. In fact, in order to formulate the con-
cepts and prove the results, it suffices to have a topology generated by a uniform
structure. In particular, the results apply to Delone dynamical systems on arbitary
locally compact, σ-compact abelian groups (as these systems can be topologized
by a uniform structure [68]). So, in order to simplify the presentation we will define
the concepts in the metric case only, but state the results for the general case. We
refer the reader to Auslander’s book [4] for more detailed information and further
background.

3.1. Equicontinuous actions

In this section we recall some of the theory of equicontinuous systems. Further
aspects related to proximality will be discussed later in Section 4.

Consider a minimal dynamical system (X,G, α) with X a compact metric
space and G a locally compact abelian group acting by α on X . If the action is
free (that is, αt(x) = x for some x ∈ X implies t is the identity of G) then X can
be seen as a compactification of G: it is the completion of one orbit and this orbit
is a copy of G. One might ask when is X a group compactification, that is, when
does X carry a group structure such that the orbit is a subgroup isomorphic to
G, or, in other words, when is (X,G) a rotation on a compact abelian group?

An answer to this question can be given in terms of equicontinuity.
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Definition 3.1 (Equicontinuous system). The metrizable dynamical system
(X,G, α) is called equicontinuous if the family of homeomorphisms {αt}t∈G is
equicontinuous, i.e., if for all ε > 0 there exists a δ > 0 such that

d(αt(x), αt(y)) < ε

for all t ∈ G and all x, y ∈ X with d(x, y) < δ.

Remark. The definition of equicontinuity may seem to depend on the particular
choice of the metric. However, by compactness of the underlying space X it turns
out to hold for one metric if and only if it holds for any metric (which induces the
topology).

An equicontinuous system admits an invariant metric which induces the same
topology. Indeed one can just take

d(x, y) := supt∈G d(t · x, t · y).
Likewise, any compact metrizable abelian group T admits a left invariant metric:
Whenever d is a metric then d(x, y) := supt∈T d(x − t, y − t) is a metric on T
which is invariant. This similarity is not a coincidence: According to the following
well-known theorem (see, for example, [37]) equicontinuous minimal systems are
rotations on groups.

Theorem 3.2 (Equicontinuous systems as rotations on compact groups). The min-
imal dynamical system (X,G) is equicontinuous if and only if it is conjugate to a
minimal rotation on a compact abelian group.

Sketch of proof. A rotation on a compact abelian group is obviously equicontinu-
ous. Conversely, if (X,G) is equicontinuous, given any point x0 ∈ X the operation
t1 · x0 + t2 · x0 := (t1 + t2) · x0 extends to an addition in X so that X becomes a
group with x0 as neutral element. �

Remark. An equicontinuous dynamical system need not be minimal but a transi-
tive equicontinuous dynamical system (i.e., one containing a dense orbit) is always
minimal. So in the context of Delone (and tiling – see Section 4.3.4) dynamical
systems, which are by definition the closure of one orbit, equicontinuous systems
are always minimal.

Equicontinuity is strongly related to almost periodicity. In order to explain
this further we will need some notation. Let (X,G) be a metrizable dynamical
system and d the metric on X . The ε-ball around x ∈ X is denoted by Bε(x). The
elements of

R(x, ε) := {t ∈ G : t · x ∈ Bε(x)}
are called return vectors to Bε(x). Now, (X,G) is called uniformly almost periodic
if, for any ε > 0 the joint set of return vectors to ε-balls, given by

A =
⋂

x∈X
R(x, ε)

is relatively dense (i.e., there exists a compact K with A + K = G).
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Theorem 3.3 ([4], Equicontinuity via almost periodicity). The minimal dynamical
system (X,G) is equicontinuous if and only if it is uniformly almost periodic.

For Delone dynamical systems we can even be more specific. Recall that a
continuous bounded function f on G is called Bohr almost periodic if for any ε > 0
the set

{t ∈ G : ‖f − f(· − t)‖∞ ≤ ε}
of its almost ε-periods is relatively dense.

Theorem 3.4 (Characterization equicontinuous Delone systems). Let L be a De-
lone set in the locally compact, σ-compact abelian group G. Then, the following
assertions are equivalent:

(i) The function

fL,ϕ : G −→ C, fL,ϕ(t) =
∑
x∈L

ϕ(t− x)

is Bohr-almost periodic for any continuous and compactly supported function
ϕ on G.

(ii) The hull ΩL is a compact abelian group with neutral element L and group
addition satisfying (L − t) + (L − s) = (L − s− t) for all t, s ∈ G.

(iii) The dynamical system (ΩL, G) is equicontinuous.

The theorem (and a proof) can be found in [32]. Of course, the equivalence
between (ii) and (iii) follows from the above Theorem 3.2. The equivalence between
(i) and (ii) is close in spirit to Theorem 3.3. However, the proof given in [32] is
based on [51].

It is possible to describe (up to conjugacy) all equicontinuous systems over

G via subgroups of Ĝ. The reason is basically that an equicontinuous system is
a rotation on a compact group due to Theorem 3.2. This compact group in turn

is determined by its dual group, which is just a subgroup of Ĝ. Moreover, the
elements of this dual group turn out to be just the continuous eigenvalues of the
system. This highlights the role of the continuous eigenvalues.

As it is both instructive in itself and also enlightening for the material pre-
sented in the next section we now give a more detailed discussion of these connec-
tions. We start with a general construction and then state the result describing
the equicontinuous minimal systems over G.

Let E be a subgroup of Ĝ. We equip E with the discrete topology and denote
the dual group of E by TE , i.e.,

TE := Ê .
Then, TE is a compact abelian group. The inclusion E ↪→ Ĝ gives rise (by Pon-
tryagin duality) to a group homomorphism j : G −→ TE with dense range. In this
way there is a natural action of G on TE via

G× TE −→ TE , (t, x) 	→ t · x := j(t)x,
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where on the right-hand side the elements j(t) and x of TE are just multiplied via
the group multiplication of TE . This action can be explicitly calculated as

(t · x)(χ) = (χ, t)(x, χ)

for χ ∈ E . As j has dense range, this group action is minimal and hence (as TE
is compact), it is uniquely ergodic with the (normalized) Haar measure on TE as
the invariant measure. Thus, (TE , G) is a minimal uniquely ergodic rotation on a
compact group. By Theorem 3.2, such a system is equicontinuous. Furthermore,
countability of E is equivalent to metrizability of the dual group TE by standard
harmonic analysis.

Theorem 3.5. Let G be a locally compact abelian group.

(a) Let (X,G) be an equicontinuous minimal dynamical system. Then, (X,G) is
conjugate to (TEtop(X,G), G).

(b) Whenever E is a subgroup of Ĝ then (TE , G) is the unique (up to conjugacy)
equicontinuous minimal dynamical system whose set of continuous eigenval-
ues is given by E.

Proof. A sequence of claims establishes the statements of the theorem.

Claim 1. Let (T, G) be a minimal rotation on the compact group T with action of

G induced by the homomorphism j : G −→ T. Let ι : T̂ −→ Ĝ be the dual of j

(i.e., ι(χ)(t) = (χ, j(t)) for χ ∈ T̂ and t ∈ G). Then, ι is injective and the set E of

continuous eigenvalues of T is just the image of T̂ under ι. In this way, the system
(T, G) is completely determined by the set of its continuous eigenvalues.

Proof. The action of G on T comes from a homomorphism j : G −→ T with dense

range. Thus, its dual map ι : T̂ −→ Ĝ is injective. We therefore have to show

that the continuous eigenvalues of (T, G) are just given by the ι(T̂). This in turn
follows easily from the definitions: Any χ in the dual group of T gives rise to the
continuous fχ : T −→ C, fχ(x) = (χ, x) which takes the value 1 at the neutral
element of T. This fχ is an eigenfunction to ι(χ) as

fχ(t · x) = (χ, j(t)x) = (χ, x)(χ, j(t)) = (ι(χ), t)fχ(x).

Conversely, whenever λ is a continuous eigenvalue of (T, G) with associated eigen-
function fλ we can assume without loss of generality that fλ takes the value 1 on
the neutral element of T. Then the eigenvalue equation gives that fλ is actually
an element of the dual group of T.

Claim 2. Consider the map ι from the previous claim as a bijective group ho-

momorphism from the discrete group T̂ onto the discrete group E . Let κ be its

dual mapping TE = Ê to T. Then κ establishes a topological conjugacy between
TE and T.

Proof. This follows directly from unwinding the definitions.
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Claim 3. Let E be a subgroup of Ĝ and (TE , G) be the associated equicontinous
dynamical system. Then the set Etop(TE , G) of continuous eigenvalues of (TE , G)
can naturally be identified with E .
Proof. The previous claim shows that the set of continuous eigenvalues is just given
by the dual of the group TE . By construction this dual is just E .

The statements of the theorem follow directly from the above claims. �

Remark. Part (b) of the previous theorem concerns the construction of equicon-
tinuous systems with a given group of continuous eigenvalues. In the context of
the present paper it seems appropriate to point out that (for subgroups of the
Euclidean space) such a system can even be constructed as the torus of a cut-and-
project scheme [64].

3.2. Maximal equicontinuous factor

In this section we consider a topological minimal dynamical system (X,G). There
exists a largest (in a natural sense) equicontinuous factor of this system. It is
known as maximal equicontinuous factor. This factor can be obtained in various
ways including

• via the dual of the topological eigenvalues,
• via a quotient construction,
• via the Gelfand spectrum of continuous eigenfunctions.

All of this is certainly well known. In fact, substantial parts can be found in the
book [4] for example. Other parts of the theory, while still quite elemenary, seem
to be scattered over the literature. In particular, in the context of our interests,
corresponding constructions are discussed in [6, 11]. For the convenience of the
reader we give a rather detailed discussion here.

Recall that Etop(X,G) carries the discrete topology. Thus we are exactly in
the situation discussed at the end of the previous section. In particular, there
is a group homomorphism j : G −→ TEtop(X,G) with dense range. This group
homomorphism induces an action of G on TEtop(X,G) making it into a rotation on
a compact group. In this way we obtain a minimal uniquely ergodic dynamical
system (TEtop(X,G), G) out of our data. Explicitly, the action of G on TEtop(X,G) is
given as

(t · x)(χ) = (χ, t)(x, χ)

for χ ∈ Etop(X,G). We present two remarkable properties of this dynamical system
in the next two lemmas.

Lemma 3.6 (Description of equicontinuous factors). Let (X,G) be a minimal dy-
namical system and (Y,G) an equicontinuous factor. Then Etop(Y,G) is a subgroup
of Etop(X,G) and (Y,G) is a factor of (TEtop(X,G), G).

Proof. Let π : X −→ Y be the factor map. Then any continuous eigenfunction
f on Y (to the eigenvalue χ) gives rise to the eigenfunction f ◦ π on X (to the
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eigenvalue χ). This shows the first part of the statement. Obviously, the embedding

Etop(Y,G) −→ Etop(X,G)

is a group homomorphism. Dualising, we obtain a group homomorphism

TEtop(X,G) = ̂Etop(X,G) −→ ̂Etop(Y,G) = TEtop(Y,G).

This group homomorphism can easily be seen to be a G-map. Hence, by com-
pactness and minimality of the groups in question, it is onto and hence a factor
map. The desired statement now follows as TEtop(Y,G) is conjugate to (Y,G) by
Theorem 3.5. �

Remark. Note that the factor map from (TEtop(X,G), G) to (Y,G) can be chosen
to be a group homomorphism. This is clear from the proof. In fact, it is a general
phenomenon: As is easily shown, if a rotation on a compact group is a factor of
another rotation on a compact group (mapping the neutral element to the neutral
element), then the factor map is a group homomorphism (see also the proof of (b)
of Theorem 3.1 in [51] for this type of reasoning).

Lemma 3.7. Let (X,G) be a minimal dynamical system. Then (TEtop(X,G), G) is a
factor of (X,G).

Proof. Fix an arbitrary point x0 ∈ X and choose for any χ ∈ Etop(X,G) a con-
tinuous eigenfunction fχ with fχ(x0) = 1. Using the eigenfunction equation along
the orbit of x0 and minimality we have:

fχη = fχfη, fχ = f−χ.

Any x ∈ X then gives rise to the map

x̂ : Etop(X,G) −→ S1, x̂(χ) := fχ(x).

By construction and the choice of the fχ the map x̂ is a character on Etop(X,G),
i.e., an element of TEtop(X,G). It is not hard to see that the map

X −→ TEtop(X,G), x 	→ x̂,

is a G-map. By minimality and compactness, it is then a factor map. �

The two previous lemmas establish the following theorem.

Theorem 3.8. Let (X,G) be minimal. Then there exists a unique (up to conjugacy)
factor (Xmax, G) of (X,G) satisfying the following two properties:

• The factor (Xmax, G) is equicontinuous.
• Whenever (Y,G) is an equicontinuous factor of (X,G) then (Y,G) is a factor
of (Xmax, G).

Proof. Existence follows directly from the previous two lemmas. Uniqueness can be
shown as follows: Let (Y1, G) and (Y2, G) be two factors with the above properties.
Then both Y1 and Y2 are compact groups and there exist factor maps π1,2 : Y1 −→
Y2, and π2,1 : Y2 −→ Y1. Without loss of generality we can assume that π1,2 maps
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the neutral element e1 of Y1 onto the neutral element, e2, of Y2 and π2,1 maps e2
to e1 (otherwise we could just compose the maps with appropriate rotations of the
groups). Then

π1,2 ◦ π2,1(e1) = e1 and π2,1 ◦ π1,2(e2) = e2.

As both π1,2 and π2,1 are G-maps, this shows that π1,2 ◦ π2,1 agrees with the
identity on Y1 on the whole orbit of e1 and π2,1 ◦ π1,2 agrees with the identity on
Y2 on the whole orbit of e2. By continuity of the maps and denseness of the orbits
we infer that the maps are inverse to each other. This shows that indeed (Y1, G)
and (Y2, G) are conjugate. �

Definition 3.9. The factor (Xmax, G) is called the maximal equicontinuous factor
of (X,G). The corresponding factor map will be denoted by πmax.

We now present two additional ways to view the maximal equicontinuous
factor.

A construction via quotients. Let the equivalence relation ∼ on X be defined by
x ∼ y if and only if f(x) = f(y) for every continuous eigenfunction f and let

π : X −→ X/ ∼=: X∼

be the canonical projection. Let X∼ have the quotient topology so that a map g
on X∼ is continuous if and only if g ◦ π is continuous. It is not hard to see that
the action of G on X induces an action of G on X∼ by the (well-defined!) map

G×X∼ −→ X∼, (t, π(x)) 	→ (π(t · x)).
Then π is a G-map and hence a factor map. Note that the preceding considerations
show that whenever fχ is a continuous eigenfunction to the eigenvalue χ there
exists a unique continuous eigenfunction gχ on X∼ with fχ = gχ ◦ π.

If we are given additionally an invariant probability measure m on X , this
measure is transferred to a G-invariant measure m∼ := π(m) on X∼. In this
way we have constructed a dynamical system (X∼, G) together with an invariant
measure m∼.

A construction via the Gelfand transform. Let A be the closed (w.r.t to ‖·‖∞) sub-
algebra of C(X) generated by the continuous eigenfunctions. Then A is a commu-
tative C∗-algebra and there exists therefore a compact space XA and a continuous
isomorphism of algebras (Gelfand transform)

Γ : A −→ C(XA).

The space XA is in fact nothing but the set of all multiplicative linear non-
vanishing functionals on A and the map Γ is then given by

Γ(f)(φ) = φ(f)

for f ∈ A and φ ∈ XA. The action of G on X induces an action of G on A and
this in turn induces an action of G on XA. By construction, Γ is then a G-map
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with respect to these actions, i.e.,

Γ(f(t·)) = (Γf)(t·).
Assume now that we are additionally given an invariant probability measure

m on X . Then m can be seen as a linear positive functional m : A −→ C, f 	→
m(f). Thus, via Γ, it induces a linear positive functional mA on C(XA) and hence
mA is a measure on XA. It is not hard to see that the map Γ : A −→ C(XA)
extends to a unitary G-map

U : L2
pp,top(X,m) −→ L2(XA,mA),

where L2
pp,top(X,m) is the subspace of L2(X,m) generated by the continuous

eigenfunctions. (The subscript pp in the notation refers to ‘pure point’.) As is
easily seen, the only G-invariant functions on L2(XA,mA) are constant. Thus mA
is an ergodic measure on (XA, G) and we have expressed L2

pp,top as the L2-space
of a dynamical system.

We now discuss how all three constructions give the same dynamical system
(up to conjugacy).

Theorem 3.10. Let (X,G) be a minimal dynamical system. Then the dynamical
systems (XA, G), (TEtop(X,G), G) and (X∼, G) are canonically conjugate. In par-
ticular, they are all uniquely ergodic and minimal and have pure point spectrum.

Proof. Chose for any χ ∈ Etop(X,G) a continuous eigenfunction fχ. Let gχ on
X∼ be the unique function with fχ = gχ ◦ π. Fix an x0 ∈ X arbitrarily. We can
assume without loss of generality that fχ(x0) = 1 for all χ ∈ Etop(X,G). Write T
for TEtop(X,G).

We first show the statement on canonical conjugacy. To do so we provide
explicit maps: Define

J : X∼ −→ T via J(π(x))(χ) = gχ(π(x)) = fχ(x).

Then J indeed maps X∼ into T (as we had normalized our fχ with fχ(x0) =
1). Obviously, J is continuous and injective. As it is a G-map and the action of
G on T is minimal, the map J has dense range. As T is compact, J is then a
homeomorphism.

We now turn to proving that X∼ and XA are homeomorphic. Consider

Π : C(X∼) −→ C(X), g 	→ g ◦ π.

Then B := Π(C(X∼)) is a closed subalgebra of C(X). As C(X∼) is generated
by the gχ, χ ∈ Etop(X,G), the algebra B is generated by fχ = gχ ◦ π, χ ∈
Etop(X,G). Therefore B = A and thus Π gives an isomorphism between C(X∼)
and A. Dualising Π, we obtain a homeomorphism between X∼ and XA. It is easy
to check that all maps involved are G-maps.

The last statement of the theorem is clear since (T, G) is uniquely ergodic,
minimal, and has pure point spectrum. �
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The preceding considerations are summarized as follows: We have given three
different constructions of a certain topological factor of (X,G). This factor is given
by a rotation, i.e., an action of the group G on a compact group via a group
homomorphism with dense range from G to the compact group. The L2-space of
this factor corresponds to the part of the L2-space of the original dynamical system
coming from continuous eigenfunctions.

In general it is not easy to decide whether a given equicontinuous factor is the
maximal equicontinuous factor. However, there is one sufficient condition which is
of considerable relevance.

Lemma 3.11. Let (X,G) be a minimal dynamical system and (Y,G) an equicon-
tinuous dynamical system. If (Y,G) is a factor of (X,G) with factor map π and
there exists y ∈ Y such that π−1(y) consists of only one point, then (Y,G) is the
maximal equicontinuous factor.

Proof. Let (Xmax, G) be the maximal equicontinuous factor with corresponding
factor map πmax. By Theorem 3.8, the dynamical system (Y,G) is then a factor of
(Xmax, G). Denote the corresponding factor map by πY . Without loss of generality
we can then assume that πY maps the neutral element of Xmax to the neutral
element of Y and that

π = πY ◦ πmax

(otherwise we can just compose πY and π with suitable rotations). We will show
that πY is a homeomorphism. As πY is a factor map, it is onto and continuous.
It therefore suffices to show that it is one-to-one. So, let p, q ∈ Y be given with
πY (p) = πY (q). As discussed in a remark above, the map πY is a group homomor-
phism. Thus, we obtain

πY (gp) = πY (g)πY (p) = πY (g)πY (q) = πY (gq)

for all g ∈ Y . As πY is onto, we can now chose g ∈ Y with πY (gp) = y = πY (gq).
As, by the assumption of the lemma,

π−1(y) = π−1max(π
−1
Y (y))

consists of only one point, we obtain from the last equality that gp = gq and,
hence, p = q. This is the desired injectivity. �

The class of dynamical systems appearing in the previous lemma is rather
important (for us, in describing regularity properties of Meyer sets – see Theorems
3.16 and 3.19 below) and has a name of its own.

Definition 3.12 (Almost-automorphic system). Let (X,G) be a minimal dynamical
system and (Xmax, G) its maximal equicontinuous factor. If there exists a y ∈ Xmax

such that π−1max(y) has only one element then (X,G) is called almost-automorphic.

We finish this section with a discussion of local freeness in our context. This
will be relevant in the discussion in Section 4.3. The equivalence of (i) and (ii) in
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the following result can be found in [11]. We include a complete proof (as [11] only
contains a proof of one direction).

Whenever the group G acts on X an element t of G is said to act freely if
t·x �= x for all x ∈ X . The action is called locally free if there exists a neighborhood
U of e ∈ G such that any t ∈ U \ {e} acts freely. If U can be chosen as G the
action is called free.

Lemma 3.13. Let E be a subgroup of Ĝ and consider the associated dynamical
system (TE , G) with action given by

(t · x)(χ) = (χ, t)(x, χ)

for x ∈ TE and χ ∈ E. Then the following assertions are equivalent:

(i) The action is locally free.

(ii) The quotient Ĝ/E is compact, where E is the closure of E in Ĝ.
(iii) The stabiliser {t ∈ G : t · x = x for (some) all x} of the action is a discrete

subgroup of G.

In particular, the action is free if and only if E is dense in Ĝ.

Proof. The equivalence between (i) and (iii) is clear. It remains to show the equiv-
alence between (i) and (ii). By definition t ∈ G acts freely if and only if t · x �= x
for all x ∈ TE , which is the case if and only if (χ, t) �= 1 for at least one χ ∈ E .
By continuity, the latter can be rephrased as (χ, t) �= 1 for at least one χ ∈ E .
Consider now the exact sequence of abelian groups

e→ ̂̂
G/E → G

q→ Ê → e

which is the dual to the exact sequence e → E → Ĝ → Ĝ/E → e. Let U be an

open neighborhood of e ∈ G and e �= t ∈ U . Set η = q(t) ∈ Ê . Then, (η, χ) = (χ, t)

because q is dual to the inclusion E ↪→ Ĝ. Thus, there exists a χ with (χ, t) �= 1 if
and only if η does not belong to ker q. Hence t · x �= x for all x ∈ TE if and only if
t /∈ ker q. Thus G acts locally freely if and only if there exists an open e ∈ U ⊂ G
such that U ∩ker q = {e}. By exactness of the sequence above, this the case if and

only if
̂̂
G/E is discrete and hence if and only if Ĝ/E is compact.

Furthermore, G acts freely if and only if the above is true for U = G, which

is equivalent to E being dense in Ĝ. �
3.3. Delone dynamical systems via their maximal equicontinuous factor

In this section we will study dynamical systems arising as the hull of FLC-Delone
sets. The basic aim is to characterize features of the Delone set in question by
how close its dynamical system is to its maximal equicontinuous factor. A rough
description of our results is that the more ordered the set is, the closer its hull is
to its maximal equicontinuous factor. More precise statements will be given below.
We will distinguish two situations. In one situation we are given a Meyer set and
characterize it by features of its hull. In the other situation we are given the hull
of an FLC-Delone set.
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In order to set the perspective on the results in the next two subsections we
briefly recall a ‘hierarchy of order’ we have encountered within the FLC-Delone
sets (see Section 2.4). Let L be a Delone set. Then L has finite local complexity if
and only if L − L is locally finite. L is a Meyer set if and only if L − L ⊂ L + F
for some finite set F ⊂ G or, equivalently, if and only if L is a subset of x+�(W )

with compact W ⊂ H and x ∈ G for some cut-and-project-scheme (L̃,H) over
G. Now the following classes of Meyer sets L can be distinguished, each of them
defined by a stronger requirement than the previous one:

• L is a complete Meyer set if it is repetitive with x + �(W ◦) ⊂ L ⊂ x +

�(W ) for some x ∈ G and some cut-and-project scheme (L̃,H) over G and
a compact W ⊂ H with W = W ◦.

• L is a regular complete Meyer set if it is repetitive with x +�(W ◦) ⊂ L ⊂
x +�(W ) for some x ∈ G and some cut-and-project scheme (L̃,H) over G
and a compact W ⊂ H with W = W ◦ and boundary ∂W of Haar measure
zero.

• L is completely periodic if the set {t ∈ G : t + L = L} is a lattice or,
equivalently, if L = L + F for a lattice L and a finite set F .

3.3.1. Regularity of Meyer sets via dynamical systems. In this section we study
the hull (ΩL, G) of a repetitive Meyer set L. We investigate how the hierarchy of
Meyer sets discussed above is reflected in injectivity properties of the factor map
between this hull and its maximal equicontinuous factor.

Theorem 3.14. Let G be a locally compact abelian group and L a repetitive Meyer
set in G. The following assertions are equivalent:

(i) L is completely periodic.
(ii) The dynamical system (ΩL, G) of L is conjugate to its maximal equicontinu-

ous factor (i.e., each point in the maximal equicontinuous factor has exactly
one inverse image point under the factor map).

Note that (ii) actually says that (ΩL, G) is just a rotation on a compact group.
Using the material of the last section (on characterizing the maximal equicontin-
uous factor via a quotient construction) this can be seen to be equivalent to the
continuous eigenfunctions separating the points. With this formulation (instead of
(ii)) the result is shown in [6]. Of course, the implication (i)=⇒ (ii) is clear and
it is the other implication where all the work lies. We will comment a bit on the
method of proof after stating the next result.

Theorem 3.15. Let G be a locally compact abelian group and let L be a repetitive
Meyer set in G. The following are equivalent:

(i) L is a regular complete Meyer set.
(ii) The dynamical system (ΩL, G) of L is an almost-1-to-1 extension of its max-

imal equicontinuous factor (i.e., the set of points in the maximal equicontin-
uous factor with exactly one inverse image point under the factor map has
full measure).
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This is a reformulation of the main result of [6] in terms of the maximal
equicontinuous factor. The formulation of (ii) given there is somewhat different
and says that the continuous eigenfunctions separate almost all points and the
system is uniquely ergodic and minimal. Now, by our discussion on how to obtain
the maximal equicontinuous factor (via a quotient construction) and Lemma 3.11,
this is just (ii).

The direction (i)=⇒ (ii) was first shown in the special case of the Penrose
system by Robinson in [63]. General complete Meyer sets were then treated by
Schlottmann in [68]. The main work of [6] is to show the implication (ii)=⇒ (i).
There, the diffraction of the Meyer set plays a key role. Condition (ii) implies
that diffraction is a pure point measure and this can be used to introduce new
topologies on the Delone sets. Taking suitable completions of the hull of L in
these topologies one then obtains the ingredients of a cut-and-project scheme via
a method of [10]. The main work of [6] is then to prove regularity features of the
window. This regularity is shown by an analysis of rotations on compact groups.
A crucial role in these considerations is played by continuity of the eigenfunctions.
This continuity is related to uniform existence of certain ergodic averages [62, 50].
As such it has also played a major role in the investigation of diffraction and
the so-called Bombieri/Taylor conjecture. We refer the reader to [50] for further
discussion and background.

Theorem 3.16. Let G = RN and let L be a repetitive Meyer set in G. The following
are equivalent:

(i) L is a complete Meyer set.
(ii) The dynamical system (ΩL, G) of L is an almost-automorphic system (i.e.,

the set of points in the maximal equicontinuous factor with exactly one inverse
image point under the factor map is non-empty).

This is one version of a main result of the Ph.D. thesis of J.B. Aujogue [2].
The implication (i)=⇒ (ii) is somewhat folklore. It is mentioned in the introduction
of [64] and can rather directly be derived from Lemma 3.11 and some Baire type
arguments (see [68, 6] for related material). This then holds for arbitrary locally
compact, σ-compact abelian groups.

The implication (ii)=⇒ (i) is the hard part of the work. It is shown in [2]
how to construct a cut-and-project scheme for L under condition (ii). In fact, the

construction of [2] even gives that the associated torus T = (G × H)/L̃ is just
the maximal equicontinuous factor whenever the window W satisfies a suitable
‘irredundancy’ condition.

Under the additional assumptions of unique ergodicity and pure point spec-
trum, the implication (ii)=⇒(i) can also directly be inferred by combining Theo-
rem 3A and Theorem 6 from [6] (and this then holds in general locally compact
σ-compact abelian groups).

3.3.2. Regularity of the hulls of FLC Delone sets. In this section we consider a
repetitive FLC Delone set L in G = RN with its dynamical system (ΩL, G). It
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turns out that the property of this system to be conjugate to a Meyer dynami-
cal system can be characterized via the maximal equicontinuous factor [33]. This
characterization provides the crucial additional insight compared to the previous
subsection. It allows the derivation of results for FLC Delone sets based on the
results for Meyer sets of the last section. As it is (so far) only available for G = RN

we have to restrict to this situation.

Theorem 3.17 ([33]). Let G = RN and let L be a repetitive FLC Delone set in G.
The following are equivalent:

(i) (ΩL, G) is conjugate to a Meyer dynamical system.
(ii) The system (ΩL, G) has at least N linearly independent continuous eigenval-

ues.

It is possible to express the result of the previous theorem via the maximal
equicontinuous factor.

Corollary 3.18. Let G = RN and let L be a repetitive FLC Delone set in G. The
following are equivalent:

(i) (ΩL, G) is conjugate to a Meyer dynamical system.
(ii) The maximal equicontinuous factor of (ΩL, G) has a factor arising from an

action of G on RN/ZN via the mapping RN −→ RN/ZN , x 	→ Ax + ZN for
some invertible linear map A : RN −→ RN .

(iii) The stabilizer of the G-action on the maximal equicontinuous factor of
(ΩL, G) is a discrete subgroup.

Proof. The equivalence between (i) and (ii) is a reformulation of Theorem 3.17
based on Theorem 3.5 and the paragraph preceeding it.

It remains to show the equivalence between (i) and (iii). By Lemma 3.13,

the condition (iii) is equivalent to compactness of Ĝ/Etop. Now, for G = RN ,

compactness of Ĝ/Etop can easily be seen to be equivalent to Etop containing N
linear independent vectors. By the previous theorem this is equivalent to (i). �

Combining the results of the previous section with the preceding theorem
yields the following equivalences.

Theorem 3.19 ([2]). Let G = RN and let L be a repetitive FLC-Delone set in G.
The following are equivalent:

(i) (ΩL, G) is conjugate to a dynamical system arising from a complete Meyer set.
(ii) The dynamical system (ΩL, G) of L is an almost-automorphic system, (i.e.,

the set of points in the maximal equicontinuous factor with exactly one inverse
image point under the factor map is non-empty).

Theorem 3.20 ([33]). Let G = RN and let L be a repetitive FLC Delone set in G.
The following assertions are equivalent:

(i) (ΩL, G) is conjugate to a dynamical system arising from a regular complete
Meyer set.
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(ii) The dynamical system (ΩL, G) of L is an almost 1-to-1 extension of its max-
imal equicontinuous factor (i.e., the set of points in the maximal equicontin-
uous factor with exactly one inverse image point under the factor map has
full measure).

Formulation of the analogue of the result on complete periodicity in this
context leads to the equivalence of the following two assertions for a repetitive
FLC Delone set in G = RN .

• (ΩL, G) is conjugate to a Meyer dynamical system arising from a completely
periodic set.

• (ΩL, G) is conjugate to its maximal equicontinuous factor.

Now, however, it can easily be seen that a dynamical system coming from a repet-
itive FLC Delone set is conjugate to that of a completely periodic set if and only
if the original set is already completely periodic. Also, it is not hard to convince
oneself that both systems in question are automatically minimal. Thus there is no
need to assume repetitivity. Altogether we then obtain the following result:

Theorem 3.21. Let G = RN and let L be a Delone set in G with finite local
complexity. The following are equivalent:

(i) The Delone set L is completely periodic.
(ii) The dynamical system (ΩL, G) agrees with its maximal equicontinous factor.

Remark. This result had already been proven in [32] using different methods.
In fact, the result of [32] is even more general in that it applies to arbitrary
compactly generated abelian groups. The result provides an answer to a question
of Lagarias [41].

4. Proximality

In the previous section we saw the utility of the maximal equicontiuous factor and
its factor map. In the present section we present a different approach to this factor
by furnishing an alternative description of the equivalence relation defined by πmax.
Thus, we will start from a dynamical system (X,G) with compact X and abelian
G and the factor map πmax : X −→ Xmax. In order to ease the presentation of
certain concepts we will assume metrizability of the system, i.e., of X , in certain
places. If the results are valid without this restriction we state them without this
restriction (compare also the discussion at the beginning of Section 3). Most of
the time the systems will furthermore be required to be minimal.

4.1. Definitions

We consider a variety of relations on X . We begin with the relation induced
by πmax:

1. The equicontinuous structure relation

Rmax := {(x, y) ∈ X ×X : πmax(x) = πmax(y)}.
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This relation will be studied by means of the following three relations, each of these
is a subset of the equicontinuous structure relation (see the discussion following
Theorem 4.2).

2. The proximality relation P :=
⋂
ε>0 Pε with

Pε := {(x, y) ∈ X ×X : there exists t ∈ G : d(t · x, t · y) < ε}.
3. The regional proximality relation Q :=

⋂
ε>0 Pε, where Pε is the closure of Pε

in the product topology.
4. The syndetic proximality relation syP , where we say that x and y are synde-

tically proximal if for all ε > 0,

Aε := {t ∈ G : d(t · x, t · y) < ε}
is relatively dense.

The most intuitive of these relations seems to be the proximality relation because it
has a direct dynamical meaning: x and y are proximal if they can come arbitrarily
close when they are moved around with equal group elements. We cannot expect
P to be transitive. Moreover, P need not be a closed relation, i.e., closed in the
product topology on X ×X . So while P is intuitive, it can be somewhat tricky.

The regional proximality relation looks like an innocent extension of the
proximality relation which is guaranteed to be closed. But care has to be taken!
While Q contains P it is in general not the smallest closed equivalence relation
containing P . It may be non-trivial even if P is the trivial equivalence relation. For
later applications it will be useful to spell out that x and y are regional proximal
if and only if for any ε > 0 there exist (x′, y′) ∈ Pε with x′ arbitrarily close to x
and y′ arbitrarily close to y.

The syndetic proximality relation is always transitive, i.e., it is always an
equivalence relation. But it is not always closed. It is clearly contained in the
proximality relation. Moreover, if the proximality relation is closed then it agrees
with the syndetic proximality relation. See [15] for proofs of these facts and more
information.

One more thing can be said already about P : if the system is equicontinuous
then P must be the trivial relation. The converse is not true, however. A point
x ∈ X is called distal if it is only proximal to itself. Systems with trivial proxi-
mality relation are called distal, because they only have distal points. There exist
minimal distal systems which are not equicontinuous, but the celebrated theorem
of Furstenberg on the structure of minimal distal systems ([23]) will not concern
us here due to the following result. (The result in the stated form is first given in
[12] and is generalized to compactly generated groups in [32], where it forms the
core of the proof of Theorem 3.21.)

Theorem 4.1 ([12, 32]). Consider a repetitive non-periodic FLC Delone set in
RN . There exist two distinct elements of its hull which agree on a half-space. In
particular the proximality relation on non-periodic FLC Delone systems is non-
trivial.
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4.2. Some results for general dynamical systems

We state right away the fundamental result relating the maximal equicontinuous
factor and proximality. Again we do not attempt to state it in the most general
form.

Theorem 4.2 ([4]). Let (X,G) be a minimal dynamical system. Then the equicon-
tinuous structure relation Rmax is equal to the regional proximal relation Q.

One direction of containment claimed in this theorem is relatively easy. Note
that continuous eigenfunctions of the dynamical system take the same value on
proximal pairs: If x is proximal to y and f is a continuous eigenfunction then

f(x)

f(y)
=

f(t · x)
f(t · y) = 1

since the first equality is true by the eigenvalue equation for all t, and t ·x and t ·y
can get arbitrarily close when varying t. A similar argument can be employed if
x and y are merely regionally proximal – one only needs to take into account an
(arbitrarily small) error of ε. Thus Q ⊂ Rmax. For the other direction one needs
to prove that the induced action on X/Q is equicontinuous which is equivalent to
showing that there is an invariant metric generating its topology.

Remark. By the previous theorem, the regional proximality relation opens an
alternative way to study the topological spectrum. Given that we have a good
intution about proximality, this raises the question: How different are the regional
proximal and proximal relations? In general they are quite different. For instance,
for a topologically weakly mixing system any two elements are regionally proximal
[4]. But in the minimal case, x can only be proximal to t · x if they are equal.
Indeed, suppose that inft′∈RN d(t′ · x, t′ · t · x) = 0. Then there exists a sequence
(tn)n such that limn d(tn ·x, tn · (t ·x)) = 0 and so if we take an accumulation point
x′ of the sequence (tn · x)n then d(x′, t · x′) = 0 and so t · x′ = x′. By minimality
we must then also have t · x = x.

4.2.1. Distal points. To understand the regional proximal relation it is important
to consider points which are regionally proximal but not proximal. Recall that a
point x ∈ X is called distal if it is not proximal to any other point. We denote
by Xdistal the distal points of X . This set might be empty. In fact for metrizable
minimal topologically weakly mixing systems it is known [4] (p. 132) that P 2 =
Q = X×X , i.e., for any two points x, y ∈ X there exists a third point z ∈ X such
that x is proximal to z and z is proximal to y. This is only possible if x is not
distal. In particular, as we will see that non-Pisot substitution tilings have weakly
mixing dynamical systems, their tiling spaces have no distal points. As distality
is preserved by the action, Xdistal is dense if it is not empty. But for metrizable
X even more is true: the set Xdistal is even residual if it is not empty due to a
remarkable result of Ellis [20]. Minimal systems for which Xdistal is not empty are
called point distal. Veech has extended Furstenberg’s structure theorem to point
distal systems [75].
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Let ξ ∈ Xmax. We call π−1max(ξ) the fiber of ξ without specifying the map
πmax. A point ξ ∈ Xmax is called fiber-distal if all points in its fiber are distal.
Since P ⊂ Rmax a point x can only be proximal to a point in the fiber to which it
belongs, so ξ is fiber-distal if and only if the proximality relation restricted to its
fiber is trivial. We denote the fiber-distal points by Xdistal

max and say that a minimal
system is fiber-distal if this set is non-empty. Clearly

π−1max(X
distal
max ) ⊂ Xdistal.

Let Xopen be the set of open points for πmax, that is, of points x such that
πmax maps neighbourhoods of x to neighbourhoods of πmax(x). Xopen is always a
residual set (and hence non-empty) [75]. A point ξ ∈ Xmax is called fiber-open if
all points in its fiber Xξ = π−1max(ξ) are open. We denote by Xopen

max the fiber-open
points. We state two fundamental results of Veech [75].

Lemma 4.3 ([75]). Any distal point is open and so in particular Xdistal
max ⊂ Xopen

max .
Furthermore, Xopen

max is a residual subset of Xmax.

In particular Xopen
max is always non-empty which shows that the inclusion

Xdistal
max ⊂ Xopen

max need not be an equality. This is, for instance, the case if the
system has no distal points.

Lemma 4.4 ([75]). If Xdistal is a residual set then there exists a fiber π−1max(ξ) with
a dense set of distal points.

4.2.2. Coincidence rank. For our further investigation of the various relations we
consider three notions of rank for minimal dynamical systems. The minimal and
the maximal rank, mr and Mr, are the minimal and maximal number of points
in a fibre of πmax, or +∞ if the extrema do not exist. The coincidence rank,
cr ∈ N ∪ {+∞}, of a minimal dynamical system counts the maximal number
of mutually non-proximal points in a fibre. More precisely, let ξ ∈ Xmax and
card(ξ, δ) be the maximal number l of elements x1, . . . , xl ∈ π−1max(ξ) such that
(xi, xj) /∈ Pδ, or card(ξ, δ) = +∞ if this maximum does not exist. There are a
couple of observations to make: First, and this follows from minimality, card(ξ, δ)
does not depend on ξ, and second, card(ξ, δ) is decreasing in δ. So we may define
the coincidence rank by

cr = lim
δ→0

card(ξ, δ) = sup{l : ∃x1, . . . , xl ∈ π−1max(ξ), (xi, xj) /∈ P for i �= j}

and this is independent of ξ ∈ Xmax. Here, the first equality is a definition and
the second equality follows easily. Moreover, we have the following criterion for
finiteness of cr.

Lemma 4.5. The coincidence rank cr is finite if and only if there exists δ0 > 0 such
that if (x1, x2) ∈ Q\P then d(x1, x2) ≥ δ0.

Indeed, by compactness of the fibers, such a δ0 cannot exist if cr is infinite,
and if cr is finite then the limit limδ→0 card(ξ, δ) must be taken on a strictly positive
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value for δ. In particular we see that for finite coincidence rank, cr = cr(ξ, δ) for
all ξ and all 0 < δ ≤ δ0.

Independence of card(ξ, δ) on ξ also implies that cr ≤ mr as the coincidence
may be measured in a fiber of minimal size. So an almost-automorphic system,
i.e., a system with mr = 1, has also cr = 1.

Lemma 4.6. Consider a metrizable minimal system with finite coincidence rank.
If proximality is transitive then for all δ > 0 there exists a compact subset K ⊂ G
such that if (x, y) ∈ P then d(t · x, t · y) < δ for some t ∈ K.

Proof. Let δ0 be as in Lemma 4.5 and let 0 < δ ≤ δ0. Assume that the statement of
the lemma is false, namely that P is transitive but there is a sequence of proximal
pairs (x(n), y(n)) ∈ P and an ascending chain (Kn)n of compact subsets Kn ⊂ G
with

⋃
nKn = G such that d(t · x(n), t · y(n)) ≥ δ for all t ∈ Kn. Let ξ(n) =

πmax(x
(n)) (which coincides with πmax(y

(n))). Recall that cr = card(ξ, δ) for any ξ

and thus π−1max(ξ
(n)) contains at most cr elements x

(n)
1 , . . . , x

(n)
cr which are pairwise

non-proximal. x(n) must therefore be proximal to one of those, let’s say to x
(n)
1 .

We may assume that x
(n)
1 = x(n), as otherwise we could just replace x

(n)
1 with

x(n). By transitivity of P , y(n) cannot be proximal to x
(n)
i , for i > 1. It follows

from Lemma 4.5 that d(t · y(n), t · x(n)
i ) ≥ δ0 > δ for all t and i > 1. We now

take sub-sequences of the above sequences such that they all converge, tending to

the limits x(∞) = x
(∞)
1 , x

(∞)
i , for i = 2, . . . , cr, and y(∞), respectively. It follows

that d(t · y(∞), t · x(∞)
i ) ≥ δ for all t and all i, and d(t · x(∞)

i , t · x(∞)
j ) ≥ δ for

all t and all i �= j. Hence all these limit points, which are in the same fiber, are
pairwise non-proximal. This fiber contains thus at least cr+1 distal points. This is
a contradiction to the definition of the coincidence rank and so we conclude that
there exists a compact K ⊂ G such that if (x, y) ∈ P then d(t · x, t · y) < δ for
some t ∈ K. �

The coincidence rank furnishes a criterion for when proximality (P ) coincides
with regional proximality (Q).

Theorem 4.7 ([11]). Let (X,G) be a minimal system. Then cr = 1 if and only if
P = Q.

Corollary 4.8. Let (X,G) be a minimal system. If (X,G) is almost-automorphic
then cr = 1 and P = Q.

4.2.3. Consequences of finite coincidence rank. The following consequence of finite
coincidence rank will prove to be useful.

Lemma 4.9. Consider a minimal dynamical system with free RN -action. If the
coincidence rank is finite, the RN -action on its maximal equicontinuous factor is
free.
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Proof. We denote the orbit {t ·x : t ∈ RN} of x by OrbRN x. Let H be the stabilizer
of a fiber π−1max(ξ) under the RN -action. Since the action is free tx �= sx for s �= t
in G and any x in the dynamical system. Thus, the cardinality of H is bounded by
the cardinality of OrbRN x∩ π−1max(ξ) for any x ∈ π−1max(ξ). Now in the remark after
Theorem 4.2 we have already discussed that x cannot be proximal to a translate
of it, as the action is free. Hence all the points in OrbRN x ∩ π−1max(ξ) are mutually
non-proximal. This means that the cardinality of OrbRN x ∩ π−1max(ξ) is bounded
by cr. Thus H is finite. Since RN has no finite subgroups except the trivial group,
the RN action on the maximal equicontinuous factor must be free. �

Note that if cr is finite, then a point ξ ∈ Xmax is fiber distal if and only if its
fiber contains exactly cr elements.

The following yields criteria for when the coincidence rank equals the min-
imal rank. We need metrizability of X as we make use of the result of Ellis [20]
mentioned above.

Proposition 4.10. Let (X,G) be a metrizable minimal system and suppose cr <∞.
The following are equivalent:

(i) cr = mr,
(ii) Xdistal

max �= ∅,
(iii) the system is point distal (Xdistal �= ∅),
(iv) Xdistal

max = Xopen
max .

Proof. The equivalence between (i) and (ii) is rather direct, given that each fiber
must have at least cr elements which are not mutually proximal. Clearly (ii) implies
(iii). We now show that (iii) implies (i): If the system is point distal then, by the
already mentioned result of Ellis [20], Xdistal is residual and hence, by Veech’s
Lemma 4.4, there exists ξ ∈ Xmax such that π−1max(ξ) contains a dense set of distal
points. But if cr is finite a fiber can only have finitely many distal points (namely
at most cr). It follows that the fiber π−1max(ξ) is finite and contains only distal
points. Thus mr ≤ cr. As the inequality cr ≤ mr is clear we obtain (i).

Finally, we discuss the equivalence between (ii) and (iv). Here, (ii) follows
from (iv) by Veech’s Lemma 4.3. It remains therefore to show that if Xdistal

max �= ∅,
then a fiber-open point is fiber-distal. Note that πmax being open at x is equivalent
to the condition that whenever (ξn)n is a sequence in Xmax converging to ξ :=
πmax(x), we can lift that sequence to a sequence (xn)n ⊂ X which converges to x.

So let Xdistal
max be non-empty and therefore a dense subset of Xmax (it is invari-

ant under the action). Let ξ ∈ Xopen
max and (ξn)n a sequence in Xdistal

max converging
to ξ. By Lemma 4.5 the points in a fiber of a fiber distal point have mutual dis-
tance at least δ0 > 0. Thus, the set of limits of sequences (xn)n ⊂ X which are
convergent and satisfy πmax(xn) = ξn can have at most cr points. So by the above
criterion for open points π−1max(ξ) cannot contain more than cr points. Thus ξ is
fiber distal. �
Theorem 4.11. Consider a metrizable minimal system (X,G) with finite coinci-
dence rank. The following are equivalent:
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(i) Proximality is transitive.
(ii) Proximality is closed.
(iii) Proximality coincides with syndetic proximality.

If, moreover, G is compactly generated and Xmax is connected then the above
conditions are equivalent to:

(iv) Proximality coincides with regional proximality (i.e., cr = 1).

Remark. The hypothesis that cr is finite is crucial. Indeed, it may happen that
P is trivial, and hence closed, whereas Q is not trivial, that is, the system is
distal without being equicontinuous. By Theorem 4.7, such systems do not have
cr = 1. In fact, by the preceding theorem, such systems must always have infinite
coincidence rank.

Proof. (Of Theorem 4.11.) We start with the implication (i) implies (ii). Suppose
that there is a sequence of proximal pairs (x(n), y(n)) ∈ P tending to (x(∞), y(∞)).
Let δ = δ0

2 . By Lemma 4.6 we can find a compact K ⊂ G such that for each n there

exists a tn ∈ K for which d(tn · x(n), tn · y(n)) ≤ δ. By going over to a subsequence
we may assume that (tn)n ⊂ K converges, let’s say to t∞ ∈ K. It follows that
(tn·x(n), tn·y(n)) is a convergent sequence in Q tending to (t∞·x(∞), t∞·y(∞)). Since
Q is closed the latter pair lies also in Q. Moreover, d(t∞ ·x(∞), t∞ ·y(∞)) ≤ δ < δ0.
By Lemma 4.5 this implies that (x(∞), y(∞)) ∈ P and so P is topologically closed.

The implications (ii) implies (iii) and (iii) implies (i) (syndetical proximality
is transitive) are proved in [15].

The equivalence between (ii) and (iv) can be found in [11] – we provide a
sketch here. If P is closed then X/P is a compact space which is metrizable.

The maximal equicontinuous factor map πmax factors therefore as X → X/P
π→

X/Q = Xmax and the factor map π is a cr-to-1 map. One can show that π is a
local homeomorphism, from which it follows that the system (X/P,G) is equicon-
tinuous. (This latter result needs that G is compactly generated and that Xmax is
connected.) Hence, by maximality of the equicontinuous factor, X/P = Xmax. �

Remarks

(a) For G = RN the assumptions on G and Xmax are satisfied. Indeed, RN is
compactly generated. Moreover, RN is connected and, due to minimality, X ,
and hence Xmax, must then be connected as well.

(b) By means of suspension of a ZN -action to an RN -action (see, for example,
[18]) the result applies with G = ZN as well.

(c) One can use Lemma 4.6 to give a direct proof of the implication (i) implies
(iii). That lemma states that for each δ > 0 there is a compact set K ⊂ G
such that when (x, y) ∈ P then d(t · x, t · y) < δ for some t ∈ K. Since P is
an invariant relation this implies that when (x, y) ∈ P then Aδ = {s ∈ G :
d(s · x, s · y) < δ} satisfies Aδ +K = G, that is, Aδ is relatively dense. Hence
x and y are syndetically proximal.
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Theorem 4.12 ([11]). Consider a minimal system (X,G) with finite coincidence
rank cr. Suppose that Xdistal

max has full Haar measure. Let μ be an ergodic probability
measure on X. The following are equivalent:

(i) cr = 1.
(ii) The system is an almost 1-to-1 extension of its maximal equicontinous factor.
(iii) The continuous eigenfunctions generate L2(X,μ).

If one of these conditions holds then the system is in fact uniquely ergodic.

Proof. The equivalence between (i) and (ii) is rather obvious. Indeed, (ii) =⇒
(i) is clear (compare Corollary 4.8). The reverse (i)=⇒ (ii) follows directly as,
by its very definition, the set Xdistal

max consists exactly of those ξ with all points
in π−1max(ξ) distal, i.e., those ξ with exactly cr = 1 points in π−1max(ξ). Condition
(ii) implies that πmax yields an isomorphism between L2(X,μ) and L2(Xmax, η)
which implies (iii) as C(Xmax) spans L2(Xmax, η). To show (iii)=⇒ (i), i.e., that
πmax can’t yield an isomorphism on the level of L2-spaces in case that cr > 1, we
somewhat surprisingly need topology, namely it follows once one has shown that
πmax is almost everywhere a covering map. �

4.3. Proximality for Delone sets

We now study particular aspects of proximality for Delone sets in Euclidean space
RN . The first result concerns the restrictions imposed by finite coincidence rank
on a repetitive Delone set.

Theorem 4.13. A repetitive FLC Delone set whose dynamical system has finite
coincidence rank is topologically conjugate to a Meyer dynamical system. Moreover,
if the Delone set is non-periodic (no periods) then the topological eigenvalues form

a dense subgroup of R̂N .

Proof. The completely periodic case is trivial. We treat the non-periodic case,
leaving the case of fewer than N periods to the reader. In this case the RN -action
on the hull is free and hence, by Lemma 4.9, so also is the RN -action on the
maximal equicontinuous factor. Lemma 3.13 implies now that the eigenvalues are
dense and the result follows from Theorem 3.17. �

4.3.1. Examples and open questions for higher coincidence rank. In Section 3.3
we have presented a hierarchy of properties for Delone sets which is based on
how large the set of points ξ ∈ Ωmax which have unique pre-image under πmax is.
This characterisation concerns the case of minimal rank mr = 1 (and hence also
cr = 1). We now provide examples of Delone sets whose dynamical system has
higher coincidence rank.

1 < cr < +∞. Model sets and periodic sets are now excluded and we know from
Theorem 4.13 that the group of eigenvalues is dense. We will see below that any
primitive Meyer substitution tiling has finite maximal rank Mr and hence finite
coincidence rank. Furthermore, such a substitution tiling system has cr = 1 if and
only if its dynamical spectrum is purely discrete (see Theorem 4.23). So examples
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falling into the category 1 < cr < +∞ are primitive Meyer substitution tiling
systems for which do not have pure point dynamical spectrum. The most famous
such example comes from the Thue–Morse substitution 0 	→ 01, 1 	→ 10. Elements
of the corresponding substitution tiling space, in which the lengths of both the
0 and 1 tiles agree (using a decoration to distinguish them) produce Meyer sets
whose system has coincidence rank cr = 2.

cr = +∞. Clearly, non-trivial Delone systems which are topologically mixing
must have infinite coincidence rank. The system of geometrical non-Pisot substitu-
tion tilings are of that kind (see below). However there are also examples of Meyer
sets whose systems have infinite coincidence rank. For instance the scrambled Fi-
bonacci substitution provides such examples [33]. If we take the tiling version in

which the tiles have length 1+
√
5

2 and 1 then the system is topologically weakly
mixing; there are no topological eigenvalues besides the trivial one. If we give the
tiles both length 1 then the tiling is Meyer and the topological eigenvalues form
a subgroup of rank 1. But a subgroup of rank 1 cannot be dense and thus the
coincidence rank must be infinite.

Open questions. Our findings above suggest the following questions:

1. Does there exists a non-automorphic Delone dynamical system in which the
equicontinuous structure relation coincides with proximality? This means
that cr = 1 < mr and thus the system does not have any distal point.

2. More generally, do there exist Delone dynamical systems with finite coinci-
dence rank which do not have distal points?

4.3.2. Strong proximality and statistical coincidence. For Delone dynamical sys-
tems (in RN ) it is possible to introduce stronger versions of proximality and re-
gional proximality based on the so-called combinatorial metric. Although this met-
ric does not generate the topology of the hull, it is quite useful, particularly for
Meyer sets. Recall that two Delone sets are close in the combinatorial metric if
they agree on a large ball. Accordingly, it is possible to formulate correspond-
ing stronger versions of proximality without reference to the metric but just via
agreement on large balls. To simplify this we define, for a Delone set L and an
R > 0,

BR[L] := L ∩BR(0).

By analogy with the relations 2.,3., and 4. of Section 4.1 we define the following
relations:

5. Two Delone sets L1, L2 are strongly proximal if for all R there exists t ∈ RN

such that BR[L1 − t] = BR[L2 − t].
6. Two Delone sets L1, L2 are strongly regional proximal if for all R there exist
L′1,L′2 ∈ Ω, t ∈ RN such that BR[L1] = BR[L′1], BR[L2] = BR[L′2] and
BR[L′1 − t] = BR[L′2 − t].

7. Two Delone sets L1, L2 are strongly syndetically proximal if for all R the set
of t ∈ RN for which BR[L1 − t] = BR[L2 − t] is relatively dense.
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These definitions are indeed strengthenings of the corresponding relations
introduced above. Obviously, strong syndetical proximality implies strong proxi-
mality which in turn implies strong regional proximality.

We comment that strong proximality for Delone sets is even more intutive
than proximality: two Delone sets are strongly proximal if they share arbitrarily
large patches. Theorem 4.1 shows that strong proximality is also non-trivial for
non-periodic repetitive FLC Delone systems.

We note the following consequence: If L1 and L2 are strongly regional prox-
imal elements in the hull Ω of a Delone set L then L1 − L2 ⊂ (L − L)− (L − L).
Indeed, pick x1 ∈ L1 and x2 ∈ L2. Choose R > max{|x1|, |x2|}. Then there are
L′1,L′2 ∈ Ω and t ∈ RN such that x1 ∈ L′1, x2 ∈ L′2 and t ∈ L′1∩L′2. Set vi = t−xi.
Then x1 − x2 = v2 − v1 ∈ (L′2 − L′2) − (L′1 − L′1) and the statement follows as
L′ − L′ ⊂ L− L for each element L′ in the hull of L.

We will also consider a statistical variant of the above concepts. This requires
a notion of density. Recall that a sequence (Λn)n∈N of compact sets in G with non-
empty interior is called van Hove if it exhausts G and if

lim
n→∞

|∂KΛn|
|Λn|

= 0

for every compact K in G, where for Σ ∈ G, we set ∂KΣ := ((Σ + K) \ Σ) ∪
((G \ Σ−K)∩Σ). Existence of such a sequence can be shown for arbitrary locally
compact σ-compact abelian G (see, e.g., [68, p. 145]). Given such a sequence Λ,
the upper density of a subset B ⊂ RN w.r.t. the sequence is given by

densΛ(B) = lim sup
n

vol(B ∩ Λn)

vol(Λn)

and the lower density by a similar expression in which the lim sup is replaced
by the lim inf. A priori, this notion depends on the choice of sequence. If both
expressions coincide and are independent of the van Hove sequence, the common
value is simply called the density of B. In the sequel we will mostly assume that
we have fixed a van Hove sequence and suppress dependence on it in the notation.

For a uniformly discrete set D in G, we modify the above to define its upper
density:

densΛ(D) = lim sup
n

�(D ∩ Λn)

vol(Λn)
,

and for its lower density, replace lim sup by lim inf. Which formulas apply when
we speak of density will be clear from the context.

After these preparations we can now introduce the following relation:

8. Two Delone sets L1, L2 are statistically coincident if the (upper) density of
the symmetric difference L1 � L2 = (L1\L1 ∩ L2) ∪ (L2\L1 ∩ L2) vanishes.
We denote this relation by SC.

Statistical coincidence implies strong proximality.
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Lemma 4.14. Suppose that L1 and L2 are statistically coincident Delone sets. Then
they are strongly proximal.

Proof. If L1 and L2 are not strongly proximal then there exists R > 0 such that
for all t ∈ RN we have BR[L1 − t] �= BR[L2 − t]. Hence for all t the symmetric
difference BR[L1 − t]�BR[L2 − t] contains at least one point. It follows that the
lower density of L1 �L2 is bounded from below by 1/vol(BR(0)). �

From this lemma and the inclusions of the relations discussed above we im-
mediately have:

Corollary 4.15. If the statistical coincidence relation SC coincides with the equicon-
tinuous structure relation for a repetitive Delone dynamical system then all rela-
tions 1.–7. agree with SC and cr = 1.

Let now (ΩL, G) be the dynamical system arising from the hull of a Delone
set in RN . Then Lemma 4.14 says that πmax can be factored as ΩL → ΩL/SC →
ΩL/Q = Ωmax. What is the quotient ΩL/SC? A priori, we do not even know
whether SC is a closed relation on ΩL. To investigate this question we consider
the so-called autocorrelation hull, following [6].

For fixed r > 0, the mixed autocorrelation pseudometric on the space Ur of
all uniformly r-discrete subsets of RN is given by

dSC(L1,L2) = inf{ε > 0 : ∃t1, t2 ∈ B(0, ε) : dens((L1 − t1)� (L2 − t2)) ≤ ε}.
This induces a complete metric on the quotient Ur/SC which we also denote by
dSC . Define β : (Ur, d) → (Ur/SC, dSC) by β(L) = [L]SC but mind that the
topology on the quotient is, a priori, not the quotient topology. Hence, a priori, β
is not continuous. To be more clear about this, we write the restriction of β to the
hull ΩL of L as a composition β |ΩL = i ◦ idSC ◦ q,

(ΩL, d)
q→ (ΩL/SC,Q) idSC→ (ΩL/SC, dSC)

i
↪→ (Ur/SC, dSC)

where Q stands for the quotient topology. So we see that β |ΩL is continuous
(which is known to be the case, for example, for a regular complete Meyer set –
see Theorem 9 of [6]) if and only if idSC is a homeomorphism; that is, the quotient
topology coincides with the metric topology from dSC .

The closure of the orbit of [L]SC in Ur/SC is called the autocorrelation hull
of the Delone set L and is denoted by AL. This is not necessarily a compact space
and even for repetitive L we need to keep track of the dependence on L, as a
locally isomorphic Delone set may, a priori, yield a different autocorrelation hull.

Theorem 4.16. Consider a repetitive Delone set L. If β |ΩL is continuous, then
(AL,RN ) is isomorphic to (Ωmax,RN ) and SC = Q.

Proof. If β |ΩL is continuous then β(ΩL) = AL and so AL equals ΩL/SC and is
compact. It follows that there is a factor map AL = ΩL/SC → ΩL/Q = Ωmax.
But dSC is invariant under translation and therefore (AL,RN ) is equicontinuous.
Thus the above factor map must be the identity and SC = Q. �
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Thus, by Corollary 4.15, continuous β |ΩL implies cr = 1. Under slightly
stronger assumptions, namely that L is a Meyer set and the associated dynamical
system is uniquely ergodic, the first statement of the corollary can also directly be
inferred from Theorem 7 of [6] (and the description of the maximal equicontinuous
factor via continuous eigenfunctions). That theorem then even implies that all
eigenvalues are topological and the dynamical spectrum is pure point [6].

4.3.3. Strong proximality and the Meyer property. In this section we apply the
theory developed above to Meyer sets.

Lemma 4.17 ([11]). For repetitive Meyer sets, the strong versions of proximality,
regional proximality and syndetic proximality agree with the usual ones.

As a consequence, repetitive Meyer sets enjoy a stronger form of finite local
complexity:

Corollary 4.18. Consider a repetitive Meyer set and let R > 0. Up to translation,
there are only finitely many pairs of R-patches (BR[L1], BR[L2]) with πmax(L1) =
πmax(L2).

Proof. By finite local complexity, there are only finitely possibilities, up to trans-
lation, for BR[L1]. So the question is: How many relative positions in a pair
(BR[L1], BR[L2]) may we have? Let (x1, x2) ∈ (BR[L1], BR[L2]). Since L1 and
L2 are strongly regional proximal we have x1 − x2 ∈ (L − L) − (L − L). By the
Meyer property the latter set is uniformly discrete; since also |x1 − x2| ≤ 2R, we
see that we have only finitely many possibilities for x1 − x2. �

The notion of coincidence rank becomes more intuitive for repetitive Meyer
sets. In fact, if cr < ∞ we can combine Lemma 4.5 and Lemma 4.17 to obtain that
there exists R0 > 0 such that

cr = max{l|∃L1, . . . ,Ll ∈ π−1max(ξ) : ∀t ∈ RN , BR[Li − t] �= BR[Lj − t] for i �= j}
where ξ ∈ Ωmax and R ≥ R0 are arbitrary. This has two interpretations. A priori,
one could expect that the maximum on the r.h.s. becomes larger if R gets larger,
because disagreement on larger patches is a weaker condition than on smaller
patches. But this is not the case as soon as R is larger than a certain threshold
value R0. A second interpretation is that the distinct Meyer sets in the fiber of
a fiber distal ξ have at each point t ∈ RN distinct R0-patches; that is, they are
non-coincident on R0-patches. If cr is not finite then the max on the r.h.s. becomes
indeed arbitrarily large as R tends to infinity.

Let nR(ξ) be the number of different R-patches at 0 which occur in the
elements of the fibre of ξ, i.e.,

nR(ξ) = #{BR[L] : L ∈ π−1max(ξ)}.
For Meyer sets, this number is finite by (the proof of) Corollary. 4.18 and we derive
from the preceding formula for cr that cr ≤ nR(ξ), provided cr is finite and R is
large enough (R ≥ R0). Note that limR→∞ nR(ξ) is the cardinality of π−1max(ξ).
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The following lemma was stated and proved in [11] under the assumption of finite
maximal rank. This assumption can in fact be dropped.

Lemma 4.19. For repetitive Meyer sets, nR is upper semi-continuous; that is, the
sets {ξ : nR(ξ) ≥ k} are closed in Ωmax for any k ≥ 0.

Proof. Note that if Ln → L in ΩL then there exists a sequence (tn)n ⊂ RN ,
tn → 0, such that BR[Ln − tn] = BR[L] for all sufficiently large n. Now fix k ∈ N
and suppose that (ξn)n is a sequence in Ωmax with nR(ξn) ≥ k for all n and
with ξn → ξ. It follows from Corollary 4.18 that there is δ > 0 with the property
that if L,L′ ∈ ΩL are such that πmax(L) = πmax(L′) and BR[L] �= BR[L′], then
BR[L− t] �= BR[L′ − t′]) holds true even for all t, t′ ∈ Bδ(0). Thus, for each n, we
may choose L1

n, . . . ,Lkn ∈ π−1max(ξn) with BR[Lin − t] �= BR[Ljn − t′]) for i �= j and
t, t′ ∈ Bδ(0). By passing to a subsequence, we may assume that Lin → Li ∈ π−1max(ξ)
for i = 1, . . . , k. Then BR[Li] �= BR[Lj ] for i �= j, so nR(ξ) ≥ k and the set
{ξ : nR(ξ) ≥ k} is closed. �

Theorem 4.20. Consider a repetitive Meyer set L whose dynamical system
(ΩL,RN ) has finite coincidence rank. If the fiber distal points have full Haar mea-
sure then, for any R ≥ R0 and any ξ ∈ Ωmax, there is a subset A ⊂ RN of density
1 such that

#{BR[L − t] : πmax(L) = ξ} = cr for all t ∈ A.

Remark. We can summarise the theorem as saying that locally (that is, by inspec-
tion of finite patches) and with probability 1 all fibers have cr elements. Consider
for instance the system associated with the Thue–Morse substitution, which has
coincidence rank 2 (see the chapter on the Pisot Substitution Conjecture in this
volume). The maximal equicontinuous factor has one orbit whose fibres have 4
elements. But only near the ‘branching locus’ can one find 4 different R-patches,
otherwise there are only 2.

Proof. Let DR = {ξ ∈ Ωmax : nR(ξ) = cr}. Then Ωdistal
max =

⋂
R≥R0

DR and so

the hypothesis implies that η(DR) = 1. Here, η denotes the Haar measure on the
maximal equicontinuous factor. Now let ñR = nR − cr 1DR ; that is, ñR is 0 on
DR and otherwise the same as nR. By the preceding lemma, nR is upper semi-
continuous. Hence, ñR is a finite positive linear combination of indicator functions
on compact sets. As the maximal equicontinuous factor is uniquely ergodic, we
obtain then a uniform inequality in the ergodic theorem (see, e.g., Lemma 4 in
[50]). More specifically, we have for all ξ and all R ≥ R0

lim sup
n

1

vol(Λn)

∫
Λn

ñR(t · ξ)dt ≤
∫

ñR(ξ′)dη(ξ′),

where Λ = (Λn)n is a van Hove sequence for RN . Due to η(DR) = 1 the right-
hand side in the previous inequality is 0. Let B = {t ∈ RN : nR(t · ξ) �= cr}. Then
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1B(t) ≤ ñR(t · ξ) and thus

densΛ(B) = lim sup
n

1

vol(Λn)

∫
Λn

1B(t)dt ≤ lim sup
n

1

vol(Λn)

∫
Λn

ñR(t · ξ)dt = 0.

Hence the density of B is 0 and A = Bc, the complement of B, has the required
property. �

Corollary 4.21. Let L1 and L2 be two elements in the hull of a regular complete
Meyer set. Then πmax(L1) = πmax(L2) if and only if they are statistically coinci-
dent.

Proof. By assumption, the hypothesis of the last theorem is satisfied with cr = 1.
In particular Q agrees with the strong proximality relation and so one direction
follows immediately from Lemma 4.14. It remains to show that if L1 and L2

belong to the same fibre of πmax then they are statistically coincident. But the
last theorem just says that in this case the density of points where L1 and L2

agree on an R-ball is 1, or, in other words, the density of points where L1 and L2

disagree is 0. Hence L1 and L2 are statistically coincident. �

Remark. The statement of the above corollary is quite at the heart of the con-
siderations of [6]. In fact, as mentioned above, Theorem 9 of [6] gives that, for
regular complete Meyer sets, the map β |ΩL is indeed continuous. When combined
with Theorem 7 of [6], we directly obtain the statement of the corollary. This
approach actually shows that the result is valid not only in RN but for general
locally compact σ-compact abelian groups.

4.3.4. Meyer substitutions. So far we have formulated all our results for Delone
sets rather than tilings. This does not really make a difference, as the two are
related by mutually local derivations. In particular, all the concepts and results
translate into the formalism of tilings. In this section we will use the formalism of
tilings, because we find it much more convenient and intuitive for substitutions.
For us, a tile in RN is a subset homeomorphic to a compact N -ball and a tiling
of RN is a collection of tiles with disjoint interiors which covers RN . The set of
tiles of a tiling T which intersect non-trivially a compact subset K ⊂ RN is called
a patch. In particular, the R-patch at 0 ∈ RN is the set of tiles which touch the
closed R-ball BR(0); we denote it by BR[T ]. The support of a patch P , supp(P ),
is the set of points covered by the tiles of P .4

For a tiling substitution we suppose we have a finite set A = {ρ1, . . . , ρk} of
translationally inequivalent tiles (called prototiles) in RN and an expanding linear
map Λ. A substitution on A with expansion Λ is a function Φ : A → {P : P is a
patch in RN} with the properties: for each i ∈ {1, . . . , k}, every tile in Φ(ρi) is a
translate of an element ofA; and supp(Φ(ρi)) = Λ(supp({ρi})). Such a substitution

4One could include the possibility of decorating the tiles in case one wants to distinguish trans-

lationally congruent tiles and then distinguish the support of a tile (the points covered by the
tile) from the decorated tile.
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naturally extends to patches and even tilings whose elements are translates of the
prototiles and it satisfies Φ(P − t) = Φ(P )− Λ(t).

A patch P is allowed for Φ if there is an m ≥ 1, an i ∈ {1, . . . , k}, and a
v ∈ RN , with P ⊂ Φm(ρi) − v. The substitution tiling space associated with Φ is
the collection ΩΦ of all tilings T of RN such that every finite patch in T is allowed
for Φ. ΩΦ is not empty and, since translation preserves allowed patches, RN acts
on it by translation. To define a metric on ΩΦ, we can borrow the metric we’ve
used for Delone sets: Pick a point yi in the interior of each prototile ρi and, for
T ∈ ΩΦ, let L(T ) = {yi + x : x + ρi ∈ T }. Then set d(T, T ′) := d(L(T ),L(T ′)).
(The set L(T ) is called a set of punctures of T .)

The substitution Φ is primitive if for each pair {ρi, ρj} of prototiles there is
a k ∈ N so that a translate of ρi occurs in Φk(ρj). If the translation action on ΩΦ

is free, which is equivalent to saying that each of its elements is a non-periodic
tiling, then Φ is said to be non-periodic. If all tilings from ΩΦ are FLC then Φ is
said to be FLC. If Φ is primitive, FLC and non-periodic then ΩΦ is compact in the
metric described above, Φ : ΩΦ → ΩΦ is a homeomorphism, and the translation
action on ΩΦ is minimal and uniquely ergodic ( [1], [70], [72]). In particular, ΩΦ =

ΩT := {T − v : v ∈ RN} for any T ∈ ΩΦ. It will be with respect to the unique
ergodic measure μ on ΩΦ when we speak about the dynamical spectrum and L2-
eigenfunctions. In the context of eigenfunctions (non-periodic) substitutions have
a rather special feature: All measurable eigenfunctions are continuous. Thus, all
eigenvalues are automatically continuous eigenvalues. For symbolic dynamics this
result is due to Host [30]. The case at hand is treated by Solomyak [73].

A Meyer substitution is a substitution Φ such that the elements of ΩΦ are
Meyer tilings, that is, they are MLD to a Meyer set. To check this it suffices to
check that, for T ∈ ΩΦ, the set of punctures L(T ) is a Meyer set.

It is easily verified that Φ preserves the regional proximality relation and
therefore induces a homeomorphism Φmax on the maximal equicontinuous factor
Ωmax. In particular Φmax satisfies a similar equation

Φmax(ξ − t) = Φmax(ξ)− Λ(t)

from which one concludes, as Λ has no root of unity eigenvalues, that Φmax is
ergodic w.r.t. Haar measure.

Proposition 4.22 ([11]). Consider a Meyer substitution tiling system with primitive
non-periodic substitution. Then the following hold:

(a) The maximal rank is finite.
(b) Ωfibermax has full measure.
(c) Syndetic proximality is a closed equivalence relation.
(d) Two distinct tilings of a fiber distal fiber do not share a common tile.

Proof. We indicate the idea of some of the proofs. Since Λ is expanding there is a
c > 1 and an n ∈ N such that BcR(0) ⊂ Λn(BR(0)). Replacing Φ by Φn, we may
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suppose that n = 1. Hence

ncR(Φmax(ξ)) = #{BcR[Φ(T )] : πmax(T ) = ξ}
≤ #{Φ(BR[T ]) : πmax(T ) = ξ} ≤ nR(ξ).

From this we see that the maximal rank is bounded by supξ∈Ωmax
n0(ξ) which

is finite by Corollary 4.18. The argument for the fourth statement is based on a
similar reasoning.

Since nR ≤ ncR the above shows also that the sets DR(m) := {ξ ∈ Ωmax :
nR(ξ) ≤ m}, m ∈ N, are invariant under Φmax. By Lemma 4.19 DR(m) is open.
By ergodicity of Φmax therefore, it has measure 1, provided it is not empty. Since
Ωdistal

max =
⋂
R≥R0

DR(cr) the second statement follows if we show that DR(cr) �= ∅.
Consider a fiber which has minimal rank, i.e., ξ ∈ Ωmax such that π−1max(ξ) =

{T1, · · · , Tmr}. Suppose that for all r > 0 there exists w ∈ RN such that ∀t ∈ Br(w)
we have nR(ξ − t) ≥ mr; that is, all BR[Ti − t], 1 ≤ i ≤ mr, are distinct. Then we
can find two sequences (rk)k →∞ and (wk)k ∈ RN such that (Ti−wk)k converge
in Ω, let’s say to Si, and (ξ − wk)k converges in Ωmax, to ζ, say, and ∀t ∈ Brk(0)
all BR[Ti − wk − t], 1 ≤ i ≤ mr, are distinct. Taking k →∞ we conclude that all
BR[Si − t], 1 ≤ i ≤ mr, t ∈ RN , are distinct. In particular, the Si belong to the
fiber of ζ and are pairwise non-proximal and so cr ≥ mr. This shows that cr = mr
and hence DR(cr) is not empty.

It remains to argue that our assumption is satisfied. So let us suppose the
contrary, namely that there exists r > 0 such that for all w ∈ RN there exists
t ∈ Br(w) with nR(ξ − t) ≤ mr−1. It follows that the lower density of points
t ∈ Rn such that nR(ξ − t) ≤ mr−1 is strictly positive. Since for all t we have
that nR(ξ− t) ≤ mr (ξ lies in a fiber of rank mr) the ergodic theorem implies that∫
Ωmax

nR(ξ)dη(ξ) < mr. Hence DR(mr−1) can’t have measure 0. So it must have

measure 1. But then
⋂
R≥R0

DR(mr−1) has measure 1 and so there must be a
fiber of rank at most mr−1 which contradicts the minimality of mr. This shows
the second statement.

For the third statement see [11]. �

As a consequence of the previous proposition and our earlier results (in par-
ticular, Theorem 4.12 and Corollary 4.15) we have the following list of equiva-
lent characterizations of pure point (measure) dynamical spectrum which hold for
primitive non-periodic Meyer substitutions.

Theorem 4.23. Consider the system of a primitive non-periodic Meyer substitution.
The following are equivalent:

(i) The (measure) dynamical spectrum is purely discrete.
(ii) The dynamical system is an almost 1-to-1 extension of its maximal equicon-

tinuous factor.
(iii) The coincidence rank cr is 1.
(iv) The (strong) proximality relation is closed.
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(v) The (strong) proximality relation coincides with the equicontinuous structure
relation Rmax.

(vi) The (strong) proximality relation coincides with the (strong) syndetic proxi-
mality relation.

We finally present a result of Lee and Solomyak which, for a particular class of
substitution tilings, characterizes those which are Meyer substitutions. This class
is defined by some further conditions5 on the linear expansion Λ, namely that

1. Λ is diagonalizable (over C),
2. all eigenvalues of Λ are algebraically conjugate,
3. all eigenvalues of Λ have all the same multiplicity.

It should be said that the eigenvalues of the linear expansion are algebraic integers
([35],[48]) and, if the expansion is diagonalizable they form a union of families
([36]). Here, a family is the set Fp,c of roots of a monic, irreducible, integer poly-
nomial p which have absolute value greater than some real number c > 0. In other
words, a family is a subset of the set of algebraic conjugates of some algebraic
integer which can be characterized by the property that if it contains λ then it
contains all conjugates which have absolute value at least as large as that of λ.
The family Fp,c is called a Pisot family if c = 1 and p has no roots of absolute
value 1.

Theorem 4.24 ([47]). Consider a primitive non-periodic N -dimensional FLC sub-
stitution with expansion Λ satisfying the above three properties. The following are
equivalent:

(i) The substitution is Meyer
(ii) The eigenvalues of Λ form a Pisot family.

(iii) The continuous eigenvalues of the RN -action on the hull are dense in R̂N .
(iv) The maximal equicontinuous factor is non-trivial.

Recall from the discussion at the beginning of Section 4.2.1 that triviality
of the maximal equicontinuous factor implies absence of distal points. Given this,
we can combine the previous theorem with Proposition 4.22 and Theorem 4.13 to
obtain the following strong dichotomy.

Corollary 4.25. Consider a primitive non-periodic FLC substitution with expansion
Λ satisfying the above three properties. Either the system has no distal points, or
the distal points form a set of full measure. In the first case the dynamical point
spectrum is trivial and in the second the continuous eigenvalues are dense.

As a consequence of the above discussion we also obtain the following re-
markable statement: When it comes to the question of which point sets or tilings
have pure point spectrum, all examples produced by substitutions could also be
obtained by the cut-and-project formalism. More specifically, the following holds.

5It has been announced in [38] that these conditions can be considerably weakened: see the

discussion of Pisot families in the chapter on the Pisot Substitution Conjecture in this volume
for more detail.
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Corollary 4.26. Suppose that Φ is a primitive non-periodic N -dimensional FLC
substitution with expansion Λ satisfying the above three properties. Let T ∈ ΩΦ

and let L(T ) be a set of punctures. Then (ΩΦ,RN ) has pure point spectrum if and
only if L(T ) is a regular complete Meyer set.

Proof. Let (ΩΦ,RN) have pure point spectrum. As all eigenvalues are continuous,
we infer that the maximal equicontinuous factor is non-trivial. By Theorem 4.24
the substitution must then be Meyer. Hence, Theorem 4.23 gives that the dynam-
ical system is an almost 1 : 1 extension of its maximal equicontinuous factor. Now,
Theorem 3.20 implies that L(T ) is a regular complete Meyer set.

As for the converse direction, we note that any complete regular Meyer set
gives rise to a dynamical system which is an almost 1 : 1 extension of it’s maximal
equicontinuous factor by Theorem 3.20. From Theorem 4.23 we then infer pure
point spectrum. �

Remark. Of course, it is well known that a regular complete Meyer set gives rise
to a dynamical system with pure point spectrum (see, e.g., discussion in Section
2.4). The main part of the corollary is thus the converse implication. It has been
shown for one-dimensional systems by Sing [69]. For higher-dimensional self-similar
substitutions is has been obtained by Lee in [45]. Note, however, that the work of
Lee does not seem to claim regularity of the Meyer set but just its completeness.
See also the chapter on the Pisot Substitution Conjecture in this volume.

5. Ellis semigroup

If the action of a group G on a space X is transitive we can view X and its
maximal equicontinuous factor Xmax as two distinct compactifications of the act-
ing group G, the difference arising from the topology in which it is compactified.
In this section we consider a third compactification of G – the Ellis semigroup
E(X,G) of the dynamical system (X,G). As a space and dynamical system it
tends to be by far the most complicated of the three compactifications. But it
has one advantage; namely, it naturally carries the structure of a monoid (i.e., a
semigroup with neutral element). It therefore offers the possibility to characterize
dynamical systems by means of this algebraic structure. There are only a few types
of systems for which this has been successfully carried out; non-periodic Delone
systems are, however, not among these. So as a first step we simply present some
explicit examples of Ellis semigroups coming from Delone sets and observe that
they exhibit a very interesting algebraic structure, which we have not seen before
in this context. The examples we present are associated with almost canonical
cut-and-project patterns. Almost canonical cut-and-project patterns are complete
Meyer sets whose windows are polyhedral satisfying further conditions. Surpris-
ingly, the Ellis semigroup for such dynamical systems has a very particular form.
It is a completely regular semigroup (or a union of groups) [60]. Furthermore, its
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idempotents from a submonoid which is reminiscent of the so-called face semigroup
associated to a hyperplane arrangement [14].

The material of Section 5.1 is mostly based on the book of Auslander [4],
although most of it can also be found in the book of Ellis [19], and that of the
later sections in the thesis of the first author [2, 3].

5.1. Definitions and known properties

An action α of a group G on the compact space X is nothing else than a repre-
sentation of the group in terms of transformations of X ; i.e., for each t ∈ G, αt is
a function from X to X . The set of all functions from X to X is the product set
XX and becomes a compact space when equipped with the Tychonoff topology.

Definition 5.1. The Ellis semigroup E(X,G) is the closure of {αt|t ∈ G} in XX .

By definition of the Tychonoff topology, a net (fλ)λ of functions fλ : X → X
converges to some function f : X → X if for all x ∈ X the net (fλ(x))λ converges
to f(x). Any element of E(X,G) is thus a limit of a net (αtλ)λ where (tλ)λ is a
net in G. Assuming that the action is faithful we may identify G with {αt|t ∈ G}
and see that E(X,G) is indeed a compactification of G. Furthermore, G acts on
E from the left: αEt (f) = αt ◦ f . Thus (E(X,G), G) is a dynamical system. A
factor map π : (X,G)→ (Y,G) induces a continuous surjective monoid morphism
π∗ : E(X,G)→ E(Y,G). In fact, the latter is given by the equality π∗(f)(π(x)) =
π(f(x)) [4][Thm. 7, p. 54].

The basic idea is now to characterize the dynamical system (X,G) by means
of the properties of E = E(X,G). We may ask the following questions:

• E consists of functions f : X → X . What are their properties?
• What is the algebraic structure of E?
• E is a compact Hausdorff space. What more can we say about its topology?

Let us elaborate.

E consists of functions f : X → X which are limits of homeomorphisms.
Are these functions still homeomorphisms? If not, are they at least continuous or
invertible? We provide an elementary argument why this cannot be the case for
all elements in the semigroup of the dynamical system of a repetitive non-periodic
FLC Delone set. Recall from Theorem 4.1 that there are two distinct Delone sets
L+,L− in the hull which agree on a half-space. We choose coordinates such that the
first component corresponds to the normal into that half-space. Then, whenever
(tΛ)λ is a net such that the first component of tλ tends to +∞, L+−tλ and L−−tλ
agree on larger and larger balls. By repetitivity we may assume that there are two
such nets for which limλ L± − t±λ = L±. By compactness of E we may assume

that αt−λ
converges to an element f ∈ E. Then f(L+) = limλ(L+ − t−λ ) = L−,

because eventually the sets L+ − t−λ and L− − t−λ come close. On the other hand

f(L+−t+λ ) = f(L+)−t+λ = L−−t+λ which tends to L+. Hence if f were continuous
the last argument would give f(L+) = L+, a contradiction. So f is not continuous.
Furthermore, f(L−) = limλ L− − t−λ = L− and hence f is not injective.
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The set E is closed under composition of functions. Accordingly, composition
of functions makes E into a semigroup. Moreover, the identity α0 is a unit for the
composition law and so E is a monoid. Care has to be taken, however, concerning
the topological properties of the semigroup product. If (fλ(x))λ converges to f(x)
then limλ fλ ◦ g = f ◦ g and so the semigroup product is continuous in the left
variable: stated differently, right translation by g, f 	→ fg := f ◦ g is a continuous
map. It is however, in general, not true that the semigroup product is continuous
in the right variable. Moreover, even in case that G is abelian (which is the only
case that will concern us) the semigroup product in E(X,G) is, in general, not
commutative (although any element of E(X,G) commutes with elements coming
from G, i.e., elements of the type αt).

From the point of view of topology, the Ellis semigroup is either well behaved
in the sense that it is separable and every element is the limit of a sequence
(as opposed to net) (αtn)n, tn ∈ G, or it is rather wild in that it contains a
homeomorphic image of the Stone–Čech compactification of N [25]. In the first
case the semigroup is called tame. If the semigroup is first countable, i.e., has a
countable neighborhood base, then it is tame.

One of the important results of the general theory concerns minimal left ideals
and the existence of idempotents, that is, elements p satisfying p2 = p. Let F be
a closed G-invariant subset of E = E(X,G). Then αEt (F ) ⊂ F implies that F is a
left ideal of E. It follows also that any minimal left ideal is a minimal component
of the dynamical system and hence closed. Furthermore, an application of Zorn’s
lemma yields that every (closed) minimal left ideal of E contains idempotents.

There are several connections between proximality and the Ellis semigroup.
Two that are fundamental are highlighted in the following theorem.

Theorem 5.2. Consider a compact minimal dynamical system (X,G).

(a) x ∈ X and y ∈ X are proximal if and only if p(x) = p(y) for some minimal
idempotent of E(X,G) (a minimal idempotent is an idempotent in a minimal
ideal) [4, Thm. 13, p. 89].

(b) Proximality is transitive if and only if E contains a unique minimal ideal [4,
Thm. 10, p. 88].

Let us note that part (b) of the previous theorem gives uniqueness of the
minimal ideal whenever P = Rmax. In particular, uniqueness of the mimimal ideal
holds for minimal systems if cr = 1 (see the discussion in Section 4).

The somewhat nicest case is that in which the system (X,G) is equicontinu-
ous.

Theorem 5.3 ([4, Thm. 3 & 5, p. 52, 53]). Consider a dynamical system (X,G).
The system is equicontinuous if and only if E(X,G) is a group and all its elements
are homeomorphisms. If, moreover, the action is minimal then (E(X,G), G) is
topologically conjugate to (Xmax, G) and the conjugacy is a group isomorphism.
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Much more can be said to support the statement: If the semigroup E is well
behaved then the system is close to being equicontinuous. For instance, if, for a
minimal system, all elements of E are continuous, then they are even homeomor-
phisms and the system is equicontinuous [21]. On the other hand, if all elements of
E are bijective and so E is a group, then the system must be distal and, conversely,
triviality of the proximal relation implies that E is a group. Finally we mention
that (again for minimal systems) the topology of E is metrizable if and only if the
system is equicontinuous [24]. For a non-periodic FLC Delone system, however,
the Ellis semigroup is neither a group nor is it metrizable.

Let M be a minimal left ideal and J the set of its idempotents. Then for
every p ∈ J and m ∈ M we have mp = m and, furthermore, the restriction of the
semigroup product to pM makes pM a group with neutral element p [4][Lemma 1,
p. 83]. Moreover, all the groups pM are isomorphic, the isomorphism between pM
and qM being given by pm 	→ qm; and M is their disjoint union: M =

⋃
p∈J pM .

Let G := p0M for some chosen p0 ∈ J . Then, as a semigroup,

M ∼= G × J

where we take the product operation on the r.h.s. The semigroup isomorphism is
given by pm 	→ (p0m, p). Indeed, J is a sub-semigroup with product given by the
so-to-say left domination rule

pq = p, p, q ∈ J

and pmp′m′ = pmm′, showing that the above map preserves the semigroup prod-
uct. We can say a little bit more about the group G. Since p0Ep0 ⊂ p0M and
(πmax)∗(p0) = id (p0 is an idempotent and id is neutral element in E(Xmax, G)),
(πmax)∗ restricts to a surjective group homomorphism (πmax)∗ : G → E(Xmax, G)
and if (X,G) is minimal then the latter is isomorphic to Xmax.

Lemma 5.4. Let (X,G) be a minimal dynamical system. Then (πmax)∗ : G →
E(Xmax, G) ∼= Xmax is an isomorphism if and only if cr = 1 (P = Rmax).

Proof. We first show that cr = 1 implies that (πmax)∗ is an isomorphism. As
(πmax)∗ is onto, we only have to show its injectivity. The map (πmax)∗ is injective
if (πmax)∗(f) = id implies that f = p0. Now (πmax)∗(f) = id means that for all
ξ ∈ Xmax and x ∈ π−1max(ξ) we have f(x) ∈ π−1max(ξ). Let f ∈ p0M be given such
that πmax(x) = πmax(f(x)). By the hypothesis cr = 1, the elements x and f(x) are
then proximal. Moreover, by (b) of Theorem 5.3, we have that the minimal ideal
is unique. From part (a) of that theorem, we then infer that there exists a p ∈ J ,
such that pf(x) = p(x). Applying p0 on both sides and using that p0p = p0 by the
mentioned left domination, and that f = p0f by f ∈ p0M , we then obtain

f(x) = p0f(x) = p0pf(x) = p0p(x) = p0(x).

As x is arbitrary, this shows f = p0.
To prove the converse suppose that cr > 1 so that there are ξ ∈ Xmax and

x, x′ ∈ π−1max(ξ) which are not proximal. We may even assume that p0(x) = x as
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we can replace x by p0x and x′ by p0x
′ and this will not change non-proximality.

(If p0x and p0x
′ were proximal, there would exist, by Theorem 5.3, a q ∈ J with

qp0x = qp0x
′ and this would give qx = qx′ and proximality of x and x′ would

follow from that theorem.) By minimality of the original system and the definition
of the Ellis semigroup, there exists f ∈ E(X,G) such that f(x′) = x. So if m = p0f
we have m(x′) = x. Thus (πmax)∗(m)(ξ) = ξ. Since E(Xmax, G) is a group acting
fixed point freely on Xmax, the latter implies that (πmax)∗(m) = 0. But m cannot
be an idempotent, because x′ is not proximal to x. �
Note that although (πmax)∗ is continuous as a map from E(X,G) to E(Xmax, G),
one cannot conclude in the above lemma that G is homeomorphic to Xmax, as p0M
need not be closed.

In the next section we introduce a family of Delone sets – the almost canon-
ical cut-and-project sets – whose dynamical systems have Ellis semigroups with a
particularly nice algebraic description: the entire semigroup, not just the (unique)
minimal left ideal, is isomorphic with a sub-semigroup of the product of the max-
imal equicontinuous factor and a finite monoid of idempotents.

5.2. Almost canonical cut-and-project sets

Almost canonical cut-and-project sets are special types of complete Meyer sets.

Their internal group is a real vector space RN
⊥
where N⊥ is called the codimension

of the set. They are characterized by the form of the set, S, of singular points in

the maximal equicontinuous factor Ωmax = T = (RN × RN
⊥
)/L̃; that is, the set

of points ξ ∈ T which have a fiber π−1max(ξ) containing more than one point. Recall
that S is determined by the boundary points ∂W of the window W , namely

S = ((RN × ∂W ) + L̃)/L̃ = (RN × (∂W + p2(L̃)))/L̃.

Definition 5.5. A complete Meyer set is almost canonical if its internal group H is

a vector space RN
⊥
and its window W a finite union of polyhedra and the following

two conditions are satisfied:

1. There are finitely many affine hyperplanes Ai ⊂ RN
⊥
, i ∈ I, such that the

set ∂W + p2(L̃) may be alternatively described as

∂W + p2(L̃) =
⋃
i∈I

Ai + p2(L̃).

2. Any compact polyhedron whose boundary lies in ∂W + p2(L̃) can be con-
structed via a finite sequence of unions, intersections and complements of
polyhedra of the form W + p2(x) for x ∈ L̃.

Such a situation arises if W is a union of polyhedra whose codimension 1
faces span affine hyperplanes which have a dense stabilizer under the action of
p2(L̃). Then we may take for the Ai these hyperplanes. A so-called canonical cut-
and-project set is one for which W = p2(C) is the projection of a unit cube C for

L̃ (w.r.t. to some choice of base for L̃). It satisfies the above criteria since the faces
of the projected cube are spanned by lattice vectors.
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The advantage of the alternative description of the singular points is that it
leads to a very explicit description of the hull ΩL. In fact

ΩL = (RN × RN
⊥

c )/L̃

where RN
⊥

c is a locally compact totally disconnected space, a “cut-up version”

of RN
⊥
, which is a certain completion of RN

⊥\(
⋃
i∈I Ai + p2(L̃)). This allows

the calculation of the cohomology groups (see the chapter “Spaces of projection
method patterns and their cohomology” in this volume) and of the complexity
exponents of the sets [31] and, as we review here, of the Ellis semigroup.

We will not directly look at the Ellis semigroup of the (so-called continuous)
dynamical system (ΩL,RN ) but first at the semigroup of a reduction of it and
obtain E(ΩL,RN ) by suspension. The reduction is obtained from a choice of N⊥-

dimensional subspace F ⊂ RN × RN
⊥

whose intersection with L̃ is a rank N⊥

subgroup D = F ∩ L̃. Then F/D is an N⊥ torus in T which is transversal to the
RN -action. The first return to F/D of the equicontinuous RN -action on T yields

an equicontinuous L̃/D-action on F/D. By construction L̃/D is free of rank N
and so we simply write it as ZN . Now let Ξ = π−1max(F/D). This is then transversal
to the RN -action on ΩL and the first return yields an action of ZN on Ξ. It is the
Ellis semigroup of this reduction (Ξ,ZN ) of (ΩL,RN ) which we now describe more
precisely.

We denote now Γ = p2(L̃) and Δ = p2(D). Then

Ξ ∼= RN
⊥

c /Δ

with ZN -action induced by Γ, i.e., ZN = Γ/Δ. Its maximal equicontinuous factor

is Ξmax = T⊥ := RN
⊥
/Δ.

For each affine hyperplane Ai there is a vector ai ∈ RN
⊥

and a codimen-

sion 1 subspace H0
i ⊂ RN

⊥
such that Ai = H0

i + ai. We then must have that⋂
i∈I H0

i = {0}. So the dynamical system (Ξ,ZN ) is entirely described by the data
({Ai}i∈I ,Γ,Δ) consisting of a finite collection of affine hyperplanes {Ai}i∈I in a

real vector space RN
⊥

such that the intersection of their corresponding hyper-
spaces is trivial; a dense rank N + N⊥ sublattice Γ; and a rank N⊥ sublattice Δ

which spans RN
⊥
. All that follows depends only on this data and does no longer

refer to a Delone set or a tiling. The subspace H0
i cuts RN

⊥
into two halfspaces.

Choose for each i a positive side. We denote by H+
i and H−i the open half-space on

the positive and the negative side, respectively. It is convenient to set H∞i = RN
⊥
.

Definition 5.6. The cut type I(h) of a point h ∈ RN
⊥
is the subset

I(h) = {i ∈ I : h ∈ Ai + Γ}.

A point type is a function p ∈ {+,−,∞}I such that the cone

Cp :=
⋂
i∈I

H
p(i)
i
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is non-empty. We denote by P the finite set of point types. We call Cp the (point)
cone associated with p. Its domain is

dom p = {i ∈ I : p(i) �=∞}.

Note that the cone Cp is a connected component of RN
⊥\

⋃
i∈dom p H0

i . We

denote by ∞ ∈ {+,−,∞}I the function which is constant equal to ∞. Its domain

is empty and C∞ = RN
⊥
. By construction I(h + γ) = I(h) for all γ ∈ Γ and so

the cut type is also defined for the points of the torus T⊥ = RN
⊥
/Δ.

Recall that the tangent cone TS(x) at x of a subset S ⊂ RN
⊥

is the set
of vectors v which can be obtained as limits of the form v = limn

xn−x
sn

where

(xn)n ⊂ S and (sn)n ⊂ R+ are sequences such that limn sn = 0. If x lies in the

interior of S then TS(x) = RN
⊥
. If C is a closed cone whose tip is at 0 then

TC(0) = C.

Theorem 5.7. The dynamical system (Ξ,ZN ) is isomorphic to

Ξ = {(ξ, p) ∈ T⊥ ×P : dom p = I(ξ)}
with ZN action given by t · (ξ, p) = (ξ + t, p) and with topology described in terms
of convergence of sequences as follows: A sequence ((ξn, pn)n converges to (ξ, p) if
and only if ξn → ξ in T⊥ and eventually ξn − ξ ∈ Cp and TCpn

(0) ⊂ TCp
(ξn − ξ).

The maximal equicontinuous factor of Ξ is T⊥ and the factor map is the
projection onto the first factor.

The expressions ξn−ξ ⊂ Cp and TCpn
(0) ⊂ TCp

(ξn−ξ) should be understood

for large enough n so that we can lift ξn−ξ into a small neighbourhood of 0 in RN
⊥

where the expressions make sense. The condition of inclusion TCpn
(0) ⊂ TCp

(ξn−ξ)

is only relevant if the (lifted) sequence ξn− ξ does not approach the tip of Cp from
inside Cp but rather along its boundary. This picture of the topology of Ξ using
cones is reminiscent to the oldest one, see [44], but we refer the reader to [3] for a
proof in the present framework.

5.3. The Ellis semigroups of the systems (Ξ,ZN) and (ΩL,RN)

We now consider the Ellis semigroup E(Ξ,ZN ) of the dynamical system defined
by the data ({Ai}i∈I ,Γ,Δ). We describe its topology, its monoid structure, and
finally its action on Ξ.

Definition 5.8. A transformation type is a function t ∈ {+,−, 0}I such that the
cone

C′t :=
⋂
i∈I

H
t(i)
i

is non-empty. We denote by T′ the finite set of transformation types.

Note that the cones C′t are the constituents of a stratification of RN
⊥
: If the

t(i) are all different from 0 then C′t is a connected component of RN
⊥\

⋃
i∈I H0

i .
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In general C′t is a connected component of
⋂
i:t(i)=0 H0

i \
⋃
i:t(i) �=0 H0

i . We denote

by o ∈ {+,−, 0}I the function which is constant equal to 0. Its cone is one point:
C′o = {0}. All cones are disjoint and so only C′o contains the origin.

Let Wt be the connected component of RC′t ∩ Γ containing 0. We call Ct :=
Wt ∩ C′t the effective or transformation cone of t. It might be empty, as it is, for
instance, if the intersection RC′t ∩ Γ is discrete but t �= o. Let

T = {t ∈ T′ : Ct �= ∅}

be the set of effective transformation types. For t ∈ T we consider RN
⊥

t = RCt+Γ

and its quotient T⊥t = RN
⊥

t /Δ. Note that Γ/Δ ⊂ T⊥t ⊂ T⊥.

Remark. The complexity of a Delone set L is the growth rate, as R → ∞, of the
number of translationally inequivalent sets of the form BR(x)∩L: the complexity
is α if this number grows like Rα. It is shown in [31] that, for an almost canonical
cut-and-project set, the complexity α satisfies N ≤ α ≤ NN⊥. While maximal
complexity (α = NN⊥) is generic, many of the familiar examples – the octagonal
tilings, the Penrose tilings and their three-dimensional icosahedral generalisations,
as well as the Danzer tilings – have minimal (α = N) complexity. It is a feature of
almost canonical projection sets of minimal complexity that Γ∩C′t is dense in C′t.
For those systems the effective cone Ct coincides with C′t, Wt =

⋂
i:t(i)=0 H0

i , and

T⊥t =

⎛⎝ ⋂
i:t(i)=0

H0
i + Γ

⎞⎠ /Δ.

Theorem 5.9 ([3]). With the notation above, the operation

(tt′)(i) =

{
t(i) if t(i) �= 0
t′(i) if t(i) = 0

defines a monoid structure6 on T with t = o as unit. The Ellis semigroup of (Ξ,ZN )
is isomorphic to the submonoid

E(Ξ,ZN ) ∼=
⋃
t∈T

T⊥t × {t}

of T⊥ × T equipped with the product

(ξ, t)(ξ′, t′) = (ξ + ξ′, tt′).

Its action E(Ξ,ZN )× Ξ→ Ξ is given by

(ξ, t) · (ξ′, p) = (ξ + ξ′, p′) where p′(i) =

⎧⎨⎩
t(i) if i ∈ I(ξ + ξ′) and t(i) �= 0
p(i) if i ∈ I(ξ + ξ′) and t(i) = 0
∞ else

.

6We note a difference between this formula and the one in [2, 3] where the convention of [4] that
the semigroup acts from the right is used.
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The topology of E(Ξ,ZN ) is first countable and may thus be described in terms of
convergence of sequences. A sequence (ξn, tn)n in

⋃
t∈T T⊥t ×{t} converges to (ξ, t)

if and only if ξn → ξ in T⊥ and eventually ξn− ξ ⊂ Ct and TCtn
(0) ⊂ TCt

(ξn− ξ).

Again the expressions ξn − ξ ⊂ Ct and TCtn
(0) ⊂ TCt

(ξn − ξ) should be

understood for large enough n so that we can lift ξn− ξ into a small neighborhood

of 0 in RN
⊥
.

Remarks. The product on T can be described geometrically with the help of the
transformation cones. We do this below in the case of the octagonal tiling.

As it should be, the domain of p′ in the above formula is I(ξ + ξ′). Indeed,
if t(i) = 0 then ξ ∈ Tt ⊂ H0

i + Γ and thus i ∈ I(ξ + ξ′) iff i ∈ I(ξ′). This implies
that for i ∈ I(ξ + ξ′) with t(i) = 0 we must have p(i) �=∞.

Convergence of (ξn, tn) to (ξ, t) implies convergence of ξn to ξ in T⊥. Fur-
thermore the copy of the acting group ZN in E(Ξ,ZN ) is given by αt = ([t], o). As
TCo(0) = {0} we have that αtn converges to the transformation (ξ, t) ∈ E(Ξ,ZN )
if and only if [tn]→ ξ in T⊥ and eventually [tn]− ξ ∈ Ct.

The Ellis semigroup of the continuous dynamical system (ΩL,RN ) is just the
suspension of E(Ξ,ZN ),

E(ΩL,R
N ) ∼= E(Ξ,ZN )×ZN RN .

The following theorem is thus the continuous version of Theorem 5.9.

Theorem 5.10 ([3]). Consider the dynamical system (ΩL,RN ) of an almost canon-
ical cut-and-project set. There exists a finite monoid of idempotents T which has
a unique minimal left ideal Tmin, and for each t ∈ T, a group Tt with RN ⊂ Tt ⊂
T = Ωmax such that, algebraically,

E(ΩL,R
N) ∼=

⋃
t∈T

Tt × {t} ⊂ T× T

with semigroup law

(ξ, t)(ξ, t′) = (ξ + ξ′, tt′).

In particular the Ellis semigroup is a finite disjoint union of groups. For the unit
o ∈ T we have To = RN and for each minimal idempotent t ∈ T we have Tt = T.
Finally, the semigroup morphism induced by πmax is given by the projection onto
the first factor.

When we say that E(ΩL,RN ) is a finite disjoint union of groups we mean
that the semigroup law restricted to the component Tt×{t} is a group law, which
follows here since tt = t and so ([0], t) is the neutral element in Tt × {t}. But this
does not mean that E(ΩL,RN ) is a group. T is never a group. Moreover, as is the
case for Lemma 5.4, the identification of E(ΩL,RN ) as a submonoid of Ωmax × T
does not respect the topology; in fact, the above theorem says nothing about the
topology of E(ΩL,RN ). The local nature of the topology, and the fact that it’s
first countable, can be got from Theorem 5.9.
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In many cases the semigroup T is very small, containing besides o only min-
imal idempotents and so E(ΩL,RN ) = T×Tmin ∪RN . These cases constitute the
generic situation in [22] and correspond to cut-and-project sets with maximal com-
plexity [31]. On the opposite side, the almost canonical cut-and-project sets with
minimal complexity have the largest possible T (see the remark preceding Theorem
5.9). Less complexity seems to make the Ellis semigroup richer! Almost canonical
cut-and-project sets with minimal complexity share also the property that their
rational cohomology groups are finitely generated [31, 22]. All Delone sets coming
from primitive substitutions and, more generally, all linearly repetitive tilings, have
minimal complexity. This can be rather directly inferred from [49] and is discussed
in some detail in [7]. There it is also shown that pure point spectrum implies zero
entropy (i.e., sub-exponential complexity) for general uniquely ergodic systems.

5.4. Example of the octagonal tiling

The octagonal tiling has dimension and codimension 2. Its window W is a regular

octahedron which is the projection of the unit cube for L̃ = Z4 onto RN
⊥
= R2. Γ

is the lattice generated by the difference vectors between corners of the octahedron.
Of the eight affine hyperplanes spanned by the sides of the octahedron, only four
are independent modulo Γ so we only need four lines H0

i and can take ai = 0 to
describe the affine hyperplanes furnishing the input data of the dynamical system.
These four lines form a regular 8-star in R2. We number them so that H0

1 and H0
3

are orthogonal and hence also H0
2 and H0

4 .
It turns out that we have 8 possible cut types [22]: If ξ ∈ Γ/Δ then I(ξ) =

{1, 2, 3, 4}, i.e., ξ lies on four different affine hyperplanes. If ξ ∈ ( e1+e32 + Γ)/Δ

then I(ξ) = {2, 4} and, if ξ ∈ ( e2+e42 +Γ)/Δ then I(ξ) = {1, 3}. If ξ ∈ (Hi+Γ)/Δ
but it lies not in the above sets then the cut type is I(ξ) = {i}. Here i = 1, 2, 3, 4
so these yield four cut types. Finally, the cut type of all other points is I(ξ) = ∅.

It follows that we have 25 different point types: Cut type {1, 2, 3, 4} allows
8 different point types whose cones correspond to the 8 cones with opening angle
of 45 degree and boundary contained in H0

1 ∪ H0
2 ∪ H0

3 ∪ H0
4 . Cut type {1, 3}

and {2, 4} allow each for four point types which correspond to the 4 cones with
operning angle of 90 degree and boundary contained in H0

1 ∪ H0
3 and H0

2 ∪ H0
4 ,

respectively. Cut type {i} allows for two point types corresponding to the two
open half-spaces bounded by H0

i . Finally, if I(ξ) = ∅ we have a single point type
I =∞ with cone all of R2.

An element (ξ, p) ∈ Ξ corresponds to a tiling. The elements with point type
∞ correspond to the non-singular tilings. The other elements correspond to tilings
which have worms. A worm7 is a configuration of tiles along a line, in the octagonal
tiling made of squares and rhombi, which may occur in two different orientations.
More precisely, three rhombi fill a hexagon, and they can do this in two different
ways. In the worm one or the other way is realised coherently for all hexagons and
changing the way is referred to as flipping the worm. Now whenever i ∈ I(ξ) then

7In the Penrose tiling these worms are referred to as Conway worms [27].
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the tiling corresponding to (ξ, p) ∈ Ξ contains a worm in a direction determined by
i. So depending on the cut type the tiling has one, two, or four worms in one, two,
or four directions, respectively, and the point type corresponds precisely to the
information in which way the worms are flipped. The first coordinate ξ carries the
information on where the worms cross. This describes the space Ξ. The Z2-action
(N=2) is given by translation of the first variable which amounts to translation of
the tiling.

We now describe E(Ξ,Z2). The octagonal tiling has the property that C′t∩Λ is
dense in C′t provided t �= o which implies that all cones coincide with their effective
cones. In the octagonal case these cones have dimension 2, or 1, or 0, the latter only
for Co. The two-dimensional cones coincide with the 8 cones of the point types
which have an opening angle of 45 degree. They are associated to the minimal
idempotents and their corresponding group T⊥t is equal to T⊥. Furthermore there
are eight one-dimensional cones corresponding to half-lines, more precisely for each
i one or the other half of H0

i . Their corresponding group is (H0
i + Γ)/Δ. Finally

there is the zero-dimensional cone Co = {0} whose group is Γ/Δ = Z2.

The product on T can now be described geometrically by means of the associ-

ated cones. If C
(2)
1 is a two-dimensional cone and C

(∗)
2 any other cone we have the

left domination rule C
(2)
1 C

(∗)
2 = C

(2)
1 . If C

(1)
1 is a one-dimensional cone and C

(2)
2 a

two-dimensional one then the result is the two-dimensional cone C
(1)
1 C

(2)
2 = C

(2)
3

which can be described as “bringing C
(2)
2 alongside”: C

(1)
1 is a half-line and C

(2)
2

an open cone which is on a distinguished side of the line to which the half-line

belongs. C
(2)
3 is then the open cone which is on the same side as C

(2)
2 and moreover

contains C
(1)
1 in its boundary. Almost the same sort of rule applies to the product

of two one-dimensional cones C
(1)
1 and C

(1)
2 . If these correspond to half-lines which

are not parallel then C
(1)
1 C

(1)
2 = C

(2)
3 where C

(2)
3 is the open cone which is on the

same side of C
(1)
1 as C

(2)
1 and contains C

(1)
1 in its boundary. If however C

(1)
1 and

C
(1)
2 are parallel then the left domination rule applies: C

(1)
1 C

(1)
2 = C

(1)
1 . Finally,

there is only one cone of dimension 0, this cone corresponds to the unit.

As we have already mentionned, the transformation cones are all disjoint.
But the inclusion of a cone in the (Euclidean) closure of another cone has an
algebraic interpretation. Indeed, if Ct ⊂ Ct′ then t and t′ satisfy tt′ = t′t = t′

which corresponds exactly to the definition of the natural order on the set of
idempotents of a semigroup: t ≥ t′ whenever tt′ = t′t = t′.

The action of E on Ξ is more complicated, as the second coordinate depends
on the point type. But it simplifies in the particular case of an idempotent as
follows: ([0], t) · (ξ, p) = (ξ, p′) with dom p′ = dom p and

p′(i) =

{
t(i) if t(i) �= 0
p(i) if t(i) = 0

.

This can again be geometrically described in terms of the associated cones. The
action of t is like “bringing the point cone along”: the point cone Cp′ is the cone
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which has the same point type as p, contains the cone Ct in its closure, and, pro-
vided this does not specify it uniquely, lies on the same side as Cp w.r.t. the vector
space spanned by Ct. In particular, point type∞ is invariant under the action of a
transformation type. The effect of the action of the idempotent ([0], t) of the Ellis
semigroup on the tiling corresponding to (ξ, p) is thus as follows: If the tiling is
non-singular then it acts like the identity. If the tiling is singular then the action
is to flip the worms into (or to leave them in) the position which is encoded by p′.

If the acting element (ξ, t) is not an idempotent, then things may become
more complicated, except if ξ ∈ Γ in which case the point type of ξ + ξ′ agrees
again with that of ξ′ and we have the combination of a translation of the tiling
with a flip of worms. Otherwise the formula for the action given in Theorem 5.9
takes into account that the domain of p′ coincides with the point type of ξ + ξ′

and tilings may be mapped to tilings with distinct worm configurations.
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[26] J.-B. Gouéré, Quasicrystals and almost periodicity, Commun. Math. Phys. 255
(2005), 655–681.
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Linearly Repetitive Delone Sets
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Abstract. Linearly repetitive Delone sets are the simplest aperiodic repetitive
Delone sets of the Euclidean space, e.g. any self similar Delone set is linearly
repetitive. We present here some combinatorial, ergodic and mixing properties
of their associated dynamical systems. We also give a characterization of such
sets via the patch frequencies. Finally, we explain why a linearly repetitive
Delone set is the image of a lattice by a bi-Lipschitz map.
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1. History and motivations

The notion of linearly recurrent subshift has been introduced in [Du, DHS] to study
the relations between substitutive dynamical systems and stationary dimension
groups. In an independent way, the similar notion of linearly repetitive Delone
sets of the Euclidean space Rd appears in [LP1]. For a Delone set X of Rd, the
repetitivity function MX(R) is the least M (possibly infinite) such that every closed
ball B of radius M intersected with X contains a translated copy of any patch
with diameter smaller than 2R.

A Delone set X is said linearly repetitive if there exists a constant L such
that MX(R) < LR for all R > 0. Observe that we can assume that the constant L
is greater than 1. According to the following theorem, the slowest growth for the
repetitivity function of an aperiodic Delone set is linear.

Theorem 1 ([LP1, Thm. 2.3]). Let d ≥ 1. There exists a constant c(d) > 0 such
that for any Delone set X of Rd such that

MX(R) < c(d)R for some R > 0,

then X has a non-zero period.

Financial support from the ANR SUBTILE 0879. This work is part of the program MathAmSud
DYSTIL 12Math-02.
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Even more, if for some R, MX(R) < 4
3R, then the Delone set X is a crystal,

i.e., has d independent periods ([LP1, Thm. 2.2 ]).
The classical examples of aperiodic Delone systems, e.g., the ones arising

from substitution, are linearly repetitive.

Lemma 2 ([So2, Lem. 2.3]). A primitive self similar tiling is linearly repetitive.

In many senses that we will not specify, the family of linearly repetitive Delone
sets is small inside the family of all the Delone sets of the Euclidean space Rd. For
instance, in the class of Sturmian subshifts, several authors [MH, Du1, Du, LP2]
show the following result.

Proposition 3. The Sturmian subshift associated to an irrational number α is lin-
early recurrent if and only if the coefficients of the continued fraction of α are
bounded.

Let us recall that for the standard topology, the set of numbers with bounded
continued fraction are badly approximable by rational numbers. It is known that
they form a Baire meager set, with 0 Lebesgue measure but with Hausdorff di-
mension 1.

As we shall see, the linearly repetitive Delone sets possess many rigid prop-
erties. In the next section we present some combinatorial properties of these sets.
For instance, their complexity appears to be the slowest possible among all the
aperiodic repetitive Delone sets. Section 3 is devoted to the structure of the hull
of an aperiodic linearly repetitive Delone set. A tower system with uniform bound
is described. We deduce from this the main properties of the system. We focus
in Section 4 on the ergodic properties of dynamical systems associated to linearly
repetitive Delone sets. They are strictly ergodic (i.e., each patch appears with a
frequency). But they are not wild since they are never measurably mixing. They
satisfy also a subbaditive ergodic theorem. We present a characterization of the
linear repetitivity by using a bound on the frequencies of the occurrences of the
patches. The dynamical factors of these systems are studied in Section 5. They
admit as factors just a finite number of non conjugate aperiodic Delone systems.
We give also a characterization of their continuous and measurable eigenvalues by
studying cohomological equations. The last section concerns the deformation of
linearly repetitive Delone sets: each one is the image through a Lipschitz map of
a lattice in Rd.

2. Combinatorial properties

In this section we give the basic definitions and combinatorial properties concerning
linearly repetitive Delone sets of Rd. Most of these properties are obvious for self-
similar tilings. Recall that a set X ⊂ Rd, with d ≥ 1, is a (rX , RX)-Delone set (or
a Delone set for short) if it is a discrete subset of the Euclidean space Rd, with
the following properties:
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1. Uniform discreteness: each open ball of radius rX > 0 in Rd contains at most
one point of X .

2. Relative density: each closed ball of radius RX in Rd contains at least one
point of X .

A classical example is given by the lattice Zd of points with integer coefficients is
a Delone set. But notice also that the image of any Delone set by a bi-Lipschitz
map of Rd provides a Delone set. We denote by BR(x) the Euclidean closed ball
of radius R > 0 centered at the point x ∈ Rd.

2.1. Return vectors to a patch

Let X be a (rX , RX)-Delone set. A R-patch is a set of the kind P = X ∩ BR(x)
centered at some point x ∈ X and for some R > RX

1. In the rest of this paper
we assume that all the Delone sets have finite local complexity, that is for any real
R > 0 there is a finite number of R-patches, up to translations. This is actually
equivalent to the fact X −X is a discrete subset of Rd [La].

For a R-patch P, we define the set

RP(X) = {v ∈ Rd : P+ v is a R-patch of X}.
It is called the set of return vectors to P. For a fixed center xP of P, any point in
RP(X) + xP =: XP is an occurrence of the patch P.

Observe that the null vector 0 always belongs to RP(X). It is straightforward
to check that XP is a Delone set when X is linearly repetitive (see definition in
the introduction). Furthermore, XP has finite local complexity because XP−XP ⊂
X −X .

When X is aperiodic and linearly repetitive with constant L, there are uni-
form bounds on the constants rXP

and RXP
associated to the Delone set XP. The

following lemma shows that two occurrences of a patch can not be too close. The
proof can be found in [Le, Lem. 2.1] and in [So2, Du1].

Lemma 4. Let X be a linearly repetitive aperiodic Delone set with constant L > 1.
Then, for every patch P = X ∩BR(x) with x ∈ X, R > 0, we have

R

L + 1
≤ rXP

≤ RXP
≤ LR.

Proof. By contradiction: let us assume there exist x �= y ∈ X with

(X ∩BR(x)) − x = X ∩BR(y)− y

and

rX ≤ ‖x− y‖ <
R

(L + 1)
.

Then for any point z′ in BR(x)∩X , we have z′+(y− x) ∈ X . For any z ∈ X , the
set X ∩BR(x) contains a translated copy centered in z′ ∈ X ∩BR(x) of the patch
B R

L+1
(z) ∩X . Thus z′ + (y − x) ∈ X ∩B R

L+1
(z′) and finally z + (y − x) ∈ X and

1Note: a given patch may be defined by several centers x and radius R. So when we consider a
R-patch P, we choose a center xP and a radius R.
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so X + (y − x) ⊂ X . In a similar way we obtain X + (x − y) ⊂ X , so that finally
we get X + x− y = X contradicting the aperiodicity of X . �

This repulsion property on the occurrences of patches has several conse-
quences on the combinatorics of the Delone set X .

First of all on the complexity. Let us denote NX(R) the number of different
R-patches BR(x) ∩ X with x ∈ X , up to translation. Since any ball of radius
MX(R) contains the centers of occurrences of any R-patch, we easily deduce that

NX(R)
1
d = O(MX(R)) as R →∞ (see [LP2]).

Lemma 5 ([Le, Lem. 2.2]). Let X be an aperiodic linearly repetitive Delone set.
Then

lim inf
R→+∞

NX(R)

Rd
> 0.

From this, we conclude that for an aperiodic linearly repetitive Delone set
MX(R) = O(NX(R)

1
d ) as R →∞.

Proof. As X is relatively dense, there exist constants λ1 > 0 and R1 > 0 such that

�(X ∩BR(x)) ≥ λ1R
d for any x ∈ X, R ≥ R1.

By the previous lemma all the patches (X −x)∩BR(0) for x ∈ X ∩B R
3(L+1)

(0) are

pairwise different. Thus for any R ≥ 3(L + 1)R1, we have

NX(R) ≥ �(X ∩B R
3(L+1)

(0)) ≥ λ1

(
R

3(L + 1)

)d
,

that gives us the result. �

Another property is on the hierarchical structure of the linearly repetitive
Delone sets, that is quite simple: for any size R > 0, it is possible to decompose the
Delone set into big patches (each one containing a R-patch), so that the number of
these patches, up to translations, is independent of the size R. To be more precise,
we need the notion of Voronöı cell of a patch. For a (rX , RX)-Delone set X , the
Voronöı cell Vx of a point x ∈ X is the set

Vx =
{
y ∈ Rd : ‖y − x‖ ≤ ‖y − x′‖, ∀x′ ∈ X

}
.

It is then direct to check that any Voronöı cell Vx is a convex polyhedra, its
diameter is smaller or equal to 2RX and it contains the ball B rX

2
(x). Moreover

when the Delone set X is of finite local complexity, the collection of Voronöı cells
{Vx}x∈X forms a tiling of Rd of finite local complexity.

For a patch R-patch P = BR(xP)∩X of a repetitive Delone set X , we denote
by VP,x the Voronöı cell associated to the Delone set XP and an occurrence x ∈ XP.
Notice that the Voronöı cell associated to the set of return vectors RP(X) and a
return vector v ∈ RP(X), is the Voronöı cell of the occurrence xP + v ∈ XP

translated by the vector −xP.
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It follows by Lemma 4 that for an aperiodic linearly repetitive Delone set
with constant L, for any R-patch P,

diamVP,x ≤ 2LR, B R
2(L+1)

(x) ⊂ VP,x, for any x ∈ XP. (2.1)

Lemma 6 ([CDP, Lem. 11]). Let X be an aperiodic linearly repetitive Delone set
with constant L. There exists an explicit positive constant c(L) such that for every
R > 0 and every R-patch P = X ∩ BR(x), the collection {X ∩ VP,x : x ∈ XP}
contains at most c(L) elements up to translation.

Observe here that the bound, explicit in the proof, does not depend on the
combinatorics of X but just on the constant of repetitivity.

Proof. Let us consider B the union of Voronöı cells VP,x, x ∈ XP that intersects
the ball BL2R(0). We have then

BL2R(0) ⊂ B ⊂ BL2R+2LR(0).

By linear repetitivity, B ∩X contains a translated copy of any patch of the kind
X ∩ VP,x with x ∈ XP. Since any Voronöı cell contains a ball of radius R

2(L+1) , the

number of patches in B ∩X of the kind X ∩ VP,x with x ∈ XP is smaller than

volBRL(L+2)(0)

volB R
2(L+1)

(0)
≤ (2L(L + 2)2)d = c(L). �

Even stronger, the next lemma gives for an aperiodic linearly repetitive De-
lone set, a uniform bound (in R) on the number of occurrences of a patch inside
a ball of radius KR.

Lemma 7. Let X be an aperiodic linearly repetitive Delone set with constant L ≥ 1,
and let K ≥ L. Then for any R-patch P of X and any point y ∈ Rd,

�{v ∈ Rd; P− v ⊂ BKR(y) ∩X} ≤ 12dKdLd.

Proof. Let B be the union of all the Voronöı cells VP,x, x ∈ XP that intersect the
ball BKR(y). It follows that

B ⊂ BKR+2LR(y).

By Lemma 4, the sets B R
2(L+1)

(z), where the points z ∈ BKR(y) ∩ XP are occur-

rences of P, are pairwise disjoint and are included in B. Then it follows that

�{v ∈ Rd; P− v ⊂ B} ≤ vol(B)

volB R
2(L+1)

(0)
≤ 2d(K + 2L)d(L + 1)d,

that gives us the result. �

Here again, observe that the bound depends just on the repetitivity constant.
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3. Structure of the hull of a linearly repetitive Delone set

3.1. Background on solenoids, boxes

In this section, we will see the specific geometrical structure of the associated hull
Ω of an aperiodic repetitive Delone set. We recall here, from [BBG, BG], the local
structure of this space.

3.1.1. Local transversals and return vectors. Let (Ω,Rd) be an aperiodic minimal
Delone system. The canonical transversal of Ω is the set Ω0 composed of all Delone
sets in Ω that contain the origin 0. This terminology is motivated by the fact that
if Y is in Ω0, then every small translation of Y will not be in Ω0. A cylinder in Ω
is a set of the form

CY,S := {Z ∈ Ω | Z ∩BS(0) = Y ∩BS(0)},
where Y ∈ Ω and S > 0 are such that Y ∩ BS(0) �= ∅. The next lemma is well
known.

Proposition 8. Every cylinder in Ω is a Cantor set. Moreover, a basis for the
topology of Ω is given by sets of the form

{Z − v | Z ∈ CY,S , v ∈ Bε(0)}.
In particular, the canonical transversal Ω0 is a Cantor set.

A local transversal in Ω is a clopen (both closed and open) subset of some
cylinder in Ω. By Proposition 8, a local transversal C is a Cantor set. This implies
that the recognition radius defined as

rec(C) := inf{S > 0 | CY,S ⊆ C for all Y ∈ C}
is finite. The motivation to define rec(C) is the following: suppose that a Delone
set Y ∈ Ω is given and we want to check if Y belongs to C. Then it suffices to look
whether the patch Y ∩Brec(C)(0) is equivalent to Yi ∩Brec(C)(0) for some Yi. Of
course, if C = CY,S , then its recognition radius is smaller than S. Proposition 8
implies also that the collection

{CY,S | Y ∈ C, S > rec(C)}
forms a basis for its topology. Indeed, since C is a Cantor set, it is easy to find a
finite set {Y1, . . . , Ym} in C such that

C =

m⋃
i=1

CYi,rec(C).

Given a local transversal C and D ⊆ Rd, the following notation will be used
throughout the paper:

C[D] = {Y − x | Y ∈ C, x ∈ D}.
As we define a return vector to a patch, one can define the set of return vectors to
a local transversal. Given a local transversal C and a Delone set Y ∈ Ω, we define

RC(Y ) = {x ∈ Rd | Y − x ∈ C}.
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When Y belongs to C, we refer to RC(Y ) as the set of return vectors of Y to C.
The following lemma is standard (see, e.g., [C])

Lemma 9. Let C be a local transversal. Then for each Y ∈ C, the set of return
vectors RC(Y ) is a repetitive Delone set. Moreover, the following quantities

r(C) =
1

2
inf{‖x− y‖ x, y ∈ RC(Y ), x �= y}, and (3.1)

R(C) = inf{R > 0 RC(Y ) ∩BR(y) �= ∅ for all y ∈ Rd}, (3.2)

do not depend on the choice of Y in C.

3.1.2. Solenoids and boxes. In this section, we recall some definitions and results
of [BBG, BG] that will be used throughout the paper. The hull Ω is locally home-
omorphic to the product of a Cantor set and Rd. Moreover, there exists an open
cover {Ui}ni=1 of Ω such that for each i ∈ {1, . . . , n}, there are Yi ∈ Ω, Si > 0
and open sets Di ⊆ Rd such that Ui = CYi,Si [Di] and the map hi : Di × Ci → Ui
defined by hi(t, Z) = Z − t is a homeomorphism. Furthermore, there are vectors
vi,j ∈ Rd (depending only on i and j) such that the transition maps h−1i ◦ hj
satisfy

h−1i ◦ hj(t, Z) = (t− vi,j , Z − vi,j) (3.3)

at all points (t, Z) where the composition is defined. Following [BG], we call such
a cover a Rd-solenoid’s atlas. It induces, among others structures, a laminated
structure as follows. First, slices are defined as sets of the form hi(Di × {Z}).
Equation (3.3) implies that slices are mapped onto slices. Thus, the leaves of
Ω are defined as the smallest connected subsets that contain all the slices they
intersect. It is not difficult to check, using (3.3), that the leaves coincide with the
orbits of Ω.

A box in Ω is a set of the form B := C[D] where C is a local transversal
in Ω, and D ⊆ Rd is an open set such that the map from D × C to B given by
(x, Y ) 	→ Y − x is a homeomorphism. This is true, for instance, if D ⊆ Br(C)(0)
(cf. (3.1)).

3.2. Tower systems

In this section we review the concepts of box decompositions and tower systems
introduced in [BBG, BG]. We focus on linearly repetitive Delone sets. The main
results of this section can be found in [AC]. For all this section, Ω denotes the hull
of an aperiodic repetitive Delone set X .

3.2.1. Box decompositions and derived tilings. A box decomposition is a finite and
pairwise-disjoint collection of boxes B = {B1, . . . , Bt} in Ω such that the closures
of the boxes in B cover the hull. For simplicity, we always write Bi = Ci[Di], where
Ci and Di are fixed and Ci is contained in Bi. In particular, the set Di contains
0. We refer to Ci as the base of Bi. In this way, we call the union of all Ci the base
of B. The reasoning for fixing a local transversal in each Bi comes from the fact
that box decompositions can be constructed in a canonical way starting from the
set RC(Y ) of return vectors to a given local transversal C [BBG].
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An alternative way of understanding a box decomposition is given by a family
of tilings, known as derived tilings, which are constructed by intersecting the box
decomposition with the orbit of each Delone set in the hull.

Let us start by recalling some basic definitions about tilings. A tile T in Rd is
a compact set that is the closure of its interior (not necessarily connected). A tiling
T of Rd is a countable collection of tiles that cover Rd and have pairwise disjoint
interiors. Tiles can be decorated : they may have a color and/or be punctured at an
interior point. Formally, this means that decorated tiles are tuples (T, i, x), where
T is a tile, i lies in a finite set of colors, and x belongs to the interior of T . Two
tiles have the same type if they differ by a translation. If the tiles are punctured,
then the translation must also send one puncture to the other, and when they are
colored, they must have the same color.

To construct a derived tiling, the idea is to read the intersection of the boxes
in the box decomposition with the orbit of a fixed Delone set in the hull. In the
sequel, it will be convenient to make the following construction. Let {Ci}ti=1 be a
collection of local transversals and {Di}ti=1 be a collection of bounded open subsets
of Rd containing 0. Define B = {Ci[Di]}ti=1 and observe that the sets in B are not
necessarily boxes of Ω. For each Y ∈ Ω, define the (decorated) derived collection
of B at Y by

TB(Y ) := {(Di + v, i, v) | i ∈ {1, . . . , t}, v ∈ RCi(Y )}.
The following lemma gives the relation between box decomposition and tilings.

Lemma 10 ([AC, Lem. 3.1 ]). Let B = {Ci[Di]}ti=1, where the Ci’s are local
transversals and the Di’s are open bounded subsets of Rd that contain 0. Then, B
is a box decomposition if and only if TB(Y ) is a tiling of Rd for every Y ∈ Ω. In
this case, we call TB(Y ) the derived tiling of B at Y .

Proof. It is easy to see that if B is a box decomposition, then TB(Y ) is a tiling for
every Y ∈ Ω. We now show the converse. For convenience, set C = ∪iCi. Fix Y ∈ Ω
and suppose there are i, j ∈ {1, . . . , t}, Y1 ∈ Ci, Y2 ∈ Cj , x1 ∈ Di and x2 ∈ Dj

such that Y = Y1 − x1 = Y2 − x2. This implies that the tiles Di − x1 and Dj − x2

of TB(Y ) meet an interior point. Since TB(Y ) is a tiling, these tiles must coincide,
and hence i = j and x1 = x2. We conclude i the maps hi : Ci×Di → Ci[Di] given
by (Y, t) 	→ Y − t are one-to-one, and moreover their image are pairwise disjoint.
It is then straightforward to check that the maps hi are homeomorphims. �

3.2.2. Properly nested box decompositions. A box decomposition B′={C′i[D′i]}t
′
i=1

is zoomed out of another box decomposition B = {Cj[Dj ]}tj=1 if the following prop-
erties are satisfied:

(Z.1) If Y ∈ C′i is such that Y − x ∈ Cj − y for some x ∈ D′i and y ∈ Dj, then
C′i − x ⊆ Cj − y.

(Z.2) If x ∈ ∂D′i, then there exist j and y ∈ ∂Dj such that C′i − x ⊆ Cj − y.
(Z.3) For every box B′ in B′, there is a box B in B such that B ∩ B′ �= ∅ and

∂B ∩ ∂B′ = ∅.



Linearly Repetitive Delone Sets 203

For each i ∈ {1, . . . , t′} and j ∈ {1, . . . , t} define

Oi,j = {x ∈ D′i | C′i − x ⊆ Cj}. (3.4)

(Z.4) For each i ∈ {1, . . . , t′} and j ∈ {1, . . . , t},

D′i =
t⋃

j=1

⋃
x∈Oi,j

Dj + x,

where all the sets in the right-hand side of the equation have pairwise
disjoint interiors.

Observe that in the case that Dj is connected, then properties (Z.1) and (Z.2)
imply (Z.4).

Since we are considering the C′i’s and Cj ’s as the bases of the boxes, we ask
the following additional property to be satisfied:

(Z.5) The base of B′ is included in the base of B, that is, ∪iC′i ⊆ ∪jCj .
By (Z.4), we have that the tiling TB′(Y ) is a super-tiling of TB(Y ) in the sense
that each tile T in TB′(Y ) can be decomposed into a finite set of tiles of TB(Y ).
By (Z.3), one of these tiles is included in the interior of T .

Lemma 11. For every j ∈ {1, . . . , t} we have

Cj =
t′⋃
i=1

⋃
x∈Oi,j

C′i − x.

Proof. By the definition of Oi,j and (Z.1), it suffices to show that every Y ∈ Cj
belongs to the interior of some box C′i[D

′
i]. Suppose not, then Y ∈ C′i−x with x ∈

∂D′i for some i since B′ is a box decomposition. Moreover, by (Z.2) we deduce that
Y must be in the boundary of some box Bj′ in B, which gives a contradiction. �

3.3. Tower systems of linearly repetitive Delone system

A tower system is a sequence of box decompositions (Bn)n∈N such that Bn+1 is
zoomed out of Bn for all n ∈ N. An iteration of the construction of zoomed out
box decomposition gives the following result.

Theorem 12 ([BBG]). The hull of any aperiodic minimal Delone set possesses a
tower system.

We have explained in Section 3.2.1 how to construct a box decomposition
and in Section 3.2.2 the notion of zoomed out box decomposition. In this section,
we specify the construction of a tower system to the linear repetitive case.

Fot a decreasing sequence (Cn)n∈N of local transversals with diameter going
to 0, and a tower system (Bn)n, we say that (Bn)n is adapted to (Cn)n, if for any
n ∈ N we have Bn = {Cn,i[Dn,i]}tni=1 such that Cn = ∪iCn,i and tn is a positive
integer. In this case, for each n ∈ N∗ we define, as in (3.4),

O
(n)
i,j = {x ∈ Dn,i | Cn,i − x ⊆ Cn−1,j} (3.5)
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and

m
(n)
i,j = �O

(n)
i,j

for every i ∈ {1, . . . , tn} and j ∈ {1, . . . , tn−1}. The transition matrix of level n
(associated to the tower system (Bn)n∈N) is then defined as the matrix Mn =

(m
(n)
i,j )i,j , so Mn has size tn × tn−1. From (Z.4), we get

vol(Dn,i) =

tn−1∑
j=1

m
(n)
i,j vol(Dn−1,j). (3.6)

Given a box decomposition B = {Ci[Di]}ti=1, define its external and internal
radius by

Rext(B) = max
i∈{1,...,t}

inf{R > 0 : BR(0) ⊇ Di};

rint(B) = min
i∈{1,...,t}

sup{r > 0 : Br(0) ⊆ Di},

respectively. Define also rec(B) = maxi∈{1,...,t} rec(Ci).
With all theses definitions, we can state the following result for aperiodic

linearly repetitive Delone systems.

Theorem 13 ([AC, Thm. 3.4]). Let X be an aperiodic linearly repetitive Delone
set with constant L > 1 and 0 ∈ X. Given K ≥ 6L(L + 1)2 and s0 > 0, set
sn := Kns0 and Cn := CX,sn for all n ∈ N. Then, there exists a tower system
(Bn)n of Ω adapted to (Cn)n∈N that satisfies the following additional properties:

i) for every n ≥ 0, Cn+1 ⊆ Cn,1;
ii) there exist constants

K1 :=
1

2(L + 1)
− L

K − 1
and K2 :=

LK

K − 1
,

which satisfy 0 < K1 < 1 < K2, such that for every n ∈ N we have

K1sn ≤ rint(Bn) < Rext(Bn) ≤ K2sn; (3.7)

iii) for every n ∈ N,

rec(Bn) ≤ (2L+ 1)sn. (3.8)

As an application of this result, we have the nice following structure.

Theorem 14. Let X be an aperiodic linearly repetitive Delone set. Then, the tower
system of Ω obtained in Theorem 13 satisfies the following:

1. For every n ∈ N∗, the matrix Mn = (m
(n)
i,j )i,j has strictly positive coefficients;

2. The matrices {Mn}n∈N∗ are uniformly bounded in size and norm.

In the self-similar case, the family of matrices {Mn} can be reduced to only
one element.
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Proof. Take the notations of Theorem 13. Indeed, by the definition of linearl repeti-
tivity, we have MX(rec(Bn)) ≤ L rec(Bn) for all n ∈ N∗. Combining this with (3.8),
the left-hand inequality of (3.7) and the definition of sn we get

MX(rec(Bn)) ≤
L(2L+ 1)

KK1
rint(Bn+1).

Since K ≥ 6L(L + 1)2, it follows that L(2L + 1) ≤ K1K and we obtain for all
n ≥ 0

MX(rec(Bn)) ≤ rint(Bn+1).

Thus any rec(Bn)-patch occurs in a set Dn+1,i ∩ Y for any Y ∈ Cn+1,i, and the

coefficients m
(n)
i,j are positive. Moreover, since Dn,i is included in a ball of radius

Rext(Bn−1) and each Dn−1,j contains a ball of radius rint(Bn−1), we deduce from
(3.6) that

tn−1∑
j=1

m
(n)
i,j ≤

(
Rext(Bn−1)
rint(Bn−1)

)d
≤
(

K
K2

K1

)d
.

So we get that the matrices {Mn}n are uniformly bounded. �

4. Ergodic properties of linearly repetitive system

4.1. Background on transverse invariant measure

A Borel measure μ on the hull Ω of a repetitive Delone set is translation invariant
if μ(B − v) = μ(B) for every Borel set B and v ∈ Rd. It is well known that any
continuous Rd action on a compact space admits an invariant measure.

Let C be a local transversal and 0 < r < r(C). Each translation invariant
measure μ induces a measure ν on C (see [Gh] for the general construction): given
a Borel subset V of C, its transverse measure is defined by

ν(V ) =
μ(V [Br(0)])

vol(Br(0))
,

where vol denotes the Euclidean volume in Rd. This gives a measure on each C,
which does not depend on small r. The collection of all measures defined in this
way is called the transverse invariant measure induced by μ. It is invariant in the
sense that if V is a Borel subset of C and x ∈ Rd is such that V − x is a Borel
subset of another local transversal C′, then ν(V − x) = ν(V ). Conversely, the
measure μ of any box B written as C[D] may be computed by the equation

μ(C[D]) = vol(D)× ν(C).

For a tower system (Bn)n≥0 where Bn = {Cn,i[Dn,i]}tni=1 from (Z.4), Lemma
11 and the definition of transverse invariant measures, we get

ν(Cn−1,j) =
tn∑
i=1

ν(Cn,i)m
(n)
i,j . (4.1)
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Fix n ∈ N. From the relation μ(Cn,i[Dn,i]) = vol(Dn,i)ν(Cn,i) and the fact that
Bn is a box decomposition, it follows that

tn∑
j=1

vol(Dn,j)ν(Cn,j) = 1. (4.2)

4.2. Unique ergodicity and speed of convergence

When the system (Ω,Rd) has a unique translation invariant probability measure,
the system is called uniquely ergodic. The unique ergodicity implies combinatorial
properties for the Delone set. The dynamical system (Ω,Rd) is uniquely ergodic, if
and only if any Delone set X ∈ Ω has uniform patch frequencies, i.e., any patch P

occurs with a positive frequency; more precisely: Let XP be the set of occurrences
of the patch P in X , and let (DN )N be a nested sequence of d-cube DN of side N ,
then the following limit exists.

lim
N→∞

�XP ∩DN

vol(DN )
=: freq(P).

The number freq(P) is called the frequency of P. Notice the difference with the
standard Birkhoff ergodic Theorem that asserts a convergence only for almost all
Delone set of the hull.

Theorem 15. Let X be an aperiodic linearly repetitive Delone set of Rd and Ω its
hull. Then the system (Ω,Rd) is uniquely ergodic.

The original proof is due to Lagarias and Pleasants in [LP2]. By using the
identification between a transverse invariant measure and the inverse limit of top
homologies of branched manifolds, the authors in [BBG] show that in the case
described in Theorem 14, the system is uniquely ergodic. This proof is independent
of the original one.

Actually for linearly repetitive system, we can be much more precise and give
informations on the speed of convergence of the limit. For instance the following is a
stronger result of Lagarias and Pleasants [LP2], that implies the unique ergodicity.

Theorem 16 ([LP2]). Let X be a linearly repetitive Delone set of Rd. There exists
a δ > 0 such that, for every patch P of X, there is a number freq(P) so that∣∣∣∣XP ∩DomN

vol(DomN )
− freq(P)

∣∣∣∣ = O(N−δ),

where DomN is either a d-cube with side N or a ball of radius N . The O-constant
may depend on the patch P.

In [AC], a proof of this theorem is given using the structure Theorem 14 and
relating the constant δ with the matrices Mn by the following way

δ = d− logK

(
1− sup

n
||Mn||−11 ||Mn+1||−11

)
,

where logK denotes the logarithm in base K.
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4.3. Non-mixing properties

A translation invariant probability measure μ on a the hull Ω of a Delone set is
said to be measurably strongly mixing if for any Borel sets A,B in Ω,

lim
‖v‖→∞

μ((A − v) ∩B) = μ(A)μ(B). (4.3)

In this section, we show the following proposition which is analogous to the-
orem of Dekking and Keane [DK] for substitutive subshifts.

Proposition 17 ([C0]). Let X be a linearly repetitive Delone set of Rd and Ω its
hull. Then the system (Ω,Rd) is not measurably strongly mixing.

The proof’s strategy is the same as for self-similar tiling in [So1] or for linear re-
current Cantor system in [CDHM]. But we need sharp estimates on the transverse
measures of clopen sets, provided by Theorem 13.

Assume that the Delone set X is aperiodic and linearly repetitive with con-
stant L. Let μ be the unique translation invariant probability measure on the hull
Ω, and let ν be the associated transverse invariant measure. Let (Bn)n≥0 be the

tower system given by Theorem 13 where for each integer n, Bn = {Cn,i[Dn,i]}tni=1.

Lemma 18. For the tower system of Ω given by Theorem 13, we have

inf
n≥1

1≤i≤n

vol(Dn,i)ν(Cn,i) >

(
K1

KK2

)d
=: c > 0.

Proof. With equation (4.1), for any 1 ≤ i ≤ tn, we get

ν(Cn,i) ≥
tn+1∑
j=1

ν(Cn+1,j). (4.4)

By definition, for any 1 ≤ i ≤ tn, the domain Dn,i contains a ball or radius rint(Bn)
and for 1 ≤ j ≤ tn+1 the domain Dn+1,j is included in a ball of radius Rext(Bn+1).
Thus, as in the proof of Theorem 14, we deduce from Theorem 13

vol(Dn+1,j)

vol(Dn,i)
≤
(

Rext(Bn−1)
rint(Bn−1)

)d
≤
(

K
K2

K1

)d
= c−1. (4.5)

Thus it follows from (4.2), that for any n ≥ 0 and 1 ≤ i ≤ tn

vol(Dn,i)ν(Cn,i) ≥
tn+1∑
j=1

cvol(Dn+1,j)ν(Cn+1,j) = c. �

For the tower system (Bn)n, we define as in Definition 3.4, for integers p ≥
n > 0

O
(p,n)
i,j := {x ∈ Dp,i | Cp,i − x ⊆ Cn−1,j}, for 1 ≤ i ≤ tp; 1 ≤ j ≤ tn−1 (4.6)

and

m
(p,n)
i,j = �O

(p,n)
i,j .
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Then it is straightforward to check that the tp × tn−1 matrix satisfies

(m
(p,n)
i,j )i,j = Mp · · ·Mn.

Lemma 19. For the tower system of Ω given by Theorem 13, we have for n ≥ 2,
and 1 ≤ j ≤ tn

lim infp→+∞ min
1≤i≤tp

m
(p,n)
i,j

vol(Di,p)
≥ ν(Cn−1,j)

(
K1

K2

)d
c.

Proof. Let X ∈ ∩n≥0C(n). By the unique ergodicity, we have

lim
R→+∞

1

vol(BR(0))
�{BR(0) ∩RCn,j (X)} = ν(Cn,j). (4.7)

Since for every p > n, the set Cp ⊂ Cp−1,1, we get for any 1 ≤ i ≤ tp,

m
(p,n)
i,j ≥ m

(p−1,n)
1,j ≥ �{Dp−1,j ∩RCn−1,j (X)}.

Hence we conclude by this inequality and inequality (4.5) that

lim infp→+∞ min
1≤i≤tp

m
(p,n)
i,j

vol(Dp,i)
≥lim infp→+∞

�{Dp−1,j ∩RCn−1,j (X)}
vol(Dp,i)

≥c lim infp
�{Dp−1,j ∩RCn−1,j (X)}

vol(Dp−1,j)

≥c lim
p

�{Brint(Bp−1)(0) ∩RCn−1,j (X)}
vol(BK2

K1
rint(Bp−1)

(0))
,

since Dp−1,j contains the ball Brint(Bp−1)(0) and is contained in the ball

BRext(Bp−1)(0) ⊂ BK2
K1

rint(Bp−1)
(0).

We obtain the conclusion by the equality (4.7). �

Now we are able to prove Proposition 17.

Proof of Proposition 17. Let n be an integer such that ν(Cn) <
(
K1

K2

)d
c2. For

p ≥ n, Let Fp,1 ⊂ Rd be the set of vector v such that there exists a 1 ≤ j ≤ tp
satisfying Cp,1−v∩Cp,j �= ∅ and Dp,j−v∩Dp,1 �= ∅. Let C̃(n, v) = (Cn,1−v)∩Cn,1.
We will show that

lim infp→∞ inf
v∈Fp,1

ν(C̃(n, v)) > ν(Cn,1)
2

which implies that the system (Ω,Rd) is not strongly mixing.

For x ∈ O
(p,n+1)
1,1 = {x ∈ Dp,1 | Cp,1 − x ⊆ Cn,1}, and v ∈ Fp,1, we have by (Z.1)

and by i) in Theorem 13

Cp+1,1 − (v + x) ⊂ Cp+1 − x ⊂ Cp,1 − x ⊂ Cn,1.
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Thus for any x ∈ O
(p,n+1)
1,1 and v ∈ Fp,1 we get Cp+1,1 − x ⊂ C̃(n, v). Then

ν(C̃(n, v)) ≥ �O
(p,n+1)
1,1 ν(Cp+1,1) = m

(p,n+1)
1,1 ν(Cp+1,1).

By Lemma 19, we obtain

lim infp→∞ inf
v∈Fp,1

ν(C̃(n, v))

≥ lim infp→∞
m

(p,n+1)
1,1

vol(D1,p)
ν(Cp+1,1) vol(D1,p)

≥ ν(Cn,1)c

(
K1

K2

)d
lim infp→∞ν(Cp+1,1) vol(D1,p)

≥ ν(Cn,1)c

(
K1

K2

)d
lim infp→∞ν(Cp+1,1)vol(D1,p+1)c by inequality (4.5)

≥ ν(Cn,1)

(
K1

K2

)d
c2 > ν(Cn,1)

2. �

4.4. Subadditive ergodic theorem

In Section 4.2 we recall that the linearly repetitive systems are uniquely ergodic.
Actually such systems satisfy also a subadditive ergodic theorem. Let B(Rd) de-
notes the family of bounded subsets in Rd. A real-valued function F : B(Rd)→ R
is called subadditive if

F (Q1 ∪Q2) ≤ F (Q1) + F (Q2)

for any disjoint sets Q1, Q2 ∈ B(Rd). For a Delone set X , the function F is called
X-invariant if

F (Q) = F (Q + t) whenever Q ∈ B(Rd) and t + (Q ∩X) = (t + Q) ∩X.

For instance, given a patch P of the Delone set X , the function B ∈ B(Rd) 	→
−�XP ∩ B where XP denotes the set of occurrences of the patches P in X , is a
subadditive X-invariant function.

Theorem 20 ([DL, BBL]). Let X be a linearly repetitive Delone set in Rd. Then X
satisfies the uniform ergodic theorem: i.e., for any X-invariant subadditive func-
tion F and any nested sequence (Dn)n of d-cubes with side-lengths going to infinity
as n goes to infinity, the following limit exists

lim
n→+∞

F (Dn)

vol(Dn)
,

and is independent of the sequence (Dn)n.

It is then easy to deduce from this result that the associated dynamical system
is uniquely ergodic. The converse is false, in [DL], the authors give an example of
a Sturmian sequence that does not satisfy the subadditive ergodic theorem. They
prove also a more stronger form of this theorem.
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The lower density ν(P) of a R-patch P is the quantity

ν(P) := lim infn→∞
�XP ∩Bn(0)

vol(Bn(0))
vol(BR(0)).

The results in [BBL] have this direct corollary.

Proposition 21. If X is a repetitive (rX , RX) Delone set verifying the uniform
subadditive ergodic theorem, then X satisfies positivity of weights, i.e.,

inf
P is an R-patch, R ≥ RX

ν(P) > 0.

Notice that in dimension 1, the positivity of weights property is sufficient to
ensure the unique ergodiciy (see [Bo]). Actually, one can deduce from Lemma 18
that a linearly repetitive Delone set satisfies the positivity of weights.

4.5. A characterization of linear repetitivity

In [Le02], D. Lenz characterizes the subshifts that admit a uniform subadditive
ergodic Theorem by uniform positivity of weights. This can be considered as an
averaged version of linear repetitivity. For Delone systems, it is shown in [Bes,
BBL] that the linear repetitivity is equivalent to positivity of weights plus some
balancedness of the shape of patterns. For a Voronöı cell V of a Delone set, let us
define:

rint := sup{r > 0;V contains a ball of radius r}.
Rext := inf{R > 0;V is contained in a ball of radius R}.

The distorsion of V is the constant λ(V ) := Rext(V )/rint(V ).

Theorem 22 ([BBL]). Let X be an aperiodic Delone set in Rd of finite type. Then
X is linearly repetitive if and only if for any R-patch P of X, R > 0: the set XP

of occurrences of P is a (rP, RP)-Delone set such that

(i) supP,x∈XP
λ(Vx) < +∞ where Vx denotes the Voronöı cell of x.

(ii) The Delone set X satisfies the positivity of weights (see Proposition 21).

One can find in [BBL] another similar equivalent condition to linear repeti-
tivity. Notice that in dimension d = 1, the distorsion of any compact Voronöı cell
is equal to 1. Thus the condition (ii) is equivalent to the linear repetitivity.

For an aperiodic linearly repetitive Delone set, the properties (i)–(ii) arise
from the properties recalled in Subsections 2.1 and 4.4.

Let us also mention in Chapter On the non commutative geometry for tilings,
a characterization of Sturmian sequences that are linearly repetitive by using met-
rics arising from the Connes distance.
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5. Factors of linearly repetitive system

A factor map between two Delone systems (Ω1,Rd) and (Ω2,Rd) is a continuous
surjective map π : Ω1 → Ω2 such that π(X − v) = π(X) − v, for every X ∈ Ω1

and v ∈ Rd.
In symbolic dynamics it is well known that topological factor maps between

subshifts are always given by sliding-block-codes. An equivalent notion for the
Delone system is the local derivability: i.e., there exists a constant s0 > 0 such that
for any radius R > 0, if two Delone sets X,Y ∈ Ω1 satisfy X ∩ BR+s0(0) = Y ∩
BR+s0(0) then π(X)∩BR(0) = π(Y )∩BR(0). However there are examples of factor
maps on Delone systems that are not sliding-block codes ([Pe, RS]). Nevertheless,
the following lemma shows that factor maps between Delone systems are not far
from being sliding-block-codes. Similar results can be found in [CD, CDP, HRS].

Lemma 23. Let X1 and X2 be two Delone sets. Suppose X1 has finite local com-
plexity and π : ΩX1 → ΩX2 is a factor map. Then, there exists a constant s0 > 0
such that for every ε > 0, there exists Rε > 0 satisfying the following: For any
R ≥ Rε, if X and X ′ in ΩX1 satisfy

X ∩BR+s0(0) = X ′ ∩BR+s0 (0),

then

(π(X)− v) ∩BR(0) = π(X ′) ∩BR(0)

for some v ∈ Bε(0).

Proof. The Delone set X2 has also finite local complexity because ΩX2 is compact.
Let r0 and R0 be positive constants such that X2 is a (r0, R0)-Delone set. Since
all the elements of ΩX2 are (r0, R0)-Delone sets, if two different points y1, y2 of
Rd satisfy (X − y1) ∩BR(a) = (X − y2) ∩ BR(a) for some X ∈ ΩX2 , a ∈ Rd and
R > R0, then ‖y1 − y2‖ ≥ r0

2 (for the details see [So1]).

Let 0 < δ0 < min{ r04 , 1
R0
}. Since π is uniformly continuous, there exists

s0 > 1 such that if X and X ′ in ΩX1 verify X ∩Bs0(0) = X ′ ∩Bs0(0) then

(π(X)− v) ∩B 1
δ0

(0) = π(X ′) ∩B 1
δ0

(0),

for some v ∈ Bδ0(0). Let 0 < ε < δ0. By uniform continuity of π, there exists
0 < δ < 1

s0
such that if X and X ′ in ΩX1 verify X ∩B 1

δ
(0) = X ′ ∩B 1

δ
(0) then

(π(X)− v) ∩B 1
ε
(0) = π(X ′) ∩B 1

ε
(0), (5.1)

for some v ∈ Bε(0). Now fix R ≥ Rε = 1
δ − s0, and let X and X ′ be two Delone

sets in ΩX1 satisfying

X ∩BR+s0(0) = X ′ ∩BR+s0 (0). (5.2)

Observe that X and X ′ satisfy (5.1), and (X − a) ∩ Bs0(0) = (X ′ − a) ∩ Bs0(0),
for every a in BR(0). The choice of s0 ensures that

(π(X)− a− t(a)) ∩B 1
δ0

(0) = (π(X ′)− a) ∩B 1
δ0

(0), (5.3)
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for some t(a) ∈ Bδ0(0). Let us prove the map a 	→ t(a) is locally constant. For
a ∈ BR(0), let 0 < sa < 1

δ0
−R0 be such that Bsa(a) ⊆ BR(0). Every a′ ∈ Bsa(0)

verifies B 1
δ0
−‖a′‖(−a′) ⊂ B 1

δ0

(0). Let a′ ∈ Bsa(0). This inclusion and (5.3) imply

(π(X)− a− a′− t(a))∩B 1
δ0
−‖a′‖(−a′) = (π(X ′)− a− a′)∩B 1

δ0
−‖a′‖(−a′). (5.4)

On the other hand, from the definition of the map a 	→ t(a) we deduce

(π(X)− a− a′ − t(a + a′)) ∩B 1
δ0

(0) = (π(X ′)− a− a′) ∩B 1
δ0

(0),

which implies

(π(X)−a−a′−t(a+a′))∩B 1
δ0
−‖a′‖(−a′) = (π(X ′)−a−a′)∩B 1

δ0
−‖a′‖(−a′). (5.5)

Since ‖t(a) − t(a + a′)‖ ≤ r0
2 , from equations (5.4), (5.5) and the remark of the

beginning of the proof we conclude t(a) = t(a+a′) for every a′ ∈ Bs(0). Therefore
the map a 	→ t(a) is constant on Bsa(a).

Furthermore, due to δ0 > ε and (5.2), Equation (5.1) implies there exists
v ∈ Bε(0) such that

(π(X)− v) ∩B 1
δ0

(0) = π(X ′) ∩B 1
δ0

(0). (5.6)

For a = 0, from (5.3) and (5.6) we have that t(0) = v or ‖v − t(0)‖ ≥ r0
2 .

Since ‖t(0)− v‖ ≤ δ0 + ε < 2δ0 < r0
2 , we conclude t(0) = v and then t(a) = v for

every a ∈ BR(0). This property together with (5.3) and (5.6) imply that

(π(X)− v) ∩BR(0) = π(X ′) ∩BR(0).

This conclude the proof. �

Lemma 24 ([CD, Lem. 3]). Let X1 and X2 be two Delone sets with finite local
complexity. If π : ΩX1 → ΩX2 is a factor map and X1 is linearly repetitive, then
(ΩX2 ,R

d) is linearly repetitive.

Proof. Let X ∈ ΩX1 . Consider 0 < ε < 1 and s0, R(ε) > 0 the positive constants
of Lemma 23 associated to ε. Since X is linearly repetitive with some constant
L, for any y ∈ Rd there exists v ∈ BL(R+s0)(y) such that (X − v) ∩ BR+s0(0) =
X ∩BR+s0 (0). From Lemma 23, there exists t ∈ Bε(0) such that (π(X)− v− t)∩
BR(0) = π(X) ∩ BR(0). This implies that any ball of radius L(R + s0) + 2ε in
π(X) contains a copy of π(X)∩BR(0). Since Ls0+2ε is smaller than the constant
Ls0 + 2, it follows that π(X) is linearly repetitive. �

Actually from the proofs of Lemmas 4 and 24 we can get a uniform bound
on the linear repetitivity constant of the factor system.

Lemma 25. Let X1 and X2 be two Delone sets with finite local complexity. If
π : ΩX1 → ΩX2 is a factor map and X1 is linearly repetitive with constant L > 1,
then there exists Rπ > 0 such that for every R > Rπ and every R-patch P of X2,
a copy of P appears in every ball of radius 3LR of X2 and any two occurrences of
P in X2 are at distance at least R/4L.
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5.1. Finite number of aperiodic Delone systems as factors

The aim of this section is to prove the following theorem that is a generalization
of a result in [Du1] in the context of subshifts.

Theorem 26 ([CDP, Thm. 12]). Let L > 1, d ≥ 1. There exists a constant N(L, d)
such that any linearly repetitive Delone set X of Rd with constant L, has at most
N(L, d) aperiodic Delone system factors of (ΩX ,Rd) up to conjugacy.

The bound N(L, d) is essentially due to the constants arising in Lemmas 6
and 7. The proof relies on a generalization of these lemmas and on the specific
structure of the factor maps for linearly repetitive Delone systems.

The next result says that factor maps between linearly repetitive Delone
systems are finite-to-one. A proof of that result in the context of subshifts and
Delone systems can be found in [Du1] and in [CDP, Prop. 5] respectively. Here we
include the proof in the case where the factor map is a sliding-block-code.

Proposition 27. Let X be a linearly repetitive Delone set with constant L. There
exists a constant C > 0 (depending only on L) such that If X ′ is an aperiodic
Delone set and π : (ΩX ,Rd)→ (ΩX′ ,Rd) is a factor map, then for every Y ∈ ΩX′ ,
the fiber π−1({Y }) contains at most C elements.

Proof. For simplicity we will assume that π is a sliding-block-code. That means
there exists s0 > 0 such that if X1 and X2 ∈ ΩX verify X1 ∩ BR+s0(0) = X2 ∩
BR+s0(0) for an R > 0, then π(X1)∩BR(0) = π(X2)∩BR(0). From Lemma 24 the
Delone set X ′ is linearly repetitive, and if R is sufficiently large, Lemma 25 implies
that for any x ∈ Rd a copy of the patch X ′ ∩BR(x) appears in X ′ ∩B3LR(y), for
every y ∈ Rd. Let Y ∈ ΩX′ and X1, . . . , Xn be different Delone sets in ∈ π−1({Y }).
Because these Delone sets are different, for every sufficiently large R, the patches
Xi ∩BR(0) are pairwise distinct. Linear repetitivity of X ensures the existence of
points v1, . . . , vn ∈ BLR(0) such that each X − vi∩BR(0) is a copy of Xi∩BR(0),
for every 1 ≤ i ≤ n. This implies that π(X) − vi ∩ BR−s0(0) = Y ∩ BR−s0(0).
From this and Lemma 25 we get that ‖vi − vj‖ ≥ R−s0

4L , from which we deduce
that n ≤ C, where C is a constant that depends only on L. �

The following proposition is a straightforward generalization of Lemma 21 in
[Du1]. A proof in our setting can be found in [CDP, Prop. 6]. Here we omit the
proof.

Proposition 28. Let (Ω,Rd) be a minimal Delone system and φ1 : (Ω,Rd) →
(Ω1,Rd), φ2 : (Ω,Rd) → (Ω2,Rd) be two factor maps. Suppose that (Ω2,Rd) is
non-periodic and φ1 is finite-to-one. If there exist X,Y ∈ Ω and v ∈ Rd such that
φ1(X) = φ1(Y ) and φ2(X) = φ2(Y − v), then v = 0.

We have already defined the notion of return vector of a patch, now let us
define the notion of return vector of a Voronöı cell of a patch. For a patch P of X
and v ∈ XP, VP,v denotes the Voronöı cell of the point v of the Delone set XP. We
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say that w ∈ Rd is a return vector of VP,v ∩X if (X −w)∩VP,v = X ∩VP,v. We set
for n ≥ 1, v ∈ XP,

Pn,w,v the patch (X − w − v) ∩BLnR(0).

Notice that Pn,w,v + v + w is a patch of X . When there is no confusion about n
and v, we write Pw instead of Pn,w,v.

The following lemma generalizes Lemma 6.

Lemma 29. Let n ∈ N∗ and X be an aperiodic linearly repetitive Delone set with
constant L. There exists a constant C(n, L) > 0 such that for every sufficiently
large R > 0 and every R-patch P, the collection {Pn,w,v : w is a return vector of
VP,v ∩X} has at most C(n, L) elements, for every v ∈ XP.

Proof. Let P = X ∩ BR(xP) and v ∈ XP. Lemma 4 implies that the Voronöı cell
VP,v contains the ball B R

2(L+1)
(v). Then for every pair of return vectors u and w of

VP,v, the patches Pu and Pw coincides at the ball B R
2(L+1)

(0). The proof concludes

using the fact that in X ∩B2L(LnR)(0) there is at least one copy of each patch Pw,
Pu and applying Lemma 4 to the return vectors of the patch Pw ∩B R

2(L+1)
(0). �

Proof of Theorem 26. It is enough to suppose that X is an aperiodic linearly repet-
itive Delone set with constant L > 1. Let n ∈ N be such that

Ln − 1− 12L− 64L2 > 1. (5.7)

We call M(n, L) the number of coverings of a set with c(L)c(n, L) elements, where
c(L) and c(n, L) are the constants of Lemma 6 and Lemma 29 respectively. For
every 1 ≤ i ≤ M(n, L) + 1, let Xi be a non-periodic Delone set such that there
exists a topological factor map πi : ΩX → ΩXi , and let X0 = X . We will show there
exist 1 ≤ i < j ≤ M(n, L) + 1 such that (ΩXi ,R

d) and (ΩXj ,R
d) are conjugate.

Since M(n, L) is finite, we can take the same constant s0 > 0 and Rπ of
Lemmas 23 and 25 respectively, associated to each πi. Fix 0 < ε < 1. Let R >
sup{s0, Rπ + ε, 17L} be sufficiently large such that Lemma 6 and Lemma 29 are
applicable to R-patches of X , and such that Lemma 23 is applicable to ε and
each πi.

Consider the patch P = BR(0) ∩X , and v1, . . . , vN ∈ XP such that for every
v ∈ XP, there exist 1 ≤ i ≤ N and u ∈ Rd satisfying VP,v ∩X = (VP,vi ∩X) + u.
Roughly speaking, every set of the kind VP,v∩X is a translated of some set VP,vi∩X .
Since R > R1, Lemma 6 ensures N ≤ c(L).

For every 1 ≤ j ≤ N , let wj,1, . . . , wj,mj be return vectors of VP,vj ∩X , chosen
in order that for every return vector w of VP,vj ∩X , there exists 1 ≤ i ≤ mj such
that Pn,w,vj is equal to Pn,wj,i,vj =: Pwj,i . Since R > R1, Lemma 29 implies that
mj ≤ c(n, L), for every 1 ≤ j ≤ N . Therefore, the collection

F = {Pwj,l
: 1 ≤ l ≤ mj , 1 ≤ j ≤ N}

contains at most c(L)c(n, L) elements.
We define R′ = (Ln − 1)R− ε− 4LR. The choice of n ensures that R′ > 0.
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For every 1 ≤ i ≤ M(n, L) + 1, we define the following relation on F :

Pwj,l
↔i Pwk,m

if and only if for every X ′, X ′′ ∈ ΩX such that X ′∩BLnR(0) =
Pwj,l

and X ′′ ∩ BLnR(0) = Pwk,m
, there exist v ∈ B2ε(0) and w ∈ B4LR(0) such

that πi(X
′) ∩BR′(0) = (πi(X

′′) + v + w) ∩BR′(0).

Since LnR − s0 ≥ (Ln − 1)R ≥ R, from Lemma 23 it follows this relation is
reflexive, so non empty. Since the cardinal of F is bounded by c(L)c(n, L), there
are at most M(n, L) different relations of this kind. So, there exist 1 ≤ i < j <
M(n, L) + 1 such that ↔i=↔j.

In the sequel, we will prove that (ΩXi ,R
d) and (ΩXj ,R

d) are conjugate. For
that, it is sufficient to show that if Y, Z ∈ ΩX are such that πi(Y ) = πi(Z) then
πj(Y ) = πj(Z).

Let Y and Z be two Delone sets in ΩX such that πi(Y ) = πi(Z). Without
loss of generality, we can suppose that 0 is an occurrence of P in Y and in Z − u0,
where u0 is some point in B4LR(0). The patches of Y and Z are translated of the
patches of X . This implies there exist 1 ≤ q0, r0 ≤ N such that

Y ∩BLnR(0) = Pwq0,l0
and (Z − u0) ∩BLnR(0) = Pwr0,k0

,

for some 1 ≤ l0 ≤ mq0 and 1 ≤ k0 ≤ mr0 .

It is possible to show that Pwq0,l0
↔i Pwr0,k0

and Pwq0,l0
↔j Pwr0,k0

for R

sufficiently large (see Claim 1 in the proof of [CDP, Thm. 12]).

Let s be any other occurrence of P in Y . Repeating the same argument for
Y +s and Z+s, we deduce there exist us ∈ B4LR(0) and 1 ≤ qs, rs ≤ N such that

(Y + s) ∩BLnR(0) = Pwqs,ls
and (Z + s− us) ∩BLnR(0) = Pwrs,ks

,

for some 1 ≤ ls ≤ mqs and 1 ≤ ks ≤ mrs . Then we get Pwqs,ls
↔j Pwrs,ks

. This
implies there exist ts ∈ B2ε(0) and ws ∈ B4LR(0) such that

πj(Y + s) ∩BR′(0) = (πj(Z + s− us) + ts + ws) ∩BR′(0).

Showing that ws−us+ ts does not depend on s (see Claim 2 in the proof of [CDP,
Thm. 12]), we get there exists y ∈ Rd such that for every occurrence s of P in Y ,

πj(Y + s) ∩BR′(0) = (πj(Z + s) + y) ∩BR′(0), and then

πj(Y ) ∩BR′(s) = (πj(Z) + y) ∩BR′(s).

The diameter of the Voronöı cells of P is less than 4LR (see 2.1), which is less than
R′. Hence,

πj(Y ) = πj(Z) + y.

We conclude with Propositions 27 and 28. �



216 J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite

5.2. Factors on groups and cocycles

Cocycles and cohomological equations play an important role in the study of fac-
tors dynamical systems, time change for flows orbit equivalence, . . . We adapt this
notion to the context of Delone system (Ω,Rd). Let G denotes the group Rm or
Tm = Rm/Zm. A continuous G-cocycle is a continuous function α : Ω × Rd → G
so that

α(Y, v + w) = α(Y, v) + α(Y + v, w) for all Y ∈ Ω, v, w ∈ Rd.

An important question which appears in many problems, is to known if the coho-
mological equation

α(Y, v) = ψ(Y + x)− ψ(Y )

has a measurable, continuous solution ψ : Ω→ G. This solution is called a transfer
function and if it exists, α is called a coboundary.

In Section 5.2.2 we will give a necessary and sufficient condition to find so-
lutions to the cohomological equation for linearly repetitive Delone systems. We
will focus on transversally locally constant cocycle α, i.e.: if there exists r, R > 0
such that for any Y, Y ′ ∈ Ω and x ∈ BR(0),

if Y ∩BR(0) = Y ′ ∩BR(0) then α(Y, x) = α(Y ′, x).

More generally a cocycle α is transversally Hölder if there exist constants K > 0
and δ ∈ (0, 1) such that for all r > 0, Y, Y ′ ∈ Ω and x ∈ Br(0),

if Y ∩BR(0) = Y ′ ∩BR(0) then |α(Y, x)− α(Y ′, x)| ≤ Kr−δ.

5.2.1. Examples of cohomological equations. Let us see first some dynamical prob-
lems where the cohomological equation appears.

Let us denote by 〈., .〉 the usual inner product in Rd and μ be an ergodic
Rd invariant probability measure on the hull Ω. A vector λ ∈ Rd is a measurable
eigenvalue of the system (Ω,Rd) if there exists a measurable function ψ : Ω → S1

such that

ψ(Y + v) = e2iπ〈λ,v〉ψ(Y ) for all v ∈ Rd and μ− a.e. Y ∈ Ω.

If the function ψ is continuous, then λ is called a continuous eigenvalue. The map
(Y, v) 	→ e2iπ〈λ,v〉 is a S1-cocycle over (Ω,Rd). Then passing in additive notation
T1, we have λ is a measurable (resp. continuous) eigenvalue of (Ω,Rd) if and only if
there is a measurable (resp. continuous) solution ψ : Ω→ T1 to the cohomological
equation

〈λ, v〉 = ψ(Y + v)− ψ(Y ) mod Z.

A continuous eigenvalue gives then a topological factor on the closure of an
orbit in the one-dimensional torus T1. More generally, one can consider the closure
O of an orbit of a n-rotations on the n-torus Tn, n ≤ d, that are factors of the
system (Ω,Rd). More precisely, take θ = (θ1, . . . , θn) ∈ Rn and let A : Rd × Tn →
Tn be the continuous action defined by

A(v, x) = x + [v, θ] where [v, θ] = (v1θ1, . . . , vnθn).
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The map (Y, v) 	→ [v, θ] is a Tn-cocycle over (Ω,Rd). It is standard to show that
the system (O,A) is a topological factor of (Ω,Rd) if and only if there exists a
continuous solution ψ : Ω→ Tn to the cohomological equation

[v, θ] = ψ(Y + v)− ψ(Y ).

5.2.2. Characterization of continuous coboundary. A seminal work for the char-
acterization of continuous eigenvalues of symbolic systems given by a primitive
substitution, is in [H]. The authors of [CDHM, BDM1] generalize these results to
the linearly recurrent symbolic systems and to finite rank systems in [BDM2]. An
extension to Zd-action on a Cantor set is presented in [CGM]. We present here a
part of the results in [C] that treat only continuous cocycles and generalizes the
results of [CGM].

For a box decomposition B = {Ci[Di]}ti=1 (see Section 3.2.1), a first retrun
vector to C = ∪iCi is a vector v ∈ Rd with label (i, j) ∈ {1, . . . , t}2, such that

Ci − v ∩ Cj �= ∅ and Ci[Di] ∩Cj [Dj] �= ∅.

We denote by F the set of first return vectors to C associated with B, and by
C(v) = Ci ∩ (Cj + v) for a return vector v with label (i, j).

A tower system (Bn = {Cn,i[Dn,i]}tni=1)n is well distributed if it satisfies the
properties i)–iii) in Theorem 13 and moreover for every n ≥ 0, and every first
return vector v ∈ Fn with label (i, j) there are x and x′ in Dn+1,1 such that for
X ∈

⋂
n Cn, X − x ∈ Cn,i and X − x′ ∈ Cn,j and v = x− x′.

It is straightforward to check that this extra condition holds when each Dn+1,i

is big enough: more precisely when for any n ≥ 0

rint(Bn+1) ≥ (Rrec(Bn) + Rext(Bn))L ≥MX(Rrec(Bn) + Rext(Bn)). (5.8)

For a linearly repetitive Delone set X , it is direct to check that for a constant K
big enough, the tower system given by Theorem 13, satisfies inequality (5.8). Thus
any linearly repetitive Delone system admits a well-distributed tower system. In
the following | · | denotes the usual distance to the origin when G = Rm or Tm.

Theorem 30 ([C]). Let X be a linearly repetitive Delone set in Rd, G be the group
Rm or Tm, α be a continuous G-cocycle over (Ω,Rd), and (Bn)n≥0 be a well-
distributed tower system. Then α is a tansversally Hölder coboundary with contin-
uous transfer function if and only if the series∑

n≥0
sup
v∈Fn

ω∈Cn(v)

|α(ω, v)|

converges, where each Fn denotes the set of first return vectors associated with Bn.

In [C] appears also similar necessary conditions for a cocycle to be a cobound-
ary on a general Delone system (without the assumption of linear repetitivity).
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5.2.3. Characterization of the measurable eigenvalues. To be more complete on
the problem of eigenvalues, let us mention that a characterization of measurable
eigenvalues of linearly recurrent Cantor system is given in [BDM1] and measurable
coboundary for linearly repetitive Delone systems in [C0].

Theorem 31 ([C0]). Let (Ω,Rd) be a linearly repetitive Delone system, μ be the
unique invariant measure, G be the group Rm or Tm, α be a transversally locally
constant G-cocycle over (Ω,Rd), and (Bn)n≥0 be a tower system well-distributed.
Then the following are equivalent.

1. The series
∑
n≥0

sup
v∈Fn

ω∈Cn(v)

|α(ω, v)|2 converges, where each Fn denotes the set of

first return vectors associated with Bn.
2. There exists a measurable function ψ : Ω→ G such that for μ-a-e X ∈ Ω,

α(X, v) = ψ(X − v)− ψ(X), for all v ∈ Rd.

Moreover ψ ∈ L2(Ω,Rm, μ) when G = Rm.

6. Bi-Lipschitz equivalence to a lattice

Let X1 and X2 be two Delone sets in Rd. We say that they are bi-Lipschitz equiv-
alent if there exists a homeomorphism φ : X1 → X2 and a constant Δ ≥ 1 such
that ∀x, x′ ∈ X, x �= x′

1

Δ
≤ ‖φ(x) − φ(x′)‖

‖x− x′‖ ≤ Δ.

The map φ is then called a bi-Lipschitz homeomorphism between X1 and X2.
The problem to know whether two Delone sets are bi-Lipschitz equivalent

was raised by Gromov in [Gro93], and boiled down in Toledo’s review [Tol] to
the following question for the two-dimensional Euclidean space: Is every Delone
set in R2 bi-Lipschitz equivalent to Z2? Counterexamples to this question were
given independently by Burago and Kleiner [BK] and McMullen [McM]. Moreover,
McMullen also showed that when relaxing the bi-Lipschitz condition to a Hölder
one, all Delone set (with or without finite local complexity) in Rd are equivalent.
Later, Burago and Kleiner [BK1] gave a sufficient condition for a Delone set to
be bi-Lipschitz equivalent to Z2 and asked the following question: If one forms a
Delone set in the plane by placing a point in the center of each tile of a Penrose
tiling, is the resulting set bi-Lipschitz equivalent to Z2? They studied the more
general question of knowing whether a Delone set arising from a cut-and-project
tiling is bi-Lipschitz equivalent to Z2 (recall that the Penrose tiling is also a cut-
and-project tiling [Bru]) and solved it in some cases that do not include the case
of Penrose tilings, thus leaving the former question open. Recently, Solomon [Solo]
gave a positive answer for Penrose tiling by using the fact that it can be constructed
using substitutions. In fact, Solomon proved that each Delone set arising from a
primitive self-similar tiling in R2 is bi-Lipschitz to Z2.
The following result was proved in [ACG1].
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Theorem 32. Every linearly repetitive Delone set in Rd is bi-Lipschitz equivalent
to Zd.

Notice that Theorem 32 is trivial when the dimension d = 1 since, in this
case, every Delone set (with no extra assumptions) is bi-Lipschitz equivalent to
Z. As an application of the work of Laczkovich [L], Solomon in [Solo] showed also
that for every self-similar tiling of Rd of Pisot type there is a bounded displacement
between its associated Delone set X and βZd for a β > 0 (i.e., there is a bijection
φ : X → βZd such that Φ− Id is bounded).

The strategy of the proof of Theorem 32 is the following. First consider the
easy case where all the Voronöı cells V of a Delone set X have a unit volume. Thus
any finite union of N Voronöı cells meet at least N unit squares, and conversely
N unit squares meet at least N Voronöı cells. So by the transfinite form of Hall’s
marriage lemma, there exists a bijection between the collection of Vornöı cells
and the units squares, so that any cell intersects its image. This defines a map
φ : X → Zd such that φ− Id is bounded.
For the general case, we need to consider the measurable function f : Rd → R
defined by

f(x) =
∑

y:x∈Vy

1

volVy
x ∈ Rd,

where Vy denotes the Voronöı cell of the point y ∈ X . If φ : Rd → Rd is a bi-
Lipschitz map so that its Jacobian determinant is f , standard calculus show us that
the image φ(V ) of any Voronöı cell V of X has volume 1. The proof of Theorem
32 consists then to generalize to all dimension d a sufficient condition given by
Burago and Kleiner [BK1] in dimension 2 to solve the equation det Dφ = f with
φ an unknown bi-Lipschitz map. This condition involves analytical tools and the
density deviation of the points of X with respect to its average. This last point is
controlled by the Lagarias and Pleasants Theorem 16.
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y CC. de la Universidad de
Santiago de Chile,
Av. Libertador Bernardo O’Higgins 3363
Santiago, Chile

e-mail: mcortez@usach.cl

Fabien Durand and Samuel Petite
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Tilings with Infinite Local Complexity

Natalie Priebe Frank

Abstract. This is a chapter surveying the current state of our understanding
of tilings with infinite local complexity. Such tilings can arise when tiles have
infinitely many possible adjacencies, infinitely many shapes, or infinitely many
labels. Our main requirement is that the set of tiles used to construct tilings
should be compact.

We consider tilings constructed in a number of ways, including the hi-
erarchical methods of self-similarity, substitution, and fusion. We show how
to adapt the standard toolbox for tilings with finite local complexity and
suggest definitions for the concepts of fault lines and complexity functions.
Three examples with infinite local complexity of distinctly different origin are
fully analyzed using the tools and techniques contained in this chapter. We
conclude with some important classes of open questions about tiling spaces
with infinite local complexity.

Mathematics Subject Classification (2010). Primary 52C23; Secondary 37B50.

Keywords. Self-similarity, fusion tilings, tiling dynamical systems.

1. Introduction

Most of the literature on tiling spaces and their dynamical systems has focused
on those with finite local complexity (FLC). In this paradigm there is a finite
set P of tiles called ‘prototiles’, congruent copies of which are used to cover the
plane (or Rd) without gaps or overlaps. Moreover, the adjacencies between tiles
are restricted so that there are only finitely many two-tile configurations. If there
can be infinitely many two-tile configurations in a tiling, then that tiling is said to
have infinite local complexity (ILC).

When tilings are looked at from a physical perspective it makes sense to con-
sider not just individual tilings but rather spaces whose elements are tilings that
share some common properties. These tiling spaces are given a metric topology
where the distance between two tilings is defined by how similar they are in balls

Some work presented here was done in collaboration with Lorenzo Sadun and Ian Putnam, both
of whom the author thanks for their hospitality and many illuminating discussions.
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around the origin (see Section 2.2 for precision). When there are only finitely many
two-tile configurations that are found in any tiling of a tiling space, we say that the
tiling space itself has finite local complexity; otherwise, it has infinite local com-
plexity. FLC tiling spaces have been the standard objects used to model the atomic
structure of crystals and quasicrystals and have proved quite effective in the study
of statistical properties, diffraction patterns, and energy spectra of aperiodic solids.

A tiling space that is of finite local complexity can be homeomorphic to one
with infinite local complexity [20]. Thus finite local complexity is not a topological
invariant and should not be considered an intrinsic property when topological
methods are used to study aperiodic tilings.

Examples of tilings with infinite local complexity have appeared sporadically
[6, 9, 10, 16, 18, 21], and it is increasingly clear that the class is not as unnatural as
previously imagined. Moreover, most of the ‘usual’ FLC tools and techniques can
be used in the ILC case, and one of the goals of this chapter is to explain exactly
how to adapt the existing machinery. We take as fundamental the requirement
that prototiles come from compact, not necessarily finite, sets. This means that
both the ‘supports’ of the tiles (i.e., their underlying sets in Rd) and the ‘labels’
of the tiles (which are used to distinguish tiles with congruent supports) must
come from compact sets. We will see that this fundamental requirement means
that ILC tiling spaces are compact (see Section 2.3). We delay formal definitions
until Section 2 and provide some informal examples now.

1.1. Introductory examples

Since one-dimensional tiles are closed intervals, any tiling made from a finite num-
ber of interval lengths with a finite number of labels must have finite local com-
plexity. So in order to have infinite local complexity in one dimension there must
be either an infinite label set or an infinite number of lengths (or both).

Example 1. A first example is to allow tiles to take lengths from some closed
interval, for instance we could require that 1 ≤ length ≤ 3. We can let the support
of a prototile px be the interval [0, x], and we can label the tile by its length, x.
It is convenient to omit the label when it is possible to tell tiles apart by their
supports, as is the case here, but we are including them for consistency with the
definitions provided in Section 2. The prototile px is formally the pair ([0, x], x),
and the prototile set in this example is thus P = {px, x ∈ [1, 3]}. Notice that the
set of supports of prototiles is compact in the Hausdorff metric and the set of
labels is compact in the usual distance metric in R. Importantly, if a sequence of
prototiles has a convergent label sequence, then their supports converge as well.
This makes it possible to say that the sequence of prototiles themselves converge.

A tile is simply a translate of px by some element y ∈ R; we write t =
px + y = ([y, y + x], x). (Note that translation changes the support of a tile but
not its label.) We could make a tiling from such tiles in any number of ways, for
instance by generating a sequence of random numbers in [1, 3] and laying down
tiles of those lengths in any order. With probability one such a tiling will have
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infinite local complexity because it has infinitely many different tiles and thus has
infinitely many different two-tile patterns.

This example provides a nice test case for computation since it is really dif-
ferent than the standard FLC situation, but still quite simple. Example 5 consists
of a hierarchical tiling space based on a prototile set derived from P . We introduce
its construction in Section 4.1 and give it a thorough analysis in Section 6.1.

Example 2. For another one-dimensional example we take a single interval length
for the supports but allow for infinitely many labels. Suppose that the support of
every prototile is [0, 1], but that each prototile takes a label from some compact
label set L. For concreteness, let L = S1 = R/Z, the unit circle. We cannot tell
two prototiles apart by their supports, so the label tells us when two of them are
different, and the distance between their labels tells us how different they are.

An interesting way to construct a tiling from this prototile set is to fix an
element α ∈ S1 consider the sequence of labels x + nα mod 1 for any x ∈ R. If
α is irrational then the tilings generated by this label sequence will have infinite
local complexity since {nα mod 1} is infinite (and in fact uniformly distributed).

Example 3. A two-dimensional example of an ILC tiling can be constructed from
unit squares. Tile the plane in rows of tiles, but offset each row from the next by a
randomly chosen number in [0,1]. With probability one, the result will be an ILC
tiling. A non-random variation on this theme is to base the offsets on some fixed
irrational number α. Lay the first row of squares along the x-axis with a vertex
at the origin. Place an endpoint of the row at height y = 1 at x = α, and the
endpoint of the row at height y = n at x = nα. Since {nα mod 1} is uniformly
distributed in [0, 1], the offsets between rows will be too and in this way form an
ILC tiling of the plane.

Example 4. A well-known example that has infinite local complexity up to transla-
tions is the pinwheel tiling. Pinwheel tiles appear in infinitely many orientations in
any individual pinwheel tiling and so there are not finitely many different two-tile
patches that are translates of one another. This is a borderline case, however: the
tiles fit together in finitely many ways even though these allowed configurations
appear in infinitely many orientations. It is sometimes useful, then, to consider the
pinwheel tiling space to be of finite local complexity by allowing rotations along
with translations.

1.2. Ways infinite local complexity arises

In higher dimensions there are many natural examples of tilings with infinite local
complexity. For instance, the atomic structure of an ideal crystal is modeled by
a lattice of points, but the atoms in an actual crystal appear within a certain
tolerance of that lattice. A standard perspective to let the atomic structure gen-
erate a tiling, either by using the atoms as tile vertices or, by taking the Voronöı
tessellation of the set of atomic locations, or by some other method. In the case
of an ideal crystal, all methods yield periodic tilings with patches of tiles forming
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unit cells. In the case of an actual crystal, however, these tiles will be deformed
within a certain tolerance and we will have an infinite number of tile shapes.

Infinite local complexity has long been known to arise even when there are
a finite number of tile shapes. There are tilings with a finite number of tile types
inside of which ‘fault lines’ develop. Defined formally in Section 5.1, a fault line
separates a tiling into half-tilings that can slide parallel to the fault line to produce
new tilings from the tiling space. The presence of fault lines often result in an
infinite number of local adjacencies. If we were to encode adjacency information
as labels for the tiles, then we would have infinitely many labels. If a tiling of R2

has only a finite number of tile shapes up to Euclidean motions, it is proved in [16]
that there are only two ways ILC can appear: either along a fault line or along a
fault circle. The former case requires tiles that have a straight edge somewhere,
while the latter requires tiles with an edge that is a circular arc of some given
radius.

1.3. Outline of this chapter

Section 2 contains the details on how we conceive of tiles, tilings, tiling spaces,
and the tiling metric in the presence of infinite local complexity. Our definitions
coincide with those for finite local complexity tilings when that condition is satis-
fied.

Section 3 addresses basic analysis of ILC tiling dynamical systems. The trans-
lation dynamical system is defined and we explain what minimality, repetitivity,
and expansivity mean in this context. The notion of ‘cylinder sets’ is adapted
from symbolic and FLC dynamics, and we show how to deal with some subtle yet
important details that impact how they are used. We show how to think about
translation-invariant measures and their relationship to patch frequency. Finally
we discuss how to generalize the notions of entropy and complexity to this situa-
tion.

Tilings with a hierarchical structure generated by substitution or fusion are
the topic of Section 4. The construction methods adapt pretty much directly from
the FLC case, except care must be taken to preserve compactness of supertile
sets. Transition matrices, so useful in frequency computations for FLC self-similar
and fusion tilings, need to be dealt with as transition maps instead. The idea of
recognizability takes little work to adapt to the ILC case, but primitivity requires
some care.

Existing results on ILC tiling spaces are collected into Section 5. We give a
‘fault lines’ a proper definition, and since they are not topologically invariant we
introduce the related idea of ‘fractured’ tiling spaces. The effect of fault lines and
fractures on the topological spectrum is explained before we move on to results
specific to the hierarchical tilings case. The fact that primitivity continues to imply
minimality is proved and conditions are given that make the converse true as well.
We also explain how to think about the invariant measures for fusion systems.
In the special case of fusion tilings with strictly finite supertile sets we show the
similarity to FLC fusion tilings. Finally we tell everything that is currently known
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on the important question “When is an ILC tiling space homeomorphic to an FLC
tiling space?”

In Section 6 we apply our toolbox to three different examples. A point of
interest that does not appear elsewhere in the literature is how to see certain
tilings (‘direct product variations’) as projections of stepped, branched surfaces in
higher dimensions and how that can give rise to infinite local complexity.

The paper concludes with two main categories of questions about tilings with
infinite local complexity. One of these has already been mentioned, the question of
when an ILC tiling space is homeomorphic, or even topologically conjugate to, an
FLC tiling space. The other type is about how the geometric and combinatorial
aspects of the tiles or tilings affect the dynamical, measure-theoretic, or topological
properties of their tiling spaces.

2. Compact tiling spaces

2.1. Tiles, patches, and tilings

There are two main ingredients for tiles in a tiling with infinite local complexity:
supports and labels. The support is the underlying set in Rd and the label can be
thought of as distinguishing between tiles that have congruent supports, perhaps
by color or by orientation. Often it is convenient to more or less ignore the labels
but since they are quite handy we include them as a fundamental part of our
definition. The support and label sets must work together in a precise way in order
to define a coherent prototile set that can be used to construct infinite tilings via
translation.

Let S denote a set of subsets of Rd, each of which is a topological disk
containing the origin in its interior. Assume S is a compact metric space under
the Hausdorff metric, in which case S can serve as a set of prototile supports.
Let L be another compact metric space, to be used as the prototile label set. Let
sp : L → S be a continuous surjection called the support map that assigns to each
label a set in Rd that serves as the physical tile itself.

Definition 2.1. A prototile is a pair p = (S, l), where S ∈ S, l ∈ L, and S = sp(l).
We call S the support and l the label of p. A prototile set P is the set of all prototiles
associated to a given label set, support set, and support map.

Since the support map sp is continuous we have the property that if a se-
quence of labels converges in L, their corresponding supports converge in S. This
will give us a way to talk about convergence of prototiles and compactness of the
prototile set.

The primary action on tiles will be by translation by x ∈ Rd. If p = (S, l) ∈ P
we define the P-tile or just tile t = p − x to be the pair (S − x, l). That is, we
translate the support of p to a different location but keep the label the same. As
for prototiles, tiles have supports and labels; the support of the above tile t is the
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set supp(t) = S − x and the label of t is l. Given an arbitrary tile t, we have

support and label maps such that supp(t) ⊂ Rd and label(t) ∈ L.
A handy concept in tiling theory is that of the control point of a tile t = p−x,

where p ∈ P and x ∈ Rd, which is defined simply to be the point x. This point
represents the location in t of the origin in p and gives us a point of reference for
each tile.

Definition 2.2. A finite union of P-tiles whose supports cover a connected region
and intersect only on their boundaries is called a patch.

We can write P =

n⋃
k=1

tk, where

n⋃
k=1

supp(tk) is connected and supp(ti) ∩

supp(tj) is either empty or contains only boundary points whenever i �= j. Like

tiles, patches can be translated and we define P − x =
n⋃
k=1

(tk − x). Two patches

are said to be equivalent if they are translates of one another.

Definition 2.3. An infinite union of P-tiles whose supports cover the entirety of Rd

and whose pairwise intersections contain only boundary points is called a tiling T.

Like patches and tiles, a tiling can be translated by an element x ∈ Rd by
translating each tile of T by x. This produces a new tiling we denote by T − x.

Precisely, if T =
⋃
i∈Z

ti is a tiling expressed as a union of tiles, then we write

T − x =
⋃
i∈Z

(ti − x), where ti − x = (supp(ti) − x, label(ti)). This results in an

exact copy of the tiling T, except moved so that what was at the point x is now
at the origin.

2.2. Tile, patch, and tiling metrics

In order to understand tiling spaces we need to know how to measure the distance
between tiles, patches, and tilings. To simplify notation (but not add confusion,
we hope) we will use d(x, y) to denote distance where x and y are tiles, patches,
or tilings. Each builds on the last.

The distance between two tiles t1 and t2 is the maximum of the Hausdorff
distance between the supports of the tiles and the difference between the labels:

d(t1, t2) = max(dH(supp(t1), supp(t2)), dL(label(t1), label(t2))). (1)

The distance between two patches P1 and P2 can be computed provided the tiles
are in one-to-one correspondence. Suppose G is the set of all bijections f assigning
a tile from P1 to a tile from P2. In this case we define

d(P1, P2) = min
f∈G

{max
t∈P1

{d(t, f(t))}}. (2)

Intuitively, we take the bijection that makes the best fit between the two patches
and then consider the maximum distance between tiles paired by the bijection. In
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the FLC case patches are always matched up by a congruence, usually a transla-
tion, in which case the distance is the length of the translation vector. In the ILC
case it is necessary to let the tiles move independently from one patch to the other.

The metric for tilings is based on the patch metric and says that two tilings
are close if they very nearly agree on a big ball around the origin. For two tilings
T1 and T2 we define

d(T1,T2) = inf
ε>0

{
∃P1 ⊂ T1 and P2 ⊂ T2 |B1/ε(0) ⊂ supp(Pi)

and d(P1, P2) < ε
} (3)

provided such an ε exists and is not greater than 1. If there is no such ε, or if the
infimum is greater than 1, we define the distance between the tilings to be 1.

2.3. Tiling spaces

Rather than trying to study an individual tiling it often makes sense to study
all tilings that have certain properties in common. The standard way to do this,
motivated by physical applications, is to construct a topological space of tilings.

Definition 2.4. A tiling space Ω is a set of tilings of Rd that is invariant under the
action of translation and closed under the topology given by the tiling metric d.

One common way to make a tiling space is by taking the closure of the translational
orbit of some fixed tiling T, in which case we write ΩT. This tiling space is called
the hull of T.

Theorem 2.5. Tiling spaces are compact in the metric topology.

Proof. We establish sequential compactness for patch sets and then extend to
tilings. The key to seeing this is to show that the set of all patches contained
in a bounded region and having a fixed number n of tiles is compact for every
n. Such a set of patches is parameterized by a bounded subset of Pn × Rdn,
where the elements of Rdn are the locations of the control points and thus lie
in a bounded region. The individual tiles in any sequence of patches will have
convergent subsequences since P is compact and the tiles lie in a bounded region.
We can diagonalize to get a sequence of patches for which all of the individual
tiles converge; since each patch in the sequence is connected and the tiles have
nonoverlapping boundaries, the limit will have this property as well. Thus every
sequence of n-tile patches in a bounded region has a convergent subsequence.
Sequential compactness for Ω now follows by finding subsequences of tilings that
have convergent sequences of patches covering larger and larger regions around the
origin. �

2.4. The transversal Ξ(Ω) of a tiling space

In definition 2.1 we defined the prototile set as being a representative set of tiles
located so that the origin lies in their support at a control point.
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Definition 2.6. The transversal Ξ(Ω) of a tiling space Ω is the set of all tilings in
Ω with a control point at the origin. Put another way, Ξ(Ω) is the set of all tilings
in Ω containing a prototile.

Every tiling in Ω is the translation of lots of tilings from the transversal.
Moreover, every point in the tiling space has a neighborhood that is homeomorphic
to an open set in Rd crossed with an open subset of the transversal.

Much of the work done on FLC tiling spaces uses the transversal in an essen-
tial way. For instance, the C∗-algebra of a tiling space is strongly Morita equivalent
to the C∗-algebra of its transversal. This means the K-theory of the tiling space
can be computed from the transversal. By the gap-labelling theorem, we then
understand the possible energy levels that the tiling space can support when con-
sidered as an atomic model. The transversal also makes possible the definition of
a Laplace–Beltrami operator that holds information on key mechanical properties
of solids. This has been studied in the FLC case in, for example, [15]; there is
hope that this analysis can be extended to at least some tilings with infinite local
complexity.

Thus it is important to understand the structure of the transversal. When
a tiling space has finite local complexity, the transversal is always totally discon-
nected and, under the condition of repetitivity, is a Cantor set. Tilings with infinite
local complexity can also have transversals that are Cantor sets, but they can also
have more complicated transversals. Lemma 3.2 of [12] states that having a totally
disconnected transversal is a topological invariant of tiling spaces.

Lemma 2.7 ([12]). If two tiling spaces are homeomorphic and one has a totally
disconnected transversal, then so does the other.

The transversal of the pinwheel tiling looks like two Cantor sets, each crossed
with a circle. The way to see this is to first imagine a pinwheel tile with the control
point at the origin. The set of all tilings that contain this tile will be a Cantor
set since distinct tilings are always separated by some amount determined by the
closest place on which they differ, yet each tiling is the limit of a sequence of other
tilings. Now this Cantor set must be rotated in all amounts to get half the tiling
space. The other half of the space is obtained by doing the same thing with the
flip of the pinwheel tile we started with. We describe the nature of the transversal
for several examples in Section 6.

3. Ergodic theory applied to ILC tiling systems

Since tilings can be used to model the atomic structure of quasicrystals, the statis-
tical, large-scale approach of ergodic theory makes sense: anything happening on
a set of measure zero is not physically observable and so can be ignored. Miles of
Tiles [19] is an exposition of the method that explains the physical motivation for
non-physicists. We begin by interpreting fundamental dynamics concepts to our
situation.
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3.1. Tiling dynamical systems, minimality, repetitivity, and expansivity

Translation provides a natural action of Rd on Ω that is continuous in the tiling
metric and allows us to take a dynamical approach.

Definition 3.1. A tiling dynamical system (Ω,Rd) is a tiling space Ω along with

the action of Rd by translation.

A dynamical system is said to be minimal if the orbit of every tiling under
translation is dense. A minimal FLC tiling system has the property that all possible
patches of any size can be found in any given tiling T. Since there are many more
patches in an ILC system, minimality guarantees that every patch found in any
tiling can be arbitrarily well approximated by one from any given tiling T. It is
fairly easy to construct a minimal ILC tiling space by using traditional techniques,
for instance with substitution as in Section 4.

A tiling T is said to be repetitive if for every patch P that appears in T and
every ε > 0, there is an R for which every ball of radius R in T contains a patch
that is within ε of P . The orbit closure of T is a minimal tiling system if T is
repetitive.

A tiling dynamical system is said to be expansive if there is a δ > 0 such that
whenever d(T− x,T′ − x) < δ for all x ∈ Rd, it means that T = T′ − y for some

y ∈ Rd with |y| < δ. In an expansive system, then, the only way for the entire orbits
of two tilings to be close is if they were small translates of one another to begin
with. FLC tiling spaces, like their cousins the shift spaces, always have expansive
dynamical systems. However, infinite local complexity brings us examples of tiling
systems that do not have expansive dynamics. Such an example appears as our
example 7.

3.2. The Borel topology and cylinder sets

In classical symbolic dynamics it is commonplace to consider the set of all se-
quences that have a specific symbol or word in a given location, and this set is
called a cylinder set. This notion generalizes nicely to the FLC tiling situation,
where we need to specify both a patch P and an open set U , such that the cylinder
set ΩP,U is the set of all tilings that contain the patch P in a location designated
by U . Two properties of cylinder sets are essential to bring into the ILC situation.
First, they generate the metric topology. Second, they can be used to compute the
frequency with which the patch P appears throughout the tiling space.

When we have infinitely many different two-tile patches, the cylinder sets
based on single patches do not generate the topology. Moreover, it is possible that
every individual patch has frequency 0. This means we need to make cylinder sets
based on sets of patches, for instance, the set of all patches that are within ε of
some particular patch. To measure frequency accurately we need to define sets of
patches that don’t contain any ‘repeats’ up to translation:

Definition 3.2. A set of patches I is said to be trim if, for some fixed open set
U ⊂ Rd and every T ∈ Ω, there is at most one patch P ∈ I and point x ∈ U for
which P − x ⊂ T.
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Thus a trim set does not contain patches that are arbitrarily small translates of
one another, or patches that sit in arbitrarily small translates of other patches.

Definition 3.3. Let U ⊂ Rd and let I be a set of patches. The cylinder set ΩI,U is
the set of all tilings in Ω for which there is some patch P ∈ I and point x ∈ U for
which P − x ∈ T.

If I is a trim set with a small enough U , we know that a tiling can only be
in the cylinder set via one specific patch P and point x. If we let χI,U be the
indicator function for this set, then χI,U (T− x) as x ranges through some subset

of Rd will count the number of times a patch from I appears in T in that subset,
without overcounting.

Proposition 3.4. Cylinder sets given by trim sets generate the metric topology on Ω.

Proof. We establish that every ball of radius ε around a tiling T can be obtained
as a cylinder set. Take the smallest patch in T that contains B1/ε(0) and call it
P , and denote by x the control point of a tile in P containing the origin. The
set of all patches that are within ε of P can be partitioned into a trim set of
translation classes I: take all patches P ′ that have a control point at x and for
which d(P, P ′) < ε. Then ΩI,B1/ε(0) is a cylinder set that equals the ball of radius
ε around T. �

3.3. Translation-invariant measures and patch frequency

We begin this discussion by reviewing how translation-invariant Borel probability
measures can be used to compute frequencies in the FLC case. Given some finite
patch P , if U is a sufficiently small open set and μ is an invariant measure we can

define the frequency of P to be freqμ(P ) =
μ(ΩP,U )

Vol(U)
. If μ is ergodic then by the

ergodic theorem for μ-a.e T we have

freqμ(P ) = lim
R→∞

1

Vol(BR(0))Vol(U)

∫
BR(0)

χP,U (T− x)dx,

where χP,U is the indicator function for ΩP,U . The integral represents the number
of times we see a copy of P in the ball of radius R around the origin in T, so
averaging this by the size of the ball gives us the frequency of P .

In the ILC case, when μ is a translation-invariant measure and I is a trim
set we still see that μ(ΩI,U ) is a multiple of Vol(U) for all sufficiently small sets U .

Thus we can define the frequency of I to be freqμ(I) =
μ(ΩI,U )

Vol(U)
as before. And as

before we are justified in the use of the word “frequency” by the ergodic theorem.
If I is a trim ε-ball around some patch P , then freq(I) is the percent of time we
see patches that look almost exactly like P .

Let Pn be the set of all connected n-tile patches that have a control point at
the origin and are translates of patches that appear in Ω. The metric on patches
gives us a measurable structure on Pn, and since every subset of Pn is trim, freqμ
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forms a measure on Pn. If we want, we can consider P∞ =
⋃
Pn, which is not

itself a trim set. However, since any subset of a trim set is trim, we can consider
freqμ to be a measure on (the set of measurable subsets of) any trim subset of P∞.

If μ is a probability measure, then the frequency measure on Pn is volume-

normalized, meaning that

∫
Pn

Vol(P ) freqμ(dP ) = 1. This follows from the fact

that μ(Ω) = 1 and Ω can be arbitrarily finely approximated by cylinder sets of
the form ΩIn(jn),Un

, where In(jn) = Bε(Pn(jn)) and Un = supp(Pn(jn)) for some
representative set of n-supertiles.

3.4. Entropy and complexity

We develop a notion of complexity based on the standard form in symbolic dynam-
ics, but taking ideas from topological pressure theory and the topological entropy
of flows. The complexity function distinguishes the sort of infinite local complexity
represented by the solenoid (Example 7) from that of, say, tilings which have a
higher topological dimension than their ambient dimension (Example 6, for in-
stance).

There are three interrelated ways to define the complexity function, all of
which yield slightly different actual numbers but have the same asymptotics and
are based on the idea that complexity should count the number of patches of size
L one might see in Ω. To that end we define a metric dL on Ω for each L > 0 by

dL(T,T′) = sup
x∈[0,L]d

{d(T− x,T′ − x)}.

Two tilings will be within ε of one another in this dL measure if their patches on
[−1/ε, L + 1/ε]d are within ε in the patch metric. Our complexity functions will
count up how many such patches there are.

For any ε > 0 and L > 0 we define N1(ε, L) to be the minimum number of
balls of dL-radius ε it takes to cover Ω. We define N2(ε, L) to be the minimum
number of sets of dL-diameter ε it takes to cover Ω. It is clear that since every
open cover using balls of dL-radius ε is a cover by sets of dL-diameter 2ε, we know
that N2(2ε, L) ≤ N1(ε, L).

Our third version of a complexity function relies on the idea of an ε-separated
set: a set of tilings in Ω, no two of which are within ε of each other in the dL metric.
We define N3(ε, L) to be the maximum cardinality of an ε-separated set. If we have
such a set then we can cover Ω with balls of dL-radius ε centered on its elements,
so we have that N3(ε, L) ≥ N1(ε, L). Also, since any set of diameter ε can contain
at most one element of an ε-separated set, we have that N2(ε, L) ≥ N3(ε, L). Thus
we have:

N2(2ε, L) ≤ N1(ε, L) ≤ N3(ε, L) ≤ N2(ε, L).

If we let N denote any of these complexity functions, we can look at what
happens as ε goes to 0 and/or as L → ∞. For any given L we see that even for
tilings with finite local complexity lim

ε→0
N(ε, L) = ∞. Instead we should fix an ε

and investigate lim
L→∞

N(ε, L). We say that Ω has bounded complexity if N(ε, L)
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is bounded by some function of ε, independent of L. We say it has polynomial
complexity if N(ε, L) is bounded by C(ε)(1 + L)α, where C is some function of ε
and α is some positive constant.

Definition 3.5. The ε-entropy of the tiling dynamical system (Ω,Rd) is given by

hε(Ω) = lim sup
L→∞

(log(N(ε, L)))/Ld.

If lim
ε→0

hε(Ω) = h(Ω) is finite, then we say the system has finite entropy equal

to h(Ω).

The usual complexity function c(n) for a one-dimensional symbolic sequence
on a finite number of letters counts the number of distinct words of length n. If
we consider the sequence to be a tiling with labelled unit interval tiles, then any
of our complexity functions N(ε, L) are approximately equal to c([L + 2/ε])/ε.

4. Hierarchical tilings: substitution and fusion

An important theme in the study of aperiodic order is hierarchical structures:
sequences or tilings that can be seen as possessing structure at arbitrarily large
length scales. The earliest work in this direction was on substitution sequences,
which are surveyed in [17]. Self-similar tilings were a natural generalization to the
tiling situation, and have also been studied extensively in the FLC case ([3] is
an excellent reference). However, such hierarchical construction methods can lead
naturally to tilings with infinite local complexity. Early examples of tilings with
infinite local complexity arose from tilings with a finite number of tile sizes and a
substitution algorithm that forced the tiles to slide past one another in infinitely
many ways [6, 16]. We have selected three examples that show some of the things
that can happen when infinite local complexity arises in a hierarchical tiling.

4.1. Generating hierarchical tilings I: substitution

The earliest form of substitution was for symbolic systems, where there is some
discrete alphabet A and some substitution rule σ : A → A∗ that takes letters to
words. For instance, the Fibonacci substitution has A = {a, b}, with σ(a) = ab and
σ(b) = a. One can iterate the substitution by substituting each letter individually
and concatenating the results. In the Fibonacci example we have

σ2(a) = σ(a)σ(b) = ab a σ3(a) = σ(a)σ(b)σ(a) = ab a ab

and so on. One can generate infinite sequences in this manner.
Extending this to the tiling case in one dimension is simple because tiles

are intervals and can be concatenated without discrepancy. However, once we are
in two dimensions the tiles have geometry that can prevent the tiles from fitting
together. The first way around this was to devise inflate-and-subdivide rules that
generate self-similar or self-affine tilings via linear expanding maps. Many beautiful
examples have been discovered and investigated, and can be found on the Tilings
Encyclopedia website [13].
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An inflate-and-subdivide rule requires a linear expansion map φ : Rd → Rd

such that for each prototile t ∈ P , the expanded set φ(supp(t)) can be expressed as
a union of tiles equivalent to prototiles from P . We write S(t) to represent the patch
of tiles that result from the inflate-and-subdivide process, called a 1-supertile. We
can apply the substitution rule to the tiles in the patch S(t) to obtain the patch
S2(t), which we call a 2-supertile. Repeated substitution produces higher-order
supertiles that grow to cover Rd in the limit.

Example 5. Infinitely many tile lengths. Let [1, 3] be both the label set and the set
of tile lengths for a one-dimensional tiling as in our first introductory example. For
x ∈ [1, 3], the tile denoted tx is taken to be of type x and supp(tx) is an interval
of length x. The control points are taken to be the left endpoints. We can take
the metric on the label set to be given by dL(x, y) = |x− y|/2, which is somewhat
arbitrary but agrees with the Hausdorff distance of two tiles of lengths x and y
that have the same midpoint.

We define a substitution rule that inflates by the expansion map φ(x) = 3x/2
and subdivides the result only if it is larger than 3. If x ∈ [1, 2] we define S(tx) =
t3x/2, supported in the interval φ(supp(tx)). If x ∈ (2, 3] we define S(tx) = tx∪tx/2,
again supported in the interval φ(supp(tx)). Notice that the substitution rule is
discontinuous: two tiles with lengths on either side of 2 substitute to patches that
are not close in the patch metric since they have different numbers of tiles.

In Figure 1 we show a 9-supertile for the substitution, with the interval
lengths coded by color [greyscale]; tiles close in color are close in length. We see
consecutive copies of the same tile on three occasions.

0 10 20 30 40 50 60

Figure 1. Nine iterations of the substitution rule, applied to π/2.

A version of the tiling space generated by this rule, considered from a fu-
sion standpoint, is studied in [12], where it is shown to be minimal and have a
totally disconnected transversal and a unique translation-invariant Borel proba-
bility measure that is nonatomic. We investigate more about this tiling space in
Section 6.1.

The geometric rigidity imposed by the linear map φ can be loosened some-
what. Tiling substitution rules exist such that any tile t is substituted by a patch
of tiles S(t), but this patch may not be supported on a set that is a linear expan-
sion of t. These have been called combinatorial substitutions [8], a special case of
which is known by the term “generalized substitutions” [2].

A straightforward way to generate tiling substitutions in Rd is to begin
with the direct product of d one-dimensional substitutions. Given d substitutions
σ1, σ2, . . . , σd on alphabets A1,A2, . . . ,Ad we can define

σ(a1, a2, . . . , ad) = (σ1(a1), σ2(a2), . . . , σd(ad))
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A tile associated with the label (a1, a2, . . . , ad) is a d-dimensional rectangle, the
length of the ith side depending on ai ∈ Ai. In a direct product tiling substitution
the tiles must line up facet-to-facet and thus always have finite local complexity.

These can be made into the more interesting direct product variation (DPV)
substitutions, one of which is the example below. To construct such a substitution
we rearrange the inside of at least one of the substituted tiles in order to break
the direct product structure. Care must be taken to ensure that the rearranged
interior still forms a legal patch when substituted so that the substitution admits
tilings.

Whether there is finite or infinite local complexity depends on combinatorial,
number-theoretic, and/or geometric details. One with ILC, based on the product
of a → abbb, b → a with itself, is the primary ILC example in [9] and requires
four tile sizes. The simpler example we present here is similar to the one whose
cohomology was computed in [10].

Example 6. Direct product variation (DPV). Let σ1 : a → abbb, b → a and σ2 :
c → cc. There are two rectangular tile types we call A = a × c and B = b × c,
where we think of a, b, and c as representing both intervals, their lengths, and their
labels. The direct product will then be

A → A B B B

A B B B
, B → A

A

We can vary this direct product as follows and be guaranteed that the sub-
stituted tiles will still fit together.

A → A B B B

B B B A
, B → A

A

By varying the widths of A and B we can obtain tilings with either finite
or infinite local complexity. If the widths are irrationally related, the substitution
rule admits tilings with ILC. Figure 2 shows three iterations of the A tile using
the widths a = (1 +

√
13)/2, b = 1, which are the natural widths for the self-affine

tiling for this substitution. Horizontal fault lines are beginning to develop, with
mismatches between the tiles above the lines and those below. Each iteration of the
substitution produces new offsets along the fault lines, ultimately resulting in infi-
nite local complexity. The connection between these fault lines and the projection
method will be discussed when we fully analyze this tiling in Section 6.2.

4.2. Generating hierarchical structures II: fusion

Like substitution, fusion constructs tilings by making a series of n-supertiles that
get larger and larger at each level. The difference is that while substitution con-
structs an n-supertile by replacing each tile in an (n− 1)-supertile with a substi-
tuted tile, fusion constructs an n-supertile by concatenating or ‘fusing’ a number
of (n−1)-supertiles. We could think of substitution as being a cellular model: each
tile is a cell that can expand and subdivide itself into new cells. Fusion is an atomic
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Figure 2. A direct product variation 3-supertile

model: each tile is an atom that can bond to other atoms to form molecules, which
can themselves bond together to form larger structures. We refer the reader to [11,
12] for technical details and more examples, but we describe many key points here.

The prototile set P0 will serve as our 0-supertiles. Recall that there is a
compact label set which we now call L0 that labels the prototiles and generates a
tile and patch metric. The 1-supertiles are defined to be a set of finite patches P1

of tiles from P . We require that there be a compact L1 that labels the 1-supertiles,
so that we may write P1 = {P1(c) | c ∈ L1}. It is convenient but not necessary to
require that if cn → c in L1, then P1(cn) → P1(c) in the patch metric generated
by L0. There are examples where the fusion and/or substitution is only piecewise
continuous, for instance Example 5.

We make our set of 2-supertiles P2 by requiring that each element of P2 be
a fusion of 1-supertiles: a finite, connected union of patches that overlap only on
their boundaries. We require that P2 is labelled by some compact label set L2,
and we write P2 = {P2(c) | c ∈ L2}. It is convenient if the patch metric generated
by L2 is compatible with the patch metrics generated by L1 and L in the sense of
the previous paragraph.

We continue in this fashion, constructing our n-supertiles as fusions of (n−1)-
supertiles and requiring that each Pn be labelled by a compact set Ln. The fusion
rule R is the set of all supertiles from all levels:

R = {P0,P1,P2, . . . }

We say a tiling T is admitted by R if every patch of tiles in T is equivalent
to one appearing inside of a supertile from R. The tiling space ΩR is the set
of all tilings admitted by R, and R can be thought of as the language of ΩR.
In order for a fusion rule to admit an infinite tiling, the sizes of supertiles must
be unbounded. Moreover, ΩR is a translation-invariant tiling space and can be
analyzed dynamically.
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In order to avoid trivialities, we assume that ΩR is not empty and that every
element of Pn, for each n, appears somewhere inside an infinite tiling in ΩR. We
can assume the latter without loss of generality since any superflous supertiles can
be removed from R without changing ΩR.

Definition 4.1. An infinite-order supertile P∞ is a tiling of an unbounded region of
Rd for which there is a sequence of supertiles Pn ⊂ Pn and translations xn ∈ Rd

for which P∞ = lim
n→∞

(Pn − xn) and Pn − xn ⊂ Pn+1 − xn+1 for all n.

Tilings admitted by a FLC fusion rule R are either one or the concatenation
of finitely many infinite-order supertiles. In the ILC situation there is another
possibility, that they are the limit of such infinite-order supertiles in the big ball
metric.

Example 7. Solenoid extensions1. We present a simple family of fusions that are
not substitutions. All of the examples are measurably conjugate to the dyadic
solenoid system, which is described as an inverse limit in Chapter 3 of this volume
(pp. 73–104) and can be seen as a height-1 suspension of the dyadic odometer.
However, the topology is highly sensitive to changes in the prototile set.

For this family of tilings, the support of all prototiles is [0, 1]. The label set L
is a compactification of the non-negative integers N0 and we write L = N0∪Lc. We
denote a tile of type l as Al. Regardless of the specific nature of L the fusion rule
will be constructed as follows. Letting the set of 0-supertiles,P0 be the prototile set,
we construct our set of 1-supertiles as follows. For l ∈ Lc and l = 1, 2, 3, 4, . . . we
define P1(l) = Al∪ (A0+1), that is, the two-tile patch supported on [0, 2] given by
the concatenation of Al and A0. We hope it does not risk too much confusion about
the precise support of P1(l) if we abuse notation and write P1(l) = AlA0. We write
P1 = {P1(l), l ∈ L1}, where L1 is the subset of L given by {1, 2, 3, 4, . . .} ∪ Lc.
Now to generate the 2-supertiles we concatenate each 1-supertile with label in
{2, 3, 4, . . .} ∪ Lc with P1(1), so that we have P2(l) = P1(l)P1(1) = AlA0A1A0.
(Again we abuse notation but we know this is supported on [0, 4].) The set of
2-supertiles takes the form P2 = {P2(l), l ∈ L2}, where L2 is the subset of L
given by {2, 3, 4, . . .} ∪ Lc. Similarly the set of 3-supertiles will have the form
P3(l) = P2(l)P2(2) = AlA0A1A0A2A0A1A0, for l ∈ L3. The general form for the
set of k-supertiles, k = 1, 2, 3, . . . is

Pk = {Pk−1(l)Pk−1(k − 1), l ∈ Lk}.
By looking at the form for P3(l), we see that there will be an A0 in every

other slot, an A1 in every fourth slot, and can surmise that there will be an An
in every 2n+1th slot. In fact we can generate an infinite tiling admitted by this
fusion rule by a method quite similar to the construction of a Toeplitz sequence.
We begin by placing infinitely many A0’s on the line with a unit space between
them. Of the remaining spaces, we alternate by filling one with A1 and leaving the
next one empty. We continue in this fashion, filling every other of the remaining

1These are closely related to discrete actions known as “Toeplitz flows” and are surveyed in [7].
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spaces with an A2, and so on. When the process is finished, there may or may not
be one empty space. If there is, it should be filled with an Al with l ∈ Lc.

Whatever form Lc takes, the tiling space admitted by this fusion rule has
infinite local complexity. When Lc consists of a single point we will see in Section
6.3.5 it is actually less ‘complex’ than FLC examples because its complexity is
bounded. When Lc is finite but greater than 1 we can use Theorem 5.9 to show
that it is topologically conjugate to a tiling space with finite local complexity. We
will look closely a few special cases in Section 6.3.

Tilings generated by substitution can always be seen as being generated by fu-
sion since a tile that has been substituted n times can be seen as the concatenation
of tiles that have been substituted (n−1) times. However the converse is not true.
Fusion is more general and can allow us to vary the size of the supertile sets from
one level to the next. They also can allow us to vary the fusion patterns from level
to level, and can account for generalized substitutions and random substitutions.

4.3. Transition matrices and transition maps

4.3.1. Transition matrices. When there is an inflate-and-subdivide rule or a sub-
stitution rule for a tiling with a finite number of tile types it is very handy to
compute the transition matrix A of the substitution. The (i, j)th entry of the ma-
trix is given by the number of tiles of type i in the substitution of the tile of type
j. The matrix An knows how many of each prototile type can be found in the n-
supertiles of each type. We say A is primitive if there is some n for which An has all
positive entries. This means that each n-supertile contains copies of every tile type.

In the planar case, when the inflate-and-subdivide rule is a similarity, we can
consider the expansion to be by some complex number λ, which is the Perron
eigenvalue of the transition matrix. Early in the study of self-similar tiling dynam-
ical systems it was discovered that the algebraic type of λ had a significant impact
on the dynamics. Working in the context of finite local complexity, Solomyak [22]
showed that under the conditions of primitivity and recognizability a self-similar
tiling of the line fails to be weakly mixing if and only if |λ| is a Pisot number (an
algebraic integer, all of whose algebraic conjugates are less that one in modulus).
In the same work he showed that a tiling of the (complex) plane fails to be weakly
mixing if and only if λ is a complex Pisot number.

It turns out that the algebraic type of the expansion constant also has an
effect on local complexity. In [9] it is shown that under common conditions, if the
length expansion is a Pisot number then tilings admitted by the substitution must
have finite local complexity. In this situation it is known that there must be some
measurable spectrum and cannot be weakly mixing [22]. Thus weak mixing and
local complexity are linked via the expansion constant; when it is not Pisot there
is a chance of the local complexity becoming infinite.

If a fusion rule has a finite number of n-supertiles at each stage, we only need
to generalize the idea of a transition matrix for substitutions slightly. We now have
transition matrices An,N whose (i, j)th entry represents the number of n-supertiles
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of type i in PN (j). For any m between n and N we have An,N = An,mAm,N .
Thus even though we are unable to use Perron–Frobenius theory, we are able to
use a parallel type of analysis to determine the possible invariant measures and
patch frequencies. If the tiling space has ILC as in Example 6, the patches that
only appear along infinite fault lines have frequency 0 and all other patches have
nonzero frequency [12].

4.3.2. Transition maps. When we have a substitution or fusion on infinitely many
prototiles or supertiles, the transition between levels must be a map An,N : Pn ×
PN → Z for which An,N (P,Q) represents the number of n-supertiles of type P
in the N -supertile of type Q. For fixed Q, there are only finitely many nonzero
entries, but a fixed P ∈ Pn might appear in infinitely many tiles. For instance,
every tile type in the solenoid example has this property except ones with label in
the compactification Lc.

Even though the transition maps are no longer matrices, they can still be
used to obtain the possible invariant measures for a large class of ILC fusions (see
Section 5). The overarching principle is that we have a measure ρn on each su-
pertile set Pn so that for any measurable, trim subset I ⊂ Pn, ρn(I) represents
the frequency of seeing any supertile from I in a tiling. When the sequence of
such frequencies {ρn} behave nicely with respect to transition we obtain both a
translation-invariant measure on the tiling space and a handy formula for comput-
ing the frequencies of all types of patches, not just supertiles.

4.4. Recognizable, van Hove, and primitive fusion rules

The definition of a fusion rule is sufficiently general as to encompass all tilings
whatsoever, and therefore we need to put some restrictions on the rules to make
them meaningful. The three standard assumptions are that the fusion rule be
recognizable, van Hove, and primitive. Recognizability and the van Hove property
are defined for fusions the same way whether the local complexity is finite or
infinite, but primitivity requires a more subtle definition in the case of infinite
local complexity.

Recognizability means that the substitution or fusion can be undone in a
well-defined way. For self-similar tilings, recognizability means that there is some
finite ‘recognizability radius’ R such that if T and T′ have identical patches in the
ball BR(x), then they have the same substituted tile at x, situated in precisely
the same way. For fusion rules, we need a recognizability radius for each level of
supertiles. That is, for each n ≥ 1 there is an Rn > 0 such that if T and T′ have
the same patch of (n−1)-supertiles in BRn(x), then they have the same n-supertile
at x in precisely the same location and orientation.

If Ω is either a substitution or fusion tiling space, we can define spaces Ωn

to be the space of tilings from Ω with the n-supertiles considered to be the set of
prototiles by ‘forgetting’ all the tiles in their interiors. Since every tiling in Ω is a
union of n supertiles for any n, this is a well-defined tiling space. There is always
a map from Ωn to Ωn−1 since we know how each n-supertile is constructed from
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(n− 1)-supertiles. However, this map is not necessarily invertible: there could be
tilings in Ωn−1 that could be composed into tilings of n-supertiles in more than
one way. The substitution or fusion rule is recognizable if that is not the case and
the map is a homeomorphism for each n.

It is convenient to work with fusion rules for which all of the supertiles grow
in area in a reasonable way, for instance without becoming arbitrarily long and
skinny. One way to avoid this is to require that the boundaries of supertiles are
small relative to their interiors. To this end, for r > 0 and any set U ∈ Rd we define
(∂(U))+r to be the set of all points in Rd that are within r of the boundary of U .
A sequence of sets {Un} in Rd is called van Hove if for every r ≥ 0 we have that

lim
n→∞

Vol(∂(Un)
+r)

Vol(Un)
= 0. A fusion rule is van Hove if any sequence of n-supertiles

{Pn}, where Pn ∈ Pn, is supported on a van Hove sequence. This property is
sufficient to ensure that the tiling space is not empty, but it is not necessary.

The general idea behind primitivity is that given any n, there should be some
N for which every N -supertile contains n-supertiles of each type. This definition
makes sense when the sets of supertiles are finite. When they are not, we simply
require that for any n and any open set I of n-supertiles, there is an N such that
every N -supertile contains an n-supertile from I. Thus, in the ILC case is that the
size of I affects the size of N , whereas in the FLC case a single N can be chosen
for all n-supertiles. A primitive fusion or substitution has the property that for
sufficiently large N , An,N (I,Q) �= 0 for all Q ∈ PN .

5. Results about ILC tilings

5.1. Fault lines and fractured tiling spaces

We have seen that it is easy to construct tilings of the plane with infinite local
complexity. An important question to ask is, what are the ways a planar tiling
can have ILC? When the prototile set is finite, the answer is given in [16]. Up to
translation it can only happen if there are arbitrarily long line segments composed
of tile edges where the tiles meet up in arbitrarily many different ways.

Theorem 5.1 ([16]). A tiling of the plane with translated copies of a finite set of tiles
either has only a finite number of local configurations or else contains arbitrarily
long line segments in the boundaries of the tiles.

Kenyon also shows in [16] that if we allow infinitely many rotations of our
finite prototile set there is only one additional way that infinite local complexity
can arise: Some of the tile edges would have to have circular arcs, so that a circular
patch of tiles can be constructed. This patch of tiles could then be rotated by
arbitrary amounts inside any patch of tiles that surrounds it to create infinitely
many different patches.

Kenyon called an infinite line of tile boundaries along which tiles can slide
an earthquake and elsewhere in the literature it is often called a fault line. Unfor-
tunately fault lines do not have a unified definition, so we provide one here.
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Definition 5.2. A tiling T in a tiling space Ω is said to have a fault line  if there
are infinitely many nonequivalent tilings T′ such that T′ = T on one side of  and
T′ = T− x on the other side of  for some x ∈ R2 that is parallel to .

However, fault lines are not topologically invariant: one can take a tiling space
containing fault lines and relabel all the tiles by ‘collaring’ (see Chapter 3 of this
book, pp. 73–104): each tile is labelled by its corona. The resulting tiling space
will not contain fault lines per se, but they will still be fractured. We offer here
a new definition that is not specific to planar tilings and may be related to the
proximal and asymptotic structure of tiling spaces (see [4]).

Definition 5.3. A space Ω of tilings of Rd has a fracture in the direction of x ∈ Rd

if there exists some y ∈ Rd and two tilings T,T′ ∈ Ω such that

lim
t→∞

d(T− ty,T′ − ty) = 0 and lim
t→−∞

d(T− ty,T′ − x− ty) = 0.

So a tiling space is fractured in the direction x if there are tilings that asymp-
totically agree in the y direction and, after an offset, asymptotically agree in the
−y direction. There can be a large region ‘in the x direction’ in the middle of
the tiling on which they do not agree. In one dimension, a tile near the origin
could be added, removed or resized. In two dimensions, tilings with fault lines are
fractured, and so are any tilings that are MLD to them. Moreover tilings that
are asymptotically proximal will also have fractured tiling spaces. As an example,
consider a chair tiling with an infinite diagonal of chairs that can be completely
flipped without altering the rest of the tiling.

Notice that y is not uniquely defined. It obviously can be rescaled, but in
two or higher dimensions the direction can be changed. The direction of x, how-
ever, cannot be changed without changing the direction of the fracture. A tiling
space can have multiple fractures in different directions: see [8] for a planar tiling
with translationally-finite prototile set that has fault lines in three independent
directions.

Fractures and fault lines play an important role in the spectrum of tiling
dynamical systems. Recall the following definition from higher-dimensional dy-
namics.

Definition 5.4. The dynamical system (Ω,Rd) has an eigenfunction f : Ω → C
with eigenvalue α ∈ Rd if for any T ∈ Ω and y ∈ Rd,

f(T− y) = exp(2πiα · y)f(T).

Theorem 5.5. 2 If f ∈ C[Ω,C] is a continuous eigenfunction with eigenvalue α ∈ Rd

and Ω has a fracture in the direction of x, then α · x is an integer.

Proof. Suppose that y ∈ Rd satisfies the fracture definition for tilings T,T′ ∈ Ω.
Since f is uniformly continuous, 0 = lim

t→∞
(f(T − ty)−f(T ′− ty)) = lim exp(2πitα ·

y)[f(T ) − f(T ′)], so f(T ) = f(T ′). Similarly, taking a limit as t → −∞, we

2This result is joint with L. Sadun.
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get f(T ) = f(T ′ − x). But then f(T ′) = f(T ′ − x) = exp(2πiα · x)f(T ′), so
exp(2πiα · x) = 1 and the result is proved. �
Corollary 5.6. If the tiling space contains fractures in the direction of kx for mul-
tiple values of k ∈ R, then kα · x ∈ Z for each of them. If any of the k’s are
irrationally related, or if they can be arbitrarily small, then α · x = 0. If the k’s

have a greatest common factor m, then α · x ∈ 1

m
Z.

We will use this corollary to compute the topological spectrum of certain
direct product variation substitutions in Section 6.2.

5.2. General results for ILC fusion tilings

If a fusion or substitution rule is primitive, then the tiling or sequence system
associated with it is necessarily minimal regardless of local complexity [11, 12]. It
is possible for a fusion tiling space or substitution sequence space to be minimal
even if it is not primitive, the Chacon substitution and its DPV analogues being
examples. If a fusion is both recognizable and van Hove, primitivity and minimality
are equivalent:

Theorem 5.7 ([12]). If the fusion rule R is primitive, then the fusion tiling dynam-
ical system (ΩR,Rd) is minimal. Conversely, a recognizable, van Hove fusion rule
that is not primitive cannot have a minimal dynamical system.

In Section 3.2 we defined a trim set of patches (basically, one that contains no
repeats up to translation), and we explained in Section 3.3 why it is appropriate to

consider freqμ(P ) =
μ(ΩI,U )

Vol(U)
to be the frequency of occurrence of patches from I

throughout Ω (basically, the ergodic theorem). For fusion tilings, we can say more
about frequencies of patches by understanding frequencies of supertiles. While our
discussion is written in the context of ILC fusions, we note that the construction
can be simplified to apply to the FLC case.

Throughout this discussion it is essential that our fusion rule be recognizable
and van Hove, and we refer the reader to [12] for proofs and more details. Consider
a set I ⊂ Pn of n-supertiles. Supposing that we have chosen the control points of
our n-supertiles so that each supertile contains some ε-ball around the origin, I is
automatically a trim set since by recognizability a tiling cannot have more than
one supertile at any given location. In a slight abuse of notation we define ΩI,U to
be the set of all tilings that contain an n-supertile from I at a location determined
by U3.

We define a measure ρn on Pn defined by ρn(I) =
μ(ΩI,U )

Vol(U)
. When μ is a

probability measure, each ρn is volume normalized in that

∫
P∈Pn

Vol(P )dρn = 1.

3The set I of n-supertiles corresponds, by recognizability, to a trim set of patches of ordinary
tiles, each of which is larger than its supertile by some recognizability radius.
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This can be seen as follows. Suppose that I1, I2, . . . , Ij is a partition of Pn into sets

of very small diameter and that Pk ∈ Ik for all k = 1, . . . , j. Then
⋃
Pk

ΩPk,Vol(Pk) ≈

Ω and so

j∑
k=1

ρn(Pk)Vol(Pk) ≈ μ(Ω) = 1.

The transition map An,N can be thought of as inducing a map from measures
on PN to measures on Pn. For a fixed trim set I ⊂ Pn, the function An,N (I,Q)
can be defined as the number of times an n-supertile from I is contained in the
N -supertile Q. Since each such Q contains only finitely many n-supertiles this
function takes values in the nonnegative integers.

Let n < N be fixed, let νN be a measure on PN and let I ⊂ Pn be a trim
set. We define a measure νn on Pn as

νn(I) = (An,NνN )(I) =

∫
Q∈PN

An,N (I,Q)dνN .

We say that a sequence of measures {νn}∞n=0 is transition-consistent if whenever
n < N , νn = An,NνN . This means that the frequencies that νn assigns to n-
supertiles is consistent with the frequencies that νN assigns to N -supertiles, for
any n ≤ N .

The fact that translation-invariant probability measures give rise to sequences
of volume normalized and transition consistent supertile measures and vice versa
is the subject of the next theorem.

Theorem 5.8 ([12]). Let R be a fusion rule that is van Hove and recognizable. Each
translation-invariant Borel probability measure μ on ΩR gives rise to a sequence
of volume normalized and transition consistent measures {ρn} on Pn. Moreover,
for any trim set of patches I

freqμ(I) = lim
n→∞

∫
P∈Pn

#(I in P )dρn, (4)

where #(I in P ) denotes the number of translates of patches in the family I that
are subsets of P . Conversely, each sequence {ρn} of volume normalized and transi-
tion consistent measures corresponds to exactly one invariant measure μ via equa-
tion (4).

This means that the invariant measures for a recognizable van Hove fusion
system are almost completely determined by the transition maps, a fact that is
consistent with substitution sequence and self-similar tiling theory. In those cases
one looks at the transition matrix and uses the Perron–Frobenius theorem to
conclude when the system is uniquely ergodic. In the FLC fusion case the transition
maps are always matrices and we can parameterize the set of all possible measures
by a Choquet simplex related to the matrix system.
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5.3. ILC fusion tilings with finitely many n-supertiles

When there are finitely many prototiles and finitely many n-supertiles at every
level, then any set of n-supertiles contains only finitely many patches of a given
size. These patches are said to be literally admitted by the fusion rule. If the
tiling space has infinite local complexity there can be patches that are not literally
admitted; we call these admitted in the limit. An easy corollary to Theorem 5.8 is
that the patches that are admitted in the limit have frequency 0. More precisely,
if we take any trim set I of patches that are admitted in the limit, we clearly have
that #(I ∈ P ) = 0 for any supertile P , so freqμ(I) = 0 by equation 4.

In fact, the set of literally admitted patches is countable, and they support
the frequency measure. Thus the frequency measure is atomic and for any trim set

of patches I, freqμ(I) =
∑
P∈I

freqμ(P ). This is Theorem 4.4 of [12].

Often in the planar situation we can prove topological weak mixing or ob-
tain strong restrictions on the topological spectrum by combining Theorem 5.1
and Corollary 5.6. The infinite local complexity comes from fault lines that in
many examples have arbitrarily small shears. If this happens in two independent
directions the tiling space in question is topologically weakly mixing.

5.4. Homeomorphism of ILC and FLC tiling spaces

Every non-periodic FLC tiling space is homeomorphic, or even topologically con-
jugate, to an ILC tiling space obtained by collaring with infinite collars. It is often
possible to obtain an ILC tiling space from an FLC one geometrically, too. That
makes it important to know whether a given space with infinite local complexity
can be converted into one with finite local complexity. This classification problem
is open in all dimensions except dimension one.

In one dimension it is possible to detect when a tiling space with ILC is
homeomorphic to a tiling space with FLC. It is necessary but not sufficient for
the tiling space to have a totally disconnected transversal and expansive dynamics
since all tilings with FLC have those properties. However, it is possible to construct
examples of ILC tilings that have these properties but cannot be homeomorphic
to FLC tiling spaces, for instance by deforming the tiles of a solenoid extension
[12]. The property a one-dimensional tiling space (Ω,R) needs is not expansivity,
it is strong expansivity: the first return map to the transversal should be expansive
as a Z-action.

Theorem 5.9 ([12]). If a one-dimensional tiling space is strongly expansive and the
canonical transversal is totally disconnected, then it is homeomorphic to a one-
dimensional tiling space with finite local complexity.

There is a more general definition of strong expansivity for tilings of Rd, but it
seems unlikely that the d-dimensional analogue of Theorem 5.9 holds. A potential
counterexample that is a variant of the pinwheel tilings appears in [12]. It has
uncountably many ergodic measures and therefore is probably not homeomorphic
to a tiling space with finite local complexity.
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6. Analysis of our three main examples.

6.1. Example 5: variable size tile lengths

Consider Ω to be the tiling space admitted by the substitution in Example 5.
Recall that the tile labels and lengths are in [1, 3], the expansion factor is 3/2,
and an expanded tile is decomposed into two tiles of lengths 1/3 and 2/3 of the
expanded tile if it is larger than 3 and otherwise not subdivided.

6.1.1. Minimality. The tiles in any tiling T all have lengths of the form (2j/3k)y,
where y ∈ [1, 3] and j and k are nonnegative integers. These lengths are dense in
[1, 3] for any fixed y, so we know that it is possible that the orbit of T is dense in
Ω. We prove it by establishing primitivity.

The N -supertile of length L is made up of n-supertiles of lengths (2j/3k)L,
for nonnegative integers j ≤ k in a range of values that depends more on N than
it does on L. The largest value of k, denoted k̄, comes from the rightmost n-

supertile of L and has the property that (2/3)k̄L ∈ [(3/2)n, 3(3/2)n]. The smallest
value of k, denoted k, comes from the leftmost n-supertile and has the property
that (1/3)kL ∈ [(3/2)n, 3(3/2)n]. All values of k between these two values occur,

and all values of j for which (2j/3k)L lie in range also appear, with the js being
consecutive integers in the range.

Consider a set of n-supertiles of diameter ε, so that all of the lengths are
within ε of each other. We can choose N such that for any length L, the maximum
of k is sufficiently large so that every interval of size ε contains enough points of the

form (m/3k̄)L that at least one of these points must be of the form (2j/3k)L, where
k ≤ k ≤ k̄. This proves the substitution is primitive. Theorem 5.7 implies that
the variable size substitution example must therefore have a minimal dynamical
system.

6.1.2. Weak mixing. This system has no measurable or topological eigenvalues, as
shown in this clever proof from L. Sadun. Let Ω be the tiling space from Example
5 and let Ωλ be the tiling space obtained by expanding every tiling in Ω by the
linear map f(x) = λx for some λ > 1. Then eigenvalues of Ωλ are exactly the
eigenvalues of Ω multiplied by 1/λ.

On the other hand we can consider the tiles in Ωλ, which live in [λ, 3λ], to
be lengths for supertiles in Ω, and apply the decomposition map for supertiles
to each tiling in Ωλ. This will result in tilings from Ω and we have a map from
Ωλ to Ω that is a bijection everywhere except on the set of measure 0 for which
the subdivision rule is discontinuous. This means that Ωλ and Ω are measurably
conjugate and therefore have the same eigenvalues.

These two facts together mean that the set of eigenvalues of Ω (i.e., its spec-
trum) is invariant by scaling by any λ > 1. This means that the spectrum must
either be R, the nonnegative reals, the nonpositive reals, or 0. However, we know
that since Ω is separable the spectrum must be countable. Thus the only possible
measurable eigenvalue is 0. Since continuous eigenfunctions are measurable this
also implies topological weak mixing.
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6.1.3. Invariant measure. The analysis of the related fusion rule in [12] can be
adapted to find the sequence {ρn} of transition-consistent and volume-normalized
measures on Pn. We abuse notation and consider the set of n-supertiles to be the
interval [(3/2)n, 3(3/2)n], in which case the measures of sets of supertiles is given

by ρn([a, b]) =

∫ b

a

fn(x)dx, where dx is ordinary Lebesgue measure. The only

choice allowing a transition-consistent and volume-normalized sequence is

fn(x) =

⎧⎪⎪⎨⎪⎪⎩
1

(3 ln 3− 2 ln 2)x2
(3/2)n ≤ x ≤ 2(3/2)n

3

(3 ln 3− 2 ln 2)x2
2(3/2)n < x ≤ 3(3/2)n.

Although it is not obvious, it is true that the system is uniquely ergodic.

The invariant measure is invariant under scaling in the sense that μ(ΩI,U ) =
μ(ΩλI,λU ) for a trim set I and denoting by λI the set of patches obtained by
rescaling and subdividing I. This probably implies that the measure is absolutely
continuous.

6.1.4. Transverse topology. As usual for tilings of the line, the transversal Ξ(Ω)
is the set of all tilings that have a tile endpoint at the origin. Although it appears
that the transversal might be connected, it is in fact a Cantor set.

To show that any given tiling T ∈ Ξ(Ω) is not isolated, consider any ε > 0 and
an N -supertile in T that contains B2/ε(0). (Even though this supertile may not be
a natural supertile of T, it must exist since T is admitted by the substitution rule).
There are lots of supertiles that are within ε/2 of this supertile in the patch metric,
since we can choose a supertile as close to the original in length as necessary to
ensure they subdivide to comparable tiles. Select one and let T′ ∈ Ξ(Ω) be a tiling
with this supertile at the origin. Then d(T,T′) < ε.

To show that the transversal is totally disconnected consider two tilings
T,T′ ∈ Ω that are close, so that they very nearly have the same patch of tiles
in a large ball B around the origin. All the tiles in T are multiples 2j/3k of each
other, as are those in T′. Thus in B all the tiles in each are multiples by the same
2j/3k of their respective tiles at the origin. Suppose the tile for T at the origin is
slightly larger than that in T′. All the tiles in B in T are then larger than those
of T′. Outside of B there will be a tile in T′ that is of size 3 − ε such that in the
corresponding region in T the 1-supertile is of size slightly larger than 3 and thus
is broken into two tiles of sizes slightly greater than 1 and 2. Using this difference
we can partition the transversal into two clopen sets: one containing all tilings
with a tile of size less than or equal to 3/2 at the left side of this location and one
containing all tilings with a tile of size greater than 3/2 there.

6.1.5. Complexity. Let N(ε, L) be the complexity function that counts the mini-
mum number of patches of dL-radius ε it takes to cover Ω. Recall that a dL-ball of
radius ε is the set of all tilings that have a patch that agrees with a fixed tiling on
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[−1/ε, L+ 1/ε] up to ε. We concern ourselves with the situation where L is much
greater than 1/ε.

In order to specify the fixed tilings we use as the ‘centers’ of the balls, we need
to specify up to ε all patches of size L+2/ε. To do so, we need to find the smallest
supertile that contains an interval of that size. The length of that supertile is on
the order of L and we need to specify it up to ε, so there are on the order of L/ε
choices for that. We also need to specify precisely where within the supertile we
are up to ε, and that gives us on the order of L/ε choices also. This means that
the complexity goes as L2/ε2. This is polynomial complexity, and the ε-entropy is
zero.

6.2. Example 6: Direct product variation

We begin our analysis of the DPV tiling space Ω with an alternative description
of how to obtain it by projection from a structure in R3. Then we show that
it is minimal and show how to compute the invariant measure. The topological
spectrum and complexity are computed and the transversal is discussed for varying
values of tile widths. We conclude the section with a brief description of how the
discussion would extend to other DPVs.

6.2.1. Projection method. A standard trick with one-dimensional substitution se-
quences is to construct the so-called ‘broken line’ or ‘staircase’ of a substitutive
sequence. The staircase lives in R|A| and is constructed iteratively by starting at
the origin, taking a step in the %ex(0) direction, then one in the %ex(1) direction, and
so on. It is well known that such a staircase will approximate the Perron eigenline
of the substitution matrix, and projection of the staircase onto the Perron eigenline
along the weak eigendirections yields the natural tile lengths for the corresponding
self-similar tilings. Projection of the staircase onto other lines or in other directions
produces different tilings that may or may not be conjugate to each other, depend-
ing mostly (it seems) on the expansion factor of the system. When the expansion
matrix is Pisot all the points on the staircase lie within a bounded distance of the
eigenline. When it is not the staircase can wander arbitrarily far away from the
eigenline, but it comes close to the eigenline repeatedly.

In a planar tiling context there are similar constructions when the expansion
constant is Pisot [1] or if other special conditions hold [2]. In those cases one
constructs a ‘discrete plane’ made up of two-dimensional facets in some Rn. The
conditions in our examples do not satisfy these conditions, but nevertheless it is
possible to construct a discrete surface that projects onto our DPV tilings. This
surface has holes that cannot be seen when we project in a direction that forms
a tiling. We explain the method for our basic example here and a description of
how to generalize it appears at the end of this section.

The stepped surface will appear in R3 and can be constructed by substitution.
The A = a× c tile corresponds to the unit square spanned by the origin, (1, 0, 0)
and (0, 0, 1). The B = b × c tile corresponds to the unit square spanned by the
origin, (0, 1, 0), and (0, 0, 1). The substitution rule is pictured in Figure 3.
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→ →

Figure 3. The facet substitution.

It can be proved that the substitution can be iterated indefinitely as long
as one follows concatenation rules; alternatively the n-supertiles can be seen as
fusions of the (n− 1)-supertiles according to the same basic combinatorics as the
original fusion. In Figure 4 we show a 3-supertile at an angle different than one of
the projection angles we will use to see the planar tiling. From this angle the holes
in the surface are visible, and since the facet of the hypercube corresponding to
an a× b is not an element of our tile set the holes are parallel to the xy-plane. To
obtain our planar DPV with parameters a, b, c, we simply take the stepped surface

and project it using the matrix

(
a b 0
0 0 c

)
.

Figure 4. The 3-supertile of type a× c.

Now we begin to see why the fault lines occur. The holes correspond to pieces
of fault line and we see a large hole halfway up the supertile that will continue to
grow as we iterate the substitution. In the limit the top and bottom halves become
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totally severed and this is reflected in Ω by tilings with arbitrary shifts along the
fault line.

6.2.2. Minimality and invariant measure. Our example has transition matrix M =(
2 2
6 0

)
as a standard substitution rule and so An,N = MN−n. Since M is a

primitive matrix we immediately see that the fusion rule must be primitive and
so its dynamical system is minimal.

Using results from [12] we know that for any width parameters a and b the
dynamical system will be uniquely ergodic. The frequency measure on patches is
atomic and gives all patches that live in some n-supertile a positive frequency. All
patches that are admitted only in the limit and never appear in any n-supertile
have measure 0.

The precise nature of the ergodic measure depends on a and b for several
reasons. First off, if a and b are rationally related then the tiling space has finite
local complexity. The least common denominator q determines the horizontal off-
sets, and all all multiples of 1/q occur. This means that the patches that we are
measuring the frequency of are different as we change the parameters. If a and b
are rationally independent then we have infinite local complexity occurring along
horizontal fault lines (i.e., there is a fracture in the direction of (1, 0)). Patches
with frequency 0 appear.

The Perron eigenvalue is λ = 1 +
√
13, which is the product of the length

expansions of the one-dimensional substitutions, and it has left eigenvector %v =
(λ, 6). This vector, when normalized by volumes of Pn(A) and Pn(B), gives the
frequencies ρn(A) and ρn(B) of those supertiles. The volume of Pn(A) or Pn(B) can
be computed in two ways for a general a and b. Since Vol(A) = ac and Vol(B) = bc,
we see that (Vol(Pn(A)),Vol(Pn(B))) = (ac, bc) ∗ Mn. On the other hand the
volume of Pn(A) or Pn(B) is 2nc times the length of the nth one-dimensional
substitution of the a or b tile. To find ρn, we see that it is (λ, 6)/K, where K =
λPn(A)+6Pn(B). In the special case where a and b are natural tile lengths for the
horizontal substitution, the tiling is self-affine and K is a constant multiple of λ−n.

6.2.3. Topological Spectrum. No matter what our choice of a and b are there will
be eigenvalues of the form (0, cZ[1/2]). This is because there are functions that
detect only where a tiling is in the vertical, solenoid hierarchy.Whether or not there
is any horizontal spectrum depends on whether a and b are rationally related.

If a and b are irrationally related, the fault lines provide us with fractures
of the form (k, 0) for arbitrarily small k. By Corollary 5.6 we see then that any
eigenvalue must be of the form (0, y), so the spectrum we retain is that of the
solenoid.

If a = pb/q, then we obtain additional discrete spectrum of the form (kp/a, 0),
for k ∈ Z. The eigenfunctions keep track of the horizontal offsets of, say, the tile
containing the origin. f(T) would equal the displacement of T horizonally from
the nearest 1/q piece of the tiling.
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6.2.4. Transverse topology. The topology of the transversal depends on whether
a and b are rationally related. If they are, then the tiling space has FLC and the
transversal is a Cantor set. However, when a and b are not rationally related the
topology of the transversal is not well understood. We show that the transver-
sal is not a Cantor set and that in particular it is not totally disconnected. For
concreteness, assume the control points of the tiles are their centers of mass.

Any tiling in the transversal that has a fault line is in a connected component
of the transversal that contains all possible shifts of the half-plane that does not
contain the origin. Consider a point T ∈ Ξ(Ω) that does not have a fault line. It
is arbitrarily close to tilings that do have fault lines: any ball around the origin is
contained in some large supertile of T, and that supertile can be contained in a
tiling with a fault line. Thus T exactly agrees with a continuum of tilings in Ξ(Ω)
on this supertile.

In this example there are infinitely many connected components that are
distinguished from one another by where the tiling is in the vertical, solenoid hier-
archy. However it is not clear whether a location in the hierarchy contains multiple
connected components that are distinguished in some way by the horizontal substi-
tution. Understanding the transversal for tilings with both vertical and horizontal
fault lines is even more mysterious.

6.2.5. Complexity. The complexity of Ω will depend on the parameters a and b.
In the case where a and b are rationally related and Ω has FLC we get a tiling
space that has higher complexity than a planar self-similar tiling because of the
unbounded nature of the holes. For simplicity suppose a and b are integer multiples
of 1/q, for q ∈ N. Suppose that L is greater than 1/ε and both are greater than
q. We need to count how many patches of size L there are, up to ε. There is some
minimum size of supertile for which every patch of size L is contained entirely
within a supertile or across the boundary of 2, 3, or 4 supertiles. There are only a
finite number of choices for such patterns since we only have two supertile types.
Inside of any such pattern we have a bounded multiple of L2/ε2 places to put the
corner of a patch; moreover for any patch that has two or more supertiles there are
about qL ways they can fit together. This implies that the complexity as L →∞
is bounded above and below by bounded multiples of qL3/ε2.

Now suppose instead that a and b are irrationally related. Most of the argu-
ment is the same except that now there are L/ε ways to fit two or more supertiles
of size L together. This leaves us with a complexity bounded above and below by
bounded multiples of L3/ε3. In either case we have polynomial complexity C(ε)L3,
with the exponent 3 being notable because it is greater than the ambient dimension
of the tiling spaces. Although the system still has entropy 0, it is more complex
than planar FLC self-similar tilings.

6.2.6. Other DPVs. Any DPV can be seen as the projection of a higher-dimen-
sional stepped surface, but we will keep our discussion in the plane for simplicity.
If the alphabets are A and B, then there are |A||B| tile types, all of the form
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ai × bj . The unit hypercube in R|A|+|B| = R|A| × R|B| has ((|A|+ |B|) choose 2)
two-dimensional facets that contain the origin. We need |A||B| of them for our
stepped surface, which we construct as follows. Let the standard basis vectors
in R|A| correspond to the letters in A and let the standard basis vectors of R|B|

correspond to those in B, so that the tile ai×bj is represented by the corresponding

facet that contains the origin, one standard direction in R|A|, and one in R|B|. The
remaining hypercube faces that contain the origin are those that take both other
vectors in either R|A| or R|B|. These don’t correspond to tiles in the DPV and so
do not appear in the facet substitution (or rather, they appear as holes). To give
the tiling parameters a1, a2, . . . , a|A|, b1, . . . , b|B| we simply project it to the plane

via the matrix

(
a1 · · · a|A| 0 · · · 0
0 · · · 0 b1 · · · b|B|

)
.

It is easy to construct DPVs that have fractures in both the horizontal and
vertical directions by varying the direct product of two substitutions that have
non-Pisot length expansions. (The primary example in [9] is of this form.) By
choosing irrationally related side lengths and irrationally related height lengths
we obtain a topologically weakly mixing system.

6.3. Example 7: Solenoid extensions

Here we consider the tiling space Ωc obtained by the compact label set L = N0∪Lc.
For convenience of notation we will make a partial order on the label set: k < m
whenever that is true for k and m as integers, and also if k is an integer and
m ∈ Lc. Every integer label is ‘less than’ every compactification label. We will see
that on the measurable level the Ωcs are all the same, but on the topological level
they are quite different.

6.3.1. Minimality. By looking at P4(k) for some k ≥ 4 we can think about the
transition map An,N : Pn → PN .

P4(k) = P3(k)P3(3) = k0102010 30102010.

We have one 3 and one k; a pair of 2s, four ones, and eight zeroes. If instead we
break it into 1-supertiles, we have four of type 1, two of type 2, and one each of
types 3 and k. We begin to suspect that the number of n-supertiles of type m, for
m ≥ n, in an N -supertile is equal to the number of tiles of type m and has nothing
to do with N as long as N is larger than m. If m is larger than N , then it is 0
unless we are in an N -supertile that is also of type m. In the former case we see
that the number of n-supertiles of type m in PN (k) is 2N−n/2m−n+1 and we have

An,N (m, k) =

⎧⎪⎨⎪⎩
2N−(m+1) if n ≤ m < k and m < N

1 if N ≤ m = k

0 otherwise.

For a fixed n and ε > 0, we can always choose an N such that every N -
supertile contains a tile arbitrarily close to Pn(m) for any m ≥ n. The details of this
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will depend on the topology of L, in particular on the speed with which sequences
converge to elements of Lc. This proves primitivity and hence minimality.

6.3.2. Measurable conjugacy of Ωc to the dyadic solenoid. Every solenoid exten-
sion is measurably conjugate to the dyadic solenoid, defined as the inverse limit
S = lim

←−
(S1,×2). Elements of S take the form (x0, x1, x2, . . . ) such that for each n,

2xn ≡ xn−1 mod 1. We define f(T) = (x0, x1, x2, . . . ) as follows. The position of
the origin in the tile containing it determines x0, choosing x0 = 0 if the origin is on
the boundary between two tiles. The origin is either in the left or right half of the
1-supertile that contains it. If it is in the left half we let x1 = x0/2 and if it is in the
right half or exactly in the middle we let x1 = (x0 +1)/2. Once this is determined
we look at whether the origin is in the left half of the 2-supertile containing it or
if it is in the right (or exactly in the middle). In the former case we let x2 = x1/2
and in the latter we let x2 = (x1 + 1)/2. Since the origin lies somewhere in an
n-supertile for every n ∈ N0 we can inductively define f for all of Ωc.

Every tiling T ∈ Ωc that doesn’t contain any element of Lc is sent to a
unique point in S. Since such tilings form a set of full measure we have measurable
conjugacy. The rest of the tilings in Ωc do not map in a one-to-one fashion since
a tiling that is made of two infinite-order supertiles maps to an element of the
solenoid that knows the position of the origin in its supertile but not what element
of Lc the tiling contains. This also explains why the one-point compactification is
topologically conjugate to the solenoid.

Since Ωc is measurably conjugate to the dyadic solenoid it must be uniquely
ergodic and share its purely discrete measurable spectrum Z[1/2]. The frequency
measures are supported on the subset of the transversal on which f is one-to-one,
i.e., no infinite-order supertiles. However, the nature of the limits does affect the
nature of the measurable isomorphism. A ball of radius ε around a tiling with a
given element of Lc at the origin maps onto a set of equal measure in the solenoid,
but this set will vary as the elements of Lc do, or when the sequences that converge
to them do.

6.3.3. The topological impact of Lc. To begin we consider the one-point compact-
ification that has elements of N0 converging monotonically to a single limit point
. In this case we can see that Ωc is topologically conjugate to the dyadic solenoid
using the argument from the previous section on measurable conjugacy. In that
argument the map is one-to-one for each tiling in Ωc that does not contain an
element of Lc but multiple-to-one on those that do. However, the multiple copies
are in correspondence to the number of elements of Lc. Since in this case there
is only one element of Lc the map continues to be one-to-one on the exceptional
tilings, so it is one-to-one everywhere and thus provides a topological conjugacy
to the dyadic solenoid.

This gives us the unusual situation where the tiling dynamical system is not
expansive. To see this, choose any δ > 0 and find an N such that if N ′, N ′′ > N ,
then the distance between prototiles labelled N ′ and N ′′ is less than δ. Any two
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tilings T and T ′ for which the origin sits in the same location in its N -supertile
will then satisfy the property that d(T − x, T ′ − x) < δ for all x ∈ R regardless of
the type of the N -supertile. The way to think about this is that each N -supertile
differs from any other only on the first tile, and those first tiles are labelled greater
than N and thus differ by less than δ.

The situation for two-point compactifications becomes more subtle. The ver-
sion for which all even numbers converge monotonically to  and all odd numbers
converge monotonically to ′ is shown to be topologically conjugate to the FLC
tiling space generated by the ‘period-doubling’ substitution X → Y X, Y → XX ,
where X and Y are unit length tiles. If instead N0 is partitioned into two sets S
and S′, one converging to  and the other to ′, the measures of clopen subsets of

the transversal are determined by α =
∑
n∈S

2−n, and thus so is the gap-labelling

group. Two tiling spaces, one with α and the other with α′ can be compared, and
whether or not they are topologically conjugate or even homeomorphic depends
on how these constants are related. See [12] for details.

By compactifying with limit sets that have an interesting topology, we can
obtain tiling spaces with nontrivial cohomologies in Hn. These examples can be
distinguished by their cohomology.

6.3.4. Transverse topology. The topology of the transversal depends on the topol-
ogy of Lc. Suppose that T,T′ ∈ Ξ(Ω) are two tilings that have an element of Lc
at the origin. Note that T and T′ are made of two infinite-order supertiles and
thus can only differ at the origin. So if it were possible to make two open sets in
Ξ(Ω) that disconnected the transversal and contain one each of T and T′, those
sets would correspond to two open sets in Lc that disconnected Lc. Conversely,
if Lc can be separated by two open sets, then if T and T′ contain an element of
these sets at the origin, we can partition the rest of the elements of L so that they
are close to one or the other of the subsets of Lc to create a pair of open sets that
disconnect Ξ(Ω) and contain T and T′ respectively. Thus Ξ(Ω) is disconnected if
and only if Lc is.

In particular, the one- and two-point compactifications of the solenoid have
totally disconnected transversals. The one-point compactification is not strongly
expansive because it is not expansive. To see this, consider a fixed δ > 0 and let
d(T1,T2) ≤ δ, where T1 and T2 have an N -supertile beginning at the origin,
where N is sufficiently large that any two elements of Lc that are greater than N
are within δ in the tile metric. Then T and T′ differ at most on the beginning of
each N -supertile, but these are all within δ of one another in the patch metric.
Thus d(T − k,T′ − k) < δ for all k ∈ Z and the dynamics on the transversal are
not expansive (and indeed the overall dynamical system is not expansive). Thus
Theorem 5.9 confirms that the one-point compactification is not homeomorphic to
any FLC tiling system.

By a similar argument we can show that the two-point compactification is
homeomorphic to a FLC tiling space by Theorem 5.9. This is because even if two
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tilings very nearly agree on the central N -supertile, each of them are bound to
have N -supertiles whose first tiles are close to distinct elements of Lc and thus
not to each other.

If Lc is not totally disconnected, then its solenoid extension is not homeo-
morphic to a one-dimensional tiling space with finite local complexity.

6.3.5. Complexity. This is the topological invariant that lets us see that the one-
point compactification, while failing to have finite local complexity, does so in a
way that is much less complex than a non-periodic FLC tiling space. In order to
be specific about complexity let us use N1(ε, L), the minimum number of dL- balls
of radius ε balls it takes to cover Ω. Take N ∈ N0 such that any element n ≥ N is
within ε of the limit point∞ in L. Every n-supertile with n ≥ N is within ε of any
other in the patch metric. This means that the system is basically periodic with
period 2N , up to ε, and N1(ε, L) is bounded multiple of 2N once L is sufficiently
large relative to ε. This means that the system has bounded complexity in the
sense of Section 3.4.

No matter how complicated Lc is, the complexity cannot become too high
and there will always be zero entropy. This is because, for any ε > 0, an ε-cover of
L into N elements effectively reduces Ωc to a solenoid extension on N elements.

7. Important questions

There are two main types of questions that seem to be important in the study
of tiling spaces with infinite local complexity. One is to ask, what properties of
these spaces are invariant under homeomorphism or some other type of conju-
gacy? Another is to ask, how do combinatorial and geometric factors influence the
dynamical, measure-theoretic, topological, or complexity properties?

It was already known from [20] that infinite local complexity is not a topo-
logical invariant. The solenoid extensions considered here show that infinite local
complexity is not preserved by measurable or topological conjugacy either. So what
are the important classes of infinite local complexity? Even though FLC is not an
invariant property, there should be some properties that guarantee that a tiling
space is topologically conjugate, or measurably conjugate, or just homeomorphic
to one that is FLC. In one dimension, Theorem 5.9 gives a topologically-invariant
characterization of this class. In higher dimensions geometry becomes an obsta-
cle and a direct generalization is unlikely to be sufficient: the methods used in
the one-dimensional proof don’t produce valid tilings in higher dimensions. So the
topological classification of FLC in 2 or higher dimensions remains unresolved,
along with the dynamical classification in any dimension.

The property of being constructed from a finite set of prototiles is also not
invariant. A simple example is the tiling space made out of unit square tiles that lie
in rows that are offset by random amounts. We can introduce an infinite number of
tile types symbolically, by constructing an infinite label set given by all the possible
coronas, which produces a topologically conjugate tiling space. Alternatively, we
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can introduce an infinite number of tile types geometrically by taking the space of
dual tilings. If we use the centers of the tiles as the vertices of the dual prototiles,
the dual prototile set consists of one square and infinitely many triangles of equal
areas but different angles, and is not even compact. Since many important tiling
models assume a finite prototile set, knowing properties that guarantee that a
space is equivalent to one with this property seems essential.

The combinatorics in the tilings in the last paragraph are all basically the
same and depend only on whether an offset between rows is zero or not. Thus
the combinatorics of that particular tiling space do not reveal information about
local complexity. By way of contrast, the combinatorics of the DPV of Example
6 will determine whether the tiling space has finite or infinite local complexity.
The interplay between combinatorics and complexity is especially evident in the
DPV case. If one does not vary the direct product substitutions, no geometric
factors can influence the local complexity of the tiling space: it is guaranteed to
have FLC. But if one does vary the direct product to produce a DPV, then the
local complexity depends on several factors: the inflation constant, the specific
combinatorics of the substitution, and the sizes of the tiles.

More generally, in the category of primitive fusion or substitution tilings the
interplay between combinatorics, geometry, number theory, topology, and dynam-
ics is an important area of investigation. It is known that some form of Pisot
condition on the expansion factor has a profound effect on dynamics and complex-
ity (cf. [22, 9, 5]). Such Pisot conditions enforce a rigidity on the tiling space; the
dynamics and complexity are severely restricted. In the absence of a Pisot condi-
tion, combinatorics and geometry can influence the tiling space in numerous ways.
In order to understand certain tiling models it is important that we understand
the nature of this influence.
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Abstract. We discuss constructions of spectral triples for spaces which are
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1. Introduction

Alain Connes’ noncommutative geometry program is based on translating the
ordinary notions of geometry into the framework of associative algebras in such a
way that they make sense also for noncommutative algebras. This is very natural
from the point of view of quantum physics. The basic objects are then no longer
spaces but algebras.

Methods from noncommutative topology – a branch of noncommutative ge-
ometry – have been applied quite early to aperiodic tilings. Although noncommu-
tative topology will be touched on only briefly in the last section of this article we
will shortly describe the history of its applications to tilings of the Euclidean space.
The start was made by Alain Connes himself and by Jean Bellissard. In fact, one
of the first examples of a “noncommutative space” which Connes discussed in his
book [11] is a description of the most famous of all aperiodic tilings in the plane,
the Penrose tilings, and Jean Bellissard proposed a C∗-algebraic approach to the
description of aperiodic media [2].

The point of departure in a noncommutative theory is an associative algebra,
often a C∗-algebra, which, in the context we consider here, should be somehow
derived from a tiling or a point set. Connes’ version of the C∗-algebra for the
Penrose tilings is based on their substitution rule. Robinson had already observed
that the substitution rule can be used to describe the set of Penrose tilings modulo
isometry as the set of {0, 1}-sequences without consecutive 1’s [25], a description
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which Connes recognized as the set of paths on the Bratteli diagram which has
inclusion graph A4. Consequently, Connes assigned to the Penrose tiling the AF-
algebra which is defined by the Bratteli diagram.

Bellissard’s C∗-algebra of an aperiodic medium is the crossed product algebra
defined by a covariant family of Schrödinger operators associated with given local
atomic potentials, a technique which had been devised for the study of disordered
systems. Such families are representations of the crossed product algebra of a
dynamical system whose underlying space is what Bellissard introduced as the
hull of the potential and whose group action is given by translation of the potential
in space (see [5] for a later review on the subject). The spatial arrangement of a
medium may be described by a tiling or a point set and thus Bellissard’s crossed
product algebra may be considered as a version of a C∗-algebra for the tiling.

Later, Johannes Kellendonk provided a direct geometric construction of an al-
gebra for a tiling, the so-called discrete tiling algebra. The algebra is the groupoid-
C∗-algebra of an étale groupoid which arises when considering the translations
which one can make in order to go from the center of one tile of the tiling to the
center of another tile [30]. No Schrödinger operator is needed for this construc-
tion, neither a substitution rule. In its most rigorous form in can be derived from
a purely combinatorial object, the inverse semigroup of the tiling, the topology
being entirely determined by the order relation on the semigroup [31].

Finally, Ian Putnam with his student Jared Anderson constructed an algebra
for a tiling again in form of the crossed product algebra of a dynamical system. This
dynamical system had been originally defined by Rudolph [54]. Its underlying space
is the continuous hull of the tiling and the algebra is referred to as the continuous
tiling algebra. The continuous hull is closely related to the hull of the potential
and often the same.

To summarise, there were several approaches to construct the basic object for
the noncommutative geometry of tilings. The first was derived from a substitution,
the second from a potential whose spatial repetition is governed by the tiling, the
third and the fourth directly from the tiling. As it turned out, the second and the
fourth algebra are essentially equal and can be seen as the stabilized version of
the third algebra. From the point of view of noncommutative topology this means
that the three latter approaches are equivalent. Connes’ AF-algebra is closest to
the third, the discrete tiling algebra, namely it is a (proper) subalgebra of the
latter. The noncommutative topological invariants of the tiling algebra are richer
than those of this AF-algebra. The AF-algebra should be regarded as describing
the substitution symmetry of the tiling rather than the tiling itself.

Newer developments concern the noncommutative topology of tilings with
infinite rotational symmetry, like the Pinwheel tilings [45], of tilings in hyperbolic
space [46] and of combinatorial tilings [50, 51]. These developments will not be
explained in this book.

All the above algebras are noncommutative C∗-algebras and come with in-
teresting maximal commutative subalgebras. These are the algebra of continuous
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functions over the continuous hull, the algebra of continuous functions over an ab-
stract transversal of that hull (often referred to as canonical transversal or discrete
hull), and the commutative subalgebra of the AF-algebra which is the fixed point
algebra of the latter under rotations and reflections.

The next step in noncommutative topology is the investigation of the K-
theory of the algebras. This has been to a large extend discussed in the review
article [34]. While it is quite simple to compute the K-groups for AF-algebras, it is
less so for crossed products and the computation of the K-theory for the discrete
or continuous tiling algebra (both yield the same answer) forms a substantial
part of tiling theory. In fact, neglecting order the K-groups are isomorphic to
cohomology groups (at least in low dimension with integral coefficients, and always
with rational coefficients), and the latter are computable for certain classes of
tilings, namely substitution tilings and almost canonical cut-and-project tilings.
This is described in the chapter about cohomology of this book (see p. 73–104).

Another part of noncommutative geometry is cyclic cohomology and the pair-
ing between cyclic cohomology and K-theory. Here the older results cover only the
pairing of the K-groups with very specific cyclic cocycles, like the trace, the non-
commutative winding number and the noncommutative Chern character. We will
have to say something more systematic about this pairing in the context of the
algebra of functions over the discrete hull in the last section of this chapter.

We end this short survey on the noncommutative topology of tiling with the
remark that both, noncommutative geometry and the theory of tilings (aperiodic
order) were strongly motivated and influenced by physics. The K-groups and their
pairing with cyclic cocycles have relevance to physics, namely to topological quan-
tization, in particular in the gap-labelling [5, 2, 3], the Integer Quantum Hall Effect
[4, 38] and other topological insulators, the pressure on the boundary [32] and the
Levinson’s theorem [35, 36, 37, 8]. These fascinating developments are also beyond
the scope of this book.

After this short description of the developments of the noncommutative topol-
ogy of tilings we come to the topic of this article, namely the noncommutative
geometry of tilings. Geometry is the investigation of a space through the measure-
ment of length or distance between points. The fundamental object in geometry
is thus a length or distance function. In noncommutative geometry it is hence a
notion which allows one to construct the analog of such a function for (possibly
noncommutative) algebras, the guiding principle being always the duality between
C∗-algebras and topological spaces. Motivated by quantum physics Connes advo-
cates that length should be a spectral quantity (we won’t try to be precise on what
that really means) and proposed the notion of a spectral triple as the fundamental
object of noncommutative geometry.

Leaving the precise definition for later (Definition 2.1) we can say that a
spectral triple is a representation of our favorite associative algebra on a Hilbert
space together with a choice of a self-adjoint typically unbounded operator on
that Hilbert space, the Dirac operator D, such that [D, ·] can play the role of a
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derivative. The notion is modeled after Riemannian spin manifolds and then cast
into an axiomatic framework which we will partly recall further down. The subject
of this chapter is to summarize what is known about spectral triples for tilings.
This subject is wide open, in fact, no satisfying spectral triple has been constructed
for the full tiling algebra (neither the discrete, nor the continuous one). What has
been achieved so far are constructions for the maximal commutative subalgebras
mentioned above. Though this seems disappointing at first sight, it has already
led to new concepts for the study of tilings.

What is a spectral triple good for? As we said already, it provides us with a
noncommutative notion of distance, namely a pseudometric on the space of states
of the algebra. In the case we consider here, a commutative tiling algebra, this
yields in particular a distance function on the discrete or the continuous hull. This
is an extra structure and we may ask: Does this distance function generate the
topology? And if not, what does this say about the tiling? A second ingredient
a spectral triple defines is a meromorphic function, the so-called zeta function
of the triple. The pole structure of the zeta-function defines various dimensions
(dimension spectrum). In the commutative case these dimensions can be compared
with Hausdorff or Minkowski dimensions which arise if the space is equipped with
a metric. A third object is a particular state on the algebra, the spectral state,
which in the commutative case corresponds to a measure, the spectral measure.
Hence one does not only have the elements of a differential calculus at hand –
via the commutator with D – but also an integral. This allows one to define the
fourth object, a quadratic form which may be interpreted as a Laplace operator.
The fifth and final object we consider here is a K-homology class, an element of
noncommutative topology which ought to be of fundamental importance for the
underlying geometry. Many more structures can be obtained from the spectral
triple of an algebra, but we will not consider them here. Instead we refer to two
rather comprehensive books on the subject [12, 22].

How does one construct spectral triples for the commutative algebra of a
tiling? The basic idea, which goes back to Christiansen & Ivan, is based on the
pair spectral triple. A space1 consisting of just two points allows for an essen-
tially unique non-trivial spectral triple depending on one parameter only which
can be interpreted as the distance between the two points. This is the so-called
pair spectral triple. Now one approximates the space by a countable dense sub-
set and declares in a hierarchical way which points are paired up to make a pair
spectral triple. The actual spectral triple is then the direct sum of all pair spec-
tral triples. There are of course a lot of choices to make along the way like, for
instance, the parameter for the pair spectral triple. One of the surprising aspects
of the construction is that it pays off to bundle up certain choices in a so-called
choice function and to consider a whole family of spectral triples parametrised by
the choice functions. Objects as the ones mentioned above and certain quantities

1Here and in the following we mean by a spectral triple for a space a spectral triple for the
(commutative) algebra of continuous functions over the space.



On the Noncommutative Geometry of Tilings 263

derived from them can then be obtained either by taking extremal values or by
averaging over the choice functions.

In different disguises this approach has been considered for general compact
metric spaces [13, 47], ultrametric Cantor sets [49], fractals [23, 24] and the spaces
of tilings and subshifts. With the exception of the results on fractals we review
these works in the unifying framework of approximating graphs with an empha-
sis on tiling and subshift spaces. More precisely, we consider in Section 3 the
spectral triple of a subshift (Section 3.1), the ordinary transverse spectral triple of
a tiling (Section 3.2), the transverse substitution spectral triple of a substitution
tiling (Section 3.3.1), the longitudinal substitution spectral triple of a prototile of a
substitution tiling (Section 3.3.2), and, combining the last to the full substitution
spectral triple of a substitution tiling (Section 3.3.3). The following sections are
then devoted to the study of the above-mentioned objects which can be defined
from the data of a spectral triple.

Section 4 is devoted to the zeta-function and the relation between its poles,
various dimensions defined for metric spaces, and, most importantly, complexity
exponents of subshifts and tilings.

In Section 5 we review the results on Dirichlet forms and Laplacians for
ultrametric Cantor sets, discrete hulls of tilings and the continuous hull of the
substitution tiling. The first proposal of a Dirichlet form for the spectral triple
of an ultrametric Cantor set has been made by Pearson and Bellissard [49]. We
discuss it in Section 5.1. It is in some sense not the canonical Dirichlet form, as it
involves an averaging over the choice functions, and integration is not defined w.r.t.
the spectral state but rather with the ordinary operator trace. It can be computed
quite explicitly in the case of transversals of substitution tilings. The significance
of this so-called Pearson–Bellissard Laplacian has still to be understood. Given
that the abstract transversal of a tiling is a Cantor set which can be provided with
an ultrametric the Pearson–Bellissard Laplacian is expected to be related to the
motion of the transverse degrees of freedom of the aperiodic medium described by
the tiling. But a detailed understanding of this expectation has still to be found.

We then review the results of a Dirichlet form defined for the full substitu-
tion spectral triple of a Pisot substitution tiling (Section 5.2). This time integra-
tion is defined using the spectral state. The main result is quite different from
the Pearson–Bellissard Laplacian. In fact, the Laplacian for the full substitution
spectral triple can be interpreted as an elliptic differential operator with constant
coefficients defined on the dual group of the group of topological eigenvalues of
the dynamical system of the tiling.

Section 6 is devoted to a somewhat unexpected development which has to
do with the fact that the spectral triple of a subshift is parametrised by a choice
function. As a consequence we have a whole family of distance functions depending
on that parameter. One may ask whether these are all equivalent in the sense
of Lipschitz continuity. We consider hence the extremal values of the distance
function, d and d and ask when there exists c > 0 such that c−1d ≤ d ≤ cd.
This turns out to be equivalent to a combinatorial property of the subshift. Such
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a constant c > 0 exists if and only if the subshift has bounded powers, i.e., there
exists N > 0 such that no sequence ever contains an N -fold repetition of a word.
For a Sturmian subshift of slope θ this combinatorial property is equivalent to
the number theoretic property that θ has a bounded continued fraction expansion.
This is an example in which noncommutative geometry can say something about
a certain combinatorial property of the subshift. This combinatorial property in
turn can be understood as a criterion for high aperiodic order of the subshift.

The final section is about the K-homology of compact ultrametric spaces.
Any spectral triple defines a K-homology class and therefore via Connes pairing
a group homomorphisms on K-theory with values in Z. We consider these group
homomorphisms in the context of the spectral triples we construct for compact
ultrametric spaces. The flexibility of our construction allows us to design for every
such homomorphism a spectral triple which defines it.

2. Spectral triples

2.1. General definition

Definition 2.1. A spectral triple (A,D,H) is given by a complex involutive asso-
ciative unital algebra A which is faithfully represented by bounded operators on
some Hilbert space H together with a self-adjoint operator D on H of compact
resolvent such that all commutators [D, a], a ∈ A, extend to bounded operators.
The spectral triple is called even if there exists a grading operator on the Hilbert
space such that A is represented by even operators and D is an odd operator.

The basic idea is that [D, a] is the derivative of a thus furnishing a differential
calculus on A, although it is a priori not required that [D, a] lies in the image of
the representation (and hence defines an element of A).

Given a C∗-algebra A, a spectral triple for A is a spectral triple (A0, D,H)
in the above sense where A0 is a dense subalgebra of A (we suppose that the
representation of A0 on H is continuous and hence also A is represented on H). If
it is useful, we emphasize the representation π.

There are a couple of additional requirements made usually to ensure good
properties and rigidify the theory. These are most often motivated by Riemannian
geometry. We will mention in our discussion some of those, keeping an open mind
not to constrain to much as our application in mind is to tilings.

We will now quickly browse through the main objects which can be defined
by means of a spectral triple and which are or relevance for us.

Connes distance. The formula

dC(σ, σ′) = sup{|σ(a)− σ′(a)| : a ∈ A, ‖[D, a]‖ ≤ 1} (1)

defines a pseudo-metric on the state space S(A) of A. This pseudo-metric dC is
a metric whenever the representation π is non-degenerate and A′D := {a ∈ A :
[D, a] = 0} is one-dimensional, that is, contains only multiples of the identity.
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The state space comes with a natural topology, namely the weak-∗ topology.
One may ask, when is the metric compatible with the weak-* topology? Rieffel has
provided a complete answer to this question [53]: assuming that dC is a metric, it
generates the weak-* topology on S(A) if and only if the image of B1 := {a ∈ A :
‖[D, a]‖ ≤ 1} in the quotient space A/A′D is pre-compact. While complete, this
characterisation is not always easy to verify and we will indeed use more direct
methods to verify whether dC generates the topology or not.

This is already very interesting if A is commutative. In this case A is isomor-
phic to C(X), for some compact topological space X which is homeomorphic to
the closed subset of pure states on A. Eq. (1) restricted to the pure states then
becomes

dC(x, x′) = sup{|f(x)− f(x′)| : f ∈ C(X), ‖[D, f ]‖ ≤ 1}
and under Rieffel’s conditions dC generates the topology of X . It is therefore
quite natural to require that Rieffel’s conditions are satisfied. On the other hand,
however, if the construction of the spectral triple follows a natural principle one
can use the criterion of whether or not the Connes distance generates the topology
as a characterisation of the algebra A, or the space X ; this is the basis of the
characterisation of order we exhibit in Section 6.

Zeta function. Since the resolvent of D is supposed compact Tr(|D|−s) can be
expressed as a Dirichlet series in terms of the eigenvalues of |D|.2 The spectral
triple is called finitely summable if the Dirichlet series is summable for some s ∈ R
and hence defines a function

ζ(z) = Tr(|D|−z) ,
on some half-plane {z ∈ C : ,(z) > s0} which is called the zeta-function of the
spectral triple. Under the right circumstances, ζ admits a meromorphic extension
to the whole complex plane and then its pole structure yields interesting informa-
tion. We will see that in particular the smallest possible value for s0 in the above
(the abscissa of convergence of the Dirichlet series) that is, the largest pole on the
real axis, is related to the complexity of the tiling. This number s0 is also called
the metric dimension of the spectral triple.

Spectral state and measure. Under the right circumstances, the limit

T (T ) = lim
s→s+0

1

ζ(s)
Tr(|D|−sT ).

exists for a suitable class of operators on H. It then defines a positive linear
functional on this class of operators which we call the spectral state defined by
(A,D,H). It is of particular interest already if A = C(X) is commutative. Then
the restriction of T to A defines by the Riesz representation theorem a measure
on X . We call that measure the spectral measure defined by (A,D,H).

2For simplicity we suppose (as will be the case in our applications) that ker(D) is trivial, otherwise
we would have to work with Trker(D)⊥(|D|−s) or remove the kernel of D by adding a finite rank

perturbation.
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Dirichlet forms. Expressions of the type (a, b) 	→ T ([D, π(a)]∗[D, π(b)], where T
is a state, define quadratic forms on suitable subspaces of A which, under the right
circumstances, can be extended to Dirichlet forms on the L2-space over A w.r.t.
to the spectral state. In this definition T is often, but not always also the spectral
state. Indeed, we will see that the choice T = Tr yields interesting Dirichlet forms.

The interest in Dirichlet forms comes from the fact that they define Markov
processes with generators which in the classical cases correspond to Laplace–
Beltrami operators. Under the right circumstances, a spectral triple provides us
therefore with a Laplacian.

K-homology. The spectral triple yields directly an unbounded Fredholm module
and therefore the representative of a K-homology class of A. By the Connes pairing
of K-homology with K-theory the spectral triple defines thus a functional on
K∗(A).

The points mentioned above are also interesting for commutative algebras.
We will in particular consider here the cases A = C(Ξ) or A = C(Ω) where Ξ is
the discrete and Ω the continuous hull of a tiling.

2.2. Spectral triples for metric spaces

Let X be a compact topological Hausdorff space. There exist various constructions
for spectral triples for X , i.e., for the algebra C(X). These constructions are
designed to fulfill additional properties. For instance, if X is a Riemannian spin
manifold with metric g then one can use the Hilbert space of L2-spinors with its
standard Dirac operator defined with the help of the spin structure to obtain a
spectral triple which has the property that the Connes’ metric is equal to the one
determined by g. We won’t describe this construction here, as it draws heavily on
differential geometry and we are interested in spaces which are far from being a
manifold. We would like to discuss two properties that spectral triples can satisfy –
though not necessarily at the same time. One is that the associated Connes’ metric
is equivalent to the original metric with a Lipschitz constant which is arbitrarily
close to 1, and the other is that the metric dimension coincides with the Hausdorff
dimension or with the lower box counting dimension of X .

The simplest case of an even spectral triple seems to us the spectral triple
of a pair of points. X consists of two points so the algebra is C(X) = C2 acting

diagonally on H = C2 and the Dirac operator is D =

(
0 1
1 0

)
. Its associated

Connes distance gives the two points distance 1. Multiplying D by 1
d the two points

get distance d. This spectral triple is the base for all what follows. The idea is to
approximate the metric space by finite point sets and to encode that two points
are considered to be neighbours with the help of (horizontal) edges linking the two
points. The spectral triple of the approximation will then be a (finite) direct sum
of pair spectral triples. Next, the approximation is refined, i.e., X is approximated
by more points which eventually become dense. Taking a sequence of finer and
finer approximations we will end up with spectral triple for the space which will
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be a countable direct sum of pair spectral triples. This idea occurs in the work of
Christensen and Ivan [13]. In the next section we will make this idea precise.

2.2.1. Rooted trees and approximating graphs. Rooted trees are the first (and
most fundamental) ingredient of our construction of an approximating graph and
its associated spectral triple. A rooted tree is a connected graph T without cycles
(as an un-oriented graph) which has a distinguished vertex called the root. We
denote by T (0) the vertices and by T (1) the edges of the tree. The edges of the
graph may be oriented in such a way that they point away from the root. By a path
on the tree we then mean a sequence of edges such that the endpoint (or range)
of the nth edge corresponds to the startpoint (or source) of the n+1th edge. Here
the start and endpoint are defined w.r.t. the orientation. We write v - v′ if there
is a path (possibly of zero length) from v to v′. Any vertex is the endpoint of a

unique path which starts at the root vertex. We denote by T (0)
n the vertices whose

corresponding unique path has length n and call n also the level of the vertex.

In particular T (0)
0 contains only the root vertex. Any vertex besides the root has

one incoming edge. A branching vertex is a vertex which has at least two outgoing
edges. We assume that it has finitely many outgoing edges and hence that each

T (0)
n is finite. For a vertex v ∈ T (0)

n we let T (0)(v) := {v′ ∈ T (0)
n+1 : v - v′} be the

set of its successors.

The boundary of the tree, denoted ∂T is defined as the set of infinite paths
on T which start at the root vertex. We equip it with the topology whose basis is
in one-to-one correspondence with the vertices of T : each vertex v defines a set [v]
of that basis, namely [v] is the set of all infinite paths on T which pass through v.

If v ∈ T (0)
n then the complement of [v] is the union of all [w] where v �= w ∈ T (0)

n .
Hence ∂T is totally disconnected space (it has a basis of clopen sets). Moreover
it is metrizable. Let ξ, η be two infinite paths on T which start at root. If they
are distinct then they will branch at a certain vertex, or stated differently, they
agree on a finite path from root on. Let ξ ∧ η be that finite path and |ξ ∧ η| its
(combinatorial) length. Then, given any strictly decreasing function δ : R+ → R+

which tends to 0 at +∞,

d(ξ, η) = δ(|ξ ∧ η|)
defines a metric which induces the topology above. d is in fact an ultrametric, that
is, it satisfies d(x, y) ≤ max{d(x, z), d(y, z)} for all x, y, z ∈ X . Our assumption

that T (0)
n is finite implies that ∂T is compact.

The data of an approximating graph for a compact space X are the following.

1. A rooted tree T = (T (0), T (1)). We assume that ∂T is a dense 1 : 1 extension
of X , that is, there is a continuous surjection q : ∂T → X such that the
points which have a unique preimage form a dense set.

2. A non-empty symmetric subset

H ⊂ {(v, v′) ∈ T (0) × T (0) : v �- v′, v′ �- v}
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whose elements we call horizontal edges interpreting them as the edges of a
graph (V ,H). Here V ⊂ T (0) is the subset of vertices which are the source
(and hence also the range) of at least one element in H. This graph, which
we call the horizontal graph, has no loop edges and no multiple edges and for
each edge (v, v′) ∈ H contains also the edge with opposite orientation (v′, v).
We suppose that (V ,H) is locally finite in the sense that each vertex v ∈ V
is connected only to finitely many incoming or outgoing edges.

3. There is a so-called length function δ : H → R>0 which satisfies δ(v′, v) =
δ(v, v′) and two further conditions: (i) for all ε > 0 the set {h ∈ H : δ(h) > ε}
is finite (ii) there is a strictly decreasing sequence (δn)n tending to 0 at ∞
such that δ(v, v′) ≥ δ|v∧v′|.

4. There is a so-called choice function τ : T (0) → ∂T which satisfies
(a) τ(v) goes through v.
(b) if w ≺ v then τ(w) = τ(v) if and only if τ(w) passes through the vertex

v.
(c) q is injective on the image of τ .

Note that we have the following sequences of maps

H r ��
s

�� V τ→ ∂T q→ X (2)

where r(v, v′) = v′ and s(v, v′) = v. Since q ◦ τ × q ◦ τ : H → X ×X is injective
the length function defines a distance function on q(τ(V)).

Definition 2.2. The approximating graph of the above data (1)–(4) is the (metric)
graph Gτ with vertices V = q(τ(V)) and edges E = {

(
q ◦ τ(v), q ◦ τ(v′)

)
: (v, v′) ∈

H} equipped with the length function
(
q ◦ τ(v), q ◦ τ(v′)

)
	→ δ(v, v′).

For each pair of vertices v, v′ which are linked by an edge in H we choose (ar-
bitrarily) an order calling the edge defined by the vertices in that order positively
oriented and the one with the reversed order negatively oriented. This splits H
into two parts H± according to the chosen orientation of the edges. The splitting
is, of course, non-canonical but the choice of orientation will not affect the final
results. Since E is in bijective correspondence this orientation carries over to E.
We denote by ·op the operation of changing the orientation of an edge. Conditions
(b) and (c) above imply that q ◦ τ(v) �= q ◦ τ(v′) if (v, v′) ∈ H. Let

C(∂T )0 =

{
f ∈ C(∂T ) : sup

(v,v′)∈H

|f(τ(v)) − f(τ(v′))|
δ(v, v′)

< ∞
}

. (3)

Lemma 2.3. C(∂T )0 is a dense subalgebra of C(∂T ).

Proof. Let χv denote the characteristic function on [v]. Since [v] is clopen χv ∈
C(∂T ). We claim that the expression χv(τ(v2))− χv(τ(v1)) can be non-zero only
if v1 ∧ v2 ≺ v. Indeed, if this is not the case then either v1 ∧ v2 0 v or v1 ∧ v2 ∧ v ≺
v, v1 ∧ v2. In the first case τ(v1) and τ(v2) both contain v and in the second both
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do not. Since v1 ∧ v2 ≺ v implies δ(v1, v2) ≥ δ|v| we have

|χv(τ(v2))− χv(τ(v1))|
δ(v1, v2)

≤ 2

δ|v|

and so we see that χv ∈ C(∂T )0. Moreover, since ∂T is totally disconnected the
algebra generated by characteristic functions on [v] is dense in C(∂T ). �

2.2.2. The spectral triple of an approximating graph. We first consider a spectral
triple over ∂T . It depends on the above data except the surjection q.

Theorem 2.4. Consider a rooted tree T with a set of horizontal edges H, a length
function δ, and a choice function τ as above. Let H = 2(H) and represent C(∂T )
on H by πτ ,

πτ (f)ψ(h) = f(τ(s(h)))ψ(h).

Let the Dirac operator be given by

Dψ(h) =
1

δ(h)
ψ(hop).

Then (C(∂T ), D, (H, πτ )) defines an even spectral triple w.r.t. the decomposition
H± = 2(H±) defined by the orientation of the edges.

Proof. Since |D|−1ψ(h) = δ(h)ψ(h) we see that D has compact resolvent if and
only if for all ε > 0 the set {h ∈ H : δ(h) > ε} is finite.

Furthermore

[D, πτ (f)]ψ(v1, v2) =
1

δ(v1, v2)

(
f(τ(v2))− f(τ(v1))

)
ψ(v2, v1).

Hence C(∂T )0 is precisely the subalgebra of functions f for which the commutator
[D, πτ (f)] is bounded. �

Using the surjection q we can define a spectral triple on X .

Theorem 2.5. Consider an approximating graph Gτ as above with length function
δ. Let H = 2(E) and represent C(X) on H by π,

π(f)ψ(e) = f(s(e))ψ(e).

Let the Dirac operator be given by

Dψ(e) =
1

δ(e)
ψ(eop).

If q∗−1(C(∂T )0) ⊂ C(X) is dense in C(X) then (C(X), D,H) defines an even
spectral triple w.r.t. the decomposition H± = 2(E±) defined by the orientation of
the edges.

Proof. The only issue is the question whether C(X)0 = {f ∈ C(X) : ‖[D, π(f)]‖ <
∞} is dense in C(X). By construction q∗−1(C(∂T )0) ⊂ C(X)0 and so our hypoth-
esis guarantees that property. �
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We call this spectral triple the spectral triple of the approximation graph
(Gτ , δ). Note that if q is a bijection and hence X homeomorphic to ∂T then the
two spectral triples are the same. In the first formulation the dependence on the
choice function shows up in the definition of the representation whereas in the
second formulation it is the embedding of the graph in X which depends on it.

Without any further conditions on δ nothing can be said about whether the
Connes distance induces the topology of X .

How do such triples arise? We will discuss in the next sections examples with
canonical tree structure, one being the case of a compact ultrametric space and
the other being the case of a substitution tiling space. In these cases, more or
less natural choices for the horizontal edges H and the length function δ can be
argued for. This is not the case for the choice function τ which therefore has to
be regarded as a parameter. In [49] it is interpreted as the analogue of a tangent
vector of a manifold.

An arbritrary compact metric space (X, d) can be described by an approxi-
mation graph as above, although the involved graph is not canonical. Palmer [47]
starts with a sequence (Un)n of open covers of X . We call the sequence refined if

Un+1 is finer than Un for all n, and resolving if it is refined and diamUn n→∞−→ 0.3

A resolving sequence separates points: for any x, y ∈ X , x �= y, there exists n and
U,U ′ ∈ Un such that x ∈ U , y ∈ U ′, and U ∩ U ′ = ∅. In general such a sequence
(Un)n is by no means unique. There is a graph T = (T (0), T (1)) associated with

such a sequence: vertices in T (0)
n are in one-to-one correspondance with open sets

in Un; this correspondance is written v ↔ Uv. The inclusion Uv ⊂ Uw for Uv ∈ Un,
Uw ∈ Un−1 defines an edge of T (1)

n with source w ∈ T (0)
n−1 and range v ∈ T (0)

n .
An infinite path ξ ∈ ∂T stands for a sequence of open sets (Uξn)n such that
Uξn ⊂ Uξn+1 . As the sequence (Un)n is resolving, the intersection

⋂
n Uξn contains

a single point q(ξ). This defines a map q : ∂T → X , which turns out to be a con-
tinuous surjection. One has now to introduce choice and length functions to build
an approximation graph as above and obtain the spectral triple of Theorem 2.5.

Palmer considers choice functions which are slightly more general than here
(sets of horizontal edges H can be deduced from his choice functions). The length
function δ is simply the actual distance of the points in X . These choices fix an
approximation graph (Gτ , δ). Palmer’s main concern is to show the existence of
a resolving sequence (Un)n such that, for any choice function, he gets a spectral
triple recovering the Hausdorff dimension of X and the Hausdorff measure on Borel
sets of X .

Theorem 2.6 ([47]). There exist a resolving sequence (Un)n such that, for any
choice function, the spectral triple for X defined by the approximation graph con-
structed from the above data has

1. metric dimension s0 equal to the Hausdorff dimension of X, and
2. spectral measure equal to the (normalized) Hausdorff measure on X.

3The diameter of a covering U , written diamU , is the supremum of the diameters of the sets of U .
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As a corollary, the Hausdorff measure of X can be shown to be

lim
n→∞

∑
U∈Un

(diamU)s0 .

Finally we mention that the approach of Christensen & Ivan [13] (which
predates [47]) can be recast as well in the framework of approximating graphs.
One does not have to work with an abstract tree and choice functions to construct
such a graph but may simply proceed as follows: Start with a sequence (Vn)n of
finite subsets Vn of X such that Vn ⊂ Vn+1 and their union

⋃
n Vn is dense in

X . For each n choose a non-empty symmetric subset En ⊂ Vn × Vn and define
δ(x, y) = d(x, y), i.e., the length of edge (x, y) corresponds to their distance in X .
Now one has directly the approximating graph (V,E) with metric. But there is
just enough structure to recover the metric aspects, namely one gets:

Theorem 2.7 ([13]). Let (X, d) be a compact metric space. For any constant α > 1
there exists a sequence (Vn)n of finite point sets Vn ⊂ X together with a choice
of horizontal pairs En as above, such that the spectral triple of the approximating
graph (V,E) with length function δ yields a spectral metric dC which satisfies

d(x, y) ≤ dC(x, y) ≤ αd(x, y).

2.3. Spectral triples for compact ultrametric spaces

In this section we consider spectral triples for compact ultrametric spaces. With a
particular choice for the horizontal egdes, we obtain the spectral triples of Pearson–
Bellissard [49]. The general case has been discussed in [39].

A compact ultrametric space (X, d) is a metric space for which the metric
satisfies the strong triangle inequality

d(x, y) ≤ max{d(x, z), d(y, z)} (4)

for all x,y,z∈X . We suppose that X has infinitely many points (the finite case
being simpler). Such spaces arise as subshifts or as transversals of spaces (“discrete
tiling spaces”) of non-periodic tilings with finite local complexity. The property
(4) implies that the open δ-balls Bδ(x)={y∈X :d(x,y)<δ} satisfy either Bδ(x)=
Bδ(y) or Bδ(x)∩Bδ(y)=∅. In particular there is a unique cover by δ-balls (δ-cover).
Moreover this cover is a partition and hence X is totally disconnected. Further-
more, the image of d contains exactly one accumulation point, namely 0. In other
words, there exists a strictly decreasing sequence (δn)n converging to zero such
that im d = {δn : n ∈ N}. If we take Un to be the δn-cover of X we obtain a canon-
ical refined resolving sequence of coverings. Its associated tree T is the so-called
Michon tree [44, 49, 47]. In particular, the vertices of level n of T correspond to the
clopen δn-balls of the δn-cover, and the root corresponds to all of X . The sets of the
covering are also closed, so given an infinite path ξ, the sequence of vertices through
which it passes defines a nested sequence of compact sets whose radius tends to 0.
It defines a point x(ξ) ∈ X . The map ξ 	→ x(ξ) is even injective in the case of
ultrametric spaces and thus furnishes a homeomorphism between ∂T and X .

Now that we have the canonical tree associated with the compact ultrametric
space we need to choose horizontal edges. Any vertex has one incoming vertical
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edge. A branching vertex is a vertex which has at least two outgoing (vertical)

edges. For a vertex v ∈ T (0)
n let T (0)(v) := {v′ ∈ T (0)

n+1 : v - v′}. A canonical
choice for the horizontal edges H is to introduce an edge between any pair of
distinct vertices of T (0)(v), and this for any branching vertex. This is the maximal
choice. A minimal choice would be to choose, for each branching vertex v, two
distinct vertices of T (0)(v) and to introduce two horizontal edges, one for each
direction, only for these two. This case has been considered in [49]. Note that in
both choices we obtain a grading for the horizontal edges: In the maximal choice
Hmax =

⋃
nHmax

n with

Hmax
n = {(v′, v′′) ∈ T (0)(v), v ∈ T (0)

n−1, v
′ �= v′′}

and a minimal choice is a subset Hmin =
⋃
nHmin

n , with Hmin
n ⊂ Hmax

n . More
generally we may consider horizontal edges of the form

H =
⋃
n

Hn, Hn ⊂ Hmax
n . (5)

The natural length function for all these cases is the function determined by
the radii of the balls, i.e., δ(v, v′) = δn, where (v, v′) ∈ Hn.

Any choice function τ provides us with a spectral triple for the compact
ultrametric space X according to Theorems 2.4 or 2.5 (since q is a homeomorphism
the two theorems are equivalent in the present case).

Definition 2.8. By a spectral triple for a compact ultrametric space we mean the
spectral triple given by the above data: its Michon tree, a choice of horizontal edges
H as in (5), length function determined by the radii of the balls, and any choice
function. If H = Hmin we refer to the spectral triple also as Pearson–Bellissard
spectral triple.

Lemma 2.9. Consider a spectral triple for a compact ultrametric space. Its spectral
distance dC bounds the original metric d(x, y) ≤ dC(x, y). If, for any v′, v′′ ∈
T (0)(v) (with v ∈ T (0)), there is a path of edges in H linking v with v′ then Gτ is
connected and hence dC a metric.

The condition on H formulated in the lemma is obviously satisfied for the
maximal choice Hmax.

3. Concrete examples for subshifts and tilings

We discuss applications of the previous constructions to subshifts and to tilings of
finite local complexity.

Example 3.1. We will illustrate some of our constructions using the example of
the Fibonacci tiling. We will consider three versions of it:

1. The Fibonacci one-sided subshift;
2. The Fibonacci two-sided subshift;
3. The one-dimensional Fibonacci substitution tiling.
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The Fibonacci subshift (one-sided or two-sided) is a subshift of the full (one-sided
or two-sided) shift over the alphabet A = {a, b} defined usually by the substitution
σ, σ(a) = ab, σ(b) = a. This means by definition that the elements of the subshift
are infinite sequences of letters, that is, functions N→ A (one-sided) or functions
Z→ A (two-sided), whose finite parts (words) are allowed in the sense that they
occur as subwords of σn(a) for some n (which depends on the word). Note that
instead of σ we could also take σ2 or even the substitution a 	→ baa, b 	→ ba to
define the same subshift, because all these substitutions yield the same notion of
allowed words. The advantage of the latter substitution is that it manifestly forces
its border.

The one-dimensional Fibonacci substitution tiling is the suspension of the
two-sided subshift, in which the letters are realised as intervals (one-dimensional

tiles), a by an interval of length (
√
5+1)/2 and b by one of length 1. Alternatively

this is a canonical cut-and-project tiling of Z2 ⊂ R2 onto R1 as the line throughout
the origin with irrational slope (

√
5 + 1)/2, and window the half-open unit cube

[0, 1)× [0, 1).

3.1. One-sided subshifts and the tree of words

Our first application is to the space of one-sided sequences of a subshift. The
construction, which is described in [39, 33], is based on the so-called tree of words
of the subshift.

Recall that a one-sided full shift over a finite alphabet A is a the set of
sequences AN considered as a compact topological space whose topology is that
of pointwise convergence. On this space we have an action of N by left shift, that
is, dropping the first letter. A subshift is a closed, shift-invariant subset of the full
shift and its language L is the set of finite words occurring in the sequences of the
subshift.

The tree of words for a one-sided subshift with language L is defined as

follows: the vertices of level n, noted T (0)
n , are the (allowed) words of length n

and the empty word corresponds to the root. Given a word w ∈ L and any of its
one-letter extensions wa ∈ L, a ∈ A, we draw an edge from w to wa. Hence any
word has exactly one incoming edge and at least one outgoing edge. A word is
called right-special if it can be extended to the right by one letter in more than
one way. A right-special word corresponds thus to a branching vertex in the tree.
Note that if the subshift is aperiodic then there is at least one right-special word
per length.

We will consider three interesting choices for the horizontal edges.

• The maximal choice Hmax as introduced in Section 2.3. With the maximal
choice there is a horizontal edge between any two distinct one letter extensions
of a right-special word. The level of such an edge is thus equal to the length
of the word plus 1.

• A minimal choice as introduced in Section 2.3. For each right-special word
one chooses a pair of distinct one letter extensions which then are linked by
two edges (one for each orientation).
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• The privileged choice Hpr. This is like the maximal choice but with respect to
a certain subset of so-called privileged words. Concretely, there is a horizontal
edge between any two distinct privileged extensions of a privileged word. The
definition of privileged words is based on return words. A word v ∈ L is a
complete first return to a word u ∈ L if u occurs exactly twice in v, namely
once as a prefix and once as a suffix. By convention, a letter is a complete first
return to the empty word. A privileged word is defined iteratively: the empty
word is a privileged word, and a complete first return to a privileged word is
a privileged word. Now (v, v′) ∈ Hpr if and only if v and v′ are privileged and
there is a privileged word u ∈ T (0) such that v and v′ are distinct complete
first returns to u.

We will specify the length function later according to our needs.

Definition 3.2. By a spectral triple for a one-sided subshift we mean the spectral
triple as defined in Theorems 2.4 or 2.5 given by the above data: the tree of words,
a choice of horizontal edges H as above, a choice of length function δ, and any
choice function.

We are interested in two different types of subshifts: minimal aperiodic sub-
shifts in which case the subshift (or its two-sided version) stands for the symbolic
version of a one-dimensional tiling, or subshifts of finite type, which arise in the
context of substitution tilings.

Example. Four levels of the tree of words T for the one-sided Fibonacci subshift
of Example 3.1 are shown below. There is a unique right-special factor per length,
so each vertex of the tree has at most two successors, and therefore H = Hmin =
Hmax. Letters stand for the vertices T (0) of the tree, and vertical lines for its
edges T (1). Bold letters stand for privileged words (this includes the root, i.e., the
empty word). Horizontal arrows (unoriented) H are represented by curvy lines,
and privileged arrows Hpr by dotted curvy lines.
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3.1.1. One-sided subshifts of finite type. Consider a finite oriented graph G =
(G(0),G(1)) such as the graph associated with a substitution defined on an alphabet.
It defines a one-sided subshift of finite type: this is the subshift whose alphabet
is G(0) and whose language is given by the finite paths on G. The tree of words

associated with the subshift of finite type looks as follows: T (0)
0 contains the root

vertex, T (0)
1 = G(0), and T (0)

n = Πn(G) is the set of paths of length n on G.
Furthermore, T (1) contains one edge joining the root vertex to each v ∈ T (0)

1 . It

contains also, for each path γ over G and each edge ε ∈ G(1) with s(ε) = r(γ),
one edge joining γ to γε (we denote the latter edge by (γ, γε)). It is clear that
∂T = Π∞(G), the set of infinite paths over G.

When the tree of words is built from such a graph, it is possible to define a
stationary Bratteli diagram, with a somewhat simpler description than the tree,
such that the set of paths on the diagram corresponds canonically to the set of
paths on the tree. Such a stationary Bratteli diagram exhibits more clearly the
underlying self-similarity than the tree. We will not give details for the construction
based on Bratteli diagrams, but the construction suggests that it is natural to have
a self-similar choice of horizontal edges, in the sense that it should only depend
on G. Choose a symmetric subset

Ĥ ⊆
{
(ε, ε′) ∈ G(1) × G(1) : ε �= ε′, s(ε) = s(ε′)

}
which we call fundamental horizontal edges and then “lift” these to horizontal
edges as follows:

Hn = {(γε, γε′) : γ ∈ Πn(G), (ε, ε′) ∈ Ĥ, r(γ) = s(ε)} (6)

Note that vertices of T (0) were by definitions paths on G, so the equation above
defines indeed an horizontal edge as a pair of vertices on the tree. We fix an
orientation on Ĥ and carry this orientation over to Hn.

We call the length function self-similar if there exists a 0 < ρ < 1 such that
for all h ∈ Hn

δ(h) = ρn.

The role of the choice function is to associate an infinite extension to each
word. This can also be understood in a way that for each word of length n we
make a choice of one-letter extension. In the context of subshifts of finite type it is
natural to restrict the choice function in the following way. Let us suppose that G is
connected in the stronger sense that for any two vertices v1, v2 there exists a path
from to v1 to v2 and a path from v2 to v1, and that it contains a one-edge loop.4

We fix such a one-edge loop ε∗. Consider a function τ̂ : G(1) → G(1) satisfying that
for all ε ∈ G(1):

1. if r(ε) is the vertex of ε∗ then τ̂ (ε) = ε∗,
2. if r(ε) is not the vertex of ε∗ then τ̂ (ε) is an edge starting at r(ε) and such

that r(τ̂ (ε)) is closer to the vertex of ε∗ in G.
4By going over to a power of the substitution matrix we can always arrange that the substitution
graph has these properties if the substitution is primitive.
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Then τ̂ defines an embedding of Πn(G) into Πn+1(G) by ε1 · · · εn 	→ ε1 · · · εnτ̂(εn)
and hence, by iteration, into Π∞. The corresponding inclusion Πn(G) ↪→ Π∞(G)
is our choice function τ .

Definition 3.3. With the above self similar choice of horizontal, length function,
and choice function we call the spectral triple of a subshift of finite type self-similar.

Example. The substitution graph G of the Fibonacci substitution subshift of Ex-
ample 3.1 is shown below. The arrows pointing towards the left vertex correspond
to the occurrences of a and b in the substitution of a (baa), while those pointing to-
wards the right vertex correspond to the occurrences of a and b in the substitution
of b (ba) – the dot showing which letter is concerned.
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�� ḃa��

For Ĥ, we choose for example the pairs of edges (ḃa, bȧa) and (ḃa, ḃaa) in G. For
the edge loop we choose for instance ε∗ = bȧa. We show a portion of the tree T
below, together with horizontal edges H (lifting Ĥ) as curvy lines.
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��
��

��
��

��
�

��
��

��
��

��
�

��
��

��
��

��
�
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3.2. The tree of patches and the ordinary transverse spectral triple of a tiling

The construction of the tree of words for one-sided subshift can be generalized
to two-sided shifts, Zd-subshifts, and even tilings of finite local complexity [39].
This generalization is based on the definition of an r-patch. The most common
definition in the context of tilings is to pick consistently a privileged point in each
tile (puncture), for example their barycenter. The transversal of the tiling space is
then the set of all tiles which have a puncture at the origin. An r-patch is a patch
which has a puncture on 0 and just covers Br(0), the Euclidean r-ball around
the origin.5 Recall that finite local complexity means that, for any r > 0, there
are only finitely many r-patches. The larger r the more r-patches there are. The

5For Zd subshifts – which can be viewed as tilings by coloured cubes – it might be more handy
to use cubes instead of Euclidean balls.
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number of r-patches is a semi-continuous function of r (the so-called complexity
function) and the points where this function jumps form an increasing sequence
(rn)n of R+. Given an rn-patch v, its diameter is noted |v| := rn.

The tree of patches (T (0), T (1)) of a tiling of finite local complexity is now
constructed as follows: the level n vertices are the rn-patches and its root represents
the empty patch (r0 = 0). There is a (vertical) edge between an rn-patch and any
of its extensions to an rn+1-patch and all edges arise in this way.

The tree of patches is the Michon tree of the transversal of the tiling equipped
with an ultrametric of the form

d(ξ, η) = inf{δ(rn) : ξn = ηn, with rn = |ξn|} , (7)

where δ : R+ → R+ is any strictly decreasing function converging to 0 at +∞.

No particular structure of the tiling seems to point to a natural choice for
the horizontal edges, the function δ above, or for determining the length of edges,
or the choice function τ . These data have to be chosen according to the specific
situation in order to define suitable approximating graph Gτ and δ.

Definition 3.4. By an ordinary transverse spectral triple for a tiling we mean a
spectral triple for its canonical transversal (as in Def. 2.8) equipped with an ul-
trametric of the form (7).

The spectral triple depends on a choice of horizontal edges H, a choice of
strictly decreasing function δ : R+ → R+ tending to 0, and a choice function.

3.3. Substitution tilings

We consider now aperiodic primitive substitution tilings of finite local complexity.
To these we may apply the construction of Section 3.2 to obtain an ordinary trans-
verse spectral triple. But the extra structure coming from the substitution map
allows one also to consider another spectral triple, namely the spectral triple of a
one-sided subshift of finite type given by the substitution graph (see Section 3.1.1).
The advantage of this latter approach lies in the fact that it can be extended into
the longitudinal direction and therefore will provides us with a spectral triple for
the continuous hull. We follow [40].

Consider a finite set A = {ti : i ∈ G(0)} of translationally non-congruent tiles
(called prototiles) in Rd indexed by a finite set G(0). A substitution Φ on A with
expansion factor θ > 1 is a decomposition rule followed by and expansion by θ,
namely Φ assigns to each prototile a patch of tiles in Rd with the properties: for
each i ∈ G(0), every tile in Φ(ti) is a translate of an element of A; and the subset
of Rd covered by Φ(ti) is the subset covered by ti stretched by the factor θ. Such
a substitution naturally extends to patches and even tilings whose elements are
translates of the prototiles and it satisfies Φ(P − t) = Φ(P )− θt.

A patch P is allowed for Φ if there is an m ≥ 1, an i ∈ {1, . . . , k}, and a
v ∈ RN , with P ⊂ Φm(ti) − v. The substitution tiling space associated with Φ is
the collection ΩΦ of all tilings T of Rd such that every finite patch in T is allowed
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for Φ. ΩΦ is not empty and, since translation preserves allowed patches, Rd acts
on it by translation.

We assume that the substitution Φ is primitive, that is, for each pair {ti, tj}
of prototiles there is a k ∈ N so that a translate of ti occurs in Φk(tj). We also
assume that all tilings of ΩΦ are non-periodic and have FLC. It then follows that
ΩΦ is compact in the standard topology for tiling spaces and that ΩΦ = ΩT :=

{T − x : x ∈ Rd} for any T ∈ ΩΦ. It also implies that the substitution map Φ seen
as a map ΩΦ → ΩΦ is a homeomorphism (in particular it is bijective).

The substitution graph of Φ is the finite oriented graph G = (G(0),G(1)) whose
vertices G(0) stand for the indices of prototiles and whose edges encode the position
of tiles in supertiles. More precisely, given two prototiles ti and tj the supertile
Φ(ti) may contain several tiles of type tj (that is, tiles which are translationally
congruent to tj). These tiles are at different positions in the supertile Φ(ti). For

each possible position we introduce one oriented edge ε ∈ G(1) with range r(ε) = i
and source s(ε) = j.

The canonical transversal of a substitution tiling (alternatively a substitution
subshift) can be encoded by a one-sided shift of finite type. To do so, one defines
a map from the transversal Ξ to itself by desubstitution: if T ∈ Ξ, the origin is a
pointer inside of a tile ti of T . Therefore, in Φ−1(T ), the origin is inside of a unique
tile tj , whose pointer xj doesn’t need to be at the origin. Let T ′ := Φ−1(T )−xj ∈ Ξ.
The map T 	→ T ′ is a continuous surjection Ξ→ Ξ. For a given tiling T , the map
T 	→ T ′ defines an edge in the substitution graph of Φ given by the position of
ti in the supertile Φ(tj). By iteration, we get a continuous map Ξ → Π∞ which
commutes with the desubstitution map on Ξ and the shift on Π∞ respectively.
This map is called the Robinson map [25, 30] and denoted R. Under an additional
assumption on the substitution (called border-forcing), it is a homeomorphism.6

Given ti the tile at the origin of a tiling T and tj the tile at the origin of Φ−n(T ),
then ti is a tile included in the patch Φn(tj), or we can say that ti is included in the
n-supertile of type tj . Remark how each finite path of length n corresponds to a
tile at the origin (of type given by the source of the path) included in a n-supertile
(given by the range of the path). See Example 3.1 of the Fibonacci substitution
at the end of Section 3.1.1.

The same construction can be done for a tiling which is not in the transversal:
if the origin belongs to a unique tile in Φn(T ) for all n ∈ Z, one can define
similarly an element R(T ) ∈ Π−∞,∞(G), where Π−∞,∞(G) denotes the bi-infinite
sequences over G. It is of course not defined on all of Ω, but on a dense subset.
It is injective, however, and its inverse can be extended to a continuous surjection
q : Π−∞,∞(G) → Ω. The interpretation is the following: given γ ∈ Π−∞,∞, the
indices (γi)i≥0 define a tiling T ∈ Ξ by the inverse of the Robinson map. The
indices (γj)−N<j<0 define a Nth order microtile of type s(γ−N ) inside of the tile

6Given a substitution tiling space Ω, it is always possible to find a substitution which produces

this space and forces its border. It involves decorating the prototiles (hence increasing their
number).
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s(γ0). As N grows, it defines a decreasing sequence of microtiles which converge
to a point x. Then T − x is the tiling corresponding to γ. It can happen that two
sequences of microtiles converge to the same point, meaning q is not injective.

We may suppose7 that the substitution has a fixed point T ∗ such that the
union over n of the nth order supertiles of T ∗ on 0 covers Rd. Then q−1({T ∗})
contains a single path and this path is constant, that is, the infinite repetition of
a loop edge which we choose to be ε∗. And we pick a choice function τ̂ on G, as
in Section 3.1.1, which induces an embedding τ : Π(G) → Π∞(G) (if γ is a finite
path, then τ(γ) is an infinite path which eventually is an infinite repetition of the
edge ε∗).

Let Ξt be the acceptance domain of prototile t (the set of all tilings in Ξ
which have t at the origin). Note that the sets Ξtv × tv (for v ∈ G(0)) cover Ω.
Their intersection turns out to have measure 0. Let Πv−∞,∞ be the set of bi-infinite
paths which pass through v at level 0. Then qv : Π

v
−∞,∞ → Ξtv×tv is a continuous

almost one-to-one surjection.

In the section, we will use the chair substitution as an example. It is primitive
and aperiodic but does not force its border. The Robinson map can still be defined,
but is not a homeomorphism (i.e., the one-sided shift of finite type is not an
accurate representation of the transversal). For the sake of simplicity, we will
nevertheless use it as an illustration.

r

Figure 1. On the left, the chair substitution rule (with four prototiles,
one for each orientation). In the middle, a vertex of the usual tree of
patch associated with radius r. On the right, a vertex of the self-similar
tree of patch as described on this section: a tile (colored) inside of a first-
order supertile (equivalently, it is a length-one path in the substitution
graph).

3.3.1. Transverse substitution spectral triple of a substitution tiling. We use now
the positive part q+v : Πv0,+∞(G) → Ξtv of qv to construct a second spectral triple

for the transversal of a substitution tiling. Note that q+v corresponds to the inverse
of a restriction of R and thus is a homeomorphism.

7This can always be achieved by going over to a power of the substitution.
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We choose fundamental (transversal) horizontal edges

Ĥtr ⊂
{
(ε, ε′) ∈ G(1) × G(1) : ε �= ε′, s(ε) = s(ε′)

}
which we suppose to satisfy the condition

(C) if s(ε) = s(ε′) there is a path of edges in Ĥtr linking ε with ε′.

This condition implies that the corresponding approximating graph will be con-
nected.

What does an edge (γε, γε′) ∈ Htr,n stand for? Let’s consider first the case
n = 0 (so there is no γ). The two paths τ(ε), τ(ε′) ∈ Π∞(G) both start at vertex v
and differ on their first edge. At some level n(ε,ε′) they become equal again; let’s

say that v(ε,ε′) ∈ G(0) is the vertex at which this happens. The edge (ε, ε′) therefore
defines a pair (η, η′) of paths of length n(ε,ε′) which have the same source and the
same range vertex v(ε,ε′) and otherwise differ on each edge; notably η and η′ are
the first n(ε,ε′) edges of τ(ε) and τ(ε′), respectively. So the information encoded by
(ε, ε′) is the n(ε,ε′)-supertile corresponding to v(ε,ε′) together with the position of

two tiles of type tv encoded by the paths η and η′. Let us denote by r(ε,ε′) ∈ Rd

the vector of translation from the first to the second tile of type tv. The remaining
common part of the paths τ(ε) and τ(ε′) (eventually an infinite repetition of ε∗)
places the n(ε,ε′)-supertile corresponding to v(ε,ε′) into some translate of T ∗. And
r(ε,ε′) does not depend on this part.

Now the situation for n > 0 is similar, the only difference being that the paths
τ(γε) and τ(γε′) now split at the nth vertex and meet for the first time again at
level n + n(ε,ε′). If we denote by r(γε,γε′) ∈ Rd the translation vector between the
encoded tiles then, due to self-similarity, one has:

r(γε,γε′) = θ|γ|r(ε,ε′). (8)

See Figure 2 for an illustration.
We take (δn)n of exponentially decreasing form: δn = δntr, where δtr ∈ (0, 1)

is a parameter which may be adapted. We moreover fix a choice function τ . The-
orem 2.5 provides us with a self similar spectral triple (C(Ξtv ), D

v
tr,H

v
tr) for the

algebra C(Ξtv ). Since q+v is a homeomorphism we could also use the version of
the spectral triple of Theorem 2.4. We call the triple the transverse substitution
spectral triple for the prototile tv of the substitution tiling.

Definition 3.5. By a transverse substitution spectral triple of a substitution tiling
we mean the direct sum over v ∈ G(0) of the transverse spectral triples for the
prototiles tv defined as above.

The spectral triple depends on a choice of fundamental horizontal edges Ĥtr

satisfying condition (C), a parameter δtr determining the length function, and

a choice function. Since Ĥtr satisfies condition (C) above and (δn)n is exponen-
tially decreasing [39], the Connes distance induces the topology of Ξv. A trans-
verse substitution spectral triple is thus a second spectral triple for the canonical
transversal Ξ.
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Figure 2. A doubly pointed pattern associated with a horizontal arrow
h ∈ Htr,3. The arrow represents the vector rh. Here n = 2 (the paths
have lengths 2), and nh = 1 (the paths join further down at level n +
nh = 3).

3.3.2. Longitudinal spectral triples for the prototiles of a substitution tiling. We
now use the negative part of qv, q−v : Πv−∞,0(G) → tv to construct a spectral

triple which we call longitudinal. Notice that Πv−∞,0 can be identified with Πv∞(G̃),
where G̃ is the graph obtained from G by reversing the orientation of its edges:
one simply reads paths backwards, so follows the edges along their opposite ori-

entations. We choose a subset Ĥlg ⊂
{
(ε̃, ε̃′) ∈ G̃(1) × G̃(1) : ε̃ �= ε̃′, s(ε̃) = s(ε̃′)

}
again satisfying condition (C). To obtain the interpretation of a longitudinal hor-
izontal edges it is more useful to work with reversed orientations, that is, view
Ĥlg ⊂

{
(ε, ε′) ∈ G(1) × G(1) : ε �= ε′, r(ε) = r(ε′)

}
, as this was the way the Robin-

son map R was defined. Then (ε, ε′) with r(ε) = r(ε′) determines a pair of mi-
crotiles (t, t′) of type s(ε) and s(ε′), respectively, in a tile of type r(ε). The remain-
ing part of the double path (τ̃ (ε), τ̃ (ε′)) serves to fix a point in the two microtiles.
Of importance is now the vector of translation a(ε,ε′) between the two points of
the microtiles.

Similarily, an edge in Hlg,n will describe a pair of (n + 1)th order microtiles
in an nth order microtile. By self-similarity again, the corresponding translation
vector a(γε,γε′) ∈ Rd between the two (n + 1)th order microtiles will satisfy

a(γε,γε′) = θ−|γ|a(ε,ε′) . (9)

See Figure 3 for an illustration.
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Figure 3. A microtile pattern associated with a horizontal arrow
h ∈ Hlg,2 (the pattern shown has the size of a single tile). The arrow
represents the vector ah.

Again we use an exponential decreasing length function δn = δnlg, where δlg
is another parameter. Moreover we set ε̃∗ = ε∗ and choose a choice function τ̃ .
q−v is however not injective and the topology of Πv−∞,0 differs from that of tv (the
first is totally disconnected whereas the second is connected). It is therefore a
priori not clear that Theorem 2.5 provides us with a spectral triple for the algebra
C(tv). However, (with the notation C(∂T )0 introduced in eq. 3) it can be shown
that q∗−1(C(Πv−∞,0)0) contains all functions over tv which are Hölder continuous

with exponent α =
− log(δlg)
log(θ) . Thus Theorem 2.5 provides us with a spectral triple

(C(tv), D
v
lg,H

v
lg) for the prototile tv.

Definition 3.6. By a longitudinal substitution spectral triple for the prototile tv we
mean a spectral triple as defined above.

The spectral triple depends on a choice of fundamental horizontal edges Ĥlg

satisfying condition (C), a parameter δlg determining the length function, and a
choice function. It should be noted that the Connes distance of this spectral triple
does not induce the topology of tv.

3.3.3. The full substitution spectral triple of a substitution tiling. We now com-
bine the above triples to get a spectral triple (C(ΩΦ),H, D) for the whole tiling

space ΩΦ. The graphs G and G̃ have the same set of vertices G(0), so we notice
that the identification

Π−∞,+∞(G) =
⋃

v∈G(0)

Πv−∞,0(G)×Πv0,+∞(G) =
⋃

v∈G(0)

Πv∞(G̃)×Πv∞(G)
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suggests to construct the triple for ΩΦ as follows: first we can use the tensor
product construction for spectral triples to obtain a spectral triple for C(tv×Ξtv ) ∼=
C(tv) ⊗ C(Ξtv ) from the two spectral triples considered above. Furthermore, the
C∗-algebra C(ΩΦ) is a subalgebra of

⊕
v∈G(0) C(tv × Ξtv ) and so the direct sum

of the tensor product spectral triples for the different tiles tv provides us with a
spectral triple for C(ΩΦ). Its Hilbert space, representation and Dirac operator are
given by

H =
⊕
v∈G(0)

Hvtr⊗Hvlg , π =
⊕
v∈G(0)

πvtr⊗πvlg , D =
⊕
v∈G(0)

(
Dv

tr⊗1+χ⊗Dv
lg

)
, (10)

where χ is the grading of the transversal triple (which comes from flipping the

orientations of the edges in Ĥtr).

Definition 3.7. By a full substitution spectral triple of a substitution tiling we mean
a spectral triple for ΩΦ as defined above.

The spectral triple depends on a choice of transverse and longitudinal funda-
mental horizontal edges Ĥtr, Ĥlg satisfying condition (C), two parameters δtr, δlg
determining the length function, and a choice function.

4. Zeta functions and spectral measures

The Dirac D operator of a spectral triple is supposed to have compact resolvent. As
we suppose for simplicity that 0 is not in its spectrum, the sequence of eigenvalues
of |D|−1, ordered decreasingly and counted with their multiplicity, tends to zero
at infinity. In the construction of Section 2.2.2 the eigenvalues are given by the
length function so that the zeta function for the spectral triple of Section 2.2.2 is
formally given by the series

ζ(z) =
∑

(v,v′)∈H
δ(v, v′)z , (11)

or even by

ζ(z) =

∞∑
n=1

#Hn δzn (12)

in case when the edges can be written H =
⋃
nHn such that the length function

depends only on the level n of the edge, i.e., δ(v, v′) = δn for all v, v′ ∈ Hn. In the
latter case ζ is manifestly independent of the choice function (however notice that
in Palmer’s construction the length function depends on the choice function and
hence so does ζ).

We suppose that the series has a finite abscissa of convergence s0 > 0, i.e., is
convergent for z with ,(z) > s0. This so-called metric dimension s0 has a certain
significance for the examples we discussed. There is a general expectation that a
good spectral triple for a metric space has a metric dimension which coincides with
a dimension of the space. Such a result holds for the spectral triple of Section 2.3
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for a compact ultrametric space when the minimal choice for the horizontal edges
is employed. This is a case in which the length function depends only on the level
and so the zeta function is independent of the choice function.

Theorem 4.1 ([49]). Let (X, d) be a compact ultrametric space. If its associated Mi-
chon tree has uniformly bounded branching8, then the Pearson–Bellissard spectral
triple has metric dimension equal to the upper box dimension of X.

Similarly, the spectral measure, defined on functions f ∈ C(X) by

T (f) = lim
s→s+0

1

ζ(s)
Tr(|D|−sπ(f))

is not just any measure but yields a measure well-known to the cases. We have
already mentionned Palmer’s theorem (Theorem 2.6) expressing the fact that for
a compact metric space one can construct a spectral triple for which s0 is the
Hausdorff dimension, and the spectral measure is the Hausdorff measure.

4.1. The metric dimension and complexities

In the context of ordinary transverse spectral triples defined for tilings (based on
the tree of patches), or of spectral triples defined for subshifts (based on the tree
of words), the metric dimension is related to complexities.

Recall that we call r-patch a patch of the tiling which has a puncture at
the origin, and just covers Br(0), that is, all tiles of the patch intersect Br(0)
non-trivially. As we assume that our tiling is FLC we can define the function
p : R+ → N associating to r the number of r-patches. It is called the patch
counting (or complexity) function. This function might increase exponentially but
we are here interested in tilings where it grows only polynomially, a feature which
can be interpreted as a sign of order in the tiling. We call

β = sup{γ : p(r) ≥ rγ for large r} , β = inf{γ : p(r) ≤ rγ for large r} (13)

the lower and upper complexity exponents. Notice that these exponents can be
alternatively defined as the lim inf and lim sup of log p(r)/ log r respectively. In
case both are equal we call their common value the weak complexity exponent.
If p(r) is equivalent to crβ for some constant c > 0, then β is simply called the

complexity exponent. This implies that β = β = β but is stronger than existence
of the weak exponent.

One could imagine different definitions of r-patches using other geometric
objects than balls or other norms on Rd than the Euclidean one. This would effect
the function p(r) but not the exponents.

The weak complexity exponents have an important interpretation. If one
takes δ(r) = 1

r in the definition for the ultra metric of the transversal Ξ of an FLC
tiling, then the weak complexity exponents are the lower and upper box dimensions
of Ξ [27]:

β = dim(Ξ) , β = dim(Ξ) .

8The number of edges in e ∈ T (1) with source vertex s(e) = v ∈ T (0) is uniformly bounded in v.
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In the case of (primitive) substitution tilings of Rd, the complexity exponent exists
[28] and is equal to the Hausdorff dimension of Ξ [29], we comment on that again
further down.

4.1.1. The case of ordinary transverse spectral triples for tilings. Let a(v) be the
branching number of the vertex v minus one, so a(v) + 1 is the number of edges in
T (1) which have source v. We define the kth related Dirichlet series

ζk(s) =
∑

v∈T (0)

a(v)k δ(rv)
s , k ∈ N ,

where r(v) is the radius of the patch associated with the vertex v ∈ T (0), and
we use the convention 00 = 0. Then the zeta functions of the ordinary transverse
spectral triples constructed from H in Section 3.2 are given as follows:

• ζmax := (ζ1 + ζ2)/2 is the zeta function if we take the maximal choice H =
Hmax;

• ζmin := ζ0 is the zeta function for a minimal choice H = Hmin.

We denote by s
min /max
0 the abscissa of convergence of ζmin /max.

Theorem 4.2 ([39]). Consider the ordinary transverse spectral triple of a d-dimen-
sional tiling of finite local complexity (Def. 3.4). Assume that the function δ belongs
to L1+ε([0,∞)) \ L1−ε([0,∞)) for all ε small enough. Then

β ≤ smin
0 ≤ smax

0 ≤ β + d− 1 .

The theorem applies for instance to spectral triples constructed using δ(r) =
1
r+1 as function. The latter does not belong to L1([0,∞)) but to L1+ε([0,∞)) for
all ε > 0.

4.1.2. The case of spectral triples defined for subshifts. The complexity function
for an infinite word is p(n) = number of distinct factors of length n. We define
further the right-special complexity prs as:

prs(n) = number of distinct right-special factors of length n , (14)

as well as the privileged complexity ppr as:

ppr(n) = number of distinct privileged factors of length n . (15)

One defines weak complexity exponents βpr and βrs for ppr and prs just as in
equation (13) for p. Then we have (Corollary 6.2 in [33])

βpr ≤ βrs = β − 1 .

When do we have equality between the exponents βpr = βrs? This question is
related to the notion of almost finite rank. Given an r-patch q of an FLC tiling
T , the Delone set Lq of occurrences of q in T can be tiled by Voronoi cells with
finitely many prototiles. Let n(q) be this number. If n(q) is bounded in q, then
the tiling T is said to have finite rank. If there are constants a, b > 0 such that
n(q) ≤ a log(r(q))b, where r(q) is the size of the patch, then T is said to have
almost finite rank.
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We denote by ζpr the zeta function associated with the privileged choice of
horizontal edges.

Theorem 4.3 ([33]). Consider the spectral triple of a one-sided subshift as in
Def. 3.1. If the subshift is repetitive, has almost finite rank, and δ ∈ L1+ε([0,∞))\
L1−ε([0,∞)) for all ε small enough, then ζmax and ζpr, as well as the related
Dirichlet series ζk, have the same abscissa of convergence. If furthermore the sub-
shift admits weak complexity exponents, then βpr = βrs = β − 1, and β coincides
with the common abscissa of convergence.

As an aside we mention that the equality βpr = βrs can be seen as an asymp-
totic version of a stronger results which holds for rich words [21]: ppr(n) + ppr(n+
1) = p(n+1)−p(n)+2. Indeed one has ppr(n) ≤ p(n+1)−p(n) ≤ (|A|−1)ppr(n),
and thus βpr = βrs. And for rich words, privileged factors and palindromes are
equivalent.

Example. For the Fibonacci subshift of Example 3.1, the tree of words T (shown

at the end of Section 3.1) has a single branching vertex in v∗n ∈ T
(0)
n for each n,

whose branching number is exactly 2 (this is a property shared by all Sturmian
words). That is a(v∗n) = 1 for all n, and a(v) = 0 for all other v �= v∗n for all n.
We choose the weight δ so that it only depends on the length of the factors: for
instance δ(v) = 1

|v| to satisfy the hypothesis of Theorem 4.3. Then for all k ∈ N
the zeta functions are all equal to

ζk(z) =
∑
n≥1

∑
v∈T (0)

n

a(v)kδ(v)z =
∑
n≥1

δ(v∗n)
z =

∑
n≥1

1

nz
,

whose abscissa of convergence is 1. This is also the complexity exponent of the
Fibonacci subshift (all Sturmian words have indeed complexity function p(n) =
n + 1).

4.2. The zeta function for a self-similar spectral triple

We determine in more detail the form of the zeta-function for the triple associated
with a subhift of finite type with self-similar choices of horizontal edges, length
function and choice function. The most important of these choices is the scale
ρ ∈ (0, 1), i.e., the parameter such that δn = ρn. Let A be the graph matrix of G,
that is, the matrix A with coefficients Avw equal to the number of edges which have
source v and range w. The number of paths of length n starting from v and ending
in w is then Anvw. We require that A is primitive: ∃N ∈ N, ∀v, w, ANvw > 0.
Under this assumption, A has a non-degenerate positive eigenvalue ΛPF which
is strictly larger than the modulus of any other eigenvalue. This is the Perron–
Frobenius eigenvalue of A. Let λ1, λ2, . . . , λp be the eigenvalues of A, ordered by
decreasing modulus, and with λ1 = ΛPF. We now compute the zeta function ζ(z)
as in equation (12). The cardinality of #Hn can be estimated as

#Hn =
∑

v,w∈G(0)

An−1vw nw =

p∑
j=1

Cj

Ĥλnj + o(|λp|) ,
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where nw = #{(ε, ε′) ∈ Ĥ : s(ε) = s(ε′) = w}, and the Cj

Ĥ, 1 ≤ j ≤ p, are con-

stants. Hence each eigenvalue of A gives a geometric contribution to the Dirichlet
series ζ(z).

Example. For the Fibonacci subshift of Example 3.1, the graph matrix reads A =(
2 1
1 1

)
, with eigenvalues λ1 = τ2 (the Perron–Frobenius), and λ2 = τ−2, where

τ = (
√
5 + 1)/2 is the golden mean. We choose Ĥ = Ĥmax, so that

#Hn =
(
1 1

)(2 1
1 1

)n−1(
3
2

)
= (2 + τ) τ2n + 5τ−2n,

(we counted only unoriented edges here) and we have exactly

ζ(z) =
∑
n≥1

#Hn ρnz =
2 + τ

1− τ2ρz
+

5

1− τ−2ρz
.

So the spectral dimension of the self-similar spectral triple for the Fibonacci tiling
is s0 = 2 log τ

− log ρ .

In general we can show the following:

Theorem 4.4. Consider a self-similar spectral triple as in Definition 3.3 with scale
ρ. Suppose that the graph matrix is diagonalizable with eigenvalues λj , j = 1, . . . , p.
The zeta-function ζ extends to a meromorphic function on C which is invariant
under the translation z 	→ z + 2πı

log ρ . It is given by

ζ(z) =

p∑
j=1

Cj

Ĥ
1− λjρz

+ h(z)

where h is an entire function. In particular ζ has only simple poles which are

located at { log λj+2πık
− log ρ : k ∈ Z, j = 1, . . . , p} with residues given by

Res(ζ,
logλj + 2πık

− log ρ
) =

Cj

Ĥλj

− log ρ
. (16)

In particular, the metric dimension is equal to s0 = log ΛPF
− log ρ .

Remark 4.5. The periodicity of the zeta function with purely imaginary period
whose length is only determined by the factor ρ comes from the self-similarity of
the construction. It is a feature which distinguishes our spectral triples from known
triples for manifolds. Note also that ζ may have a (simple) pole at 0, namely if 1
is an eigenvalue of the graph matrix A.

Remark 4.6. The location of the poles and hence also the metric dimension does
not depend on the choice of Ĥ (neither on the choice function).

Remark 4.7. In the general case, when A is not diagonalizable, it is no longer true
that the zeta-function has only simple poles. Indeed, at least if |λi| �= 1 the zeta

function ζ(z) has poles of order mj at z =
log λj+2πık
− log ρ where mj is the size of the

largest Jordan block of A corresponding to eigenvalue λj .
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Theorem 4.4 applies to the transversal and the longitudinal spectral triples
discussed in Section 3.3.1 and 3.3.2. In particular it applies to the spectral triple
used in [28]. It is the transverse substitution spectral triple of Section 3.3.1 with
minimal choice for the horizontal edges and ρtr = θ−1. This shows that the trans-
verse metric dimension for a substitution tiling of Rd equals d.

The metric dimension is additive under the tensor product construction of
spectral triples. Hence the metric dimension of the spectral triples for ΩΦ from
Section 3.3.3 is

s0 = d
( log θ

− log ρtr
+

log θ

− log ρlg

)
.

5. Laplacians

Recall that a spectral triple (C(X), D,H) for a compact space X together with a
state T on the Hilbert space H defines a quadratic form

(f, g) = T
(
[D, π(f)]∗[D, π(g)]

)
which may be interpreted as the analog of a Laplacian on X . This is of particular
interest if X does not carry an a priori differentiable structure.

But the Laplacian does not come for free. In fact, subtle analytic questions
have to be resolved which depend on further choices. The question is whether
the quadratic form can be extended to a quadratic form on the Hilbert space
L2
R
(X,μ), where μ is typically (but not necessarily) the spectral measure. This

problem involves the determination of a core for the form (a dense subspace on
which it can be defined, and then extended by a closure operation). The resulting
form will a priori depend on the choice for the core. One then has to check that
the closure of the form has the desired properties of a Dirichlet form.

Although the usual procedure of construction of such forms employs the
spectral state T we will proceed at first in a slightly different manner. Let tr be a
trace on the Hilbert space H and consider the bi-linear form

(f, g) 	→ tr
(
|D|−s[D, π(f)]∗[D, π(g)]

)
(17)

for f, g ∈ C(X) such that |D|−s[D, π(f)]∗[D, π(g)] is trace class. We consider two
cases here. In both cases the spectral triple is defined by an approximating graph
Gτ = (V,E) as in Section 2.2.2.

(1) We consider in Section 5.1 tr = Tr the usual operator trace on H and leave s as
a parameter. Upon averaging over choice functions τ we obtain the Pearson–
Bellissard Dirichlet form and its Laplacian. We discuss its spectral theory
in the case that X is an arbitrary compact ultrametric space getting more
concrete results for X = Ξ, the canonical transversal of a tiling space or a
subshift.

(2) In Section 5.2 we employ tr = str the singular trace on H at s = s0. This
corresponds to using the spectral state T for the definition of the quadratic
form. We get very concrete results in the case that X = ΩΦ is a continuous
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Pisot substitution tiling space, obtain two forms (and associated Laplacians):
one of longitudinal nature, and one of transversal nature. The two forms may
be combined into a single one.

5.1. The operator trace and the Pearson–Bellissard Laplacian

In this section we let (X, d) be a compact ultrametric space. We refer the reader
to Section 2.3 where the canonical Michon tree T is constructed.

We wish to extend the quadratic form (17) using the operator trace tr = Tr.
The naive idea, namely to consider the graph Laplacian on the approximating
graph Gτ = (V,E) cannot work, as it is defined on 2(V ) and no continuous non
trivial continuous function on X restricts to 2(V ). The way around this problem
is to average over choice functions τ . For this we need a probability measure on
the set of choice functions. Let τ : T (0) → ∂T be a choice function. We can either
say that τ chooses an infinite extension for every finite path, or we can say that
it chooses the follow up vertex for every vertex. As such, τ can be thought of as
an infinite family of finite choices, namely for each vertex which one to choose
next. The family of choice functions can therefore be identified with the product
Y =

∏
v∈T (0) T (0)(v), where, we recall, T (0)(v) is the finite set of vertices following

v (hence can be ignored if v is not branching). Furthermore, there is a one-to-one
correspondence between Borel probability measures on X and product probability
measures on Y ([39] Lemma 5.8). We endow Y with a product probability measure
P, and let ν be the corresponding measure on X . We divide equation (17) by 2
(to avoid counting unoriented edges twice) and average over choices to define the
quadratic form on L2

R
(X, ν):

Qs(f, g) =
1

2

∫
Y

Tr
(
|D|−s[D, πτ (f)]

∗[D, πτ (g)]
)
dP(τ) . (18)

It follows from Pearson–Bellissard’s work that equation (18) defines a Dirichlet
form whose domain is generated by (real-valued) locally constant functions on
X of the form χv = �q([v]), where [v] ⊂ ∂T is the set of all infinite paths going
through v. And one identifies Qs(f, g) with 〈f,Δsg〉L2

R
(X,ν) for the Laplacian Δs: a

non-positive definite self-adjoint operator on L2
R
(X, ν), with pure point spectrum.

Let us comment on the form of equations (17) and (18). Choice functions can
be interpreted as analogue to tangent vectors over the “noncommutative manifold”
X , and hence Y stands for the unit tangent sphere bundle to X . The noncommu-
tative gradient of a function ∇τf = [D, πτ (f)] therefore stands for the directional
derivative of f along τ . The quadratic form (18) is therefore reminiscent to the clas-
sical integral

∫
M g(∇f,∇g) dvol = 〈f,−Δg〉L2(M) defining the Laplace–Beltrami

operator over a Riemannian manifold (M, g). The analogy is not perfect, however,
as integration of a function over the manifold,

∫
M

f dvol, usually corresponds to
the application of the spectral state.

We now particularise the above construction to determine explicitly Δs. We
consider the minimal choice of horizontal edges, H = Hmin, as described in Sec-
tion 2.3. We assume further that μ is the spectral measure, and that the length
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function satisfies: δ(h) = d(q ◦ τ(s(h)), q ◦ τ(r(h))), i.e., the distance in X between
the source and range of the image of h ∈ H in X . Then this yields the spectral
triple of Pearson–Bellissard as in Definition 2.8. If all branching vertices of the
tree T have exactly two outgoing vertical edges, then our general construction
reduces to that of Pearson–Bellissard in [49]. For instance, this is the case for X a
Sturmian subshift as in Example 3.1, with T its tree of words.

We now average the form in equation (18) over minimal choices of edges H,
to obtain the Pearson–Bellissard Laplacian. It can be determined explicitly and
diagonalised [28]. There are two regimes: if s < s0 + 2 then Δs is unbounded,
while for s > s0 + 2 it is bounded. (In the bounded case it is possible to obtain
an embedding of the transversal of substitution tiling space in a Euclidean space

[29].) The eigenvalues and eigenvectors are parametrized by the set T (0)
br ⊂ T (0) of

branching vertices: a basis of eigenvectors of Δs is given by functions

ϕv =
1

μ[u]
χu −

1

μ[u′]
χu′ , v ∈ T (0)

br , u �= u′ ∈ T (0)(v),

where χv = �q([v]) and μ[v] stands for the μ-measure of q([v]). The associated
eigenvalues λv can be calculated explicitly. For s = s0, the spectral dimension of
X , one can compute the Weyl asymptotics of the eigenvalues of Δs0 : the number
of eigenvalues of modulus less than λ behaves asymptotically like λs0/2, in analogy
with the classical case.

Example. For the Fibonacci subshift of Example 3.1, the eigenfunction, associated
with the vertex aba in its tree T shown at the end of Section 3.1, reads

ϕaba =
1

μ[abab]
χabab −

1

μ[abaa]
χabaa.

We now turn to the self-similar case of substitution tilings: X = ΞΦ is the
discrete transversal to a substitution tiling space with substitution map Φ. Let
A be the substitution matrix of the substitution Φ, G its substitution graph, and
T the associated tree (of super tiles), as in Sections 3.3 and 3.1.1. The spectral
measure μ of the corresponding transverse spectral triple (see Section 3.3.1) is the
transverse invariant ergodic probability measure on ΞΦ.

The Laplacian Δs is in this case completely and explicitly determined [28]:

all eigenvectors and corresponding eigenvalues (ϕv, λv), v ∈ T (0)
br , can be com-

puted algorithmically from the ones (ϕ0, λ0) associated with the root of T , by
use of the Cuntz–Krieger algebra OA of the substitution matrix. The Cuntz–
Krieger algebra OA [15] is the universal C∗-algebra generated by partial isometries
U1, U2, . . . , Un of an infinite-dimensional separable Hilbert space as follows: the op-
erators U1, U2, . . . , Un are in one-to-one correspondence with the vertices u1, . . . , un
in T (0)

1 (i.e., the prototiles), and subject to the relations U∗i Ui =
∑

j AijUjU
∗
j .

There are two faithful ∗-representations of OA: ρ1 : OA → L2(X,μ) and ρ2 :
OA → 2(T (0)) such that

ϕv = ρ1(Uim · · ·Ui2Ui1)ϕ0 , λv = 〈ρ2(Uim · · ·Ui2Ui1)δ0, δv〉λ0 ,
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where we wrote v = uim , . . . , ui2 , ui1 the unique sequence of vertices in T (0) from
v up to the root, the root vertex not being included. Moreover, δ0, δv are the basis
elements of 2(T (0)) associated with the root and vertex v and 〈·, ·〉 denotes the
scalar product in 2(T (0)).

5.2. The singular trace and Laplacians for substitution tilings

We now consider the quadratic form in (17) which we obtain if we use for tr a
singular trace str on H at parameter s = s0. A priori there may be many singular
traces, but if the limit below exists then, apart from an overall factor, they all
amount to:

Q(f, g) = str
(
|D|−s0 [D, π(f)]∗[D, π(g)]

)
= lim

s→s+0

1

ζ(s)
Tr
(
|D|−s[D, π(f)]∗[D, π(g)]

)
.

(19)

In other words Q(f, g) = T
(
[D, π(f)]∗[D, π(g)]

)
is defined by the spectral state T .

Our main application is to a self similar spectral triple from a substitution
tiling, as discussed in Section 3.3.3. Note that in (19) we do not integrate over
choice functions. Such an integration would in fact not change much, as there
are only finitely many possible choices due to our self-similarity constraint on the
choice function.

Recall that C(ΩΦ) is a subalgebra of ⊕t∈AC(t × Ξt) where A is the set of
prototiles. We can employ the tensor product structure of C(t×Ξt) ∼= C(t)⊗C(Ξt)
to decompose the form into the sum of a transversal form and a longitudinal form:

Q(f, g) = Qlg(f, g) + Qtr(f, g) , (20)

where

Qα(f, g) = Tα
(
[Dα, πα(f)]

∗[Dα, πα(g)]
)
. (21)

Here α = tr or lg and the corresponding objects Tα, Dα, πα are the spectral state,
the Dirac operator and the representation associated with the transverse and lon-
gitudinal substitution spectral triple of t of Sections 3.3.1 and 3.3.2, respectively.
There are subtle technicalities behind this decomposition, in particular for the
spectral state (which holds only for so-called strongly regular operators on H [40])
which we will not discuss here.

In both cases the operator [Dα, πα(f)]
∗[Dα, πα(g)] is diagonal and gives a

contribution (δαe f)∗δeg on the edge e ∈ Eα
n = q ◦ τ × q ◦ τ(Hα,n), where

δαe f =
f(r(e)) − f(s(e))

ρnα
. (22)

Moreover

Qα(f, g) = lim
s→s+0

1

ζα(s)

∑
n≥1

#Eα
nρnsα qαn (f, g)
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with

qαn(f, g) =
1

#Eα
n

∑
e∈Eα

n

δαe f δαe g .

Notice that lims→s+α
1

ζα(s)

∑
n≥1 #Eα

nρnsα = 1, and hence we have Qα(f, g) =

limn qαn (f, g) provided the limit exists. We now briefly explain how we can evaluate
these limits. The following two paragraphs are a bit technical, the reader will find
the main result stated and discussed in the last paragraph.

The longitudinal form. Given a fundamental edge (ε, ε′) ∈ Ĥlg, recall that a(ε,ε′) ∈
Rd denotes the translation vector between the punctures of the microtiles asso-
ciated with ε and ε′. If ae ∈ Rd denotes the corresponding vector for e ∈ Elg,n
of type (ε, ε′), that is, e = q ◦ τ × q ◦ τ(γε, γε′) for some γ of length n, then by
(9) we have ae = θ−nah, so s(e) = r(e) + θ−nah. We make for large n the Taylor
approximation in equation (22)

δlge f �
(

θ−1

ρlg

)n
(ah · ∇)f(s(e)) .

If ρlg = θ−1, and we further approximate the sum of (δlge f)∗δlge g over e ∈ Elg
n

by a Riemann integral, then for n large qlgn (f, g) gives contributions of the form∫
t
(ah · ∇)f̄ (ah · ∇)g dμtlg.

We define the operator on L2
R
(ΩΦ, dμ):

Δlg = clg∇†lgK∇lg , with K =
∑

t∈A, h∈Hlg
1 (t)

freq(t) ah ⊗ ah , (23)

where Ĥlg(t) = {(ε, ε′) : s(ε) = s(ε′) = t}, freq(t) is the frequency of tile t, and we
write ∇lg for the longitudinal gradient on ΩΦ. The latter takes derivatives along
the leaves of the foliation: ∇lg = 1⊗∇Rd . This leads to the expression

Qlg(f, f) =

⎧⎨⎩
〈f, Δlg f〉L2

R
(ΩΦ,dμ) if ρlg = θ−1

0 if ρlg > θ−1

+∞ if ρlg < θ−1
, for all f ∈ C2

lg(ΩΦ) , (24)

where C2
lg(ΩΦ) is the space of longitudinally C2 functions on ΩΦ. So we see that

for ρlg ≥ θ−1, Δlg is essentially self-adjoint on the domain C2
lg(ΩΦ), and therefore

the form Qlg is closable. For ρlg < θ−1 the form is not closable.

The transversal form. Given a fundamental edge h = (ε, ε′) ∈ Ĥtr let t = s(ε) =
s(ε′) and denote as before by rh ∈ Rd the return vector between the occurrences
of t in the supertiles associated with ε and ε′. If re ∈ Rd denotes the corresponding
vector for e ∈ Etr

n of type (ε, ε′), then by self-similarity we have re = θnrh, so
s(e) = r(e) + θnrh.

We assume now that the substitution is Pisot, i.e., θ is a Pisot number. Then
we know that there are plenty of dynamical eigenfunctions: continuous functions fβ
satisfying fβ(ω + r) = e2ıπβ(r)fβ(ω) for some β ∈ Rd

∗
and all ω ∈ ΩΦ and r ∈ Rd.

In fact, the set of β ∈ Rd
∗
for which such a function exists is a dense subgroup of
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Rd
∗
and the Pisot substitution conjecture9 states that if the substitution matrix is

irreducible then the dynamical spectrum is purely discrete which means that the
eigenfunctions generate all of L2(ΩΦ, μ). We assume this to be the case, and we
choose the linear span of dynamical eigenfunctions to be the core of Qtr. We have

δtre fβ =
1

ρntr

(
fβ(s(e) + θnrh)− fβ(s(e))

)
=

1

ρntr

(
e2ıπθ

nβ(rh) − 1
)

f(s(e)) .

By the arithmetic properties of Pisot numbers θnβ(rh) tends to an integer as n
goes to infinity. Moreover, the speed of convergence is governed by the Galois
conjugates of θ of greatest modulus: θj , j = 2, . . . , L, |θj | = |θ2|. It follows that,
for n large, we have

δtre fβ �
(

θ2
ρtr

)n(∑L

j=2
pβ(rh)(θj)

)
f(s(e)) ,

where pβ(rh) is some polynomial with rational coefficients. We are left with sum-

ming the terms (δtre f)∗δtre g over e ∈ Etr
n , and approximate by a Riemann sum

to get an asymptotically equivalent expression for qtrn (f, g). There are averaging
subtleties coming from the phases αj of the θj and we have to assume that10:

αj − αj′ + 2kπ + 2πk′ log ρtrlog ρlg
�= 0, ∀k, k′ ∈ Z. Define the operator Δtr on the linear

space of dynamical eigenfunctions by

Δtrfβ = −ctr(2π)
2

∑
t∈A,h∈Ĥtr(t)

freq(t)

L∑
j=2

|pβ(h)(θj)|2 fβ . (25)

Then, on the space of dynamical eigenfunctions the transversal form is given by

Qtr(fβ, fβ) =

⎧⎨⎩
〈fβ ,Δtrfβ〉L2(ΩΦ,dμ) if ρtr = |θ2|
0 if ρtr > |θ2|
+∞ if ρtr < |θ2|

.

Clearly, Qtr is closable but trivial if ρtr > |θ2|, whereas Qtr is not closable if
ρtr < |θ2|.
Main result and geometric interpretation. We summarize here the results about
the Dirichlet forms. For a Pisot number θ of degree J > 1, we denote θj , j =
2, . . . , J , the other Galois conjugates in decreasing order of modulus. We write the
subleading eigenvalues in the form θj = |θ2|eıαj , 2 ≤ j ≤ L, where αj ∈ [0, 2π). In
particular, |θj | < |θ2| for j > L.

Theorem 5.1 ([40]). Consider a Pisot substitution tiling of Rd with Pisot number
θ of degree J > 1. Assume that for all j �= j′ ≤ L one has

αj − αj′ + 2πk + 2π
log |θ2|
log θ

k′ �= 0 , ∀k, k′ ∈ Z . (26)

Set ρlg = θ−1 and ρtr = |θ2|.

9discussed at length in the contribution in the Pisot chapter
10The ratio log(θ)/ log(|θ2|) is irrational unless θ is a unimodular Pisot number of degree
J = 3 [55].
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If the dynamical spectrum is purely discrete then the set of finite linear com-
binations of dynamical eigenfunctions is a core for Q on which it is closable. Fur-
thermore, Q = Qtr + Qlg, and Qtr/lg has generator Δtr/lg =

∑
h∈Htr/lg,1

Δh
tr/lg

given by

Δh
lgfβ = −clg(2π)

2freq(th)β(ah)
2fβ ,

Δh
trfβ = −ctr(2π)

2freq(th)〈r̃h, β〉2fβ
where th is the tile associated with (the source of the vertical edges linked by) h,
and the constants clg and ctr depend only on the substitution matrix.

We now explain the term r̃h
 in the above equation, and give an interpre-

tation of the Laplacians Δtr/lg as elliptic second-order differential operators with
constant coefficients on the maximal equicontinuous factor of the dynamical sys-
tem (ΩΦ,Rd).

We assume for simplicity that θ is unimodular, see [40] for the general case.
Our assumption that the dynamical spectrum is purely discrete is known to be
equivalent to the tiling being a cut-and-project tiling. The maximal equicontinuous
factor of the dynamical system (ΩΦ,Rd) coincides with the dJ-torus T of the
torus parametrisation of the cut-and-project scheme. The substitution induces a
hyperbolic homeomorphism on that torus which allows us to split the tangent
space at each point into a stable and an unstable subspace, S and U . The unstable
tangent space is d-dimensional and can be identified with the space in which the
tiling lives. We write r̃ for the vector in U corresponding to r via the identification
of U with the space in which the tiling lives. The stable space S can be split further
into eigenspaces of the hyperbolic map, namely S = S2 + S′ where S2 is the sum
of eigenspaces of the Galois conjugates of θ which are next to leading in modulus
(θj for j = 2, . . . , L). Finally  : U → S2 ⊂ S is the reduced star map. This is
Moody’s star map followed by a projection onto S2 along S′.

Since the dynamical spectrum is pure point and all eigenfunctions continuous
the factor map π : ΩΦ → T induces an isomorphism between L2(Ω, μ) and L2(T, η),
where η is the normalized Haar measure on T. The Dirichlet form Q can therefore
also be regarded as a form on L2(T, η). Now the directional derivative at x along
u ∈ U ⊕ S is given by

(〈u,∇〉fβ)(x) =
d

dt
fβ(x + tu) |t=0 = 2πi〈u, β〉fβ(x).

And we thus have

Δh
lg = clgfreq(th)〈ãh,∇〉2,

Δh
tr = ctrfreq(th)〈r̃h∗,∇〉2.

To summarize, the Dirichlet form Q viewed on L2(T, η) has as generator the Lapla-
cian Δ =

∑
h∈Ĥlg

Δh
lg +

∑
h∈Ĥtr

Δh
tr on T which is a second-order differential

operator with constant coefficients containing (second) derivatives only in the di-
rections U + S2.
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6. Characterization of order

In this section we explain how noncommutative geometry can be used to charac-
terise combinatorial properties of tilings and subshifts. These properties, equidis-
tribution of frequencies and bounded powers, are signs of aperiodic order. In this
theory, which has been proposed in [39] and extended in [33], the interest is no
longer Rieffel’s question after the construction of a spectral triple whose associated
Connes distance induces the topology, but a comparison of the different distance
functions which arise for different choices of the choice functions.

6.1. Notions of aperiodic order

After recalling some notions of aperiodic order we focus on the spectral triples
of Sections 3.1 and 3.2 with the aim to derive criteria for high aperiodic order
(Section 6.2). We will define these notions mainly for tilings of Rd. For symbolic
tilings (infinite words) the corresponding notions are easily adapted.

Complexities and complexity exponents. We introduced the complexity function
p(r) and various complexity exponents in Sections 4.1 and 4.1.2. The smaller the
growth of the complexity function, the more ordered the tiling appears. An ordered
tiling is expected to have a subexponential or polynomially bounded complexity
function.

Repetitiveness. The repetitiveness function R : R+ → R+ for a tiling T is defined
as follows: R(r) is the smallest r′ such that any r′-patch of T contains an occurrence
of all the r-patches of T .

We will assume that R(r) is finite for all r ≥ 0. In the context of tilings of finite
local complexity this means that the tiling is repetitive and is equivalent to the
minimality of the dynamical system (Ω,Rd). A well-ordered tiling is also supposed
to have a low repetitiveness function. The repetitiveness function is related to
the complexity function in several ways. For instance, Lagarias and Pleasants
established a bound R(r) ≥ cp(r)1/d, for some c > 0 and all r large, which holds
in general for any repetitive tiling of Rd [41]. Among repetitive tilings, the linearly
repetitive ones [20, 17] are commonly regarded as the most ordered [41]. These are
tilings for which there exists a constant cLR > 0 such that

R(r) ≤ cLR r , ∀r ≥ 0 .

For linearly repetitive tilings, the reverse inequality to Lagarias–Pleasants’ bound
holds too [43], and one has: c p(r)1/d ≤ R(r) ≤ c′ p(r)1/d for some c, c′ > 0 and r
large.

Finite and almost-finite ranks, defined in Section 4.1, are related notions.
They characterize bounded or slow increasing number of repetition types.

Repulsiveness and bounded powers. A return vector to a patch in a tiling is any
vector joining (the punctures of) two occurrences of that patch in the tiling. A
repetitive tiling is said to be repulsive if any return to an r-patch grows at least
like r, for r large. Linear repetitive tilings are repulsive [43, 9], and repulsiveness
is also a signature of high aperiodic order. For example, a non-repulsive tiling has
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patches of arbitrarily large sizes which overlap on arbitrarily large parts. These
overlaps force local periodicity, as is easily seen in dimension 1 and for words.

An infinite word with language L is repulsive if its index of repulsiveness,

 = inf
{ |W | − |w|

|w| : w,W ∈ L, w is a proper prefix and suffix of W
}

, (27)

is positive:  > 0. This is equivalent to bounded powers: there exists an integer p
such that each factor occurs at most p times consecutively: ∀u ∈ L, up+1 /∈ L.
Equidistributed frequencies. A uniquely ergodic tiling is said to have equidis-
tributed frequencies if the frequency of any r-patch behaves like a given function
of r, for r large. As this function is independent of the patches, it is easily related
to the complexity. Namely, a tiling has equidistributed frequencies if there are
constants c, c′ > 0 such that for any r-patch P one has:

c p(r)−1 ≤ freq(P ) ≤ c′ p(r)−1 . (28)

A linearly repetitive tiling has equidistributed frequencies ([39] Theorem 1.8).

Uniform bound on the number of patch extensions. In a tiling with finite local
complexity, any r-patch P has finitely many extensions: if r = rn, there are finitely
many rn+1-patches containing P . If this number is uniformly bounded in n, then
the tiling is said to have a uniform bound on the number of patch extensions. Tilings
with FLC in dimension 1, and words over a finite alphabet, obviously have such a
uniform bound. This notion is closely related to finite rank, defined in Section 4.1.

A tiling with equidistributed frequencies and for which the complexity func-
tion satisfies p(4r) ≤ c p(r), for some c > 0 and all r large, has a uniform bound
on the number of patch extensions ([39] Lemma 4.15).

6.2. A noncommutative geometrical criterion for aperiodic order

In the following we work with spectral triples for one-sided subshifts (Def. 3.1)
and with ordinary transversal spectral triples for tilings or subshifts (Def. 3.4).
Recall that these spectral triples depend on various choices, namely those for the
horizontal edges and the length function, but also that for the choice function.
While we keep the choices for the horizontal edges and the length function fixed
we treat that for the choice function τ as a parameter and thus obtain a Connes
distance dC = dτ which depends on this parameter. How are these distance func-
tions related? In particular, considering the infimum and supremum of dτ over all
choices

dsup = sup
τ

dτ , dinf = inf
τ

dτ ,

we may ask, are dsup and dinf equivalent in the sense of Lipschitz? By this we mean
that there exists a constant C > 0 such that

C−1dinf ≤ dsup ≤ Cdinf.

This is the non commutative geometrical criterion which will characterize a certain
form of aperiodic order, provided clever choices for the horizontal edges and the
length function have been made.
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We first consider repetitive aperiodic tilings of finite local complexity and
their ordinary transverse spectral triples. We fix the maximal choice H = Hmax

for the horizontal edges. Identifying the canonical transversal Ξ of the tiling with
the set of infinite paths on the tree of patches we obtain the following expressions
([39] Section 4.1)

dinf(ξ, η) = δ(|ξ ∧ η|) , dsup(ξ, η) = δ(|ξ ∧ η|)+
∑

n>|ξ∧η|

(
bn(ξ)+ bn(η)

)
δ(n) . (29)

Here ξ ∧ η is the greatest common prefix of the paths ξ and η and hence |ξ ∧ η|
is the radius of the largest r-patch the tilings corresponding to ξ and η have in
common (around the origin). Furthermore bn(ξ) = 1 if the nth vertex of the path
ξ is a branching vertex, otherwise bn(ξ) = 0.

The first formula says that dinf corresponds to the metric defined by δ in
(7). We need to assume that this function satisfies the following multiplicative
inequalities, which are satisfied for instance for power functions:

δ(ab) ≤ c̄ δ(a)δ(b) (30a)

δ(2a) ≥ c δ(a) (30b)

for some constants c̄, c > 0 and for all a, b large. The following result shows that
Lipschitz equivalence of dinf and dsup is a necessary criterion for equidistribution
of frequencies.

Theorem 6.1 ([39, Thm. 4.16]). Consider a tiling which has equidistributed patch
frequencies and whose complexity function satisfies: p(4r) ≤ cp(r) for some c > 0
and all r large. Suppose that δ satisfies the inequalities in equation (30a). Then
dinf and dsup are Lipschitz-equivalent.

We now focus on subshifts considering the spectral triples for one-sided
subshifts (Def. 3.1) with privileged horizontal edges H = Hpr. In other words,
u1, u2 ∈ T (0) are linked with a horizontal edge if and only if u1 and u2 are privi-
leged words, and there is a privileged word v ∈ T (0) such that u1 and u2 are two
distinct complete first returns to v (see Section 3.1). As above the spectral triple
requires a choice for the function δ, and will depend parametrically on the choice
functions. We consider again the infimum dinf and supremum dsup of the spectral
metric dC = dτ over all choice functions τ . These metrics, if continuous, are given
on the one-sided subshift space Ξ by

dinf(ξ, η) = δ(‖ξ ∧̃ η‖) , dsup(ξ, η) = δ(‖ξ ∧̃ η‖) +
∑

n>‖ξ∧η‖

(
δ(‖ξ̃n‖) + δ(‖η̃n‖)

)
.

(31)
Now ξ ∧̃ η denotes the greatest common privileged prefix of ξ and η. Furthermore
we write ‖u‖ = n if u is an nth-order privileged word, that is, obtained as nth

iterated complete first return to the empty word. Finally ξ̃n denotes the privileged

prefix of nth order of ξ. In particular, ‖ξ ∧ η‖ = m if ξ̃m = η̃m but ξ̃m+1 �= η̃m+1.
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Now Lipschitz equivalence of dinf and dsup is a necessary and sufficient crite-
rion for bounded powers.

Theorem 6.2 ([33, Thm 5.1]). Consider a minimal aperiodic one-sided subshift over
a finite alphabet. Suppose that the function δ used to construct the above spectral
triples satisfies the two inequalities (30). Then the subshift has bounded powers if
and only if dinf and dsup are Lipschitz-equivalent. Furthermore, the corresponding
two-sided subshift has bounded powers if and only if the one-sided subshift has
bounded powers.

To emphasize the importance of the above result we discuss the special case
of Sturmian subshifts (an example of which, the Fibonacci subshift, is given in
Example 3.1). For these subshifts, having bounded powers is equivalent to linear
repetitiveness. Sturmian subshifts depend on a parameter θ, the slope, whose num-
ber theoretical properties are reflected in various properties of the subshift. The
following result says that our noncommutative geometric criterion characterizes
properties of irrational numbers.

Corollary 6.3. Consider a Sturmian subshift with slope θ. Suppose that the function
δ used to construct the above spectral triples satisfies the two inequalities (30). The
following are equivalent:

(i) The subshift is linearly repetitive;
(ii) The continued fraction expansion of its slope θ has bounded coefficients;
(iii) The metrics dinf and dsup are Lipschitz-equivalent.

One can say even a little more: If the coefficients in the continued fraction
expansion of the slope grow very fast (see [39, Thm. 4.14] for a precise statement)
then dsup is not even continuous on the subshift space, that is, it is not compatible
with its topology.

7. K-homology

We now discuss an application of the spectral triples for compact ultrametric spaces
to the noncommutative topology of such spaces. According to the general theory a
spectral triple over a C∗-algebra A gives rise to a K-homology class of that algebra
which in turn defines a group homomorphism from the K-group of A to the group
of integers [12]. A compact ultrametric space X is totally disconnected and its K0-
group K0(C(X)) is isomorphic to C(X,Z), and thus as a Z-module generated by
the indicator functions on the clopen sets of X . The K1-group K1(C(X)) is trivial.
In this section we give an answer to the question, which group homomorphisms
C(X,Z) → Z can be obtained from the spectral triples of a compact ultrametric
set X .

7.1. Fredholm modules and their pairing with K-theory

A spectral triple is sometimes referred to as an unbounded Fredholm module. This
suggests that it can somehow be reduced to a (bounded) Fredholm module.
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Definition 7.1. An odd Fredholm module (A,F,H) over a C∗-algebra A is given
by a Hilbert space H, a representation π : A→ B(H), and a bounded, self-adjoint
operator F , such that F 2 = 1 and for all a ∈ A, [F, π(a)] is compact.

An even Fredholm module is an odd Fredholm module, with an additional
self-adjoint operator Γ which satisfies Γ2 = 1, which commutes with each operator
π(a) and anti-commutes with F .

We see that the main difference to the definition of a spectral triple is that
F is bounded and F 2 = 1. So it is no surprise that a spectral triple gives rise to a
Fredholm module by applying a polar decomposition to D and taking F to be its
unitary part11, D = F |D|. Indeed, since D is self-adjoint we can obtain F from D
by replacing the eigenvalues of D by their sign, F = sign(D).

As for even spectral triples, the grading operator of a Fredholm module allows
one to decompose H = H+ ⊕ H−, such that the representation acts diagonally as
π+ ⊕ π−, the operator Γ acts as 1⊕ (−1), and

F =

(
0 T ∗

T 0

)
for some unitary operator T : H+ → H−.

Fredholm modules for A are at the basis of the construction of the K-
homology group of A. We will not explain this construction here. Our interest lies
in the group homomorphisms into Z the K-homology classes define on K-theory
and these can be expressed directly on the level of Fredholm modules. Only even
Fredholm modules lead to non-trivial homomorphisms on K0(A) and so for our
purposes it is enough to consider even Fredholm modules.

Definition 7.2. Let F be a bounded operator between two Hilbert spaces. It is
called a Fredholm operator if the dimension of its kernel and of its cokernel are
finite. In this case, its index ind(F ) is defined as

ind(F ) = dim(kerF )− dim(cokerF ).

The K0-group K(A) of a unital C∗-algebra is constructed from homotopy
classes of projections p in A and in Mn(A), the algebra of n × n matrices with
entries in A (any natural n).

Theorem 7.3 ([12]). Let M = (A,F,H) be an even Fredholm module and p be a
projection in A. Then π−(p)Tπ+(p) is a Fredholm operator between the two Hilbert
spaces π+(p)H

+ and π−(p)H
− and

ϕM (p) = ind
(
π−(p)T π+(p)

)
(32)

induces a group homomorphism ϕM : K0(A)→ Z.

11We suppose for simplicity (and this is actually satisfied for our spectral triples) that D has no
kernel.
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We emphasize that the index has to be taken for the operator defined between
the specified source and range spaces, and not all of H+ and all of H−.

Claiming that (32) induces a group homomorphism on the level of K0(A)
means not only that it is additive, but also that ϕM (p) is invariant under homotopy
of projections, and that it extends (in a natural way) to projections in Mn(A). We
remark also that there is a natural notion of direct sum for Fredholm modules and
that ϕM⊕M ′ = ϕM + ϕM ′ . The above theorem may therefore be formulated also
in the following way: The map (M,p) 	→ ϕM (p) ∈ Z extends to a bi-additive map
between the K-homology and the K-theory of A. This bi-additive map is called
the Connes pairing.

7.2. Compact ultrametric space

We now consider the case of a compact ultrametric space X . We have seen in
Section 2.3 that X can be identified with the space of paths on its Michon tree
T = (T (0), T (1)) and obtain spectral triples depending on the choice of horizontal
edges H and choice functions τ : T (0) → ∂T . We fix an orientation H = H+ ∪H−
which induces the grading on the Hilbert space H = H+⊕H− = 2(H+)⊕ 2(H−).
Theorem 2.4 now gives a spectral triple for C(X) ∼= C(∂T ).

Recall from Section 2.3 that the Dirac operator D of the spectral triple de-
pends on the ultrametric. But note that sign(D) is independent of the that metric
and hence the Fredholm module defined by the spectral triple depends only on H
and τ . Indeed, F = sign(D) is given by

F =

(
0 T ∗

T 0

)
,

where T : H+ → H− is induced by changing the orientation of the horizontal edge,
h 	→ hop. More precisely, if we denote 1h ∈ H the function which is 1 on the edge
h ∈ H then T 1h = 1hop . We denote the associated homomorphism of the Fredholm
module by ϕτ,H : K0(C(X))→ Z, that is:

ϕτ,H : C(X,Z) −→ Z.

By compactness of X , any function in C(X ;Z) is a finite sum of the form
∑

αvχv,
where χv is the characteristic function of the set of all infinite paths which pass
through v. In particular, the K-theory is spanned by projections in C(X) rather
than in a matrix algebra. Therefore, ϕτ,H is entirely determined by the values of
{ϕτ,H(χv) ; v ∈ V}. These values can be explicitly computed using equation (32).
Let (1h)h∈H+ be a basis for H+. Then a simple computation shows that given
h ∈ H+, π−(χv)Tπ+(χv) ·1h = χv(τ ◦ r(h))χv(τ ◦ s(h)) ·1hop . Therefore, the index
of this linear map (between the indicated Hilbert spaces) is:

ϕτ,H(χv) = #{h ∈ H+ ; χv(τ ◦ s(h)) �= 0 and χv(τ ◦ r(h)) = 0}
−#{h ∈ H+ ; χv(τ ◦ r(h)) �= 0 and χv(τ ◦ s(h)) = 0}.

(33)

The same arguments as in the proof for Lemma 2.3 show that whenever h ∈ H+

does not satisfy that either r(h) or s(h) lies on the unique path from the root to v,
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then h does not belong to any of the sets occuring in equation (33). This equation
can therefore be rewritten:

ϕτ,H(χv) =
∑
h∈H+

(
χv(τ ◦ s(h))− χv(τ ◦ r(h))

)
, (34)

the general term of the sum being non-zero only for finitely many h.
In particular, it results from these formulas that for any τ and any choice

of minimal edges H = Hmin we must have ϕτ,H(1) = 0, and that there are two

vertices v1, v2 ∈ T (0)
1 , such that ϕτ (χv1) = 1 and ϕτ (χv2) = −1. This provides the

following proposition.

Proposition 7.4. For any choice function τ and any choice of minimal edges Hmin,
the homomorphism ϕτ,H is non-trivial. In particular, the K-homology class of a
Pearson-Bellissard spectral triple is never trivial.

Now, the question is: which homomorphisms on K0(C(X)) can we obtain
from Fredholm modules? The following proposition says that, if we only slightly
relax our earlier assumptions by assuming that H can consist of several edges
between the same vertices, then the condition found above, namely ϕ(1) = 1, is the
only obstruction for an element of Hom(K0(C(X));Z) to come from a Fredholm
module.

Proposition 7.5. For any ϕ ∈ Hom(C(X ;Z);Z) such that ϕ(1) = 0, there is a set
of horizontal edges H (possibly bigger than what was defined as a maximal set),
and a choice function τ such that ϕτ,H = ϕ.

Proof. We begin by a simple remark. Suppose that we have two modules defined
by two distinct choices τ,H and τ ′,H′. If the horizontal edges coincide up to level
n and the choice functions coincide up to level n−1 then ϕτ,H(χv) = ϕτ ′,H2(χ

′) for
all vertices v of level smaller or equal to n. We can therefore construct inductively
τ,H from the values of ϕ(χv) to obtain ϕτ,H = ϕ as follows.

Let v0 ∈ T (0)
0 be the root. Choose τ(v0) arbitrarily. Let v1, . . . , vk ∈ T (0)

1 .
Suppose that v1 is the vertex through which τ(v0) passes. Then we must have
τ(v1) = τ(v0). For i �= 0, 1 we may choose τ(vi) arbitrarily. We now choose the
horizontal edges H1 of level 1, cf. Figure 4. Let n1, . . . , nk be the numbers ni :=
ϕ(χvi). Since

∑
i χvi = 1 and ϕ(1) = 0, the ni sum to 0. By convention, we say

that “n horizontal edges from vi to vj” consists of |n| edges with source vi and
range vj if n is positive, and |n| edges with range vi and source vj if it is negative.

Then H+
1 shall consist of n1 edges from v1 to v2, n1 + n2 edges from v2 to v3, . . . ,

and
∑k−1

i=1 ni edges from vk−1 to vk. A simple computation shows that however
we extend τ and whatever the choice of horizontal edges of higher level, ϕτ,H(χv)
assumes the correct values.

To proceed with the inductive construction, assume that the choice function
and horizontal edges are determined up to level n − 1 and n, respectively. Let

w0 ∈ T (0)
n and w1, . . . , wk ∈ T (0)(w0). One may assume that τ(w0) passes through

w1. Then we must have τ(w1) = τ(w0) and we choose τ(wi) arbitrarily for the other
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vertices. Let mi := ϕ(χwi) for i = 0, . . . , k. Then, however we extend τ further
and whatever the choice of horizontal edges of level n + 1 we have ϕτ,H(w0) =

ϕ(w0) = m0. Now H+
n+1 should consist of −m0 +

∑k−1
i=1 mi edges from wk−1 to

wk. Since
∑k
i=1 mi = m0 we have ϕτ,H(χwi) = ϕ(χwi) for the other i as well.

The construction of the last paragraph is iterated for all vertices at level n,
and then for all levels. �

−121−2−13

0 w02

w1
v1

v0

Figure 4. The left picture shows the beginning of the tree with its root
vertex v0. The right figure shows a part of the tree corresponding to a
branching at vertex w0 of some higher level. In both cases we assume
that the choice function applied to the top vertex corresponds to a path
via the left vertical edge. The numbers assigned to vertices stand for
the values that ϕ assigns to the indicator functions corresponding to the
vertex. The horizontal edges are chosen according to the rule explained
in the proof of Proposition 7.5.

Remark 7.6. It could happen that the construction above provides a Fredholm
operator for which some of the Hn are empty. It still defines a Fredholm module,
and adding appropriate weights defines a spectral triple. A Fredholm module can
also be modified in order to augment the sets H without changing the pairing map:
given two vertices v and v′, simply add an edge from v to v′ and an edge from
v′ to v.
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Spectral Properties of Schrödinger Operators
Arising in the Study of Quasicrystals

David Damanik, Mark Embree and Anton Gorodetski

Abstract. We survey results that have been obtained for self-adjoint oper-
ators, and especially Schrödinger operators, associated with mathematical
models of quasicrystals. After presenting general results that hold in arbi-
trary dimensions, we focus our attention on the one-dimensional case, and in
particular on several key examples. The most prominent of these is the Fi-
bonacci Hamiltonian, for which much is known by now and to which an entire
section is devoted here. Other examples that are discussed in detail are given
by the more general class of Schrödinger operators with Sturmian potentials.
We put some emphasis on the methods that have been introduced quite re-
cently in the study of these operators, many of them coming from hyperbolic
dynamics. We conclude with a multitude of numerical calculations that illus-
trate the validity of the known rigorous results and suggest conjectures for
further exploration.

Mathematics Subject Classification (2010). 81Q10, 47B36, 47N50, 35Q41.

Keywords. Schrödinger operators, spectrum, density of states, quantum trans-
port.

1. Introduction

The area of mathematical quasicrystals is fascinating due to its richness and very
broad scope. One perspective that leads to a rich theory is the question of how well
quantum wave packets can travel in a quasicrystalline medium. This, in turn, leads
to a study of the time-dependent Schrödinger equation governed by a potential
that reflects the aperiodic order of the environment to which the quantum state
is exposed.
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This survey paper describes the current “state of the art” of mathematical re-
sults concerning quantum transport in mathematical quasicrystal models. We will
describe the (Schrödinger) operators that are typically considered in this context,
as well as the spectral and quantum dynamical properties of these operators that
are relevant to our basic motivating question. Few results hold without further
assumptions. After presenting these general results, we will therefore specialize
our class of operators in various ways. On the one hand, additional general results
follow from passing to a one-dimensional setting, most notably some specific con-
sequences of Kotani theory. On the other hand, there is much interest in certain
central examples, such as the Fibonacci model, and more generally the Sturmian
case or potentials generated by primitive substitutions. For these special cases,
many more results are known, most of which will be described in detail here.
Another purpose of this survey is to highlight new tools that have recently been
introduced in the study of these models that have led to very fine quantitative
results in the Fibonacci case and beyond.

The structure of the paper is as follows. In Section 2 we describe the opera-
tors that are typically considered in the case of general dimension. In Section 3 we
present the results known to hold in this very general setting. Next, in Section 4, we
pass to the one-dimensional situation, where the operators are slightly redefined to
conform with the bulk of the literature. Additional general results are described in
this scenario. These range from Kotani theory, via proofs of zero-measure spectrum
and hence absence of absolutely continuous spectrum based on Kotani theory, to
proofs of absence of point spectrum and hence purely singular continuous spec-
trum based on Gordon’s lemma. We also discuss how these general results can
be applied to several classes of examples. Section 5 is devoted to the special case
of the Fibonacci Hamiltonian. This is the most prominent one-dimensional qua-
sicrystal model; in addition to the general results mentioned before, there are fine
estimates of the local and global dimensions of the spectrum and the density of
states measure, as well as the optimal Hölder exponent of the integrated density of
states and the upper transport exponent. For this model the question about quan-
tum transport behavior also has very satisfactory answers. All these results, along
with comments on their proofs, are presented in this section. Then, in Section 6,
we discuss how the approach and the results may be extended from the Fibonacci
case to the more general Sturmian case. We present and discuss numerical results
in Section 7. Finally, Section 8 lists and discusses a number of open problems that
are suggested by the existing results.

Related matters have been surveyed earlier in [11, 27, 43, 46, 166].

2. Schrödinger operators arising in the study of quasicrystals

In this section we describe self-adjoint operators that have been studied in the
context of quasicrystals. There is a clear distinction between the case of one space
dimension and the case of higher space dimensions. While the geometry of the
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quasicrystal model plays an important role in higher dimensions, this is not the
case for one-dimensional models. In the former case, this leads to a dependence
of the underlying Hilbert space on the realization of the model. In particular, as
one typically embeds any such realization in a family of realizations, this leads
to some technical issues that need to be addressed mathematically. In the latter
case, on the other hand, one usually works in a universal Hilbert space and the
aperiodic order features are solely reflected by the potential of the operator. This
allows one to invoke the standard theory of ergodic Schrödinger operators with a
fixed Hilbert space. In this survey we will present the known results in the settings
in which they have been obtained, which we now describe.

Quasicrystals are commonly modeled either by Delone sets in Euclidean space
or by tilings of Euclidean space. In fact, any such Delone set or tiling is embedded
in a Delone or tiling dynamical system, which is obtained by considering the set
of translates and then taking the closure of this set with respect to a suitable
topology. This orbit closure is called the hull of the initial Delone set or tiling.
The dynamics are then given by the natural action of the Euclidean space on the
hull through translations. For this dynamical system, one then identifies ergodic
measures, and they are typically unique. While each element of the hull gives rise
to a Schrödinger operator, it is the ergodic framework that allows one to prove
statements that hold for almost all such operators, as opposed to results for a single
such operator. Occasionally, it is then even possible to extend results that hold for
almost all elements of the hull to all elements of the hull by approximation.

Delone sets and tilings are in some sense dual and hence equivalent to each
other.1 For definiteness, we will consider a framework based on Delone sets. Let
us fix a dimension d ≥ 1. The Euclidean norm on Rd will be denoted by | · |. We
denote by B(x, r) the closed ball in Rd that is centered at x and has radius r.

Definition 2.1. A set Λ ⊂ Rd is called a Delone set if there are r, R > 0 such that

B(x, r) ∩ Λ = {x} ∀x ∈ Λ

and

B(x,R) ∩ Λ �= ∅ ∀x ∈ Rd.

Thus for a Delone set we have a lower bound on the separation between
points of the set, and an upper bound for the size of “holes” in the set. One also
says that a Delone set is uniformly discrete and relatively dense. Since Delone sets
are closed and we want to take orbit closures, let us now define the underlying
topology on F(Rd), the closed subsets of Rd, following [122].

Definition 2.2. For k ∈ Z+ and F,G ∈ F(Rd), we define

dk(F,G) := inf ({ε > 0 : F ∩B(0, k) ⊂ Uε(G) and G ∩B(0, k) ⊂ Uε(F )} ∪ {1}) ,

1One can go back and forth between these two settings by decorations and the Voronoi
construction.
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where Uε(·) is an open neighborhood. For k ∈ Z+, ε > 0, and F ∈ F(Rd), we
define

Uε,k(F ) := {G ∈ F(Rd) : dk(F,G) < ε}.
The topology on F(Rd) with neighborhood basis {Uε,k(F )} will be called the
natural topology and denoted by τnat.

Proposition 2.3.

(a) Translations are continuous with respect to τnat.
(b) F(Rd) endowed with τnat is compact.
(c) τnat is metrizable.

See [122] for a metric that induces τnat.

Definition 2.4. Let Ω be a set of Delone sets and denote by T the translation action
of Rd, that is, Ttx = x + t. The pair (Ω, T ) is a Delone dynamical system if Ω is
invariant under T and closed in the natural topology.

Definition 2.5. A Delone dynamical system is said to be of finite local complexity if
for every radius s > 0, there is a uniform upper bound on the number of different
patterns one can observe in ω intersected with a ball of radius s. Here, ω ranges
over Ω, the center of the ball ranges over Rd. (A pattern that appears in ω is any
finite subset of ω modulo translations.)

Definition 2.6. Suppose (Ω, T ) is a Delone dynamical system of finite local com-
plexity. A family {Aω}ω∈Ω of bounded operators Aω : 2(ω) → 2(ω) is said to
have finite range if there is s > 0 such that for all ω ∈ Ω, Aω(x, y) only depends
on the pattern of ω in the s-neighborhood of x and y, and Aω(x, y) = 0 whenever
|x− y| ≥ s.

The class of operators so defined encompasses all discrete operators that are
usually considered as quantum Hamiltonians in the context of multi-dimensional
quasicrystals. In one dimension, however, it is customary to realign points as a
lattice (i.e., Z) and to encode the geometry in the matrix elements of the op-
erator. Even more specifically, one focuses on nearest neighbor interactions and
hence obtains a tridiagonal matrix in the standard basis of 2(Z). Much of the
mathematical literature focuses on the discrete Schrödinger case, where the terms
on the first off-diagonals are all equal to one and the quasicrystalline structure of
the environment is reflected in the terms on the diagonal. That is, the family of
discrete Schrödinger operators one then considers is of the form {Hω}ω∈Ω, where
Ω is typically a subshift over a finite alphabet, and for ω ∈ Ω, Hω acts on vectors
from 2(Z) as

[Hωψ](n) = ψ(n + 1) + ψ(n− 1) + Vω(n)ψ(n).

Here the potential Vω is given by Vω(n) = f(T nω), where T : Ω → Ω is the
standard shift transformation and f is at least continuous, usually locally constant,
and often just depends on a single entry of the sequence ω.
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3. General results in arbitrary dimension

3.1. Spectrum and spectral types

One of the fundamental results for the families of operators introduced above is
the almost sure constancy of the spectrum and the spectral type with respect to
an ergodic measure μ associated with (Ω, T ). This follows from the covariance
condition

Aω+t = UtAωU∗t , ω ∈ Ω, t ∈ Rd,

where Ut : 2(ω)→ 2(ω + t) is the unitary operator induced by translation by t,
along with the definition of ergodicity applied to traces of spectral projections in
the usual way. This establishes the following result; compare [122].

Theorem 3.1. Suppose (Ω, T ) is a Delone dynamical system of finite local complex-
ity and μ is an ergodic measure. Let {Aω}ω∈Ω be a family of bounded self-adjoint
operators of finite range. Then there exist Σ,Σpp,Σsc,Σac and a subset Ω0 ⊆ Ω of
full μ-measure such that for every ω ∈ Ω0, we have σ(Aω) = Σ, σpp(Aω) = Σpp,
σsc(Aω) = Σsc, and σac(Aω) = Σac.

3.2. Existence of the integrated density of states

Suppose {Aω}ω∈Ω is a family of bounded self-adjoint operators of finite range.
For Q ⊂ Rd bounded, the restriction Aω|Q defined on 2(Q ∩ ω) has finite rank.
Therefore,

n(Aω , Q)(E) := #{eigenvalues of Aω|Q that are ≤ E}
is finite and E 	→ 1

|Q|n(Aω , Q)(E) is the distribution function of the measure ρAω

Q

defined by ∫
ϕdρAω

Q =
1

|Q|Tr(ϕ(Aω |Q)), ϕ ∈ Cb(R).

For s > 0 and Q ⊆ Rd, denote by ∂sQ the set of points in Rd whose distance
from the boundary of Q is bounded by s. A sequence {Qk} of bounded subsets of

Rd is called a van Hove sequence if vol(∂sQk)
vol(Qk)

→ 0 as k →∞ for every s > 0.

The following result was shown in [123] (compare also the earlier papers
[93, 94]).

Theorem 3.2. Suppose (Ω, T ) is a strictly ergodic2 Delone dynamical system of
finite local complexity. Let {Aω}ω∈Ω be a family of bounded self-adjoint operators
of finite range and let {Qk} be a van Hove sequence. Then, as k → ∞, the dis-

tributions of E 	→ ρAω

Qk
((−∞, E]) converge to the distribution E 	→ ρA((−∞, E])

with respect to ‖ · ‖∞, and the convergence is uniform in ω ∈ Ω.

In fact, the limiting distribution can be given in closed form; see [123]. It is
called the integrated density of states, and the associated measure is called the
density of states measure. The remarkable feature of this result is the strength

2Strict ergodicity means that all orbits are dense and that there is a unique invariant Borel
probability measure.
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of the convergence, in that the distribution functions converge uniformly in the
‖·‖∞ topology. This is of particular interest in cases when the limiting distribution
function has jumps. The next subsection shows that the latter phenomenon may
actually happen.

3.3. Locally supported eigenfunctions and discontinuities of the IDS

In dimensions strictly greater than one, the local structure of a Delone set may be
chosen such that suitable finite range operators have finitely supported eigenfunc-
tions at a suitable energy. If these local configurations occur sufficiently regularly,
it follows that the energy in question will be a point of discontinuity of the inte-
grated density of states. This observation may now be supplemented in two ways.
On the one hand, a given Delone dynamical system may be transformed into one
that is equivalent to the original one in the sense of mutual local derivability, which
does have the required local configurations. On the other hand, any discontinuity
of the integrated density of states must arise in this way, that is, through the
regular occurrence of finitely supported eigenfunctions at the energy in question.
These issues were discussed in the paper [111] (see that paper for the definition of
mutual local derivability). Let us state the results from that paper precisely.

Theorem 3.3. Suppose (Ω, T ) is a strictly ergodic Delone dynamical system of
finite local complexity. Let {Aω}ω∈Ω be a family of bounded self-adjoint operators
of finite range. Then there exist (Ω′, T ) and {A′ω}ω∈Ω′ such that (Ω, T ) and (Ω′, T )
are mutually locally derivable and A′ω has locally supported eigenfunctions with the
same eigenvalue for every ω ∈ Ω′. Moreover, A′ω can be chosen to be the nearest
neighbor Laplacian of a suitable graph.

Theorem 3.4. Suppose (Ω, T ) is a strictly ergodic Delone dynamical system of finite
local complexity. Let {Aω}ω∈Ω be a family of bounded self-adjoint operators of finite
range. Then E ∈ R is a point of discontinuity of ρA if and only if there exists a
locally supported eigenfunction of Aω for E for one (equivalently, all ) ω ∈ Ω.

4. General results in one dimension

Starting with this section, we will focus on the case of one space dimension. Far
more rigorous results are known for this special case than for the general case. In
particular, much is known about the structure of the spectrum as a set, as well as
the type of the spectral measures.

As mentioned above, in the one-dimensional setting one typically passes to
a somewhat different choice of the model. Thus, for definiteness, we will restrict
our attention in much of the remainder of this paper to the following scenario. We
consider Schrödinger operators in 2(Z),

[Hωψ](n) = ψ(n + 1) + ψ(n− 1) + Vω(n)ψ(n), (1)
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where the potentials are of the form Vω(n) = f(T nω), with ω in a compact metric
space Ω, a homeomorphism T : Ω → Ω, and f ∈ C(Ω,R). We also fix an ergodic
measure μ.

Notice that the Hilbert space in which Hω acts is now ω-independent, and
the aperiodic order features of the medium that is being modeled are completely
subsumed in the potential Vω of the operator Hω. In this we follow the standard
convention, for this class of operators has been commonly studied. One could
consider operators that are formally more akin to the operators considered above in
general dimensions. However, this would not lead to any significant mathematical
difference. Loosely speaking, the aperiodically-ordered Delone set in R is just being
reconfigured as Z, and the local properties of the operator that depend on the
pattern near a point in the general setting affect the value of the potential at the
point in question accordingly in our present setting.

In fact, this scenario is more general than considered in the previous section.
The better analog would be the case where (Tω)n = ωn+1 is the shift on AZ for
some finite set A, Ω ⊆ AZ is T -invariant and closed, and f : Ω → R is locally
constant, that is, it only depends on the values of ωn for some finite set of n
values. However, some of the results below hold in the more general setting, and
we will impose further restrictions when they are needed.

Consequently, Theorems 3.1 and 3.2 now take the following form.

Theorem 4.1. There are sets Σ, Σac, Σsc, and Σpp such that for μ-almost every
ω ∈ Ω, we have σ(Hω) = Σ, σac(Hω) = Σac, σsc(Hω) = Σsc, and σpp(Hω) = Σpp.

Theorem 4.2. The measures
∫

ϕdNω
k = 1

kTr(ϕ(Hω |[1,k])) converge weakly to the

measure
∫

ϕdN =
∫
〈δ0, ϕ(Hω)δ0〉 dμ(ω) as k →∞.

The second result uses a weaker notion of convergence than in Theorem 3.2,
the price we have to pay for casting this problem in the more general setting.
However, this is fine after all, due to the following result.

Theorem 4.3. The measure dN is continuous.

Moreover, we have:

Theorem 4.4. The topological support of the measure dN is equal to Σ.

Theorems 4.1–4.4 are standard results from the theory of ergodic Schrödinger
operators on 2(Z); compare [32].

4.1. Spectrum and the absence of uniform hyperbolicity

Let us consider solutions to the difference equation

u(n + 1) + u(n− 1) + Vω(n)u(n) = Eu(n), n ∈ Z, (2)

for some energy E ∈ R. Clearly, u solves (2) if and only if(
u(n + 1)

u(n)

)
=

(
E − Vω(n) −1

1 0

)(
u(n)

u(n− 1)

)
, n ∈ Z. (3)
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Since Vω(n) = f(T nω), one naturally defines

AE(ω) =

(
E − f(ω) −1

1 0

)
,

so that (3) implies(
u(n + 1)

u(n)

)
= AE(T

nω)× · · · ×AE(Tω)

(
u(1)
u(0)

)
for n ≥ 1 and solutions u to (2). We set ME,ω(n) = AE(T

nω)× · · · ×AE(Tω).

Definition 4.5. We let

UH = {E ∈ R : ∃ c > 1 such that ∀ω ∈ Ω, n ≥ 1 we have ‖ME,ω(n)‖ ≥ cn}.

There are a number of equivalent ways to describe the uniform hyperbolicity
of ME,ω(n), such as an invariant splitting into stable and unstable directions and
the absence of a Sacker-Sell solution; compare, for example, [49, 178, 179].

Johnson showed in [105] that the set UH is equal to the resolvent set of Hω

for any ω that has a dense T -orbit. As a particular consequence, we may state the
following:

Theorem 4.6. Suppose T is minimal. Then for every ω ∈ Ω, we have σ(Hω) =
R \ UH. In particular, for any ergodic measure μ, we have Σ = R \ UH.

4.2. Kotani theory

In the previous subsection, we saw that the partition R = UH2R \ UH yields the
partition of the energy axis into resolvent set and spectrum. Let us partition the
energy axis even further by introducing the Lyapunov exponent

Lμ(E) = lim
n→∞

1

n

∫
log ‖ME,ω(n)‖ dμ(ω).

The existence of the limit follows quickly by subadditivity. Moreover, due to the
ergodicity of μ and Kingman’s Subadditive Ergodic Theorem, we have

Lμ(E) = lim
n→∞

1

n
log ‖ME,ω(n)‖ for μ-a.e. ω ∈ Ω.

Obviously, we have Lμ(E) > 0 for every E ∈ UH. We let

Zμ = {E : Lμ(E) = 0}
and

NUHμ = {E ∈ R : Lμ(E) > 0} \ UH,

so that our final partition is R = UH2NUHμ2Zμ. Notice that in these definitions,
the dependence of the partition of R \ UH into NUHμ 2 Zμ on the choice of the
ergodic measure μ is emphasized through the subscript for the μ-dependent sets.
It is customary to drop this explicit subscript from L, Z, and NUH, and we will
henceforth do so as well.

Recall that the essential closure of a set S ⊆ R is given by

S
ess

= {E ∈ R : ∀ ε > 0 we have Leb(S ∩ (E − ε, E + ε)) > 0}.
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Then, the following result is the celebrated Ishii–Pastur–Kotani theorem; see, for
example, [47, 102, 115, 144, 161].

Theorem 4.7. We have Σac = Z
ess

.

Since the essential closure of a set S is empty if and only if S has zero Lebesgue
measure, this result yields a characterization of the almost sure purely singular
spectrum. In fact, this is the typical situation for our models of interest [116].

Theorem 4.8. Suppose the range of f : Ω → R is finite and Leb(Z) > 0. Denote
the push-forward of μ under Ω 3 ω 	→ Vω ∈ (Ran f)Z by μ∗. Then, suppμ∗ is
finite.

Since suppμ is T -invariant, this means that every element of suppμ∗ is pe-
riodic. In other words, if the potentials are ergodic, aperiodic and take finitely
many values, then Z has zero Lebesgue measure and the almost sure absolutely
continuous spectrum is empty.

4.3. Zero-measure spectrum

The realization that Leb(Z) = 0 for potentials that are ergodic, aperiodic and
take finitely many values is at the heart of proofs of zero-measure spectrum in
these cases. Whenever Theorem 4.8 applies, it suffices to show that the spectrum
is contained in (and hence coincides with) Z in order to establish zero-measure
spectrum. There are two approaches that establish this identity. One shows directly
that the Lyapunov exponent must vanish for every energy in the spectrum by
providing subexponential upper bounds for transfer matrix norms. The other is
based on Theorem 4.6, which says that Σ = Z ∪ NUH. Hence, it suffices to
prove that if E is such that the Lyapunov exponent is positive, the convergence of
1
n log ‖ME,ω(n)‖ to L(E) must be uniform, as this will imply that E ∈ UH, and
as a consequence, Σ = Z. The second approach can be made to work in greater
generality, whereas the first approach often gives additional information that has
other interesting consequences.

We will discuss how the first approach is implemented when we discuss Stur-
mian models and, specifically, the Fibonacci Hamiltonian in later sections. Here we
therefore discuss in some detail how the second approach works. We first state the
main result, then explain how it is a natural consequence of the line of reasoning
employed. We emphasize that this is a result that holds in the symbolic setting.
That is, for a finite set A, called the alphabet, we consider the shift transformation
T : AZ → AZ given by (Tω)(n) = ω(n + 1) and closed, T -invariant subsets Ω of
AZ, which are called subshifts (over A). We denote by WΩ the set of all finite
words over the alphabet A that occur in elements of Ω, and we write WΩ(n) for
those elements of WΩ that have length n. A function on Ω is called locally con-
stant if f(ω) only depends on finitely many entries. More formally, there exists
k ∈ Z+ such that f(ω) = f(ω′) for all ω, ω′ ∈ Ω with ω−k · · ·ωk = ω′−k · · ·ω′k.
Note that f is locally constant if and only if it is continuous and takes only finitely
many values.
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As usual, a subshift Ω is called minimal if the topological dynamical system
(Ω, T ) is minimal (i.e., the T -orbit of every ω ∈ Ω is dense in Ω), it is called
uniquely ergodic if (Ω, T ) has a unique invariant Borel probability measure, and it
is called strictly ergodic if it is both minimal and uniquely ergodic. In the uniquely
ergodic case, the unique invariant Borel probability measure must necessarily be
ergodic.

Definition 4.9. Let Ω be a strictly ergodic subshift with unique T -invariant measure
μ. It satisfies the Boshernitzan condition (B) if

lim sup
n→∞

(
min

w∈WΩ(n)
n · μ ([w])

)
> 0.

Here is the result from [62] showing that (B) is a sufficient condition for
zero-measure spectrum:

Theorem 4.10. Suppose Ω is a strictly ergodic subshift that satisfies condition (B)
and f : Ω → R is locally constant. Then the convergence of 1

n log ‖ME,ω(n)‖ to
L(E) is uniform for every E ∈ R. In particular, NUH is empty and Σ = Z. Thus,
if Ω and f are such that the Vω are aperiodic, then Leb(Σ) = 0. In the latter case,
Σac = ∅.

The proof of Theorem 4.10 is more easily understood if one imposes a stronger
assumption. Indeed, let us assume for the time being that f(ω) depends only on ω0

and minw∈WΩ(n) n·μ ([w]) is uniformly large for all n, not merely for a subsequence.
That is, suppose there is δ > 0 such that |w| · μ ([w]) ≥ δ for every w ∈ WΩ.

By our stronger assumption on f , we may view log ‖ME,ω(n)‖ as a quantity
associated with the word w = ω1 · · ·ωn ∈ WΩ(n) that we will denote by F (w). If
we do so, then the goal is to prove that |w|−1F (w) converges uniformly as |w| → ∞
and each w belongs toWΩ. It is a known consequence of unique ergodicity of (Ω, T )
that the convergence in

F+ := lim sup
w∈WΩ, |w|→∞

|w|−1F (w)

is uniform. By the uniform upper bound and the frequent occurrence of any word
due to the strengthened assumption, one can derive a similar uniform result for the
lim inf, and hence establish uniform convergence. These realizations are contained
in the paper [121] by Lenz.

If one only has condition (B), then a similar way of reasoning can be car-
ried out for the sequence of length scales from (B). In this way, one can estab-
lish uniform convergence along this sequence. To interpolate, one can employ the
Avalanche Principle from [86].

The paper [63] contains numerous applications of Theorem 4.10 to specific
classes of subshifts, some of which will be described in Subsection 4.4 below.

When [62, 63] appeared, all known zero-measure results for Schrödinger op-
erators defined by strictly ergodic subshifts (see, e.g., [10, 12, 14, 26, 120, 121, 129,
165]) were covered by this approach, that is, they all held for subshifts that satisfy
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condition (B). Recently, Liu and Qu constructed examples of strictly ergodic sub-
shifts that do not satisfy (B) but for which the associated Schrödinger operators
do have zero-measure spectrum (and in fact the convergence of 1

n log ‖ME,ω(n)‖
to L(E) is uniform for every E ∈ R) [127].

Naturally, once one knows that the spectrum has zero Lebesgue measure, one
would like to determine its fractal (e.g., Hausdorff, lower and upper box counting)
dimensions, as well as similar quantities such as thickness and denseness. These
more delicate questions have been studied for a rather small number of examples,
which will be discussed in subsequent sections. Zero-measure spectrum, on the
other hand, is known in much greater generality, and this is the topic of the next
subsection.

4.4. Examples

In this subsection, we present several classes of popular examples of potentials
that are ergodic, aperiodic, and take finitely many values (so that Kotani’s central
result applies) and discuss the validity of condition (B) (so that the associated
Schrödinger operators have zero-measure spectrum). For more details, we refer
the reader to [63].

4.4.1. Linearly recurrent subshifts and subshifts generated by primitive substi-
tutions. A subshift Ω over A is called linearly recurrent (or linearly repetitive) if
there exists a constant K such that if v, w ∈ W(Ω) with |w| ≥ K|v|, then v is
a subword of w. Clearly, every linearly recurrent subshift Ω satisfies (B). A pop-
ular way to generate linearly recurrent subshifts is via primitive substitutions. A
substitution S : A → A∗ is called primitive if there exists k ∈ N such that for
every a, b ∈ A, Sk(a) contains b. Such a substitution generates a subshift Ω as
follows. It is easy to see that there are m ∈ N and a ∈ A such that Sm(a) begins
with a. If we iterate Sm on the symbol a, we obtain a one-sided infinite limit, u,
called a substitution sequence. Ω then consists of all two-sided sequences for which
all subwords are also subwords of u. One can verify that this construction is in
fact independent of the choice of u, and hence Ω is uniquely determined by S.
Prominent examples3 are given by

a 	→ ab, b 	→ a Fibonacci

a 	→ ab, b 	→ ba Thue–Morse

a 	→ ab, b 	→ aa Period Doubling

a 	→ ab, b 	→ ac, c 	→ db, d 	→ dc Rudin–Shapiro

The following was shown in [78] (and independently in [72]):

Proposition 4.11. If the subshift Ω is generated by a primitive substitution, then it
is linearly recurrent and hence satisfies condition (B).

3These examples appear explicitly in many papers in the physics literature on Schrödinger op-
erators generated by primitive substitution; compare [2, 6, 15, 27, 84, 96, 114, 131].
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It may happen that a non-primitive substitution generates a linearly recur-
rent subshift. An example is given by a 	→ aaba, b 	→ b. In fact, the class of linearly
recurrent subshifts generated by substitutions was characterized in [64].4 In par-
ticular, it turns out that a subshift generated by a substitution is linearly recurrent
if and only if it is minimal.

4.4.2. Sturmian and quasi-Sturmian subshifts. Consider a minimal subshift Ω over
A. The (factor) complexity function p : Z+ → Z+ is defined by p(n) = #WΩ(n).
Hedlund and Morse showed in [98] that Ω is aperiodic if and only if p(n) ≥ n + 1
for every n ∈ Z+. Aperiodic minimal subshifts of minimal complexity, p(n) = n+1
for every n ∈ N, exist and they are called Sturmian. If the complexity function
satisfies p(n) = n + k for n ≥ n0, k, n0 ∈ N, the subshift is called quasi-Sturmian.
It is known that quasi-Sturmian subshifts are exactly those subshifts that are a
morphic image of a Sturmian subshift; compare [34, 36, 148].

There are a large number of equivalent characterizations of Sturmian sub-
shifts; compare [18]. We are mainly interested in their geometric description in
terms of an irrational rotation. Let α ∈ (0, 1) be irrational and consider the rota-
tion by α on the circle, Rα : [0, 1) → [0, 1), Rαθ = {θ + α}, where {x} denotes
the fractional part of x, {x} = x mod 1. The coding of the rotation Rα accord-
ing to a partition of the circle into two half-open intervals of length α and 1 − α,
respectively, is given by the sequences vn(α, θ) = χ[0,α)(R

n
αθ). We obtain a subshift

Ωα = {v(α, θ) : θ ∈ [0, 1)} = {v(α, θ) : θ ∈ [0, 1)} ∪ {ṽ(k)(α) : k ∈ Z} ⊂ {0, 1}Z,

which can be shown to be Sturmian. Here, ṽ
(k)
n (α) = χ(0,α](R

n+k
α 0). Conversely,

every Sturmian subshift is essentially of this form, that is, if Ω is minimal and has
complexity function p(n) = n+1, then, up to a one-to-one morphism, Ω = Ωα for
some irrational α ∈ (0, 1).

Using this description and some classical results in diophantine approxima-
tion, the following result was shown in [63].

Theorem 4.12. Every Sturmian subshift obeys the Boshernitzan condition (B).

Moreover, establishing stability of (B) under morphic images, one obtains the
following consequence.

Corollary 4.13. Every quasi-Sturmian subshift obeys (B).

4.4.3. Circle maps. Let α ∈ (0, 1) be irrational and β ∈ (0, 1) arbitrary. The coding
of the rotation Rα according to a partition into two half-open intervals of length
β and 1− β, respectively, is given by the sequences vn(α, β, θ) = χ[0,β)(R

n
αθ). We

obtain a subshift

Ωα,β = {v(α, β, θ) : θ ∈ [0, 1)} ⊂ {0, 1}Z.

4See also [75, 76, 126] for results for Schrödinger operators arising from a specific class of non-
primitive substitutions.
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Subshifts generated this way are usually called circle map subshifts or subshifts
generated by the coding of a rotation.

The paper [63] established the following results for circle map subshifts in
connection with property (B):

Theorem 4.14. Let α ∈ (0, 1) be irrational. Then the subshift Ωα,β satisfies (B) for
Lebesgue almost every β ∈ (0, 1).

Theorem 4.15. Let α ∈ (0, 1) be irrational with bounded continued fraction coeffi-
cients, that is, an ≤ C. Then Ωα,β satisfies (B) for every β ∈ (0, 1).

Theorem 4.16. Let α ∈ (0, 1) be irrational with unbounded continued fraction co-
efficients. Then there exists β ∈ (0, 1) such that Ωα,β does not satisfy (B).

4.4.4. Interval exchange transformations. Subshifts generated by interval ex-
change transformations (IETs) are natural generalizations of Sturmian subshifts.
IETs are defined as follows. Given a probability vector λ = (λ1, . . . , λm) with

λi > 0 for 1 ≤ i ≤ m, we let μ0 = 0, μi =
∑i

j=1 λj , and Ii = [μi−1, μi). Let

τ be a permutation of Am = {1, . . . ,m}, that is, τ ∈ Sm, the symmetric group.
Then λτ = (λτ−1(1), . . . , λτ−1(m)) is also a probability vector, and we can form the
corresponding μτi and Iτi . Denote the unit interval [0, 1) by I. The (λ, τ) interval
exchange transformation is then defined by

T : I → I, T (x) = x− μi−1 + μττ(i)−1 for x ∈ Ii, 1 ≤ i ≤ m.

It exchanges the intervals Ii according to the permutation τ .
The transformation T is invertible, and its inverse is given by the (λτ , τ−1)

interval exchange transformation.
The symbolic coding of x ∈ I is ωn(x) = i if T n(x) ∈ Ii. This induces a

subshift over the alphabet Am: Ωλ,τ = {ω(x) : x ∈ I}.
Sturmian subshifts correspond to the case of two intervals, as a first return

map construction shows.
Keane [108] proved that if the orbits of the discontinuities μi of T are all infi-

nite and pairwise distinct, then T is minimal. In this case, the coding is one-to-one
and the subshift is minimal and aperiodic. This holds in particular if τ is irreducible
and λ is irrational. Here, τ is called irreducible if τ({1, . . . , k}) �= {1, . . . , k} for
every k < m and λ is called irrational if the λi are rationally independent.

Regarding property (B), Boshernitzan has proved two results. First, in [21]
the following is shown:

Theorem 4.17. For every irreducible τ ∈ Sm and for Lebesgue almost every λ, the
subshift Ωλ,τ satisfies (B).

In fact, Boshernitzan shows that for every irreducible τ ∈Sm and for Lebesgue
almost every λ, the subshift Ωλ,τ satisfies a stronger condition where the sequence
of n values for which η(n) is large cannot be too sparse. This condition is easily
seen to imply (B), and hence the theorem above.
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In a different paper, [22], Boshernitzan singles out an explicit class of subshifts
arising from interval exchange transformations that satisfy (B). The transforma-
tion T is said to be of (rational) rank k if the μi span a k-dimensional space over
Q (the field of rational numbers).

Theorem 4.18. If T has rank 2, the subshift Ωλ,τ satisfies (B).

4.5. Singular continuous spectrum

As seen in the previous section, the spectrum has zero Lebesgue measure when-
ever condition (B) holds. This condition is satisfied by a wide class of models,
in particular by all typical quasicrystal models. As pointed out in Theorem 4.10,
a consequence of zero-measure spectrum is the absence of absolutely continuous
spectrum. That is, if σ(Hω) has zero Lebesgue measure, then σac(Hω) = ∅, since
all spectral measures are supported by the spectrum, and any measure supported
by a set of zero Lebesgue measure must be purely singular by definition.

To complement this, one can often show the absence of point spectrum. That
is, there are a variety of tools that allow one to show that Hω has no eigenvalues,
and hence σpp(Hω) = ∅ as well. Putting the two results together, one obtains that
Hω has purely singular continuous spectrum.

The primary tool that allows one to exclude eigenvalues is based on the
Gordon lemma, which assumes that the potential has infinitely many suitably
aligned local periodicities. Overall, this nicely implements the philosophy that
aperiodic order is intermediate between periodic and random. The aperiodicity
implies the absence of absolutely continuous spectrum via Kotani’s theorem (and
hence one does not have the spectral type that appears for a periodic medium),
while the order feature implies the absence of point spectrum via a fingerprint of
local periodicity (and hence one does not have the spectral type that appears for
a random medium).5

A potential V : Z→ R is called a Gordon potential if there are qk →∞ such
that for every k, we have V (n) = V (n+qk) = V (n−qk) for 1 ≤ n ≤ qk. That is, V
looks like a periodic potential around the origin, as one sees at least three suitably
aligned periodic unit cells there, and the period may be chosen arbitrarily large.
The following Gordon lemma is based in spirit on [88]. In this particular form it
was shown in [73].

Lemma 4.19. Suppose V is a Gordon potential. Then, for every E, the difference
equation

u(n + 1) + u(n− 1) + V (n)u(n) = Eu(n)

has no non-trivial square-summable solutions. In particular, the associated Schrö-
dinger operator H in 2(Z), given by

[Hψ](n) = ψ(n + 1) + ψ(n− 1) + V (n)ψ(n),

has empty point spectrum.

5In a random model, the values of the potential at the various sites are given by independent
identically distributed random variables. This model is usually called the Anderson model.
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By ergodicity, T -invariance, and the Gordon lemma, if one can show that

μ ({ω ∈ Ω : Vω is a Gordon potential}) > 0,

then

μ ({ω ∈ Ω : Hω has empty point spectrum}) = 1.

On the other hand, for any aperiodic minimal subshift, at least one of its
elements fails to have the required Gordon three-block symmetries [42]. Thus, one
cannot use this appraoch to show uniform absence of eigenvalues for all ω ∈ Ω.
Nevertheless, results to this effect are known, established with the following variant
of the Gordon lemma.

Lemma 4.20. Suppose V : Z → R is such that there are qk → ∞ such that
V (n) = V (n + qk) for 1 ≤ n ≤ qk. Suppose further that E is such that

sup
k

∣∣∣∣Tr((E − V (qk) −1
1 0

)
× · · · ×

(
E − V (1) −1

1 0

))∣∣∣∣ < ∞. (4)

Then, the difference equation

u(n + 1) + u(n− 1) + V (n)u(n) = Eu(n)

has no non-trivial solutions that are square-summable on Z+ and hence E is not
an eigenvalue of the associated Schrödinger operator H in 2(Z). In particular, if
the assumption (4) holds for every E in the spectrum of H, then H has empty
point spectrum.

In many quasicrystal models, the existence of hierarchical structures gives
rise to a so-called trace map, which in turn can often be used to ensure that (4)
holds for all energies in the spectrum. Thus, the analysis then reduces to finding
suitable squares of arbitrary length starting at the origin.

Thus, in the symbolic setting at hand, the observations above give rise to
problems that concern the subword structure of the potentials, and hence fall in
the general area of combinatorics on words.

Let us describe the results that have been obtained in this way for the exam-
ples discussed above. In all these results, the choice of the sampling function f is
more restricted than above. Namely, one usually assumes that f(ω) = g(ω0) with
an injective map g : A → R.

4.5.1. Subshifts generated by primitive substitutions. Suppose S is a primitive
substitution over the alphabet A and let Ω ⊆ AZ be the subshift associated with
it. Recall that it is strictly ergodic and denote the unique invariant probability
measure by μ. The index of Ω is given by the largest fractional power occurring
in an (and hence any) element of Ω. Formally, the index is defined as follows.
Given w ∈ WΩ and any prefix v of w, we denote the word wkv with k ∈ Z+ by

wr, where r = k + |v|
|w| . Then, indΩ(w) = sup{r ∈ Q ∩ [1,∞) : wr ∈ WΩ} and

ind(Ω) = sup{indΩ(w) : w ∈ WΩ}.
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The following result was shown in [42].6

Theorem 4.21. If S is a primitive substitution and the associated subshift Ω sat-
isfies ind(Ω) > 3, then μ ({ω ∈ Ω : Vω is a Gordon potential}) > 0. Consequently,
μ ({ω ∈ Ω : Hω has empty point spectrum}) = 1.

The underlying idea is simple. Since the subshift is invariant under S, any
word appearing with index strictly greater than 3 generates by iteration of S
a sequence of words whose lengths go to infinity and whose index is bounded
away from 3. This allows one to bound from below the frequency with which
third powers occur and hence yields measure estimates on the Gordon three-block
conditions that are good enough to show that the lim sup of these sets must have
positive measure. Since the elements of the lim sup of these sets give rise to Gordon
potentials, the result follows.

Applications of this theorem include the Fibonacci substitution (since
ind(Ω) ≥ indΩ(abaab) ≥ 3.2), the period doubling substitution (since ind(Ω) ≥
indΩ(ab) ≥ 3.5), and many others. Of course, the result does not apply to the
Thue–Morse substitution, which is famous mainly because ind(Ω) = 2. Unfortu-
nately, it is still open whether the point spectrum is almost surely empty in the
Thue–Morse case. The Gordon approach fails due to small index, and no other
methods are known that yield an almost sure result.7

4.5.2. Sturmian and quasi-Sturmian subshifts. Damanik, Killip, and Lenz showed
the following result in [58] (see also [59] for a uniform result for almost every
Sturmian subshift).

Theorem 4.22. For every Sturmian subshift Ω, Hω has empty point spectrum for
every ω ∈ Ω.

This result was the culmination of a sequence of partial results. Among those,
we single out Sütő [164], who proved empty point spectrum for one α and one ω,
Bellissard et al. [14], who proved it for all α and one ω, Delyon–Petritis [73], who
proved it for almost all α and almost all ω, and Kaminaga [106], who proved it
for all α and almost all ω. Here, α ∈ (0, 1) \Q denotes the slope associated with a
Sturmian subshift. Recall that Sturmian subshifts are in one-to-one correspondence
with (0, 1) \ Q. Here, [14, 58, 59, 164] used Lemma 4.20, whereas [73, 106] used
Lemma 4.19.

The extension of Theorem 4.22 to the quasi-Sturmian case was obtained by
Damanik and Lenz in [61].

Theorem 4.23. For every quasi-Sturmian subshift Ω, Hω has empty point spectrum
for every ω ∈ Ω.

6See [41] for a precursor dealing with the period doubling case. In this special case it was later
shown that the absence of eigenvalues even holds for all ω ∈ Ω [44].
7The absence of eigenvalues for a dense Gδ set of ω’s can be established in this example and

many others using palindromes instead of powers [95]. However, using palindromes one cannot
prove the absence of eigenvalues for a full measure set of ω’s [72].
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4.5.3. Circle maps. Recall that a circle map subshift is determined by the param-
eters α ∈ (0, 1) \Q and β ∈ (0, 1). It is strictly ergodic and we denote the unique
ergodic measure by μ. Delyon and Petritis proved the following in [73].

Theorem 4.24. For almost every α and every β, the corresponding circle map
subshift Ω is such that μ ({ω ∈ Ω : Vω is a Gordon potential}) = 1. Consequently,
μ ({ω ∈ Ω : Hω has empty point spectrum}) = 1.

In fact, the full measure set of α values is explicitly described in terms of the
continued fraction expansion. The condition was weakened by Kaminaga in [106],
still however excluding an explicit zero measure set. This weaker condition was only
shown to imply μ ({ω ∈ Ω : Vω is a Gordon potential}) > 0, which of course is still
sufficient to allow one to deduce μ ({ω ∈ Ω : Hω has empty point spectrum}) = 1.

4.5.4. Interval exchange transformations. Recall that an IET subshift is deter-
mined by an irreducible permutation τ and a probability vector λ. Cobo, Gutierrez,
and de Oliveira showed the following result in [35] (see also [74]).

Theorem 4.25. For every irreducible permutation τ and almost every λ, the as-
sociated IET subshift Ω is such that μ ({ω ∈ Ω : Vω is a Gordon potential}) = 1.
Consequently, μ ({ω ∈ Ω : Hω has empty point spectrum}) = 1.

4.6. Transport properties

Quasicrystal models have behavior that is markedly different from the periodic and
random cases in many different respects. In the previous subsections we have seen
that the spectrum is typically a zero-measure Cantor set, while for periodic and
random potentials it is always given by a finite union of non-degenerate compact
intervals. Moreover, the spectral type is typically singular continuous, while it is
always absolutely continuous in the periodic case and almost surely pure point in
the (one-dimensional) random case.

In this subsection we consider yet another perspective from which the qua-
sicrystal model behavior is expected to differ from the behavior of the periodic and
random cases. Namely, we consider the spreading of wave packets under the time-
dependent Schrödinger equation. That is, given a Schrödinger operator Hω and a
normalized element ψ of 2(Z), we consider ψ(t) = e−itHωψ, where e−itHω is de-
fined via the spectral theorem. Then, ψ(·) satisfies the time-dependent Schrödinger
equation i∂tψ(t) = Hωψ(t) with initial condition ψ(0) = ψ. The quantum mechan-
ical interpretation is that the probability of finding the quantum particle at site
n ∈ Z at time t ∈ R is given by a(n, t) := |〈δn, ψ(t)〉|2. The initial state is nat-
urally localized in some fixed compact set, up to a small error, since it belongs
to 2(Z). More specifically, one is often interested in the initial state ψ = δ0 (or
some δn), which is completely localized. After having fixed the initial state, one
is then interested in how fast ψ(t) spreads out in space, or more specifically, how
long one has to wait until a(n, t) is no longer negligibly small at some distant site
n. In general, this is a difficult problem. Questions of this kind are easier to study
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for compound quantities; that is, some averaging in n and/or t helps one generate
quantities for which interesting statements can be proven.

A popular way to average in time is to consider Cesàro averages,

ã(n, T ) =
1

T

∫ T

0

a(n, t) dt =
1

T

∫ T

0

|〈δn, ψ(t)〉|2 dt.

Let also

Mp(t) =
∑
n∈Z

(1 + |n|p)a(n, t), M̃p(T ) =
∑
n∈Z

(1 + |n|p)ã(n, T ), p > 0.

Notice that for t (resp., T ) fixed, a(·, t) and ã(·, T ) are probability distributions on
Z, and hence the quantities above are (1 plus) the pth moment of the respective
probability distribution. Here we assume that the initial state is either a Dirac
delta function or at least sufficiently well localized so that these moments are
finite.

Wave packet spreading then is reflected by growth in time of these moments.
To detect power-law growth, one introduces the so-called transport exponents

β+(p) = lim sup
t→∞

logMp(t)

p log t
, β−(p) = lim inf

t→∞

logMp(t)

p log t
,

β̃+(p) = lim sup
T→∞

log M̃p(T )

p logT
, β̃−(p) = lim inf

T→∞

log M̃p(T )

p logT
.

Each of these four functions of p is non-decreasing in p and takes values in the
interval [0, 1].

In view of the monotonicity of the transport exponents, it is natural to con-
sider their limiting values for small and large values of p. Thus, denote

α±� = lim
p↓0

β±(p), α±u = lim
p↑∞

β±(p),

α̃±� = lim
p↓0

β̃±(p), α̃±u = lim
p↑∞

β̃±(p).

We note that there are other useful ways of capturing wave packet spreading, and
refer the reader to [71] for a comprehensive survey.

The transport exponents take the constant value 0 for random potentials and
(at least the time-averaged quantities) the constant value 1 for periodic potentials.
Thus if one is able to prove the occurrence of fractional values of the transport
exponents, one exhibits wave packet spreading that is strictly intermediate between
the periodic and random cases. Results of this kind are notoriously difficult to
establish. The few known results for quasicrystal models will be described in detail
in later sections on Fibonacci and Sturmian potentials.
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5. The Fibonacci Hamiltonian

The Fibonacci Hamiltonian is the most prominent model in the study of electronic
properties of quasicrystals. It is given by the discrete one-dimensional Schrödinger
operator

[Hλ,ωu](n) = u(n + 1) + u(n− 1) + λχ[1−α,1)(nα + ω mod 1)u(n), (5)

where λ > 0 is the coupling constant, α =
√
5−1
2 is the frequency, and ω ∈ [0, 1)

is the phase. An alternative way to obtain the same potential is via the Fibonacci
substitution; see Section 4.4.1 above. This operator family has been studied in
many papers since the early 1980’s (see, e.g., [2, 84, 96, 97, 99, 112, 113, 114, 124,
141, 142, 172] for early works in the physics literature), and numerous fundamental
results are known. In this section we describe the current “state of the art” for
this model.

5.1. Trace map formalism

Even the earliest papers on the Fibonacci Hamiltonian realized the importance of a
certain renormalization procedure in its study, see [112, 141]. This led in particular
to the consideration of a certain dynamical system, the so-called trace map, whose
properties are closely related to many spectral properties of the operator (5).
The existence of the trace map and its connection to spectral properties is a
consequence of the invariance of the potential under a substitution rule. This
works in great generality; see [3, 43] and references therein.

The one-step transfer matrices associated with the difference equation
Hλ,ωu = Eu are given by

Tλ,ω(m,E) =

(
E − λχ[1−α,1)(mα + ω mod 1) −1

1 0

)
.

Denote the Fibonacci numbers by {Fk}, that is, F0 = F1 = 1 and Fk+1 = Fk+Fk−1
for k ≥ 1. Then the fact that the potential for zero phase is invariant under the
Fibonacci substitution implies that the matrices

M−1(E) =

(
1 −λ
0 1

)
, M0(E) =

(
E −1
1 0

)
and

Mk(E) = Tλ,0(Fk, E)× · · · × Tλ,0(1, E) for k ≥ 1

obey the recurrence relations

Mk+1(E) = Mk−1(E)Mk(E)

for k ≥ 0. Passing to the variables

xk(E) =
1

2
TrMk(E),

this in turn implies

xk+1(E) = 2xk(E)xk−1(E)− xk−2(E) (6)
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Figure 1.

The surface S0.01.
Figure 2.

The surface S0.5.

for k ≥ 1, with x−1(E) = 1, x0(E) = E/2, and x1 = (E − λ)/2. The recursion
relation (6) exhibits a conserved quantity; namely, we have

xk+1(E)2 + xk(E)2 + xk−1(E)2 − 2xk+1(E)xk(E)xk−1(E)− 1 =
λ2

4
(7)

for every k ≥ 0.

Given these observations, it is then convenient to introduce the trace map

T : R3 → R3, T (x, y, z) = (2xy − z, x, y). (8)

Aside from the context described here, this map appears in a natural way in
problems related to dynamics of mapping classes [85], Fuchsian groups [20], number
theory [19], Painlevé sixth equations [31, 103], the Ising model for quasicrystals
[15, 91, 175, 176], the Fibonacci quantum walk [154, 155], among others [7, 65,
167, 177]. See [30] or [17] for an algebraic explanation of this universality. We refer
the reader also to [98, 156, 157] for further reading on the Fibonacci trace map.

The function

G(x, y, z) = x2 + y2 + z2 − 2xyz − 1

is invariant under the action of T 8 (which explains (7)), and hence T preserves the
family of cubic surfaces9

Sλ =

{
(x, y, z) ∈ R3 : x2 + y2 + z2 − 2xyz = 1 +

λ2

4

}
. (9)

Plots of the surfaces S0.01 and S0.5 are given in Figures 1 and 2, respectively.

8The function G(x, y, z) is usually called the Fricke character or Fricke–Vogt invariant.
9The surface S0 is called the Cayley cubic.
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Denote by λ the line

λ =

{(
E − λ

2
,
E

2
, 1

)
: E ∈ R

}
.

It is easy to check that λ ⊂ Sλ.
Sütő proved the following central result in [164].

Theorem 5.1. An energy E belongs to the spectrum of Hλ,ω if and only if the

positive semiorbit of the point
(
E−λ
2 , E2 , 1

)
under iterates of the trace map T is

bounded.

To obtain this theorem, Sütő argued as follows. Denote

σk = {E ∈ R : |xk(E)| ≤ 1}
and

Σk = σk ∪ σk+1.

These sets depend on the coupling constant λ, and whenever we want to make
this dependence explicit, we will write σk,λ and Σk,λ. An analysis of the trace
recursion (6) shows that the sets Σk are decreasing, and hence it is natural to

consider their limit Σ̃ =
⋂
Σk. Clearly, if E ∈ Σ̃, then {xn(E)} remains bounded

due to (7). On the other hand, the analysis of the trace recursion (6) also yields that
whenever E /∈ Σk for some k, then |xn−k(E)| obeys an explicit super-exponentially
growing lower bound. That is, the sequence {xn(E)} remains bounded if and only

if E ∈ Σ̃. Notice that the point (E−λ2 , E2 , 1) is just (x1(E), x0(E), x−1(E)), so that

Theorem 5.1 follows as soon as Σ = Σ̃ is established. The inclusion Σ ⊆ Σ̃ holds
since σk is precisely the spectrum of the canonical periodic approximant of period
Fk and the fact that these periodic approximants converge strongly. The inclusion
Σ̃ ⊆ Σ holds since one can use the boundedness of {xn(E)} for E ∈ Σ̃ along with
the Gordon lemma to show that no solution for this energy is square-summable at
+∞, which implies that E must be in the spectrum.

5.2. Hyperbolicity of the trace map

Let f : M → M be a diffeomorphism of a Riemannian manifold M . Let us
recall that an invariant closed set Λ of the diffeomorphism f is hyperbolic if there
exists a splitting of a tangent space TxM = Es

x ⊕ Eu
x at every point x ∈ Λ such

that this splitting is invariant under Df , and the differential Df exponentially
contracts vectors from stable subspaces {Es

x} and exponentially expands vectors
from unstable subspaces {Eu

x}. A hyperbolic set Λ of a diffeomorphism f : M →M
is locally maximal if there exists a neighborhood U(Λ) such that

Λ =
⋂
n∈Z

fn(U).

We will consider diffeomorphisms of a surface, dim M = 2, and hyperbolic
sets of topological dimension zero. In this case a locally maximal hyperbolic set
Λ can be locally represented as a product of “stable” and “unstable” Cantor sets
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Cs and Cu. Both Cantor sets Cs and Cu are dynamically defined. Dynamically
defined Cantor sets have strong self-similar structure and exhibit many nice prop-
erties. The formal definition in the general case (when the underlying symbolic
system is a general topological Markov chain) is somewhat tedious, and can be
found, for example, in [145]. To provide some intuition to the reader, we give here
the definition of a dynamically defined Cantor set in the simplest case when the
corresponding symbolic dynamical system is a full shift.

Definition 5.2. Let I ⊂ R1 be a closed interval. A Cantor set C ⊂ I is dynami-
cally defined if there are strictly monotone contracting maps ψ1, ψ2, . . . , ψk : I →
I, ψi(I)∩ψj(I) = ∅ if i �= j, such that C =

⋂
n∈N In, where I1 = ψ1(I)∪· · ·∪ψk(I)

and In+1 = ψ1(In) ∪ · · · ∪ ψk(In).

If ψ1, ψ2, . . . , ψk are C1+ε-functions, then the Cantor set has zero measure,
depends continuously on ψ1, . . . , ψk, and is “regular” in many other ways. We will
be interested in the Hausdorff dimension and the thickness of the Cantor sets Cs

and Cu. Denote the Hausdorff dimension of the set C by dimH C.

In our case, dimH Λ = dimH Cs + dimH Cu; see [136, 146]. Moreover, if f
depends Cr-smoothly on a parameter, then dimH Λ is also a smooth function of
the parameter; see [134].

Definition 5.3. Let C ⊂ R now be an arbitrary Cantor set and denote by I its
convex hull. Any connected component of I\C is called a gap of C. A presentation
of C is given by an ordering U = {Un}n≥1 of the gaps of C. If u ∈ C is a
boundary point of a gap U of C, we denote by K the connected component of
I\(U1 ∪ U2 ∪ · · · ∪ Un) (with n chosen so that Un = U) that contains u and write

τ(C,U , u) =
|K|
|U | .

With this notation, the thickness τ(C) and the denseness θ(C) of C are
given by

τ(C) = sup
U

inf
u

τ(C,U , u), θ(C) = inf
U

sup
u

τ(C,U , u). (10)

The thickness and the denseness of a Cantor set C are related to the Hausdorff
dimension of C by the inequalities (cf. [145, Section 4.2])

log 2

log(2 + 1
τ(C))

≤ dimH C ≤ log 2

log(2 + 1
θ(C))

. (11)

For more details on thickness, see [77, 138, 145]. An important property of thickness
was discovered by Newhouse [140]:

Theorem 5.4. If C1 and C2 are two Cantor sets and τ(C1) · τ(C2) ≥ 1, then the
sum C1 +C2 contains an interval. In the special case C1 = C2 =: C, we have that
τ(C) ≥ 1 implies that C + C is an interval.
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Consider the restriction Tλ : Sλ → Sλ of the trace map T from (8) to the
invariant surface Sλ, Tλ = T |Sλ

. Denote by Ωλ the set of points in Sλ whose full
orbits under Tλ are bounded.

Theorem 5.5. For every λ > 0, the set Ωλ is a locally maximal hyperbolic set of
Tλ : Sλ → Sλ. It is homeomorphic to a Cantor set.

Theorem 5.5 was proved for λ ≥ 16 by Casdagli [33], for small values of λ by
Damanik and Gorodetski [50], and finally for all λ > 0 by Cantat [30].

Since λ ⊂ Sλ the set of points on λ whose forward semiorbits are bounded
is exactly equal to λ ∩W s(Ωλ). Then the spectrum Σλ is affine equivalent to the
set λ ∩W s(Ωλ).

Theorem 5.6. For every λ > 0, the line λ intersects the leaves of W s(Ωλ) transver-
sally.

This transversality statement was proved for λ ≥ 16 by Casdagli [34, Sec-
tion 2], and for sufficiently small λ > 0 by Damanik and Gorodetski [50]. A proof
that works for all values of the coupling constant λ > 0 was given by Damanik,
Gorodetski, and Yessen in [57].

Theorem 5.6 allows one to consider the spectrum Σλ as a dynamically defined
Cantor set. Therefore the following holds.

Corollary 5.7. For every λ > 0, the spectrum Σλ is a dynamically defined Cantor
set, and hence:

(i) For every small ε > 0 and every x ∈ σ(Hλ,ω), we have

dimH ((x− ε, x+ ε) ∩ σ(Hλ,ω)) = dimB ((x− ε, x + ε) ∩ σ(Hλ,ω))

= dimH σ(Hλ,ω)

= dimB σ(Hλ,ω).

(ii) The Hausdorff dimension dimH σ(Hλ,ω) is an analytic function of λ, and is
strictly between zero and one.

5.3. Hausdorff dimension of the spectrum at large coupling

The fact that the box counting dimension of the spectrum exists and coincides
with its Hausdorff dimension allows one to determine the asymptotic behavior of
this λ-dependent quantity in the large coupling limit. In fact, Damanik, Embree,
Gorodetski, and Tcheremchantsev proved the following in [48].

Theorem 5.8. We have

lim
λ→∞

(dimΣλ) · logλ = log(1 +
√
2).

Let us briefly explain how this result is obtained. Recall that the spectrum
is related to the spectra of the canonical periodic approximants by

Σλ =
⋂
k≥1

Σk,λ =
⋂
k≥1

σk,λ ∪ σk+1,λ.
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Since each periodic spectrum σk,λ is a finite union of non-degenerate compact
intervals and the lengths of these intervals can be shown to be decaying, it is natural
to use Σk,λ as one possible cover of Σλ and estimate the Hausdorff dimension of
Σλ from above in this way. On the other hand, since each interval of σk,λ can be
shown to have non-empty intersection with Σλ, one can estimate the box counting
dimension of Σλ from below in this way. We observe how crucial it is that these
dimensions coincide here. Thus, the analysis of the participating intervals comes
down to proving good estimates for their length.

To estimate the length, one makes use of the following basic fact from one-
dimensional Floquet theory. The preimage of the open interval (−1, 1) under xk
consists of exactly Fk disjoint open intervals, on which xk is strictly monotone. In
fact, in this particular case, the same statement is true for the corresponding closed
intervals (i.e., the periodic spectra in question have all their gaps open). Thus, the
length of one of these intervals (say I = [a, b]) can be estimated as follows. Since

2 = |xk(a)− xk(b)| =
∫ b

a

|x′k(E)| dE,

we have
2

maxE∈I |x′k(E)| ≤ |I| ≤
2

minE∈I |x′k(E)| .

In order to prove estimates for |x′k(E)|, one differentiates the trace recursion (6)
and proceeds inductively, making use of the trace invariant (7). This approach
was pioneered by Raymond [153] and then used in many subsequent papers. In
this inductive approach, it turns out to be important to determine, for a given
energy E in one of the intervals of σk,λ, in how many of the earlier sets σk′,λ,
k′ < k, the energy E in question lies. This gives rise to a combinatorial question
that was completely answered in [48]. Combining these combinatorial results with
the length estimates one can prove in this way for the intervals in question, the
overall strategy above yields the following specific estimates:

dimH Σλ ≤
log(1 +

√
2)

log
(

1
2

[
(λ− 4) +

√
(λ− 4)2 − 12

]) for λ ≥ 8, (12)

dim−B Σλ ≥
log(1 +

√
2)

log (2λ + 22)
for λ > 4. (13)

Theorem 5.8 is then a direct consequence of these estimates and the fact that the
Hausdorff dimension and the box counting dimension of Σλ are equal.

5.4. Quantitative characteristics of the spectrum at small coupling

Fractal properties of Σλ for small λ were studied in [52]. Among many other things,
that paper established the following pair of theorems.

Theorem 5.9. We have

lim
λ→0

dimΣλ = 1.
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More precisely, there are constants C1, C2 > 0 such that

1− C1λ ≤ dimΣλ ≤ 1− C2λ

for λ > 0 sufficiently small.

Theorem 5.10. We have

lim
λ→0

τ(Σλ) =∞.

More precisely, there are constants C3, C4 > 0 such that

C3λ
−1 ≤ τ(Σλ) ≤ θ(Σλ) ≤ C4λ

−1

for λ > 0 sufficiently small.

Theorem 5.9 is a consequence of the connection (11) between the Hausdorff
dimension of a Cantor set and its denseness and thickness, along with the estimates
for the latter quantities provided by Theorem 5.10.

Let us briefly explain how Theorem 5.10 can be obtained. The Cayley cubic
S0 (cf. (9)) has four conic singularities and can be represented as a union of a two-
dimensional sphere (with four conic singularities) and four unbounded components.
The restriction of the trace map to the sphere is a pseudo-Anosov map (a factor
of a hyperbolic map of a two-torus), and its Markov partition can be presented
explicitly (see [33] or [50, 52]). For small values of λ, the map T : Sλ → Sλ
“inherits” the hyperbolicity of this pseudo-Anosov map everywhere away from the
singularities. The dynamics near the singularities must be considered separately.
Consider the dynamics of T near one of the singularities, say, near the point
p = (1, 1, 1). The set Per2(T ) of periodic orbits of period two is a smooth curve
that contains the point p and intersects Sλ at two points (denote them by p1(λ)
and p2(λ)) for λ > 0. Finite pieces of stable and unstable manifolds of p1(λ)
and p2(λ) are a distance of order λ from each other. In order to estimate the
thickness (and the denseness) of the spectrum Σλ, we notice first that the Markov
partition for T : S0 → S0 can be continuously extended to a Markov partition
for T : Sλ → Sλ. The extended Markov partition is formed by finite parts of the
stable and unstable manifolds of p1(λ), p2(λ), and the other six periodic points
that are continuations of the three remaining singularities. Therefore the size of the
elements of these Markov partitions remains bounded, and the size of the distance
between them is of order λ. The natural approach now is to use the distortion
property (see, e.g., [145]) to show that for the iterated Markov partition, the
ratio of the distance between the elements to the size of an element is of the
same order. The main technical problem here is again the dynamics of the trace
map near the singularities, since the curvature of Sλ is very large there for small
λ. Nevertheless, one can still estimate the distortion that is obtained during a
transition through a neighborhood of a singularity and prove boundedness of the
distortion for arbitrarily large iterates of the trace map. This implies Theorem 5.10.
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5.5. The density of states measure

Let us now turn to the formulation of results involving the integrated density of
states, a quantity of fundamental importance associated with an ergodic family of
Schrödinger operators. The integrated density of states (IDS) was introduced in
Section 3.2 in a more general context, and represents the distribution function of
a density of states measure – a measure supported on the spectrum and, in par-
ticular, reflecting the asymptotic distribution of eigenvalues of finite-dimensional
approximations.

Denote the density of states measure of the Fibonacci Hamiltonian for a
given coupling constant λ by dNλ. Repeating the definition from Section 3.2 in
this particular case, we have

Nλ(E) = lim
n→∞

#{eigenvalues of Hλ,ω,[1,n] that are ≤ E}
n

, (14)

where Hλ,ω,[1,n] is the restriction of Hλ,ω to the interval [1, n] with Dirichlet bound-
ary conditions, and the limit does not actually depend on the phase ω.

It is interesting to analyze the regularity of the density of states measure. This
question was studied for general potentials [37, 38, 39, 83, 125], random potentials
[29, 162], and analytic quasi-periodic potentials [5, 23, 24, 25, 86, 87, 89, 160]. In
the case of Fibonacci Hamiltonian, the IDS is Hölder continuous.

Theorem 5.11. For every λ > 0, there exist Cλ <∞ and γλ > 0 such that

|Nλ(E1)−Nλ(E2)| ≤ Cλ|E1 − E2|γλ

for every E1, E2 with |E1 − E2| < 1.

This follows directly from [58]; see also [40, 60, 99, 100, 104] for some previous
related results.

It is also interesting to obtain the asymptotics of the optimal Hölder exponent
for large and small couplings. In the large coupling regime, we have the following

[54] (recall that α =
√
5−1
2 ).

Theorem 5.12.

(a) Suppose λ > 4. Then for every

γ <
3 log(α−1)

2 log(2λ+ 22)
,

there is some δ > 0 such that the IDS associated with the family of Fibonacci
Hamiltonians satisfies

|Nλ(E1)−Nλ(E2)| ≤ |E1 − E2|γ

for every E1, E2 with |E1 − E2| < δ.
(b) Suppose λ ≥ 8. Then for every

γ̃ >
3 log(α−1)

2 log
(

1
2

(
(λ− 4) +

√
(λ− 4)2 − 12

))
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and every 0 < δ < 1, there are E1, E2 with 0 < |E1 − E2| < δ such that

|Nλ(E1)−Nλ(E2)| ≥ |E1 − E2|γ̃ .

Corollary 5.13. The optimal Hölder exponent γ behaves asymptotically as 3 log(α−1)
2 log λ

in the large coupling regime.

The proof is based on the self-similarity of the spectrum and an analysis of
the periodic approximants (in the spirit of the proof of Theorem 5.8).

In the small coupling regime, we have the following [54]:

Theorem 5.14. The integrated density of states Nλ(·) is Hölder continuous with
Hölder exponent γλ, where γλ → 1

2 as λ → 0, and γλ < 1
2 for small λ > 0.

More precisely:

(a) For any γ ∈ (0, 1
2 ), there exists λ0 > 0 such that for any λ ∈ (0, λ0), there

exists δ > 0 such that

|Nλ(E1)−Nλ(E2)| ≤ |E1 − E2|γ

for every E1, E2 with |E1 − E2| < δ;
(b) For any sufficiently small λ > 0, there exists γ̃ = γ̃(λ) < 1

2 such that for
every δ > 0, there are E1, E2 with 0 < |E1 − E2| < δ and

|Nλ(E1)−Nλ(E2)| ≥ |E1 − E2|γ̃ .

The proof uses the trace map formalism and a relation between the IDS of
Hλ,ω and the measure of maximal entropy for the trace map Tλ. Namely, the den-
sity of states measure is proportional to the projection (along the stable manifolds)
to λ of the normalized restriction of the measure of maximal entropy μmax(Tλ)
to an element of the Markov partition. After that, the proof uses a comparison of
expansion rates of Tλ and T0 (and is reminiscent of the proof of Hölder continuity
of conjugacies between two hyperbolic dynamical systems).

Another interesting feature of the Fibonacci Hamiltonian is the uniform scal-
ing of the density of states measure. Namely, the following result (that summarizes
the results from [57], [53], and [150]) holds.

Theorem 5.15. For every λ > 0, there is dλ ∈ (0, 1) so that the density of states
measure dNλ is of exact dimension dλ, that is, for dNλ-almost every E ∈ R, we
have

lim
ε↓0

logNλ(E − ε, E + ε)

log ε
= dλ.

Moreover, in (0, λ0), dλ is an analytic function of λ, and

lim
λ↓0

dλ = 1.

The proof is based on the relation between dNλ and μmax(Tλ), and the exact
dimensionality of hyperbolic measures [8, 119, 149].

The Hausdorff dimension of the spectrum is an upper bound for dλ, but a
priori it is not clear whether these numbers must coincide. Barry Simon conjectured
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that for a large class of models these quantities must be different.10 The next result
by Damanik, Gorodetski, and Yessen [57] shows that this conjecture is true (see
also [53] for an earlier partial result).

Theorem 5.16. For every λ > 0, we have dλ < dimH Σλ.

The proof is based on the comparison of the measure of maximal entropy for
Tλ (which is “responsible” for dλ) and the equilibrium measure for the potential
given by minus the log of the expansion rate. The Hausdorff dimension of the
unstable projection of the latter is equal to dimH Σλ, and the thermodynamical
description of this measure (see [136]) implies that for any other ergodic invariant
measure, the dimension of its unstable projection is strictly smaller. In order to
prove that those two measures are actually different, one uses the fact that the
measure of maximal entropy is an equilibrium measure that corresponds to zero
potential. Therefore it is enough to show that the two potentials under consider-
ation are not cohomological, which can be done using a comparison of multipliers
of different periodic orbits of Tλ.

5.6. Gap opening and gap labeling

The spectrum Σλ jumps from being an interval for λ = 0 to being a zero-measure
Cantor set for λ > 0. Hence, as the potential is turned on, a dense set of gaps
opens immediately. It is natural to ask about the size of these gaps; see [13]. These
gap openings were studied in [10] for the Thue–Morse potential (where the gaps
open as a power of λ) and in [12] for the period doubling potential (where some
gaps open linearly, and some others are superexponentially small in λ). In the
Fibonacci case, all gaps open linearly [52, 57]:

Theorem 5.17. The boundary points of a gap in the spectrum Σλ depend smoothly
on the coupling constant λ. Moreover, given any one-parameter continuous family
{Uλ}λ>0 of gaps of Σλ,

11 we have that

lim
λ→0

|Uλ|
|λ|

exists and belongs to (0,∞).

Theorem 5.17 follows again from dynamical properties of the trace map.
Namely, each singularity of the Cayley cubic S0 gives birth to two periodic points
on the surface Sλ, λ > 0. The distance between the periodic points is of order λ.
The stable manifolds of these periodic points “cut” gaps in λ that correspond to
gaps in the spectrum. The curves formed by the families of the periodic points are
normally hyperbolic manifolds of the trace map, and hence (see [92, 152]) their

10The conjecture does not appear anywhere in print, but it was popularized by Barry Simon in
many talks given by him in the past four years.
11By a continuous family {Uλ}λ>0 of gaps of Σλ we mean that Uλ is a bounded connected

component of R\Σλ and the left endpoint and the right endpoint of Uλ each depend continuously
on λ.
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strong stable manifolds form a C1 foliation. This implies that the size of each gap
is also of order λ (as λ → 0), and Theorem 5.17 follows.

The limit in Theorem 5.17 certainly depends on the family of gaps chosen.
In order to study this dependence, one needs to use some labeling of the gaps.
As is well known, the density of states produces such a gap labeling. That is,
one can identify a canonical set of gap labels, which is only associated with the
underlying dynamics (in this case, an irrational rotation of the circle or the shift-
transformation on a substitution-generated subshift over two symbols), in such a
way that the value of N(E, λ) for E ∈ R\Σλ must belong to this canonical set. In
the Fibonacci case, this set is well known (see, e.g., [13, Eq. (6.7)]) and the general
gap labeling theorem specializes to the following statement:

{N(E, λ) : E ∈ R \ Σλ} ⊆ {{mα} : m ∈ Z} ∪ {1} (15)

for every λ �= 0. Here {mα} denotes the fractional part of mα, that is, {mα} =
mα − �mα�. Notice that the set of gap labels is indeed λ-independent and only
depends on the value of α from the underlying circle rotation. Since α is irrational,
the set of gap labels is dense. In general, a dense set of gap labels is indicative of a
Cantor spectrum and hence a common (and attractive) stronger version of proving
Cantor spectrum is to show that the operator “has all its gaps open.” For example,
the Ten Martini Problem for the almost Mathieu operator is to show Cantor
spectrum, while the Dry Ten Martini Problem is to show that all labels correspond
to gaps in the spectrum. The former problem has been completely solved [4], while
the latter has not yet been completely settled. Indeed, it is in general a hard
problem to show that all labels given by the gap labeling theorem correspond to
gaps, and there are only few results of this kind. It turns out that the stronger (or
“dry”) form of Cantor spectrum holds for the Fibonacci Hamiltonian [57]:

Theorem 5.18. For every λ > 0, all gaps allowed by the gap labeling theorem are
open. That is,

{N(E, λ) : E ∈ R \ Σλ} = {{mα} : m ∈ Z} ∪ {1}. (16)

Earlier, (16) was shown for λ > 4 by Raymond [153], and for λ > 0 sufficiently
small by Damanik and Gorodetski [52].

Using the gap labeling, we can refine the statement of Theorem 5.17. For
m ∈ Z\{0}, denote by Um(λ) the gap of Σλ where the integrated density of states
takes the value {mα}. Then, the following result from [52] holds:

Theorem 5.19. There is a finite constant C∗ such that for every m ∈ Z \ {0},

lim
λ→0

|Um(λ)|
|λ| =

Cm
|m|

for a suitable Cm ∈ (0, C∗).

To see why Theorem 5.19 holds, notice that each family of gaps converges
(as λ → 0) to a point of intersection of 0 with a stable manifold of one of the
singularities. The intersections that have larger labels are in a sense “produced”
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from intersections with smaller labels by the action of the inverse of the trace map.

For gaps with small labels, we know from Theorem 5.17 that limλ→0
|Um(λ)|
|λ| < C∗

for some constant C∗ > 0. The length (in coordinates on the two-torus covering S0)
of the piece of the stable manifold from the singularity to the point of intersection

after k applications of the map is of order
(

1+
√
5

2

)k
∼ |m|, and the contraction

that will be applied to the gap is of order(√
5− 1

2

)k
∼
(√

5− 1

2

) log |m|
log

(
1+

√
5

2

)

=
1

|m| .

5.7. Transport properties

There is a substantial number of papers that investigate the transport exponents
associated with the Fibonacci Hamiltonian; see, for example, [16, 40, 45, 48, 58, 66,
67, 68, 69, 70, 104, 110]. While we won’t describe all the known results, we want to
at least highlight some of them and put them in perspective. As pointed out earlier,
one of the fascinating features of quasicrystal models is that the intermediate
nature of their aperiodic order between periodic and random is reflected in a
number of ways, be it through the spectrum (by spectral measures being purely
singular continuous) or through transport behavior. Here we want to address the
latter point. All the papers listed above have the goal of proving estimates that
show that the transport properties of the Fibonacci Hamiltonian are markedly
different from those of periodic or random media.

Since there is ballistic transport (all transport exponents are equal to one)
in the periodic case and no transport (all transport exponents are equal to zero)
in the random case, one therefore wants to show that the transport exponents
take values in the open interval (0, 1). Proving non-trivial lower bounds turns out
to be comparatively easier and was accomplished in the late 1990’s [40, 104] for
zero phase. Several subsequent papers then went on to extend the lower bound to
all phases and improved the estimates [48, 58, 66, 67, 68, 70]. Upper bounds for
transport exponents, on the other hand, proved to be elusive for some time. Note
a key difference here: to bound transport exponents from below, one “only” has to
show that some portion of the wave packet moves sufficiently fast. On the other
hand, to bound transport exponents from above, one essentially has to control the
entire wave packet and show that it does not move too fast (i.e., ballistically).
Thus, it is potentially easier to prove upper bounds on transport that are dual to
the type of lower bound that had been established, and this indeed turned out to
be the case. The papers [45, 110] showed that at least some non-trivial portion of
the wave packet moves slowly. Full control and hence genuine upper bounds for
transport exponents were finally obtained in 2007 and later [16, 69, 70].

Let us now state some of the transport results explicitly. Some general re-
marks that should be made are the following:
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(a) Almost all results concern time-averaged quantities (i.e., the exponents β̃±(p)
defined in Section 4.6).

(b) Most papers focus on the case ψ(0) = δ0. We will limit our attention here to
this case as well.

(c) The optimality of the known estimates improves when p and/or λ are large.
In particular, the bounds are known to be tight in the limit λ, p ↑ ∞.

(d) For finite values of λ and p, the method of choice to obtain the best-known
bound varies.

(e) For λ and p large enough, the transport exponent may exceed the dimension
of the spectrum.

Here is a result from [68] that establishes the best-known estimates for zero
phase and given λ and p:

Theorem 5.20. Suppose λ > 0 and set

γ = D log(2 +
√
8 + λ2)

(where D is some universal constant) and

κ = log

[ √
17

20 log(1 + α)

]
.

Then, the time-averaged transport exponent corresponding to the initial state
ψ(0) = δ0 and zero-phase Fibonacci Hamiltonian Hλ,0 obey

β̃±(p) ≥
{

p+2κ
(p+1)(γ+κ+1/2) , p ≤ 2γ + 1;

1
γ+1 , p > 2γ + 1.

(17)

Here is a result from [69, 70] that concerns the regime of large λ and p:

Theorem 5.21. Consider the Fibonacci Hamiltonian Hλ,ω and the initial state

ψ(0) = δ0. For λ >
√
24, we have

α̃±u ≥
2 log(1 + α)

log(2λ + 22)
,

and for λ ≥ 8, we have

α̃±u ≤
2 log(1 + α)

log
(

1
2

[
(λ− 4) +

√
(λ − 4)2 − 12

]) .

Both estimates holds uniformly in ω. In particular,

lim
λ→∞

α̃±u · log λ = 2 log(1 + α),

and convergence is uniform in ω.

In fact, the upper bound can be proved also for the non-time-averaged quan-
tities, as shown in [70].
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Theorem 5.22. Consider the Fibonacci Hamiltonian Hλ,ω and the initial state
ψ(0) = δ0. For λ ≥ 8 and uniformly in ω, we have

α±u ≤
2 log(1 + α)

log
(

1
2

[
(λ− 4) +

√
(λ − 4)2 − 12

]) .

Some other estimates on transport exponents were obtained recently using
different methods in [57].

5.8. Connections between spectral characteristics and dynamical quantities

In [57] explicit relations between spectral quantities for the Fibonacci Hamiltonian
and the dynamical characteristics of the Fibonacci trace map were obtained. In
the next theorem, μλ,max denotes the measure of maximal entropy of Tλ|Ωλ

and
μλ denotes the equilibrium measure of Tλ|Ωλ

that corresponds to the potential
− dimH Σλ · log ‖DTλ|Eu‖. Recall that α denotes the inverse of the golden ratio.

Theorem 5.23. For every λ > 0, we have

α̃±u (λ) =
log(1 + α)

infp∈Per(Tλ) Lyap
u(p)

, (18)

dimH Σλ =
hμλ

Lyapuμλ
, (19)

dimH νλ = dimH μλ,max =
htop(Tλ)

Lyapuμλ,max
=

log(1 + α)

Lyapuμλ,max
, (20)

γλ =
log(1 + α)

supp∈Per(Tλ)
Lyapu(p)

. (21)

The following theorem from [57] shows that for the Fibonacci Hamiltonian
and every value of the coupling constant, the four quantities satisfy strict inequal-
ities.

Theorem 5.24. For every λ > 0, we have

γλ < dimH νλ < dimH Σλ < α̃±u (λ). (22)

The particular inequality dimH νλ < dimH Σλ in (22) establishes a conjecture
of Barry Simon,12 which was made based on an analogy with work of Makarov
and Volberg [132, 133, 169]; see [53] for a more detailed discussion. The inequality

dimH Σλ < α̃±u (λ) (23)

in (22) is related to a question of Yoram Last. He asked in [118] whether in general
dimH Σλ bounds α̃±u (λ) from above and conjectured that the answer is no. The
inequality (23) confirms this. See [70] and [55] for earlier partial results.

The identities in Theorem 5.23 are instrumental in the proof of Theorem 5.24.
Indeed, once the identities (18)–(21) are established, Theorem 5.24 can be proved

12The conjecture does not appear anywhere in print, but it was popularized by Barry Simon in
many talks given by him in the past four years.
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using the thermodynamic formalism, which we will describe next. Define φ : Ωλ →
R by φ(x) = − log ‖DTλ(x)|Eu‖ and consider the pressure function (sometimes
called the Bowen function) P : t 	→ P (tφ), where P (ψ) is the topological pres-
sure.13 This function has been heavily studied; the next statement summarizes
some known results; compare [28, 109, 143, 158, 170, 171].

Proposition 5.25. Suppose that σA : ΣA → ΣA is a topological Markov chain
defined by a transitive 0–1 matrix A, and φ : ΣA → R is a Hölder continuous
function. Denote by M the space of σA-invariant Borel probability measures. Then,
the following statements hold.

(1) Variational principle: P (tφ) = supμ∈M
{
hμ + t

∫
φdμ

}
.

(2) For every t ∈ R, there exists a unique invariant measure μt ∈ M (the equi-
librium state) such that P (tφ) = hμt + t

∫
φdμt.

(3) P (tφ) is a real analytic function of t.
(4) If φ is cohomological to a constant, then P (tφ) is a linear function; if φ is

not cohomological to a constant, then P (tφ) is strictly convex and decreasing.
(5) For every t0 ∈ R, the line hμt0

+ t
∫

φdμt0 is tangent to the graph of the

function P (tφ) at the point (t0, P (t0φ)).
(6) The following limits exist:

lim
t→∞

∫
φdμt = sup

μ∈M

∫
φdμ, lim

t→−∞

∫
φdμt = inf

μ∈M

∫
φdμ.

The graph of the function t 	→ P (tφ) lies strictly above each of the lines
t · supμ∈M

∫
φdμ and t · infμ∈M

∫
φdμ.

Now let us return to our case where σA : ΣA → ΣA is conjugate to Tλ|Ωλ
and

the potential is given by φ(x) = − log ‖DTλ(x)|Eu‖ (suppressing the conjugacy).
In [57] it was shown that this potential is not cohomological to a constant. For any
t ∈ R, consider the tangent line to the graph of P (t) at the point (t, P (tφ)). Since
P (t) is decreasing, there exists exactly one point of intersection of the tangent line

with the t-axis, at the point t0 = − hμt∫
φ dμ

=
hμt

Lyapu μt
= dimHμt. The last equality

here is due to [137]. In particular, dimHμmax = dimHνλ is given by the point of
intersection of the tangent line to the graph of P (t) at the point (0, htop(Tλ)) with
the t-axis. Also, due to Theorem 5.23 the line htop(Tλ)+t · infμ∈M

∫
φdμ intersects

the t-axis at the point γλ, and the line htop(Tλ) + t · supμ∈M
∫

φdμ intersects the

t-axis at the point α̃±u (λ). Finally, due to [136], the graph of P (t) intersects the
t-axis at the point dimHΣλ. These observations are illustrated in Figure 3 and
explain where the strict inequalities in Theorem 5.24 come from once it is shown
that φ is not cohomological to a constant.

13There are many classical books on the thermodynamical formalism; for example, [28, 158, 172].
We also refer the reader to the recent introductory texts [9, 101, 159].
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t

P (tφ)

htop(Tλ)

γλ dimHνλ

dimHΣλ α̃±u (λ)

Figure 3. Pressure function and spectral characteristics of the
Fibonacci Hamiltonian.

5.9. Square and cubic Fibonacci Hamiltonians

Since spectral questions for Schrödinger operators in two (and higher) dimensions
are hard to study, it is natural to consider a model where known one-dimensional
results can be used. In particular, let us consider the Schrödinger operator

[H
(2)
λ1,λ2,ω1,ω2

ψ](m,n) (24)

= ψ(m + 1, n) + ψ(m− 1, n) + ψ(m,n + 1) + ψ(m,n− 1)

+
(
λ1χ[1−α,1)(mα + ω1 mod 1) + λ2χ[1−α,1)(nα + ω2 mod 1)

)
ψ(m,n)

in 2(Z2). The theory of tensor products of Hilbert spaces and operators then

implies that σ(H
(2)
λ1,λ2,ω1,ω2

) = Σλ1 + Σλ2 for all ω1, ω2. This operator and its
spectrum have been studied numerically and heuristically by Even-Dar Mandel
and Lifshitz in a series of papers [79, 80, 81] (a similar model was studied by Sire
in [163]). Their study suggested that at small coupling, Σλ1 +Σλ2 is not a Cantor
set; quite on the contrary, it has no gaps at all.

It turns out that this is indeed the case [52]:

Theorem 5.26. For λ1, λ2 > 0 sufficiently small, σ(H
(2)
λ1,λ2,ω1,ω2

) = Σλ1 + Σλ2 is
an interval.

This result follows from the estimates for the thickness of Σλ from Theo-
rem 5.10 and Newhouse’s Gap Lemma (Theorem 5.4).
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Theorem 5.26 should be contrasted with the following result, which is an
immediate consequence of Corollary 5.7 and Theorem 5.8.

Theorem 5.27. For λ1, λ2 > 0 sufficiently large, σ(H
(2)
λ1,λ2,ω1,ω2

) = Σλ1 +Σλ2 is a
Cantor set.

The same statements hold for the cubic Fibonacci Hamiltonian (i.e., the
analogously defined Schrödinger operator in 2(Z3) with spectrum Σλ1+Σλ2+Σλ3).
Section 7.3 shows numerical illustrations of the finite approximations Σk,λ +Σk,λ
and Σk,λ+Σk,λ+Σk,λ, along with an exploration of the number of disjoint intervals
that make up these sets.

Moreover, the density of states measure of the family {H(2)
λ1,λ2,ω1,ω2

}λj∈R,ωj∈T
can be expressed as the convolution of the density of states measures associated
with the families {Hλ1,ω1}ω1∈T and {Hλ2,ω2}ω2∈T, that is,

ν
(2)
λ1,λ2

= νλ1 ∗ νλ2 . (25)

See the appendix in [56] for further background on separable potentials and oper-
ators. The following result was obtained by Damanik, Gorodetski and Solomyak
in [56].

Theorem 5.28. Let ν
(2)
λ1,λ2

be the density of states measure for the Square Fibonacci

Hamiltonian (24) with coupling constants λ1, λ2. There is λ∗ > 0 such that for

almost every pair (λ1, λ2) ∈ [0, λ∗)× [0, λ∗), the measure ν
(2)
λ1,λ2

is absolutely con-
tinuous with respect to Lebesgue measure.

In fact, it follows from the proof that (with a uniform smallness condition)

for every λ1 ∈ [0, λ∗), the measure ν
(2)
λ1,λ2

is absolutely continuous with respect to

the Lebesgue measure for almost every λ2 ∈ [0, λ∗).

6. Sturmian potentials

The Fibonacci potential is a special case of a Sturmian potential. The latter are
obtained if α in the definition of the potential, V (n) = λχ[1−α,1)(nα+ω mod 1), is
a general irrational number in (0, 1). The Fibonacci case corresponds to the choice

α =
√
5−1
2 .

Given an irrational α ∈ (0, 1), consider its continued fraction expansion

α =
1

a1 +
1

a2 +
1

a3 + · · ·
with uniquely determined ak ∈ Z+. Truncating the continued fraction expansion
of α after k steps yields the rational number pk/qk, which is the best rational
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approximant of α with denominator bounded by qk+1−1. The following recursions
hold:

pk+1 = ak+1pk + pk−1, p0 = 0, p1 = 1,

qk+1 = ak+1qk + qk−1, q0 = 1, q1 = a1.

(In the Fibonacci case α =
√
5−1
2 , we have ak ≡ 1 and pk/qk = Fk−1/Fk.) A

number of the results for the Fibonacci Hamiltonian described in the previous
section have been generalized to the Sturmian case under suitable assumptions
on the continued fraction coefficients {ak}. In this section, we explain what these
results are, and how the proofs had to be modified.

6.1. Extension of the trace map formalism

Let us the denote the discrete Schrödinger operator on 2(Z) with potential V (n) =
λχ[1−α,1)(nα + ω mod 1) by Hλ,α,ω. Strong approximation again shows that the
spectrum of Hλ,α,ω does not depend on ω, and may therefore be denoted by Σλ,α.
The one-step transfer matrices associated with the difference equation Hλ,α,ωu =
Eu are given by

Tλ,α,ω(m,E) =

(
E − λχ[1−α,1)(mα + ω mod 1) −1

1 0

)
.

The matrices

M−1(E) =

(
1 −λ
0 1

)
, M0(E) =

(
E −1
1 0

)
,

and

Mk(E) = Tλ,α,0(qk, E)× · · · × Tλ,α,0(1, E) for k ≥ 1

obey the recurrence relations

Mk+1(E) = Mk−1(E)Mk(E)ak+1

for k ≥ 0; see [14, Proposition 1]. Passing to the variables

xk(E) =
1

2
TrMk(E),

this in turn implies via the Cayley-Hamilton theorem that xk+1(E) can be ex-
pressed as an explicit function of (suitable Chebyshev polynomials applied to)
xk(E), xk−1(E), xk−2(E) for k ≥ 1; see [14, Proposition 2]. These recursion rela-
tions exhibit the same conserved quantity as before; namely, with

x̃k+1(E) =
1

2
Tr(Mk(E)Mk−1(E)),

we have

x̃k+1(E)2 + xk(E)2 + xk−1(E)2 − 2x̃k+1(E)xk(E)xk−1(E)− 1 =
λ2

4

for every k ≥ 0; see [14, Proposition 3].
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6.2. Results obtained via an analysis of the trace recursions

Notice that the key difference with the Fibonacci case is that, in general, the
sequence of traces may not be obtained by iterating a single map. In this sense,
there is in general no direct analog of the trace map. However, as we have just seen,
the underlying structure of recurrence relations extends nicely. The substitute for
the dynamical analysis of the Fibonacci trace map will have to lie in studying the
dynamics of an initial point under the successive application of a sequence of maps,
the elements of which are dictated by the continued fraction expansion of α. These
developments are still in their early stages. In the following we will concentrate
on the known results that can be established by simply exploiting the recurrence
relations, without employing sophisticated tools from dynamical systems theory.

The first result that establishes a clean analogy with the Fibonacci case is
the following analog of Theorem 5.1, which was established in [14].

Theorem 6.1. Fix λ > 0 and α ∈ (0, 1) irrational. An energy E belongs to the
spectrum Σλ,α if and only if the sequence {xk(E)} is bounded.

The proof of Theorem 6.1 follows the same line of reasoning as the proof
of Theorem 5.1, which was outlined in the previous section. In particular, one
obtains canonical covers of the spectrum, which are useful in the estimation of its
dimension. Let us make this explicit. As before, define the sets

σλ,α,k = {E ∈ R : |xk(E)| ≤ 1}
and

Σλ,α,k = σk ∪ σk+1.

The same reasoning shows that the sets Σλ,α,k are decreasing in k and the spectrum
is the limiting set, that is,

Σλ,α =
⋂
k≥1

Σλ,α,k;

see [14, Proposition 4].

A refinement of this description of the spectrum in the Sturmian case due
to Raymond [153] allowed Liu and Wen to obtain the following estimates for the
Hausdorff dimension of the spectrum in the large coupling regime [130].

Theorem 6.2. Suppose λ > 20 and α ∈ (0, 1) is irrational with continued fraction
coefficients {ak}. Denote

M∗ = lim inf
k→∞

(a1 · · · ak)1/k ∈ [1,∞].

(a) If M∗ =∞, then dimH Σλ,α = 1.
(b) If M∗ < ∞, then dimH Σλ,α belongs to the open interval (0, 1) and obeys the

estimates

dimH Σλ,α ≤
2 logM∗ + log 3

2 logM∗ − log 3
λ−8
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and

dimH Σλ,α ≥ max

{
log 2

10 log 2− 3 log 1
4(λ−8)

,
logM∗ − log 3

logM∗ − log 1
12(λ−8)

}
.

A study of the box counting dimension of Σλ,α in the case of bounded {ak}
was carried out in the follow-up paper [82] by Fan, Liu, and Wen. Among other
things, they showed that for λ > 20, the Hausdorff dimension and the box counting
dimension of Σλ,α coincide whenever the sequence {ak} is eventually periodic. The
analysis of the case of unbounded {ak} was carried out by Liu, Qu, and Wen in
[128]. On the one hand, these papers establish the following companion result to
Theorem 6.2.

Theorem 6.3. Suppose λ ≥ 24 and α ∈ (0, 1) is irrational with continued fraction
coefficients {ak}. Denote

M∗ = lim sup
k→∞

(a1 · · · ak)1/k ∈ [1,∞].

(a) If M∗ =∞, then dim+
B Σλ,α = 1.

(b) If M∗ < ∞, then dim+
B Σλ,α belongs to the open interval (0, 1).

Here dim+
B S denotes the upper box counting dimension of the set S. Note

that Theorems 6.2 and 6.3 imply in particular that for suitable choices of α and
λ, we may have dimH Σλ,α < 1 and dim+

B Σλ,α = 1.
On the other hand, Liu, Qu, and Wen also study in [128] the large coupling

asymptotics of these dimensions. Namely they show that the limits

lim
λ→∞

dimH Σλ,α · logλ and lim
λ→∞

dim+
B Σλ,α · logλ

exist, and provide a description of these limits.

The transport exponents in the Sturmian case were studied in the papers
[40, 58, 66, 68, 135]. The following result from [68] gives dynamical lower bounds
for all values of λ and p, provided α has bounded continued fraction coefficients.

Theorem 6.4. Suppose λ > 0 and α ∈ (0, 1) is irrational with ak ≤ C. With

γ = D log(2 +
√
8 + λ2) · lim sup

n→∞

1

n

n∑
k=1

ak

(where D is some universal constant) and

κ =
log(

√
17/4)

(C + 1)5
,

the transport exponents associated with the operator Hλ,α,0 and the initial state
ψ(0) = δ0 obey

β̃−(p) ≥
{

p+2κ
(p+1)(γ+κ+1/2) , p ≤ 2α + 1;
1

γ+1 , p > 2α + 1.



Schrödinger Operators Arising in the Study of Quasicrystals 345

The following result from [135] gives dynamical upper bounds in the large
coupling regime.

Theorem 6.5. Suppose λ > 20 and α ∈ (0, 1) is irrational with continued fraction
coefficients {ak} and corresponding rational approximants {pk/qk}. Denote

D = lim sup
k→∞

1

k
log qk.

Then, the transport exponents associated with the operator Hλ,α,0 and the initial
state ψ(0) = δ0 obey

α̃±u ≤
2D

log λ−8
3

.

Moreover, if ak ≥ 2 for all k, then

α̃±u ≤
D

log λ−8
3

.

7. Numerical results and computational issues

In this section, we provide numerical illustrations of a number of the results de-
scribed in this survey. These calculations focus on the Fibonacci Hamiltonian,
though many could readily be adapted to the Sturmian potentials described in
the last section. We begin by studying approximations to the spectrum for the
Fibonacci model in one dimension, then investigate estimates of the integrated
density of states based on spectra of finite sections of the operator. Finally, we
address upper bounds on the spectrum in two and three dimensions. In all cases,
we set the phase ω to zero.

7.1. Spectral approximations for the Fibonacci Hamiltonian

We begin by calculating the spectrum σk for the kth periodic approximations to
the Fibonacci potential. The analysis described in Section 5 suggests several ways
to compute σk, which turn out to have varying degrees of utility.

Given a candidate energy E, one can test if E ∈ σk by iterating the trace
recurrence (6) and testing if |xk(E)| ≤ 1. In principle, this simple approach enables
investigation for arbitrarily large values of k. However, two key obstacles restrict
the utility of this method: (i) it does not readily yield the entire set σk; (ii) as k
increases, the intervals that comprise σk become exponentially narrow, beyond the
resolution of the standard floating point number system in which such calculations
are typically performed. However, this approach can yield some useful results,
particularly in the small coupling regime where the decay of the interval widths is
most gradual, or when one is only interested in some narrow set of energy values.
(This method of calculation was used to produce illustrations in [52].)

To obtain the entire set σk, one might instead use the recurrence (6) to
construct the degree-Fk polynomial xk(E), then determine the regions where
|xk(E)| ≤ 1 by finding the zeros of the polynomials xk(E) + 1 and xk(E) − 1
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using a standard root-finding algorithm. For all but the smallest k this approach
is untenable. Coefficients of xk(E) grow exponentially in k; e.g., for λ = 4,

x6(E)= 1
2E

13−16E12+ 435
2 E11−1616E10+ 13905

2 E9−16272E8+13330E7

+20160E6−37133E5−17056E4+ 61013
2 E3+25104E2+ 13021

2 E+560.

The magnitude of these coefficients, compounded by the proximity of the roots for
larger values of λ and k, leads to inaccurate root calculations, a phenomenon well
studied by numerical analysts; see, e.g., [139, 173]. Indeed, it is not uncommon for
the computed roots to be so inaccurate as to have significant spurious imaginary
parts.

There is a more robust approach to computing the approximate Fibonacci
spectrum σk. One can view σk as the exact spectrum of a related Schrödinger
operator with a potential having period Fk. The spectrum of this operator is the
union of Fk non-degenerate intervals whose endpoints are given by the eigenvalues
of the two Fk-dimensional matrices Jk+ and Jk−:

Jk± =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

v1,k 1 ±1

1 v2,k
. . .

. . .
. . .

. . .

. . . vFk−1,k 1
±1 1 vFk,k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

with unspecified entries beyond the tridiagonal section equal to zero; see, e.g., [168,
Ch. 7]. Here the potential values vn,k are given by

vn,k = λχ[1−Fk−1/Fk,1)(nFk−1/Fk mod 1). (26)

This approach, which we use for the computations described below, has also been
employed in the context of Fibonacci computations by Even-Dar Mandel and Lif-
shitz [79], and for the almost Mathieu operator by Lamoureux [117].

The standard procedure for computing all the eigenvalues of a symmetric
matrix begins by applying a unitary similarity transformation to reduce the matrix
to symmetric tridiagonal form.14 Floating-point arithmetic introduces errors into
this process, resulting in the exact tridiagonal reduction of a matrix that differs
from the intended matrix by a factor that scales with the precision of the floating
point arithmetic system, the coupling constant λ, and the dimension Fk. The
eigenvalues of this tridiagonal matrix are then approximated to high accuracy
via a procedure known as QR iteration [147]. Remarkably, this iteration does not
introduce significant errors beyond those incurred by the reduction to tridiagonal
form; for a discussion of this accuracy, see [1, 174]. Overall, this process requires

14Methods such as the Lanczos algorithm excel at computing a few eigenvalues of large symmetric
matrices [147, Ch. 13]. These methods are not feasible here, for all eigenvalues of Jk± are required.

However, if one is only interested in a narrow band of energies, these methods can be highly
effective.
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k = 7 k = 8

k = 5 k = 6

k = 3 k = 4

k = 1 k = 2

Figure 4. Spectra of the periodic approximations σk,λ for the Fi-
bonacci Hamiltonian, as a function of λ ∈ [0, 2]. For k = 8 and all
λ > 0, σk,λ is the union of F8 = 34 disjoint intervals.

O(F 3
k ) floating point arithmetic operations and the storage of O(F 2

k ) floating point
numbers. (The conventional procedure for reducing the matrix to tridiagonal form
destroys the zero structure present in Jk±.) Of course, the upper estimate Σk,λ =
σk,λ ∪ σk+1,λ then requires computation of all eigenvalues of four matrices.

Significant insight can be gleaned from numerical calculations involving small
to moderate values of k. For example, Figure 4 shows σk,λ for λ ∈ [0, 2] and
k = 1, . . . , 8, while Figure 5 shows the upper bounds Σk,λ for the same range of λ
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Figure 5. The upper bound Σk,λ = σk,λ ∪ σk+1,λ on the Fibonacci
spectrum, as a function of λ ∈ [0, 2]. For k = 8 and λ = 2, Σk,λ is the
union of 42 disjoint intervals.

and k. Since Σ8,λ = σ8,λ ∪ σ9,λ, for λ > 0 the spectrum is the union of 34 and 55
intervals.

To develop conjectures (e.g., regarding dim Σλ), one would like to use ap-
proximations to Σλ for larger k. Two fundamental challenges arise: (i) the O(F 3

k )
work and O(F 2

k ) storage becomes prohibitive; (ii) while non-degenerate, the in-
tervals in σk,λ become exponentially small and exponentially close together. This
phenomenon is illustrated in Figure 6. The utility of the numerical results degrade
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λ = 2

λ
=
32

λ = 2

λ
=
32

Figure 6. Exponential decay of the largest intervals and smallest gaps
in the approximations Σk,λ, for coupling constants λ = 2, 4, 8, 16, 32,
as computed in MATLAB’s double-precision floating point arithmetic.
The data points that are plotted in gray are likely dominated by com-
putational errors.

when the size of these bands and gaps approaches the order of the error in the
numerical computation.15 On contemporary commodity computers, computation
of Σk,λ up to roughly k = 20 (requiring all eigenvalues of matrices of dimension
F20 = 10,946 and F21 = 17,711) is feasible, provided λ is sufficiently small for
the results to be accurate. Recently Puelz has proposed an improved approach
that ameliorates challenge (i) above by reducing the required work to O(F 2

k ) and
storage to O(Fk), and challenge (ii) by using extended precision arithmetic [151].

To estimate the box-counting dimension of Σλ (assuming it exists), we use
the definition

dimB(S) = lim
ε→0

logCS(ε)

log 1/ε
,

where CS(ε) counts the number of intervals of width ε that intersect S,

CS(ε) := #{j ∈ Z : [jε, (j + 1)ε) ∩ S �= ∅}.
Note that dimB(Σk,λ) = 1 for all k, since Σk,λ is the union of finitely many closed
intervals. Still, one gains insight into dimB(Σλ) from log(CΣk,λ

(ε))/ log(1/ε) for
finite values of ε and various k, as can be seen in Figure 7. For fixed λ, the resulting
estimates of dimB(Σλ) (taken, e.g., as infε∈(0,1) log(CΣk,λ

(ε))/ log(1/ε)) apparently
improve as k increases; lower values of k are suitable for larger values of λ. However,
with this approach it is difficult to accurately estimate the critical value at which

15More subtly, the formula (26) incurs significant rounding errors for large n and k, resulting
in errors on the diagonal of Jk± of size λ. For greater accuracy, one should use the equivalent

formulation vn,k = λχ[Fk−Fk−1,Fk)
(nFk−1 mod Fk), which is more robust.
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k = 4

k = 20

k = 4

k = 20

k = 4

k = 20

k = 4

k = 20

λ = 2

λ = 8

λ = 4

λ = 16

Figure 7. Estimates of dimB(Σλ) for various values of λ, based on the
upper bounds Σk,λ for various k. The dashed horizontal line denotes

log(1+
√
2)/ log(λ), to which dimB(Σλ) tends as λ→∞ (Theorem 5.8).

The gray horizontal lines in the bottom plots show the upper and lower
bounds (12)–(13).

dimB(Σλ) = 1/2.16 (A rough estimate, suggested from Figure 7, is λ ≈ 4; see
the discussion preceding Problem 8.6 below.) More accurate approximations will
require computations with larger values of k than are feasible with the method
described above.

Finally, Figure 8 explores numerical computations of the thickness, defined
in (10). As established in Theorem 5.10, the thickness τ(Σλ) behaves like 1/λ as
λ ↓ 0. As λ decreases we see this behavior mirrored in the upper bounds Σk,λ, up
to some point where τ(Σk,λ) rapidly increases: Σk,λ is the union of no more than
Fk + Fk+1 intervals separated by gaps that diminish as λ ↓ 0.

16We are interested in this critical value because as soon as dimB(Σλ) falls below 1/2, we can

be sure that the sum set Σλ + Σλ is a zero-measure Cantor set, and this is an issue of interest
for reasons we will discuss in Subsection 7.3.
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k =
17

λ−1

k = 13 k = 9

Figure 8. Thickness of Σk,λ as a function of λ for three values of k,
consistent with Theorem 5.10.

7.2. Density of states for the Fibonacci model

We next turn to an investigation of the exponent of Hölder continuity of the
integrated density of states (IDS) for the Fibonacci model, discussed in Section 5.5.
To estimate Nλ(E) in equation (14), one must compute all the eigenvalues of
Hλ,[1,n], the restriction of Hλ to sites [1, n] with Dirichlet boundary conditions.
This restriction is an n×n tridiagonal matrix; because this matrix lacks the corner
entries present in Jk± in the last subsection, its eigenvalues can be efficiently
computed for large values of n (say n ≤ 106 on contemporary desktop computers).
While computational complexity is no longer such a constraint, accuracy still is:
for large n and λ, some eigenvalues of Hλ,[1,n] are closer than the precision of the
floating point arithmetic, rendering, for example, |E1 − E2| = 0 for theoretically
distinct eigenvalues E1 and E2 of Hλ,[1,n].

17

Figure 9 shows estimates of the IDS based on computations with n = 10,000
for λ values ranging from the trivial case of no coupling (λ = 0) to strong coupling
(λ = 8). The fine structure of the spectrum is evident in Figure 10, which repeat-
edly zooms in upon subsets of the spectrum of the finite section Hλ,[1,n] for λ = 1
and n = 100,000. (The numerical concerns discussed in the last paragraph do not
affect these figures.)

We now explore the Hölder continuity of the integrated density of states. In
consideration of (14), define

Nn,λ(E) = lim
n→∞

#{eigenvalues of Hλ,[1,n] that are ≤ E}
n

.

17By its structure, Hλ,[1,n] must have n distinct eigenvalues. Similar scenarios with exception-

ally close distinct eigenvalues are well known in the numerical analysis community; see, e.g.,
Wilkinson’s W+

21 matrix [147, Sec. 7.7].
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λ = 0 λ = 1/2

λ = 1 λ = 2

λ = 4 λ = 8

Figure 9. Approximations to the integrated density of states for the
Fibonacci model with various values of the coupling constant, λ, based
on n = 10,000.

Figure 11 investigates the large λ behavior of the Hölder exponent addressed in
Theorem 5.12, based on computations with finite sections of dimension n = 10,000.

Indeed, we see asymptotic behavior like 3 log(α−1)
2 log λ , and moreover the figure suggests

that the dimension of the measure is smooth in this regime.

7.3. Spectral estimates for square and cubic Fibonacci Hamiltonians

As described in Section 5.9, the estimates Σk,λ for the one-dimensional Fibonacci
spectrum can readily be translated into approximations for the square and cubic
cases, as investigated by Even-Dar Mandel and Lifshitz [79]. As described in The-
orem 5.26, Σλ need not be a Cantor set, especially for small coupling constants.
This behavior is apparent in Figures 12 and 13, which illustrate Σk,λ + Σk,λ and
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Figure 10. Eigenvalues of Hλ,[1,n] for λ = 1 and n = 100,000, drawn as
vertical lines to aid visibility. The first plot shows the entire spectrum;
the gray boxes denote the region on which the next plot zooms.
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Figure 11. Illustration of Theorem 5.12, based on numerically-
computed eigenvalues from finite sections Hλ,[1,n] for n = 10,000. Here
δ = 0.025 and the minimization is over E1, E2 ∈ σ(Hλ,[1,n]).

Σk,λ+Σk,λ+Σk,λ for various values of k and λ. For a finite range of small λ values,
the spectra comprise intervals that branch into a greater number of intervals as k
and λ increase. Figure 14 shows the growth in the number of intervals present in
these approximations as a function of λ for three different values of k. This plot
makes evident rapid (but not always monotone) growth in the number of intervals
with λ. Figure 15 illustrates the opening and closing of gaps for the square prob-
lem, revealing an intriguing structure for finite k. How does this structure develop
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k = 7 k = 8

k = 5 k = 6

k = 3 k = 4

k = 1 k = 2

Figure 12. Approximations Σk,λ+Σk,λ of the spectrum of the square
Fibonacci operator, as a function of λ. For k = 8 and λ = 4, Σk,λ+Σk,λ
is the union of 311 disjoint intervals.

as k increases, and, indeed, is it reflected in Σλ +Σλ? At present these questions
remain open.

Tables 1 and 2 investigate the square and cubic spectral estimates more
precisely, giving the values of λ where multiple intervals first emerge. These results
confirm and sharpen the observation of Even-Dar Mandel and Lifshitz [79] that
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k = 7

k = 5 k = 6

k = 3 k = 4

k = 1 k = 2

Figure 13. Approximations Σk,λ +Σk,λ+Σk,λ of the spectrum of the
cubic Fibonacci operator, as a function of λ. For k = 7 and λ = 7,
Σk,λ +Σk,λ +Σk,λ is the union of 482 disjoint intervals.

Σk,λ+Σk,λ transitions from one to two intervals near λ = 1.3, while Σk,λ+Σk,λ+
Σk,λ makes the same transition near λ = 2. For these finite values of k, it is
apparent that Σk,λ+Σk,λ and Σk,λ+Σk,λ+Σk,λ both transition to two intervals,
then three intervals, and so on. What do these calculations suggest about the limit
k →∞? For example, is the λ value at which Σk,λ +Σk,λ transitions from two to
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Figure 14. Number of intervals in the spectral approximations Σk,λ+
Σk,λ and Σk,λ +Σk,λ +Σk,λ, as a function of λ.

three intervals converging? Is there a finite span of λ values for which Σk,λ +Σk,λ
persists as the union of two intervals as k → ∞, or does Σλ + Σλ transition from
one interval directly to a Cantorval or Cantor set? (See Problems 8.6 and 8.7
below.)

Let λk,m denote the value of λ at which Σk,λ +Σk,λ (or Σk,λ +Σk,λ +Σk,λ)
first splits from m to m + 1 intervals as λ increases, with λk,0 = 0. (Our detailed
computations suggest that, for small values of m, there is only one such point
of transition; for larger numbers of intervals, gap closings complicate the picture,
as seen in Figure 15.) Figure 16 plots λk,m − λk,m−1 as a function of k for m =
1, . . . , 7 for the square and cubic Hamiltonians. Do the transition points converge
as k → ∞? First consider the plot on the left, for the square Hamiltonian. For
m = 1 and m = 2, λk,m appears to converge; however, the points of transition to
m ≥ 3 intervals do not show such consistency: it is unclear if these λk,m values
are converging. It may be that the coupling constants at which Σλ,k+Σλ,k breaks
into m > 3 intervals are converging to the point at which the spectrum breaks
into m = 3 intervals as k → ∞. Now consider the plot on the right of Figure 16,
for the cubic Hamiltonian. In contrast to the square case, these results suggest the
λk,m values converge to distinct points as k → ∞ for all values m = 1, 2, . . . , 7
shown, inviting the conjecture that there exist λ values for which Σλ+Σλ+Σλ is
the union of m disjoint intervals for all m ≥ 1.
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k = 7

k = 8

Figure 15. Approximations Σk,λ +Σk,λ of the square Fibonacci spec-
trum Σλ+Σλ as in Figure 12, magnified to show the opening and closing
of gaps as λ increases. How this structure affects Σλ+Σλ is not presently
understood.

8. Conjectures and open problems

In this final section we discuss various open problems that are suggested by the
existing results and address generalizations, strengthenings, and related issues.

We begin with open problems for the Fibonacci Hamiltonian. The existing
quantitative results concern estimates for dimensional properties of the spectrum,
the density of states measure, and the spectral measures, as well as estimates for
the transport exponents. In almost all cases, the asymptotic behavior is known in
the regimes of small and large coupling. While the bounds we obtain are monotone,
we would like to understand whether the quantities themselves have this property:

Problem 8.1. Are the various quantities we consider (in particular, dimH Σλ)
monotone in λ?
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Table 1. Estimates of λ∗, the λ value for which the thickness of Σk,λ
equals one, along with λk,m, the coupling constant where Σk,λ + Σk,λ
splits from m to m + 1 intervals, for m = 1, . . . , 4.

k λ∗k λk,1 λk,2 λk,3 λk,4

6 1.313172936 1.313172936 1.624865906 1.649775155 1.708521471
7 1.298964798 1.298964798 1.543759898 1.548912772 1.596682038
8 1.296218739 1.296218739 1.494856217 1.514291562 1.520122025
9 1.294303086 1.294303086 1.445808095 1.492410878 1.512965310
10 1.293935333 1.293935333 1.442778219 1.446787662 1.472813609
11 1.293679331 1.293679331 1.430901095 1.436192692 1.437915282
12 1.293630242 1.293630242 1.402035016 1.415460742 1.426586813
13 1.290031553 1.293596081 1.392730451 1.412863780 1.419815054
14 1.288819456 1.293589532 1.382510414 1.404399139 1.408704405
15 1.287431935 1.293584975 1.380466052 1.399646887 1.400190389
16 1.287269802 1.293584102 1.380121550 1.388518687 1.397593470
17 1.287084388 1.293583494 1.379851608 1.387310733 1.395556145
18 1.287062735 1.293583377 1.379806139 1.385835331 1.393702258
19 1.287037977
20 1.287035086

Table 2. Estimates of λk,m, the coupling constant where Σk,λ+Σk,λ+
Σk,λ splits from m to m + 1 intervals, for m = 1, . . . , 4.

k λk,1 λk,2 λk,3 λk,4

6 2.025741216 2.544063632 2.573539294 2.842670115
7 2.012664501 2.438240772 2.511570744 2.606841186
8 2.011113604 2.376933028 2.498126298 2.498926850
9 2.009524869 2.364541039 2.435665993 2.473875055

10 2.009337409 2.357357667 2.412613336 2.421115367
11 2.009145619 2.355932060 2.399696274 2.408616763
12 2.009123008 2.355107791 2.392573154 2.401253561
13 2.009099880 2.354944739 2.391094663 2.397036745
14 2.009097154 2.354850520 2.390282080 2.393347062
15 2.009094365 2.354831891 2.390113912 2.393329303
16 2.009094036 2.354821128 2.390021550 2.393302392
17 2.009093700 2.354819000 2.390002443 2.393300376

The known estimates for the local scaling exponents and in particular the
optimal Hölder exponent of the spectral measures (see [52] and references therein)
are clearly not optimal, and in particular do not identify their asymptotics in the
extremal coupling regimes. For the density of states measure, which is an average
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Figure 16. The span of λ values (i.e., λk,m−λk,m−1) for which Σk,λ+
Σk,λ (left) and Σk,λ +Σk,λ +Σk,λ (right) comprise m intervals for m =
1, . . . , 7.

of spectral measures, we have much better information. Can one find ways to find
equally good estimates for spectral measures?

Problem 8.2. What can one say about the spectral measures? In particular, are
their dimensional properties uniform across the hull and/or across the spectrum?
Moreover, what are the asymptotics as λ ↓ 0 and λ ↑ ∞?

We know that dimΣλ goes to one as λ goes to zero. In addition, we would
be interested in the following:

Problem 8.3. Does the right-derivative of dimΣλ exist at zero?

If it does, due to Theorem 5.9 it must be finite and non-zero.

Let us now turn to the higher-dimensional separable analogs of the Fibonacci
Hamiltonian (e.g., the square or cubic Fibonacci Hamiltonian). Recall that the
spectrum of such an operator is given by the sum of the one-dimensional spectra,
which in turn are Cantor sets. Recall also that at sufficiently small coupling, these
sum sets are intervals, while at sufficiently large coupling, they are Cantor sets as
well. Concretely, this uses that if the thickness of a Cantor set C is larger than 1,
then C +C is an interval by Theorem 5.4 and, on the other hand, if the upper box
counting dimension of C is strictly less than 1/2, then C + C is a Cantor set. It
is natural to ask what shape the higher-dimensional spectra have at intermediate
coupling, that is, we wish to study how the transition from C+C being an interval
to being a Cantor set happens when the thickness of C decreases.

Definition 8.4. A compact set C ⊂ R1 is a Cantorval if it has a dense interior (i.e.,

int(C) = C), it has a continuum of connected components, and none of them is
isolated.
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Here is a general result on the occurrence of Cantorvals in the context of
taking sums of Cantor sets [138]:

Theorem 8.5. There is an open set U in the space of dynamically defined Cantor
sets such that for generic C1, C2 ∈ U , the sum C1 + C2 is a Cantorval.

Unfortunately, this result does not provide any specific and verifiable gener-
icity conditions that would allow one to check that the sum of two given specific
Cantor sets is indeed a Cantorval. Thus, for our purpose we need a solution to the
following problem.

Problem 8.6. Provide specific verifiable conditions on a Cantor set C which imply
that the sum C + C is a Cantorval.

Ideally, such a criterion would be applicable to the spectrum of the Fibonacci
Hamiltonian and establish that, say, the spectrum of the square Fibonacci Hamil-
tonian is a Cantorval for intermediate values of the coupling constant λ. The next
step would then be to study the transitions between the three regimes. We ask
whether there are two sharp transitions; compare [80] for closely related numerical
evidence and discussion.

Problem 8.7. Let H
(2)
λ be the separable square Fibonacci Hamiltonian. Prove that

there are values 0 < λ′ < λ′′ <∞ such that for λ ∈ (0, λ′), the spectrum σ(Hλ) is
an interval (or a finite union of intervals), for λ ∈ (λ′, λ′′), it is a Cantorval, and
for λ ∈ (λ′′,∞), it is a Cantor set.

Notice that this will provide an example of a (topologically!) new structure
of the spectrum for “natural” potentials.

Moving on from the Fibonacci case, which has a description via a substitution
rule as well as via a simple quasi-periodic expression, there are two natural choices
of a more general setting.

For a different choice of the underlying substitution rule, one always has
an associated trace map. However, our understanding of the dynamics of such a
trace map is in general far more limited than the one in the Fibonacci case. As a
consequence, outside of the Fibonacci case there is a scarcity of quantitative results
for dimensional issues (such as the dimension of the spectrum, the dimension of
the density of states measure, or the dimension of the spectral measures). For
example, here is a simple open problem that is currently completely out of reach:

Problem 8.8. Study other trace maps (e.g., period doubling and Thue–Morse); in
particular, find the asymptotics of the Hausdorff dimension of the spectrum as the
coupling constant tends to zero and infinity.

The other natural generalization of the Fibonacci potential is to replace the
golden ratio in its quasi-periodic description by a general irrational number. Thus,
we discuss some open problems for Sturmian potentials next.
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Let us say that two Cantor sets C1 and C2 on R1 are diffeomorphic if there
are neighborhoods U1(C1), U2(C2), and a diffeomorphism f : U1 → U2 such that
f(C1) = C2.

Problem 8.9. Suppose that α = [a1, a2, . . .] and β = [b1, b2, . . .] are such that for
some k ∈ Z and all large enough i ∈ Z+ we have bi+k = ai. Prove that in this
case, the Sturmian spectra Σλ,α and Σλ,β are diffeomorphic.

Notice also that due to the ergodicity of the Gauss map, a solution of this
problem would also imply that the following long standing conjecture is correct:

Problem 8.10. For any fixed λ > 0, the dimension dimH Σλ,α is almost everywhere
constant in α.

Finally, let us emphasize that most of the questions related to higher-dim-
ensional models (described in Section 3) are completely open. So we formulate an
extremely general problem:

Problem 8.11. Study spectral properties (e.g., the shape of the spectrum and the
type of the spectral measures) and transport properties of higher-dimensional op-
erators; for example, study these questions for the particular case of the Laplacian
on the graph associated with a Penrose tiling.
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[23] J. Bourgain, Hölder regularity of integrated density of states for the almost Mathieu
operator in a perturbative regime, Lett. Math. Phys. 51 (2000), 83–118.

[24] J. Bourgain, Green’s function estimates for lattice Schrödinger operators and appli-
cations, Ann. Math. Stud. 158, Princeton University Press, Princeton, NJ (2005).

[25] J. Bourgain, M. Goldstein, W. Schlag, Anderson localization for Schrödinger op-
erators on Z with potentials given by the skew-shift, Commun. Math. Phys. 220
(2001), 583–621.

[26] A. Bovier, J.-M. Ghez, Spectral properties of one-dimensional Schrödinger operators
with potentials generated by substitutions, Commun. Math. Phys. 158 (1993), 45–
66; Erratum: Commun. Math. Phys. 166 (1994), 431–432.

[27] A. Bovier, J.-M. Ghez, Remarks on the spectral properties of tight-binding and
Kronig–Penney models with substitution sequences, J. Phys. A 28 (1995), 2313–
2324.

[28] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,
Lect. Notes in Math. 470, Springer (1975).

[29] M. Campanino, A. Klein, A supersymmetric transfer matrix and differentiability
of the density of states in the one-dimensional Anderson model, Commun. Math.
Phys. 104 (1986), 227–241.
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and Substitutive Dynamics

Svetlana Puzynina and Luca Q. Zamboni

Abstract. In the chapter we discuss a new connection between central sets
and the strong coincidence conjecture for fixed points of irreducible primitive
substitutions of Pisot type. Central sets, first introduced by Furstenberg using
notions from topological dynamics, constitute a special class of subsets of N
possessing strong combinatorial properties: Each central set contains arbitrar-
ily long arithmetic progressions, and solutions to all partition regular systems
of homogeneous linear equations. We give an equivalent reformulation of the
strong coincidence condition in terms of central sets and minimal idempo-
tent ultrafilters in the Stone–Čech compactification βN. This provides a new
arithmetical approach to an outstanding conjecture in tiling theory, the Pisot
substitution conjecture. Using various families of uniformly recurrent words,
including Sturmian words, the Thue–Morse word and fixed points of weak
mixing substitutions, we generate an assortment of central sets which reflect
the rich combinatorial structure of the underlying words. One crucial addi-
tive property of central sets is that each central set contains all finite sums of
distinct terms for some infinite increasing sequence of natural numbers, i.e. is
an IP-set. By a celebrated result of N. Hindman, the collection of all IP-sets
is partition regular, i.e., if A is an IP-set then for any finite partition of A,
one cell of the partition is an IP-set. We introduce an hierarchy of additive
combinatorial properties for subsets of N and study them in terms of partition
regularity. The results introduced in the chapter rely on interactions between
different areas of mathematics: They include the general theory of combina-
torics on words, numeration systems, tilings, topological dynamics and the
algebraic/topological properties of Stone–Čech compactification of N.
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1. Introduction

An important open problem in the theory of substitutions is the so-called strong
coincidence conjecture: It states that each pair of fixed points x and y of an irre-
ducible primitive substitution of Pisot type are strongly coincident: There exist a
letter a and a pair of Abelian equivalent words s, t, such that sa is a prefix of x
and ta is a prefix of y. This combinatorial condition, originally due to P. Arnoux
and S. Itô, is an extension of a similar condition considered by F.M. Dekking
in [18] in the case of uniform substitutions. In this case Dekking proves that the
condition is satisfied by the “pure base” of the substitution if and only if the associ-
ated substitutive subshift has pure discrete spectrum, i.e., is metrically isomorphic
with translation on a compact Abelian group. The strong coincidence conjecture
has been verified for irreducible primitive substitutions of Pisot type on a binary
alphabet in [3] and is otherwise still open.

The strong coincidence conjecture is linked to diffraction properties of one-
dimensional atomic arrangements in the following way. It is shown in [22] and
[29] that an atomic arrangement determined by a substitution has pure point
diffraction spectrum (i.e., is a perfect quasicrystal) if and only if the tiling system
associated with the substitution has pure discrete dynamical spectrum. In a pair
of seminal papers ([35, 36]), G. Rauzy established a link between pure discreteness
of the dynamical spectrum and the irreducible Pisot property for substitutions.
The Pisot substitution conjecture asserts that the dynamical spectrum of the tiling
system associated with an irreducible Pisot substitution has pure discrete dynam-
ical spectrum. For the latter to hold, it is necessary, and conjecturally sufficient,
for the substitution to satisfy the strong coincidence condition.

In this chapter we describe a connection between the strong coincidence con-
jecture and central sets, originally introduced by Furstenberg in [24]. Central sets
are subsets of the natural numbers N = {0, 1, 2, 3, . . .} which are known to have
substantial combinatorial structure of additive nature. For example, any central
set contains arbitrarily long arithmetic progressions, and solutions to all partition
regular systems of homogeneous linear equations (see for example [10]). Fursten-
berg originally defined them using notions from topological dynamics.

One crucial additive property of central sets is that each central sets contains
all finite sums of distinct terms for some infinite sequence of natural numbers
x0 < x1 < x2 · · · . More precisely, let Fin(N) denote the set of all non-empty finite
subsets of N. A subset A of N is called an IP-set if A contains {

∑
n∈F xn |F ∈

Fin(N)} for some infinite sequence of natural numbers x0 < x1 < x2 · · · . Every
central set is an IP-set but not conversely.

By a celebrated result of N. Hindman [25], given any finite partition of N, at
least one element of the partition is an IP-set. More generally Hindman shows that
given any finite partition of an IP-set, at least one element of the partition is again
an IP-set. In other words the property of being an IP-set is partition regular, i.e.,
cannot be destroyed via a finite partitioning. Other examples of partition regularity
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are given by the pigeonhole principle, sets having positive upper density, and sets
having arbitrarily long arithmetic progressions (Van der Waerden’s theorem).

Both IP-sets and central sets may be characterized in terms of the alge-
bro/topological properties of the Stone–Čech compactification βN. We regard βN
as the collection of all ultrafilters on N. There is a natural extension of the opera-
tion of addition + on N to βN making βN a compact left-topological semigroup. Via
a celebrated result of Ellis [23], βN contains idempotents, i.e., ultrafilters p ∈ βN
satisfying p + p = p. A striking result due to Hindman links IP-sets and idempo-
tents in βN : A subset A ⊆ N is an IP-set if and only if A ∈ p for some idempotent
p ∈ βN (see Theorem 5.12 in [27]).

In [9], Bergelson and Hindman showed that central sets too may alternatively
be defined in terms of a special class of ultrafilters, called minimal idempotents.
Every compact Hausdorff left-topological semigroup S admits a smallest two-sided
ideal K(S) which is at the same time the union of all minimal right ideals of S and
the union of all minimal left ideals of S (see for instance [27]). It is readily verified
that the intersection of any minimal left ideal with any minimal right ideal is a
group. In particular, there are idempotents in K(S). Such idempotents are called
minimal and their elements are called central sets, i.e., A ⊂ N is a central set if
it is a member of some minimal idempotent in βN. It follows from this that the
collection of all central sets is also partition regular.

The question of determining whether a given subset A ⊆ N is an IP-set
or a central set is typically quite difficult, even if for every A, either A or its
complement is an IP-set (resp. central set). Although as we saw both IP-sets
and central sets are characterized as belonging to a certain class of idempotent
ultrafilters, the question of belonging or not to a given (non-principal) ultrafilter
is generally equally mysterious. An equivalent word combinatorial reformulation
of this question is as follows: Given a binary word ω = ω0ω1ω2 · · · ∈ {0, 1}∞,
put ω

∣∣
0
= {n ∈ N |ωn = 0} and ω

∣∣
1
= {n ∈ N |ωn = 1}. The question is then

to determine whether the set ω
∣∣
0
or ω

∣∣
1
is an IP-set or central set. Of course

in general, this reformulation is as difficult as the original question. However,
should the word ω be characterized by some rich combinatorial properties, or
be generated by some “simple” combinatorial or geometric algorithm (such as a
substitution rule, a finite state automaton, a Toeplitz rule . . . ) or arise as a natural
coding of a reasonably simple symbolic dynamical system, then the underlying rigid
combinatorial structure of the word may provide insight to our previous question.
Furthermore, such families of words may be used to obtain simple constructions
of central sets having additional nice properties inherited from the rich underlying
combinatorial structure. One of our objectives in this chapter is to illustrate this
latter point.

An ultrafilter may be thought of as a {0, 1}-valued finitely additive prob-
ability measure defined on all subsets of N. This notion of measure induces a
notion of convergence (p-limn) for sequences indexed by N, which we regard as a
mapping from words to words. Using this key notion of convergence, the second
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author together with M. Barge obtained the following reformulation of the strong
coincidence conjecture in terms of both central sets IP-sets:

Theorem 1 ([7]). Let τ be an irreducible primitive substitution of Pisot type. Then
for any pair of fixed points x and y of τ the following are equivalent:

1. x and y are strongly coincident.
2. There exists a minimal idempotent p ∈ βN such that y = p-limn T n(x) where

T denotes the shift map.
3. For any prefix u of y, the set of occurrences of u in x is a central set.
4. For any prefix u of y, the set of occurrences of u in x is an IP-set.

Since IP-sets may be defined arithmetically in terms of finite sums of distinct
terms of infinite sequences of natural numbers, the above theorem provides an
arithmetical approach to solving the strong coincidence conjecture. To this end,
certain numeration systems first introduced by J.-M. Dumont and A. Thomas in
[20, 21] may be useful for the conjecture.

The chapter is organized as follows: In §2 we introduce a hierarchy of additive
combinatorial properties for subsets of N. We study each one in terms of partition
regularity. At first, we take a very simplistic approach using only basic methods
of combinatorics on words. In §3 we review some fundamental features of the
algebro/topological properties of the Stone–Čech compactification βN from which
much deeper properties of IP-sets and central sets are derived. In §4 we use various
infinite words (including Sturmian words and primitive morphic words) to produce
IP-sets and central sets having additional rich combinatorial properties inherited
from the underlying words. In §5 we describe the connection between central sets
and the strong coincidence condition from primitive substitutions particularly for
those of Pisot type. In §6 we discuss the so-called Dumont–Thomas numeration
systems defined by substitutions. Finally in §7 we give a few open problems.

2. Additive properties of subsets of N

2.1. Definitions and examples

Let N = {0, 1, 2, . . .} denote the set of natural numbers and N+ = {1, 2, 3, . . .} the
set of positive integers. We consider a hierarchy of additive properties satisfied by
some subsets on the natural numbers N. Let x1, x2, . . . , xk be a k-term sequence
of natural numbers. We do not assume that the xi are pairwise distinct. We set

FS(xt)
k
t=1 =

{∑
t∈F

xt |F ⊂ {1, 2, . . . , k}
}

.

Given an infinite sequence x1, x2, x3, . . . of natural numbers, we set

FS≤k(xt)
∞
t=1 =

{∑
t∈F

xt |F ⊂ N+,#F ≤ k

}
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and

FS(xt)
∞
t=1 =

{∑
t∈F

xt |F ∈ Fin(N+)

}
where Fin(N+) denotes the set of all finite subsets of N+.

Definition 2.1. Let k ∈ N+ and A ⊆ N. We say A is k-summable if A contains
FS(xt)

k
t=1 for some k-term sequence of natural numbers (xt)

k
t=1. We say A is k∞-

summable if A contains FS≤k(xt)
∞
t=1 for some infinite sequence of natural numbers

(xt)
∞
t=1.

Definition 2.2. Let A ⊆ N. We say A is finite FS-big if A is k-summable for each
positive integer k. We say A is infinite FS-big if A is k∞-summable for each positive
integer k.

Definition 2.3. Let A ⊆ N. We say A is an IP-set if A contains FS(xt)
∞
t=1 for some

infinite sequence of natural numbers (xt)
∞
t=1.

Let Σk (Σ∞k ,Σ,Σ∞, and IP respectively) denote the set of all k-summable
(k∞-summable, finite FS-big, infinite FS-big, and IP) sets. Then Σ =

⋂
k≥1 Σk

and Σ∞ =
⋂
k≥1 Σ

∞
k . Moreover we have the following inclusions Σk+1 ⊆ Σk,

Σ∞k+1 ⊆ Σ∞k , Σ∞k ⊆ Σk and

IP ⊆ Σ∞ ⊆ Σ.

As we shall see, each of the above inclusions is strict. For S ∈ {Σ,Σ∞, IP}, we
denote by S∗ the set of all subsets A of N such that A ∩B �= ∅ for all B ∈ S.

The set of even numbers {0, 2, 4, . . .} is perhaps the simplest example of an IP-
set as it is closed under addition. In contrast the set of odd numbers {1, 3, 5, 7, . . .}
is not 2-summable. It is readily verified that for each k > 2, the set {n ∈ N |n �≡
0 mod k} ∈ Σ∞k−1 \ Σk (see [14]). We now show how to generate interesting and
non-trivial examples of IP-sets starting from combinatorially rich infinite words,
such as those studied in the field of combinatorics on words. Let A denote a finite
non-empty set (called the alphabet), we denote by A∗, AN and A+ respectively the
set of finite words, the set of infinite words, and the set of non-empty finite words
over the alphabet A. Let ω = ω0ω1ω2 · · · ∈ AN be an infinite word on the alphabet
A. For each finite word u ∈ A+ we set

ω
∣∣
u
= {n ∈ N |ωnωn+1 · · ·ωn+|u|−1 = u}.

In other words, ω
∣∣
u
denotes the set of all occurrences of u in ω. If ω

∣∣
u
is non-empty,

u is called a factor of ω; if 0 ∈ ω
∣∣
u
, then u is a prefix of ω. We say ω is recurrent if

for each prefix u of ω the set ω
∣∣
u
is infinite. We say that ω is uniformly recurrent

if for each prefix u of ω the set ω
∣∣
u
is syndetic, i.e., of bounded gap.

Proposition 2.4. Let ω = ω0ω1ω2 · · · ∈ AN be recurrent and set a = ω0. Then ω
∣∣
a

is an IP-set.
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Proof. Set x0 = 0 and B0 = a. Since ω is recurrent, the prefix B0 of ω occurs again
in ω at some position x1 > x0. Let B1 denote the prefix of ω of length x1 + 1.
Since ω is recurrent, B1 must occur at some position x2 > x1. Since B1 begins
and ends in B0 we have that FS(xt)

2
t=0 ∈ ω

∣∣
a
. Let B2 be the prefix of ω of length

x2 + x1 + 1. By recurrence, B2 must occur in ω at some position x3 > x2 + x1.
Since B2 begins and ends in B1 we have that FS(xt)

3
t=0 ∈ ω

∣∣
a
. Let B3 be the

prefix of ω of length x3 + x2 + x1 + 1 (see Figure 1). Continuing in this way wee
construct an infinite sequence of natural numbers 0 = x0 < x1 < x2 < · · · such
that FS(xt)

∞
t=0 ∈ ω

∣∣
a
. �

�
a

�
a

B1

ω = �
a

�
a

B1

B2

�
a

�
a

B1

�
a

�
a

B2

B2

B3

x0 = 0 x1 x2 x2+x1 x3 x3+x1 x3+x2x3+x2+x1

Figure 1. Proof of Proposition 2.4.

Thus every recurrent infinite word defines an IP-set simply by taking the set
of occurrences of its first symbol.

Now we are going to consider several examples defined by substitutional
rules. A substitution τ on an alphabet A is a mapping τ : A→ A+. The mapping
τ extends by concatenation to maps (also denoted τ) A∗ → A∗ and AN → AN. A
word ω ∈ AN is called a fixed point of τ if τ(ω) = ω.

Example 1: The Thue–Morse word. Consider the Thue–Morse infinite word

T = t0t1t2t3 · · · = 01101001100101 · · ·
where tn is defined as the sum modulo 2 of the digits in the binary expansion of
n. The Thue–Morse word is 2-automatic [2]: In fact tn is computed by feeding the
binary expansion of n in the deterministic finite automata depicted in Figure 2.
Starting from the initial state labeled 0, we read the binary expansion of n starting
from the most significant digit. Then tn is the corresponding terminal state. For
example, the binary representation of 13 is 1101 and the path 1101 starting at 0
terminates at vertex 1. Whence t13 = 1.

The origins of T go back to the beginning of the last century with the works
of the Norwegian mathematician Axel Thue [38]. Thue noted that every binary
word of length four contains a square, that is two consecutive equal blocks XX . He
then asked whether it was possible to find an infinite word on 3 distinct symbols
which avoided squares. He also asked whether there exists an infinite binary word
without cubes, that is with no three consecutive equal blocks. Thue showed that
in each case the answer is positive and constructed this very special infinite word
T to produce the desired words. In fact the word T contains no fractional power
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greater than 2, i.e., contains no word of the form XXX ′ where X ′ is a prefix of X .
Thue’s work originally appeared in an obscure Norwegian journal and for many
years remained largely unknown and unappreciated. This word, originally defined
by Thue to study combinatorial properties of words, was rediscovered in 1921 by
Morse [30] in connection with differential geometry.

00 1 0

1

1

Figure 2. The Thue–Morse automaton.

It follows from Proposition 2.4 that T
∣∣
0
is an IP-set. This could have also

been proved directly from the base 2 numeration system (see Theorem 3.1 in [14]).
For each positive integer n we will denote the binary expansion of n by [n]2,
i.e., if n = rk2

k + rk−12
k−1 + · · · + r02

0 with rk = 1 and ri ∈ {0, 1} we write
[n]2 = rkrk−1 · · · r0. We define the support of n, denote supp(n) by supp(n) = {i ∈
{0, 1, . . . , k} | ri = 1}. For instance, supp(19) = {0, 1, 4}. Thus

n ∈ T
∣∣
0
⇔ tn = 0⇔ #supp(n) is even.

Put xn = 22n+1 + 22n. Then clearly FS(xn)
∞
n=0 ⊂ T

∣∣
0
. Whence T

∣∣
0
is an IP-set.

We shall see later that T
∣∣
1
is not an IP-set from which it follows that T

∣∣
0
∈ IP∗.

Example 2: The Fibonacci word. As another example we consider the Fibonacci
infinite word

f = f0f1f2 · · · = 01001010010010100101001001010010 · · ·
fixed by the morphism 0 	→ 01, 1 	→ 0. Equivalently, this word can be defined via
recurrence relations. Namely, set f0 = 0, f1 = 01, and fn+1 = fnfn−1. Then the
Fibonacci word can be defined as a limit: f = limn→∞ fn. We remark that the
sequence of lengths |fn| is given by the sequence of Fibonacci numbers.

It follows from Proposition 2.4 that

f
∣∣
0
= {0, 2, 3, 5, 7, 8, 10, 11, 13, 15, 16, . . .}

is an IP-set. As in the previous example, this could have been proved directly from
the underlying numeration system. Let F0 = 1, F1 = 2, F2 = 3, . . . be the sequence
of Fibonacci numbers. It is well known that each positive integer n has one or
more representations when expressed as a sum of distinct Fibonacci numbers. One
way of obtaining such a representation is by applying the ‘greedy algorithm.’ This

gives rise to a representation of n of the form n =
∑k
i=0 tiFi with ti ∈ {0, 1} and

with ti+1ti �= 11 for each 0 ≤ i ≤ k− 1, called the Zeckendorff representation [40].
We shall write Z(n) = tktk−1 · · · t0. For example, applying the greedy algorithm
to n = 50 we obtain 50 = 34 + 13 + 3 = F7 + F5 + F2 which gives rise to the
representation Z(50) = 10100100. It follows that Z(Fn) = 10n. It is also well
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known that for each n ∈ N, fn = 0 whenever Z(n) ends in 0 and fn = 1 whenever
Z(n) ends in 1. Thus

f
∣∣
0
= {n ∈ N | Z(n) ends in 0} and f

∣∣
1
= {n ∈ N | Z(n) ends in 1}.

Consider sequence (xn)n∈N given by xn = F2n+1. It is readily verified that for each
A ∈ Fin(N), the Zeckendorff representation of

∑
n∈A xn ends in 102m+1 where

m = min(A). Thus not only is each xn in f
∣∣
0
, but so is every sum of the form∑

n∈A xn with A ∈ Fin(N). Thus we have shown that f
∣∣
0
is an IP-set. We shall

see later that f
∣∣
1
is not an IP-set, whence f

∣∣
0
∈ IP∗.

Example 3: The Sierpinski word. As a last example, consider the Sierpinski word

s = 01011101011111111101011101 · · ·
fixed by the morphism 0 	→ 010 1 	→ 111. It follows from Proposition 2.4 that
s
∣∣
0
is an IP-set. Unlike in the previous two examples, this IP-set is not syndetic.

On the other hand, it is easy to see that s1 is also an IP-set. This set contains
in particular all numbers between 3i and 2 · 3i − 1 and hence all numbers of the
form Σi∈A3

i, where A ∈ Fin(N). So, s1 is IP-set by definition, the corresponding
sequence is xi = 3i. So, the complement of s0 is also an IP-set, whence s

∣∣
0

/∈ IP∗.

2.2. Partition regularity

A fundamental result in Ramsey theory, originally due to Issai Schur [37], states
that given a finite partition of the positive integers N+, one cell of the partition
contains two points x, y and their sum x + y. In other words, one cell of the
partition is 2-summable. While in Schur’s theorem it is not assumed that x and
y are distinct, the theorem would no longer be true if we insisted that x = y. In
fact, for i ∈ {0, 1}, let Ai denote the set of all positive integers n such that writing
n = 2jm with m odd we have j ≡ i (mod 2). Then clearly no Ai contains both
x and 2x. For each positive integer n, let ωn = i ∈ {0, 1} if n ∈ Ai. Then the
infinite word ω = ω1ω2ω3 · · · = 01000101 · · · is the well-known period doubling
word defined as the fixed point of the morphism 0 	→ 01, 1 	→ 00. (see [1]).

An extension of Schur’s Theorem, which we will call the finite Finite Sums
Theorem states that whenever N+ is finitely partitioned, then for each positive
integer k one cell of the partition is k-summable. The finite Finite Sums Theorem is
a straightforward consequence of Rado’s Theorem [33]. It follows from this and the
pigeon hole principle that given any finite partition of N+, one cell of the partition
is finite FS-big. In 1974, N. Hindman proved the following infinite extension of the
finite Finite Sums Theorem:

Theorem 2.5 (N. Hindman, [25]). Given any finite partition of N+, one cell of
the partition is an IP-set, i.e., contains all finite sums of distinct terms of some
infinite sequence (xt)

∞
t=1.

So for any choice of S ∈ {Σ,Σ∞, IP}, and for each finite partition of N+,
one cell of the partition is in S. But one may ask something stronger:
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Question 2.6. For S ∈ {Σ,Σ∞, IP}, and A ∈ S, is it the case that for each finite
partition of A, one cell of the partition belongs to S?

We recall that a collection of sets S is said to be partition regular if for
each A ∈ S, whenever A is finitely partitioned, one cell of the partition is in S.
Examples of partition regular families are the collection of all infinite sets, or the
collection of all subset of N having positive upper density, or the collection of all
subsets of N having arbitrarily long arithmetic progressions. (This latter fact is
an almost immediate consequence of van der Waerden’s Theorem [39]. In fact,
assume A ⊆ N contains arbitrarily long arithmetic progressions. Let k, r ∈ N,
and let A =

⋃r
i=1 Ci. By van der Waerden’s Theorem pick n such that whenever

{1, 2, . . . , n} is partitioned into r classes, one class contains a length k arithmetic
progression. Pick a and d in N such that {a + d, a + 2d, . . . , a + nd} ⊆ A. For
i ∈ {1, . . . , r} let Bi = {t ∈ {1, 2, . . . , n} | a + td ∈ Ci}. Pick i, b, and c such that
{b+c, b+2c, . . . , b+kc} ⊆ Bi. Then {a+bd+cd, a+bd+2cd, . . . , a+bd+kcd} ⊆ Ci.)

N. Hindman proved that IP is partition regular:

Theorem 2.7 ([27]). The collection of all IP-sets is partition regular.

It is easy to see that the sets Σk and Σ∞k are not partition regular. For instance,
the set A = {n ∈ N+ |n ≡ 1, 2 (mod 3)} is Σ∞2 . On the other hand, neither set
{n ∈ N+ |n ≡ 1 (mod 3)}, {n ∈ N+ |n ≡ 2 (mod 3)} is in Σ2. In [14], the authors
together with M. Bucci and N. Hindman proved that Σ is partition regular.

Theorem 2.8 ([14]). The collection of all finite FS-big sets is partition regular.

Before we proceed to the proof we observe that we had some choices to
make when we defined k-summable. That is, we could have defined A to be k-
summable1 if there is a sequence 〈xt〉kt=1 such that FS(〈xt〉kt=1) ⊆ A; we could
have defined A to be k-summable2 if there is an increasing sequence 〈xt〉kt=1 such
that FS(〈xt〉kt=1) ⊆ A; and we could have defined A to be k-summable3 if there is
a sequence 〈xt〉kt=1 satisfying uniqueness of finite sums such that FS(〈xt〉kt=1) ⊆ A.
These notions are progressively strictly stronger. For example if k > 1, {1, 2, . . . , k}
is k-summable1 but not k-summable2. And if k > 1,

{
1, 2, . . . , k

2+k
2

}
is k-sum-

mable2 but not k-summable3. However, for the notion of finite FS-big subsets
of N, it does not matter which choice was made for k-summable. The reason is
that for each k there is some m such that if A is an m-summable1 subset of N,
then A is k-summable2. Similarly, for each k there is some m such that if A is an
m-summable2 subset of N, then A is k-summable3.

The main key for proving that finite FS-big sets are partition regular is the
finite Finite Unions Theorem. The proof that we will present uses a standard
compactness argument and the infinite Finite Unions Theorem.

Theorem 2.9 (Infinite Finite Unions Theorem). Let r ∈ N. If Fin(N) =
⋃r
i=1 Fi,

then there exist i ∈ {1, 2, . . . , r} and a sequence 〈Ft〉∞t=1 in Fin(N) such that for
each t ∈ N, maxFt < minFt+1 and for each H ∈ Fin(N),

⋃
t∈H Ft ∈ Fi.
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Proof. This is actually stated in [25]. A much easier proof is in [27, Cor. 5.17].
It is an immediate corollary of Theorem 2.7, because, given any sequence 〈xt〉∞t=1

in N one may choose a sequence 〈Fn〉∞n=1 in Fin(N) such that for each n ∈ N,
maxFn < minFn+1 and for each n and l in N, if 2l ≤

∑
t∈Fn

xt, then 2l+1 divides∑
t∈Fn+1

xt. (That is, the maximum of the binary support of
∑

t∈Fn
xt is less than

the minimum of the binary support of
∑
t∈Fn+1

xt.) �

Theorem 2.10 (Finite Finite Unions Theorem). Let r, k ∈ N. There is some m ∈ N
such that whenever Fin({1, 2, . . . ,m}) =

⋃r
i=1 Fi, there exist i ∈ {1, 2, . . . , r} and

a sequence 〈Ft〉kt=1 in Fin({1, 2, . . . ,m}) such that for each t ∈ {1, 2, . . . , k− 1}, if
any, maxFt < minFt+1 and for each H ∈ Fin({1, 2, . . . , k}),

⋃
t∈H Ft ∈ Fi.

Proof. Suppose not. For each m ∈ N pick a function ψm : Fin({1, 2, . . . ,m}) →
{1, 2, . . . , r} with the property that there do not exist i ∈ {1, 2, . . . , r} and a
sequence 〈Ft〉kt=1 in Fin({1, 2, . . . ,m}) such that for each t ∈ {1, 2, . . . , k − 1}, if
any, maxFt < minFt+1 and for each H ∈ Fin({1, 2, . . . , k}), ψm(

⋃
t∈H Ft) = i.

Define σm : Fin(N) → {1, 2, . . . , r} by σm(F ) = ψm(F ) if F ⊆ {1, 2, . . . ,m} and
σm(F ) = 1 otherwise.

Give {1, 2, . . . , r} the discrete topology and let X =×F∈Fin(N){1, 2, . . . , r}
with the product topology. Then X is compact and 〈σm〉∞m=1 is a sequence in X
so pick a cluster point ϕ of 〈σm〉∞m=1. Pick by Theorem 2.9, i ∈ {1, 2, . . . , r} and
a sequence 〈Ft〉∞t=1 in Fin(N) such that for each t ∈ N, maxFt < minFt+1 and for
each H ∈ Fin(N), ϕ(

⋃
t∈H Ft) = i. Let

U =
{
μ ∈ X |μ(Fi) = ϕ(Fi) for all i ∈ {1, 2, . . . , k}

}
.

Then U is a neighborhood of ϕ in X so pick m > maxFk such that σm ∈ U . Then
for each H ∈ Fin({1, 2, . . . , k}), ψm(

⋃
t∈H Ft) = σm(

⋃
t∈H Ft) = ϕ(

⋃
t∈H Ft) = i,

a contradiction. �

Proof of Theorem 2.8. Suppose A ⊆ N is finite FS-big and A =
⋃r
i=1 Bi for some

r ∈ N. Let k ∈ N. We shall show that there are some i ∈ {1, 2, . . . , r} and some
〈xt〉kt=1 satisfying uniqueness of finite sums such that FS(〈xt〉kt=1) ⊆ Bi. By the
pigeon hole principle, there is thus one i which contains such a set for arbitrarily
large k, and thus for all k.

By Theorem 2.10 pick m ∈ N such that whenever Fin({1, 2, . . . ,m}) =⋃r
i=1 Fi, then there exist i ∈ {1, 2, . . . , r} and a sequence 〈Ft〉kt=1 in Fin({1, 2,

. . ., m}) such that for each t ∈ {1, 2, . . . , k − 1}, if any, maxFt < minFt+1

and for each H ∈ Fin({1, 2, . . . , k}),
⋃
t∈H Ft ∈ Fi. Since A is finite FS-big

we may pick 〈yt〉mt=1 satisfying uniqueness of finite sums with FS(〈yt〉mt=1) ⊆ A.
For each i ∈ {1, 2, . . . , r} let Fi = {H ∈ Fin({1, 2, . . . ,m}) |

∑
t∈H yt ∈ Bi}.

Pick i ∈ {1, 2, . . . , r} and a sequence 〈Ft〉kt=1 in Fin({1, 2, . . . ,m}) such that
for each t ∈ {1, 2, . . . , k − 1}, if any, maxFt < minFt+1 and for each H ∈
Fin({1, 2, . . . , k}),

⋃
t∈H Ft ∈ Fi. For n ∈ {1, 2, . . . , k} let xn =

∑
t∈Fn

yt. Then

since maxFt < minFt+1 when t < k, if H ∈ Fin({1, 2, . . . , k}) and K =
⋃
n∈H Fn,



Additive Properties of Sets and Substitutive Dynamics 381

then
∑

n∈H xn =
∑

t∈K yt ∈ Bi. Further it is an easy exercise to show that, since

〈yt〉mt=1 satisfies uniqueness of finite sums, so does 〈xt〉kt=1. �

It turns out that the collection of all infinite FS-big sets is not partition
regular. For this we return to the Thue–Morse word T.

Lemma 2.11 ([14]). There exists a partition of the set T
∣∣
1
into two sets neither of

which is in Σ∞2 .

Proof. Consider the partition T
∣∣
1
= A0 ∪ A1 defined as follows: Let A0 be the

set of all n ∈ T
∣∣
1
such that the min

(
supp(n)

)
is even, and let A1 be the set of

all n ∈ T
∣∣
1
such that the min

(
supp(n)

)
is odd. For instance, 26 = 24 + 23 + 21,

and hence the least nonzero digit in the binary expansion of 26 is in position 1, so
26 ∈ A1. We will show that neither Ai is in Σ∞2 . Fix i ∈ {0, 1} and suppose to the
contrary that Ai is in Σ∞2 , i.e., there is an infinite sequence 〈xn〉∞n=1 in Ai such
that for every n �= m we have xn+xm ∈ Ai. Note first that for each n > 1 we have
supp(xn) ∩ supp(x1) �= ∅. Otherwise #supp(x1 + xn) would be even. Therefore,
there exists a positive constant M such that min

(
supp(xn)

)
≤ M for each n ∈

N. By the pigeon hole principle there exists a positive integer r and an infinite
subsequence xn1 , xn2 , . . . of the sequence 〈xn〉∞n=1 such that min

(
supp(xnj )

)
= r

for each j ∈ N. Again by the pigeon hole principle there exists infinitely many of the
xnj whose binary expansions also agree in position r+1. Thus there exists n �= m

such that min
(
supp(xn)

)
= min

(
supp(xm)

)
= r and such that r+1 ∈ supp(xn) if

and only if r+1 ∈ supp(xm). It is readily verified that min
(
supp(xn+xm)

)
= r+1.

Hence xn + xm ∈ A1−i. �

Theorem 2.12. The collection of all infinite FS-big sets is not partition regular.

Proof. In Theorem 3.1 in [14] it is shown that T
∣∣
1
is infinite FS-big. The proof is

based on the definition of the Thue–Morse word via binary expansions. The idea
is similar to the proof of the fact that T

∣∣
0
is an IP-set we saw in Example 1, but

the proof of the fact that T
∣∣
1
is infinite FS-big is more technical. The result now

follows from Lemma 2.11. �

It follows from Lemma 2.11 and Theorem 2.7 that T
∣∣
1
is not an IP-set. In fact,

if T
∣∣
1
were an IP-set, then by Theorem 2.7 one of the sets A0 or A1 in the proof

of Lemma 2.11 would be an IP-set. But this contradicts Lemma 2.11. Similarly,
since T

∣∣
1
∈ Σ∞ ⊂ Σ and Σ is partition regular, it follows that one of the two sets

A0, A1 in the proof of Lemma 2.11 is in Σ. Thus we deduce that

IP � Σ∞ � Σ.

It follows from Theorems 2.7 and 2.8 that Σ∗ ⊂ Σ and IP∗ ⊂ IP .

Theorem 2.7 can be used to show that a given set is not an IP-set. For instance
we may now verify that f

∣∣
1
is not an IP-set, and hence f

∣∣
0
is an IP∗-set. Let

α = 3−
√
5

2 . It is known that the Fibonacci word f is the orbit of the point α under
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irrational rotation Rα on the unit circle by α. Let I be the interval [1− α, 1) (the
interval coded by 1). So n ∈ f

∣∣
1
if and only if Rn

α(α) = {α+nα} = {(n+1)α} ∈ I.
Fix

(1 − α)/3 ≤ α′ ≤ (1 − α)/2

and put
I1 = [1− α, 1− α′) and I2 = [1− α′, 1).

Since α′ ≤ (1− α)/2 it follows that α′ < α. Also for j = 1, 2 set

Aj = {n ∈ N |Rn(α) ∈ Ij}.
Thus A1, A2 partitions the set f

∣∣
1
. Using Theorem 2.7 we now show that f

∣∣
1
is not

an IP-set by showing that the sum of any three elements of A1 belongs to f
∣∣
0
and

that the sum of any two elements of A2 belongs to f
∣∣
0
.

Now take any n1, n2, n3 ∈ A1 and set

x1 = {(n1 + 1)α}, x2 = {(n2 + 1)α}, x3 = {(n3 + 1)α}.
Then x1, x2, x3 ∈ [1− α, 1− α′) and n1 + n2 + n3 corresponds to the point

{(n1 + n2 + n3 + 1)α} = {x1 + x2 + x3 − 2α}.
Since x1, x2, x3 ∈ [1− α, 1− α′), we have

{x1 + x2 + x3 − 2α} ∈ [{3− 5α}, {3− 3α′ − 2α}).
Since α′ ≥ 1−α

3 it follows that

2− 3α′ − 2α ≤ 1− α,

and hence
{2− 3α′ − 2α} ≤ 1− α,

which gives
{3− 3α′ − 2α} ≤ 1− α

as required.
Similarly take any n1, n2 ∈ A2. Set

x1 = {(n1 + 1)α}, x2 = {(n2 + 1)α}
so that x1, x2 ∈ [1− α′, 1). Then n1 + n2 corresponds to the point

{(n1 + n2 + 1)α} = {x1 + x2 − α}.
Since x1, x2 ∈ [1− α′, 1), we have

{x1 + x2 − α} ∈ [{2− 2α′ − α}, 1− α).

Since

α′ ≤ 1− α

2
it follows that

{1− 2α′ − α} ≥ 0,

and hence
{2− 2α′ − α} ≥ 0.
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2.3. Central sets

We consider a variation of Proposition 2.4. Let A be a finite non-empty set and
let T : AN → AN denote the shift map.Two infinite words ω and ν are said to be
proximal if for every positive integer n there exists a nonnegative integer m such
that Tm(ω) and Tm(ν) share a common prefix of length n. In other words, ω and
ν have arbitrarily long sections of agreement or coincidence.

Proposition 2.13. Let ω, ν ∈ AN. Suppose that ν is uniformly recurrent and ω is
proximal to ν. Let a = ν0 denote the first letter of ν. Then ω

∣∣
a
is an IP-set.

Proof. As in the proof of Proposition 2.4, we recursively construct an increasing
sequence 0 = x0 < x1 < x2 < · · · and prefixes (Bk)

∞
k=0 of ν with B0 = ν0 = a,

|Bk| = xk−1+xk−2+ · · ·+x1+1 and where xk is an occurrence of Bk−1. However,
for each k ≥ 1, we pick xk in such a way that the occurrence Bk−1 at xk is
completely contained in a region of agreement between ν and ω. This is possible
since ω and ν agree on arbitrarily long stretches and ν is uniformly recurrent.
Whence for each k ≥ 1, the prefix Bk−1 of ν occurs also in ω in position xk. Hence
FS(xt)

∞
t=1 ⊂ ω

∣∣
a
. �

Given a set A ⊂ N, we denote by χ(A) ∈ {0, 1}N the word whose nth coordi-
nate is equal to 1 if n ∈ A and 0 otherwise. In other words, A = χ(A)

∣∣
1
.

Definition 2.14. A subset A of N is called a central set if χ(A) is proximal to a
uniformly recurrent word beginning in 1. We say A is central∗ if A ∩ B �= ∅ for
every central set B ⊆ N.

Let C denote the set of all central sets. Then it follows from Proposition 2.13
that C ⊂ IP . We recall that for the Sierpinski word s the set s

∣∣
0
is an IP-set.

On the other hand, it is readily verified that s is not proximal to any uniformly
recurrent word beginning in 0 so that s

∣∣
0
is not a central set. Whence C � IP . On

the other hand s is proximal to the uniformly recurrent word 1∞, whence s
∣∣
1
is a

central set and hence an IP-set.
Central sets were originally defined by Furstenberg in [24] using notions from
topological dynamics:

Definition 2.15. A subset A ⊂ N is called central if there exists a compact metric
space (X, d) and a continuous map T : X → X, points x, y ∈ X and a neighbor-
hood U of y such that

• y is a uniformly recurrent point in X,
• x and y are proximal,
• A = {n ∈ N |T n(x) ∈ U}.

Recall that in this more general setting, x ∈ X is said to be uniformly recurrent
in X if for every neighborhood V of x the set {n |T n(x) ∈ V } is syndetic. Also
two points x, y ∈ X are said to be proximal if for every ε > 0 there exists n ∈ N
such that d(T n(x), T n(y)) < ε. It is evident that if A ⊂ N is central in the sense of
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Definition 2.14 then it is central in the sense of Definition 2.15. It could be verified
that in fact the two definitions are equivalent.

Central sets are known to have substantial combinatorial structure. For ex-
ample, any central set contains arbitrarily long arithmetic progressions, and so-
lutions to all partition regular systems of homogeneous linear equations (see for
example [10]). Many of the rich properties of central sets are a consequence of the
Central Sets Theorem first proved by Furstenberg in Proposition 8.21 in [24] (see
also [16, 10, 28]). Furstenberg pointed out that as an immediate consequence of
the Central Sets Theorem one has that whenever N is divided into finitely many
classes, and a sequence (xn)n∈N is given, one of the classes must contain arbitrarily
long arithmetic progressions whose increment belongs to {

∑
n∈F xn|F ∈ Fin}. We

shall see in the next section that C is also partition regular. We shall also see that
C is closed under supersets (i.e., any set containing central set is central), which is
not obvious from the above definitions.

3. Additive Properties through the Stone–Čech
compactification of N

3.1. Stone–Čech compactification

In this section we re-visit IP-sets and central sets via the algebraic/topological
properties of the Stone–Čech compactification of N, denoted βN. We regard βN as
the set of all ultrafilters on N with the Stone topology.

Definition 3.1. A collection U of subsets of N is called an ultrafilter if the following
conditions hold:

• ∅ /∈ U .
• If A ∈ U and A ⊆ B, then B ∈ U .
• A ∩B ∈ U whenever both A and B belong to U .
• For every A ⊆ N either A ∈ U or Ac ∈ U where Ac denotes the complement

of A.

For each natural number n ∈ N, it is readily verified that the set Un = {A ⊆
N |n ∈ A} is an ultrafilter. This defines an injection i : N ↪→ βN by: n 	→ Un. An
ultrafilter of this form is said to be principal. By way of Zorn’s lemma, one can
show the existence of non-principal (or free) ultrafilters.

It is customary to denote elements of βN by letters p, q, r . . . . For each set
A ⊆ N, we set A◦ = {p ∈ βN|A ∈ p}. Then the set B = {A◦|A ⊆ N} forms a basis
for the open sets (as well as a basis for the closed sets) of βN and defines a topology
on βN with respect to which βN is both compact and Hausdorff. Although the

existence of free ultrafilters requires Zorn’s lemma, the cardinality of βN is 22
N

from which it follows that βN is not metrizable.
There is a natural extension of the operation of addition + on N to βN making

βN a compact left-topological semigroup. More precisely we define addition of two
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ultrafilters p, q by the following rule:

p + q = {A ⊆ N | {n ∈ N|A− n ∈ p} ∈ q}.
It is readily verified that p + q is once again an ultrafilter and that for each

fixed p ∈ βN, the mapping q 	→ p + q defines a continuous map from βN into
itself.1 The operation of addition in βN is associative and for principal ultrafilters
we have Um + Un = Um+n. However in general addition of ultrafilters is highly
non-commutative. In fact it can be shown that the center is precisely the set of all
principal ultrafilters [27].

3.2. Idempotent ultrafilters

Let (S,+) be a semigroup. An element p ∈ S is called an idempotent if p+ p = p.
We recall the following result of Ellis [23]:

Theorem 3.2 (Ellis [23]). Let (S,+) be a compact left-topological semigroup (i.e.,
∀x ∈ S the mapping y 	→ x + y is continuous). Then S contains an idempotent.

It follows that βN contains a non-principal ultrafilter p satisfying p + p = p. In
fact, we could simply apply Ellis’s result to the semigroup βN − U0. This would
then exclude the only principal idempotent ultrafilter, namely U0. From here on,
by an idempotent ultrafilter in βN we mean a free idempotent ultrafilter.

Hindman proved the following striking result linking IP-sets and idempotents
in βN :

Theorem 3.3 ([27, Thm. 5.12]). A subset A ⊆ N is an IP-set if and only if A ∈ p
for some idempotent p ∈ βN.

It follows immediately that A is an IP∗-set if and only if A ∈ p for every
idempotent p ∈ βN (see Theorem 2.15 in [8]). We also note that it follows from
Theorem 3.3 that the collection of all IP-sets is partition regular.

We illustrate one direction of Theorem 3.3. Suppose p ∈ βN is an idempotent
ultrafilter and A ∈ p. We will show that A is an IP-set. Put A0 = A. Then we
have

A0 ∈ p⇔ A0 ∈ p + p

⇔ {n |A0 − n ∈ p} ∈ p

⇔ ∃x0 ∈ A0 with A0 − x0 ∈ p

⇔ ∃x0 ∈ A0 with (A0 − x0) ∩ A0 ∈ p.

Set A1 = (A0−x0)∩A0. Since A1 ∈ p, as above we can find x1 ∈ A1 with x1 > x0

and (A1 − x1) ∩A1 ∈ p. Set A2 = (A1 − x1) ∩A1. Again since A2 ∈ p there exists
x2 ∈ A2 with x2 > x1 and (A2 − x2)∩A2 ∈ p. Continuing in this way we produce
an increasing sequence x0 < x1 < x2 < · · · and a nested sequence A0 ⊃ A1 ⊃
A2 ⊃ · · · belonging to p and such that xk ∈ Ak and Ak+1 = (Ak − xk) ∩ Ak for
each k ≥ 0 (see Figure 3).

1Our definition of addition of ultrafilters is the same as that given in [8] but is the reverse of that

given in [27] in which A ∈ p+ q if and only if {n ∈ N|A− n ∈ q} ∈ p}. In this case, βN becomes
a compact right-topological semigroup.
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xk+1 xk x1 x0

∈ ∈ ∈ ∈

· · · ⊆ Ak+1 ⊆ Ak ⊆ · · · ⊆ A1 ⊆ A0

⊆ ⊆ ⊆

Ak − xk Ak−1 − xk−1 A0 − x0

Figure 3. Proof of Theorem 3.3.

It is now easy to check that FS(xt)
∞
t=0 ⊂ A. For instance, let us verify that

x11 + x5 + x2 + x1 ∈ A.

x11 ∈ A11 ⊂ A6 ⊂ A5 − x5

whence

x11 + x5 ∈ A5 ⊂ A3 ⊂ A2 − x2

whence

x11 + x5 + x2 ∈ A2 ⊂ A1 − x1

whence

x11 + x5 + x2 + x1 ∈ A1 ⊂ A0 = A.

Central sets may also be alternatively defined in terms of belonging to a
special class of free ultrafilters, called minimal idempotents. Let (S,+) be any
semigroup. Recall that a subset I ⊆ S is called a right (resp. left) ideal if I+S ⊆ I
(resp. S+I ⊆ I). It is called a two-sided ideal if it is both a left and right ideal. A
right (resp. left) ideal I is called minimal if every right (resp. left) ideal J included
in I coincides with I.

Minimal right/left ideals do not necessarily exist, e.g., the commutative semi-
group (N,+) has no minimal right/left ideals (the ideals in N are all of the form
In = [n,+∞) = {m ∈ N |m ≥ n}.) However, every compact Hausdorff left-
topological semigroup S (e.g., βN) admits a smallest two-sided ideal K(S) which
is at the same time the union of all minimal right ideals of S and the union of
all minimal left ideals of S (see for instance [27]). It is readily verified that the
intersection of any minimal left ideal with any minimal right ideal is a group. In
particular, there are idempotents in K(S). Such idempotents are called minimal
and their elements are called central sets:

Definition 3.4. An idempotent p is called a minimal idempotent of S if it belongs
to K(S).

Definition 3.5. A subset A ⊂ N is called central if it is a member of some min-
imal idempotent in βN. It is called a central∗-set if it belongs to every minimal
idempotent in βN.
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The equivalence between definitions 3.5 and 2.15 is due to Bergelson and
Hindman in [9]. It follows from the above definition that every central set is an
IP-set and that the property of being central is partition regular. This definition
also implies that central sets are closed under supersets.

3.3. Limits of ultrafilters

It is often convenient to think of an ultrafilter p as a {0, 1}-valued, finitely additive
probability measure on the power set of N. More precisely, for any subset A ⊆ N,
we say A has p-measure 1, or is p-large if A ∈ p. This notion of measure gives rise to
a notion of convergence of sequences indexed by N which is the key tool in allowing
us to apply ideas from combinatorics on words to the framework of ultrafilters.
However, from our point of view, it is more natural to define it alternatively as a
mapping from words to words (see Remark 3.7). Let A denote a non-empty finite
set. Then each ultrafilter p ∈ βN naturally defines a mapping

p∗ : AN → AN

as follows:

Definition 3.6. For each p ∈ βN and ω ∈ AN, we define p∗(ω) ∈ AN by the
condition: u ∈ A∗ is a prefix of p∗(ω) ⇔ ω

∣∣
u
∈ p.

We note that if u, v ∈ A∗, ω
∣∣
u
, ω
∣∣
v
∈ p and |v| ≥ |u|, then u is a prefix of v. In

fact, if v′ denotes the prefix of v of length |u| then as ω
∣∣
v
⊆ ω

∣∣
v′ , it follows that

ω
∣∣
v′ ∈ p and hence u = v′. Thus p∗(ω) is well defined.

Remark 3.7. It is readily verified that our definition of p∗ coincides with that of
p-limn . More precisely, given a sequence (xn)n∈N in a topological space and an
ultrafilter p ∈ βN, we write p-limn xn = y if for every neighborhood Uy of y one
has {n |xn ∈ Uy} ∈ p. In our case we have p∗(ω) = p-limn(T

n(ω)) (see [27]).

We note that if ω, ν ∈ AN and if each prefix u of ν is a factor of ω, then there
exists an ultrafilter p ∈ βN such that p∗(ω) = ν. In fact, the set

D =
{
ω
∣∣
u
|u is a prefix of ν

}
satisfies the finite intersection property, and hence by a routine argument involving
Zorn’s lemma it follows that there exists a p ∈ βN with D ⊆ p.

It follows immediately from the definition of p∗, Definition 3.5 and Theo-
rem 3.3 that

Lemma 3.8. The set ω
∣∣
u
is an IP-set (resp. central set) if and only if u is a prefix

of p∗(ω) for some idempotent (resp. minimal idempotent) p ∈ βN.

Lemma 3.9. For each p ∈ βN, ω ∈ AN and u ∈ A∗ we have

p∗(ω)
∣∣
u
=
{
m ∈ N |ω

∣∣
u
−m ∈ p

}
where ω

∣∣
u
−m is defined as the set of all n ∈ N such that n + m ∈ ω

∣∣
u
.
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Proof. Suppose m ∈ p∗(ω)
∣∣
u
. Then by definition u occurs in position m in p∗(ω).

Let v denote the prefix of p∗(ω) of length |v| = m + |u|. Then, as u is a suffix of
v we have ω

∣∣
v
+ m ⊆ ω

∣∣
u
and hence ω

∣∣
v
⊆ ω

∣∣
u
−m. But as v is a prefix of p∗(ω)

we have ω
∣∣
v
∈ p and hence ω

∣∣
u
−m ∈ p as required.

Conversely, fix m ∈ N such that ω
∣∣
u
−m ∈ p. Let Z be the set of all factors

v of ω of length |v| = m + |u| ending in u. Then

ω
∣∣
u
−m ⊆

⋃
v∈Z

ω
∣∣
v
.

It follows that there exists v ∈ Z such that ω
∣∣
v
∈ p. In other words, there exists v ∈

Z such that v is a prefix of p∗(ω). It follows that u occurs in positionm in p∗(ω). �

Lemma 3.10. For p, q ∈ βN and ω ∈ AN, we have (p + q)∗(ω) = q∗(p∗(ω)). In
particular, if p is an idempotent, then p∗(p∗(ω)) = p∗(ω).

Proof. For each word u ∈ A∗ we have that u is a prefix of (p+ q)∗(ω) if and only if

ω
∣∣
u
∈ p + q ⇔ {m ∈ N |ω

∣∣
u
−m ∈ p} ∈ q.

On the other hand, u is a prefix of q∗(p∗(ω)) if and only if p∗(ω)
∣∣
u
∈ q. The result

now follows immediately from the preceding lemma. �

Lemma 3.11. For each p ∈ βN and ω ∈ AN we have p∗(T (ω)) = T (p∗(ω)) where
T : AN → AN denotes the shift map.

Proof. Assume u ∈ A∗ is a prefix of p∗(T (ω)). Then T (ω)
∣∣
u
∈ p. But

T (ω)
∣∣
u
=

⋃
a∈A

ω
∣∣
au

.

It follows that there exists a ∈ A such that ω
∣∣
au
∈ p. Thus au is a prefix of p∗(ω)

and hence u is a prefix of T (p∗(ω)). �

We will make use of the following key result in [27] (see also [13, Thm. 1] and
[8, Thm. 3.4]):

Theorem 3.12 ([27, Thm. 19.26]). Given two infinite words x, y ∈ A∞, there is a
minimal idempotent p ∈ βN such that p∗(x) = y if and only if x and y are proximal
and y is uniformly recurrent.

As a consequence we have

Theorem 3.13. Let ω ∈ AN be a uniformly recurrent word, and let u ∈ A+. Then
ω
∣∣
u
is an IP-set if and only if ω

∣∣
u
is a central set.

Proof. For any A ⊂ N we have that if A is central then A belongs to some minimal
idempotent p ∈ βN and hence in particular A belongs to an idempotent in βN.
Hence by Theorem 3.3 we have that A is an IP-set. Now suppose that ω

∣∣
u
is an IP-

set. Then ω
∣∣
u
belongs to some idempotent p ∈ βN. Set ν = p∗(ω). Then u is a prefix

of ν. Also, since p is idempotent we have p∗(ν) = p∗(p∗(ω)) = p∗(ω) = ν. Hence
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for every prefix v of ν we have that ν
∣∣
v
∈ p and ω

∣∣
v
∈ p and hence ν

∣∣
v
∩ ω

∣∣
v
∈ p.

In particular ν
∣∣
v
∩ ω

∣∣
v
�= ∅. Hence ω and ν are proximal. Since ω is uniformly

recurrent, it follows that ν is also uniformly recurrent. Hence by Theorem 3.12
there exists a minimal idempotent q with q∗(ω) = ν. Hence ω

∣∣
u
∈ q, whence ω

∣∣
u

is central. �

This allows us to simultaneously state our results in terms of IP-sets and central
sets.

4. Central sets defined by some families
of uniformly recurrent words

In this section we will consider several families of uniformly recurrent words and
study combinatorial properties of central sets defined by words from these families.

First we give a brief summary of some of the basic background on subshifts.
Given an infinite word ω ∈ AN, we denote by Fω(n) the set of all factors of ω of
length n, and set

Fω =
⋃
n∈N

Fω(n).

We endow AN with the topology generated by the metric

d(x, y) =
1

2n
where n = inf{k : xk �= yk}

whenever x = (xn)n∈N and y = (yn)n∈N are two elements of AN. By a subshift on
A we mean a pair (X,T ) where X is a closed and T -invariant subset of AN, and T
is the shift transformation map. A subshift (X,T ) is said to be minimal whenever
X and the empty set are the only T -invariant closed subsets of X. To each ω ∈ AN

is associated the subshift (X,T ) where X is the shift orbit closure of ω. If ω is
uniformly recurrent, then the associated subshift (X,T ) is minimal. Thus any two
words x and y in X have exactly the same set of factors, i.e., Fx = Fy. In this
case we denote by FX the set of factors of any word x ∈ X.

4.1. Sturmian partitions & central sets

In this subsection we study the additive properties of sets defined by the family of
Sturmian words. More precisely, we obtain a complete characterization of which
factors of a Sturmian word give rise to central sets.

Let ω ∈ AN and set
ρω(n) = Card(Fω(n)).

The function ρω : N → N is called the factor complexity function of ω. Given a
minimal subshift (X,T ) on A, we have Fω(n) = Fω′(n) for all ω, ω′ ∈ X and
n ∈ N. Thus we can define the factor complexity ρ(X,T )(n) of a minimal subshift
(X,T ) by

ρ(X,T )(n) = ρω(n)

for any ω ∈ X.
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A word ω ∈ AN is periodic if there exists a positive integer p such that ωi+p =
ωi for all indices i, and it is ultimately periodic if ωi+p = ωi for all sufficiently large
i. An infinite word is aperiodic if it is not ultimately periodic. By a celebrated
result due to Hedlund and Morse [32], a word is ultimately periodic if and only
if its factor complexity is uniformly bounded. In particular, pω(n) < n for all n
sufficiently large. Words whose factor complexity ρω(n) = n + 1 for all n ≥ 0 are
called Sturmian words. Thus, Sturmian words are those aperiodic words having
the lowest complexity. Since ρω(1) = 2, it follows that Sturmian words are binary
words. The most extensively studied Sturmian word is the Fibonacci word f defined
in Subsection 2.1.

A factor u of an infinite word ω ∈ AN is called right special if both ua and
ub are factors of ω for some pair of distinct letters a, b ∈ A. Similarly u is called
left special if both au and bu are factors of ω for some pair of distinct letters
a, b ∈ A. The factor u is called bispecial if it is both right special and left special.
Let ω ∈ {0, 1}N be a Sturmian word, and let Ω denote the shift orbit closure of ω.
The condition ρω(n) = n+1 implies the existence of exactly one right special and
one left special factor of each length. Clearly, given any two left special factors, one
is necessarily a prefix of the other. It follows that Ω contains a unique word all of
whose prefixes are left special factors of ω. Such a word is called the characteristic
word and denoted ω̃. It follows that both 0ω̃, 1ω̃ ∈ Ω. It is readily verified that the
Fibonacci word above is a characteristic Sturmian word. A Sturmian word ω is
called singular if T n(ω) = ω̃ for some n ≥ 1. Otherwise it is said to be nonsingular.

The next two theorems give a complete characterization of those factors u of
a Sturmian word ω ∈ {0, 1}N for which ω

∣∣
u
is an IP-set (respectively central set).

Theorem 4.1 ([15]). Let ω ∈ Ω be a nonsingular Sturmian word, and u a factor of
ω. Then ω

∣∣
u
is an IP-set (resp. central set) if and only if u is a prefix of ω.

As a consequence we obtain:

Corollary 4.2. For every prefix v of a nonsingular Sturmian word ω and n ∈ ω
∣∣
v
,

the set ω
∣∣
v
− n is an IP∗-set (resp. central∗ set).

We note that in general the property of being an IP∗-set is not translation invari-
ant. See also Theorem 1.1 in [10].

Theorem 4.3 ([15]). Let ω ∈ Ω be a Sturmian word such that T n0(ω) = ω̃ with
n0 ≥ 1. Then ω

∣∣
u
is an IP-set (or central set) if and only if either u is a prefix of

ω or a prefix of ω′ where ω′ is the unique other element of Ω with T n0(ω′) = ω̃.

To prove the theorems, we need several lemmas.

Lemma 4.4. If ω, ω′, ω′′ ∈ Ω are such that T n0(ω) = T n0(ω′) = T n0(ω′′), then
Card{ω, ω′, ω′′} ≤ 2.

Proof. This follows immediately from the fact that Ω contains a unique character-
istic word and that this word is aperiodic. �
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We will make use of the following key lemma which essentially says that two
distinct Sturmian words ω and ω′ are proximal if and only if T n(ω) = T n(ω′) = ω̃
for some n ≥ 1.

Lemma 4.5. Let ω and ω′ be distinct elements of Ω. Then either T n(ω) = T n(ω′) =
ω̃ for some n ≥ 1, or there exists N > 0 such that

ωnωn+1 · · ·ωn+N �= ω′nω
′
n+1 · · ·ω′n+N

for every n ∈ N.

The proof of this lemma is based on the definition of Sturmian words via
rotations. For the details of the proof we refer to [15].

We first consider the case of nonsingular Sturmian words:

Lemma 4.6. Let ω ∈ {0, 1}N be a nonsingular Sturmian word and p ∈ βN an
idempotent ultrafilter. Then p∗(ω) = ω.

Proof. Suppose to the contrary that p∗(ω) �= ω. Then since ω is nonsingular,
Lemma 4.5 implies that for all sufficiently long factors u of ω, we have that ω

∣∣
u
∩

p∗(ω)
∣∣
u
= ∅. But, by Lemma 3.10 we have p∗(p∗(ω)) = p∗(ω), that is the image

under p∗ of ω and p∗(ω) coincides. It follows by definition of p∗ that for every
prefix u of p∗(ω) we have ω

∣∣
u
∈ p and p∗(ω)

∣∣
u
∈ p and hence ω

∣∣
u
∩ p∗(ω)

∣∣
u
∈ p, a

contradiction. �

Proof of Theorem 4.1. Let ω be a nonsingular Sturmian word, u a prefix of ω, and
p ∈ βN an idempotent ultrafilter. Then by Lemma 4.6 u is a prefix of p∗(ω) and
hence ω

∣∣
u
∈ p. Thus for each prefix u of ω the set ω

∣∣
u
belongs to every idempotent

ultrafilter and hence is an IP∗-set. It follows that if v ∈ F is not a prefix of ω,
then ω

∣∣
v
is not an IP-set. Finally, let v be any factor of ω and n ∈ N. Then

ω
∣∣
v
− n = T n(ω)

∣∣
v
. If n ∈ ω

∣∣
v
, then v is a prefix of T n(ω) from which it follows

that

ω
∣∣
v
− n = T n(ω)

∣∣
v
∈ p.

Hence ω
∣∣
v
− n is an IP∗-set �

As a consequence of the above theorem we have

Corollary 4.7. Let ω and ω′ be two nonsingular Sturmian words, not necessarily
of the same slope. Then for every prefix u of ω and every prefix u′ of ω′ we have
that ω

∣∣
u
∩ ω′

∣∣
u′ is an IP∗-set (resp. central∗ set), in particular the intersection is

infinite.

We note that the assumption that ω and ω′ be nonsingular is necessary, as for
example if we consider ω = 0f and ω′ = 1f with f the Fibonacci word, then
ω
∣∣
0
∩ ω′

∣∣
1
= {0}.
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Proof. Let ω and ω′ be two nonsingular Sturmian words, u a prefix of ω, u′ a
prefix of ω′, and p ∈ βN an idempotent ultrafilter. Then by Theorem 4.1 we have
that ω

∣∣
u
∈ p and ω

∣∣
u′ ∈ p and hence ω

∣∣
u
∩ ω

∣∣
u′ ∈ p. Thus ω

∣∣
u
∩ ω

∣∣
u′ belongs to

every idempotent and hence is an IP∗-set. �

We next consider singular Sturmian words.

Lemma 4.8. Let ω,ω′∈Ω be distinct Sturmian words such that T n0(ω) = T n0(ω′) =
ω̃ for some n0 ≥ 1. Then for every u ∈ F and every non-principal ultrafilter p ∈ βN
we have

ω
∣∣
u
∈ p⇐⇒ ω′

∣∣
u
∈ p.

In particular, p∗(ω) = p∗(ω′).

Proof. Since p is a non-principal ultrafilter, we have that ω
∣∣
u
∈ p ⇐⇒ ω

∣∣
u
∩

[N,+∞) ∈ p for all N ≥ 1. Similarly ω′
∣∣
u
∈ p ⇐⇒ ω′

∣∣
u
∩ [N,+∞) ∈ p for all

N ≥ 1. But for each u ∈ F , we have ω
∣∣
u
∩ [n0,+∞) = ω′

∣∣
u
∩ [n0,+∞). The result

now follows. �

Lemma 4.9. Let ω, ω′ ∈ Ω be as in the previous lemma, and let p ∈ βN be an
idempotent ultrafilter. Then p∗(ω) = p∗(ω′) ∈ {ω, ω′}.

Proof. That p∗(ω) = p∗(ω′) follows from the previous lemma and the fact that
idempotent ultrafilters are non-principal (see for instance [8]). By Lemma 3.11, p∗

commutes with the shift map T, and hence

T n0p∗(ω) = p∗(T n0ω) = p∗(ω̃) = ω̃

where the last equality follows from Lemma 4.6. By Lemma 4.4 applied to ω′′ =
p∗(ω) it follows that p∗(ω) = ω or p∗(ω) = ω′. �

Proof of Theorem 4.3. Let ω ∈ Ω and n0 be as in the statement of the theorem.
Then there exists a unique ω′ ∈ Ω with ω′ �= ω and with T n0(ω′) = ω̃. Suppose
that ω

∣∣
u
is an IP-set for some u ∈ F . Then by Lemma 3.8 it follows that u is a

prefix of p∗(ω) for some idempotent ultrafilter p ∈ βN. It follows from Lemma 4.9
that u is a prefix of ω or a prefix of ω′. This proves one direction.

To establish the other direction, we must show that ω
∣∣
u
is a central set for

each prefix u of ω or of ω′. By Theorem 3.12, there exist minimal idempotent
ultrafilters p1, p2 ∈ βN such that p∗1(ω) = ω and p∗2(ω) = ω′. The result now
follows. �

4.2. Partitions defined by substitution rules

In this section we consider partitions defined by words generated by substitution
rules. Let τ be a substitution on A. A word ω ∈ AN is called periodic point if
τm(ω) = ω for some m > 0. A substitution τ is said to be primitive if there is a
positive integer n such that for each pair (i, j) ∈ A×A, the letter i occurs in τn(j).
Although a primitive substitution τ may fail to have a fixed point, it has at least
one periodic point. Associated to τ is the topological dynamical system (X,T ),
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where X is the shift orbit closure of a periodic point ω of τ. If τ is primitive, then
(X,T ) is independent of the choice of periodic point and is minimal.

By considering partitions of N defined by words generated by the generalized
Thue–Morse substitution to an alphabet of size r ≥ 2, we show the following:

Theorem 4.10 ([15]). For each positive integer r let Ω denote the minimal subshift
generated by the primitive constant length substitution 1 	→ 123 · · · r, 2 	→ 23 · · · r1,
. . . , r 	→ r12 · · · r − 1. Then for each positive integer N there exists ω ∈ Ω such
that the sets Ai := ω

∣∣
i
for 1 ≤ i ≤ r define a partition of

N = A1 ∪ A2 ∪ · · · ∪Ar

satisfying the following conditions:

• Ai − n is a central set for each 1 ≤ i ≤ r and 1 ≤ n ≤ N.
• For each n > N, exactly one of the sets {A1 − n,A2 − n, . . . , Ar − n} is a

central set.

The second assertion of Theorem 4.10 relies on the fact that each fixed point of
the generalized Thue–Morse substitution is distal. A point x ∈ X is called distal
if the only point in X proximal to x is x itself.

A minimal subshift (X,T ) is said to be topologically mixing if for every any
pair of factors u, v ∈ FX there exists a positive integer N such that for each n ≥ N,
there exists a block of the form uWv ∈ FX with |W | = n. A minimal subshift
(X,T ) is said to be topologically weak mixing if for every pair of factors u, v ∈ FX
the set

{n ∈ N |uAnv ∩ FX �= ∅}
is thick, i.e., for every positive integer N, the set contains N consecutive positive
integers.

By considering partitions defined by words generating minimal subshifts
which are topologically weak mixing (for example the subshift generated by the
substitution 0 	→ 001 and 1 	→ 11001) we prove that

Theorem 4.11 ([15]). For each positive integer r there exists a partition of N =
A1 ∪ A2 ∪ · · · ∪ Ar such that for each 1 ≤ i ≤ r and n ≥ 0, the set Ai − n is a
central set.

We remark that the proofs of Theorems 4.10 and 4.11 are both constructive,
i.e., in each case we explicitly build a word defining the partition.

4.3. Infinite central partitions of N

In this subsection we construct infinite partitions of N into central sets by using
words on an infinite alphabet. Our construction makes use of the notion of iterated
palindromic closure operator (first introduced in [17]):

Definition 4.12. The iterated palindromic operator ψ is defined inductively as
follows:

• ψ(ε) = ε,
• For any word w and any letter a, ψ(wa) = (ψ(w)a)(+).
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We denote with w(+) the right palindromic closure of the word w, i.e., the shortest
palindrome which has w as a prefix.

For example, ψ(aaba) = aabaaabaa. The operator ψ has been extensively
studied for its central role in constructing standard Sturmian and episturmian
words. It follows immediately from the definition that if u is a prefix of v, then
ψ(u) is a prefix of ψ(v). Thus, given an infinite word ω = ω0ω1ω2 · · · on the
alphabet A we can define

ψ(ω) = lim
n→∞

ψ(ω0ω1ω2 · · ·ωn).

Proposition 4.13 ([15]). Let ω = ψ(Δ) where Δ is a right infinite word on an
infinite alphabet A with the property that each letter a ∈ A occurs in Δ an infinite
number of times. Then, for any a ∈ A, the set aω

∣∣
a
is a central set, thus {ω

∣∣
a
+

1}a∈A is an infinite partition of N− {0} into central sets2.

For the proof of this propositions we refer to [15].

5. Strong coincidence condition

Let n ≥ 2 be a positive integer and set A = {1, 2, . . . , n}. Given a substitution
τ : A→ A+, we consider the square matrix Mτ whose ijth entry is equal to |τ(j)|i,
i.e., the number of occurrences of i in τ(j). We call this matrix the Abelianiza-
tion of τ. Hence a substitution τ is primitive if all the entries of Mn

τ are strictly
positive. In this case it is well known that the matrix Mτ has a simple positive
Perron–Frobenius eigenvalue called the dilation of τ. A substitution τ is said to be
irreducible if the minimal polynomial of its dilation is equal to the characteristic
polynomial of its Abelianization Mτ . A substitution τ is said to be of Pisot type if
its dilation is a Pisot number. Recall that a Pisot number is an algebraic integer
greater than 1 all of whose algebraic conjugates lie strictly inside the unit circle.

A primitive substitution τ : A→ A+ is said to satisfy the strong coincidence
condition if and only if any pair of fixed points x and y are strongly coincident, i.e.,
we can write x = scx′, and y = tcy′ for some s, t ∈ A+, c ∈ A, and x′, y′ ∈ A∞ with
s ∼ab t. This combinatorial condition, originally due to P. Arnoux and S. Itô, is
an extension of a similar condition considered by F.M. Dekking in [18] in the case
of constant length substitutions, i.e., when |τ(a)| = |τ(b)| for all a, b ∈ A. Every
such substitution τ has an algorithmically determined “pure base” substitution
and Dekking proves that the strong coincidence condition is satisfied by the pure
base if and only if the substitutive subshift associated with τ has pure discrete
spectrum, i.e., is metrically isomorphic with translation on a compact Abelian
group. The Thue–Morse substitution is equal to its pure base and clearly does
not satisfy the strong coincidence condition – in fact the two fixed points disagree
in each coordinate. It is conjectured however that if τ is an irreducible primitive

2This is a special case of a more general result of Hindman, Leader and Strauss [26] in which
they show that every central set in N is a countable union of pairwise disjoint central sets.
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substitution of Pisot type, then τ satisfies the strong coincidence condition. This
conjecture is established for binary primitive substitutions of Pisot type in [3].
Otherwise the conjecture remains open for substitutions defined on alphabets of
size greater than two. Substitutions of Pisot type provide a framework for non-
constant length substitutions in which the strong coincidence condition is necessary
(and, conjecturally, sufficient) for pure discrete spectrum (see [3, 4, 5, 6]). The
following reformulation of the strong coincidence condition in terms of central sets
was obtained by the second author together with M. Barge in [7]:

Theorem 5.1 ([7]). Let τ be an irreducible primitive substitution of Pisot type.
Then for any pair of fixed points x and y of τ the following are equivalent:

1. x and y are strongly coincident.
2. x and y are proximal.
3. There exists a minimal idempotent p ∈ βN such that y = p∗(x).
4. For any prefix u of y, the set x

∣∣
u
is a central set.

Remark 5.2. For a general primitive substitution we always have that (1) =⇒
(2) =⇒ (3) =⇒ (4). But in general in the non-Pisot setting, these conditions need
not be equivalent: For instance, the two fixed points of the uniform substitution
a 	→ aaab, b 	→ bbab are proximal but do not satisfy the strong coincidence con-
dition. V. Bergelson and Y. Son [12] showed that the fixed points of a 	→ aab,
b 	→ bbaab satisfy (4) but not (1), (2) and (3). It would be interesting to under-
stand in general under what conditions do the idempotent ultrafilters permute the
fixed points of substitutions.

Outline of the proof of Theorem 5.1. We first show that (1) =⇒ (2) =⇒ (3) =⇒
(4). Clearly (2) is immediate from the definition of strong coincidence. By Theo-
rem 3.12 we have that (2) implies (3) and hence (4). The proof that (4) =⇒ (1)
in [7] relies heavily on the machinery of “strand space” (a convenient presentation
of tiling space) which will allow us to apply results developed for the R-action on
strand space to the shift action on words. Using strands and prior results of Barge
and Kwapisz, the authors prove the following key proposition

Proposition 5.3 ([7, Prop. 4.8]). Let x, y ∈ X. Then:

1. {x′ ∈ X |x′ is proximal with x} is finite; and
2. if x and y are proximal and fixed by τ , then x and y are strongly coincident.

Proof. To see that (4) =⇒ (1), let x and y be fixed points of τ and suppose that
for every prefix u of y the set x

∣∣
u
is a central set. This means that for every prefix

u of y the set x
∣∣
u
belongs to some minimal idempotent pu ∈ βN. The collection

P = {p∗u(x)|u is a prefix of y}
consists of infinite words in X each proximal to x. By (1) of Proposition 5.3, the set
P is finite. Moreover since p∗u(x)→ y as |u| → +∞ (since u is a prefix of p∗u(x)), it
follows that y ∈ P and hence y is proximal to x. Whence by (2) of Proposition 5.3
we deduce that x and y are strongly coincident. �
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Combining Theorems 5.1 and 3.13 we obtain

Corollary 5.4 ([7, Cor. 4.10]). Let τ be an irreducible primitive substitution of Pisot
type. Then a pair of fixed points x and y of τ are strongly coincident if and only
if for each prefix u of y, the set x

∣∣
u
is an IP-set.

6. Dumont–Thomas numeration systems

In the previous section we obtained a reformulation of the strong coincidence con-
dition for irreducible primitive substitutions of Pisot type in terms of IP-sets and
hence in terms of additive combinatorics (see Corollary 5.4). It is therefore natural
to consider certain numeration systems defined by substitutions first introduced
by Dumont and Thomas in [20, 21]. Since in the irreducible Pisot case, condition
(4) in Theorem 5.1 implies the strong coincidence condition, these numeration
systems may provide a new insight to the strong coincidence conjecture.

Let τ denote a substitution on a finite alphabet A. For simplicity we assume
that τ has at least one fixed point x = x0x1x2 · · · beginning in some letter a ∈ A.
The idea behind the numeration system is quite natural: every coordinate xn of
the fixed point x is in the image of τ of some coordinate xm with m ≤ n. More
precisely, consider the least positive integer m such that x0x1 · · ·xn is a prefix
of τ(x0x1 · · ·xm). In this case we can write x0x1 · · ·xn = τ(x0x1 · · ·xm−1)unxn
where unxn is a prefix of τ(xm). We now imagine a directed arc from xm to xn
labeled un. In this way every coordinate xn is the target of exactly one arc, and the
source of |τ(xn)|-many arcs. It follows that for each n there is a unique path s from
x0 to xn. Thus every natural number n may be represented by a finite sequence
of labels ui obtained by reading the labels along the path s in the direction from
x0 to xn.

More formally, associated to τ is a directed graph G(τ) defined as follows: the
vertex set of G(τ) is the set A. Given any pair of vertices a, b we draw a directed
edge from a to b labeled u ∈ A∗ if ub is a prefix of τ(a). In other words, for every
occurrence of b in τ(a) there is a directed edge from a to b labeled by the prefix
(possibly empty) of τ(a) preceding the given occurrence of b. Figure 4 depicts the
graph G(τ) for the Fibonacci substitution a 	→ ab, b 	→ a.

aε b

a

ε

Figure 4. The Fibonacci automaton.

For simplicity, in case some letter b occurs multiple times in τ(a), we draw
just one directed edge from a to b having multiple labels as described above. This
is shown in Figure 5 in the case of the substitution a 	→ aba, b 	→ baabb.
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aε , ab b ε , baa , baab

a

b , ba

Figure 5. The automaton of a 	→ aba, b 	→ baabb.

Let x = x0x1x2 · · · denote the fixed point of τ beginning in a. Then the
graph G(τ) has a singleton loop based at a labeled with the empty word ε. We
consider this to be the empty or 0th path at a. More generally by a path at a ∈ A
we mean a finite sequence of edge labels u0u1u2 · · ·un corresponding to a path in
G(τ) originating at vertex a with the condition that u0 �= ε whenever the length
of the path n > 0. For example in the case of the Fibonacci substitution, except
for the path s = ε, each path is given by a word in {a, ε} beginning in a and not
containing the factor aa. For each path s = u0u1u2 · · ·un set

ρ(s) = τn(u0)τ
n−1(u1)τ

n−2(u2) · · · τ(un−1)un
and λ(s) = |ρ(s)|. In [20, 21] it is shown that for each path s at a, the word ρ(s)
is a prefix of the fixed point x at a and conversely for each prefix u of x there is a
unique path s at a with ρ(s) = u. This correspondence defines a numeration system
in which every natural number l is represented by the path s = u0u1u2 · · ·un in
G(τ) from vertex a to vertex xl corresponding to the prefix of length l of x, so that

(∗) l = λ(s) = |τn(u0)|+ |τn−1(u1)|+ |τn−2(u2)|+ · · ·+ |τ(un−1)|+ |un|.

Generally by the numeration system one means the quantities |τn(u)| for all
n ≥ 0 and all proper prefixes u of the images under τ of the letters of A. Then
a proper representation of l in this numeration is an expression of the form (*)
corresponding to a path s = u0u1u2 · · ·un in G(τ).

In the case of a uniform substitution of length k this corresponds to the usual
base k-expansion of l. In the case of the Fibonacci substitution, each un ∈ {ε, a}
and uiui+1 �= aa for each 0 ≤ i ≤ n − 1. Thus this representation of l is the so-
called Zeckendorff representation of l in which l is expressed as a sum of distinct
Fibonacci numbers via the greedy algorithm (see [40]).

In general, this numeration system not only depends on the substitution τ
but also on the choice of fixed point. For example for the substitution in Figure
2 the number 5 is represented by the path a, ba from vertex a or by the path b, ε
from vertex b. In fact, τ(a)ba = ababa is the prefix of length 5 of τ∞(a) while
τ(b)ε = baabb is the prefix of length 5 of τ∞(b).

An alternative reformulation is as follows: Given two distinct paths s =
u0u1u2 · · ·un and t = v0v1v2 · · · vm both starting from the same vertex a, we
write s < t if either n < m or if n = m there exists i ∈ {0, 1, . . . , n} such that
uj = vj for j < i, and |ui| < |vi|. This defines a total order on the set of all paths
starting from vertex a. In the case of the Fibonacci substitution, we list the paths
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at a in increasing order

ε, a, aε, aεε, aεa, aεεε, aεεa, aεaε, aεεεε, . . .

Thus there is an order preserving correspondence between 0, 1, 2, 3, . . . and the set
of all paths at a ordered in increasing order.

While these numeration systems are very natural and simple to define, they
are typically extremely difficult to work with in terms of addition and multiplica-
tion.

Let a and b be distinct vertices in G(τ). We say a path s originating at a is
synchronizing relative to b if there exists a path s′ originating at b having the same
terminal vertex as s and with λ(s) = λ(s′). From this point of view the strong
coincidence conjecture implies that

{λ(s) | s = a synchronizing path relative to b}

is a thick set.

Let τ be a primitive substitution satisfying the strong coincidence condition.
Suppose x and y are fixed points of τ beginning in a and b respectively. We will
show that x

∣∣
u
is a central set for every prefix u of y. Since x and y are strongly

coincident, we can write x = scx′, and y = tcy′ for some s, t ∈ A+, c ∈ A, and
x′, y′ ∈ A∞ with s ∼ab t. By replacing τ by a sufficiently large power of τ, we can
assume that

• sc is a prefix of τ(a),
• tc is a prefix of τ(b),
• b occurs in τ(c).

Thus in G(τ) there is a directed edge from a to c labeled s, a directed edge
from b to c labeled t, and a directed edge from c to b labeled r for some prefix r
of τ(c). See Figure 6.

b

a c

ε

ε

s

r

t

Figure 6. Vertices a, b, c of G(τ).
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We now define a sequence of paths (pi)i≥0 from a to b by

pi = s, r, ε, ε, . . . , ε︸ ︷︷ ︸
2i

.

Put ni = λ(pi). Then clearly {ni | i ≥ 0} ⊆ x
∣∣
b
. We now show that any finite sum

of distinct elements from the set {ni | i ≥ 0} is contained in x
∣∣
b
. Set

qi = t, r, ε, ε, . . . , ε︸ ︷︷ ︸
2i

.

Then each qi is a path from b to b and since s and t are Abelian equivalent it
follows that λ(pi) = λ(qi). Fix k ≥ 1 and choose i1 < i2 < · · · < ik. Then

k∑
j=1

λ(pij ) = λ(pik) +

k−1∑
j=1

λ(pij )

= λ(pik) +

k−1∑
j=1

λ(qij )

= |τ2ik+1(s)|+ |τ2ik(r)| +
k−1∑
j=1

(|τ2ij+1(t)|+ |τ2ij (r)|)

= |τ2ik+1(s)τ2ik (r)τ2ik−1+1(t)τ2ik−1 (r)τ2ik−2+1(t)τ2ik−2 (r) · · ·
· · · τ2i1+1(t)τ2i1 (r)|

which is represented by a path in G(τ) from a to b and hence corresponds to
an occurrence of b in x. This shows that x

∣∣
b
is an IP-set. It now follows from

Theorem 3.13 that x
∣∣
b
is a central set. A similar argument applies for any prefix

u of y by defining the paths pi by

pi = s, r, ε, ε, . . . , ε︸ ︷︷ ︸
Ni

with Ni sufficiently large.

7. Open problems

In this section we give a few open problems dealing with connections between word
combinatorics and Ramsey theory. However, we first would like to draw attention
to a list of nice open problems suggested by V. Bergelson and B. Rothschild in
[11]. We begin with one of the problems presented there.

Although as we saw in Section 2.2 neither Σk nor Σ∞k is partition regular,
for each fixed k we could consider the set

R∞(k) =
{
A ⊆ N |whenever r ∈ N and A =

⋃r

i=0
Ai,

∃ 0 ≤ i ≤ r such thatAi is k∞-summable
}
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Then each R∞(k) is non-empty. In fact every IP-set belongs to R∞(k). The fol-
lowing is a difficult open question of Imre Leader:

Question 7.1 ([11, Question 8.1]). Does there exist a member of R∞(2) which is
not an IP-set?

In general, the question of determining whether a given subset A ⊆ N is in
R∞(k) or is an IP-set is typically quite difficult, even if for every A, either A or
its complement belongs to R∞(k) or is an IP-set.

Now we need a few definitions:

Definition 7.2. Let x ∈ AN, C a finite non-empty set and ϕ : Fx → C a finite
coloring of the factors of x. A factorization x = V0V1V2 · · · with Vi ∈ A+ is called

• ϕ-monochromatic if ∃c ∈ C such that ϕ(Vi) = c for all i, j ≥ 0.
• ϕ-super monochromatic if ∃c ∈ C such that ϕ(ViVi+1 · · ·Vi+j) = c for all

i, j ≥ 0.
• ϕ-ultra monochromatic if ∃c ∈ C such that ∀k ≥ 1, for all n1 < n2 < · · · <

nk and for all permutations σ of {1, 2, . . . , k} we have either Vnσ(1)
Vnσ(2)

· · ·
· · ·Vnσ(k)

/∈ Fx or ϕ(Vnσ(1)
Vnσ(2)

· · ·Vnσ(k)
) = c.

For instance, if x = uω is periodic with u ∈ A+, then the factorization
x = u · u · u · · · is ϕ-monochromatic for any finite coloring ϕ : Fx → C. In general
this factorization need not be ϕ-super monochromatic.

In [19] we conjectured that if x is not periodic then there exists a finite
coloring ϕ : Fx → C such that no factorization of x is ϕ-monochromatic. The
conjecture is verified for all non-uniformly recurrent words and various classes of
uniformly recurrent words including Sturmian words (see [19]). What is immediate
to see is that if x is not periodic, then there exists a finite coloring ϕ : Fx → C
such that no factorization of x is ϕ-super monochromatic. In fact, it suffices to take
ϕ : Fx → {0, 1} defined by ϕ(u) = 0 if u is a prefix of x and ϕ(u) = 1 otherwise.
Suppose to the contrary that x admits a ϕ-super monochromatic factorization
x = V0V1V2 · · · . Then since V0 is a prefix of x, it follows that V1V2 · · ·Vk is a
prefix of x for each k ≥ 1. Thus x = V0x, whence x is periodic (x = V0V0V0 · · · ),
a contradiction. However, it could be shown that for any word x and any finite
coloring ϕ : Fact(x) → C, some suffix of x admits a ϕ-super monochromatic
factorization.

Question 7.3. Prove or Disprove: Let x ∈ AN be non-periodic. Then there exists
a finite coloring ϕ : Fx → C such that x does not admit a ϕ-monochromatic
factorization.

Question 7.4. Prove or Disprove: Let x ∈ AN and ϕ : Fx → C a finite coloring.
Then there exists a suffix x′ of x which admits a ϕ-ultra monochromatic factor-
ization.

It can be shown that as a consequence of Hindman’s theorem, Question 7.4
has an affirmative answer in case x is ultimately periodic. It can also be shown
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that as a consequence of Ramsey’s infinite theorem, for any word x ∈ AN and any
finite coloring ϕ : Fx → C, there exists a suffix x′ of x which admits a ϕ-super
monochromatic factorization. Moreover, an affirmative answer to Question 7.4
implies both Hindman’s theorem and Ramsey’s theorem.
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Delone Sets and Material Science:
a Program

Jean V. Bellissard

Abstract. These notes are proposing a program liable to provide physicists
working in material science, especially metallic liquids and glasses, the mathe-
matical tools they need to build an atomic scale theory of Continuous Mechan-
ics including plasticity, fluidity and, hopefully, fractures. Using the long list
of datas and numerical simulations accumulated during the last forty years,
physicists have identified a new class of degrees of freedom, besides the elastic
ones, which will be called anankeons here [7]. They are dominant in the liquid
phase and they explain the properties related to plastic deformations of the
solid phase. It is advocated that Delone sets provide a natural frame within
which such a theory can be expressed. The use of Voronoi tiling and its dual
construction, called the Delaunay triangulation, gives a discretization of the
data. The concept of Pachner move or Delaunay flips permits to describe very
precisely what the anankeons are. A partition of the configuration space into
contiguity domains leads to a graph on which a Markov process can be built
to describe the anakeon dynamics. At last, a speculative Section is giving an
attempt to describe the Continuous Mechanics of a condensed material in
terms of a Noncommutative Geometry of the configuration space.

Mathematics Subject Classification (2010). 74A02, 70F02, 82-02.

Keywords. Bulk metallic glasses, Delone sets, Pachner move, STZ, anankeons.

1. Introduction

This article is an attempt to explain how the mathematical tools used in the
study of tiling spaces can be used to describe very concrete materials like liquids
and glasses. The text will then have a part describing the situation viewed from
the eye of the physicists or the material scientist, and another part consisting in
describing the mathematical material. As a consequence, the reader who is not
an expert in Physics or in Statistical Mechanics, may need some time to adjust
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and understand the content. The author apologizes for demanding so much from
the reader. However, developing a mathematical tool liable to describe the real
world is never an easy task because it always includes several important aspects
requiring to use pieces of Mathematics that have usually little to do with each
other.

1.1. A program

Describing a material in a condensed phase, solid or liquid, from the atomic scale
on is still a challenge today. These notes provide a guideline liable to fill this gap
in the future. The main new ingredient is the concept of anankeon [1, 7]. This is
the dominant degree of freedom for liquids, while anankeons play a crucial role in
solids to account for their plasticity. As will be seen, this concept of anankeon fits
with a description of atomic configurations in terms of Delone sets, Voronoi tiling,
Delaunay triangulation. Anankeon then appear to be any of the individual sim-
plex of this triangulation. Changes in the local triangulations, known as Pachner
moves or Delaunay flips, give a way to describe the anankeon dynamics. However
the latter is essentially unpredictable and has to be given through a Markov pro-
cess. Numerical simulations, based on molecular dynamics are suggesting various
phenomenological forms for this Markov process.

In the last section of these notes a list of speculations will be presented in
form of a program. The author believes, indeed, that the mechanical properties
of a condensed material should have a geometrical interpretation. He will argue
that the Geometry is not in the usual space but in the Transversal direction of
the Hull of the set of atomic configurations. The argument will be given along
the following lines. The generator of a Markov process is usually considered as
a Dirichlet form acting on a Hilbert space [51, 52, 59]. In the present situation,
however, it is expected to be rather the generator of a Markov semigroup on an
abelian C∗-algebra A attached to Transversal. The invariance of A by the Markov
semigroup is the analog of the Feller property in the theory of Markov Processes.
It will be argued that, in such a case, it should be possible to define a metric on the
tiling space in a way similar to the constructions of Kantorovich [61, 62] or Connes
[55]. It is then expected to provide the tiling space with a Noncommutative analog
of a Riemannian manifold. The main issue discussed at the end is the definition
of the curvature. This concept is still ill defined in Noncommutative Geometry.
However, the curvature is expected to be related to the mechanical properties of
the material, through some kind of Einstein equation:

Curvature = Stress

1.2. Some physics background

The usual approach to solids and liquids is to distinguished between scales: length
scales, time scale, energy scales. At macroscopic length scales either the Elasticity
Theory for solids (see for instance [14, 8]), or the Navier–Stokes equation for fluids,
give the standard description. At a lower scale, a kinetic theory approach, using the
Bolztmann equation or the BBGKY hierarchy, is also considered (see for instance
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[11]). While kinetic theories have been successful for gas, they are more difficult to
manipulate for liquids. Since the late nineties two major theoretical contributions
were made to improve the description of solids at large scale. The first is due
to a group of physicists led by J. Langer, and is called the STZ Theory, where
STZ stands for shear-transformation zones [9, 10, 15, 16, 17]. It proved to be very
efficient in describing the plasticity region in the strain-stress curve, to describe
also the evolution of fractures [20, 19] in glassy systems. The other one, more
phenomenological, is called Peridynamics Theory and was initiated by Silling [21,
22, 23]. It became recently important in particular to describe solid under extreme
stress, like explosives.

The discovery of a new class of materials, during the nineties, called bulk
metallic glasses (BMG), like the vitalloys containing mostly copper and zirconium,
has been an experimental and a technological breakthrough [12, 13]: these mate-
rials have exceptional mechanical properties, a very high limit of elasticity and an
exceptional resistance to rupture. They are now used in various devices including
sport material (i-Phone6, golf clubs, . . . ) and medical tools. The development of
these materials has triggered more research, has attracted funding and therefore
it provides a window of opportunity for theoreticians and experimentalists alike to
test ideas and models liable to give access to a better understanding of both glass
and liquid phases.

1.3. Lessons from available data

Several experts in the field of BMG have expressed the wish to develop a more
universal modeling valid from the atomic scale on with the help of mathematicians.
There are several layers of difficulties in this problem. In the fifties, Bernal used a
Voronoi construction to describe the atomic configurations of such materials [3]. In
the early eighties, the local cluster theory provided a more detailed description of
the local environment of a typical atom. This was initiated by T. Egami et al. [6]
and was completed by Miracle [18] during the last decade. The main experimental
tool to analyze the results of this approach is the diffraction spectrum (X-ray,
electrons or neutrons), the Fourier transform of which permits to compute the
pair distribution function (PDF).

A liquid phase approach has also been advocated for a long time, in order to
identify the most relevant degrees of freedom. The heat capacity is an observable
easy to measure in experiments. It provides some informations about how the en-
ergy is stored within various degrees of freedom. The behavior of the heat capacity
of a typical disordered material (see Figure 1) reveals a low temperature regime in
the solid phase (glass), a saturation at high temperature (liquid phase) leading to
a similarity with the law of Dulong–Petit and a transition region (liquid-glass tran-
sition) showing an increase of the heat capacity which looks like a phase transition
without a singularity. The Law of Dulong–Petit predicts that the heat capacity
per unit volume of a solid saturates at high temperature and is given by

CV = MkB , M = number of degrees of freedom , (1)
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Figure 1. Heat capacity as a function of temperature for an alloy made
of Gold, Germanium and Silicon signaling a glass-liquid transition [4].
In color a possible contribution of phonons and anankeons.

and kB is the Boltzmann constant. Einstein assumed that the main degrees of
freedom in a solid where provided by phonons, namely the quantized version of
acoustic waves, leading to M = 3. However, it is known that phonons are mainly
damped in liquids so that the experimental result showed in Figure 1 requires an
explanation. The anakeon theory might give an interpretation of these observations
(see Section 3.1 below).

The second layer of difficulty is the time dependence of the response to me-
chanical strain. For example diving into water by jumping from the edge of a
swimming pool is possible because the water moves fast enough to permit the
diver’s body to enter smoothly. However, firing a bullet in water results in the bul-
let being completely smashed like if water was a piece of concrete. In the former
case, the speed of the diver is low, permitting the water to react fast enough, while
in the latter case, the speed of the bullet is so high that the water is too slow to
adjust around the bullet and behave like a very hard solid. In more scientific terms,
the response to shear involves a time scale that is usually expressed through the
viscosity of the medium. In particular, the main difference between liquid and glass
is not seen in the equilibrium parameters like density or heat capacity. It is mainly
seen in a sudden increase of the viscosity. Namely the time scale characterizing
the response to shear increases by several orders of magnitude within a very small
interval of temperature at the transition. The challenge in this case is to provide
a theory liable to describe the dynamics of the atomic configurations.
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1.4. Degrees of freedom

Over the years, the work of Egami and his collaborators has permit to identify
two relevant classes of degrees of freedom at the atomic scale.

1. the vibration degrees of freedom, the one at work in the theory of elasticity,
at least for long wave length or the ones with short wave-lengths that can
eventually be quantized and which has been called phonon by A. Einstein
in 1908. In the glass phase, phonon seem to give the dominant contribution.
However in the liquid phase the high frequency phonons are damped, with a
very short lifetime.

2. the topological degrees of freedom, representing the unpredictable sudden
change in the local configuration of atoms due to the local stress and the
thermal motion. These degrees of freedom are newcomers in the theoretical
landscape and will be called anankeon here [1]. They provide an explanation
to the Dulong–Petit behavior of the heat capacity [5] (see Figure 1), namely
the saturation at large temperature. They just freeze at the liquid-glass tran-
sition. They reappear only if an external shear is applied as the atomic scale
version of the STZ proposed by Langer et al..

While the dynamics of phonons is well understood, including nonlinearity if neces-
sary, the dynamics of anankeon is not. A model for this dynamics, using a Markov
process, will be proposed. The construction of such a process uses the Boltzmann-
Gibbs factor for the equilibrium dynamics as well as the Arrhenius law for the
evaluation of waiting times. Recent numerical simulations made by T. Egami and
his group of collaborators, give a hint about the actual magnitude of the various
parameters, energy, length and time scales involved in such a modeling.

2. Why Delone sets?

2.1. Interatomic potential

Even though atoms, especially in transition metals like copper or zirconium, have
a complicated structure with many electrons around the nucleus, it is a conve-
nient and usual approximation to consider them as individual particles interacting
through a pair-potential. This potential is usually a function of the relative position
of the atoms having the following properties: (i) it is repulsive at short distance
and (ii) attractive at large distance. In addition, for most isotropic materials, it
can be assumed that this potential is rotation invariant, meaning that it is a func-
tion of the interatomic distance r. Examples used in numerical simulations, using
molecular dynamic, for instance, are the Lennard–Jones potential, valid mostly for
systems interacting with the van der Waals force, such as rare gases, the Johnson
one which is short range and exhibit oscillations or potential computed ab initio
for metallic alloys (see Figure 2). Apparently the results of simulations are not
strongly affected by the nature of the potential. The origin of such potential from
the first principle will not be discussed here. However they provide some concrete
length scales: (i) a short length scale σ such that for r < σ then V (r) > 0, (ii) the
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Figure 2. Left: a representation of the Lennard–Jones potential; Right:
an effective interatomic potential computed numerically for an Zn−Sc
alloy.

minimum potential length a. It is expected that atomic configurations with two
atoms closer than σ are rare. In addition, atomic configurations with a vacancy
bigger than a are unstable w.r.t. shear (see Figure 4 and a discussion in [25]),
giving a limit for the typical size of a vacancy.

2.2. Quasi-discrete measures

A configuration of atoms can be represented by the positions of its atomic nuclei.
Namely, if A denotes the set of atomic species present in the material, the position
of atoms of the species a make up a discrete sets of points La ⊂ Rd where a ∈ A.
Such a set is topologically closed, meaning that it has no accumulation point. It
is mathematically better represented by the corresponding sum of Dirac measures
δx located at the position of the atomic nuclei, namely by νa =

∑
x∈La

δx. Such a

measure are called discrete and can be characterized by the following properties [2]:

(i) it is a Radon measure on Rd,
(ii) given any ball B ⊂ Rd the measure νa(B) of this ball is an integer for each

a ∈ A.

(iii) the measure of a point νa{x} is either 0 or 1.

What is a Radon measure? It is a way to evaluate weighted integral of functions.
Which functions? Any complex-valued function f defined on the physical space
Rd (i) which is continuous and (ii) which vanishes outside of some bounded ball
(namely F has compact support). The space of such functions is denoted by Cc(Rd).
Then the integral

μ(f) =

∫
Rd

f(x)μ(dx)

has the following properties: (i) μ(f) is linear in f , (ii) if (fn)
∞
n=1 is a sequence

of function in Cc(Rd) which are all supported a common ball B and converging
uniformly on B to a function f (that is to say limn→∞ supx∈B |f(x)− fn(x)| = 0),
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then μ(f) = limn→∞ μ(fn). In the previous case

νa(f) =

∫
Rd

f(x)νa(dx)
def
=

∑
x∈La

f(x) .

The set of Radon measures is equipped with its weak∗-topology, meaning
that a sequence (νn)n∈N of such measures converges to a measure ν if and only if
νn(f)→ ν(f) for any complex-valued continuous function f on Rd with compact
support. As it turns out, the set of discrete measures described above is not weak∗-
closed. Its closure is made of measures of the form ν =

∑
x∈L nxδx, where L ⊂ Rd is

closed and discrete, while the nx’s are integers. Namely it describes configurations
of atoms in which a finite number of atoms are allowed to occupy the same position.
This weak∗-closure is denoted by QDA(Rd), where QD stands for quasi-discrete.
It is a Polish space [2]: namely, its topology can be described through a metric for
which it is complete, while such a metric is neither unique nor canonical. Polish
spaces allow for a good theory of probability [36]. In addition, in the present case,
given a family of pair-potentials (Vab)a,b∈A of the previous type and a bounded
open set U , it becomes possible to compute the local potential energy of a discrete
measure ν = (νa)a∈A as follows

EU,r,R(ν) =
∑
a,b∈A

∑
r<|x−y|<R ;x∈U

νa{x} νb{y} Vab(|x− y|) ,

EU (ν) = sup
r>0,R>0

EU,r(ν) .

It can be shown that EU,r,R is a weak∗-continuous function of ν as long as r > 0
and R < ∞. Consequently EU is lower semicontinuous (in particular configurations
with more than one atom at the same point inside U have infinite local energy). The
previous energy can be decomposed into the energy internal to U , corresponding to
the pairs x, y in U and the interaction between U and its complement U c = Rd\U .
Hence

EU (ν) = Eint
U (ν) + EU ;Uc(ν) .

A real- or complex-valued function over QDA(Rd) will be called cylindrical
if it is continuous and if there is a bounded open set U such that F depends only
upon the restriction of ν to U . Then U will be set to support F .

Definition 1. A configuration of atoms, namely a point in QD, is Delone if there
are 0 < r < R < ∞ such that in any ball of radius r there is at most one atom,
while in any ball of radius R there is at least one atom. The family of Delone sets
corresponding to the parameters r, R is denoted by Delr,R(Rd).

Delone Set Hypothesis: The only physically relevant configuration are Delone sets.

This hypothesis is justified by two observations. First two atoms are unlikely
to get too close to each other, due to the strong repulsion at short distance. Second,
in a condensed phase where the atomic density is high, the attracting part of the
potential makes unlikely the occurrence of some large region void of atoms. That
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such an hypothesis is reasonable will be discussed in the forthcoming sections. The
following result is fundamental.

Proposition 1 (see [2]). The space Delr,R(Rd) is a weak∗-compact and translation
invariant subspace of QDA(Rd). Any translation acts as an homeomorphism. In
addition, given any Delone measure ν and any open ball B with diameter larger
than 2R, the number of atoms in B is bounded by(

diam(B)

2R
− 1

)d
≤ ν(B) ≤

(
1 +

diam(B)

2r

)d
.

Definition 2. Given ν ∈ QDA(Rd) its Hull is the weak∗-closure of its orbit under
the translation group. In particular, if ν is (r, R)-Delone Hull(ν) ⊂ Delr,R(Rd) is
compact and the translation group acts by homeomorphism.

2.3. Thermal equilibrium

Using a pair potential of the previous type, it becomes possible to describe the
thermal equilibrium in a rigorous way using a local Gibbs distribution. Let F be a
cylindrical function supported by U . Then the thermal average of F in U is usually
defined by [27, 28]

EU (F )(ν) =
1

ZU (β, μ; ν)

∞∑
Na=0

∏
a∈A

eβμaNa

Na!

×
∫
xka∈U

∏
a∈A

Na∏
ka=1

dxka e−β(E
int
U (x)+EU;Uc(x,ν)) F (x)

where β = 1/kBT denotes the inverse temperature measure in units of energy,
μ = (μa)a∈A denotes the family of chemical potentials associated with each atomic

species, x = ((xka )
Na

ka=0)a∈A denotes the (random) positions of the atoms of each

species inside U , Na denotes the (random) number of atoms of species a inside
U , while ν ∈ QDA fixes the position of the atoms outside of U . As it is usual,
the chemical potential is fixed by the atomic densities of each atomic species at
a given temperature. Hence EU defines a probability measure on QDA(Rd) called
(local or U -) Gibbs state. It is worth noticing that the kinetic contribution to the
Gibbs state factorizes out and can be ignored here. It is also important to realize
that since the configurations having two atoms or more on top of each other inside
U have an infinite energy, they have zero probability w.r.t. the local Gibbs state.

In principle, the infinite volume limit is rigorously controlled through the so-
called Dobrushin–Lanford–Ruelle equations (DLR) (see [26, 30, 27] for the DLR
equations and [31, 27, 28] for the formalism with classical particle systems). Namely
a Gibbs state is a probability measure P over QDA(Rd) admitting EU as condi-
tional probability when conditioned by the configurations outside U . In particular
such a probability is locally absolutely continuous. It is known that, under certain
conditions on the pair-potentials, the set G of Gibbs states is a Choquet simplex,



Delone Sets and Material Science: a Program 413

namely it is compact and convex. In particular G admits extremal points and any
Gibbs state is a unique convex combination of extremal points. The same property
occurs for the subset Gt of translation invariant Gibbs states. As it turns out, the
extremal states in Gt have two important properties:

(i) they are ergodic under the translation group,

(ii) they correspond to the pure homogeneous phases.

2.4. The ergodicity paradox

The property of extreme translation invariant Gibbs states of being ergodic under
the translation group has several important consequences summarized as follows.

Proposition 2 (see [2]). Let P be a translation invariant ergodic measure on
QDA(Rd). Then

(i) there is a weakly closed subset Ω ⊂ QDA(Rd) such that for P-almost every ν
the Hull of ν coincides with Ω;

(ii) If P is supported by the space of Delone measures, then there are 0 < r ≤ R <
∞ such that P{Delr,R(Rd)} = 1 and P{Delr′,R′(Rd)} = 0 if r′ ≤ r, R′ ≥ R
and (r′, R′) �= (r, R).

The main problem with this approach comes from the following remark: (i)
the set Del(Rd) of all Delone sets is translation invariant, (ii) it is a Borel subset of
QDA(Rd) as a countable union of compact sets. Hence the ergodicity of P implies
that the set of Delone sets has either probability zero or probability one. However
it is quite standard to prove that at positive temperature, the set of configurations
having either an arbitrary big hole somewhere or an arbitrary number of particles
in a small ball somewhere else, has positive density. This can be done by evaluating
the probability of a big hole in a finite volume. This density is very small, but it is
not zero. Hence at positive temperature P(Del(Rd)) = 0 whenever P is a translation
invariant pure phase. Consequently the Delone set Hypothesis is mathematically
incorrect.

There are two ways to reconcile Ergodicity with the Delone Hypothesis. The
first one is to remark that in the limit of zero temperature only the minimal
energy configuration (groundstates) matter. If a big hole occurs, it is energetically
more favorable to fill it. Similarly an accumulation of particles in a small ball is
energetically unfavorable. This is expressed by the following result [24].

Theorem 1 (see [24]). Let the two-body potentials Vab be hard-core, namely there
is r > 0 such that Vab(x) = +∞ if |x| ≤ r. Then, whenever the chemical potentials
belong to a range allowed by the densities of each species, there is R > r such that
each ground-state configuration belongs to Delr,R(Rd).

In the previous statement, the hard-core hypothesis is artificial because it
puts by hand a property that should be spontaneously satisfied by the system. So
the following problem is expected to have a positive answer.
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Problem 1. Prove or disprove that there is a physically relevant class of rotation
invariant pair potentials such that, for a high enough density of atoms, given
the concentration of each atomic species, any zero temperature limit point of
translation invariant Gibbs states gives probability one to Del(Rd). �

The second way to reconcile Ergodicity with the Delone Hypothesis is to
appeal to the persistence theory [29]. Namely rare events have a very short lifetime.
This is why large vacancies are not observed in liquids and solids [25]. Similarly
concentration of many atoms in a small ball is essentially impossible to observe.
If, however, such extreme configurations were easy to observe, then it could be
possible, for instance, to force the fusion of nuclei, namely to allow for cold fusion
experiments. Hence there is a problem with the Thermal Equilibrium approach:
no time scale is present. Introducing the time evolution in the problem is not easy,
but there should be a way to do so in order to reconcile the observations with the
mathematical approach.

Problem 2. Is it possible to develop a mathematically rigorous time dependent
approach in order to reconcile the Delone Hypothesis with the translation Ergod-
icity of Gibbs states? More generally, is it possible to formulate and to develop a
finite time approximation of an ergodic dynamical system permitting to neglect
rare event with too short lifetime? �

3. The anankeon theory

This section provides few arguments, found by physicists, leading to the concept
of anankeon.

3.1. Glasses, frustration, local stress

It is a known fact of practice that most materials, in particular metals, have a ten-
dency to crystallize. Hence producing glasses with metals has been a real challenge
(see [37] for a review). The earliest technique was melt quenching, namely an ul-
trafast cooling with cooling rate of 105− 106 K/s. This technique limits sample to
thin ribbons. Other techniques were developed later. Eventually a compound with
low cooling rate was produced by Inoue et al. (see [12]). Later the class of vitalloy
was produced by Johnson et al. (see [13]) and is nowadays the most studied class
of bulk metallic glasses. Vitalloy can be casted in large samples of several centime-
ters. It was quickly realized that these new materials had exceptional mechanical
properties, boosting the subject in the front stage of material science.

Thanks to the theoretical modeling of spin-glass the concept of frustration
emerged as a fundamental aspect of glassy states [35]. It was slowly understood
that such a frustration occurs in metallic glasses whenever several atomic species
with different atomic radii where mixed together in such proportions as to force
atoms of different size to be close to each other. In this way the number of small
clusters that can be formed in the melt is getting larger [6, 18] and crystallization
becomes unlikely.
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Another ingredient that should be included, advocated for a long time by
Egami et al., is the local stress exercised by neighboring atoms on a single one.
For indeed, as can be shown by a Thomas–Fermi approximation [32, 34], atoms are
not exactly hard ball. They can be squeezed a little, however big is their resistance
to pressure. This leads to associating with each atom a stress tensor σi, by adding
the contributions of forces acted upon by the neighboring atoms. An important
observation, made through numerical simulations using molecular dynamics, is the
following:

Egami-Srolovitz Principle: In the liquid phase, the atomic stress tensors behave
like independent identically distributed random Gaussian variables [33]

More precisely, a stress tensor σ is a 3×3 real symmetric matrix. It is usually
decomposed into its trace part p = (1/3)Tr (σ), called the pressure, and its traceless
part τ̂ = σ − p called the deviatoric stress. Then the parameter τ , defined by
τ2 = (3/2)Tr (σ̂2), is called the von Mises stress. The atomic stress distribution is
given by [33] the six-dimensional integral

Prob{σi ∈ A} = 1

Z

∫
A

e−β(p
2/2B+τ2/2G) dσ .

where A ⊂ M s
3 (R) is any Borel set, dσ denotes the usual Haar measure on M s

3 (R)
and Z is the normalization constant. The physical parameters B,G are called the
bulk modulus and the shear modulus respectively. This expression must, however,
be renormalized at lower temperature, when approaching the glass transition. This
renormalization, proposed by Eshelby [8], is the analog for continuum mechanics to
the Clausius–Mossotti formula for dielectric. Namely the long distance propagation
of stress, due to the elasticity equation, creates a local effective stress field on the
local atom which can be summarized as a modification of the values of B,G. This
numerical study suggests that, in the liquid phase, the stress degrees of freedom are
dominant and behave like a free gas at equilibrium, in complete analogy with the
Einstein theory of phonons in crystals. In particular, the heat capacity becomes
elementary to compute and behaves like a constant at high temperature: this is
the origin of the Law of Dulong–Petit, confirmed by experiments [4] (see Figure 1
and eq. (1) in Section 1.3). The main question is to give this finding an explanation
from first principle.

3.2. Anankeon

The intuitive reason why the local stress is actually random in the liquid phase
can be seen by imagining what the life of the local atom should be. The atom can
never find a position that minimizes all pair potential energy and this is the result
of the local frustration. Even in the ideal situation, for which the local cluster
is made of identical atoms localized on the center and the vertices of a perfect
icosahedron, the distance between the central atom to the vertex-ones is 5% less
than between two vertex-atoms, meaning that it is not possible to minimize all
pair potentials simultaneously. The random thermal motion then intervenes to
move atoms around in search for a better position. Hence the corresponding stress
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tensor felt by each atom is constantly varying under the stress of circumstances,
a concept that can be translated by the word αναγκεια (anagkeia) in Greek.

There is a a character of the Greek mythology that could fit with this concept,
the goddess Ananke, whose name comes from the greek word anagkeia. Ananke
was representing a power above all including the Gods of the Greek Mythology.
It expresses the concepts of “force, constraint, necessity” and from there it also
means “fate, destiny” to lead to the concepts of compulsion, torture (see the entry
Ananke in Wikipedia). From this, the word anankeon can be coined to describe the
dominant degrees of freedom taking place in the liquid phase [1]. What are these
anankeons? It is the purpose of what follows to make this concept more precise.
In the physics literature focussing on this problem, these degrees of freedom are
also called topological, meaning that the local atomic arrangement, also called local
clusters, or local patches in tiling theory, is modified. Another way to put it is to
describe the association of atoms in terms of bonds in a way similar to chemical
bonds. The movement of atoms corresponds to a random change in the bonding
between atoms.

4. Topology and combinatoric of the space of Delone sets

It will be argued that a Voronoi construction [44] (also called Dirichlet tessela-
tion) on the set of configurations is the right mathematical tool liable to describe
anankeons. In what follows, the Delone set Hypothesis is assumed to hold and all
atomic configurations will be chosen in Delr,R(Rd) which will be denote by Del. For
simplicity the specification of various atomic species and of their relative concen-
tration will be omitted here. Then Del0 will denote the set of such configurations
having one atom at the origin. This section is a summary of a work in preparation
[38]. In particular all Theorems and other claims will be proved there. The author
suspects that several of these results are already known but did not find yet the
corresponding references.

4.1. Delaunay triangulation

The Voronoi tiling point of view, was already used by Bernal [3]. Given a discrete
Delone set L ⊂ Rd, define the Voronoi cell Vx of a point x ∈ L (called atoms
here) as the set of points in the space closer to x than to any other atom in L.
Since L is Delone, say with parameters (r, R), it follows that Vx is an open convex
polytope containing the open ball B(x; r) and contained in the ball B(x;R). The
Voronoi tile at x is just the closure Tx = Vx. Two distinct Voronoi cells have no
point in common, while two distinct Voronoi tiles may intersect only on a common
face. Two distinct atoms x, y ∈ L will be called nearest neighbors whenever their
Voronoi tiles are touching along a common face of codimension one (namely of
dimension d−1). The set E of pairs e = (x, y) of nearest neighboring atoms, called
edge or bonds, defines with L a graph G = (L,E) which will be called the Delone
graph. It is known in the literature as the Delaunay Triangulation [40]. It plays
the role of a dual lattice. This graph is simple (between any two vertices there
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is at most one edge), connected (any two vertices can be linked by a finite path,
namely a sequence of edges touching by a common vertex). Moreover the length
of any edge lies between 2r and 2R. Hence the graph distance dG(x, y) between
two atoms, defined as the length of the shortest path linking x to y, is equivalent
to the Euclidean distance.

4.2. Voronoi points, Delaunay triangulation and the empty sphere property

In this work the name Voronoi point will be given to a vertex of one of the Voronoi
tiles, namely a face of dimension zero (see Figure 3). An atomic neighbor (or a-
neighbor) of a Voronoi point is an atom with Voronoi tile containing this point. For
example, in Figure 3, the Voronoi point indicated on the left has 4-a-neighbours,
while a small deformation of the atomic positions, as seen on the right shows that
this Voronoi point has split and each of the new Voronoi points has exactly 3-a-
neighbors (generic situation). It is important to remark that atomic sites have a
material existence in a solid, while Voronoi points are just a convenient mathe-
matical concept that does not correspond to any material point in the solid.
The following result is classic and goes back to [40]

Theorem 2. Let L ∈ Del0.

(i) Any Voronoi points of L has at least d + 1 a-neighbors. It belongs to the

interior of the convex hull of its a-neighbors. Generically, in Del0, all Voronoi
points have exactly d + 1 neighbors.

(ii) Empty sphere property: The set of a-neighbors of a Voronoi point y of L is
contained in a sphere centered at y the interior of which contains no other
atoms. Conversely, any sphere in Rd defined by at least d + 1 atoms of L
which does not contained atoms in its interior admits a Voronoi point at its
center.

Figure 3

A Voronoi point will be called simple whenever it has exactly d + 1 a-
neighbors. Generically, all Voronoi points of L are simple. Hence they are at the
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center of an empty sphere and the corresponding atoms give elementary d-simplex
(triangles in 2D and tetrahedra in 3D) making up a triangulation of the space,
called the Delaunay triangulation.

4.3. Graph balls and local topology

A graph ball is a subgraph G(x, n) = (V(x, n),E(x, n)), where V(x, n) is the set of
all atoms at a graph distance less than or equal to n ∈ N from x, and E(x, n) is
the set of all edges (y, z) ∈ E such that y, z ∈ V(x, n). Then x is the center and n
the radius of this graph ball. The support of a graph ball is the union of Voronoi
tiles centered at its vertices.

Two graphs G,G′ are called isomorphic if there are bijective maps φv : V→ V′

and φe : E→ E′ compatible with the edge-boundary, namely the vertices linked by
the image φe(e) (the boundary) of an edge e is the φv-image of the vertices liked
by e. Equivalently a graph isomorphism is an isometry of its vertex set endowed
with the graph distance.

A local patch is an isomorphism class of graph balls. In particular all such
balls have the same radius. In this sense a local patch is topological, because it is
likely to be insensitive to small move of the corresponding atoms. It is essential to
remark that

Proposition 3. The number of local patches of given radius is finite namely the
Delone Graphs have Finite Local Complexity.

In other words, when the atoms are moving a bit, the corresponding Delone
graph is deformed, but its isomorphism class does not change.

4.4. Alloys

If L represent the position of the atoms in an alloy with more than one species,
the Voronoi construction can be done provided the Euclidean distance is replaced
by a local metric taking care of the different atomic radii. Namely Vx is defined as
the set of points z ∈ Rd such that ‖z − x‖/ax < ‖z − y‖/ay for all y ∈ L distinct
from x, where ax denotes the atomic radius of the atom x. Then the Voronoi cells
are curved polytopes, namely their faces are made of pieces of spheres. But all the
combinatorial aspect described here will persist.

4.5. Acceptance domains

Given a local patch P of radius n, its acceptance domain D(P) is the set of all

Delone sets in Del0 with graph ball of radius n, centered at the origin, given by
P. Given n ∈ N, the family of all acceptance domains of local patches of radius n
is a partition of Del0. A local patch will be called generic whenever its acceptance
domain is open.

Theorem 3 ([38]). A local patch P of radius n is generic if and only if the support of
the n-graph ball centered at the origin of any atomic configuration in its acceptance
domain contains only simple Voronoi points.

The closure of an open acceptance domain will be called a domain of contiguity.
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Theorem 4 ([38]). The set of domains of contiguity of patches of radius n is a

finite cover of Del0.

In a sense the family of generic patches of given radius generates a finite tiling of
Del0, if the tiles are the domain of contiguity while their interiors are the open
acceptance domains. Moreover passing from n to n + 1 gives a refinement of this
tiling, namely any contiguity domain of radius n is tiled by the contiguity domains
of radius n+1 it contains. The following shows that genericity coincides with full
probability with respect to any Gibbs state.

Theorem 5 ([38]). Given P a locally absolutely continuous probability measure on

Del0 the boundary of a contiguity domain has zero probability.

4.6. Graph of contiguity

Given n ∈ N, two contiguity domains of radius n are contiguous if their intersection
contains a subset of co-dimension one. Then the graph of contiguity Gn = (Vn,En)
is defined as the graph with set of vertices Vn given by all domain of contiguity
of radius n (or equivalently by the set of generic patches) and edge set En given
by contiguous pair of domains of contiguity in Vn. As it turns out

Theorem 6 ([38]). Gn is a finite, simple and connected graph. The number of its
vertices increases exponential fast with n.

Figure 4. Pachner move in dimension 2: a 2↔ 2 Voronoi point collision.

4.7. Contiguity and Pachner moves

The previous description makes sense from a mathematical standpoint. But it looks
extremely complicate at first sight, since the space Del0 is infinite dimensional:
indeed, the restriction of Del0 to any bounded domain U can be seen as the disjoint
union of a family of open sets in Rnd, where n denotes the number of atoms inside
U . It is actually simple to describe a transition from a domain of contiguity to
a contiguous one. For indeed, such a move requires only one local change in the
Delone set. To express this fact more precisely let n ∈ N be chosen as the radius of
patches. Then a generic atomic configuration belonging to the intersection T0 ∩T1
of two contiguous domains of contiguity is one with only one non simple Voronoi
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point within the ball of radius n centered at the origin. In addition, this Voronoi
points admits exactly d + 2 a-neighbors. In particular:

(i) in dimension 2, this Voronoi point admits 4 atomic neighbors (see Figure 4),
(ii) in dimension 3 it has 5 atomic neighbors (see Figure 5).

Figure 5. Pachner move in dimension 3: a 2↔ 3 Voronoi point collision.

As soon as the configuration moves away from the T0∩T1, this nongeneric Voronoi
point splits into a family of generic ones and this splitting is known in triangulation
theory used in Geometry as a Pachner move [43] or bistellar flips. More precisely
(see Figure 4 and Figure 5),

(a) in dimension 2, two generic Voronoi points collide at the transition to give
two other ones;

(b) in dimension 3, two generic Voronoi points collide to give three other ones or
vice-versa;

(c) in higher dimension l Voronoi points collide at the transition to give m =
d + 2− l other ones for 2 ≤ l ≤ d.

5. Applications to material science

The previous mathematical program can be applied in practical circumstances.
Pachner moves, seen as collisions of Voronoi points leads to several practical con-
sequences. In a sense the anankeon can be seen as the degree of freedom associated
with the motion of Delaunay simplex,(triangle in dimension 2, tetrahedron in di-
mension 3) formed by the d+1 atoms around the Voronoi point. Hence an anankeon
can be labeled by this Voronoi point.

5.1. Pachner moves in materials

The previous results should apply in real material, apart from taking energy con-
siderations into account. A Pachner move corresponds to a mechanical motion of
the atomic configuration passing through a saddle point of the potential energy.
In particular if the atomic configuration corresponds to a point of the energy sur-
face close enough to the saddle point, it looks almost like the perfect nongeneric
Voronoi point. In practice it means that when several Voronoi points are very
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close to each other, then the configuration is physically equivalent to a nongeneric
unique Voronoi point. In the scheme described in Section 4.5, it means that the
boundary of a domain of continuity is actually thicken by the energetic consider-
ations. For this reason the number of atoms involved in a Pachner move is likely
to be a random variable. This is what has been observed recently in the Egami
group [49] (see Figure 6).

Figure 6. Distribution of the number of atoms involved in a Pachner
move [49].

It is remarkable that this distribution is Poissonian with average 5 as predicted by
the Pachner theory in dimension 3.

5.2. Pachner moves and STZ

The shear transformation zone theory (STZ) proposed by Langer et al. [9, 10, 15,
16, 17], consists simply in remarking that indeed such Pachner moves occur in
glasses when submitted to a strong shear. In the glass phase, however, the atoms
are blocked in their position, so that the dominant degree of freedom is provided
by the phonons only. However, if a shear is applied, first the solid reacts elastically.
But beyond some critical value of the shear, the deformation becomes irreversible.
At the atomic scale, this can be interpreted as one Pachner move somewhere and
the numerical simulations show that such a move does not come alone, it is followed
by a cascade of moves in the vicinity. In other words a small region about the germ
behaves like a liquid, and this is exactly what an STZ is. The spatial distribution
of such STZ is random, presumably Poissonian with a density depending upon
the applied shear. This is exactly the hypothesis made in the STZ theory. Each
Pachner moved is polarized, as can be figured out from Figures 4 and 5. In 2D
a Pachner moves corresponds the a switch of a diagonal bond from left to right
or vice-versa. In 3D it corresponds to a collision of 2 Voronoi points giving 3 or
vice-versa. In both cases, there is a change between two types of configurations,
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each of which being called a polarization. Then the local parameter is provided by
the numbers N± of each of these varieties of groups Voronoi points in the STZ.
This number is a random variable the time evolution of which is assumed to be
Markovian, namely it follows a Master Equation. As it turns out, this effect can be
added to the equation of elasticity, including the temperature effects. Eliminating
the parameters N± from them leads to a non linear partial differential equation
which describe accurately the plasticity region in the strain-stress relation for a
metallic glass [10]. Using this equation it becomes possible to simulate numerically
in a realistic way a fracture of the material [20].

5.3. Atomic scale Markov process

In order to describe the anankeon dynamics, the previous considerations leads to
represent it by a Markov process on the graph of contiguity Gn. The radius n
is simply a measure of the volume of the region under consideration. A Markov
process represents the dynamics of a random walker moving on the set of vertices
of the graph through the edges (standard references are [47, 48] for discrete time
and [45, 46] for continuous time). Since Gn is a finite graph, a Markov process can
be equivalently described by its generator Ln, namely a linear operator acting of
the linear space Hn of complex-valued functions defined on Vn, as follows

Ln(f)(P) =
1

TP

∑
Q∼P

PQ←P (f(P)− f(Q)) .

in such an expression, P,Q label patches of radius n which are contiguous, and
PQ←P represent the probability to jump from P to Q. Moreover TP represents the
waiting time of the random walker at the patch P. Since this Markov process is
supposed to define the thermal equilibrium motion, the jump probability is given
by a Gibbs factor of the from

PQ←P =
1

Z
e−β(F (Q)−F (P)) ,

where F (P) represents the free energy of the configurations represented by P, while
Z is a normalization constant ensuring that the sum over Q of the r.h.s. equals 1.
On the other hand, the waiting time is provided by an Arrhenius law and depends
only of the potential barrier W (P→ Q) between the initial configuration and the
saddle points during Pachner moves

T (P) = eβW (P→Q) .

Numerical simulations based on molecular dynamics permit to estimate precisely
the previous parameters [41, 42] and, in principle, to test the validity of such an
approach. However, for the previous description to be realistic, the atomic stress
degrees of freedom must be introduced in the Markov modeling.

5.4. Viscosity and glass transition

Once the Markov dynamics is defined and tested, it becomes possible to compute
the viscosity. It is defined as the linear response to an applied shear in terms of
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the time derivative of the strain. Thanks to the Green–Kubo formula, it is also
equal to the stress-stress correlation function. As the temperature decreases, the
thermal activation moving the atoms around becomes less effective. In particular
given some shear, it takes more Pachner moves to achieve the same amount of
strain variation. Hence the typical time scale involved in the viscosity (called the
Maxwell time) becomes much larger than the time scale involved in the definition
of the Markov process. The glass transition is achieved when the Maxwell time
becomes so large as to make it impossible to observe. Using this principle it be-
comes possible to give a formula for the temperature of the glass transition [39]
fitting with experimental datas.

6. Geometry on the space of Delone configurations

This Section is conjectural and proposes a program liable to define on the compact
space Del0 a geometry, namely a metric, liable to describe, in analogy with General
Relativity, the dynamics of a condensed material in terms of a geodesic flow with
respect to this metric structure.

6.1. Infinite volume limit

In Section 5.3 a Markov process is proposed as a modeling of the time evolution
of a liquid or glassy material. This Markov process, though, is defined on graph
balls of a fixed finite radius n ∈ N. The question remains whether the sequence
of such process converges to some limit in the limit where the radius n tends to
infinity. This is an entirely open problem so far. However, there are indications
that it could be possible to prove the convergence. One strategy could be to use
the martingale convergence Theorem [57, 58]. It is a technique used elsewhere to
prove the existence of a diffusion process on fractals like the Sierpinski carpet
[50]. If so, then the generator L of this limiting Markov process will acts on the

entire Del0 space as a Dirichlet form [51, 52, 59]. Another strategy could be to use
convergence Theorem for Markov semigroups on C∗-algebras [53].

6.2. Dirichlet forms and gradient operators

It is important though that the Markov process has the so-called Feller property,
namely that the image of a continuous function on Del0 by the process stays
continuous. If so, this Markov process should be represented as a Markov semigroup
on the C∗-algebra A = C(Del0), namely the space of continuous functions on
Del0. More is needed though: namely the domain of L should contain a dense ∗-
subalgebra of A. In a such a case, an extension of the Lindblad Theorem leads to
the following: there are

(i) a C∗-right A-module E

(ii) a ∗-representation π : A → End(E)

(iii) a linear map ∂ : C(Del0)→ E such that, for every f, g ∈ A
L(f∗g)− f∗L(g)− L(f∗)g = 〈∂f |∂g〉E
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and that ∂ becomes a derivation, namely

∂(fg) = ∂(f)g + π(f)∂(g) .

In other words, ∂ is a candidate for a generalized version of the gradient
operator. Since the inner product 〈 · | · 〉E takes on values in A = C(Del0), it
follows that

‖f‖Lip def
= sup

ν∈Del0
|〈∂f |∂f〉E(ν)|1/2 ,

plays the role of a a Lipshitz norm. Hence, by the Kantorovich duality [61, 62]
theory, it is likely to define a metric on Del0 through the formula

dL(ν, ν
′) = sup {|f(ν)− f(ν′| ; ‖f‖Lip ≤ 1} .

Problem 3. Prove that all conditions are fulfilled to make sure that the metric dL
is well defined and generates the weak∗-topology on Del0. �

Such a problem has already been investigated in full generality by Rieffel in
the context of Quantum Metric Spaces [65, 66, 67, 68, 63], providing a criterion to
answer positively to this question.

6.3. The curvature problem

The previous construction, if it works, leads to a structure of compact metric
space on Del0 generated by the dynamics describing the time evolution for glasses
and liquids. One important question is to check whether such a structure share
with Riemannian manifolds a notion of curvature. In Noncommutative Geometry,
thanks to the work of I. Palmer [64], a Riemannian structure can be defined on
any compact metric space using the concept of spectral triple [55]. However since

the Hausdorff dimension of Del0 is infinite, the construction cannot be used very
far. In particular it is likely that a Connes state, namely a Dixmier trace, does not
exist. Hence one can only expect a KMS state with respect to the Dirac operator
associated with the spectral triple.

Problem 4. Elucidate the meaning of the KMS condition produced in this way.
Can one see the Connes state as the equilibrium invariant state associated with
the Markov dynamics generated by L? �

In addition, the definition of the curvature has not yet reached a consensus
in Noncommutative Geometry [56]. So, it might be necessary to come back to
the usual approach in Metric Geometry [60, 54]. The celebrated Gromov Theorem
asserts that the set of Riemannian manifolds with uniformly bounded volume,
curvature and injectivity radius, is precompact in the Hausdorff–Gromov metric
topology. It raises the question of what is a limit point in this topology. Examples
are given by Alexandrov spaces, namely path-metric spaces in which geodesic exist
between any pair of points, the concept of angle between two geodesic starting at
the same point is well defined, and in which a concept of scalar curvature exists
[54]. The curvature is obtained from comparing geodesic triangles in this space
with isometric ones in model Riemannian manifolds with constant curvature [54].
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Problem 5. If the construction of Section 6.2 can be made, is it possible to see
Del0 as an Alexandrov space? If yes, is there an interpretation of the curvature in
terms of the Continuum Mechanics of the condensed material under scrutiny? �

Such a relation is exactly given by the Einstein equation in General relativity,
linking the gravitational force to the Geometry of the Universe. This series of
question suggests to look at whether such an interpretation is likely to hold in the
description of a condensed material.
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