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Abstract

For a magnetic Hamiltonian on a half-plane given by the sum of the Landau operator with

Dirichlet boundary conditions and a random potential, a quantization theorem for the edge

currents is proven. This shows that the concept of edge channels also makes sense in presence

of disorder. Moreover, Gaussian bounds on the heat kernel and its covariant derivatives are

obtained.

r 2003 Elsevier Inc. All rights reserved.

1. Introduction

Topological quantization of edge currents has been proven rigorously only for
discrete magnetic Schrödinger operators [23,18,14]. The purpose of this work is
prove similar results also for continuous Schrödinger operators. In order to describe

the main result, HL denotes the Landau operator on L2ðR2Þ and V is a differentiable

potential given as sum of a periodic and a random part. Let bHH denote the restriction

of HL þ V to the half-plane with Dirichlet boundary conditions and let J1 ¼ i½ bHH;X1�
be the current operator along the boundary. Suppose that the interval D is a gap of

HL þ V (but this is then not a gap of bHH) and that G :R-½0; 1� is a decreasing
differentiable function equal to 1 to the left of D and 0 to its right. Hence its
derivative G0 is negative and supported by D: Furthermore let w be a smooth,

positive, and compactly supported function on R with unit integral, namely
R
w ¼ 1:
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Under these conditions, it is shown that wðX1ÞJ1G0ð bHHÞwðX1Þ is a traceclass operator
and that

E TrðwðX1ÞJ1G0ð bHHÞwðX1ÞÞ ¼
1

2p
Ind;

where E denotes the disorder average and IndAZ is the index of a certain Fredholm
operator which depends on D; but not on the choice of the functions G and w: The
index is also equal to the non-commutative winding number of the unitary operator

U ¼ expð	2pi Gð bHHÞÞ:
The quantity ETrðwðX1ÞJ1G0ð bHHÞwðX1ÞÞ can physically be interpreted as the

conductivity of the edge. Indeed, 	G0ð bHHÞX0 is a density matrix of edge states in D
which is normalized because 	

R
G0 ¼ 1: The operator wðX1ÞJ1G0ð bHHÞwðX1Þ gives the

corresponding current along the boundary and within a in strip of unit width which
is perpendicular to the boundary. According to the above, its averaged trace is
quantized. Another interpretation, fully developed in [23], is obtained when the

smooth function G0ð bHHÞ approximates 1
jD0 j wD0 ð bHHÞ where wD0 is the indicator function of

the interval D0CD: The boundaries of D0 are thought to be the local Fermi levels at
the upper and lower boundary of a bar-like sample. Then the above quantity
measures the net edge current, namely the sum of the current along the upper
boundary and the (reversed) one on the lower boundary. This net edge current is
hence quantized. Moreover, the above index is equal to the bulk conductivity as
given by the Kubo formula as long as the Fermi level lies in D (the proof of this fact
is deferred to a forthcoming work [19]). Hence both edge and bulk currents in the bar
are quantized with the same Fredholm index, a fact of crucial importance for the
quantum Hall effect (see [18,23] and references therein).
Let us briefly discuss the hypothesis. The gap condition on (the density of states

of) H should be satisfied in clean high-mobility samples. However, the quantization
of the edge currents probably also holds under a weaker dynamical localization
condition, just as the quantization of the Kubo–Chern formula does [6,1]. The
Dirichlet boundary conditions could also be replaced by a soft edge modeled by a
confining potential. Technical modifications would mainly be needed in Section 6.
Compared to [18], the main technical difficulties en route concern proving

Gaussian bounds on the heat kernels as well as their (covariant) derivatives. Even
though this is known for the heat kernels themselves [24,13,7], to our knowledge the
derivatives have not been controlled as explicitly. The proof of the quantization of
edge currents is based on an index theorem for covariant families of unitaries
(Section 9).

2. Magnetic Hamiltonians

Let ~XX ¼ ðX1;X2Þ be the position operator on L2ðR2Þ and ~@@ ¼ ð@1; @2Þ the

associated partial derivatives. Then ~XX and i~@@ are self-adjoint with common core
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CN

c ðR2Þ; the smooth functions with compact support. Setting g ¼ qB
_ ; the Landau

operator in the Landau gauge is then given by

HL ¼ _2

2m
ði@1 	 gX2Þ2 þ

_2

2m
ði@2Þ2:

In order to simplify notations, units are chosen such that _2=m ¼ 1: With the

following operators (all with common core CN

c ðR2Þ)

D1 ¼ i@1 	 gX2; D2 ¼ i@2; K1 ¼ i@1; K2 ¼ i@2 	 gX1;

it can be written as HL ¼ 1
2
ðD2

1 þ D2
2Þ: One readily verifies that both D1;2 commute

with both K1;2: Hence the Landau operator has a large symmetry group and its

spectrum is infinitely degenerated. The D1;2 and K1;2 are respectively the generators

of the Landau translations Tð~xxÞ and the magnetic translation operators Uð~xxÞ
defined by (for cAL2ðR2Þ and ~xx ¼ ðx1; x2ÞAR2)

ðUð~xxÞcÞð~xxÞ ¼ #Fð~xx;~xx 	~xxÞcð~xx 	~xxÞ; #Fð~xx;~xxÞ ¼ e	igx2x1 ;

ðTð~xxÞcÞð~xxÞ ¼ Fð~xx;~xx 	~xxÞ cð~xx 	~xxÞ; Fð~xx;~xxÞ ¼ e	igx1x2 :

It can be easily verified that the following relations hold.

Uð~xxÞUð~ZZÞ ¼ #Fð~xx;~ZZÞUð~xx þ~ZZÞ; Tð~xxÞTð~ZZÞ ¼ Fð~xx;~ZZÞTð~xx þ~ZZÞ:

The aim is now to add a potential to HL having possibly a periodic and a
disordered component. Let the set O of configurations of the potential be compact

and let R2 act homeomorphically on it. This action will simply be denoted by o/~xx �
o; oAO: The set O is often called the hull [5]. Furthermore, let P be an invariant and
ergodic probability measure on the hull. Given a measurable positive function

VALNðO;PÞ; a family of bounded multiplication operators Vo on L2ðR2Þ is defined
by

ðVocÞð~xxÞ ¼ Vð	~xx � oÞ cð~xxÞ:

The family of Hamiltonians studied here is now Ho ¼ HL þ Vo: Note that Ho

transforms covariantly with respect to the magnetic translations:

Uð~xxÞHoUð~xxÞ� ¼ H~xx�o;
~xxAR2: ð1Þ

By functional calculus, any (continuous) function of the Hamiltonian is also
covariant.
This work will mainly focus on the analysis of magnetic operators with an infinite

boundary. Such a boundary could be modeled by a confining potential, but in this
work Dirichlet boundary conditions are chosen. Hence let Ho;s be the operator Ho

restricted to the domain f~xxAR2 j x24	 sg and with Dirichlet boundary conditions.
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The operator bHH from the introduction was meant to be of that type. Ho;s now

satisfies the following covariance relation:

Uð~xxÞHo;sUð~xxÞ� ¼ H~xx�o;sþx2
; ~xxAR2: ð2Þ

This relation can be made even more similar to (1) if one introduces the new (non-

compact) hull #O ¼ O� ðR,NÞ and furnishes it with the R2-action ~xx � ðo; sÞ ¼
ð~xx � o; s þ x2Þ where Nþ x2 ¼ N: As s ¼ N is left invariant under the shift, the
point oAO (without boundary conditions) can be identified with the point

ðo;NÞA #O (boundary conditions pushed to N). In other words, equation (2)
incorporates (1).

Example. For sake of concreteness, let us construct such a potential explicitly. Set

O ¼ R2=Z2 � ½	l; l��Z2

and let P be the product measure of the Lebesgue measures
with i.i.d. measures on the l-components. If o ¼ ð~xx0; ðloð~nnÞÞ~nnAZ2Þ; then the action is
given by ~xx � o ¼ ð~xx þ~xx0; ðloð~nn þ ½~xx þ~xx0�ÞÞ~nnAZ2Þ where ½~xx� denotes the integer parts
of ~xx: Suppose now given two positive functions w; vALNðR2Þ where w is periodic

with unit cell ½0; 1�2 and v vanishes on the boundary and outside of the unit cell. Then
set VðoÞ ¼ wð~xx0Þ þ loð0Þ vð~xx0Þ: The associated multiplication operator is the sum of
the periodic potential and disordered potential of the following type:

Voð~xxÞ ¼ wð~xx þ~xx0Þ þ
X
~nnAZ2

loð~nnÞvð~xx þ~xx0 þ~nnÞ:

It is well-known that the periodic potential splits the Landau bands, each giving
Harper-like spectra, and that the disordered potential leads to localization
(e.g. [9,16], and references therein).

3. Analysis of covariant families of integral operators

Eq. (2), incorporating (1), is a covariance relation for the Hamiltonians ðHbooÞbooA #O
:

By functional calculus it leads to a covariance relation also for functions of these
operators. As will be proven in Sections 4 and 5 below, certain functions of the

Hamiltonians Hboo will actually be bounded integral operators on L2ðR2Þ: Therefore,
this section is concerned with the set A of weakly continuous families A ¼ ðAbooÞbooA #O

of bounded integral operators on L2ðR2Þ for which the covariance relation

Uð~xxÞAbooUð~xxÞ� ¼ A~xx�boo; ~xxAR2; ð3Þ
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holds and

jjAjj
N

¼ ess supboo jjAboojjoN;

where the essential supremum is taken with respect to the product of the probability
measure P with the Lebesgue measure. As already mentioned above, O� fNg is an
R2-invariant compact subspace of #O so that ðAo;NÞoAO forms also a weakly

continuous covariant family of bounded integral operators on L2ðR2Þ: The set of
these families is denoted byAN and in order to simplify notations Ao will be written
for Ao;N:
Pointwise linear combinations and products of such families form new families,

hence A is actually an algebra, a generalized convolution algebra. In fact, various
crossed product algebras are naturally associated to covariant families of integral
operators (smooth and C�-algebras, as well as a von Neumann algebra [5,12]), but
this point of view will not be developed here. Let us only mention that the restriction
of a family ðAbooÞbooA #O

to values s ¼ N yields an algebra homomorphism A-AN

which plays an important role in [19]. In the following, the standard algebraic
structures like derivations, covariant derivatives and various traces for covariant
operator families are introduced.
The integral kernel of Aboo will be denoted by /~xx jAbooj~yyS: Continuity and

differentiability properties of these kernels in ~xx and ~yy; as well as estimates on the
decay in ~xx 	~yy will be studied in the next section. These properties transpose again to
sums and products. Using the covariance relation and the Cauchy–Schwarz
inequality, one establishes that

jjAjj
N
p
Z
R

d~xx ess supboo j/~xx jAbooj~00 Sj: ð4Þ

Given AAA; new elements rjAAA; j ¼ 1; 2; are defined by

ðrjAÞboo ¼ i½Xj ;Aboo�; ð5Þ

as long as the r.h.s. are again bounded integral operators. By (4), this can be assured
for through decay properties of the kernels /~xx j Aboo j~yyS in j~xx 	~yyj:rj is a derivation,

i.e. it satisfies the Leibniz rule rjðABÞ ¼ rjðAÞB þ ArjðBÞ: Furthermore, DjAAA

has integral kernel

/~xx j DjAboo j~yyS ¼ ði@xj
	 dj;1gx2Þ/~xx j Aboo j~yyS; ð6Þ

again provided the r.h.s. is the integral kernel of a bounded operator. If a covariant
family A ¼ ðAo;sÞo;s is actually independent of o; then the covariance relation

implies that the integral kernel /~xx j Ao;s j~yyS depends only on x1 	 y1;x2; y2 and that

of /~xx j Ao;N j~yyS only on ~xx 	~yy: As a consequence, for such A

½D1;Ao;s� ¼ igr2Ao;s; ½D2;Ao;N� ¼ 0: ð7Þ
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Let w be a positive compactly supported function on R satisfying
R

dx wðxÞ ¼ 1:

For j ¼ 1; 2; let us set wjð~xxÞ ¼ wðxjÞ and consider wj also as a multiplication operator

on L2ðR2Þ: Let jjT jj1 denote the (Schatten) traceclass norm of an operator T on

L2ðR2Þ: Whenever jjw1Aboojj1 is integrable w.r.t. P; the family AAA will be calledcTT-

traceclass. Whenever jjw1w2Ao;Njj1 is integrable w.r.t. P; the family AAAN is called

T-traceclass. For traceclass families, one can set

cTTðAÞ ¼
Z

dPðoÞTrðw1Ao;sÞ; TðAÞ ¼
Z

dPðoÞTrðw1w2Ao;NÞ;

where Tr is the usual trace on L2ðR2Þ: In order to write out more explicit formulas

and see that the definition ofcTT is independent of the choice of s; recall that if T is a

traceclass integral operator on L2ðR2Þ with jointly continuous integral kernel, then

TrðTÞ ¼
R

d~xx/~xxjT j~xxS (jointly continuous means that ð~xx;~yyÞ//~xxjT j~yyS is con-

tinuous; references herefore are given, e.g., in [3] where it is also shown that the same
formula holds if the integral kernel has a finite number of isolated point
singularities). Using the covariance relation (3) and the invariance of P;

cTTðAÞ ¼
Z

dPðoÞ
Z

ds /~00jAo;sj~00S; TðAÞ ¼
Z

dPðoÞ/~00jAo;Nj~00S: ð8Þ

This shows that A iscTT-traceclass (respectivelyT-traceclass) if the integral kernels of
jAj are jointly continuous and integrable in the 2-direction (respectively, jointly
continuous and uniformly bounded).

Lemma 1. cTT and T are traces on A: This means in the case of cTT that for A;BAA

with cTT-traceclass B:

(i) cTTðABÞ ¼cTTðBAÞ:
(ii) cTTðABÞpjjAjj

N
cTTðjBjÞ:

(iii) cTTðjA þ BjÞpcTTðjAjÞ þcTTðjBjÞ:

Similar relations hold for T:

Proof. Because of the translation invariance of P; (i) can immediately be deduced

from the definition ofcTT: In order to prove (ii), one can use the polar decomposition
B ¼ U jBj where the unitary U ¼ ðUbooÞoA #O is easily seen to satisfy the covariance

relation, just as the positive operator jBj: Then

cTTðABÞ ¼
Z

dPðoÞTrðAbooUboojBboojw1Þp Z
dPðoÞjjAbooUboojjTrðjBboojw1ÞpjjAjj

N
cTTðjBjÞ:

For the proof of (iii), set jA þ Bj ¼ UðA þ BÞ by polar decomposition. ThencTTðjA þ
BjÞ ¼cTTðUAÞ þcTTðUBÞ which allows to conclude by (ii). &
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It follows from the covariance relation and the Birkhoff theorem that T is the

trace per unit volume [5], whilecTT is the (disorder averaged) trace per unit volume in
the 1-direction combined with the usual trace in the 2-direction. Finally, let us
remark that the traces are invariant w.r.t. the derivations:

cTTðr1AÞ ¼ 0; TðrjAÞ ¼ 0; j ¼ 1; 2;

as long as A has jointly continuous integral kernel and r1A is cTT-traceclass (resp.
rjA is T-traceclass). Under these hypothesis, this can directly be verified from the

expressions (8).

4. Integralkernels associated to the planar Hamiltonian

In this section, Hamiltonians without boundary conditions are considered. Hence
s ¼ N and o stands for ðo;NÞ: Following Davies [13, Section 3.4], the functional
calculus of the Hamiltonian Ho ¼ HL þ Vo will be done via the complex heat kernel:

FðHoÞ ¼
Z

N

	N

dt F̃ðtÞ e	Hoð1þitÞ; ð9Þ

where

F̃ðtÞ ¼ 2p
Z

N

	N

dE eiEteEFðEÞ:

For compactly supported differentiable functions FACk
c ðRÞ; one has the standard

Fourier estimates jF̃ðtÞjpckð1þ jtjk	1Þ	1: Such an estimate may also hold for functions
with infinite support, but we do not intend here to give the most general formulation.

Proposition 1. Let VoALNðR2Þ and FACk
c ðRÞ with k42: Then FðHoÞ is an integral

operator the integral kernel of which satisfies uniformly in o and for any d40;

j/~xxjFðHoÞj~yy Sjp cd

1þ j~xx 	~yyjk	2	d:

Proof. As the following estimates are pointwise in o; the index will be suppressed.

Let us begin with the integral kernel of e	HLz explicitly using Mehler’s formula for

the (shifted) harmonic oscillator hðkÞ ¼ 1
2
ð	@2x2 þ g2ðX2 þ k

gÞ
2Þ in the 2-direction

ðReðzÞ40Þ:

/~xxje	HLzj~yyS ¼
Z

dk

2p
eikðx1	y1Þ/x2je	hðkÞzjy2S

¼ g
4p

1

sinhðg
2

zÞ e	
g
4 cothð

g
2 zÞj~xx	~yyj2e	i g

2ðx1	y1Þðx2	y2ÞFð~xx 	~yy;~yyÞ: ð10Þ
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In order to obtain upper bounds for the integral kernel let us use the following
elementary inequalities ðReðzÞ40Þ:

1

jsinhðzÞjp
1

ReðzÞ; ReðcothðzÞÞXReðz	1Þ: ð11Þ

They lead directly to the following estimate:

j/~xxje	HLzj~yy Sjp 1

2p
1

ReðzÞ e	
1
2j~xx	~yyj

2 Reðz	1Þ: ð12Þ

Now set Vþ ¼ jjV jj
N
and eVV ¼ V 	 Vþ so that eHH ¼ HL þ eVV has a negative potential

Ṽ: Furthermore Duhamel’s formula reads

/~xxje	eHHzj~yyS ¼/~xxje	HLzj~yyS	 z

Z 1

0

dq

�
Z
R2

d~rr/~xxje	ð1	qÞHLzj~rrS eVVð~rrÞ/~rrje	qeHHzj~yyS: ð13Þ

Using this iteratively, one obtains the Dyson series for z ¼ t40 which is estimated
term by term using (12)

j/~xxje	Htj~yySjp e	tVþ
X
nX0

V n
þ

ð2pÞn

Yn

l¼1

Z
R2

d~rrl

Z qlþ1

0

dql

 !

�
Yn	1
l¼0

e
	 j~rr l	1	~rrl j

2

2ðql	ql	1Þt

ql 	 ql	1

0@ 1Ae	
j~rrn	~yy j2
2qnt

qnt
; ð14Þ

where qnþ1 ¼ 1 and ~rr0 ¼ ~xx in each term. A short calculation using rotation
invariance shows, for ReðaÞ40 and ReðbÞ40;Z

R2

d~rre	
j~xx	~rr j2

a e	
j~rr	~yy j2

b ¼ p
ab

a þ b
e	

j~xx	~yy j2
aþb : ð15Þ

Applying this n times in the nth order term of the Dyson series shows

j/~xxje	Htj~yy Sjp 1

2p t
e	

1
2t
j~xx	~yy j2 : ð16Þ

Now the arguments of Lemma 3.4.6 and Theorem 3.4.8 of [13] imply that, for
ReðzÞ40;

j/~xxje	zH j~yy Sjp c

jReðzÞj e	
1
4j~xx	~yy j2 Reðz	1Þ: ð17Þ
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As in Theorem 3.4.9 of [13], one therefore has

j/~xxjFðHoÞj~yy Sjp
Z

dt
ck

1þ jtjk	1
exp 	1

4

j~xx 	~yy j2

1þ t2

 !
;

so that the inequality e	rpcb=ð1þ rÞb for r; b40 leads to

j/~xxjFðHoÞj~yy Sjp
Z

dt
ck cb

1þ jtjk	1
ð1þ t2Þb 1

ð1þ 1
4j~xx 	~yy j2Þb

:

Hence the t-integral is bounded as long as 2bok 	 2 which concludes the proof. &

As an aside be mentioned that there are various other ways to get estimates on the

integral kernel of the semigroup e	tH : One is a Combes–Thomas-like argument
which will be used in Section 5. Another is to simply apply the diamagnetic

inequality [10, Theorem 1.13], which reads je	tHfð~xxÞjpetD=2jfjð~xxÞ for positive V

and any fAL2ðR2Þ and t40 where D ¼ @21 þ @22 is the two-dimensional Laplacian.

As is moreover known (consult e.g. [7]) that the integral kernels /~xxje	tH j~yyS are
jointly continuous, one also deduces the pointwise estimate (16) because the r.h.s. of

(16) is precisely the integral kernel of etD=2: Here the above Dyson series argument
was used because the same technique will be used to derive estimates on the
covariant derivatives of the integral kernels.

Proposition 2. Let VoALNðR2Þ and FACk
c ðRÞ with k46: Then DjFðHoÞ is an

integral operator satisfying for any d40;

j/~xxjDjFðHoÞj~yySjp cd

1þ j~xx 	~yy jk	6	d:

Suppose that @jVoALNðR2Þ and FACk
c ðRÞ with k410: Then DjDiFðHoÞ is an

integral operator satisfying for any d40;

j/~xxjDjDiFðHoÞj~yySjp cd

1þ j~xx 	~yyjk	10	d:

Proof. Again the index o will be suppressed. One has

Dje
	zH ¼ Dje

	zHL 	 z

Z 1

0

dqDje
	zð1	qÞHL V e	zqH : ð18Þ

Hence estimates on the covariant derivatives of the Landau Hamiltonian will be

needed. Using jcothðzÞjpe	ReðzÞ

ReðzÞ þ 1 and inequalities (11) (from now on c denotes
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varying constants and ReðzÞX0)

jði@xj
	 gdj;1x2Þ/~xxje	zHL j~yySjp c

ReðzÞ j~xx 	~yyj 1þ 1

ReðzÞ

� �
e	

1
4j~xx	~yy j2 Reðz	1Þ

p
c

ReðzÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reðz	1Þ

p ðReðzÞ þ 1Þe	1
8j~xx	~yy j2 Reðz	1Þ; ð19Þ

where in the second step ae	2a2pe	a2 for a40 was used. Let now I1 denote the
integral kernel of the second contribution in (18). Using (17) and then again (15),
one gets

jI1jp c
ReðzÞ þ 1

ReðzÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reðz	1Þ

p jzj
Z 1

0

dq

Z
d~rr

1

ð1	 qÞ
3
2

e
	 1
8ð1	qÞj~xx	~rr j2 Reðz	1Þ

� 1

qReðzÞ e	
1
8q
j~rr	~yy j2 Reðz	1Þ

p c
ReðzÞ þ 1

ReðzÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reðz	1Þ

p jzj
Reðz	1Þ e	

1
8j~xx	~yy j2 Reðz	1Þ: ð20Þ

Hence,

j/~xxjDje
	zH j~yy Sjpc

ReðzÞ þ 1

ReðzÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reðz	1Þ

p 1þ jzj
ReðzÞReðz	1Þ

� �
e	

1
8j~xx	~yy j2 Reðz	1Þ ð21Þ

yielding

j/~xxjDje
	ð1þitÞH j~yy Sjpc ð1þ t2Þ2e	

j~xx	~yy j2

8ð1þt2Þ: ð22Þ

This implies just as in Proposition 1 that DjFðHÞ satisfies the stated bound.

To prove the second statement, let us use (7) which implies

DjDie
	zH ¼DjDie

	zHL þ di;1igz
Z 1

0

dq Djðr2e
	ð1	qÞzHLÞVe	qzH

þ iz
Z 1

0

dq Dje
	ð1	qÞzHL@iVe	qzH þ z

Z 1

0

dqDje
	ð1	qÞzHL VDie

	qzH :

As in (19) one shows for the first term

j/~xxjDjDie
	zHL j~yy Sjpc

ðReðzÞ þ 1Þ2

ReðzÞ3
1

Reðz	1Þ e	
j~xx	~yy j2

16 Reðz	1Þ:

For the second term, let us commute Dj and r2: The integral kernel of the

contribution
R 1
0

dq½Dj;r2�e	ð1	qÞzHL Ve	qzH satisfies a bound as (20). Let I2 be the
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integral kernel of
R 1
0 dqr2Dje

	ð1	qÞzHL Ve	qzH : Using

j/~xxjr2Dje
	zHL j~yySjp c

ðReðzÞ þ 1Þ2

ReðzÞ2
j~xx 	~yyj2e	

j~xx	~yy j2
4 Reðz	1Þ

p
cðReðzÞ þ 1Þ2

ReðzÞ2Reðz	1Þ
e	

j~xx	~yy j2
16 Reðz	1Þ;

and performing a similar calculation as in (20) one finds that it can be bounded by

jI2jpc
jzj ReðzÞ þ 1ð Þ2

ReðzÞ3Reðz	1Þ2
e	

j~xx	~yy j2
16 Reðz	1Þ:

The integral kernel of the third contribution can be bounded as above, hence let us
focus on the integral kernel I4 of the forth contribution. Using (19) and (21), one gets
by a similar calculation as in (20)

jI4jpc
ðReðzÞ þ 1Þ2

ReðzÞ4Reðz	1Þ
1þ jzj

RðzÞReðz	1Þ

� �
jzj

Reðz	1Þ e	
j~xx	~yy j2

16 Reðz	1Þ:

Finally, the number k determining the decay of the integral kernel of DjDiFðHoÞ
depends on the leading power in t of j/~xxjDjDie

	ð1þitÞH j~yySj: Comparing the above

contributions one sees that this power is determined by I4; and, setting z ¼ 1þ it;
one has

jI4jpcð1þ t2Þ4e	
j~xx	~yy j2

16ð1þt2Þ:

As in Proposition 1, the statement of the proposition follows. &

Let us remark that Proposition 2 implies in particular that the integral kernel of
FðHoÞ is twice differentiable. In dimension 2, the same argument goes through for

D2
1D

2
2FðHÞ; but not for D3

j FðHÞ: In higher dimension, more regularity can be

obtained.

5. Integralkernels of operators on the half-plane

The aim of this section is to show that Proposition 1 and the part of Proposition 2
concerning covariant derivatives in the 1-direction remain essentially valid for the
operators Ho;s on the half-plane. This is done by proving estimates like (12) and (19)

for the kernel of the semigroup generated by the Landau operator bHHL (and its
covariant derivative) with Dirichlet boundary conditions at s ¼ 0: Covariance then
implies that these estimates also hold for arbitrary soN and the perturbative
arguments based on the Dyson series expansion can be directly transposed to obtain
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a power-law decay of the integral kernels of functions of the Hamiltonian on the
half-plane.

Proposition 3. For ReðzÞ40 and n ¼ 0; 1; 2: Then

j/~xx jDn
1 e	zbHHL j~yy Sjpc

1þ jzjnþ1

ReðzÞ
n
2þ1

exp 	j~xx 	~yyj2

10
Reðz	1Þ

 !
:

Furthermore, /~xx jDn
1e

	zbHHL j~yyS is continuous in ~xx;~yy for n ¼ 0; 1:

This in particular implies that the integral kernel of e	tHo;s is continuous so that the
diamagnetic inequality implies

j/~xxje	tHo;s j~yy Sjp/~xxjetDs j~yy S ¼ 1

4pt
e	j~xx	~yy j2=tð1	 e	2ðx2þsÞðy2þsÞ=tÞ

� wðx2X	 sÞ wðy2X	 sÞ: ð23Þ

This also shows how the integral kernels of functions of Ho;s vanish near x2 ¼ 	s

or y2 ¼ 	s:

For the proof of Proposition 3, the semigroup of bHHL is calculated via Fourier
transform just as in (10):

/~xx je	tbHHL j~yy S ¼
Z

dk

2p
eikðx1	y1Þ/x2je	tĥ ðkÞjy2S; ð24Þ

where ĥ ðkÞ ¼ 1
2
ð	@2 þ g2ðX þ k

gÞ
2Þ with Dirichlet boundary conditions at the origin.

As we did not succeed in calculating this kernel explicitly, recourse to more abstract
analytical arguments is necessary. For a complex dilation argument on the heat
kernel, the following will be needed:

Lemma 2. k þ ikAC/e	tĥ ðkþikÞ is entire for all t40 and the integral kernel satisfies

j/xje	tĥ ðkþikÞjySjpe
1
2 tk2/xje	thðkÞjyS: ð25Þ

Proof. First let us show that X is relatively bounded w.r.t. ĥ ð0Þ with relative bound

0: Therefore let jnS denote the Hermite eigenfunctions of hð0Þ and recall X jnS ¼
ð2gÞ	1=2ð

ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p
jn þ 1Sþ

ffiffiffi
n

p
jn 	 1SÞ: The odd Hermite functions j2l þ 1S form an

eigenbasis of ĥ ð0Þ which is complete in L2ðRþÞ: Now let c ¼
P

lX0 al j2l þ 1S so

that jjĥ ðkÞcjj2 ¼
P

lX0 jal j2ð2l þ 3
2
Þ2: As jjXcjj2pc

P
lX0 jal j2ð2l þ 2Þ; the relative

bound estimates follow immediately. In conclusion, ĥ ðk þ ikÞ ¼ ĥ ð0Þ þ gX ðk þ
ikÞ þ 1

2
ðk þ ikÞ2 is automatically closed and [17, Theorem IX.2.6] implies the desired

analyticity property.
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In order to prove the estimate, let us cite a norm-convergent version of
the Trotter product formula from [8]: Given two m-sectorial operators A;B on a

given Hilbert spaceH satisfying that ðA þ 1Þ	1 is compact and DðAÞ-DðBÞ is dense
in H;

e	tðA6BÞ ¼ lim
n-N

ðe	t
n
Ae	

t
n
BÞn;

where the convergence is in the norm topology and A6B is the form sum. This will

be applied for A ¼ ĥ ðkÞ 	 aWðkÞ and B ¼ aWðkÞ 	 igkðX þ k
gÞ where WðkÞ ¼

g2

2
ðX þ k

gÞ
2 þ 1: Indeed, A is a strictly positive self-adjoint operator with compact

resolvent as long as a40 is small enough and B is m-sectorial. As A6B 	 1
2
k2 and

ĥ ðk þ ikÞ coincide on the domain of the latter and the semigroups are bounded, one
deduces

e	tĥ ðkþikÞ ¼ e
1
2 tk2 lim

n-N

ðe	t
n
Ae	

t
n
BÞn:

Setting x ¼ r0 and y ¼ rn; one can therefore bound as follows:

j/xjðe	t
n
Ae	

t
n
BÞnjySjp

Z
Rn	1

þ

dr1?drn	1
Yn

j¼1
/rj	1je	

t
n
ðĥ ðkÞ	aW ðkÞÞjrjS e	

t
n
aWðkÞðrjÞ

¼/xjðe	t
n
ðĥ ðkÞ	aW ðkÞÞe	

t
n
aW ðkÞÞnjyS

¼/xje	tĥ ðkÞjyS;

where the last equality follows from recomposing with the Trotter formula.

To conclude, one just notes that the integral kernel of e	tĥ ðkÞ is bounded by

that of e	thðkÞ (this follows easily, e.g., from the Feynman–Kac path-integral
in which Dirichlet boundary conditions are incorporated by characteristic
functions). &

Lemma 3. For t40 and n ¼ 0; 1; 2;

jDn
1/~xxje	tbHHL j~yySjpc

ð1þ tÞnþ1
2

t
n
2þ1

exp 	j~xx 	~yyj2

2nþ1t

 !
:

Proof. Applying Dn
1 to Eq. (24) and multiplying it with ekðx1	y1Þ; kAR leads to

ekðx1	y1Þ Dn
1 /~xx je	tbHHL j~yy S ¼

Z
R

dk

2p
ð	k 	 gx2Þn

eiðk	ikÞðx1	y1Þ/x2je	tĥ ðkÞjy2S:
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Let us change variables k 	 ik/k; then use analyticity (Lemma 2) and decay
properties on the boundaries of a Cauchy contour in order to obtain

ekðx1	y1ÞDn
1 /~xx je	tbHHL j~yyS ¼

Z
R

dk

2p
ð	k 	 ik	 gx2Þn

eikðx1	y1Þ/x2je	tĥ ðkþikÞjy2S: ð26Þ

Now estimate (25) will be used, along with the fact /xje	thðkÞjyS ¼ /x þ
k
gje	thð0Þjy þ k

gS and the following estimate for the Mehler kernel:

/xje	thð0ÞjyS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
2psinhðgtÞ

r
exp 	g

4
coth

gt

2

� �
jx 	 yj2 	 g

4
tanh

gt

2

� �
jx þ yj2

� �
p

ffiffiffiffiffiffiffi
1

2pt

r
exp 	 1

2t
jx 	 yj2 	 g

4
tanh

gt

2

� �
jx þ yj2

� �
:

Replacing this and substituting k for k þ g
2
ðx2 þ y2Þ; one obtains

jekðx1	y1ÞDn
1/~xxje	tbHHL j~yySjp

Z
dk

2p
k þ g

2
ðx2 	 y2Þ þ ik

��� ���n e
1
2t k

2ffiffiffiffiffiffiffi
2pt

p e	
jx2	y2 j2

2t
	1

g tanh
gt
2ð Þk2 :

Now let us choose k ¼ ðx1	y1Þ
t

and integrate over k: Then

j/~xxje	tbHHL j~yy Sjp pg

t tanhðgt

2
Þ

0B@
1CA

1
2

e	
j~xx	~yy j2

2t pc
ð1þ tÞ

1
2

t
e	

j~xx	~yy j2
2t ;

because cothðtÞo1þt
t
: Using

R
dk jk 	 bj e	ak2pa	1 þ

ffiffip
a

p
jbj for a40 it follows that

jD1/~xxje	tbHHL j~yy Sjp g
1
2

ðtanhðgt
2
ÞÞ

1
2

þ
ffiffiffi
p

p
jx1 	 y1j

t
þ g

ffiffiffi
p

p
jx2 	 y2j
2

 !
g
1
2

ðt tanhðgt
2
ÞÞ

1
2

e	
j~xx	~yy j2

2t

p c
ð1þ tÞ

3
2

t
3
2

e	
j~xx	~yy j2

4t ;

where for the second bound xe	2x2pe	x2 was used. The last estimate ðn ¼ 2Þ is

obtained similarly upon using
R

dkðk 	 bÞ2e	ak2 ¼ ðb2 þ 2a	1Þ
ffiffip
a

p
: &

Proof of Proposition 3. (This argument follows closely [13, Theorem 3.4.8] and is

hence kept sketchy). Let us set Kðz;~xx;~yyÞ ¼ /~xxjDn e	zbHHL j~yyS: If z ¼ t þ is; one has

jKðz;~xx;~yy ÞjpjjDn e	zbHHL jj
N;1pjjDn e	

t
2
bHHL jj

N;2jje	
t
2
bHHL jj2;1 ¼ jjDn e	

t
2
bHHL jj

N;2jje	
t
2
bHHL jj

N;2:
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Since jjAjj2
N;2psup~xx

R
R�Rþ

d~yyj/~xxjAj~yySj2; Lemma 3 implies

jjDn e	
t
2
bHHL jj

N;2pc
ð1þ tÞnþ1

2

t
nþ1
2

so that

jKðz;~xx;~yyÞjpcf ðtÞ; f ðzÞ ¼ 1þ znþ1

z
n
2þ1

:

Now for 0pgop
2
; let D ¼ fz j 0p argðzÞpg; jzjX1g and set

gðzÞ ¼ 1

f ðz	1Þ Kðz	1;~xx;~yyÞ exp 1

8
j~xx 	~yyj2eiðp2	gÞ z

sinðgÞ

� �
:

The hypothesis of the Phragmen–Lindelöf Theorem can be verified, showing that

jgðzÞjpc cosðgÞ	
nþ1
2 for zAD: Applying this also to %z and choosing g ¼ p

2
ð1	 eÞ þ

ejargðzÞj for some eo1 allows to conclude the first statement of the Proposition.

In order to prove continuity in ~xx;~yy of /~xxjDn
1e

	zbHHL j~yyS for n ¼ 0; 1; one may follow

the same strategy as above to obtain a bound on /~xxjDn
1D2e

	zbHHL j~yyS: This involves
calculating the derivative of the half-sided Mehler kernel with Duhamel’s formula,

@x /xje	tĥ ðkÞjyS ¼
Z 1

0

dq

Z
N

0

dr @x /xje	ð1	qÞtĥ ð0ÞjrSgkr/rje	qtĥ ðkÞjyS e	
1
2ð1	qÞtk2 ;

which can be done exactly as the kernel of e	tĥ ð0Þ is known explicitly by the reflection
principle. One then replaces in (26), carries out the k-integral and usesZ

R

drrpe
	ðr	dÞ2

ð1	qÞt e	
r2

qtpc e	
d2

t ð1	 qÞ
1
2q

1
2t

1
2ð1þ t

p
2Þ;

to bound the r-integral. Application of the inequality xe	2x2pe	x2 allows to obtain
an expression which is integrable in q at 0 and 1: This yields an estimate similar to
but more cumbersome than the ones in Lemma 3. Since only the continuity result is
needed here, further details are left out. &

6. Comparing integral kernels

For a given function F ; one can compare the integral kernels of FðHo;sÞ and

FðHo;NÞ and estimate the difference in particular for arguments which are far from

the boundary at x2 ¼ 	s: Therefore, let us construct the semigroup of Ho;s by means

of the reflection principle. The reflection Ss : L2ðR2Þ-L2ðR2Þ at the line x2 ¼ 	s is
defined by ðSscÞðx1; x2Þ ¼ cðx1;	x2 	 2sÞ: Let Ps

2 be the indicator function on the
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half-plane x2X	 s: Note that SsHLSs is the Landau operator with reversed
magnetic field. Now set

eHHo;s ¼ Ps
2Ho þ ð1	Ps

2ÞSsHoSs

with core CN

c;s ðR2Þ; given by the functions in cACN

c ðR2Þ satisfying the antisymmetry

relation Ssc ¼ 	c: These functions vanish on the boundary x2 ¼ 	s: By

construction, Ss
eHHo;sSs ¼ eHHo;s and therefore CN

c;s ðR2Þ is left invariant. Moreover, if

c is a smooth compactly supported function in the domain of eHHo;s then eHHo;sc ¼
Ps

2Ho;sð1	 SÞc so that for ReðzÞ40;

e	zHo;s ¼ Ps
2 e	zeHHo;s ð1	 SsÞPs

2: ð27Þ

Furthermore let fACNðRÞ be monotonously increasing, fð	NÞ ¼ 0; fðNÞ ¼ 1
and suppðf0ÞC½0; 1� and set fsðxÞ ¼ fðs þ xÞ: The following result is similar to the
discrete case [14,18].

Theorem 1. Let VoALNðR2Þ and FACk
c ; k46 and soN: Then FðHo;sÞ is an integral

operator which can be decomposed as

FðHo;sÞ ¼ fs FðHoÞ þ Ko;s;

where Ko;s form a covariant family of integral operators the kernels of which satisfy for

any d40;

j/~xxjKo;sj~yy Sjp cd

1þ jx2 þ sjk	6	d þ jy2 þ sjk	6	d: ð28Þ

Proof. Again we set s ¼ 0; drop the indices o and s and denote the half-plane

operator by bHH; the one on the plane by H: Furthermore set:

eHH ¼ H þ P; P ¼ ð1	P2Þð	2g X2 D1 þ 2g2X 2
2 	 V þ SVSÞð1	P2Þ:

One easily verifies the arguments of Section 5 which imply that also the integral

kernel of e	zeHH satisfies the estimates of Proposition 3. Using (27) and Duhamel’s

formula, one gets the following operator identity on L2ðR� RþÞ:

e	zbHH ¼ P2e
	zHP2 þ z

Z 1

0

dqP2e
	ð1	qÞzeHHPe	qzHP2 	P2 e	zeHHSP2:

Replacing this into (9), the first term gives rise to P2FðHÞP2; which can easily be
replaced by f0FðHÞf0 up to an error satisfying (28). The third term leads to

P2Fð eHHÞSP2; which according to Proposition 1 (holding also for eHH) can directly be
seen to satisfy (28), even with P2 replaced by f0:
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Now let us consider the second contribution to e	zbHH and denote it IðzÞ: In order to
estimate it, it will be used that the kernel of e	zeHH satisfies estimate (17) following
from (23). Then, using the particular form of P and estimate (21), one first obtains

j/~rrjPe	qð1þitÞH j~yy Sjpc
jr2j
q3=2

ð1þ t2Þ2 þ r22
q
þ jV j

q

� �
e
	 j~rr	~yy j2

8qð1þt2Þ:

Due to (17), one can bound

j/~xxjIðzÞj~yy Sjp c

Z 1

0

dq

Z
r2p0

d~rr
1

1	 q
e
	 j~xx	~rr j2

8ð1	qÞð1þt2Þ

� jr2j
q3=2

ð1þ t2Þ2 þ r22
q
þ jV j

q

� �
e
	 j~rr	~yy j2

8qð1þt2Þ

p c

Z 1

0

dq

Z
N

0

dr2
q1=2

ð1	 qÞ1=2

� jr2j
q3=2

ð1þ t2Þ2 þ r22
q
þ jV j

q

� �
e
	jx2þr2 j2

8qð1þt2Þ
	 jr2þy2 j2

8ð1	qÞð1þt2Þ

p c ð1þ t2Þ2e	
x2
2
þy2

2

8ð1þt2Þ;

where in the second step the integral over r1 was carried out and the resulting

Gaussian factor e
	jx1	y1 j2

8ð1þt2Þ simply bounded by 1; and the third follows from the

estimate jx2 	 r2j2 þ jr2 	 y2j2Xx2
2 þ y22 þ 2r22; followed by another Gaussian inte-

gration (then over all r2AR). Just as in the proof of Proposition 2 the desired bound

on the contribution to Fð bHHÞ follows. &

7. Traceclass estimates

To begin with, T-traceclass properties on compactly supported smooth functions
of the planar Hamiltonians are examined. Proposition 2 implies the continuity of the
integral kernel of DjFðHÞ so that one obtains the following:

Corollary 1. Let @jVoALNðR2Þ; j ¼ 1; 2; and FACN

c ðRÞ: Then FðHÞAAN and

DjFðHÞAAN are T-traceclass. Their T-trace can be calculated by (8).

This result allows to transpose the formalism developed in [6,22] to prove the
Kubo formula for tight-binding Schrödinger operators also to continuous
Schrödinger operators. For the definition and evaluation of the edge currents, the

following cTT-traceclass estimates will be important.
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Corollary 2. Let DCR be a gap of Ho;N and F :R-Rþ be a smooth positive function

supported by D: Suppose @jVoALNðR2Þ; j ¼ 1; 2: Then FðHÞAA and D1FðHÞAA

are cTT-traceclass. Their trace can be calculated by (8).

Proof. If D is a gap of Ho;N; then FðHo;NÞ ¼ 0 so that the first term in Theorem 1

vanishes and the second term is K ¼ FðHÞ: As FðHÞX0; one calculate cTTðFðHÞÞ
directly using the integral kernels which satisfy the estimate of Theorem 1.

This immediately implies that cTTðFðHÞÞoN: As F is positive, D1FðHÞ ¼
ðD1FðHÞ1=2ÞFðHÞ1=2: As FðHÞ1=2 is cTT-traceclass by the above argument, so is
D1FðHÞ: &

The next result does not allude to properties of the Hamiltonian, but rather gives a

general property ofcTT-traceclass operators. Therefore, let jrjj be new operations on

A defined by /~xx j ðjrj jAÞbooj~yyS ¼ jxj 	 yjj/~xx j Abooj~yyS: Whether jrjjAAA can, for

example, easily be deduced from (4) if the integral kernel of A decays off the
diagonal. Furthermore, let us introduce the function Sð~xxÞ ¼ signðx1Þ and denote the
associated multiplication operator also by S:

Proposition 4. Suppose that AAA is cTT-traceclass and that the integral kernels are

jointly continuous. Moreover, let jr1jAAA: Then for any soN; the operators

½S;Ao;s� are Hilbert–Schmidt and the square of their Hilbert–Schmidt norm is

P-integrable.

Proof. It follows from the hypothesis and the ideal property that ðjr1jA�ÞA iscTT-traceclass and therefore

cTTððjr1jAÞ� AÞ ¼
Z
R

ds

Z
O

dPðoÞ
Z

d~yy jy1jj/~yy jAo;sj0Sj2

is finite. Replacing the identity

jy1j ¼
1

2

Z
dx1ð1	 Sð~yy þ~xxÞSð~xxÞÞ;

and using the covariance relation one obtains

cTTððjr1jAÞ� AÞ ¼ 1

2

Z
dPðoÞ

Z
d~xx

Z
d~yyð1	 Sð~yyÞSð~xxÞÞj/~yy j A	~xx�o;sj~xxSj2

¼ 1

4

Z
dPðoÞ

Z
d~xx/~xx j ½S;A	~xx�o;s��½S;A	~xx�o;s�j~xxS

¼ 1

4

Z
dPðoÞTrðj½S;Ao;s�j2Þ;
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where in the last step the integrations were exchanged and the translation invariance
of P was used. This implies the claim because of the weak continuity of Ao;s

in o: &

8. Currents

By the Heisenberg equations of motion the current operators are given by

Jj ¼
d

dt
XjðtÞ

����
t¼0

¼ i½Hboo;Xj� ¼ 	2Dj; j ¼ 1; 2: ð29Þ

Accessible in experiment is the expectation value of the current w.r.t. to a given one-
particle density matrix r: The current density in the bulk is then calculated in the
planar model using the trace per unit volumeT: The following result implies that no
bulk current flows at equilibrium and absence of electric field, that is, if the density
matrix is a function of the Hamiltonian such as the Fermi–Dirac function. This
result was already given in [6], but only with a very sketchy proof.

Proposition 5. Let FACk
c ðRÞ with k45: Then

TðJjFðHÞÞ ¼ 0:

Proof. Let us begin by noting that rj-invariance of T and Duhamel’s formula

imply that for ReðzÞ40;

0 ¼ Tðrje
	zHÞ ¼ zT

Z 1

0

dq e	ð1	qÞzHðrjHÞe	qzH

� �
:

Since e	qzH is T-traceclass only for q40; the integral
R 1
0 ¼

R 1
1
2
þ
R 1

2

0 is split. This

allows to use cyclicity in order to obtain

0 ¼ zTððrjHÞe	zHÞ:

Finally the representation by a norm convergent Riemann integral (9) can be used
to conclude

TðJj FðHÞÞ ¼ 	2
Z
R

dtF̃ðtÞTððrjHÞe	ð1þitÞHÞ ¼ 0;

where the trace T and the sum defining the Riemann integral over t could

be exchanged because e	ð1þitÞH is T-traceclass for any t due to the results of
Section 4. &
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For a system with a boundary in the 1-direction, an edge current flows along the
infinite boundary of the half-plane. However, this current only flows in the vicinity of
the boundary so that the trace per unit volume T of J1r vanishes. In fact, the
physical current density along the boundary is rather obtained by taking the trace
per unit volume in the 1-direction followed by the usual trace in the 2-direction, an

operation precisely given by cTT: Corollary 2 implies that the following definition of
the edge current is also mathematically sound as long as F is positive and supported
by a gap of Ho;N:

jeðFÞ ¼cTTðJ1FðHÞÞ: ð30Þ

One might erroneously believe that analogous to Proposition 5 one hascTTðJ1FðHÞÞ ¼ 0 at least if F is supported by a gap of H: In fact, the proof of

Proposition 5 does not carry over because the semigroup is not cTT-traceclass. What

the (finite) value of cTTðJ1FðHÞÞ is, will be analyzed in the next sections.
At this point let us comment on what happens if the spectrum of Ho does not have

a gap. Then FðHo;sÞ ¼ fsFðHo;NÞ þ Ks where fsFðHo;NÞ is definitely not cTT-

traceclass and Theorem 1 implies that Ks is a boundary operator, although it does

not directly imply that Ks is moreover cTT-traceclass because it may not have a
definite sign. In order to make nevertheless sense of the edge current in this situation,
one can regularize the expression and rather define the edge current by

jeðFÞ ¼ lim
S-N

Z S

	S

ds

Z
dPðoÞ/~00jJ1FðHo;sÞj~00S:

Due to Proposition 5, one then sees that the contribution coming from fsFðHo;NÞ
vanishes for every finite S: Hence, assuming that the remainder Ks is actually cTT-

traceclass, one then obtains jeðFÞ ¼cTTðJ1KsÞoN; hence a reasonable definition.

9. Winding numbers

On A�A consider the densely defined bilinear map

xðA;BÞ ¼ i cTTðAr1BÞ: ð31Þ

If A iscTT-traceclass andr1BAA (or vice versa) then ðA;BÞ belongs to the domain of
definition of x denoted DðxÞ:

Lemma 4. x is a 1-cocycle, namely it satisfies whenever ðA;BÞ; ðB;CÞ; ðC;AÞADðxÞ
have jointly continuous integral kernels:

(i) Cyclicity: xðA;BÞ ¼ 	xðB;AÞ:
(ii) Closedness under the Hochschild operator: xðAB;CÞ 	 xðA;BCÞ þ xðCA;BÞ ¼ 0:
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Proof. This follows from a short algebraic calculation using the Leibniz rule for r1

and the r1-invariance of cTT holding under the stated hypothesis. &

By general principles [12] (see also [18,19]), 1-cocycles can be paired with unitaries.
The pairing in the present context stems from a Fredholm module so that it leads to
an index theorem. Let P1 be the indicator function on the half-space with positive

first coordinate, i.e. P1 ¼ 1
2
ðSþ 1Þ: The projection from L2ðR2Þ onto L2ðRþ � RÞ is

also denoted by P1:

Theorem 2. Let U be a unitary such that U	 1AA is cTT-traceclass and has jointly

continuous integral kernel. Furthermore let r1UAA and jr1 jUAA: Then for fixed

soN and oAO;P1 UbooP1 is a Fredholm operator on L2ðRþ � RÞ: If~xxAR2/U~xx�o;s is

moreover norm-continuous, the corresponding index Ind is P-almost surely independent

of o; always independent of s; and given by

Ind ¼ 	 xðU� 	 1;UÞ:

Proof. By Proposition 4, the conditions imply that ½S;Uboo� is Hilbert–Schmidt. From
the algebraic identity:

P1AbooBbooP1 	P1AbooP1BbooP1 ¼ 	1
4
P1 ½S;Aboo�½S;Bboo�; A;BAA; ð32Þ

follows that P1 	P1UbooP1U
�booP1 and P1 	P1U

�booP1UbooP1 are traceclass. By

Fedosov’s formula (e.g. [6,12,18]), P1UbooP1 is a Fredholm operator on L2ðRþ �
RÞ whose index is given by

Indboo ¼ TrðP1 	P1 U
�booP1 UbooP1Þ 	 TrðP1 	P1 UbooP1 U

�booP1Þ:

By hypothesis, ~xxAR2/P1U~xx�o;sP1 is a norm-continuous family of Fredholm

operators so that by homotopy invariance and ergodicity of P their Fredholm

index is P-almost surely constant. The identity P1 Uo;sþx2P1 ¼
Uð0; x2Þ�P1 Uð0;x2Þ�o;sP1Uð0; x2Þ implies that sAR/P1 Uo;sP1 is norm continuous

and therefore Indo;s constant in s:
The almost sure index Ind is, for any sAR; given by

Ind ¼
Z

dPðoÞ Indo;s ¼ 	ZsðU� 	 1;UÞ;

where ZsðA;BÞ ¼
R

dPðoÞZo;sðA;BÞ with

ZbooðA;BÞ ¼ TrðP1BbooAbooP1 	P1BbooP1AbooP1Þ 	 TrðP1AbooBbooP1 	P1AbooP1BbooP1Þ:
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Introduce next the 1-cocycle zs

zsðA;BÞ ¼
Z

dPðoÞzo;sðA;BÞ; zbooðA;BÞ ¼ 1

4
TrðS½S;Ao;s�½S;Bo;s�Þ:

Then ZbooðA;BÞ ¼ zbooðA;BÞ because of identity (32) and the cyclicity property of zboo:
Using the invariance of P as well as the identityZ

dy1 Sð~yyÞðSð~yyÞ 	 Sð~yy þ~xxÞÞ2 ¼ 	4x1;

one can verify as in the proof of Proposition 4 that xðA;BÞ ¼ zsðA;BÞ for all
finite s: &

The above calculations follow closely [18, Sections 4.2,4.3]. However, there is one
crucial difference. The invariance of the index in the 2-direction holds for all
unitaries, while in the discrete case it was only true for unitaries in the image of the
exponential map [18, Proposition 4.10]. The reason is that the exponential map is an
isomorphism in the continuous case, namely it is Connes’ Thom isomorphism [11].
Further explanations will be given in [19].

Note that U	 1 being cTT-traceclass implies that also Uk 	 1 is cTT-traceclass for

any kAZ: In fact, this follows from Uk 	 1 ¼ ðU	 1Þ
Pk	1

l¼0 Ul and the fact that

traceclass operators form an ideal. It is then elementary to verify that under the
assumptions of the theorem

ZsððU�Þk 	 1;UkÞ ¼ k ZsðU� 	 1;UÞ: ð33Þ

10. Quantization of edge currents

Let D ¼ ½E0;E00� be in a gap of the spectrum of Ho;N: Let GACNðRÞ be a

monotonously decreasing function with Gð	NÞ ¼ 1; GðNÞ ¼ 0; and

suppðG0ÞCD\G	1ð1
2
Þ: The support of a function is closed by definition and hence

all derivatives of G vanish on the pre-image G	1ð1
2
Þ: Define via functional calculus

the following unitary operator

UðDÞ ¼ expð	2pi GðHÞÞ: ð34Þ

Theorem 3. Suppose @jVoALNðR2Þ for j ¼ 1; 2: Let D be in a gap of the spectrum of

Ho;N: Then J1G
0ðHÞAA and UðDÞ 	 1AA are both cTT-traceclass, r1UðDÞAA and

for P-almost all o and all sAR;

	2pcTTðJ1G0ðHÞÞ ¼ icTTððUðDÞ� 	 1Þr1UðDÞÞ ¼ IndðP1 Uo;sðDÞP1Þ: ð35Þ
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Proof. First the assumptions of Theorem 2 are established. As the function G is
monotonously decreasing, G0 is a negative smooth function supported by D so that

Corollary 2 implies that J1G
0ðHÞ iscTT-traceclass. To prove thecTT-traceclass property

of UðDÞ 	 1; let us write it as the linear combination of three positive and smooth
functions of H: Indeed, E/sin7ð2p GðEÞÞ and E/cosð2p GðEÞÞ 	 1 (where g7

denotes the positive and negative parts of a real function g) are of this type since

sin7ð2p GðEÞÞ vanishes with all its derivatives at EAG	1ð1
2
Þ: That r1UðDÞAA and

jr1jUðDÞAA follows directly from Proposition 1 for the half-plane operators
combined with (4). Finally, by Duhamel’s formula

~xxAR2/e	tH~xx �o;s ¼
Z 1

0

dq e	ð1	qÞtHL;s Voð:	~xxÞ e	qtH~xx �o;s ;

so that the continuity of the potential implies the norm-continuity of the semigroups

and via the norm-convergent functional calculus (9) also of ~xxAR2/UðDÞ~xx�o;s: In
conclusion, the conditions of Theorem 2 are verified and only the first equality in
(35) remains to be shown.
For that express UðDÞ as exponential series and use the Leibniz rule to obtain

cTTððUðDÞ� 	 1Þ r1UðDÞÞ

¼
XN
m¼0

ð	2piÞm

m!

Xm	1

l¼0

cTTððUðDÞ� 	 1ÞGðHÞlr1GðHÞGðHÞm	l	1Þ;

where the trace and the infinite sum could be exchanged because of the
traceclass properties (note that also r1GðHÞAAÞ: Due to cyclicity and the

fact that ½UðDÞ;GðHÞ� ¼ 0; each summand is now equal to cTTððUðDÞ� 	
1ÞGðHÞm	1r1GðHÞÞ: Exchanging again sum and trace and summing the exponential
up again, one gets

cTTððUðDÞ� 	 1Þ r1UðDÞÞ ¼ 	2picTTðð1	UðDÞÞ r1GðHÞÞ:

Repeating the same argument for UðDÞk ¼ expð	2pi k GðHÞÞ where kAZ and using
(33) more generally implies that, for ka0;

cTTðð1	UðDÞÞr1GðHÞÞ ¼cTTðð1	UðDÞkÞr1GðHÞÞ:

Writing GðEÞ ¼
R

dt G̃ðtÞ e	Eð1þitÞ as in (9), the above r.h.s. is, for ka0; equal to

	2pi
Z

dt G̃ðtÞ ð1þ itÞ
Z 1

0

dqcTTðð1	UðDÞkÞ e	ð1	qÞð1þitÞHðr1HÞe	qð1þitÞHÞ:
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The integral over t is a norm convergent Riemann integral. One therefore finds

using G0ðEÞ ¼ 	
R

dt ð1þ itÞ G̃ðtÞ e	Eð1þitÞ; for ka0;

cTTððU�ðDÞ 	 1Þ r1UðDÞÞ ¼ 2picTTððUðDÞk 	 1Þðr1HÞG0ðHÞÞ;

while, for k ¼ 0; the r.h.s. vanishes.
To conclude, let f : ½0; 1�-R be a differentiable function vanishing

at the boundary points 0 and 1: Let its Fourier coefficients be denoted

by ak ¼
R 1
0 dx e	2pikxfðxÞ: Then

P
k ake2pikx ¼ fðxÞ and, in particular,

P
k ak ¼ 0:

Hence

X
ka0

ak

 !cTTððU�ðDÞ 	 1Þ r1UðDÞÞ ¼ 2pi
X

k

ak
cTTððUðDÞk 	 1Þðr1HÞG0ðHÞÞ

¼ 2picTTðG0ðHÞ fðGðHÞÞ ðr1HÞÞ:

Let now f converge to the indicator function of ½0; 1�: Then a0-1 and
P

ka0

ak-	 1; while G0ðHÞfðGðHÞÞ-G0ðHÞ (the Gibbs phenomenon is damped). As
J1 ¼ 	r1H; this concludes the proof. &

11. Link to bulk Hall conductivity

The Chern character is a trilinear form ch defined by

chðA;B;CÞ ¼ 2piTðAððr1BÞðr2CÞ 	 ðr2BÞðr1CÞÞÞ; A;B;CAAN; ð36Þ

as long as the r.h.s. is well-defined. The following theorem is well-known [4,3].

Theorem 4. Let PAAN be a projection with integral kernels satisfying P-a.s. for some

d40;

j/~xxjPoj~yySjp cd

1þ j~xx 	~yyj2þd: ð37Þ

Then chðP;P;PÞ is well-defined and equal to an integer given as the index of a

Fredholm operator.

The importance of this result stems from the fact that the bulk Hall conductivity
of a gas of independent electrons described by H at zero-temperature, zero
dissipation and with chemical potential m is given by [2,4,20,21,3,6,1]

s>b ðmÞ ¼ q2

h
chðPm;Pm;PmÞ;
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where Pm ¼ wð	N;m�ðHÞ is the family of associated Fermi projections. This fact can be
deduced from Kubo’s formula [6,1] or the adiabatic Laughlin Gedankenexperiment

[3].
As discussed in great detail in [6,1] in the discrete setting, (37) is a dynamical

localization condition on the spectral region in the vicinity of the Fermi level. For the
purposes of the present article, however, we restrict ourselves to the situation where
the Fermi level m is in a gap of the spectrum of H: Then Pm; defined with a

characteristic function, can also be written as a smooth function of H for which
estimate (37) holds by Proposition 1. By homotopy of a Fredholm index, one then
deduces:

Corollary 3. Let the interval D be a gap of the spectrum of Ho;N: Then mAD/sb
>ðmÞ

is constant and equal to an integer multiple of q2

h
:

The following result, analogous to the discrete case [23,18,14], albeit based on
Connes’ Thom isomorphism and its dual in cyclic cohomology [11,15] instead of the
Pimsner–Voiculescu sequence and its dual, will be proven in [19]:

Theorem 5. Let the interval D be a gap of Ho;N: Then sb
>ðmÞ ¼ IndðPUbooðDÞPÞ

for mAD:
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