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Abstract
The cohomology of a tiling or a point pattern has originally been defined via
the construction of the hull or the groupoid associated with the tiling or the
pattern. Here we present a construction which is more direct and, therefore,
more easily accessible. It is based on generalizing the notion of equivariance
from lattices to point patterns of finite local complexity.

PACS numbers: 02.40.Re, 61.44.Br
Mathematics Subject Classification: 52C23

1. Introduction

When topological invariants of tilings were first defined and computed [Con90, Con94, Kel95,
Kel97, AP98] they arose as K-groups of associated C∗-algebras but it soon became clear that,
apart from the order on K0, the K-groups are isomorphic to the integer valued Čech cohomology
of the continuous hull of the tiling, or equivalently, to the integer valued cohomology of the
discrete tiling groupoid [FH99]. Neither the continuous hull nor the discrete groupoid of a
tiling are mathematical objects which are easily accessible by the non-expert. The purpose of
this paper is to present a formulation of (real valued) tiling or point pattern cohomology which
we believe is easier to understand on an intuitive level, because it involves more standard
mathematical objects. This does not mean that it is easier to compute the tiling cohomology
in this formulation. But we hope that it helps others to understand what the cohomology of a
tiling actually means.

We formulate our results below for Delone sets of finite local complexity which we call
for short here point patterns. This covers the case of tilings of finite local complexity since
the topological invariants mentioned depend only on MLD classes and tilings are mutually
locally derivable from Delone sets.

We will proceed along the following lines: let P be a tiling or a point pattern in the
Euclidean space R

n. We construct the (real valued) cohomology of P as the cohomology of
the sub-complex of the de Rham complex over R

n given by the P-equivariant forms. The
main new ingredient is thus the notion of P-equivariance.
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2. P-equivariant functions and cohomology

In a frequently used approach to describe particle motion in aperiodic media one investigates
a Hamiltonian of the form H = − h̄2

2m
� + V on L2(Rn) where � is the Laplacian (or even

the magnetic Laplacian in the presence of an external magnetic field) and V is a potential
which describes the local interaction between the particle and the medium. This potential
incorporates the aperiodic structure of the material in such a way that V (x) depends only on
the local configuration one finds around x. So if P is a point pattern or a tiling representing
the aperiodic structure (e.g., P is the set of equilibrium positions of the atoms in the material)
then V should be a P-equivariant function in the following sense.

Recall that a discrete point set has finite local complexity if up to translation there are only
finitely many r-patches for any r, an r-patch being Br(x) ∩ P , the intersection of an r-ball at
some point x ∈ R

n with P . This implies that P is uniformly discrete, i.e. that any two distinct
points have distance larger than a given r > 0. A Delone set is a uniformly discrete point set
which is relatively dense, i.e. there exists an R > 0 such that all R-patches contain at least one
point.

Definition 2.1. Let P be a subset of R
n of finite local complexity. We call a function

f : R
n → X into some set X strongly P-equivariant if there exists an r > 0 such that

Br ∩ (P − x) = Br ∩ (P − y) implies f (x) = f (y)

(Br is the closed r-ball around 0).

Suppose that D is locally derivable from P in the sense of [BSJ91]. This means that for
all r > 0 there exists R > 0 such that BR ∩ (P − x) = BR ∩ (P − y) implies Br ∩ (D − x) =
Br ∩(D−y). It is immediate from this definition that then any strongly D-equivariant function
is also strongly P-equivariant. In particular, the concept of P-equivariance is defined not only
for a single point set but for MLD classes of point sets.

Recall that the de Rham complex over R
n is the complex

�0(Rn)
d→ �1(Rn)

d→ · · · d→ �n(Rn)

where �k(Rn) are the differential k-forms over R
n and d is the exterior derivative. Using

standard coordinates on R
n a differential k-form can be written as

∑
i1,...,ik

fi1,...,ik dxi1 · · · dxik

with smooth functions fi1,...,ik : R
n → R. Setting X = R we may therefore consider strongly

P-equivariant differential forms over R
n as those for which the functions fi1,...,ik are smooth

and strongly P-equivariant. We denote them by �̌P(Rn). Clearly d(�̌P(Rn)) ⊂ �̌P(Rn) and
so

�̌0
P(Rn)

d→ �̌1
P(Rn)

d→ · · · d→ �̌n
P(Rn)

is a differential sub-complex of the de Rham complex.

Definition 2.2. The P-equivariant de Rham cohomology of R
n is the cohomology of the

sub-complex defined by �̌P(Rn). We denote it by ȞP(Rn), i.e.

Ȟ k
P(Rn) = (ker d ∩ �̌k

P(Rn))/(Im d ∩ �̌k
P(Rn)).

The following theorem connects the above definition with the cohomology of P defined
as Čech cohomology of the continuous hull of P . Its proof will be given elsewhere [KP]
although we give some explanation in section 4.

Theorem 2.3. Let P ⊂ R
n be a Delone set of finite local complexity. The real valued

Čech cohomology of the continuous hull of P is isomorphic to the P-equivariant de Rham
cohomology of R

n.
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Figure 1.0 Figure 1.1 Figure 1.2 Figure 1.3

Figure 1. Tiles of a Penrose tiling (triangle version).

3. Example

Let us present some examples of P-equivariant cohomology classes for P = TP , a Penrose
tiling, which may for our purposes be identified with the point set given by the centres
of mass of its tiles. In the triangle version TP has 40 different translational congruence
classes of tiles which are the decorated triangles of figure 1 and their images under ten-fold
rotation. Together with a reflection, e.g. the reflection in the x-axis, the ten-fold rotations
form a symmetry group which is the dihedral group D10. We call the translational congruence
classes of tiles prototiles. We denote by t0, t10, t20, t30, respectively, the prototile depicted in
figure 1.0, 1.1, 1.2, 1.3, respectively, and denote by t10k+l , 0 � k � 3, 0 � l � 9, prototile t10k

rotated by lπ
5 anticlockwise.

Since the tiling is two dimensional Ȟ k
TP

(R2) is non-trivial only in k = 0, 1, 2. The case
k = 0 is simple, in fact for any point pattern in any dimension Ȟ0

P(Rn) = ker d ∩ �̌0
P(Rn) = R

holds.

3.1. k = 2

A closed strongly TP -equivariant 2-form is given by f dx1 dx2 where f is a smooth strongly
TP -equivariant function. Such functions can be constructed as follows: take a prototile ti and
let xi be its centre of mass. Let δti be the Dirac comb associated with ti by which we mean the
sum of δ-functions at points y ∈ R

n such that ti − xi occurs at TP − y. In other words δti is a
Dirac comb supported on the centre of masses of all tiles which are translationally congruent
to prototile ti . Furthermore, let ρ : R

2 → R be a smooth function of compact support. Then
the convolution product f = δti ∗ ρ is a smooth strongly TP -equivariant function. In fact, any
smooth strongly TP -equivariant function can be approximated in such a way if one allows for
Dirac combs which are supported on arbitrary point sets which are locally derivable from TP .
The difficult part is to determine when two 2-forms differ by a strongly TP -equivariant exact
form. It follows from the Poincaré lemma for compactly supported de Rham cohomology
that different choices of ρ yield the same cohomology class as long as the average height
ρ := ∫

R
2 ρ dx1 dx2 is kept fixed. We will therefore define αi(ρ) = δti ∗ ρ dx1 dx2 remaining

ambiguous about the precise form of ρ.
To go further we have to combine theorem 2.3 with known results. Recall that the

Penrose tiling is a substitution tiling and that its substitution can be used to compute its
second cohomology as a quotient of the cohomology of the AF-groupoid R� defined by
the substitution in [Kel97]1. More precisely, the so-called substitution matrix defines an
endomorphism σ : Z

40 → Z
40 and one finds the integer second cohomology of the Penrose

tiling as a quotient Z
40/	. The real second cohomology of the Penrose tiling, which we

1 The highest non-vanishing cohomology group is called the group of coinvariants in [Kel97].
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denote here by H 2(TP , R), can therefore be identified with a complement of the real span R	

of the sub-group 	 ⊂ Z
40 in R

40. Such a complement has been computed [Kel97]

H 2(TP , R) ∼= R
8 = E

(
τ 2

+

) ⊕ E(τ 2
−) ⊕ E(−τ+) ⊕ E(−τ−)

where

τ± = ξ± + ξ−1
± = 1 ± √

5

2
ξ+ = e

π i
5 ξ− = e

3π i
5

and E(s) denotes the eigenspace of σ (extended to a linear map on R
40) corresponding to the

eigenvalue s.
We can use this to present specific strongly TP -equivariant 2-forms which form a linear

base for Ȟ TP
(R2). In order to do so we first note that we can identify the standard base {ei}i

of Z
40 with indicator functions on certain cylinder sets of the discrete hull. These cylinder

sets are in one-to-one correspondence with the prototiles and theorem 2.3 allows us to identify
the class of ei in R

40/R	 with the cohomology class of the 2-form αi(1). All we have to do
therefore is to determine a base for the above complement and this is best done by a symmetry
analysis similar to that given in [ORS02].

In terms of the ten-fold rotation matrix ω the substitution matrix σ is given by

σ =




ω4 ω0 0 ω6

ω0 ω6 ω4 0
ω3 0 ω7 0
0 ω7 0 ω3


 .

The eigenspaces E
(
τ 2
±
)

are one dimensional and spanned by
(
τ 2
±1, τ 2

±1, 1, 1
)T

(3.1)

where 1 = (1, . . . , 1) is an eigenvector of ω to eigenvalue 1. Both eigenvectors are invariant
under the D10 symmetry. The spaces E(−τ±) are three dimensional. Each decomposes
into a one-dimensional and a two-dimensional real irreducible representation of D10. The
one-dimensional irreducible real D10 module is spanned by

((1 − τ±)a, (τ± − 1)a,−a, a)T (3.2)

where a = (1,−1, . . . , 1) is an eigenvector of ω to eigenvalue −1. Using the matrix S which
implements the reflection in the x-axis (see [Kel97]) one sees that the above two vectors are
both invariant under it. The remaining two-dimensional parts of E(−τ±) are easiest described
if we complexify these spaces to observe that each splits into two one-dimensional complex
irreducible D10 modules, one spanned by

b± = (
τ±ξ2

±z±, τ±ξ−1
± z±, ξ±z±, z±

)T
(3.3)

and the other by the complex conjugate b̄±. Here z± = (
1, ξ±, ξ2

±, . . . , ξ9
±
)
, an eigenvector

of ω to eigenvalue ξ−1
± and the reflection S acts as Sb± = −ξ±b̄±. We illustrate this result

in figure 2 by marking the coefficients of b± and b̄± into a figure of all prototiles using their
identification with the base of Z

40 ⊂ C
40.

From this analysis one can derive a set of generators for Ȟ TP
(R2). From linear

combinations of (3.1) (resp. (3.2)) one obtains B1, B2 (resp. B3, B4) where

B1 =
19∑
i=0

αi(1) B2 =
39∑

i=20

αi(1) B3 =
19∑
i=0

(−1)iαi(1) B4 =
39∑

i=20

(−1)iαi(1).



Pattern-equivariant functions and cohomology 5769

1
1

z^8

z^8

z^6
z^6

z^2

z^2

z^4

z^4

z
z^9

z^9

z^7

z^7
z^5

z

z^3

z^3

z^5

r z^5
r z^5

r z^3

r z^3

r z
r z

r z^7

r z^7

r z^9

r z^9

r z^6
r z^4

r z^4

r z^2

r z^2
r 

r z^6

r z^8

r z^8

r 

Figure 2. The coefficients of the four complex eigenvectors of (3.3) and its complex conjugate.
The four possibilities are (r, z) ∈ {(ξ+, τ+), (ξ−, τ−), (ξ−1

+ , τ+), (ξ−1
− , τ−)}.

The remaining four generators are more complicated expressions but straightforward to derive
from (3.3). In particular, to obtain two two-dimensional real irreducible representations of
D10 one has to take the real and the imaginary part of (3.3).

We mention that this method can also be used to determine a sub-group of finite index
of the integer valued second cohomology. This amounts to taking linear combinations of the
above vectors so that the result lies in the intersection of the above complement with Z

40. In
that case one obtains integer irreducible representations of D10 which are two, two and four
dimensional, cf [ORS02].

3.2. k = 1

A closed strongly TP -equivariant 1-form is given by f1 dx1 + f2 dx2 where fi are smooth
strongly TP -equivariant functions satisfying ∂f2

∂x1
= ∂f1

∂x2
. A similar construction as the one

presented for k = 2, namely one where one starts with a compactly supported closed 1-form
and places it at all points of a uniformly discrete set which is locally derived from TP , produces
only exact forms. This follows again from the Poincaré lemma.

To construct closed but non-exact 1-forms we use the well-known Ammann lines on the
Penrose tilings. Ammann lines are five families of parallel lines which are locally derivable
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from a Penrose tiling [GS87]. The distance between two consecutive parallel Ammann lines
of one family is 1 or τ+ (in suitable units) and the sequence of distances forms a Fibonacci
sequence (called musical sequence in [GS87]). Fix one family F1 of Ammann lines and let
(x, y) be orthonormal coordinates of R

2 such that y is parallel and x normal to the Ammann
lines of F1. In particular, a line N normal to the Ammann lines of F1 is parametrized by x
and cut into a Fibonacci sequence by its intersection points with these Ammann lines. Let
PN be the set of intersection points in N ∼= R and f : R → R be a smooth strongly PN -
equivariant function. Then (x, y) 	→ f (x) dx is a closed strongly TP -equivariant 1-form over
R

2. In the same way as we reasoned for the case k = 2 above one can construct two strongly
PN -equivariant functions each one associated with a prototile in N, namely by placing a Dirac
comb on the centres of mass of either the unit intervals or the intervals of length τ+. In the
cohomology Ȟ 1

PN
(R) corresponding to the one-dimensional subsystem these two functions

lead to two independent generators. Considering all families of Ammann lines this gives ten
strongly TP -equivariant 1-forms. However, one may show that in Ȟ 1

TP
(R2) only four of them

are independent. In fact, the appearance of these 1-forms is related to the higher dimensional
lattice used to construct the Penrose tiling via the cut and projection method and somewhat
independent of the details of the tiling which originate from the choice of windows [KP].

From [AP98, ORS02] we know (in combination with theorem 2.3) that Ȟ 1
TP

(R2) ∼= R
5

and the latter splits into a sum of a four-dimensional irreducible C10 module with a one-
dimensional irreducible C10 module. The four-dimensional irreducible C10 module is given
by the above construction using the Ammann lines. The remaining one is related to a locally
derivable orientation of the edges of the Penrose tiling [Gäh], it will not be discussed here.

4. P-equivariant functions and the continuous hull of P

For the definition of P-equivariant cohomology we have considered smooth real valued
strongly P-equivariant functions over R

n. To explain the relation with earlier definitions
of cohomology groups for P , in particular that involving the continuous hull, we now consider
continuous complex valued functions.

Definition 4.1. The algebra of complex continuous P-equivariant functions CP(Rn) is the
closure in the supremum norm of the space of complex continuous strongly P-equivariant
functions over R

n with pointwise multiplication.

CP(Rn) is a commutative C∗-algebra with unit and by the Gelfand–Naimark theorem
there exists a compact space XP such that CP(Rn) is isomorphic to C(XP). The simplest
example is certainly P = ∅ in which C∅(Rn) ∼= C and so X∅ is a single point. Another simple
example but with P being a Delone set is a regular lattice 	 ⊂ R

n, then C	(Rn) ∼= C(Tn), i.e.
X	 = T

n = R
n/	, the n-torus. In general, XP is a lot more complicated.

The set of subsets of R
n which have finite local complexity carries a metric

D(S, S′) = inf

{
1

r + 1
|∃x, x ′ ∈ R

n, |x|, |x ′| � 1

r
: Br ∩ (S − x) = Br ∩ (S′ − x ′)

}
.

The completion of the set of translates of P w.r.t. this metric,

MP := {P − x|x ∈ R
n}D

is the continuous hull of P , see e.g. [AP98]. By construction D(S, S − x) is of order |x| if the
norm |x| of x is small. In particular, MP is connected. If P is a Delone set then all elements
of MP can be interpreted as Delone sets. (If P is not relatively dense then MP contains the
empty set as element.)
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Lemma 4.2. Let P be a Delone subset of R
n which has finite local complexity. Then

XP ∼= MP . More precisely, σ : C(MP) → CP(Rn),

σ(f )(x) = f (P − x)

is an algebra isomorphism.

Proof. The space MP is in general not a manifold but a foliated space in the sense of [MS88].
Its leaves are the sets of translates of points. They are locally homeomorphic to R

n. Therefore,
σ(f ) is continuous.

In the transverse direction MP is totally disconnected. In the (completely) periodic cases
the transversals consist of finitely many points. For (completely) aperiodic Delone sets the
transversals are Cantor sets. If we consider the canonical transversal �P = {ω ∈ MP |0 ∈ P}
we can describe its topology as that being generated by the clopen sets UP,p where
p ∈ P ⊂ P, P a finite subset and UP,p = {ω ∈ �P |P − p ⊂ ω}. The topology of
MP is then generated by UP,p,ε,y = {ω ∈ MP |∃x ∈ Bε(y) : P − p − x ∈ ω} (cf [FHK02]).
Moreover, we may restrict ε > 0 to values smaller than the minimal distance r0 of two points in
P . For such ε,UP,p,ε,y is homeomorphic to UP,p ×Bε(y). It follows that C(MP) is generated
by continuous functions which are supported on sets UP,p,ε,y, ε < r0. Such functions are of the
form fP,p,ρ = δP,p ∗ρ where δP,p is a Dirac comb placed on the set {x ∈ R

n|P −p ∈ P − x}
and ρ is continuous and has support inside Br0(y). But σ(fP,p,ρ) is strongly P-equivariant,
the value for r in definition 2.1 being at most r0 + |y|. This shows that σ maps C(MP) into
CP(Rn). From denseness of the leaf through P it follows that σ is injective.

If g : R
n → C is a strongly P-equivariant continuous function define g̃ : MP → C

by g̃(ω) = g(P − x) where x is such that Br ∩ (P − x) = Br ∩ ω (the value for r from
definition 2.1). Then g̃ is continuous and σ(g̃) = g. �

Let us indicate how the last lemma helps us to prove theorem 2.3, i.e. that the Čech
cohomology of MP with coefficients in R is isomorphic to ȞP(Rn). Although MP may
not be a manifold its leaves are and one can define functions which are smooth in the
direction tangential to the leaves. This leads to the definition of tangential differential
forms and consequently of tangential cohomology [MS88]. The inverse of the map σ above
identifies the complex of strongly P-equivariant differential forms with a sub-complex of the
complex of tangential differential forms. P-equivariant cohomology equates therefore with
the cohomology of a sub-complex of tangential forms. On the other hand, there exists an
analogue of the Čech–de Rham complex [BT82] providing us with a homomorphism from the
Čech cohomology of MP (with real coefficients) to tangential cohomology of MP . Its image
is precisely P-equivariant cohomology.

Acknowledgment

I wish to thank Ian Putnam for discussions which led to the ideas underlying this paper.

References

[AP98] Anderson J E and Putnam I F 1998 Topological invariants for substitution tilings and their associated
C∗-algebras Ergod. Th. Dynam. Sys. 18 509–37

[BSJ91] Baake M, Schlottmann M and Jarvis P D 1991 Quasiperiodic tilings with tenfold symmetry and equivalence
with respect to local derivability J. Phys. A: Math. Gen. 24 4637–54

[BT82] Bott R and Tu L W 1982 Differential forms in Algebraic Topology (New York: Springer)
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