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Abstract. We describe the construction of C∗-algebras from tilings. We

describe the K-theory of such C∗-algebras and discuss applications of these

ideas in physics. We do not assume any familiarity with C∗-algebras or K-

theory.

1. Introduction

Our starting point for this article is the development of the mathematical theory
of tilings, especially that of aperiodic tilings which began with the work of Wang,
Robinson and Penrose [GS]. The connections of this field with dynamical systems
and ergodic theory is, by now, quite well-established. More specifically, there are
various ways of viewing a tiling of d-dimensional Euclidean space, R

d, as giving rise
to an action of the group R

d on a topological space. The elements of this space are
themselves tilings and the action is by the natural notion of translation. We will
explain a version of this in section 2.

The connection between ergodic theory and von Neumann algebras begins with
the pioneering work of Murray and von Neumann. The analogous connection be-
tween C∗-algebras and topological dynamics also has a long history. For a general
reference to operator algebras, see [Da, Fi, Pe]. Basically, there is a construc-
tion which begins with a general topological dynamical system and produces a
C∗-algebra. By a “general topological dynamical system”, we certainly include the
actions of locally compact groups on locally compact Hausdorff spaces as well as
some topological equivalence relations and foliations of manifolds. (See the refer-
ences above for various special cases and [Ren] for a very general version.) While
this study began somewhat later than that in ergodic theory and von Neumann
algebras, in the last twenty years it has blossomed. This is mainly due to the de-
velopment of the technical tools needed. In particular, K-theory has had a major
impact on the general theory of C∗-algebras and especially on the aspects relat-
ing to dynamics. Thus, it seems natural to try to investigate the special case of
the dynamics obtained from tilings and their associated C∗-algebras. This was al-
ready observed by Alain Connes in [Co2]. The goal is two-fold. First, to produce
interesting examples of C∗-algebras. The second point is to use C∗-algebras and
techniques from their study to learn more about the tilings.

While written mainly from the mathematical point of view, the article also aims
at explaining briefly the physical aspects of (topological) tiling theory. The tilings
have been used by physicists as models in the study of quasicrystals. (See, for
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example, [Ja, StO].) On the other hand, operator algebras began as mathematical
models in quantum mechanics. These C∗-algeras are closely related with the physics
of quasicrystals. We will discuss this and especially the rôle of K-theory in physics.
K-theory enters in physics through Bellissard’s formulation of the gap labelling
[Be1, Be2]. Also see his and his co-authors’ contribution to this volume.

The article is written for the reader having little or no background in the theory
of C∗-algebras. This means that we will sacrifice some precision in our discussions.
We hope that the main ideas are accessible if we avoid getting bogged down in
technicalities (even if they are important ones).

We will begin by describing tilings as dynamical systems. The general theory
is presented in the next section and in the following section we discuss tilings
possessing self-similarity in the form of a substitution rule. Of course, much of
this is fairly standard by now. However, there are certain points where our view
anticipates the questions we will look at later when dealing with C∗-algebras.

There are several different constructions of C∗-algebras from a tiling. We
present two of these in sections 4 and 5. The first is to proceed from the con-
tinuous dynamics of the natural action of Euclidean space as translations of the
tilings. The second takes a more discrete view of the situation. It tends to be more
combinatorial and probably more accessible for someone unfamiliar with operator
algebras. It is also the important one for physics, if one uses the tight-binding
approximation. This is discussed in section 6. In fact, the two C∗-algebras are not
so different. They are equivalent to one another in Rieffel’s sense of strong Morita
equivalence. We will describe this notion and its consequences briefly in section 5
also. There is a third approach to constructing C∗-algebras from tilings. It has
been developed by J. Bellissard and is strongly motivated by physical considera-
tions. It is more operator theoretic than the constructions we consider, which tend
to be more geometric.

Section 7 gives a short (and highly incomplete) introduction to K-theory for
C∗-algebras and in the following section we discuss its relevance within physics. In
particular, we will give a physical motivation for the study of the K-theory of the
C∗-algebras we have constructed from tilings.

The final section gives on outline of the computations made of the K-theory of
the two C∗-algebras we have constructed earlier. These computations concentrate
on the case of substitution tiling systems. The case of tilings obtained from the pro-
jection method have been considered recently by Forrest, Hunton and Kellendonk
[FHK].

The case of the first C∗-algebra (from the continuous dynamics) was done by
the second author, in collaboration with Jared Anderson. The second C∗-algebra
was done by the first author. The fact that these two are strongly Morita equivalent
implies that they will have isomorphic K-theories.

Unfortunately, our desire to provide an introduction forces us to limit our
discussions. Let us quickly mention some items which we do not include. The more
intricate computations of the K theory are sometimes omitted. In particular, we do
not describe the computation of the kernel of the map from K0(AFT ) to K0(AT )
which appears in [Kel2]. We use the simplest possible definiton of a substitution
tiling system. There are many generalizations, which actually occur in certain
examples of interest. We do not discuss topological equivalence of tilings.

We present an example, the octagonal tiling. More examples can be found in
the references, especially to our own papers [AP, Kel1, Kel2, Kel3].
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2. Tilings as dynamics

In this section, we show how a tiling T of R
d gives rise to a topological dynamical

system (ΩT , Rd). That is, ΩT is a compact metric space with an action of R
d or,

equivalently, a d-dimensional flow. The construction is a fairly standard one in
dynamics. We refer the reader to [GS, RW, ER1, Rud, So1].

Let us begin with some notation. R
d denotes the usual d-dimensional Euclidean

space. For x in R
d, r > 0, B(x, r) denotes the open ball, centred at x with radius

r. If X ⊂ R
d and x ∈ R

d, then X + x = {x′ + x | x′ ∈ X}, the translate of X by x.
A tiling, T , of R

d is a collection of subsets {t1, t2, · · · }, called tiles, such that
their union is R

d and their interiors are pairwise disjoint. We will also assume,
for simplicity, that each is homeomorphic to the closed unit ball, B(0, 1). We also
allow the possibility that our tiles carry labels. So that if two tiles have the same
label, then one is a translate of the other. If we include labels, then when we write
t + x = t′, for t, t′ in T , x in R

d, we mean not only that the sets are the same, but
the labels on t and t′ are the same. Generally, we say two tiles are the same tile
type if one is a translate of the other.

If T is a tiling and x is in R
d, then

T + x = {t + x | t ∈ T}
the translate of T by x is also a tiling. Beginning with a single tiling T , we consider
all of its translates T + R

d and endow this set with a metric d as follows. For
0 < ε < 1, we say the distance between T1 and T2 in T +R

d is less than ε if we may
find vectors x1, x2 in B(0, ε) such that T1 + x1 and T2 + x2 are equal on B

(
0, 1

ε

)
.

If there are no such x1, x2 for any ε, then we set the distance to be 1. (See also
[RW, ER1, Rud, So1].)

The construction is a standard one. Notice already that it is measuring some-
thing interesting about the way patterns in T repeat: for x, y in R

d d(T − x, T − y)
is small when the patterns in T at x and y agree, up to a small translation.

Definition 2.1. Given a tiling T , we let ΩT denote the completion of the
metric space (T + R

d, d). We refer to this as the continuous hull of T .

It is important (but fairly easy) to observe that the elements of ΩT can be
viewed as tilings and that the same definition of our metric d extends to ΩT .

Theorem 2.2. [RW] Let T be a tiling. Suppose that, for any R > 0, there are,
up to translation, only finitely many patches in T (i.e. subsets of T ) whose union
has diameter less than R. Then (ΩT , d) is compact.

We will refer to the hypothesis of this theorem as the finite pattern condition
although it is also called finite local complexity ([La]).

It is clear that R
d acts by translation on the elements of ΩT ; if T ′ is a tiling

in ΩT , so is T ′ + x, for any x in R
d. It is clear also that (ΩT , Rd) is topologically

transitive, i.e. there is a dense orbit (namely that of T ). More subtley, we can ask
whether every orbit is dense. In this case, we say (ΩT , Rd) is minimal.

Theorem 2.3. (ΩT , Rd) is minimal if and only if, for every finite patch P in
T , there is an R > 0 , such that for every x in R

d, there is a translate of P contained
in T and in B(x,R).

The condition in the theorem is also called repetitivity. We say that a tiling T
is aperiodic if T +x 6= T , for any non-zero vector x. We will mainly be interested in
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aperiodic tilings T and for such a tiling, it is possible that ΩT will contain periodic
tilings. (Consider tiling the plane with unit squares, fitting edge to edge. Remove
four of them meeting at a point and replace with a square of side length two. This
tiling is aperiodic, but its hull contains the original tiling by unit squares.)

Throughout the rest of the paper we will say that

(i) T is minimal, if the conditions of Theorem 2.3 are satisfied.
(ii) T is strongly aperiodic, if ΩT contains no periodic tilings.

We will note, but not prove, the following.

Proposition 2.4. If the tiling T is aperiodic and minimal, then it is strongly
aperiodic.

3. The dynamics of substitution tilings

Many tilings of interest possess a self-similarity structure. In fact, one can
begin with a finite set of tiles with a substitution rule and produce tilings from
iteration of the rule. The self-similarity appears as this substitution applied to the
resulting tilings. (See also [GS, Ken, ER1, So1].)

We begin as follows. Suppose we have a finite collection of non-empty, compact
sets, each being homeomorphic to the closed unit ball, {p1, . . . , pN}, in R

d. These
we call the prototiles. (This is not necessarily the standard use of this term.) We
suppose we have a substitution rule ω and a scaling factor λ > 1. This means that,
for each pi, ω(pi) is a finite collection of subsets, each one being a translate of one
of the prototiles, overlapping only on their boundaries. Moreover the union of these
sets is exactly λpi. Thus, ω allows us to replace prototiles by patches.

We can extend the definition of ω to translates of the original prototiles, p,
by setting ω(p + x) = ω(p) + λx, for x in R

d. If P is any patch made up of such
translates (in a non-overlapping fashion), then we define

ω(P ) = {ω(t) | t ∈ P}
If T is a tiling, then so is ω(T ). This also means that we can iterate, forming a
sequence of patches, ωk(pi), for k = 1, 2, 3, . . . .

We will assume that our substitution is primitive: for some k > 1, a translate
of each pi appears inside the patch ωk(pj), for all i, j.

It is a fairly standard argument, which we now sketch, to show that such a
system will actually admit tilings. (For more details, see [GS].) One can find a
translate of one of the prototiles t and a k > 1 so that the sequence of patches
ωkn(t), for n = 1, 2, 3, . . . , grows to cover the plane and is consistent in the sense
that any two agree where they overlap. We let T denote the union of these patches
which is a tiling. With the hypothesis of primitivity, the hull ΩT is independent of
the choice of T constructed in this way. To emphasize this fact, we will drop the
subscript T from our notation. (In fact, there is another equivalent definition of
the space Ω which avoids making a choice of T . The construction above is needed
however, to show that this space is non-empty.) We will also assume that T satisfies
the finite pattern condition.

As we noted above, there is an extension of ω to tilings. Its restriction to Ω is
continuous and surjective [Mo, AP] and we also have ω(Ω) ⊆ Ω. From now on we
will also assume that ω : Ω → Ω is injective as well. This is quite a subtle point.
It amounts to what is usually called “recognizability”. As an example, consider
having a single tile which is a unit square in the plane. The scaling factor λ is 2
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and the map ω simply divides the square into four smaller squares, and then rescales
by 2. If we centre this square at the origin and interate to obtain our tiling, T , we
obtain the tiling of the plane by unit squares with vertices on the integer lattice
points. Consider T and T + (.5, .5), which is the same tiling, but aligned so that
the centres are on the integer lattice. Now, we have ω(T ) = ω(T + (.5, .5)) = T ,
and so ω is not injective. In fact, it is fairly easy to generalize this example to show
that our hypothesis that ω is injective implies that Ω contains no periodic tilings.
(For the converse, see [So2].)

Let us mention that this set-up can be generalized considerably. First, the
constant λ can be replaced by any expansive linear transformation of R

d. In [Kel2],
there is an even more general version where a substitution is defined as (roughly)
a map from the set of patches in a tiling to itself satisfying certain conditions. The
expansiveness (λ > 1) is replaced by a growth condition.

We may consider (Ω, ω) as a dynamical system of its own. As such, it possesses
special features which are common in the field of hyperbolic dynamics. Let us give
some background for this material.

In his seminal paper [Sm], Smale proposed and initiated the study of Axiom
A systems. The idea is to consider a compact Riemannian manifold M with a
diffeomorphism, f . We then isolate a closed invariant subset Λ of M , based on the
idea of recurrence. More specifically, Λ is the set of chain recurrent points of f . We
then assume that f is hyperbolic on Λ in the following sense. The tangent bundle
to M , TM , when restricted to Λ, TΛM , may be decomposed as a direct sum

TΛM = Es ⊕ Eu

where each summand is invariant under the derivative of f and, at least roughly
speaking, the derivative contracts vectors in Es while the derivative of f−1 contracts
vectors in Eu. (For a general reference to such systems, see [KH].)

Smale made the key observation that, although (M,f) is smooth, Λ need not be
a manifold. (For example, see Smale’s horseshoe [Sm].) Now the system (Λ, f |Λ)
exists only in the topological category and motivated by this idea, Ruelle gave a
definition of a Smale space [Rue]. The name is slightly mis-leading since the object
is both a space and a map.

Basically, a Smale space is a compact metric space with a homeomorphism
so that, locally, the space may be written as the product of two subsets. This
decomposition (or rather its germs) are invariant under the map and the map
contracts the first subset, while its inverse contracts the second.

It is fairly easy to see that our system, (Ω, ω), arising from a substitution tiling
with hypotheses as above, has the structure of a Smale space [Ken, ER1, AP].
Let T be any tiling in Ω. We want to produce two subsets of Ω containing T , whose
Cartesian product is, in a natural way, homeomorphic to a neighbourhood of T .
For the first, consider all tilings which agree with T on a ball at the origin of radius
one. First, notice that the map ω acts as a contraction on this set since iteration of
the map on two such tilings, produces tilings which agree on larger and larger balls
and so the distance between them contracts at an exponential rate. For the second
set, take all tilings which are translates of T by a small amount. Notice that the
equation

ω−n(T + x) = ω−n(T ) + λ−nx
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immediately implies that any two such tilings get closer together under iteration
of the map ω−1. Finally, it follows at once from the definition of our metric on
Ω that for any tiling, T ′ close to T , we may find a unique small vector x so that
T ′ + x agrees with T on a ball of radius one. Then the map sending T ′ to the pair
(T ′ + x, T − x) is a homeomorphism from a neighbourhood of T to the Cartesian
product of the two sets mentioned above.

We remark that in this local description of Ω, the local contracting direction is
totally disconnected while the other local coordinate is homeomorphic to an open
set in R

d [ER1].
Our next objective is to present the space, Ω, as an inverse limit of more

tractable spaces. The substitution rule allows us to be very specific about this.
In particular, all the spaces are copies of the same space, which we will denote Γ.
Moreover, the maps between these spaces will also be stationary.

Let Γ̃ be the disjoint union of the prototiles. We define an equivalence relation
on this space as follows. For x in pi and y in pj , we set x ∼ y if there are tiles pi +z
and pj + w in T such that x + z = y + w. This simply means that if, somewhere in
T , we see copies of pi and pj overlapping at the points corresponding to x and y,
then we set x ∼ y. At this point ∼ may not be transitive. We define ∼ to be the
equivalence relation generated by this relation. The space Γ is the quotient of Γ̃ by
∼. It is a compact Hausdorff space.

In specific examples, all of which having tiles which are polygons, this space
has a cellular structure. In the top dimension d, the d-cells are the interiors of the
prototiles. This idea has not been developed in generality.

There is a natural map γ : Γ → Γ which is induced by ω. If x is in Γ̃, then x is
in some pi. Then the point λx lies in some tile in ω(pi), say t. This is a translate
of some other prototile, say t = pj + y. We then define γ(x) to be λx− y, which is

in pj and hence in Γ̃. It is possible that λx lies in more than one prototile in ω(pi),
but it this case, it is easy to see that the ∼-equivalence class of the resulting point
is unique. It is easy to see this induces a well-defined map on Γ. Now the inverse
limit

Γ
γ←− Γ

γ←− Γ
γ←−

is denoted by Ω0. It can be defined as

{(x0, x1, x2, . . . ) | xi ∈ Γ, γ(xi+1) = xi, for all i ∈ N}.
Theorem 3.1. [AP] If the substitution system “forces its border”, then Ω is

homeomorphic to Ω0.

We will define the condition of “forcing the border” as we give a sketch of the
proof. For the moment, let us make a few remarks.

The homeomorphism will actually be a topological conjugacy between the map
ω on Ω and the natural shift map on the inverse limit

ω0(x0, x1, . . . ) = (x1, x2, . . . ).

The class of dynamical systems obtained via this inverse limit construction was
introduced and studied intensely by R.F. Williams [W] as models for “expanding
attractors” within the context of Smale’s program for Axiom A systems. It seems
appropriate to refer to such systems as “Williams solenoids”. It is interesting to
see that our “forcing the border” condition appears in Williams’ work in the form
of a “flattening” axiom.
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We will give a short sketch of the proof describing the homeomorphism from Ω
to Ω0. The idea is fairly simple. Begin with any tiling T in Ω. We want to define a
sequence (x0, x1, . . . ) in the inverse limit. First, locate the tile in T which contains
the origin. It is the form p + x, for some prototile p and vector x in R

d. Since the
origin is in p + x, we have −x in p. This gives us a point in Γ̃ and its image in Γ is
x0. Of course, the origin may lie on two or more tiles in T . In this case, all of the
points obtained in Γ̃ will be ∼-equivalent and so the point in Γ is unique.

To obtain xk, for k ≥ 1, we repeat this proceedure using ω−k(T ) instead of
T . It is simple to check that γ(xk+1) = xk, for all k and so this sequence defines
a point in Ω0. The important issue here is that this map is injective. To see this,
first notice that if the origin is in the interior of a tile in T , then the point x0

uniquely determines the tile covering the origin in T . In the case when the origin
lies in more than one tile, things are a bit more subtle and one must work more
carefully. We will not go into the details in this case. Similarly, xk determines the
tile covering the origin in ω−k(T ). Let us call this tile tk. This means that xk

determines a patch, ωk(tk), in T which contains the origin. The idea is that we
can hope these patches grow to cover the plane as k increases. In this case, the
sequence (x0, x1, . . . ) then determines T . This will not be true in general, but it
is enough that the substitution “forces its border”, in the following sense [Kel1].
There is a k ≥ 1 such that, if T and T ′ are two tilings containing a tile t, then the
patches in ωk(T ) and ωk(T ′) consisting of all tiles which meet ωk(t) are identical.

Consider the following one-dimensional example given as a substitution on the
alphabet a, b, c. Suppose we define

ω(a) = baabc ω(b) = bbbc, ω(c) = bbcaaac.

Notice each word begins in b and ends in c. So we don’t really need to know the
symbols to the left or right of an a in an infinite string to know that we will see

. . . c baabc
︸ ︷︷ ︸

ω(a)

b . . .

after applying ω to the infinite string. This is an example of a sustitution forcing
its border. The Penrose substitution also forces it border.

Of course, this seems like a strong hypothesis. However, given any substitution
tiling system, we can replace it by one that forces it border and has exactly the
same collection of tilings. (More precisely, the tilings from the new system are
mutually locally derivable in the sense of [BSJ] with those of the old.) We form
a new set of prototiles as follows. For each of our original prototiles, p, look at all
patches in all tilings in Ω consisting of a translate of p and all its neighbouring tiles.
For each such patch (there are only finitely many) create a copy of p and give it a
label, which consists of this patch. (The patch only functions as a label; the actual
points are the same as in p.) It is easy to see how to define a substitution map on
these new labelled prototiles. It is also easy to see that the collection of tilings will
be “the same” as before and that this new system forces it border.

It is worth noting that that although the result is quite nice from an abstract
viewpoint, this situation can be difficult from a practical one. As an example, the
“chair”, “boot” or “triomino” substitution has four prototiles. Unfortunately, it
does not force its border. Applying the strategy above yields an equivalent system
with fifty-six prototiles. The space Γ will be a cell complex with fifty-six 2-cells.
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The last result which produced a description of the space Ω as an inverse limit
was in the context of substitution tiling systems. In fact, a weaker version of this
seems possible in much more generality.

Problem: For an aperiodic minimal tiling T , express ΩT as an inverse limit
of spaces which are fundamentally simpler, such as finite cell complexes.

In section 8, we will use this description of Ω to compute the K-theory of
certain C∗-algebras. Before getting quite so involved in the theory of C∗-algebras,
it seems interesting to ask at this point, whether the algebraic topology, especially
the K-theory and cohomolgy of the space Ω contains information about the tiling?
In a similar spirit, Geller and Propp [GP] introduced the notion of the projective
fundamental group of a Z

2-action which will generalize to tilings. Presumably, this
presentation of Ω as an inverse limit will make the computation of such invariants
more accessible. In particular, it seems to be an interesting question: “To what
extent does H∗(ΩT ) or K∗(ΩT ) determine the almost periodic structure of T?”

4. The C∗-algebra of a tiling I: the continuous case

Let T0 be a fixed tiling. We construct ΩT0
, which we now denote simply by

Ω, as in Section 2. We will assume tht T0 is minimal and aperiodic. We want to
construct a C∗-algebra from (Ω, Rd).

A C∗-algebra is a C-algebra (not necessarily commutative) with an involution
a → a∗ and a norm in which it is complete [Da, Pe]. There are further hypotheses
which are fairly standard. The most important item is the C*-condition on the
norm; that is, for every element, a, in the algebra, we have ‖a∗a‖ = ‖a‖2. The two
canonical examples are the following. First, let X be any compact Hausdorff space.
The collection of continuous C-functions on X with supremum norm and pointwise
operations of addition, multiplication and complex conjugation is a commutative
C∗-algebra, denoted C(X). The second example is to begin with a complex Hilbert
space H and let B(H) denote the set of bounded linear operators on H. With
the operator norm and usual algebraic structure it is a C∗-algebra. This second
example is non-commutative provided dimH ≥ 2.

To create our C∗-algebra, C∗(Ω, Rd), we begin with Cc(Ω×R
d), the continuous

C-functions of compact support on Ω×R
d. It is a linear space in the obvious way.

We define a product and involution on it by

f · g(T, x) =

∫

y∈Rd

f(T, y) g(T − y, x − y) dy(4.1)

f∗(T, x) = f(T − x,−x),(4.2)

for f, g in Cc(Ω×R
d), T in Ω and x in R

d. This makes Cc(Ω×R
d) into a ∗-algebra.

There are a number of subtle technical points about equipping it with a norm. We
will mention here only that this can be done in a natural way. Unfortunately, it
will not be complete. Its completion is C∗(Ω, Rd) and is indeed a C∗-algebra. This
is an example of the construction of the crossed product C∗-algebra. (For more
details of this construction, see [Pe, Z-M].)

We want to present several other views of this C∗-algebra. First, for the reader
who likes to think of operators on Hilbert space, we proceed as follows. Consider
the Hilbert space L2(Rd). We define, for each f in Cc(Ω × R

d), an operator λ(f)
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on L2(Rd) by

(λ(f)ξ) (x) =

∫

y∈Rd

f(T0 + x, y) ξ(x − y) dy(4.3)

for ξ in L2(Rd) and x in R
d. The map λ is a ∗-homomorphism of Cc(Ω × R

d) into
B

(
L2(Rd)

)
which extends to an isometric ∗-isomorphism between C∗(Ω, Rd) and

the closure of the collection of λ(f)’s in the operator norm. It is worth noting that
there are many other representations, not all as natural as this.

With this description of operators, this C∗-algebra is still not the most intuitive
of objects. Let us now take yet another view. Suppose we return to formulae (4.1)
and (4.2), defining our product and involution, and change T − y in the first and
T − x in the second to simply T . This then removes any hint that R

d is acting on
Ω. Performing the Fourier transform in the R

d variable, one obtains functions on
Ω×R

d which are continuous and vanish at infinity. The product and involution of
(4.1) and (4.2) become pointwise product and conjugate. This Fourier transform
extends to an isometric isomorphism of the resulting C∗-algebra onto C0(Ω × R

d),
the continuous functions vanishing at infinity on Ω × R

d, which is a commutative
C∗-algebra.

If we return to (4.1) and (4.2) again and replace T − y and T − x with T − hx
and T −hy, where 0 ≤ h < ∞ is a parameter, then we can actually view C∗(Ω, Rd)
(h = 1) as a deformation of C0(Ω×R

d) (h = 0). (For much more general situations
viewed in this way, see [Ri2].)

The action of R
d on Ω makes C∗(Ω, Rd) non-commutative. In fact, its centre

is trivial. We have the following even stronger result.

Theorem 4.1. [EH, GR] If T0 is aperiodic and minimal, then C∗(ΩT0
, Rd)

is simple; i.e. it has no non-trivial closed two-sided ideals.

We describe another formulation of C∗(Ω, Rd). Let

RT = {(T, T ′) ∈ Ω × Ω | T ′ is a translate of T} .

This is an equivalence relation on Ω whose classes are simply the R
d-orbits. The

map sending (T, x) in Ω×R
d to (T, T +x) is obviously a surjection and if we assume

that Ω has no periodic tilings, then it is injective as well. If we simply translate
our product and involution on Cc(Ω × R

d) to Cc(RT ), they become

(f · g)(T, T ′) =

∫

T ′′

f(T, T ′′) g(T ′′, T ′) dT ′′(4.4)

f∗(T, T ′) = f(T ′, T ),(4.5)

for T , T ′ in Ω, f, g in Cc(RT ). The nice thing about this formulation is that it
reminds one of matrix multiplication and conjugate transpose. Also this definition
can then be extended to study other equivalence relations [Ren]. We will do this
in Section 5. There are, however, some topological subtleties. We have implicitly
transfered the topology of Ω × R

d over to RT via our bijection. This is not the
relative topology of RT ⊂ Ω×Ω; for large x, T and T +x may be close so (T, T +x)
is close to (T, T ) in the relative topology, but not in that form Ω×R

d. (It is worth
noting that in the relative topology, RT is not locally compact and hence, a bit of
a disaster from an analytic view.)

We will close this section with a bit of philosophy. We have a group, R
d,

which is acting freely on a space, Ω. In Alain Connes’ program of non-commutative
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geometry [Co2], the C∗-algebra C∗(Ω, Rd) acts as a replacement for the orbit space,
Ω/R

d. This should be interpreted as follows. If the space Ω/R
d is reasonable (i.e.

Hausdorff), then C∗(Ω, Rd) should be equivalent to the commutative C∗-algebra
C(Ω/R

d). In our situation of a minimal, aperiodic tiling, the orbit space Ω/R
d has

the indiscrete topology and is effectively useless as a topological space, while the
non-commutative C∗-algebra contains much interesting imformation. Much more
on this point of view may be found in [Co2].

5. The C∗-algebra of a tiling II: the discrete case

In this section, we want to construct another C∗-algebra from a tiling T . The
description of this algebra will be simpler than that of C∗(Ω, Rd) in the last section.
The point is that this new C∗-algebra is equivalent in a certain sense (strong Morita
equivalence) to C∗(Ω, Rd). First, we will describe the new algebra and then discuss
its relation to the old one.

To motivate our discussion, let us examine the simplest non-commutative C∗-
algebra: Mn, the n × n complex matrices, for n ≥ 2.

For each pair, 1 ≤ i, j ≤ n, let e(i, j) denote the matrix which is one in the
(i, j) entry and zero elsewhere. Clearly, these elements satisfy the relations:

e(i, j)∗ = e(j, i)(5.1)

e(i, j) e(i′, j′) =

{

e(i, j′) if i′ = j,

0 otherwise.
(5.2)

In fact, it turns out that Mn is the universal C∗-algebra generated by a collection
{e(i, j) | 1 ≤ i, j ≤ n} satisfying the relations (5.1) and (5.2). (As an aside, the
general construction of C∗-algebras from generators and relations is rather tricky.
For instance, there is no free C∗-algebra on one element.)

Now let us turn to our tiling T . We look at all triples (P, t1, t2) where P ⊂ T
is finite (i.e. a patch) and t1, t2 ∈ P (allowing t1 = t2). We say two of these
triples are equivalent if one is a translate of the other. We let [P, t1, t2] denote
the equivalence class under translation of (P, t1, t2) and call this a doubly pointed
pattern class. Our C∗-algebra, which we will denote AT [Kel1, Kel2], is generated
by elements e[P, t1, t2], where [P, t1, t2] is a doubly pointed pattern class, subject
to some relations. The first is that

e[P, t1, t2]
∗ = e[P, t2, t1].(5.3)

The second is that, if (P, t1, t2) and (P ′, t′1, t
′

2) are both contained in a larger patch
in such a way that t2 = t′1, then

e [P, t1, t2] e [P ′, t′1, t
′

2] = e [P ∪ P ′, t1, t
′

2](5.4)

whereas otherwise that product is 0. Finally, we require the following. Suppose P
is any patch, t is any tile in P and P1, P2, . . . , Pk are a collection of patches, each
containing P and so that any tiling which contains P contains exactly one of the
Pi, then we have

e [P, t, t] =

k∑

i=1

e [Pi, t, t](5.5)
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Observe first, that if P is fixed, each element e[P, t, t] is a self-adjoint idempotent
and also that

e [P, t1, t2] e [P, t1, t2]
∗

= e [P, t1, t1](5.6)

e [P, t1, t2]
∗

e [P, t1, t2] = e [P, t2, t2] .(5.7)

Secondly, if we list representatives of all tile types: t1, t2, . . . , tn, then

n∑

i=1

e [{ti} , ti, ti](5.8)

is a unit for our C∗-algebra. Now, we want to give an indication of why this
C∗-algebra is related to C∗(Ω, Rd).

At the same time, we will obtain another description of it.
Recall Ω, our space of tilings. For each tile type (or labelled tile type) in T ,

we choose a point in the interior which we call a puncture. Now in our tiling each
tile, t, is given a puncture x(t), so that if two tiles t1 and t2 are translates, say
t1 = t2 + x, then x(t1) = x(t2) + x. In the same way, each tile in every tiling in Ω
also gets a puncture.

Definition 5.1. [Kel1] We define the discrete hull of T , which we denote by
Ωpunc, to be all the tilings T ′ in Ω such that the origin is a puncture of some tile t in
T ′; that is, x(t) = 0. (Note that, since the punctures do not lie on the boundaries
of tiles, the choice of t is unique.)

First observe the following simple facts about Ωpunc.

1. If T ′ is any tiling in Ω, T ′ + x is in Ωpunc for some x in R
d.

2. If T ′ is in Ωpunc, there is an ε > 0 such that T ′ + x is not in Ωpunc, for any
x with 0 < |x| < ε.

3. Ωpunc is closed in Ω.

We summarize by saying that Ωpunc is a transversal to the R
d-action. (See [MRW].)

Somewhat less obvious is that, if we assume T satisfies the finite pattern condition,
then Ωpunc is a Cantor set; that is, it is compact, has no isolated points and its
topology is generated by sets which are both closed and open. Let us present such
sets. Let P be a finite patch in T and let t be an element of P . Then P − x(t) is a
patch having a puncture on the origin. Look at all tilings in Ωpunc which contain
the patch P − x(t); i.e.

U(P, t) = {T ′ ∈ Ω | P − x(t) ⊂ T ′} .

One can check that U(P, t) is both open and closed in the relative topology of Ωpunc

and that such sets generate the topology of Ωpunc.
We now define an equivalence relation Rpunc on Ωpunc as follows:

Rpunc =
{
(T1, T2) | T1, T2 ∈ Ωpunc and ∃x ∈ R

d : T1 = T2 + x
}

.

This means we are taking the equivalence relation on ΩT whose classes are simply
the R

d-orbits, which we called RT in section 4, and we are restricting it to Ωpunc :
Rpunc = RT ∩ (Ωpunc × Ωpunc). We provide Rpunc with a topology as follows. A
sequence (Tn, Tn + xn) in Rpunc converges to (T, T + x) if and only if d(Tn,T ) and
|xn − x| both tend to zero. There are a number of technical subtleties here, but
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we proceed to define a C∗-algebra AT = C∗(Rpunc) as follows [Kel1, Ren]. Begin
with Cc(Rpunc) as a linear space and define product and involution by

(f · g)(T1, T2) =
∑

T ′ s.t. (T1,T ′)∈RT

f(T1, T
′) g(T ′, T2)(5.9)

f∗(T1, T2) = f(T2, T1).(5.10)

These formulas should certainly remind one of matrix multiplication and adjoint
and (4.6) and (4.7). As with C∗(Ω, Rd), this ∗-algebra must be given a norm and
completed to get a C∗-algebra. We will not discuss this here, but the result is
C∗(RT ) which we will call simply AT . We point out that Bellissard etal. make a
very similar construction with measures instead of tilings (see their contribution in
this book).

We must address two issues: first, to see the elements e [P, t1, t2] we discussed
earlier and secondly to see how this C∗-algebra is related to C∗(Ω, Rd).

For the first part, let (P, t1, t2) be a doubly pointed pattern class in T . The
map sending T ′ in U(P, t1) to T ′ + x(t2) − x(t1) in U(P, t2) is a homeomorphism.
Its graph is not only contained in Rpunc, but is actually a compact and open subset.
Let e [P, t1, t2] denote its characteristic function. Now one checks easily from the
definitions (5.10) and (5.9) that these elements satisfy the relations (5.3) and (5.4).
Also, the graphs of such functions actually generate the topology of Rpunc, so the
linear span of the e [P, t1, t2]’s is dense in Cc(Rpunc) and hence in AT .

To continue our analogy of AT with Mn, we observe the following analogue of
the subalgebra of diagonal matrices.

Proposition 5.2. The map sending the characteristic function of U(P, t) to
e [P, t, t] is a unital injective ∗-homomorphism of C(Ωpunc) to AT .

We now turn to the second problem, relating AT with C∗(Ω, Rd). These
algebras are strongly Morita equivalent – a concept introduced by Marc Rieffel
[Ri1, MRW]. In fact, any time one considers a transversal to an equivalence rela-
tion satisfying conditions 1, 2, 3 as above, the associated C∗-algebras will be related
in this way.

Rather than describe this in detail, we will give some simple examples and some
consequences. If A is any C∗-algebra, it is strongly Morita equivalent to Mn(A),
the C∗-algebra of n× n matrices over A. Also, if h is any self-adjoint element of A
whose spectrum is non-negative, then A is strongly Morita equivalent to the closure
of hAh, provided the closed two-sided ideal in A generated by h is all of A.

If two C∗-algebras are strongly Morita equivalent, then there is a natural bi-
jective correspondence between their ideal structures (ideal means closed two-sided
ideal), their representation theories and their K-theories. Although the definition
of strong Morita equivalence is complicated enough that we omit it here, it is the
most natural notion of equivalence for C∗-algebras — perhaps even more natural
than isomorphism.

6. C∗-algebras in physics

In this section, we will discuss the role of the C∗-algebra, AT , in physics. In
the quantum mechanical model of the motion of a particle in Euclidean space, an
observable is a self-adjoint operator. Ignoring internal degrees of freedom (like spin)
and provided there are no external forces (like an external magnetic field) such an
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operator is constructed from position and momentum operators. So we can work
entirely inside the algebra generated by the momentum and position operators. We
choose to work within the C∗-algebra which is the closure of this algebra and refer
to it as the C∗-algebra of observables. We want to study the impact of the topology
of this underlying non commutative space, in the sense of [Co2]. A first difficulty is
that many of these operators are unbounded. One approach to dealing with this is
to pass to resolvants of the operators. Instead, we want to consider the tight binding
approximation for a particle in a solid. In this, the solid can be modelled by a tiling;
the tiles representing the locations of the atoms so that congruent arrangements
are represented by congruent patches in the tiling. The particle motion becomes
discrete. The particle hops from tile to tile. The Hilbert space of wave functions
is replaced by the space of square summable functions on the set of tiles. This has
two immediate consequences. First, (absolute) position is described by a tile in the
tiling and second, momentum — usually thought of as a generator of translation
— has to be replaced by finite translation (or strictly speaking, its difference with
the identity). However, as a consequence of locality of interaction, observables like
the potential, which are independent of momentum, depend only on the position of
the particle (i.e. a tile) inside a patch whose position in the tiling doesn’t matter.
(The larger the interaction radius, the larger the patch.) More technically, let P
be a patch and t be a tile in P . Then the momentum-independent observables
will be functions of the e[P, t, t], operators which describe whether the particle is
at t in a patch which is a translate of P . Now, suppose we consider a patch, P in
T , consisting of a pair of adjacent tiles (meaning their intersection is codimension
one) t1, t2. Our operator e[{t1, t2}, t1, t2] represents the operator associated with
the transition from a tile of type t2 to an adjacent one of type t1 in all patches
which are translations of P . It is not a unitary, but rather a partial isometry. It
can be regarded as a “partial translation”; partial in the sense that its domain
corresponds only to those tiles which are translates of t2 in the translate of P .
These partial translations are the operators which replace momentum. The C∗-
algebra these generate is exactly our algebra AT . A similar construction has been
given by Bellissard [Be2, BCL] for the case of standard tilings obtained from the
projection method.

There is another approach which comes from the ideas of disordered systems.
This has been developed principally by J. Bellissard [Be2]. The idea is to begin
with a bounded operator A acting on the Hilbert space H = L2(Rd), which should
be thought of as a bounded function of the Hamiltonian for our particle. There is
a natural action of R

d on this same Hilbert space via translations. We use Vx to
denote the unitary operator

(Vxξ)(y) = ξ(y − x),

for any ξ in H, x and y in R
d.

One considers the set of translations of A under conjugation by this unitary
representation of R

d and its closure in the strong operator topology. This we define
to be the strong operator hull of A

Hull(A) = {V ∗

x AVx|x ∈ R
d}−SOT

(Here, SOT refers to convergence in the strong operator topology on B(H). We
recall that a sequence of operators, An, converges to an operator A in the strong
operator topology in ‖Anξ − Aξ‖ converges to zero, for every vector ξ in (H).)
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The idea is to think of measures on Hull(A) as probabilities of the different
translates of A. Now, one can view Hull(A) and the action of R

d on it as a dy-
namical system and perform with it the same constructions we did with (ΩT , Rd).
In fact, in many cases one can show that these dynamical systems are conjugate,
provided the operator A reflects the structure of the tiling (e.g. by being quasiperi-
odic with respect to the tiling), but to make the last statement precise in general
is still partly an open problem. The analogous approach works also in the tight
binding approximation if the tiling can be identified with an (amenable) discrete
group which plays the role of R

d.

7. K-theory for C∗-algebras

The subject of K-theory has revolutionized the subject of C∗-algebras in the
past twenty-five years. For longer discussions on the matter, we refer the reader to
[Da, Bl, W-O].

Let A be a C∗-algebra with unit. (The non-unital case is a minor but annoying
adaptation.) There are Abelian groups K0(A) and K1(A) associated to A. For
separable C∗-algebras, such as all those appearing from tilings, these groups are
countable. For physics, K0(A) seems the more interesting; it is basically a calculus
for dealing with the projections in the C∗-algebra. If a self-adjoint operator has a
spectrum which may be decomposed into disjoint closed pieces, the spectral pro-
jections for the pieces determine elements in K0(A). In addition, the simple notion
that projections in a C∗-algebra may be compared (determined by containment of
their ranges, if they are operators acting on a Hilbert space) produces a natural
pre-order on K0(A). In most of our examples here, this seems to be an actual order.
This makes K0(A) a rather rich invariant.

To define K0(A), we proceed (in a rather heuristic fashion) as follows. We want
to look at all projections or self-adjoint idempotents in A. That is,

P1(A) =
{
p ∈ A | p2 = p = p∗

}
.

Two are equivalent if they are similar, that is

p ≈ q if p = uqu−1,

for some invertible u in A. Two projections p and q are called orthogonal if pq = 0,
which implies qp = 0 also. In this case, p + q is again a projection. This definition
can be extended to equivalence classes:

[p] + [q] = [p + q], if pq = 0.

We face the question, given two equivalence classes, whether we can find an orthog-
onal pair of representatives? This cannot always be done (suppose one is the class
of the identity!), but we can solve the problem as follows. Let

P (A) =
{
p | p ∈ Mn(A), for some n, p2 = p = p∗

}
,

where Mn(A) denotes the n × n matrices with entries from A. For each n, Mn(A)
is a C∗-algebra. Here, we implicitly assume Mn(A) ⊂ Mn+1(A) by identifying (aij)
and 






aij

0
...
0

0 . . . 0 0








.
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We extend the definition of ≈ to Mn(A). Now if p and q are in Mn(A), p2 = p = p∗,

q2 = q = q∗, regard both in M2n(A), where q =

(
q 0
0 0

)

is similar to

(
0 0
0 q

)

which

is orthogonal to p =

(
p 0
0 0

)

. So

[p] + [q] =

[(
p 0
0 q

)]

.

We are on our way to turning P (A)/ ≈ into an Abelian group. At the moment we
have a semigroup with identity (p = 0). The remainder of the construction (usually
referred to as the Grothendieck group) is standard. The first problem is that our
semigroup may not have cancellation. We define

p ∼ q if

(
p 0
0 1k

)

≈
(

q 0
0 1k

)

,

for some k, 1k denotes the multiplicative identity in Mk(A). Then P (A)/ ∼ is a
semigroup with an identity and cancellation, but perhaps no inverses. Then

K0(A) = {[p] − [q] | p, q ∈ P (A)}
is all formal differences. The semi-group P (A)/ ∼ appears in K0(A) as

K0(A)+ = {[p] − [0] | p ∈ P (A)}
which is a generating cone. If K0(A)+ ∩ −K0(A)+ = {0} then we may define an

order by x ≥ y if and only if x − y ∈ K0(A)+.
Let us compute this for the simplest of all C∗-algebras, the complex numbers.

In fact, this will give us some useful insights for later. Let Tr denote the trace on
Mn(C) : Tr(a) =

∑

i aii. For a projection p in Mn(C), Tr(p) is the rank of p, hence
an integer. (Observe that, if we view p in Mn(C) or Mn+1(C), its trace is the same.)
Now trace has several important properties. It is invariant under similarity. Hence
it is well-defined on P (A)/ ≈. It is additive and hence well-defined on P (A)/ ∼ and
is, in fact, a morphism of semigroups. Finally, two projections in Mn(C) are similar
if and only if they have the same rank or trace. Thus Tr induces an isomorphism

T̂ r : K0(C) → Z : T̂ r ([p] − [q]) = Tr(p) − Tr(q).

Another nice feature of Tr is that it is positive Tr(a∗a) ≥ 0 for all a in Mn(C). So

Tr(p) = Tr(p∗p) ≥ 0. This means that T̂ r is a homomorphism of ordered groups
(usual order on Z) and, in this case, is actually an order isomorphism.

The idea of using the trace on Mn(C) is something which can be applied to
many more general C∗-algebras. If A is any unital C∗-algebra, a trace, τ , on A is
a linear functional τ : A → C such that

(i) τ(ab) = τ(ba), for all a, b in A,
(ii) τ(1) = 1
(iii) τ(a∗a) ≥ 0, for all a in A.

Given such a functional, we can define a group homomorphism

τ̂ : K0(A) → R

by

τ̂(p) =

n∑

i=1

τ(pii),
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for p in Mn(A), p2 = p = p∗. The fact that similar projections have the same trace
follows from (i) above. The rest of the argument that τ̂ is a well-defined group
homomorphism is exactly as for the complex numbers. Also, condition (iii) ensures
that τ̂ is positive:

τ̂
(
K0(A)+

)
⊂ [0,∞).

The two important differences from the special case of Mn(C) are that τ̂ may not
be integer valued in general, and that it need not be injective.

We will briefly discuss the existence of such functionals for our C∗-algebras
C∗(ΩT , Rd) and AT associated to a minimal aperiodic tiling, T . For the former
algebra, the amenability of R

d implies the existence of a probability measure µ on
ΩT which is invariant under the action of R

d. We can then define a functional on
Cc(ΩT × R

d) by

τ(f) =

∫

Ω

f(T ′, 0)dµ(T ′)

for f in Cc(ΩT × R
d).

This has the correct positivity and trace properties, but some subtleties arise
because it does not extend to a continuous linear functional on the completion of
Cc(ΩT × R

d), which is C∗(ΩT , Rd). This can still be useful, as it is often finite on
the projections in the algebra.

For substitution systems satisfying our earlier hypotheses, there is a natural
choice for such a measure, namely the measure which maximizes the entropy of the
transformation or the so-called Bowen measure.

If we look at situation for AT , we want to do something similar on the equiv-
alence relation Rpunc. We say a measure ν on Ωpunc is Rpunc-invariant if, for any
open set E in Rpunc such that the two canonical projection maps from E to Ωpunc,

r(T1, T2) = T1, s(T1, T2) = T2

are local homeomorhisms to their images, then we have

ν(r(E)) = ν(s(E)).

Using the notation of section 4, this is equivalent to saying that

ν(U(P, t1)) = ν(U(P, t2)),

for any patch P and any two tiles t1, t2 in P .
From such a measure we may construct a functional on Cc(Rpunc) by setting

τ(f) =

∫

Ωpunc

f(T ′, T ′)dν(T ′)

for f in Cc(Rpunc). In terms of our earlier description of the generators of AT , this
means

τ(e[P, t1, t2]) =

{
ν(U(P, t1)) if t1 = t2
0 if t1 6= t2

In this case, the functional will extend continuously to AT and have all the
desired properties. Again for substitution tilings, the situation is quite good. Again
one takes the Bowen measure and uses the fact that it will decompose into a product
measure in the local coordinates. The local contracting coordinate will contain
Ωpunc and the measure on this will have the desired properties.
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For more information on the existence and uniqueness of such invariant mea-
sures, see [Kel1, Kel2].

Let us turn briefly to the group K1(A). In this case, our interest is in the
invertible elements of A modulo homotopy. We let

Un(A) = {u ∈ Mn(A) | u is invertible}
and set

u ∼ v in Un(A)

if there is a continuous path ut, 0 ≤ t ≤ 1 in Un(A) with u0 = u, u1 = v. We also
regard Un(A) ⊂ Un+1(A) by equating a and








a

0
0
...

0 . . . 0 1








.

The group structure is multiplication. It is a standard calculation to show that, for
u, v in Un(A),

(
uv 0
0 1

)

,

(
u 0
0 v

)

,

(
vu 0
0 1

)

are all homotopic in U2n(A). This shows that we could have also defined the product
by direct sum and that our group operation is commutative. K1(A) is defined as
the union of the Un(A)/ ∼.

For any complex, invertible matrix a it is quite easy to construct a path of
invertible matrices from a to 1. It follows that K1(C) is the trivial group.

8. Gap-labelling

We want to discuss the relevance to physics of the K-theory of the C∗-algebras
which we are discussing, particularly AT . This is summarized by the term “gap-
labelling”, which we will explain. A more thorough treatment can be found in
[Be2, Kel1]. The one-dimensional case is treated in [BBG].

Suppose that H is the Hamiltonian of a particle moving in our solid which we
have modelled by a tiling. More accurately, suppose H is the Hamiltonian in our
tight-binding approximation. This means it will be a bounded operator and will lie
in our C∗-algebra AT . Its spectrum is a bounded subset of R. A maximal connected
subset of its complement in R is an open interval which is called a gap. We let
Gap(H) denote the set of all gaps of H. Notice that the gaps are naturally ordered
like energy on the real line. As the spectrum is bounded, there is an unbounded gap
of the form (−∞, a) and an unbounded gap of the form (b,∞). These we denote by
−∞ and ∞, respectively. For any two gaps, g1 < g2, the spectral projection of the
operator H associated with the spectrum between g1 and g2 is an element of the
C∗-algebra, since it is the result of an application of a function which is continuous
of the spectrum of H. For a single gap g, we let Pg denote the spectral projection
of the interval from −∞ to g. The gap-labelling is based on the map

g ∈ Gap(H) −→ [Pg] ∈ K0(AT )

and we call [Pg] a label for the gap g. Notice the following properties:

• [P−∞] = [0]
• [P∞] = [1]
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• g1 < g2 implies [P1] < [P2]
• The label of a gap is a topological invariant in that, if we perturb H along a

norm continuous path in such a way that the gap does not dissappear, then
the label does not change.

The third property ensures that the labelling is injective. If we can compute the
K-theory of AT , we have a list of labels for the gaps in the spectrum of H, even if
we cannot exactly determine the spectrum.

Suppose further that we have a normalized trace τ on our C∗-algebra of ob-
servables AT . As we noted before, this induces a map, τ̂ from K0(AT ) to the
real numbers and we may apply this to our gap-labelling scheme. So to any gap
g ∈ Gap(H), we associate the real number

τ̂([Pg]) = τ(Pg).

This labelling is the most interesting for physics. If we use the trace which is the
trace per unit volume, then this is the density of eigenstates integrated up to the
gap. This density of states is accessible to physical experiments. With this choice
of trace, we call τ̂(K0(AT )) the gap-labelling group. It is often smaller and easier
to compute than the K0 group itself. It is an open problem to find a physical
interpretation for the elements of the kernel of τ̂ .

There is no general reason why, for a specific operator H, g −→ τ̂([Pg]) should
map onto the elements in τ̂(K0(AT )) between 0 and 1. In one dimension one has
found many examples for which this is the case but in higher dimensions one does
not expect this.

Let us remark why the choice of C∗-algebra AT is important. We have already
argued that it is the C∗-algebra which contains the Hamitonian, H, we are inter-
ested in. We could, in fact, just use the C∗-algebra generated by H. This is a
commutative algebra isomorphic to the continuous functions on the spectrum of
H. This is something which we were not very optimistic about computing in the
first place. With AT as our choice of C∗-algebra, the computation of the range of
our labelling scheme, that is the gap-labelling group, is actually independent of the
operator H. It is an invariant which characterizes the influence of the structure of
the space on the spectrum of an operator and its density of states.

Baake etal. have observed phenomena in other areas of physics which resemble
the gap-labelling of Schrödinger operators [BGJ, GrBa]. Although it is not clear
how these are related to the K-theory of some C∗-algebra we mention one of these,
namely the distribution of zeros for the partition function of a classical quasiperiodic
Ising chain in a constant magnetic field. To explain this a little bit consider a one
dimensional tiling, i.e. an infinite sequence of intervals, and put spins at the points
where the intervals touch. The spins interact with the external magnetic field in
the usual way but the constants of interaction between nearest neighbours depend
on the interval (e.g. are proportional to its length) which lies between the two spins.
One then is interested in the zeroes of the partition function as a function of the
strength h of the external magnetic field, or more precisely as a function of z = eβh

with β proportional to the inverse of the temperature. It is known that these zeroes
lie all on the unit circle. Consider now the integrated density of zeroes, that is the
integral of the density of zeros over a segment of the circle starting at the real line.
The surprising observation which has been made for the simplest 1-dimensional
substitution tilings is that the dependence of this integrated density of zeroes on
the length of the segment looks like the devil’s staircase given by the integrated
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density of states (as a function of energy) of a typical tight binding operator on the
tiling. The values of the integrated density of zeroes at points where it is constant
seem to belong to the gap-labelling group of the tiling.

9. K-theory of the C∗-algebras of tilings

We begin with a minimal aperiodic tiling T . We first construct two C∗-
algebras: C∗(ΩT , Rd) and AT and we then want to compute their K-theories. Since
these C∗-algebras are strongly Morita equivalent, the answers are the same. But
the rather different views we have of the two will provide different information.

Let us begin with C∗(ΩT , Rd). The careful reader will have noticed little to rec-
ommend this algebra so far. We have done no computations involving its elements.
(As we are about to ask “what are the projections in this algebra?”, one might be
worried by the fact that we haven’t yet written one down. Actually, we won’t.)
The biggest single advantage of C∗(ΩT , Rd) is the following theorem of Connes.

Theorem 9.1. [Bl, Co1]

Ki

(
C∗(ΩT , Rd)

) ∼= Ki−d (C (ΩT ))

∼= Ki−d (ΩT ) ,

where Ki−d is topological K-theory, and i − d is interpreted mod(2).

The result has nothing particular to do with tilings; it is simply a statement
about R

d-actions on spaces (or even on C∗-algebras). It requires no hypotheses of
aperiodicity or minimality. Connes originally referred to this as an analogue of the
Thom isomorphism which states that if E is a vector bundle over a space X, then
K∗(E) ∼= K∗−d(X), where d is the dimension of E. That is, the K-theory of E is
independent of how E twists over X and it is the same for all vector bundles of a
fixed dimension. In our situation of R

d acting on ΩT , Connes’ theorem says that
the K-theory is independent of the action. Recall from Section 4 that if R

d acts
trivially, then the C∗-algebra is isomorphic to C0(ΩT × R

d). Finally,

Ki

(
C0

(
ΩT × R

d
)) ∼= Ki−d (C(ΩT ))

is the famous Bott periodicity result. (See both 1.6.4 and 9.1 of [Bl].) So Connes’
result leaves us with the problem of understanding the topology of Ω. One small
word of warning; Connes’ isomorphism, like much of the machinery of K-theory,
does not respect the order structure on K0.

We are left with the problem of computing the K-theory of the space ΩT . For
this, we restrict our attention to substitution tiling systems. In this case, we will
make use of Theorem 2.1 which expresses the space Ω as an inverse limit. We
also use the fact that K-theory is continuous in the sense that the K-theory of an
inverse limit of a sequence of topological spaces is isomorphic to the direct limit of
their K-theory groups. Putting this together, we obtain the following.

Theorem 9.2. [AP] For a substitution tiling system satisfying our earlier hy-
potheses, we have

Ki(C
∗(Ω, Rd)) = lim

→

Ki−d(Γ) −→ Ki−d(Γ) −→ Ki−d(Γ) −→ . . . .

It is important to remember that the space Γ is fundamentally simpler than
Ω. In many examples arising from polygonal tiling schemes, it has the structure
of a finite cell complex. In practical terms, this allows for the computation of the
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K-theory of the C∗-algebras C∗(Ω, Rd). This is carried out completely for several
examples, including the Penrose tilings, in [AP].

As a final remark, we repeat that the method we have provided for computing
Ki

(
C∗(ΩT , Rd)

)
says nothing about the order on the K0-group. This is unfortu-

nate, since this is a valuable part of the data.
We turn to our other C∗-algebra, AT , where T is generated as above from

a substitution system. Again we make the hypotheses that the substitution is
primitive, the map ω is injective and the tiling satisfies the finite pattern condition.

The first step in constructing the discrete hull is to select some punctures for
our tiles. We will make the assumption (and we lose no generality in doing so) that
each of our prototiles contains the origin in its interior. We then select the origin
as our puncture.

Recall that if P is a patch in T and t is in P , then U(P, t) is a clopen set in
Ωpunc, consisting of all tilings with a copy of t ∈ P at the origin. Recall also, our
description of AT in Section 4 as being generated by elements e [P, t1, t2], where
(P, t1, t2) is a doubly pointed pattern class.

We will discuss a method for the computation of K0(AT ) in [Kel1, Kel2]. (We
will have nothing to say about K1.)

Recall that the subalgebra generated by the elements e[P, t, t] is isomorphic to
C(Ωpunc). Our first observation is that the K-theory of this C∗-algebra is com-
putable. If (fij) is any matrix with elements from C(Ωpunc) which is a projection,
then its trace,

∑
fii is a continuous integer-valued function on Ωpunc. Just as the

case for a matrix algebra, this trace map extends to an isomorphism from

K0(C(Ωpunc))
∼=−→ C(Ωpunc, Z),

where the range is the continuous integer-valued functions with pointwise addition.
The fact that this is an isomorphism depends on the space Ωpunc being totally
disconnected. Such a result is certainly not true in higher dimensions. Observe
that the map sends the projection e[P, t, t] to the characteristic function of the set
U(P, t).

The inclusion of C(Ωpunc) in AT induces a map on K0 groups. Unlike the
map on algebras it is far from injective. To see this, suppose [P, t1, t2] is a doubly
pointed pattern class. Let v = e [P, t1, t2] and

u =

(
v 1 − vv∗

1 − v∗v v∗

)

be in M2(AT ). It is easy to check that u−1 = u∗ and that

u

(
e [P, t1, t1] 0

0 0

)

u−1 =

(
e [P, t2, t2] 0

0 0

)

so that e [P, t1, t1] and e [P, t2, t2] now determine the same element in K0(AT ),
while the characteristic function of U(P, t1) and U(P, t2) are distinct elements in
K0 (C (Ωpunc)).

Motivated by this observation, we let ET be the subgroup of C (Ωpunc, Z)
generated by all elements of the form

χU(P,t1)
− χU(P,t2)

,

where [P, t1, t2] is a doubly pointed pattern class. We call

H(T ) = C (Ωpunc, Z) /ET
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the integer group of coinvariants of T . It is an invariant of the tiling T and Rpunc

(but not of AT ).
It is a rather interesting question to ask how close this is to K0(AT ). We

have seen that there is a homomorphism of C (Ωpunc, Z) to K0(AT ) whose kernel
contains ET . Could the kernel be larger? In fact, in nice situations it is not. Is the
map onto? That is, can one find projections in AT other than the e[P, t, t]’s? (In
the case of a matrix algebra, this amounts to the observation that every projection
is similar to a diagonal one.) In fact, there are other, less obvious, projections in
many cases.

Suppose for a moment that we are dealing with a situation where all of our
tiles are unit squares, but carry labels so that T is minimal and aperiodic. We can
put our punctures in the centre of each tile. Then there is an obvious action of Z

2

on Ωpunc so that the map

Ωpunc × Z
2 → Rpunc

defined by (T, ν) → (T, T + ν) is a homeomorphism. In this case,

AT = C∗(Rpunc) = C∗
(
Ωpunc, Z

d
)

can be constructed very much like the case for C∗
(
ΩT , R

d
)

of Section 4. See
[Pe, Da] for more details. Moreover, there is machinery which will compute the
K-theory (again without order) of such a C∗-algebra. The case d = 1 was a great
breakthrough of Pimsner and Voiculescu [Bl, Da, W-O]. It can be extended to
higher values of d, although spectral sequences become involved in the calculations.
The case of 2-dimensional square tilings has been carefully analysed by van Elst
[vEl] and later Forrest and Hunton [FH] have investigated the K-theory of C∗-
algebras associated with actions of Z

d on Cantor sets for general d.
As a sample, in the case d = 2, the result shows

K0(AT ) ∼= C (Ωpunc, Z) /ET ⊕ Z.

Let us take a moment to explain the Z-term. We let u and v denote the
characteristic functions of the graphs of the two maps

T ′ → T ′ + (1, 0)

T ′ → T ′ + (0, 1).

These graphs are compact open sets in Rpunc, so u and v are in AT . They also
commute and the C∗-algebra they generate, denoted by C∗(u, v), is isomorphic
to C(T2), the continuous functions on the 2-torus. This C∗-algebra contains a
projection in M2

(
C(T2)

)
which is rank one at each point of T

2, but not similar

to

(
1 0
0 0

)

. (See [W-O] for further details.) The similarity exists pointwise, but

cannot be made continuous. So this projection (or rather its formal difference with
(

1 0
0 0

)

) generates the Z in K0(AT ). It is really present because of the fact the

tiling is in R
2. It has little to do with the tiling itself. (To make this statement

a little more precise, the intersection of C (Ωpunc) and C∗(u, v) in AT is just the
scalar multiples of the identity.)

Of course, much of the interest in aperiodic tilings comes from the fact that
the tiles aren’t always squares. However, it is shown in [Kel2] that the same
techniques as above can be applied much more generally. We say that the tiling
T is a decoration of Z

d if we may choose a set of punctures for some (but perhaps
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not all) tile types such that there is an action (denoted by ·) of Z
d on Ωpunc′ (new

punctures!) by homeomorphism such that the map

(T ′, x) ∈ Ωpunc′ × Z
d −→ (T ′, x · T ′) ∈ Rpunc′

is a homeomorphism. The topology on Ωpunc′ × Z
d is the product topology, while

that on Rpunc′ is as defined earlier.
The first question is naturally: how much change do we make in AT by selecting

only a subset of tile types to have punctures? Let

P =
∑

e ({ti} , ti, ti) ,

where the sum is over all tile types, ti, having a puncture in the new system. Then
the C∗-algebra of the new Rpunc′ is isomorphic to P AT P and P is a projection.
Thus, the new C∗-algebra is strongly Morita equivalent to our old one.

The second important question is how often does this situation arise? In fact,
this is possible for any tiling obtained by the generalized grid method [SSL], in-
cluding the Penrose tilings and the Ammann-Beenker tilings [Kel2].

Also, in [FHK], this point of view is developed completely for tilings which are
obtained by the so-called projection method. It is shown that generically, there is a
natural choice of transversal so that the C∗-algebra, C∗(Ω, Rd) is strongly Morita
equivalent to the crossed product arising from an action of Z

d on this transversal.
At this point, we have a description of the K0 group of AT in terms of our integer

group of coinvariants. Unfortunately, we do not yet have a very good grasp of this
invariant. In particular, we want to be able to compute it in specific cases. We now
restrict our attention to the case of substitution tilings satisfying the condition of
section 3.

To obtain a better description, we will introduce a new C∗-algebra, AFT , which
will be intermediate

C(Ωpunc) ⊂ AFT ⊂ AT

This new algebra will be from a special class of algebras called AF -algebras
(for approximately finite dimensional), which are both well-understood and rather
rich [Bl, Da, W-O, Ef]. In particular, the K-theory of this C∗-algebra will be
computable (including the order!) and give us a better approximation to that of
AT .

Our analysis will now proceed as follows. We will define a sequence of C∗-
subalgebras of AT . In fact, these will be nested so that the completion of their
union is also a C∗-subalgebra. Moreover, each one of them will be finite dimensional
as a vector space and isomorphic to a finite direct sum of matrix algebras. Of
course, the dimension and the size of the matrix algebras will grow as we pass out
in the sequence. The closure of their union is a so-called “approximately finite
dimensional” or AF -algebra, which will be our AFT .

We begin with a small observation. Recall our notation from section 5: for
a patch, P and tile t in P , we let U(P, t) denote the set of all tilings T in Ωpunc

containing P and with t covering the origin. Suppose that p and p′ are two prototiles
and x and x′ are points in their respective interiors. Then the sets U({p}, p) − x
and U({p′}, p′)− x′ are disjoint in Ω, unless p = p′ and x = x′. Since ω is injective
on Ω, the same is true of the sets ωN (U({p}, p))−λNx and ωN (U({p′}, p′))−λNx′,
for any positive integer N .
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We are now ready to begin our definition of the sequence of C∗- subalgebras.
Let N be any non-negative integer. For each prototile p, let Punc(N, p) denote the
set of all the punctures in ωN (p). Now, for each pair x, y in Punc(N, p), we define
the set

EN
p (x, y) = {(ωN (T ) − x, ωN (T ) − y) | T ∈ U({p}, p)}

We note the following properties of this set. First, for any T in U({p}, p), the tilings
ωN (T )− x and ωN (T )− y are both in Ωpunc and the second is the translate of the
first by x − y. This means our set EN

p (x, y) is contained in RT . The fact that it

is a clopen subset is easy to verify. So we define eN
p (x, y) to be the characteristic

function of EN
p (x, y), which is then an element of AT .

The following relations follow easily from the first of our observation above.
For any prototiles p and p′, punctures x, y in Punc(N, p) and x′, y′ in Punc(N, p′),
we have

eN
p (x, y)eN

p′ (x′, y′) = 0, if p 6= p′

eN
p (x, y)eN

p′ (x′, y′) = 0, if p = p′ and y 6= x′

eN
p (x, y)eN

p′ (x′, y′) = eN
p (x, y′) if p = p′ and y = x′.

The second and third relations mean that if we fix both N and p and define

AN,p = span{eN
p (x, y) | x, y ∈ Punc(N, p)}

then AN,p is isomorphic to the algebra of complex n × n matrices, where n is
the number of punctures in ωN (p). Moreover the first relation means that these
algebras, for different values of p, are orthogonal. So we define

AN = span{eN
p (x, y) | p a prototile and x, y ∈ Punc(N, p)}

and we have

AN =
⊕

p

AN,p.

Observe that the number of matrix summands is the number of prototiles and this
is independent of N . Of course, the sizes of the matices, which is the number of
punctures in the inflations of the prototile, will grow with N .

We want to show that, for all N , we have AN ⊆ AN+1. For any prototile p,
we let Ip denote the set of all pairs (p′, x′), where p′ is a prototile and x′ is in R

d

satisfying p + x′ ∈ ω(p′). The first step is to verify that

U({p}, p) =
⋃

(p′,x′)∈Ip

ω(U({p′}, p′)) − x′

and the sets in the union are pairwise disjoint. From this it follows that

e0
p(0, 0) =

∑

(p′,x′)∈Ip

e1
p′(x′, x′).

If we apply the map ωN to the equality of sets above, we also obtain

eN
p (x, y) =

∑

(p′,x′)∈Ip

eN+1
p′ (λNx′ + x, λNx′ + y)

for any N and x, y in Punc(N, p). This equation then shows the inclusion of AN

in AN+1.
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We note that the identity of AT is
∑

p

e0
p(0, 0)

is in A0, hence in all AN . One verifies that the C∗-algebra generated by the elements
eN
p (x, x), as N, p and x vary is the commutative C∗-algebra C(Ωpunc).

As we mentioned above, we can form the union of this sequence of C∗- algebras,
which is a subalgebra of AT , but will not be closed. Its closure is a C∗-subalgebra,
which we denote by AFT . It is an approximately finite-dimensional C∗-algebra, or
AF -algebra. We have seen in the construction that the elements generating this
AF -algebra are functions on Rpunc, just as the elements of AT are. However, they
are non-zero only on a proper sub-equivalence relation of Rpunc.

Having given a description of the algebra AFT , we want to show how its K-
theory may be computed directly in the following manner [Ef, Bl, W-O, Da].

As each AN is contained in AN+1, the inclusion induces a map

K0(AN ) −→ K0(AN+1)

which is a (not necesarily injective) positive group homomorphism. Finally, it is a
theorem that, since AFT is the closure of the union of the AN ’s, we have

K0(AFT ) = lim
→

K0(A1) −→ K0(A2) −→ . . .

where the limit is taken in the category of ordered Abelian groups.
In our case, this is really quite tractible. First of all, recall our calculation from

section 7 of the K-theory of the complex numbers. The same calculation shows
that, for any n,

K0(Mn) ∼= Z, K1(Mn) ∼= 0.

and that the K0 group is generated by the class of any rank one projection in Mn.
We apply this to AN,p, for any N and prototile p to assert that the group K0(An,p)
is generated by the class of eN

p (x, x), where x is any puncture in Punc(N, p). Now
the K-theory of a direct sum of C∗-algebras is the direct sum of their K-theories
and so

K0(AN ) ∼=
⊕

p

K0(AN,p) ∼= Z
n,

where n is the number of prototiles. The next step is to understand the map induced
on K-theory by the inclusion of AN into AN+1. Fix a prototile p and consider the
generator [eN

p (x, x)] of the pth summand in K0(AN ). (Here we have chosen some
puncture x in Punc(N, p).) The formula above in the case of x = y becomes

eN
p (x, x) =

∑

(p′,x′)∈Ip

eN+1
p′ (λNx′ + x, λNx′ + x)

Each element in the sum on the right is a rank one projection in one of the matrix
summands of AN+1. In fact, in the p′-summand, it is the sum of exactly B(p′, p)
rank one projections, where B(p′, p) is the number of occurences of copies of p in
ω(p′).

Putting all of this together, we see that K0(AFT ) is the inductive limit, in the
category of ordered Abelian groups, of the system

Z
n B−→ Z

n B−→ . . .(9.1)
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Here, each Z
n is given the standard or simplicial order where an element is positive

if and only if each entry is non-negative. The structure of such groups is well-
understood [Ef, Ha]. There is a unique trace, τ , on the algebra AFT given by

τ(eN
p (x, y)) =

{
λ−Nξp if x = y
0 if x 6= y

where (ξp) is the Perron-Frobenius normalized eigenvector of the matrix Bt. The
normalization of ξ is related to the order unit of K0(AT ), i.e. determined by the
requirement that τ̂([

∑

p e0
p(0, 0)]) = 1. Thus it is

∑

p ξp = 1. It follows that

τ̂(K0(AFT )) is the subgroup of R generated by λ−Nξp, where N is a non-negative
integer and p is a prototile. It is interesting to note that this depends only on the
combinatorics of the substitution, not on the geometry.

Recall that AFT is a subalgebra of AT and the inclusion induces a map on K0

groups. The range of the map is exactly the same as the range of the map induced
on C(Ωpunc), namely the integer group coinvariants H(T ). The kernel of the map
can be computed and this provides a method for computing H(T ) and hence, if
d ≤ 2, for K0(AT ). This is a long calculation for which we refer the reader to
[Kel2]. But what becomes quickly clear is that τ̂ applied to the above kernel is 0,
or stated differently

τ̂(H(T )) = τ̂(K0(AFT )).

For d = 1 we have K0(AT ) = H(T ). For d = 2 the above may be combined with
results of [vEl] provided T reduces to a decoration of Z

2. We already mentionned
that in that case K0(AT ) ∼= H(T ) ⊕ Z and van Elst has shown (by explicit calcu-
lation) that τ̂ evaluated on the second summand Z already belongs to τ̂(H(T )).
Thus in that case

τ̂(K0(AT )) = τ̂(H(T )) = τ̂(K0(AFT )) = τ̂(C(Ωpunc))(9.2)

which effectively solves the problem of computing the gap labelling group in theses
cases: it is the group generated by λ−Nξp, N a non-negative integer and p a pro-
totile. For more general substitution systems, the last two equalities still hold and
it seems reasonable to ask whether the first does also.

We mention that in [Kel2] the same result was stated even for d = 3. It was
based, however, on the calculations made in [vEl] for d = 3 and the latter are not
correct.

We remark that in the case where the substitution does not force its border,
then we must use the method of decorated prototiles mentioned earlier.

10. Example: octagonal tilings

The example we provide, the (undecorated) octagonal tilings, gives us also the
opportunity to explain a little of what we had to leave out in the general discussion.

In the common version the tiles of an octagonal tiling are squares and rhombi
but to make the substitution unique and simpler we divide the squares into triangles
and decorate these triangles in a symmetry breaking way. We call the resulting tiling
the triangle version and denote it by T3. This operation yields a mutually locally
derivable tiling and thus doesn’t change the ordered K-zero group. It does alter,
however, the order unit and we have to be careful about this point when it comes
to the gap-labelling group. The substitution of the tiling looks as follows:
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Figure 1. Substitution of the octagonal tiling (triangle version).

Not only the above two tiles on the l.h.s. appear in the tiling but also all its
rotates around nπ

4 and reflections along the boundaries of the tiles, the substitution
on these is extended in the obvious way: by symmetry. Thus an octagonal tiling
has 20 prototiles: 4 of them congruent to the rhombus, the remaining 16 congruent
to the triangle. The substitution is primitive, recognizable and forces its border.

We apply Theorem 9.2 to calculate the K-groups. We start with the cal-
culation of K(Γ). What we haven’t explained in the main text is that K(Γ) is
isomorphic to H(Γ), the cohomology of the CW-complex Γ, and that the inductive

limit lim→ H(Γ)
γ−→ H(Γ) yields the cohomology H(Ω) of Ω and is isomorphic to

K(Ω), see [AP]. But let us describe H(Γ). Γ gives rise to a chain complex

0−→C2 ∂2−→ C1 ∂1−→ C0−→0

where Ck is the Z-module generated by the k-cells of Γ and ∂k the boundary
operator. ∂k applied to (a generator corresponding to) a k-cell is a signed sum
of (the generators corresponding to) the k − 1-cells which make up its boundary.
There is some freedom to choose the signs such a choice corresponding to the choice
of an orientation for each cell. H(Γ) is the cohomology of the dual complex.

Recall that the 2-cells of the CW-complex Γ for a 2-dimensional tiling are the
(interior of) the prototiles. We get Γ by identifying two edges of two prototiles if we
can find two tiles in the tiling, one a translate of the first and the other a translate
of the second prototile, such that the two corresponding edges become identical.
To determine this for the octagonal tiling requires a little work but since the tiling
is of finite pattern type this is feasible. For the result see Figure 2.. We have only
drawn three of the prototiles. The remaining 17 can be obtained from the above
by rotation around nπ

4 . The labels on the edges then change as follows: fi and di

have to be replaced by fi+n and di+n counting the index modulo 8. Equal label on
edges means that they have to be identified. In particular, in contrast to what the
above picture suggests the complex is connected (as it should be). Note that the
identifications imply that there is only one vertex. This is not a general feature.
It implies that ∂1 is the zero map. We have indicated a choice of orientation on
the edges by an arrow. ∂2 applied to a 2-cell, i.e. a prototile, is equal to the signed
sum of its edges and we choose its sign to be + if the arrow of the edges points left
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f2

f1

f5

f6
f2 f8

d1

f8 f2

d1

Figure 2. CW-complex for the octagonal tiling (triangle version).

around the prototile (otherwise −). Hence the dual ∂′

2 of ∂2 applied to an edge (we
may again identify the generators for Hom(Γ, Z) with the cells) is the signed sum
of the prototiles which contain that edge and the sign is + if the prototile lies left
of the edge (w.r.t. the direction of the latter). Thus the dual complex looks like

0 −→ Z
0−→ Z

16 ∂′

2−→ Z
20 −→ 0

and ∂′

2 is the 20 × 16-matrix
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 −1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 1 −1 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 1 −1 0 0 0 0 0 0 0 0

−1 0 0 1 −1 0 0 1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

−1 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 −1 0 −1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 −1 0 −1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 −1 0 −1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 1 0

−1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1 −1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 −1 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Its rank is 11. Hence H0(Γ) ∼= Z, H1(Γ) ∼= Z
5, and H2(Γ) ∼= Z

9.

It remains to determine the induced maps Hk(Γ)
γk−→ Hk(Γ) and to compute

the inductive limit. γ2 is the map induced from the map Z
20 B−→ Z

20 of (9.1)
which already appeared for the construction of AFT . It turns out that B it is
invertible over Z and preserves the image of ∂′

2. Therefore the inductive limit

H2(Ω) = lim−→ H2(Γ)
γ2−→ H2(Γ)

γ2−→ · · · is isomorphic to H2(Γ). With the same
reason one obtains K0(AFT ) ∼= Z

20. The map γ1 is induced from the substitution
map for the edges which can be read off the substitution (Fig. 1) if one adds to the
tiles on both sides the labels for the edges. It turns out that γ1 is as well invertible
over Z and it preserves the kernel of ∂′

2. Therefore Hk(Ω) ∼= Hk(Γ) in all degrees
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(again a result which does not hold in general) and the result above was already
final:

H0(Ω) ∼= Z, H1(Ω) ∼= Z
5, H2(Ω) ∼= Z

9.

Thus K0(AT ) ∼= Z
9 ⊕ Z (H2(Ω) are the coinvariants) and K1(AT ) ∼= Z

5.
To determine the gap-labelling group we note that the octagonal tilings may as

well be constructed with the grid method so that we can apply (9.2). For that we
have to compute the Perron-Frobenius eigenvalue λ and a corresponding eigenvector
ξ of Bt. One finds λ = (1 +

√
2)2 and

ξ ∝ (2
√

2, 2
√

2, 2
√

2, 2
√

2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)(10.1)

expressed in a basis in which the first four indices are identified with the rhombi
and the remaining sixteen with triangles. The proper normalisation of ξ for the
triangle version T3 is

∑

p ξp = 1. One finds that the group generated by λ−Nξp, N
non-negative integer and 1 ≤ p ≤ 20 is

τ̂(K0(AT3
)) =

Z + 2
√

2Z

8(2 +
√

2)
.(10.2)

Looking now at the original version T of the octogaonal tiling by squares and rhombi
we have to take a different normalization for ξ into account. It corresponds roughly
speaking to giving the triangles only half the weight, i.e.

∑12
p=1 ξp = 1, see [Kel3].

With this normalization the gap labelling group becomes

τ̂(K0(AT )) =
Z + 2

√
2Z

8(1 +
√

2)
.(10.3)

This is in agreement with [BCL] where the authors have computed τ(C(Ωpunc)) by
determining the measures of the clopen sets which generate the topology of Ωpunc.
(The formulae (2.2) and (2.3) stated in [Kel3] were incorrectly derived from (10.1)
and should be replaced by (10.2) and (10.3).)

We finish with a remark on the approach to calculate the coinvariants with
the method developped in [Kel2]. We mentionned that H2(Ω) are the coinvariants
which according to the main text can be expressed as a quotient K0(AFT )/E where
E is the kernel of the map on the K0-groups induced from the embedding AFT ↪→
AT . But in fact, the similarity with the above calculation for H2(Ω) is deeper.
When it comes to the calculations the only difference between the two approaches
is that instead of looking at edges and counting which tiles they separate one
considers the doubly pointed patterns which are formed by two neighbouring tiles
and counts these tiles. The choice of order for these tiles reflects the choice of
orientation for their common edge.
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