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TORSION IN TILING HOMOLOGY AND COHOMOLOGY
FRANZ GAHLER, JOHN HUNTON, AND JOHANNES KELLENDONK

ABSTRACT. The first author’s recent unexpected discovery of torsion in
the integral cohomology of the Tubingen Triangle Tiling has led to a re-
evaluation of current descriptions of and calculational methods for the topo-
logical invariants associated with aperiodic tilings. The existence of torsion
calls into question the previously assumed equivalence of cohomological and
K-theoretic invariants as well as the supposed lack of torsion in the latter.
In this paper we examine in detail the topological invariants of canonical
projection tilings; we extend results of Forrest, Hunton and Kellendonk to
give a full treatment of the torsion in the cohomology of such tilings in
codimension at most 3, and present the additions and amendments needed
to previous results and calculations in the literature. It is straightforward
to give a complete treatment of the torsion components for tilings of codi-
mension 1 and 2, but the case of codimension 3 is a good deal more com-
plicated, and we illustrate our methods with the calculations of all four
icosahedral tilings previously considered. Turning to the K-theoretic in-
variants, we show that cohomology and K-theory agree for all canonical
projection tilings in (physical) dimension at most 3, thus proving the ex-
istence of torsion in, for example, the K-theory of the Tubingen Triangle
Tiling. The question of the equivalence of cohomology and K-theory for
tilings of higher dimensional euclidean space remains open.

1. INTRODUCTION

For large classes of aperiodic tilings various methods have been devised to
compute topological invariants such as the Cech cohomology or topological K-
theory of the continuous hull, the cohomology of the discrete tiling groupoid
or the K-theory of various associated (C*-algebras. All these invariants are
closely related, many essentially equivalent, although, as a consequence of the
work below, the equivalence of the cohomological and K-theoretic invariants
is now only a priort true for tilings in dimension at most 3.

For tilings generated by a primitive substitution, Kellendonk [K34] showed
how to compute the top dimension cohomology via the groupoid C*-algebra,
while Anderson and Putnam (AP) [AESYS] constructed the hull as an inverse
limit of a sequence of finite CW-complexes, allowing the determination of the
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cohomology and K-theory as direct limits. These direct limits can be computed
explicitly, although in more than one dimension the procedure quickly becomes
tedious. For some of the simpler two-dimensional examples it can still be
carried out with the aid of a computer [[GIA4].

For canonical projection tilings, Forrest, Hunton and Kellendonk (FHK)
[EEKO2H related the Cech cohomology and K-theory to certain group or
dynamical homology theories. For codimension up to three, they provided
explicit formulae [EEKIZE EHKOVH], expressing the (rational) ranks of the
homology groups in terms of the data defining the tiling. These formula are
straightforward to evaluate [GERI EEIKIIT], and provide an efficient means to
compute the cohomology and other related topological invariants. Moreover,
from an earlier result [EEYY] it was concluded that the integral cohomology
groups for canonical projection tilings would always be free, and so they would
be completely determined by their ranks, hence equivalently by their rational
ranks. However, this premise was not correct in the generality needed, and
thus there is more to the determination of the cohomology of a canonical
projection tiling than its rational rank. The main purpose of this article is
to provide a proper treatment of the integral cohomology; equivalently, we
provide a discussion of the torsion part of the integral tiling homology.

A third approach, appearing in a recent paper of Kalugin [Kalld], gives yet
another method to determine the (rational) Cech cohomology of canonical
projection tilings. Although not stated in this generality, his method can
be applied in essentially the same situations as the FHK method [EEIKOZa]
EH K ll'}kJ_

There are important differences, however, between these three approaches.
Canonical projection tilings are obtained by projection from a periodic struc-
ture in (n+d)-dimensional space to d-dimensional physical space. The comple-
mentary n-dimensional space is the so-called internal or perpendicular space.
Whereas FHK work entirely with internal space, Kalugin’s method is set up
in the (n + d)-dimensional space (wrapped onto a torus), and the AP method
works exclusively in physical space (and knows nothing about internal space).

The classes of primitive substitution tilings on the one hand, and of canonical
projection tilings on the other hand, have a non-trivial overlap, and for tilings
in the overlap all three methods can be used for the computation of topological
invariants. Exploiting this as a consistency check, the AP method had been
implemented and applied to a number of popular two-dimensional tilings [04],
whose cohomology had been computed previously by the FHK method [[GIIL].
Whereas in all cases considered, the free part of the cohomology agreed with the
previous results, for the Tiibingen Triangle Tiling (TTT) an additional torsion
part Z2 was found with the AP method in the top-dimensional cohomology
group, which is in contradiction with the assumed freeness of cohomology in
R, EEROYH]. The question of torsion therefore had to be reconsidered.
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For the codimension two case, to which the TTT belongs, it is indeed easy to
reconcile the FHK theory with the new result. The correct torsion is in fact
present in the formulae of [EEKIDA], but instead of reading it off, its authors
neglected it, assuming it must vanish by appealing to the result of [EHIY],
which apparently is not applicable in the required generality. So, if properly
interpreted, the results obtained with both methods agree in all known cases,
and the results of [EEKIZE] only have to be complemented with an explicit
expression for the torsion part of the cohomology.

For codimension three the situation is somewhat more involved. Though it
is still possible to use essentially the methods of [EEKIZH], extra care is needed
in order to keep track of torsion. The essence of the problem is that in the
top dimension torsion can arise in more than one way, and there are potential
extension problems to consider; these problems disappear for lower dimensional
cohomology groups. Under some extra conditions, however, the torsion can
still be determined formulaically, and even if these conditions are not satisfied,
it is still possible, in favourable cases, to solve the extension problems and
so determine the torsion completely, but only by appealing further to the
geometry of the explicit example under consideration. We shall see an example
of this in Section B2l where we compute for the dual canonical Dg tiling.

An alternative perspective that is of value for codimension three schemes
(and in principle is equally applicable for higher codimensions) is to work with
homology or cohomology over a field of characteristic p. Here the formalism
and methods of [EERIZA EHKOVH], which essentially worked with homology
over a field of characteristic zero, carries over directly. By these methods
we can obtain precise expressions for the rank, though not the order, of the p-
torsion in integral cohomology, without having to deal with any of the extension
problems.

Although in the codimension three case the characterisation of torsion is not
as straightforward as one might have hoped, this is nevertheless the first time
that a detailed and transparent characterisation of torsion has been obtained
for a rather large class of tilings. In previous work, torsion was either believed
to be absent [EERIZE EEKIVH], or was present only implicitly, and had to
be computed tediously on a case by case basis [AEYY]. Nevertheless, we have
as yet little to say about the geometrical interpretation of torsion for these
tilings.

A further point worth emphasizing is that, for canonical projection tilings in
dimension d < 3 with finitely generated cohomology, the K-theory is still iso-
morphic to the cohomology, whether or not there is torsion in the cohomology.
Previous arguments had relied on there being no torsion in the cohomology. As
a result we have specific examples in which the K-theory of the tiling (includ-
ing the K-theory of the associated non-commutative C*-algberas) has torsion.
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We note that the question of whether there are tilings in higher dimensions
d > 4 for which the cohomology and K-theory differ remains open.
With this note we also take the opportunity to clarify two further discrepan-

cies between Kalugin’s results [Kalld] and our previous work [GRI EEIKIZH)].
Kalugin finds that all generalized Penrose tilings have isomorphic cohomol-
ogy. We entirely agree with this; the deviating results in [[GEI] are due to

an incorrect parametrisation of the generalized Penrose tilings. The discrep-
ancy in the cohomology of the icosahedral Ammann-Kramer tiling is due to
an incorrect “simplification” in [EEKOZH] which is not valid in general. If this
simplification is not made, both results agree. We present corrected formulee
in Section @

The arrangement of this article is as follows. The core of our approach to
the cohomology and K-theory of canonical projection tilings is the evalua-
tion of certain group homologies H.(I'; C™), and the technique as developed in
[EERTTE, EHKOVH] is to compute these via subsidiary homologies H.(I'; C7)
for r < n. We briefly review this material, introducing our main notation and
explaining the role of these various homology groups in Section B This sec-
tion is a summary of the relevant ideas of [EHKIZA EHKIJH] and the reader
may refer to those articles for a more complete background. In Section B we
present an overview of which parts of previous articles still stand, irrespective
of potential torsion, and which need alteration in the light of torsion. In this
section we also observe that many of the previous formula, which were based
on calculations over the rationals, remain valid when worked (with care) over
a field of positive characteristic, such as the field of p elements F,, and in so
doing give a powerful tool for the computation of the rank of the p-torsion
when this occurs; we see an example of such a method used in Section B
where some explicit examples are computed. Section Hl provides the body of
work, giving formula for the homology of a canonical projection tiling in the
cases of codimension 1, 2 and 3, including formula for any torsion in these
homology groups. In Section B we give the correction to the codimension 3
formula of [EEKIZA] mentioned above. In Section B we work some examples
and provide a complete table of all previously published cohomology calcu-
lations, now amended so as to include their torsion components, where they
exist. Finally, in Section @ we finish with some general results on where torsion
can (or cannot) occur for an arbitrary canonical projection tiling, and prove
our theorem relating the K-theory to the cohomology.

2. PRELIMINARIES

We start by briefly summarising our notation and the main objects of
computation for our discussion of torsion in the cohomology and K-theory
of canonical projection tilings. We use, generally, the notation and ideas of
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[EERIDE EHKOYH], and we refer the reader to those articles for motivation
and a discussion of the background material which gives a rationale for the
following assertions.

Our set-up is as follows. We are aiming to compute the topological invariants
for a canonical projection tiling or pattern in R? with an effective codimension
of n.  Our most basic object to compute is a group homology H.(I';C"),
where I' is a free abelian group of rank d + n which can be identified with a
dense lattice of the internal space R”. The coefficients C™ can be seen as the
ZTI' module generated by indicator functions on compact polytopes, so-called
C-topes [EHKIZH], which are intersections of I'-translates of the acceptance
domain and can be most conveniently described with the help of singular
spaces (see next subsection). We have the related coefficient groups C” for
0 < r < n which fit into an exact sequence

(2.1) 0=C"—=C" "5 .5C"=Z—0.

This sequence allows direct calculations for H,.(I'; C™) at least for small n, as
in [EEKNZE], which we investigate in greater detail below for n = 2,3, while
for general n it gives rise to the spectral sequence of [EEKIZH]

(2.2) El, = H(T;C") = H, (T, Z) = 2(%)

Whether the analysis of H.(I'; C™) via the sequence (E) is done by hand
or via this spectral sequence, the principle in both cases is to get at these
homology groups by computing the lower terms H.(I'; C") for r < n. Just as
the C" have a geometric origin, so do the C": these are modules of functions on
r-dimensional subsets (singular r-planes) of R”, essentially the r-dimensional
facets of the C-topes. A key observation, which makes this method a practical
one, is that the homology groups H.(I'; C") split as

(23) 1.(1;C7) = @ H.(1°;C5)

where (g is an analogous module of functions on a representative of a I'-orbit
of singular r-planes, and I'® is the stabiliser subgroup of this object.

We shall concentrate entirely on the case when these homologies are finitely
generated as groups. Necessary and sufficient conditions for this are given in
[EEKO2H] ) and in particular it is necessary that the number v = (nnﬂ is an
integer (and hence n must divide d). In this case, the ranks of the stabiliser
groups of the singular r-planes are then forced to be rv, and an important
consequence of this for us here is the following bound on the non-zero ranks

of the homology groups:
(2.4) Hiy(I;C") =0 wunless 0<k<r(v—1).
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This puts, for example, significant constraints on the non-zero terms in the
spectral sequence ().

Given a computation of the homology H.(I'; C"), there is a duality which
tells us how to compute the Cech cohomology of the hull M P of the pattern
by the relation

(2.5) H' (MP;Z)= Hy_;(T;C™);

in particular, note that this cohomology is potentially non-zero only for 0 <
i < d, and moreover H'(M P;Z) = Z.

The main aim of Section lis to give an analysis of the torsion in the homol-
ogy H.(I';C") for low values of n, basically n < 3. This is done most easily
by navigating the coefficient sequence (EI) by hand, much as it was done in
the computations carried out in [EEHKIZE]. However, for our general results
in Section @it is best to appeal to the spectral sequence approach (E2); this
should be thought of as morally the same approach, but using a more sophis-
ticated method of book-keeping to keep track of n long exact sequences and
their interactions all at once. We record a couple of observations that will be
useful later. A good general reference to the ideas of spectral sequences and
their application can be found in [[Mcil].

Firstly, we note that the differentials act d’: E%S — B! .y: 1. The con-
straints on where the the homology groups H.(I'; C") are non-zero noted above
will often tell us that these differentials are trivial.

Secondly, the convergence of this spectral sequence means that the limit
groups E, give the composition quotients of a filtration of H,,,(T';Z). Of
particular interest to us below will be the cases where there are only one or
two non-zero terms EZ for given value of r + s. In particular, for given ¢, if
there is only one non-zero £, with r+s = ¢ then £ = H(I';Z), and if there
are two such non-zero groups, say £ and E7 - with r; <7y, then there is
a short exact sequence

(2.6) 0—E>, — H((I'Z)— EX, —0.

1,52 2,52

We finish our preliminary observations with a note about the deduction of
the K-theory from the homology and cohomology calculations. This is via
a second spectral sequence, a version we shall call A" say, of the Atiyah-
Hirzebruch spectral sequence (AHSS) computing the topological K-theory of
M P (and thence for various non-commutative theories too)

(2.7) AL = H'(MP; K*) = K™**(MP)

where we recall that K° = Z if s is even, and is zero if s is odd. This sequence
is further described in [EHIY] and can also be considered as a simple case of
the Kasparov spectral sequence.
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2.1. Notation for geometric data. We record the detailed notation used
below and in [EEKIZE EEKIVH] to describe the ZI' modules C” and various
associated objects used in our computations.

Given a canonical projection scheme, the basic data consists of a triple
(V,T,W). Here V is a euclidean space of dimension n (the internal space), I
a free abelian group of rank n + d (the super-lattice), which we identify with a
specific dense lattice in V, and a finite family W = {W,}, of affine hyperplanes
whose normals span V' (the spans of the linear components of the boundary of
the acceptance domain; the latter is assumed to be polytopal). Furthermore,
W cannot be written as a union W = W; U W, such that the normals of W;
span complementary spaces V;.

The homology groups H.(I',C") are defined as homologies of dynamical
systems derived from the data (V,I';W). The coefficient groups C" are the
ZI'-modules generated by indicator functions on r-dimensional facets of C-
topes, which now can be described as compact polytopes in V whose boundary
belongs to some union U(WJ)GA(W + z), where A is a finite subset of W x I'.
The homology groups depend therefore on the geometry and combinatorics of
the intersections ﬂ(WJ)eA(W + x), where A is some finite subset of W x T
We call such an affine subspace a singular r-space if its dimension is r. Let P,
be the set of singular r-spaces and denote the orbit space under the action by
translation I, := P,/T. The stabilizer {z € ['|@ 4+ z = O} of a singular r-space
S depends only on the orbit class © € I, of © and we denote it I'®. Fix © € P,
for r < k < dimV and let P® := {¥ € P,|¥ C O}. Then I'® (O the orbit
class of (:)) acts on P® and we let I® = P®/T®. We can naturally identify

19 with 19" if O and ©’ belong to the same I'-orbit and so we define I?, for
the class ©® € [I,. Then [P C I, consists of those orbits of singular r-spaces
which have a representative that lies in a singular space of class ©. Finally
we use the notation L, = |I,|, L® = |I®|, and C} for the submodule of C”
generated by indicator functions on r-dimensional facets lying in a singular
r-space representing 0. Below, and as in [EEKIZA EEKIDH], we shall use o
to index codimension 1 singular spaces and 6 to index codimension 2 singular

spaces.

Theorem 2.1 ([EEKIZH]). A necessary and sufficient condition for the ho-
mology groups H.(I'; C™) of a canonical projection tiling to be finitely generated
s that the number Lq is finite.

3. WHAT’S RIGHT AND WHAT’S WRONG FROM BEFORE

The origins of this article lie with the discovery [GId] of 5-torsion in the
homology of the Tibingen Triangle Tiling (TTT), a property that had been
thought to be not possible in earlier work, including [EERIZE EHKIVH], and
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hence had erroneously been overlooked in previous work. Torsion phenomena
of various orders have now been discovered in other examples, and we give
more details in Section @

The oversight of torsion in [EEKIDA EHKOZH] is not due to errors per se
in those articles, but rather to their use of the claim in [EEEHIY] Proposition 3.2
that for (X,Z?%) a minimal Cantor dynamical system, there was no torsion in
the homology groups H.(Z% C(X,Z)); the TTT example shows that this result
cannot hold in the generality needed for projection tiling systems. The lack
of torsion was also used in previous work to deduce the K-theory of the hull;
the presence of torsion means that the computation of the K-theory from the
tiling homology groups is a lot more subtle than it would have been without
torsion.

The existence of torsion thus requires discussion on two fronts: the elabora-
tion of the work of [EHEIKIIZA EEKIZH| so as to include the overlooked torsion,
and a more detailed examination of the resulting K-theory of the hull. In this
section we outline which aspects of the calculations in print stand as they are,
and which need modification in the light of potential torsion.

3.1. Torsion-free part of tiling homology. The main theoretical work on
the homology associated to canonical projection patterns is to be found in
R, EEKTOVH], and explicit applications to compute particular exam-
ples have appeared in [EEKIN GEOH]. The corrections needed to [EEIKIZA]
EEKO7H] concern only the explicit formulee for H,(I'; C™) of [EHKIZA] Theo-
rem 64 and [EEEKIZH Theorems 2.5, 2.6 and 2.7. We note that the calcula-
tions of any codimension 1 system remain correct, as there can be no torsion
for such systems; we give details in Section ll This remark includes all the
work of [EEKIZH| Chapter III. The statements about the Euler characteris-
tic in [EEKIZE] Chapter V (in particular Theorem 2.8) also remains correct:
the Euler characteristic is essentially a rational invariant and so does not see
torsion.

The strategy of deriving the formulee in [EERIEZE, EEIKTVH] for higher codi-
mension systems basically yields the torsion free part of the homology, as it
essentially works by deriving the rationalised homology groups H.(I'; C")®Q =
H.(TI';C* ® Q). Indeed in [EEHEIZH] page 94 we define the numbers Dy, as the
ranks of these rational vector spaces, and the computions are correct as they
stand with this interpretation of Dj: the problem is with deducing that once
one has computed the rank of the free part, then one has the whole homology
group computed. In the paper [EEEIZH] the proof of Theorem 64 is correct
up to the final line where the claim that the homology groups are torsion free
enters for the first time. In particular, the formula

Hy,(T;C%) 2 Hyr (15 Cp) [imBrpy @ Hy(1'5CY) Nkerfy



TORSION IN TILING HOMOLOGY AND COHOMOLOGY 9

is correct as it stands and we shall generalise this in Section ll It is not correct,
however, to assume that the quotient in this expression, Hyy1(I'; CJ)/imfBri1,
is torsion free, and in fact the TT'T explicitly shows that there can be torsion
in this term.

The consequence of this for the published calculations such as [EEIII
GRI] is that, apart from a computational error which we correct in Section @
the ranks stated there are correct as regards the torsion free part of the homol-
ogy, but there may be torsion terms that need to be added to give a complete
computation for the integral theory. We note also that as all these calculations
are for patterns with finitely generated homology, any potential torsion will
necessarily be a direct summand. Explicitly, with the above interpretation of
Dy we have

(3.1) Hy(T;C™) = ZP @

where each 7, is a finite abelian group. One of the objectives of Section ll may
be seen as giving explicit descriptions of the groups 7y.

3.2. Homology over finite fields. In [EEKIZA EEKTZH], the assumption of
torsion-freedom allowed one to effectively work with coefficients in a field, and
use linear algebra; in the absence of torsion, it suffices to compute ranks of free
abelian groups, which are equivalent to the dimensions of the corresponding
vector spaces H.(I'; C" @ F), where F is any field (in the definition of Dy this
was taken to be Q, but if there is no torsion it could just as well be F,, the
field with p elements for some prime p).

In the presence of torsion, while the linear algebra fails to compute the full
integral homology, it is no longer the case that the choice of field F is irrelevant,
and this insight allows us to use the formulae of [EEIKIZH] to get a hold on the
torsion. We first introduce some notation. For A a finitely generated abelian
group and p any prime, the p-torsion of A is the subgroup of those elements
of A which are annihilated by multiplication by some power of p. We continue
to write Dy for the Q rank of H.(I';C" ® Q). Let us also write D} for the
F,-rank of H.(I'; C" ® F,,), and T} for the rank of the p-torsion in H,(I'; C™);
with the notation of equation (BJl) this means 7} = dimg, (7, @ F,). Interpret
T?, as zero. We make two observations.

First of all, the numbers D} for low codimensions are computable from
the formulee in [EEEIDH]. In fact, the formule given in the Theorems 2.6
and 2.7 hold exactly for computations of D}, provided the ranks r; and Ry
are interpreted correctly: these numbers are defined in terms of the ranks of
certain sublattices of exterior powers A,I' and should be interpreted as the
ranks of the same objects after tensoring with the field F,. In the presence of
torsion these ranks depend on the value of the prime p considered; for example,
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the rank of the submodule 5Z in Z will be 1 after tensoring with F, or Q, unless
p = 5, when the rank will be 0.

Secondly, the standard machinary of homological algebra gives us explicit
relations (‘universal coefficient formule’ [Bi]) between the homology groups
H.(TI'; C™) and groups H.(I;C" ® R) for any commutative ring R. In our
notation these yield the following result.

Proposition 3.1. Assume that the homology groups H.(I';C™) are finitely
generated. Then

D} =Dy +T,+T,_, .

In particular, H.(T';C™) is free of p-torsion if and only if Dy = Dy for all
0<k<d.

Note that the Euler characteristic >.,(—=1)*Dy = >_,(=1)*D? is independent
of the field F chosen.

Remark 3.2. While this proposition gives a strong and computable hold on
the torsion in H,(I'; C"), it will not tell the whole story in general. Basically,
this result tells us only of the p-rank, and not of the order of p-torsion; for
example, if it tells us that 77 = 1 we cannot deduce whether the p-part of 7 is
Z, or Z,s for some other positive integer s. To handle this we develop explicit
formulee for the groups 7 in the case of low codimension patterns in Section @l
Nevertheless, the same idea can be generalised further by considering homology
over a more general ring R and it turns out that this also gives us a useful
computational tool. For example, although working over Fy will not distinguish
between Zg and Z,4 in the homology of the tiling, working over R = Z4 will.
The disadvantage of this is that for rings R which are not fields, there is
no simple analogue of the formule of [EEKIZH], and computations must be
hand-crafted to the specific case under consideration. We shall see an explicit
example of this method in Section B when we compute the homology of the
dual canonical Dg tiling.

3.3. Consequences of torsion for K-theory. As noted before, one role of
the supposed lack of torsion in tiling homology was its use in the deduction
of the behavour of the AHSS computing K*(M P). With torsion in H,(I'; C")
there is the potential of non-trivial differentials in A",
claim that the K-theory of M P is the direct sum of homology groups. In
fact, things are not as bad as they might be, and we shall show in Section @,
that for canonical projection patterns in R% with d < 3 and finitely generated

homology, there are isomorphisms

and so a failure of the

(3.2) K'(MP)= @ H"(T;0") K'Y (MP) = H" ' (I';C).

r r
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Similar results for higher values of d also hold when there is no p-torsion for
small primes p, and such results hold for all d under the assumptions that the
homology groups H.(I'; C") are finitely generated and torsion free.

4. LOW CODIMENSION FORMULZA

In this section we produce specific descriptions for the homology of canonical
projection tilings of codimension 1, 2 and 3, including as far as possible explicit
expressions for torsion components in those degrees where the homology is
potentially non-free. The codimension 3 case is complemented by the formula
of Section B replacing those of Theorem 2.7 of [EEIIZH].

4.1. No torsion for Codimension 1. Here we prove the assertion of the
title, that for a codimension 1 (that is, n = 1) projection pattern, Hy(T'; C!)
has no torsion. In fact, this follows also from the analysis of the hull M P for an
arbitrary codimension 1 pattern in Chapter 111 of [EEIIIZH], where it is shown
that M P can be modelled by a punctured torus, but the argument below will
demonstrate the spirit of the method used for higher codimensions. We shall
work in greater generality than just the canonical patterns, and assume that
there are potentially a number of distinct I'-orbits of ‘cut points’ in the internal
space; as before, we shall also call this number Lg. See [EEKIZH] Chapter 111
for further discussion of the projection scheme.

Proof. As in Section B, we compute the groups H.(I'; C') where there is a
short exact sequence of ZI'-modules

0——C'—C"—>7Z—0.

In this sequence, Z carries the trivial I' action, while the action of I" on C? is
free. This sequence gives rise to a long exact sequence in homology

v = Hy (T3 Z) — Hy(T;CY) — Hp(T;C°) — -+ -

Now Hy(I';Z) = Agl' is just the homology of a (d + 1)-torus, so Hy(I';Z) is
free abelian of rank (d;:l). Meanwhile, the freeness of I' on C'° means that the
homology groups Hy(T'; C°) are zero for k > 0 and Hy(T'; C°) = Z™.

Our long exact sequence now tells us in dimensions k > 0 that Hy(I'; ') &

App I' = Z(ZE) and for dimension 0 there is an exact sequence
0— AT — Ho(I;0Y) = Z S5 Z — 0

where ¢, which takes the sum over the coefficients in Z%, is onto. Hence
Ho(T;CY) = AT @ ker e, and so in particular it is free abelian of rank Lg + d.
O
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4.2. Codimension 2. The codimension 2 theory follows pretty much the
same analysis, via a pair of exact sequences, as in the proof of Theorem 64 in
[EERTZE]. The exact sequence of coefficients Bl breaks into two short exact
sequences

(4.1) 0C*=C'"=Cl—=0 0-0)—=C"=Z—0.

The right hand sequence behaves identically to the calculations above for codi-
mension 1 and we obtain

42
it { B e o R20

A similar calculation based on the exact sequences

(4.2) 0-Cl—-C"—Z—0

gives

iy~ ) Daer, Aral® for k>0,
Hi(I;07) = { @aell(AlFa b kere”) for k=0

where ' denotes the stabiliser subgroup of a cut line represented by a and
¢ 1 Ho(T*;C%) = Z — Z. We note by [EHEIZH page 97 that H.(I'; C?)
is finitely generated if and only if Lg is finite, and in this case v = &2
integer and the rank of each I'* is v. The number L§ is the number of I'*
orbits of cut points on a cut line represented by «a.

Denote by i the homomorphism in H(I'; —) induced by the module ho-
momorphism C!' — C§. For dimensions k& > 0 this identifies with the homo-
morphism

is an

@ Ak+1 r* — Ak+1F

OzEIl
induced by the inclusions I'* — I'. Similarly, 5 identifies with the homomor-
phism
@(Allw @ kere®) = AT @ ker e
OzEIl
induced by the inclusions I'* — T and C? C C° The left hand sequence in

() now gives a long exact sequence in homology, which at Hg(T'; C?) may
be written as the short exact sequence

0 — coker Sy — Hi(T';C?) — ker B — 0.
This sequence splits as ker [, is a subgroup of a free abelian group. We obtain

Theorem 4.1. Assuming we work with a canonical projection pattern with
codimension 2 and finitely generated homology, then

Hy(T; C?) = cokerfy1 @ ker By
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and so Ty, the torsion part of Hi(I';C?), is given by the torsion part of the
cokernel of
6k+1 : @ Ak.}_gra — Ak+2F .
OzEIl
In particular, Hy(I'; C*) is torsion free for k > d/2.

Proof. We have justified all but the final sentence. We have observed that the
torsion in Hy(I'; C?) is equivalent to the torsion in coker Bgy1. Clearly, there
will be no torsion in this cokernel if each Ap; o' is zero, and this will be the
case if k + 2 exceeds the rank of I'*. Thus there is no torsion in Hy(I'; 02) if
kE+1> d%, from which the inequality follows. a

This final result, putting bounds on where torsion may appear, will be seen
to be a special case of a result for arbitrary codimension in Section @l Exam-
ples suggest that these bounds are best possible. For now we note that for
canonical projection patterns with n = d = 2 and finitely generated homology
(equivalently, Lq finite), torsion can only appear in Ho(I'; C?).

4.3. Codimension 3. The codimension 3 case is a good deal more complex
than the codimension 2 theory, though the principles of computation remain
the same. We consider here only the physically interesting case d = 3 for
simplicity, though the method can be repeated to cover other codimension 3
cases. Note that the condition for finitely generated homology (that v = ”nid
be an integer) means that the only canonical projection patterns with d = 3
and with finitely generated homology will be of codimension 1 or 3.

Computation proceeds as before. We could compute via the spectral se-
quence of [EEKOZH], and in a sense this is what we do, but the need to de-
scribe the torsion terms via explicit homomorphisms, kernels and cokernels
means that we must examine the details of the underlying exact couple, which
amounts to saying that we compute the long exact sequences associated to the
tower B2l which here breaks into the three short exact sequences

0=5C0—=C"—Z —0,
0—+Ci—=C'—=Cy—0,
0—+C*—=C*—(Cy—0.
The dimension 3 internal space now has families of singular lines and singular
planes. As in [EEKIZH], and below in Theorem Bl we shall index by 6 the
lines and by «a the planes. The rank of the main group I" is 6. Finite generation
of homology implies that the rank of the stabiliser I'* of a singular plane is 4,
while the stabiliser I'? of a singular line has rank 2.
The third of the short exact sequences above gives us a long exact sequence
computing H,(T'; C?) with sections

(4.3) - = H(I;C%) — Hy(T;C?) e H (T;Cy) — Ho(T;C7) — - -
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telling us we have short exact sequences
(4.4) 0 — coker ¢op1 — Hy(I;C°) — ker ¢, — 0.

In order to describe these kernel and cokernel terms, we must first describe
the homologies H,(T'; C}) and H,(T'; C*). Computations for each are essentially
identical to those for a codimension 2 system, as presented in the previous
subsection. In particular, using the exact sequence of coefficients

0=+Ch—=C'=C°=7Z =0

we compute

0 for s>5,
Aol for s>2
. 1y s+2 = &y
(4.5) H,(T; Co) = A" @& ker 4 for s=1,
coker v; & ker 79 for s=0,
where
st @AS+1F€ = A1l (s >0), 7o: @ (Alfe @ ker 60) — AT @ kere
oel gel

are both induced by the inclusions TY — T and C9 C C° Here Ly denotes
as usual the number of I-orbits of cut points, and L{ denotes the number of
I'%-orbits of cut points on the line indexed by #; finite generation of homology
implies all these numbers to be finite [EEKOZH. Note that all the terms in
(E33) are free of torsion except possibly the cokervy; summand.

For each singular plane we have an analogous sequence

0-C2=C -C° = 7Z =0

and the homology M, (I'; C?) splits as @, ., H.(I'*; C2). We obtain

0 for s> 3,
AgioI'® =7 for s=2
a, 12\ s+2 )
(4.6) Hy(T* C5) = A3l & ker By for s=1,
coker By @ ker g5 for s=0.

Here
6:: @5’6]{1 As+1F‘9 — As+1ra (S > 0),

B @961{’ (AlFe @ ker 66) — AT @ ker €.

The 82 are again induced by inclusion, and the only potential torsion term in
(D) arises from the cokernel 87 expression; all other terms are free abelian.
The expression for ¢s under the identifications (EEZEH) can be obtained

as in [EHKOZH): ¢, is a sum of morphisms ¢ = (8% @ 1), and the latter is
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determined by the diagram
= H(T;C2QZT/T) = @pege Ao T 2 Ayl o
(4.7) \[¢3 IR lzz
— H,(T;CY) = Dper, Mo’ 5 Al —
for s > 0, and
(4.8)
— Ho(T;C2 @ Z[T/T?]) — @gelf(mrf’ @ ker €) %, AT S kere® — 0

J¢? JJSY JZS
— Ho(T;CY) — @0611(A1F€ @ ker ¢’) 2y AT & kere — 0

where 52 and 1$ are the obvious inclusions.

Lemma 4.2. Consider a commutative diagram of abelian groups,

0 A — B L5 ¢ 5o

(4.9) Ly L Ly

—- X — Y L Z o,

in which the rows are short exact. If we assume that ¥" is injective and C
and 7 are free abelian then B = A4 C, Y = X & Z and with respect to this
decomposition ¢ = ' @ ",

Proof. Freeness of C' and Z ensures that the exact rows split, and we can
consider B and Y as direct sums as indicated. The issue is to show that
with respect to such a decomposition the resulting matrix expression for v is
diagonal. Simple diagram chasing shows that one off-diagonal term (the map
from A to Z) will always be zero; thus ¢» will have an expression

(v &)
0 ,LZ)//

for some homomorphism (: ¢’ — X C Y. If ( is not the zero map, then there
is an element ¢ € C' with (0, ¢) = ((¢) a non-zero element of the image of X

in Y. Then
0= g9(0,¢) = ¢"(f(0,¢)) = ¢"(c)
contradicting ¥” being injective. O
We apply this lemma to ¢ = ¢ to obtain
¢y 2 it @7

where 13, | : cokerfy, ; — cokery,y; is induced by ig,,. The conditions are

ker B¢

satisfied as ker 35 and ker, are free abelian and j§' |kerg2 injective. Since ¢,
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is the direct sum of the ¢, we obtain the following description of the long
exact sequence (only s < 2 is relevant for our considerations)

— Hy(I'5C%) — Hy(I';C?) L H(T ) -
| I
@aeb A4Fa ﬁ} A4F
— H(T;C?) — Hy(T;C?) O Hy( O
(4.10) I - [
Docr, (AT ker ) 28 AT @ ker
— Ho(T;C?) — Hy(T; C?) o, Ho(T;61) =0

! 1"

@ae I (cokerfy & ker B5) ¢@>0 cokery; & ker~g

where ¢/, and ¢! represent the homomorphisms 234_1 and jg |kerga , respectively.

Theorem 4.3. Consider a canonical projection pattern with n = d = 3 and
assume the homology is finitely generated (equivalently [EHKIZH] that Lo is

finite). Then

0 for s >4,
H,(T;C% ={ Z for s=3,
75 @ ker {qb’Q D.cr, (Aal?) — A4F} for s=2,

and so there is no torsion in these degrees. There is potential torsion in degrees
0 and 1, and we have

Torsion (Hl(F; C’B)) = Torsion(cokerg))
and an exact sequence (note the right hand map is not necessarily onto)
0 — Torsion (cokerd| & cokerd|) — Torsion (HO(F; 03)) — Torsion (ker(¢y)) .
Proof. These results can be read off from the long exact sequence (EZI)

together with the observation that ker ¢y and ker ¢; are torsion free. The last
exact sequence arises, as taking the torsion is a left exact functor. a

Note that the torsion of a codimension 3 tiling is determined by the above
theorem without additional information only if ker ¢y, is torsion free. Otherwise
the exact sequence () for s =0

0 — coker ¢; — Ho(T'; C®) — ker ¢pg — 0
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presents an extension problem, whose solution requires further geometric input
from the projection data. We see an example of such a problem in Section B
where we compute the homology of the dual canonical Dg tiling.

5. CORRECTED FORMULZA FOR THE RATIONAL RANKS OF CODIMENSION 3
SYSTEMS

We correct the formula of Theorem 2.7 of [EEKIZH]. The formule given in
[EEETZH] are correct only if the equation ([EHEEIZH], page 112, bottom half)
(imj2 Nkerys : a € Iy) = ker~, is valid. For the Ammann-Kramer tiling and
the dual canonical Dg tiling the rank of the left hand side is, however, one less
than the rank of the right hand side.

The corrected formula for the ranks is obtained by replacing

rank kery, = Ly — rank<A5+1F® 10 € )

with
rank(im 7 Nkerv, : a € Iy) = rank<(@ AS_HFe) Nkerys : o € )
bl
where
¥ @B Al = AT
bl
is the direct sum of the inclusions, i.e. v& (21, ,2p2) = z1 + -+ 4+ 22 (in

the notation of [EEKIZH] v* = v, 0 j2.) This replacement is straightforward,
yielding:

Theorem 5.1 (Erratum to Theorem 2.7 of [EHKIZH]). Given a projection
method pattern with codimension 3 and finite Ly then, for s > 0,

3v 2v v v
D, = L Lo L
<5+3>+ 2<5+2>+§€; 1<3+1>+ 1<5+2>

—Rs — Rsy1,
- o) e ()
() () s

where

Ry = rank(AgI” o€ ) + Z rank(/\sHFH VRS b

a€cly

—|—rank<(@ A5+1F6) Nkerys : a € Iy)

oelo
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and the Euler characteristic is

e:i= (=1)Dy=Lo— > L{+> Y Li—> L

a€ly agl el el

The above formulae applied to the Ammann-Kramer tiling agree with the
results of [Kalld]. The corrected rational ranks for the tilings of [EEIKIL appear
in Section @

6. EXAMPLES

6.1. Remarks on the computations. All examples discussed below have
to some extent been calculated by computer. For this purpose, we have used
the computer algebra system GAP [[GAE], the GAP package Cryst [EGNIZ
Cryst], as well as further software written in the GAP language. It should be
emphasized that these computations are not numerical, but use integers and
rationals of arbitrary size or precision. Neglecting the possibility of program-
ming errors, they must be regarded as exact.

One piece of information that needs to be computed is the set of all in-
tersections of singular affine subspaces, along with their incidence relations.
This is done with code based on the Wyckoff position routines from the Cryst
package. The set of singular affine subspaces is invariant under the action
of a space group. Cryst contains routines to compute intersections of such
affine subspaces and provides an action of space group elements on affine sub-
spaces, which allows to compute space group orbits. These routines, or variants
thereof, are used to determine the space group orbits of representatives of the
singular affine subspaces, and to decompose them into translation orbits. The
intersections of the affine subspaces from two translation orbits is the union of
finitely many translation orbits of other affine subspaces. These intersections
can be determined essentially by solving a linear system of equations modulo
lattice vectors, or modulo integers when working in a suitable basis. With
these routines, it is possible to generate from a space group and a finite set
W of representative singular affine spaces the set of all singular spaces, their
intersections, and their incidences.

A further task is the computation of ranks, intersections, and quotients of
free Z-modules, and of homomorphisms between such modules, including their
kernels and cokernels. These are standard algorithmic problems, which can
be reduced to the computation of Smith and Hermite normal forms of integer
matrices, including the necessary unimodular transformations [Cabdd]. GAP
already provides such routines, which are extensively used.

6.2. The first appearance of torsion. The first hint for the possible exis-
tence of torsion in tiling (co)homology was obtained [Z0d] by applying the AP
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method [AEYY] to several substitutional canonical projection tilings of dimen-
sion two. The purpose of this endeavour was to determine the action of the
substitution on the tiling cohomology. We only sketch the general procedure
here. In a first step, a large piece of the tiling is generated by substitution,
and from the local tile neighborhoods a finite CW space ) is constructed, as
detailed in [AEYY]. The tiles are labelled according to their first corona, and
each translation class of labelled tiles gives rise to a 2-cell in ;. Boundaries
of such 2-cells are identified whenever corresponding labelled tiles share such
a boundary somewhere in the tiling. There is a natural action of the substi-
tution on the (integral) co-chain groups of ;, which induces a corresponding
action on the cohomology groups H*(€;). The cohomology of the hull of the
tiling is then obtained by taking the direct limit of H*(€);) under the iterated
substitution action [AEYN].

This procedure was applied to the Penrose tiling [HeBX1], the (undecorated)
Ammann-Beenker tiling [BenX2, [AGSYY), and the Tiibingen Triangle Tiling
(TTT) BESZYH, KSBYF]. Especially for the latter, it is a computational
tour de force. For the TTT, € turned out to have 860 2-cells, 1710 1-cells,
and 880 0O-cells. Computing the (integral) cohomology of such a large cell
complex is computationally quite demanding, and it seems hardly possible to
consider more complicated cases like the decorated versions of the Ammann-
Beenker tiling [AGSSA BackY] and the Socolar tiling [RaciY], let alone the
three-dimensional examples. In all cases considered, all rational ranks of the
cohomology groups agreed with the results obtained earlier by different meth-
ods [GEEI. The only difference was a torsion part Z2 in H? (= H,) of the
TTT, which according to [EEKIZE EEHKOZH should not be there, and which
did not go away even after an extensive review of the (rather complicated)
computer program. This was the starting point of the revised theory of tiling
(co)homology presented here.

6.3. Codimension 2 examples with dihedral symmetry. The codimen-
sion 2 examples discussed in the following have dihedral symmetry of order
2n, with n even. The lattice I',, is given by the Z-span of the vectors in the
star ¢; = (COS(QTM), sin(%’ri)), 1 =20,....,n — 1. The singular lines have special
orientations with respect to this lattice. They are parallel to mirror lines of the
dihedral group, which means that they are either along the basis vectors e;, or
between two neighboring basis vectors, i.e., along e;+¢€;11. In all examples, one
line from each translation orbit passes through the origin. We denote the sets
of representative singular lines by W® and W?, for lines along and between
the basis vectors e;. Denoting by V' the internal space containing the singu-
lar lines, we can now describe the defining data of several well-known tilings,
whose cohomology was already given in [ (without torsion). The Pen-
rose tiling [HeBX1] is defined by the triple (V, I'1g, Wi, ), the Tiibingen Triangle
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TABLE 1. Homology of codimension 2 tilings with dihedral symmetry.

Tiling Hy H, | H,
Ammann-Beenker (undecorated) VA yARWA
Ammann-Beenker (decorated) /A yARWA
Penrose VA yARWA
generalized Penrose 734 79|zt
Tibingen Triangle Z¥e 7| 2° | 2}
Socolar (undecorated) 7% Z" | 7!
Socolar (decorated) VAR Al WA

Tiling (TTT) BESZAN, KSEYY by the triple (V, 10, WS,), the undecorated
octagonal Ammann-Beenker tiling [BenXd] by the triple (V,T's, W¢), and the
undecorated Socolar tiling [5acXd] by the triple (V,I'12, Wy,). For the dec-
orated versions of the Ammann-Beenker [Racfl [AGSIZ [GUT] and Socolar
tilings [FacXY], the set of singular lines W2 has to be replaced by W2 U WP,
n = 8 and 12, respectively. Finally, the heptagonal tiling in [IZEIH] is given by
the triple (V, I'14, Wy,). For all these tilings, the rational ranks given in [III]
remain valid. The results of the 2 dimensional tilings are listed in Table [

The generalized Penrose tilings [EEXA] are somewhat different from the
tilings discussed above. They are built upon the decagonal lattice I'jg, too,
but have only fivefold rotational symmetry. The singular lines do not pass
through the origin in general, and their positions depend on a continuous pa-
rameter v. For instance, the representatives lines of the two translation orbits
of lines parallel to ey pass through the points —ve; and ~v(e; + e3). It turns
out that these shifts of line positions always lead to the same line intersections
and incidences. Even multiple intersection points remain stable, and are only
moved around if 7 is varied. Consequently, all generalized Penrose tilings have
the same homology, except for v € Z[7], which corresponds to the real Penrose
tilings [HeBX1]. This had already been observed by Kalugin [Kalld], and is in
contradiction with the results given in [ZEIL], which were obtained due to
a wrong parametrisation of the singular line positions. Corrected results are
given in Table [

Among the tilings discussed above, only the TTT has torsion in its homology.
The set of singular lines of the TTT is constructed from the lines W?,. The
translation stabilizers I'* of all these lines are contained in a common sublattice
I}, generated by the star of vectors €;,4€;41; it has index 5 in I'yg. It is therefore
not too surprising that coker; (Theorem EJI) develops a torsion component
Z%, which shows up in the homology group Hy of the TTT, in agreement with
the results obtained by the AP method. In much the same way, a torsion
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component Zj, in Hy is obtained also for the octagonal tilings described by
the data (V,I's, W}), but these tilings have not been considered before in the
literature. The same applies also to the four-dimensional codimension 2 tilings
with data (V, 14, W?,), which have a torsion component Z? in Hy, and Z2 in
Hy, in agreement with the bounds given in Theorem EJ1

There is an interesting relation of the TTT to the Penrose tiling. Since
the lattice '}, is rotated by m/10 with respect to I';p, the TTT can also be
constructed from the triple (V,I'}q, Wy,). However, the singular set '}, +
Wi, is even invariant under all translations from I'jo, so that it is equal to
I'10 + WYy, which defines the Penrose tiling. In other words, the TTT and the
Penrose tiling have the same set of singular lines, only the lattice I' acting on
it is different. The T'TT is obtained by breaking the translation symmetry of
the Penrose tiling to a sublattice of index 5. This explains why the Penrose
tiling is locally derivable from the TTT, but local derivability does not hold
in the opposite direction [BSISl]. A broken symmetry can be restored in
a local way, but the full lattice symmetry cannot be broken to a sublattice
in any local way, because there are no local means to distinguish the five
cosets of the sublattice. Tilings whose set of singular lines accidentally has a
larger translation symmetry are likely candidates for having torsion in their
homology.

6.4. Codimension 3 examples with icosahedral symmetry. There are
four icosaheral tilings whose homology has been discussed in the literature
so far: the Ammann-Kramer tiling [KAXA], the Danzer tiling [LanXY], the
canonical Dg tiling [KEYH], and the dual canonical Dg tiling [KES]. We give
here an update to those results. In particular, we add the missing information
on torsion, and also correct the rational ranks as outlined in Section B These
examples also give a good overview of the different phenomena that can occur
in the determination of torsion.

We start by describing the relevant lattices I' and families of singular planes
W. In three dimensions, there are three inequivalent icosahedral lattices of
minimal rank 6. The primitive lattice I'p is generated by a star of vectors
pointing from the center to the vertices of a regular icosahedron. We choose
any basis e1,...,¢eg from this vector star. The lattice 'z is then the sublat-
tice of those integer linear combinations of the e;, whose coefficients add up
to an even integer. The lattice I'; is given by the Z-span of the vectors in
I'p, and the additional vector %(61 + ...+ €eg). These lattices are analogues of
the the primitive, F-centered, and I-centered cubic lattices.! I'r is an index-2
sublattice of I'p, which in turn is an index-2 sublattice of I';. The action of
the icosahedral group As on the three lattices gives rise to three integral repre-
sentations, which are inequivalent under conjugation in G'Lg(Z). The singular

Istrictly speaking, %FF is a centering of I'p
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planes of all four examples have special orientations, being perpendicular ei-
ther to a 5-fold, a 3-fold, or a 2-fold axis of the icosahedron (the latter are
also parallel to a mirror plane). Moreover, each I'-orbit of singular planes con-
tains a representative which passes through the origin. We therefore define the
families of planes W", n = 5,3, 2, consisting of all planes perpendicular to an
n-fold axis, and passing through the origin. Denoting by V the internal space
containing the lattices and singular planes, the Ammann-Kramer tiling is then
defined by the triple (V,T'p, W?), the dual canonical D tiling by the triple
(V,T'r, W?), the Danzer tiling by the triple (V, ', W?"), and the canonical Dsg
tiling by the triple (V,T'r, W5 U W?). Interestingly, the sets I'p + W? and
I'r + W? are invariant even under all translations from I'y, which means that
they are both equal to I'; + W?. In other words, the sets of singular planes
of the Ammann-Kramer tiling and the dual canonical Dg tiling are the same,
only the lattices acting on them by translation are different. Conversely, the
sets of singular planes of the Danzer tiling and the canonical Dg tiling have
a lattice of translation symmetries which is equal to the lattice I'p they are
constructed from. With these data, and the methods described in section B,
is it now straightforward to evaluate the formule (Theorem BZ) for the ranks
of the rational homology groups. The results are summarized in Table B As
can be seen, compared to previously published results the rational ranks of
Hy and H; of the Ammann-Kramer tiling and the dual canonical Dg tiling
have been increased by 1, in agreement with Kalugin [Kalld], whereas all other
rational ranks remain the same.

Next, we discuss the determination of torsion, which is possibly non-trivial
only for Hy and H;. The torsion in H; is given by the torsion of cokerd),
which is straightforward to compute. The results are given in Table B For
the torsion in Hgy, however, we only have the exact sequence in Theorem E3
As ¢} and ¢f are maps between free abelian groups, the torsions of coker¢]
and coker¢] are not difficult to compute. The results are shown in Table B
It is interesting to note that for all four examples considered, coker¢] is not
free, which will result in all four tilings having torsion in Hy. This is so even
for a tiling as simple as the Danzer tiling, which has, like the Penrose tiling,
only a single I'-orbit of singular points. In fact, we do not know of any 3D
icosahedral tiling having vanishing torsion in Hy. To determine the torsion in
Hy, we further need the torsion of ker ¢, which is a map from &,¢,cokery to
cokeryy, both of which are potentially non-free. In three of our four examples,
cokergy is free for all a € I, hence also ker ¢j is free, and the torsion of Hy
is given by the direct sum of the torsions of coker¢] and coker¢!. Our fourth
example, the dual canonical Dg tiling, is the only one which needs a more
detailed analysis. In this case, cokerf{ is not free, but cokery; is, so that
the torsion of ker ¢} can still be determined; in fact, Torsion(ker ¢f) = Z3°,

because Torsion(coker3y") = Zs, and there are 15 planes a. We further have
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TABLE 2. Homology of codimension 3 tilings with icosahedral
symmetry, and data required for the determination of its torsion
component. We use the abbreviations ¢] = Torsion(cokerg),
t{ = Torsion(cokerey), and t;, = Torsion(ker ¢}).

Tiling ty| ]t Hy Hy Hy | Hs
Ammann-Kramer | 0 |Zy| 0 Z'% ¢ Z, yAREY A AL WA
dual canonical Dg | ZS | 27 | Z1° | 233 @ Z2 0 24 | 21 0 230 74 | 212 | 71
Danzer 0|Zz| 0O Z*° Z 716 yARWA
canonical Dg 0 |Zy| O 7% ¢ Z% yAE yARWA

Torsion(coker¢ ) = Z$ and Torsion(cokerd!) = ZI. As an additional piece of
information, we can compute the rank 7¢ of the torsion subgroup of Hy(I', C?),
which by Proposition Bl is the difference of the ranks of Hy(T'; C® @ Fy) and
Ho(T; C® @ Q) (note that 2 is the only prime p, for which T} can be non-zero).
We find
Ho(T;C° @ Q) =Q™, Ho(I;C° @ F,) = Fye+7,

so that T} = 27 (D = 331).

Taking everything together, this means that the exact sequence (EZH) for
s =0 is of the form

0ZPaz2' 5 Toz” - 2z 50

for some finite abelian group T' with T @ F, = Z27; moreover, it is immediate
that T' can contain only elements of order 2 and 4. Let us write 7' = Z§ & ZZ
for non-negative integers @ and b. As T'®@ Fy = 237 we must have a + b = 27,
but computing the order of 7" we also need a + 2b = 28 — z, where z is the
rank of the cokernel of the inclusion Z' — Z"°. Together these say b =1 — z,
hence b = 0 or 1, and inspection shows the only two possible extensions are as

follows. The first is
(61) 0-=ZP0Z,0Z% 520 2,02™ 5 2 02,6277 =0

where ¢ = 1 @ w3 B w3 respect the direct sums indicated, ¢; and @3 are
inclusions as direct summands, and @y : Zy — Z4 1s multiplication by 2. The
second possible extension is

(62) 0-5ZPaZazZ ' S 270z 5 2l e Z,a 2P 50

where ¢’ = ] @ ¢, & 5 respects the direct sums indicated, ¢} and ¢} are
inclusions as direct summands, and ¢/, : Z — Z is multiplication by 2. We
note that the first extension corresponds to the case where one gets an exact
sequence also of the torsion parts, that is, the right map of the last sequence
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in Theorem I3 is onto. This could be used to distinguish the two cases, but
we reason in another way.
The short exact sequence

0 — ker o — Ho(T;C%) 5 Hy(T; C1) — 0

upon tensoring with a commutative ring R gives (by standard homological
algebra, for example see [EiSH]) an exact sequence

.o = Tor' (Ho(T'; C4), R) — ker po@ R — Ho(T; C*)@R 23 Ho(T;CH@R — 0.
However, by the universal coefficent theorem [&i], we also have Ho(I'; C* ®
R) = Ho(T;C?*) @ R and Ho(T;Cy @ R) = Ho(T';Cy) @ R. Moreover, since
Hy(T;C}) is torsion free, we have Tor' (Ho(T'; C}), R) = 0. Thus we can make
the identification
kerr ¢g = (ker¢po) @ R
where kerg ¢g := ker{¢y : Ho(I'; C* ® R) — Ho(T;Cy @ R)}. In general,
however,
cokergpy # (cokergy) @ R

and so the above two extensions can be distinguished by comparing cokerz, ¢,

with (coker¢g;) @ Z4. In fact, we deduce from the above that (B implies

(6.3) 0 — cokergz, ¢y — Z%G fa Z4Do+1 _ Zé5 o Zfo_l 0
and (B=d) implies
(6.4) 0 — cokerz, ¢ — 237@ Zfo . Zé5 A Y

In the first case, cokerz, ¢y has 221413 alements and in the second case cokerz, ¢,
has 2212 elements. The number of elements of cokerz, ¢! has been deter-
mined by computer; we find that there are 2? elements, and since cokerz, ¢} =
(cokerd)) @ Z4, as one easily checks, the first extension (B=) is the right one.
Hence

Ho(l;C* =2 280 7,y 7.

Summarizing, if ker ¢y is free, the torsion in Hy can be determined relatively
easily. Otherwise, an extension problem has to be solved. In the case of the
dual canonical Dg tiling, there were only two possible extensions, which were
not too difficult to distinguish. It remains to be seen whether such an approach
can still be successful also in more complicated cases.

7. GENERAL RESULTS

We conclude with two general results, one which limits the homological
degrees in which torsion can occur, and the second which discusses the relation
between the integral (co)homology of a canonical projection tiling and its K-
theory.



TORSION IN TILING HOMOLOGY AND COHOMOLOGY 25

7.1. Bounds on where torsion can occur. We consider a general canonical
projection pattern of dimension d, codimension n, and assume the homology is
finitely generated. By [EEKIZH] homology will be non-zero only in dimensions

s=0,...,d.

Theorem 7.1. For a canonical projection pattern of dimension d, codimen-

sion n, and with finitely generated homology, there is no torsion in homology

(n=1)d (n—2)d < 5 < (n=1)d

. Moreover, in homology dimensions ~

the torsion is given by the torsion part of

dimensions s >

coker @ FAVRIIN D A A

OZEIn—l

where o indexes the orbit classes of the (n — 1)-dimensional singular hyper-
planes in the internal space R”.

Proof. This is an extension of the results in dimensions s > 1 in Theorem E3
and may be proved in a similar fashion by induction on the codimension n,
examining the top dimensions of the corresponding long exact sequences.
However, the most direct proof utilises the spectral sequence of [EEIKIIZH].
Recall that the v column, Bl for0 < r <nis Ho(T;C7) = @oer, H.(T%;Cy)
and, as noted in (E), these columns are only non-zero in respective degrees

0<t< r%. The differentials act d’: Eﬂps — B
(n—1)d

First observe that for s > *—, the only non-zero entries in Eis lie in the
column * = n; thus these cannot be the source or target of any differential and

as noted in Section @ we read off
H,(T;C™) = B, = B, = oo (T3 Z) = Z0GE)
which of course is torsion free.
For the range of degrees, (n=2)d
terms in F! _and these are for * = n and n — 1. Here we have the possibility

*,8

< s < (n_n—l)d, there are precisely two non-zero

of only one non-trivial differential, namely d', and just two non-zero groups
E;’f’b on the line a + b = s. Thus we obtain a long exact sequence

e Hop (T 077 55 (D 2) — H(D5C7) 5 B (150771 25

and the 1, are interpreted in terms of the maps
@ An+s—1 ' — An+s—1F7
a€l, 1

in direct analogy to the maps f3; of section =4 and the ¢, of EE1 The result
now follows as the only possibility for torsion in H(I'; C") must arise from
coker(ts41). Note that for s = (n — 1)d/n this cokernel is torsion free since
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(n—2)d

the source of ;/J(n_l)i_H is zero. The result for s = is similar but more

involved as there can also be a non-trivial differential d': E}_,  — E|_, _ for
this s. O
Corollary 7.2. For a system as in Theorem [},
W0 = 26 for 55 2D
O

7.2. K-theory. Our most straightforward results deal with the case of tilings
in dimensions d < 3.

Theorem 7.3. For canonical projection patterns in R* with d < 3 and finitely
generated homology there are isomorphisms

KO (MP)= P H>(I;0") KN (MP)= P HY(T;C").

r r

Proof. We have noted before that for finitely generated homology, n must
divide d, so for d = 3 we must have n = 1 or 3, and for d = 2 we must have
n =1or 2. If n =1 we have seen the computations are essentially those for
the homology of a punctured torus and it is immediate that the K-theory and
the cohomology will agree.

For the larger codimension cases, we consider the Atiyah-Hirzebruch type
spectral sequence linking H*(I'; C™) with the K-theory K*(M P). This has an
FEy-term

AT — { H™(I';C™) = Hy— (I'; C™)  for s even,
2700 for s odd,

and differentials d;: A7® — A;ﬂ’s_]“. Of course Ay* =0 if r > d.

Thus, if d = 2 there can be no non-trivial differentials as there is no ap-
propriate pair of non-zero entries between which a differential can act. For
d = n = 3 there is at first sight the possibility of a non-trivial differential

ds: Z = AY? — A" = Ho(T'; CP),

but in fact this cannot be non-zero: by comparison with the Atiyah-Hirzebruch
type spectral sequence for a point we see that the column A%* can support no
non-trivial differentials. Thus in all cases Ay = A%*.
It remains to check that there are no extension problems. In the case d =

n = 3 we have extensions

0 — H*I';C% — K°(MP) — HT;C%) — 0
(7.1)

0 - HYI';C%) — K'Y MP) — HYT;C%) — 0
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The quotient groups in each exact sequence are H°(T';C?) = H3(I';C%) =
Z and H'(T;C3) = Hyo(T; C?), which by Section Hl are torsion free and, by
assumption, finitely generated. Thus they are free abelian and so the exact
sequences () split as claimed. The case d = n = 2 is similar, though
simpler, as the exact sequence for K'(MP) directly gives an isomorphism
K'(MP) = HYT';C?%). O

This, together with the calculations of Section B, yields the following, show-
ing that there are examples of torsion in the K-theory of an aperiodic tiling.
The same result holds for the K-theory of the non-commutative C*-algebras
associated to this tiling, as considered in [EEIKIZE, EEKTZH].

Corollary 7.4. For the Tibingen Triangle Tiling, K°(MP) = Z* & Z} and
K'(MP) = 7% O

Theorem EEX admits a number of possible generalisations in particular cases.
A classical result tells that the differentials in the Atiyah-Hirzebruch spectral
sequence are always torsion valued, and moreover the first differential that can
non-trivially take a p-torsion value is dy,_y. Thus, for example, if H,(I'; C") is
torsion free, this spectral sequence will collapse and an assumption of finitely
generated homology will mean that all extension problems are trivial, yielding
the following result, originally claimed in [EECRIZE, EEKIZH] .

Theorem 7.5. For canonical projection tilings with finitely generated, torsion
free homology there is an isomorphism

K*(MP) =@ H*(T;Cm).
O

More subtly, if the lowest primary torsion in H.(I';C™)is pand d < 2p—1,
then again we can deduce that the spectral sequence collapses. Depending on
which cohomological degrees the torsion occurs in, there may or may not be
extension problems.
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