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Résumé

Nous nous intéresserons ici a la notion de g¢-séries et certaines méthodes de
calculs régulierement utilisées dans leur manipulation. Plus spécifiquement, on
se penchera sur leur lien étroit avec la théorie des nceuds.

On parlera également des formes modulaires quantiques et du role que les g¢-
séries peuvent bien jouer dans ces dernieres.
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1 Introduction aux notions de bases

1.1 Les g-séries
Pour un complexe ¢ fixé, on pose pour tout complexe a

k—1

(a; Q) = H(l —aq'), Vk € N*

=0

et par convention (a,q)o = 1. On définit alors pour tout |¢| < 1 et tout a

complexe
(a; @)oo = [J (1 — ag®) -
k>0

Par abus de langage, on notera souvent (a)g, (a)s respectivement les valeurs
(a; @)k, (a; ¢) oo, en sous-entendant le fait que ¢ soit fixé. On peut remarquer que
pour tous entiers naturels m,n , on a

(@)mtn = (a)m(ag™)n -

On a également pour tout |¢| < 1 fixé et tout a complexe sous condition de
définition
a
(a)k:$,VkeN~
(ag") oo

On définit ainsi une g¢-série pour |¢| < 1 comme une série avec des ceefficients
comme produits de (a),. Un exemple important est celui des g-fonctions hy-
pergéométriques

a17 ... ,a’,‘ (al) - (a )
rPs 4, 2 = = "
bi,--- b nzz;) (01)n -+ (bs)n(@)n

Le cas (r,s) = (1,0) donne la proposition suivante

Proposition 1.1. Pour tout complexe a, on a

o @ @D

Preuve. On peut remarquer que (z)s est une série en z, et de plus qui ne

s’annule pas sur |z| < 1. On peut donc l'inverser sur la boule unité ouverte. On
se permet ainsi d’écrire sur la boule unité

F(a,z) = ((a;)oo = Z apz"™
o0 n>0

On a donc
(1—-az)F(a,q2) = (1 —2)F(a,z2)



= E Ang"z" — ac, gzt = E anz" — apz"tt

n>0 n>0
= Z anz2" M —aq, g2 = E a2 — a,q" 2"
n>0 n>0
= Z(l —aq")a, 2" = Z(l —¢Mayz"
n>0 n>0
1—aq"
T Okl = T e O

par unicité des ccefficients. En remarquant que g = F(a,0) = 1, on a donc

n 1 — ggF—1
o, = jet ( ag”™") (a)n

o= (@

Réciproquement
Z (a)n o
= (@

est une série de rayon de convergence 1, vu que

Encore par unicité des ceefficients, on a bien le résultat escompté. O

On introduit également les ceefficients g-binomiaux
si k € [0;n]

0 sinon

qui sont des polynomes en ¢, suivant la relation triangulaire analogue a celle de
Pascal pour n > 0 et tout entier k

NN
N b

On remarque alors que ces coefficients deviennent pour ¢ = 1 les ceefiicients
binomiaux classiques (7). De plus, on a pour tous entiers 0 < k <n

{ n } (@)n Uimail (1.1.2)

(Dn-k(@e (@&

ou encore




En observant également que pour tous entiers naturels N > n on a

N2 TT (L —d) = (1N (@
(@M= JI a-d)=(1" D (1.1.3)
k=—N —n

et (¢7),, = 0 dés que n > N, on obtient 'identité q-binomiale en remplacant
a par ¢~V et z par ¢z dans (1.1.1)

i { N } (-1)"q®z" = () - (1.1.4)

n=0

Notons que l'identité, étant polynomiale, reste vraie pour tout g complexe, en
particulier pour ¢ = 1, et 'on retrouve I’identité binomiale dite de Newton

i ( JZ ) (—1)"2" = (1— )N -

n=0

On termine cette présentation des g-séries par une variante de l'identité g-
binomiale obtenue en remplacant N, n, z respectivement par b — a,n — a, 2q®

@A) yag@) (B4)b-a
2 (Dp-n(@)n—a (=2)"a (@b—a (1.1.5)

L’on remarque cependant que cette derniere identité ne peut pas prendre comme
valeurs de ¢ certaines racines de I'unité.

n=a

1.2 Les paires de Bailey

Dans cette partie on fixe un complexe |g| < 1, et a # ¢™ pour tout entier n
strictement négatif.

Définition 1.1 (Bailey [3]). Deux suites (n)n>0, (Bn)n>0 forment une paire
de Bailey relative a a si elles vérifient la relation

n

p— aik n . L.
Bn—z(q) , VneN (1.2.1)

k=0 n—k(aq)n+k

Une relation équivalente mais moins connue est celle de 'inversion pour
a#1
Lemme 1.1 (Andrews [1]). Pour tout a # 1, on a

_ 1=ag” = (@nik vk 050
=TT, Z(Q)n_ (=1)"""q¢" 2 B, (1.2.2)
k=0
ou encore
1—ag®™ (a), n (" n n "
n= 1_(2 'Eq; (—=1)"¢%) Y (g )r(ag™)xq" Br - (1.2.3)



Preuve. En effet, on peut facilement démontrer par récurrence sur m que pour
tous entiers naturels m,n, on a

m

Z (1 —ag®) (g k(@)™ (a@)m(q"™™)mq

=0 1 —a Q)k( q)”"‘k (q)m(GQ)n—&-m

nm

cette somme étant nulle dés que m > n > 0. On en déduit avec (1.1.3) une
paire de Bailey relative a a dite triviale

(1= (@a (1))
" (- a)(a)n

et
ﬂn = 5n,0

avec 0, 0 nul sauf en n = 0 ol il vaut 1. Sil’on pose pour tous entiers 0 < k <n
et tout complexe a # 1

lfaq2" a)n ek (ToF
Nasm k) = S k5

on a d’une part que la suite (A(a, n,0)),>0 correspond a (ay)n>0 de la paire de
Bailey triviale relative a a, et

Ma,n, k) = Mag?t,n — k, 0) - ﬂ—gq%iga)zk _

On a donc pour tous entiers 0 <[ <n

" a, k, 1) - Mag®, k —1,0)(1 — ag®)(a)2
Z(q)( :z:l q )( Q)()l

— (@)n k(Aq) gk @) (n—-1)— 1) (@) ()4 (k-1 (aq) 21 (1 — a)

" Na,k, 1) = Aag?, k, 0)
Z = = 571—1,0 :

=
— (Dn-r(0@Qnie = (@) =1 =k (aq® 1) () 4k

Les matrices triangulaires supérieures infinies

<W)n2k20

et (A(a, k,1))k>1>0 sont donc inverse 'une de l'autre, d’out la formule d’inversion.
O

On peut également remarquer que les fonctions A\, :  a — Aa,n, k)
admettent des limitesen 1 (Mg o =1 et (a)n+r/(1—a) = (aq)n—1+% pour n > 1).
On a donc une inversion pour le cas a = 1 en modifiant 1’écriture des A(a,n, k):

Aa,0,0) =



et pour n >0

o) = (1 =g Dt (a5

A partir d’une paire de Bailey relative a a, on peut créer une infinité de paires
de Bailey relatives a a. L’exemple le plus important est énoncé dans le lemme
qui suit.

Lemme 1.2 (lemme de Bailey [4]). Si (o, 8r) est une paire de Bailey relative
a a, alors (o, Bl,) en est une, avec

s _ Blealag/bo"
(aa/D)u(aa/c)n "

et

ﬂl _ i (b)k(c)k(a(J/bc)k(aq/bc)nfkB

" k=0 (aq/b)n(aq/c)n(q)n—k B

Avant de prouver ce théoreme, nous allons démontrer un autre résultat da
a Heine [2].

Proposition 1.2. On a

U, v w/v, z
) oo (U2
201 g,z | = (()‘)”(())m 201 0
w W)oolZ)oo uz
et
U, v w/u, w/v
wvz/w
201 34,2 ((Z;)Oczfﬁl $q, uvz/w
w o0 w

Preuve. La premiére égalité implique la deuxieme. En effet, si la premiere est
vraie, alors

z,w/v wz/w,v
201 g | = W) sq,w/v
uz (2)o0 (V) vz
et
v, uvz/w w/u, w/v
. _ (u02/w)oo (W)oo .
2¢1 s 74, w/v - (Uz)oo(w/v>oo 2¢1 w 74, ’LLUZ/’UJ

Les sommes 5¢; étant symétriques pour les termes u, v, on déduit directement
la deuxieme égalité de la proposition. Pour la premiere égalité, on a

U, v (

201 g,z | = Z Mzn _ (v))oo Z (U))n

(w)n(q)n B (w 7>0 (¢

(vg")o

n



et donc d’apres (1.1.1)

S s @@ - e W 5 @/

|l ]=<z: e

m>0 n>0

v voo w/v uzq ™) o
= 21 i q = (w0) Z
o0

m>0 TVL Zq

[u,v } (V)00 uzoo W) (2)m m
= 201 34,2 Z v

w (W) m>0 (@) (u2)m
O
La deuxieme égalité donne avec (1.1.1)
S (o _ (5~ o/l | | (/o) |
n>0 (W)n(@)n >0 (@)n n>0 (W)n(@)n
On déduit par produit de séries pour tout entier naturel n
(W)a(0)n _ § /u)eli/o)e | (uv/uwdos (120

(Wha(@)n = (w)i(a) (Dn—r
Avec ce dernier outil nous pouvons démontrer sans difficuté le lemme de Bailey.

Preuve du lemme de Bailey. On a Vn >0

n

r(aq/bc)F(aq/bc)n i
kzzo aq/b W@t/

o O)k()r(ag/be)* (ag/be)n l
(aq/)n(aq/c)n(@)n—k(@)k—-1(aq) ki

(
(b)k(c)r(ag/bc)*(aq/bc)n—i o
= = (aq/b)n(aq/)n(Dn—k(@)r-1(aq)k+:

=0

Eod
* Il
[e=}

S

On pose comme dans la démonstration du lemme précédent

& 0elulag/r) agfb)s
Aabend) =D o el @ de—i(ag)ir

8



On a donc

~ (Du(e)iag/be)
Aabem ) = G b ag/e)(ag)m
y En: (bg")r—1(cq")x—1(aq/bc)* " (ag/bc)n—k
ag 1 /b)pn—1(aq"*t1 /) n—1(@)n—k (@) k—1(ag? 1),

= (b) C)l(aq/bc)l a 21 l c l n—
- (GQ/b)l(aq/C)l(aq)mA( q,bq' ,cq',n—1,0)

k=l (
i

(1.2.5)
Pour montrer que
b be)!
Mabeonl) - (Buentaafie)
(aq/b)i(aq/c)i(@)n-1(aq)nti
il faut et il suffit d’apres (1.2.5) de montrer que
A(a,b,c,n,0) = _
L R ) (q)n(alq)n
Mais c’est exactement (1.2.4) pour u,v,w valant aq/b,aq/c, aq. O

Le dernier résultat que nous donnerons sur les paires de Bailey concerne le
cas de la transformation du lemme Bailey quand b,¢ — co. En effet (x), est
un polynéme en z de degré n, de coefficient dominant (—1)"¢(2) et de terme
constant 1. On a donc par passage a la limite une nouvelle paire de Bailey

relative a a. )
! n_n
a, =a"q" ay

n 2
aqu

k=0 (q)nfk

Br - (1.2.6)

1.3 Noceuds toriques et polynémes N-colorés de Jones

On rappelle qu'un nceud dans ’espace est une courbe lisse qui n’est pas homo-
tope & un cercle. Par abus on fait du cercle un nceud dénoué, constituant ainsi
I’élément neutre. On le note K. Pour un nceud K, on note K* son image par
un plan. La théorie des nceuds étudie entre autre le classement de ces objets
par équivalence homotopique, la classe du cercle étant nommé ”dénoué”. Une
famille particuliere de nceuds est celle de noeuds toriques (autour de tores), notés
Tis,t), avec s At = 1, représentés par les équations paramétriques

z(f#) = (R4 rcos(th))cos(sh)
Ty y(@) = (R+rcos(th))sin(s) ,0c[0;2n] ,0<r<R-
z(0) = rsin(th)

Nous nous contenterons d’énoncer certains résultats de la théorie des noeuds sans
les démontrer. Un outil utile est la notion de polyndémes N-colorés de Jones.



On les note Jy (K, q), ot K est le nceud et ¢ la variable, et sont des polyndmes
en ¢*!. Les propriétés qui nous intéressent sont les suivantes [11]:

IN(Ko,q) =1
K=K = JIy(K,q) = JIn(K' q)
IN(K*,q) = In(K,q ")

Ces polymdmes sont explicitement connus pour les noeuds toriques [13],[14] :

%st(lsz) 2 5
IN(T(s,t),q) = S > (qf(sﬂ)ﬂ% - Lf(sft)j*%) :
7 q7 - qi7 . 1-N
J="3
On obtient donc
ghsta-nn-p Lo
JN(T(S’t)’q) S e — Z q(éJ— Y(ti—1) _ Z qt3(63+ )—s]
,:172N J=1—2N

En effectuant un changement de variable k = sj — 1 pour la premiere somme et
k = sj pour la seconde, on a

q%st(lfNQ)f%
IN(T(s,0),q) = TSy

Z qfk (k+1)— Z qtk (k+1)— ]

keE, keE;
avec

1-N
Elz{w+su—l/u€[0,N—1]}
et LN
EQZ{‘S(;)+SU/U€[[O7N—1]]} :
On a donc pour s > 1

Lst(1-N?)—N£L
Lst( =2 Z (—1)i~lgthlrD—k (1.3.1)

kel?_ | E;

JN(T(s,t),Q) = 1 _ q_N

On peut également effectuer le changement de variable k¥ = ¢5 — 1 pour la

premiere somme et k = —tj pour la deuxieme et ’on obtient
CI(INQ)N+1 k(k+1)— Sk(k+1)—
IN(Ts1),9) = = Z g R Z g R )
kEE, kEEY,
avec

Ei_{t(12N)+tu—1/u6[[O,N—1]]}

10



et
Eé:{t(lgN)—tu/uE[[O,N—l}]}z{W—&—tu/ue[{O,N—l]]} .

On a ainsi pour ¢ > 1
Llst(1-N2)-NHL

JN(T(s,t)» (]) = 1_ q_N

> (-1 tgikeED=R (1.3.2)

keu? | E!

On peut ainsi remarquer que Jn (7{s+),q) = Jn(T4,s), q). Pour le cas des noeuds
T(2,2t+1),0n a
Ei={-N+2u/uel0,N-1]}
et
Ey={-N+2u+1/uec]0,N—1]} -
On a donc

t_ﬂ_2t;—l N2 N-1

Z (_l)kq%k(kﬂ)—k . (1.3.3)

k=—N

IN(Ti2,2641),0) = (—

Il existe un lien entre les polynémes de Jones et les paires de Bailey.
En effet, une relation due & Habiro [6], dite expansion cyclotomique, donne

N—-1
IN(K,q) = Z Cn(K, Q)(qliN)n(q1+N)n = Z Cn(K, Q)(qliN)n(qlJrN)n
n>0 n=0
(1.3.4)

avec C,, (K, q) des polynomes en ¢*'. Si I'on récrit

N
Ini1(K,q) =D (V)@ )nCn(K,q) |

n=0

on remarque d’apres (1.2.3)

1— q2n+2 (q2)n

(-1)"q®) J, 11 (K, q)

Ay =

1-¢ (g
ou encore ( 9 +2)( +1)
1—q" 1—q" n (m
Qn = (1-¢®)(1 -9 (-1) q(2)Jn+1(K, q)
et

Brn=q "Cn(K,q)
forment une paire de Bailey relative & ¢2. On obtient donc de facon équivalante

L 2k+2y(1 _ k+1 .
WZa7) () gy (K q)

g "Cn(K,q) =

~  (1-gq
= (Dn—k(¢*)nrk(1 = ¢*)(1 —q)

11



n _ q2k+2)(1 _ qk-i-l)

n v U _1yk®
=4q C’n(K7 (]) - Z (Q)n—k(Q)n+k+2 1) q Jk+1(K7 q)

k=0
et donc
asy (1—¢?*)(1 - ") h(k—3)
Cn(K,q) = —g"*+! Z @) — g DR (KL ) (1.3.5)

n+1 k n+1+k:

En prenant K = T(*2,2t+1)7 on a

n+1 1_q)

(1—g¢*
C T q n+1
( (2,2+1) Z Dn1-k(ODnt14k

k(k—3)
2

—1)kq Je(T2,0641),9 ")

et d’apres (1.3.3)

n+1 k—1

1-— q 2 2t+1
C(T* — it gDk e UG
n( (272t+1) Z n+1 k n+1+k lzz_k( )
On peut donc écrire
t—n - 1 - q (t+1)k2—k = [ 20412 26—y
—¢ " Ot (T3 2041y Z Z (=1~ 2 :
0 Jn—k(q) n+k =

(1.3.6)
et mettre fin a cette série de résultats sur les noeuds toriques.

12



2 Formes modulaires quantiques et q—séries

Les formes modulaires quantiques sont des fonctions f sur Q (ou de fagon
équivalente, sur les racines de I'unité e2™*) telles que

1) - xO)es -ty (£10)

d
priétés comme ’analycité et la continuité. On rappelle que pour les formes mod-
ulaires, la derniere expression vaut 0. Ces formes modulaires sont introduites
par Zagier. Un exemple célebre de forme modulaire est la série de Kontsevich-
Zagier [15]

avec ( Z b > € SLy(Z) et x un caractere de SLy(Z), possede de bonnes pro-

Flg) = (a)n- (2.0.7)

n>0

Cette somme est bien définie sur les racines de l'unité car si ¢ = 1, alors
(¢)m = 0 pour m > n, et donc F(q) est une somme est finie. De plus elle n’est
pas définie sur une boule ouverte, les termes n’ayant pas de limite finie des que
|g] > 1 et une limite valant 1 quand |q| < 1.

2.1 U-—fonctions et théoréme d’inversion

La U-fonction génératrice des suites uni-modales, i.e (ax)i<k<s, 0 < a1 <--- <
Qp > Qry1 > -+ > ag > 0, est définie par

U, q) = > (~2q)n(-27'q)ug" ™ = Y u(m,n)a™q" (2.1.1)

n>0 meZ,n>1

avec u(m,n) le nombre de suites uni-modales (ag)1<k<s telles que a1 +---+as =
net(s—r)—(r—1) =s—2r+1 = m. Cette est définie seulement pour
|g| < 1 pour un z donné, mais peut étre étendue aux racines de 'unité quand
x = —1, la somme étant alors finie. Elle devient dans ce cas une forme modulaire
quantique. Le premier théoréme est un lien établi par Bryson et.Al. [5] entre
(2.0.7) et (2.1.1) pour des racines primitives &y .

Théoréme 2.1. Pour {y une racine primitive N-ieme de l'unité, on a

F(Ey') =U(-1,&n) - (2.1.2)

Preuve. On pose

N—1 n
fa)=14> J[-&" -
n=1 k=1
On a donc
N—-1 n N—-1 n—1
fleg's) =1+ > [z - =1+ > & [[@ - &5
n=1 k=1 n=1 k=0

13



n=1 k=1
N—-1n—1 N—-1 n
= f(Ey'a) =1+ (@ —1) |e ) [[@—&" - H(ar@’“)]
n=1 k=1 n=1 k=1
N—-1
:*f(ﬁle)—lJr(l”l)lz(f(x) (mfﬁk)>f(x)+1
k=1
N—-1
[y o) =1+ @-1)f(z) - (z-1) lH(m—ﬁN) +(z—1)
k=1

avec comme convention le produit vide qui vaut 1. Ainsi

fey's) = (@ — 1) f(2) — 2@ =)+ 2= (z—1)*f(z) + 22— 2V)- (2.1.3)

On pose en outre la suite de polynémes (ux)i1<k<n telle que

k—1
(2 —aMur(€ya) = F(& ) — flo) [[ (4" —1)°
i=0
ou encore .
(2 — 2Myuy(z) = f(&k ) H e —1)2| - (2.1.4)
On a donc d’apres (2.1.3)
uy(z) = ¢
et
z)(1— (2N —1)?
ue) = T D) g,

(2-aN)
De plus par (2.1.4) on obtient pour tout 1 <k < N —1

k
(2 = 2™)(upsr (z) — up(@)) = [f(ERa) — (ENT'2 = 1) f(ERT )] H(me - 1)
qui donne par (2.1.3)
k
(2 — &™) (upgr (2) — up(x)) = (2 — V) H(é?vx —1)?
=1
et donc

Ugt1(x) — ug(x kaH (€hx —1)?

14



On a donc par somme téléscopique

N-1
un (@) —w(x) =z Y [(@bniEn)nl? R
k=1
N-1
= aNf(x) =2 [(@ln; vkl
k=0
On obtient le résultat voulu en prenant x = 1 dans la derniere égalité. 0

Sur la base des polynomes de Jones, [7] Hikami introduit une famille de
formes modulaires quantiques généralisant la série de Kontsevich-Zagier

t—1
Ro=d Y @uIam e e
ki>-->k12>0 1=1

Elles sont définies pour les racines de 'unité a cause du caractére polynomiale
des ceefficients ¢g-binomiaux. Ici Fy(¢q) = gF(¢q). On définit de maniere analogue
les U-fonctions généralisées par

Ut(xvq) = qit Z (_xQ)ktfl(_milq)ktflqkt

ki>-2>k12>1
t—1 . i
« [ [ Ripn =k =14 23501 ks (2.1.6)
Pt ki1 — ks
définies pour |g| < 1 et s’étendant aux racines de 'unité pour x = —1, la somme

étant finie. Ici Uy(x,q) = ¢ 'U(x,q). On peut ainsi géneraliser le théoréme
précédent [8].

Théoréme 2.2. Pour {y une racine primitive N-ieme de ['unité, on a

Fi(&y") = U(—1,¢n) - (2.1.7)

Le résultat se base essentiellement sur 1’égalité

IN(Tl 00410 €8) = IN (T2, 631 -

Nous démontrerons cette propriété en établissant dans un premier temps un
lien entre Jn(T(2,2¢41), —) et [y, puis dans la deuxieme partie, un lien entre

In (T (2,2t+1)7 —) et Uy(—1,-).

2.2 L’équation récursive de Jy(T(2,211),q) et lien avec F;
On rappelle (1.3.3) :

t-N_2t£1n2 N1

q 2 2041 _
JN(T(2,2t+1)aq):(_1)NW D (—1)kg IR
k=—N
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On a donc

- N 20412

q 2 2t+1 _ —
IN(T22041), ) = (—l)Nw(—l)Nq 2 NIN=DFN (1 — g2y
_qt—(2t+1)N(1 _ ql—N) . (_1)N—1 qt_ N;l — 2L (N-1)?
1— q—N 1— q*N+1
N-2
% Z (_1)kq%k(k+1)—k
k=—N+1
et donc
3 1— q1—2N 3 1— ql—N
JN(T(2,2t+1)7Q) = qt(l N)(qu) —q (2t+1)NwJN—1(T(2,2t+1)»Q)'

(2.2.1)
En posant Hy = ¢!V~ (1 — ¢ V)Jn(T(2,20+1),q), on obtient la relation de
récurrence suivante

HN — (1 _ ql—QN) _ q2t_(2t+1)NHN71 , (222)

avec Hy = 1 — ¢~ ! car Ji(T(2¢41),9) = 1. On peut méme étendre la relation

avec Hyp = 0. On reprend ici la démonstration d’Hikami [9] en introduisant une
fonction assez particuliere, qui respectera une relation de récurrence étroitement
liée a la derniere.

Définition 2.1. On définie la fonction pour |q| < 1 fizé
t—1 k.
B0 = Y (@t [La 0| B
Koo k1 >0 i=1 !
pour tout |x| <1 et x = ¢~ ™ avec n € N.
On a donc
t—1 i
Hyz)= > (@)gpa™ [ g FDa { ;:1 ] :
k> >k >0 i=1 g

Notons que le deuxieme ensemble de définition est di au fait que la somme soit
finie pour ces valeurs. On a donc la proposition suivante:

Proposition 2.1. On a la relation pour x # 1.
Hi(z) =1 — qz* — ¢*'2*" " Hy(q) - (2.2.3)

Notons que si cette proposition est vraie, alors en posant hy = H; (¢~ ),
on aura alors la méme relation de récurrence qu’en (2.2.2) avec également hg =
0 = Hy. Ainsi,

Hy = Hy(¢”")
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et donc

t—1
- - _ - (kit1— ks
¢V (1-¢ M In(Ta,2041),9) = E (@M )ket14 thqul(klﬂ QN){ ,;1 ]

ki, k120 i=1 ’

-1

_ t(1-N) 1-N\  —Nki ki(kit1-2N) | Fig1 |

& IN(Te2i41),9) = 4 > (@ ra M 4 [ h ]
kt>:->k1>0 i=1

Cette écriture étant polynomiale en ¢, ¢!, car les termes nuls deés que k, > N,
elle sera donc bien définie pour les racines de 'unité. En particulier on aura

IN(T22e11), E51) = Fu(€31) - (2.2.4)

Preuve de la proposition 2.1. On pose pour m =0,--- ,t —1

m—1
m )2 ) kJ
Ht( )(Z',y,Zl,--' 7Zt*1) = E (aj)ktykt H q(kl) Z?kl |: ;':_1 :|
i=1

ke, k>0 !

y q(km)2272nllcm { km;} +1 ]

t—1 L
< T gtz [ B ]
i=m+1 ’

On a donc
Hy(z) = (1 - 2)H" (qz, 2,3, ,x) (2.2.5)

En appliquant la relation

el L

on obtient pour m=1,--- ;t —1
0 _1 _1
Ht(m)('ray7zl7"' 7Zt—1) :Ht( )($7y7q 221,054 2Zm—1,%m, """ 7Zt—1)
—1 1
+qz72nHt(m )(x7y721a"' 7Zm—17qzzmazm+1 7Zt—1)

(2.2.6)
qui utilisé de maniere récursive donne
-1 1 1 1
Ht(t )(q$7y7q221; o 7q2zt71) = Ht(O)(qxay7 21yt Rt—2, q2zt71)
0 1
+q2Z§71Ht( )<ql', Yy 21,0, 2t—3,q2 Z¢—2, qztfl))

_ 1
o 222 BH (g3, 03 2,020, q2))
+q2(t_1)Z152—1 .. Z%Ht(o) (q.T, Y, q21, - 7qzt_1)) . (227)
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De méme en utilisant la relation

LRl ]

onapourm=1,---,t—2
_1 _1
Ht(m)(mvy7zl7"' 7Zt71) = Ht(O)($7y7q 221, 54 2Zmy BmA41s 0t 7Zt71)
— 1
+qZ72nHt(m 1)(w7yazla' t 7Zm7q2zm+lazm+2"' 7Zt71)
(2.2.8)
et pourm=t-—1
— 0 _1 _1
Ht(t 1)(x?yazl7"' 7Zt71) :Ht( )(‘r’yaq 221,00 ,4 2Zt71>
—2
+qztz—1Ht(t )(x,qy,z1,~-- azt—l)' (229)

On obtient de méme que (2.2.7)

HY gy, qb o, qba) = (g y 21, 20,03 21)
+q22t2—2Ht(0)(qxv Y, 21500 5 2t-3; q%2t727 qzt-1))
+o P02, "ZgHt(O)(qx»%th%Z?qu& L qZ-1))
D2, A H (qr,y 0P 21, g5, L qz) - (2:2.10)
On a également d’une part

oo ke

ko t—1

) B 2 ) k;

Ht(t 1)(q1',y7zla'“ 7Zt—1) — E E E (qx)kt—lykt 1 HQ(kl) Z?k’b |: k+1 :|
1=1 !

ki=1ki—1=0 k1=0

1 (0) -1 _1
= —|H (xayaq 221,00 ,4 2215—1)_1
oy )
(2.2.11)
et d’autre part
) ) ky k2 t—1 k
0 . — . ke ki(kit1) 2k; | Rit1
Ht (qx7yazl7 7Zt71) =1+ Z Z Z (qx)kty Hq z; |: kl :|
ki=1kt—1=0  k1=0 i=1
s} k¢ ko

=14+ Z Z Z(qx)kﬁl(l_qut)ykt

ki=1ki—1=0 k1=0

t—1 k

ki(k;+1) 2k; 41

o [t
1

= 7[Ht(0) (J"’ya 21yttt Zt—l) - th(O)(x? qy, 21, 7Zt—1)] .

1—2z
(2.2.12)

18



En combinant successivement (2.2.12), (2.2.9) et (2.2.11) on obtient

1
HOw,y, 21, 21) — 2 HO (2, qy, 21, -+, 2001) = Q(Ht(o)(x,y,zl,m zoy) — 1)

_ 1 1
_q2(1_$)215271Ht(t 2)((]35’(]1%(]2217'“ 7q22t—1)'
qui donne avec (2.2.10)

1 1
(1 - ;)Ht(())(xvyazh T azt—l) - th(O)(x7qyazla' o azt—l) + ; =

~* (L= @)z, [H (g qy. 21, 22,40 21)
227 o ) (qr, gy 21, 24P sea, qzen)
Fo P2 ngt(O) (qz, qy, 21,42 20, q23, - ,qzi—1))
+2 D2 ... Z%Ht(o)(qm, Y, q%zl, qza, -+ ,qz-1))] - (2.2.13)
On a également en combinant (2.2.10) et (2.2.11)

Ht(O)(xaqwalv o 7Zt—1) —1
(1—2)qy

_ 0
— 022 2HO (g, qy, gz, qz)) =

1
Hf/(O)(qxaqy,Zla"’ 7Zt—27q22t—1)
2,2 [gO 3
+q 2 Hy (q, gy, 21,0 2-3, 97 2-2, Q2—1))
_ 0 1
++q2(t 2)thflz%Ht( )(qquyaqzzlqu%'“ 7qzt71))‘

(2.2.14)
On obtient donc en prenant (z1,---,2z-1) = (z,---,2) = z dans (2.2.13) et
(2.2.14)
Ly 00 (0) 1_
(1 - 7)Ht ({E,y,Z) - ‘rHt (xvquz) + - =
Yy Yy
2
qz
_T(Ht(O) (x,qy,2) — 1) + (1 — 2)¢* 22 H" (qz, qy, qz)
et donc
(=1 H" (x,y,2)+1-q2" = (ay—¢=") H{" (. qy,2)+ (1-2)¢”'y=* H}" (g2, qy., q2)
(2.2.15)
En prenant dans (2.2.15) gz, x,x au lieu de z,y, z, on obtient
(1—2)H" (qu,z, -+ ,2) =1 g2 — (1 - q2)¢* e T H (¢ qu, qz, -+ ,qu)-
On en déduit par (2.2.5) la relation de récurrence souhaitée O

On remarque que les sommes manipulées dans la preuve sont finies pour
x=¢ N, pourun N > 0. Il n’y a donc aucun souci de convergence. Le résultat
clé de cette partie qui découle de cette proposition est le (2.2.4) qu’il convient
de rappeler

IN(T 2264010, En") = Fr(Ex") -
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2.3 Lien entre Jy(T{,,,). q) et les U-fonctions

On commence par rappeler (1.3.6)

n k—1
17q2k 2 2641,2  2t—1
t—n » _ (t+1)k2—k | 2trlgz 2-1y
0" " Cn (T 901, 0) = Y 74 > (—1)'q 2 z
k=0 (Q)nfk(q)vrkk =k

L’idée dans cette partie est de poser

n—1

n n%—n _2t41,2 2t-1
apy = (]_ — q2 )q(t+1) Z (_1)lq =1 ~L

l=—n

et de voir

Bn = _qt_ncnfl(T(*z,ZHI)a q)
de sorte que (au,, 8,) soit une paire de Bailey relative & 1. Cela reste cohérent
en prenant par convention C_1 (T, (*2,2:& +1) q) = 0. Le travail a effectuer est donc
de trouver une expression pour f3,,.

2.3.1 Opérations sur les paires de Bailey

Dans la premiere partie nous avons énoncé le lemme tres important de Bailey qui
permet d’obtenir a partir d’une paire de nouvelles paires. La premiere opération
que nous mentionnerons est celle vue en (1.2.6) :

al = a”q"2 ap
2
S
" =0 (q)nfk
On notera cette opération T,,. Appliquée m fois cela donne la paire

2
m) _ ,mn_mn
O[,gl ) =a q Ay,

2 2
ot thmo1 Rt g

B = >

(2.3.1)
Nk > >y >ko >0 (Q)k’m_knl—l (q)khn_knlfl T (q)kl—ko

La deuxieme opération est assez particuliere car elle permet de conserver le 3,

a un ceefficient pres.

Lemme 2.1 (opération T,). Soit (v, (2), Bn(2)) la paire de Bailey relative a 1,
avec ap(z) =1 et

an(z) = (~1)"2" (" "+ 2" -
Alors (o, (2), 81,(2)) Uest également, ot af(z) =1,
o (2) = (~1)"e" (" 427"

et
Bru(z) = 4" Bn(2) -
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Preuve. Commengons par donner une expression explicite de §/,(2) et ¢" B (2).

On obtient
B/ (Z) — Zn: (71)1C Zk(kfl)
" [— (Dn—k(Dn+k

et
n -1 k Kk
qnﬂn(z) — qn Z ( ) q Zk(kfl) .

k=—n

En remarquant que k(k—1)=(1—-k)(1—k—1),on a

ﬁ;(Z) _ (_1)" Zn(n+1) + Z |: (_l)k + (_1)1*k :l Zk(kfl)

n

(@)2n @Dk @ik (@Dnir-1(@ns1-r
et
ng () — (*U"Zn(nﬂ) — [ (=1)Fgnt* (—1)!-kgnik (k1) |
o) = g+ s W]

Le résultat vient naturellement en observant que

1— anrk 1 1— anrlfk

(Dn—k(Dntk B (Dn—k(Dntr—1 B (Dntk—1(Q)nt1—k .

Essayons de composer T et Tso. On a Too 0 Tp(ap(2)) = Too(l) =1 et
2 2
TooTp(an(z)) = T ((—1)"2" (2" +27")) = (=1)"(q2)" (" +27") = an(q2),
et

On a également

et
o k2 noon_ k2
7" Pi(z q"q" Bi(z
Ts0Too(BL(2)) = Ts (Z k()> = Z a"¢" Bi(2)
En répétant I'opération m fois, on obtient
amn(2) = ai(¢"2)
et

K244 k2
qk1+ +kmq ot -+ ’"’1520(2)

Bm,n(z) = . (232)
T A (/)| S S ()

Les opérations que nous avons vues jusque la conservent a la valeur relative a
laquelle les paires de Bailey initiales sont liées. Dans l'opération qui suit, on
passe de a & a/q.
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Lemme 2.2 (Opération T),). Soit (an, Bn) une paire de Bailey relative d a #
q™ pour tout entier m < 0. Alors (o, By) est une paire de Bailey relative d
a/q, avec oy = ag et

, 1—-a 1-a

— 2n—2
Qn = 1— ann Qn — 1— aq2n,2 aq " Qp_1 - (233)

Preuve. Pour n > 1, on a

l1—a 1—a
! 2n—2
a’I’L - 1 . aq2n Qp — 1 o aq2n72 aq " Qp—1
qui donne par le lemme d’inversion de Bailey
n a k a 1 k
k k _ n—
Z n+ q(2 )ﬂk 2n 22 n—1+ )n 1— kq( )6/6
k=0 q q n—1— k
et donc
n—1 (a) .
—1+k k("D _ _ _
oy = (@)anfn— Y A E (1) g e B (1—ag ) a(1—g"F) g
=0 (Q)n—k
d’ou
 (@n 14k
o, = (@)anfin — D S (1)U BT — ag? Y
k=0 (Q)n—k
On déduit donc que pour n > 1
n a) e
Oé;L: 2n 1 Z n— 1+k )7kq(2')5k

(@)n—

qui est bien une variante de formule d’inversion des paires de Bailey en rem-
plagant a par a/q. Le cas n = 0 étant également cohérent, on conclut donc que
(al,, Br) est une paire de Bailey relative & a/q. O

On déduit naturellement 1'opération inverse du lemme suivant:

Lemme 2.3 (Opération Tx). Soit (o, Bn) une paire de Bailey relative ¢ a.
Alors (o, Bn) est une paire de Bailey relative & aq, avec

1— 2n+1

anzli Za - : (2.3.4)

Preuve. Cela vient du lemme précédent en remarquant que
aO = Qo
et pourn >1

2 1—aq
a nq nan:

~

1—-a
n ,n2 2n+1 Qp — n—1,4(n—1)2 1 2n—1 O/” 1
a”q™ (1 —ag®"+1) a"q (I —ag*1)
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qui donne
1—aq , 1—aq Im—1r 7
On =7 a2 M = 7 a2 1 (aq Ja, -
Ainsi, si (8])) la suite telle que (a,, 8)) une paire de Bailey relative & agq, alors,
par le lemme précédent, (cv,, 5),) est une paire de Bailey relative & a. Par unicité
des relations reliant les éléments d’une paire de Bailey, on a bien 3/, = f3,,, d’ou

le résultat. O

Le dernier résultat présenté est le suivant: on suppose ay,(a, ) une suite de
fonction et 'on considere f,,(a,q) de sorte que (ay(a,q),Bn(a,q)) la paire de
Bailey relative a a et aux g-séries. On suppose que les fonctions «,, et 3, sont
définies en (a=t,q71).

Lemme 2.4 (Opération T_1). (o, Bn) est une paire de Bailey relative ¢ a, ot
ay, = anqn2an(a—17q—1)

et

2

Bo=a""¢" "Bula”t g7 (2.3.5)

Preuve. On écrit tout d’abord

Bala™a ) =) (07,0 )

a
((]71; (fl)nfk(a*lq*l; qil)nJrk

k=0
En remarquant que
P _ 41
(@ ha = (D' = (q)
et
(a'q g = (~Dlalg F (ag)
on obtient

nkg- (n=k)(n =kt 1)+t k) (nct 1)

(g Dukla g g g =a” (@Q)n—k(aq)ntk

et donc
_ _ _ _ _ IS 2 1.2
(@5 Dkl g e =a " g T (@) nok(aq)
Le résultat s’en suit naturellement. O

2.3.2 De la paire de Bailey triviale a («,, 5,)
On rappelle ici que

n—1

2_ _2t41,2 26—1
a, = (1 _ q2n)q(t+1)n n Z (_1)lq =1 1 .

l=—n

On cherchera donc une expression explicite de 3,, pour avoir une paire de Bailey
relative & 1. On s’inspire ici de Lovejoy [12]. On pose dans la suite x(X) = 0 si
X est faux et x(X) =1 si X est vrai.
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Proposition 2.2. On a

b= >

n=koy>-->ko=0 (Q)k2t_k2t—1 e (q)lﬁ—ku

qu;i B2+ () = o ki k=2t 02 ki(_l)kt (1— qk?t_kt—l)

(2.3.6)

Ce résultat repose essentiellement sur 2 lemmes dont le premier est enoncé
comme suit :

Lemme 2.5. Pour tous entiers 0 <I<m etp >0, on a

(Lm.p) 1, sin=0
T () (g et e g gm0 D) inon

et

Bgll,m,p) _ Z

n=km4p>->ko=0 (Q)kmﬂfkmﬂfl (@) ky—ko

—1,2 —1 i km+1
quzo LRSI Dl ki+1ki72i:1ki(_1)kmq*( > )

(2.3.7)
forment une paire de Bailey relative a 1.

Preuve. On utilise ici comme paire de départ la paire triviale

1 sin=0
n

an =14 (1—ag*)(ag)n—1(—1)"q"

(@)n

et By = 0n0 = x(n = 0) qui est également définie pour a = 1. Par passage a la
limite en 1, on a bien

sinon

1, sin=20
ap =14 (1—¢*)(=1)"¢")

T = (1+¢")(-1)"¢"?) sinon

et By, = 0n,0 = x(n = 0) la paire triviale de Bailey relative & 1. On remarque
en écrivant ,

an=(-1)"¢7 (¢% +¢q %), n>1
que o, = o, (q?) dans le lemme 2.1 et donc £,(¢q2) = x(n = 0). Ainsi d’apres

(2.3.2), en appliquant [ fois I'opération T3 o T, on obtient la paire

1
an = oy, (¢'77)
et , ,
qk1+“'+klqk0+'"+klflx(ko = O)

571:

=k, > >k >ko>0 (Q)szkz_l T (q)lﬁfko
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et donc la paire

(1 sin=0
On = (=1)n (gt 2)n* +(+5n g1+ 5)m* =(+3)n)  sinon

ST

o=

: (2.3.8)
s S st D=k @k —ko

En appliquant ensuite m — [ fois T, & cette paire, on obtient la nouvelle paire
de Bailey

(L sin=0
T (21) (gDt g gt =+ 5ny - ginon

—1 1
qun:l k?+21:1 ki

ﬁn = Z

(2.3.9)
o> S kgm0 Dhm k1 (ki —ko
relative & 1. En reprenant ’égalité

b Rtk

(¢ ha e =D 2 (@,

on obtient en utilisant 'opérateur 7_; du Lemme 2.4 la paire

[ sin=20
An = (=1)ngn* (q=m=2)n* = on 4 g(=m=5)n*+(+5)m)  ginon

2
m—1 (kip1—ki)“+kip1—k; m—1 72 1
zi:() 2 _Zizl kz‘,_

k.

i=1 i

a2 m—1,4 ..
Bn=q ™" Z (—1)21=0 kit1—k; @ @
Nk > > k1 > ko =0 q)km—km—1 q)k1—ko

(2.3.10)
qui donne apres simplification

[ L sin=20
W T (c1)r(gEm D DR g (mEDR DR ginon

q SrT kiaki— Y R

(2.3.11)
=k > > k1 >ko=0 (q)km_krn,—l T (q)kl—ko

En appliquant ensuite p fois T, on obtient par (2.3.1) le résultat voulu. O

Le deuxieme lemme est une version plus poussée du premier :

Lemme 2.6. Pour tous entiers 0 <1 <m,p>0et0<L<M, ona

n
ag,m,p,L,Nl) _ q(M+1)n2+Ln Z (_1)jq(p—m—%)j2+(l+%)j

j=—n

n—1

_gM+Dn*~Ln Z (—1)i glp=m=2)3*+(+3)j

j=—n+1
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et

p+M— - - !
qu;ro ! kfn-HJFZiL:ol km+p+z‘*2§111 ki+1ki*22:1 ki (71)km

q

_ (km2+ 1 )

ﬂSLl,m,p,L,M) — Z

n=kmgpiar > >ko=0 (q)knL+p+M7k}7n+p+M71 T (q)’ﬁ*ko

(2.3.12)
forment une paire de Bailey relative a 1.

Preuve. On reprend la paire du lemme précédent a laquelle on applique 'opérateur
T4 du Lemme 2.3. On obtient donc la nouvelle paire de Bailey relative a ¢

() g

- (—1)7qP=m=2)3*+(+5)i
—q

Qp =
j=—n

et

-1 —1 ! km+1
ngivzo k;,+i72£1 ki+1ki72i:1ki(_1)km(]*( 2 )

o= D

n=Km+p2:2ko=0 (Db p—Fmip1 " (D1 —ko
(2.3.13)
En y appliquant L fois 'opération T, (ici @ = ¢) on arrive donc a une nouvelle
paire de Bailey relative a ¢q avec

- q(L+1)n2+Ln(1 _ q2n+1) n
oy =

: (=1)iglp=m=2)i*+(+2)i
—q

j=-n

et

bu= D,

n:k'rn+p >--2>ko=0

qu:oLfl LENINED Drival SERERES D e L (_1)"~‘mq—(km2+1)

(Q)k7rl+p+L_k7rl+p+L71 T (q)kl—ko

(2.3.14)
On applique ensuite 'opérateur T, du Lemme 2.2 pour obtenir
- n -

= q(L+1)n2+Ln Z (—l)jq(pfm*%)jzﬁ*(l#*%)j

j=—n
n—1

_g(LADn*=Ln Z (—1)iqP=m=2)s*+(+3)i

j=—n+1

et

qu:oL_l K2t bmpri— e ki ki =Yg ki (_1)kmq—(km2+1)

o= D

n=kmipsr > >ko=0 (q)kwL+p+L_kWL+p+L71 T (q)h—ko

(2.3.15)
qui forment une paire de Bailey relative a 1. Le résultat attendu dans le lemme
est obtenu en y appliquant M — L fois 'opérateur To. O
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Muni de ces 2 lemmes, nous pouvons démontrer sans difficulté la proposition.

Preuve de la proposition. On rappelle ici que

n—1
2t41p2_ 2t—1,

2 “t—=21
ap = (1=gM)g" = Y (—1)lqg 2 P

I=—n
et donc
[n—1 T n—1 )
oy, = _q(t+1)n2+n Z (_1)161—’“%12—%1 _|_q(t+1)n2—n [Z (_1)1(1—“;112—”;11] )
Li=—n i l=—n
On a donc
[~ +1 2 2 1 | 2 n-l 2t+1 ;2 2 1
2 2t t— t t—
ay, = _q(t+1)n +n Z (_]_)lq_Tl -1 +q(t+1)n —-n l Z (_]_)lq_Tl —2l]
Li=—n i l=—n+1

1, sin=0
LR [ g™+ =9n] | sinon

(2.3.16)
On pose donc naturellement
n n—1
_ q(t+1)n2+n [Z (_l)zq”;lz??g—lz] _q(t+1)n27n [ Z (_Uzq“‘f;lﬂ“’fgll]
l=—n l=—n+1

et

Y 1, sin=20
n = (=" [Q"‘n _(t_f)"-ﬁ-q?" +(t=35)n ], sinon

En utilisant le Lemme 2.6 pour [, m, p, L, M valant respectivement t—1,¢,0, 1, ¢,
on obtient

Br= >

n=kigy > >ko=0 (Q>k2t7k2t—1 T (q)klfko

qZZ FLATED DI R T i ’%‘( ) ¢ = Ry

On a & partir du Lemme 2.5 pour [, m,p valant respectivement (¢t — 2)x(t >
2),t,t

b= >

t— k 1
Zt ; k?+z Zf 1 k"+1k 72::12 k"(_l)qui( t2+ )

n=kay > >ko=0 (Drar—kaey = (Dks—ho
Comme «,, = ol — o, et kg =0, on a donc
4 5 gm0 ke T bk = ST e (ke = (M [ ghe—keoa)
nimkas o ko=0 (Dkae—kae1 = (D k1 —ko
On conclut en remarquant que n — ("31) = (3). O

Nous allons maintenant relier la derniére expression de 3,, aux U-fonctions.
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2.3.3 Identité g-binomiale et dérivé
On rappelle ici la variante de I'identité g-binomiale énoncée en (1.1.5)
b 5 n a
q)(=2) a9 (2¢")b-a
> = (—2)%q"
(Q)bfn(q)nfa (q)bfa

pour tous entiers 0 < a < b. Il s’agit d’un polynome en z et donc défini pour
toute valeur complexe z. En particulier, si z = ¢*, on a

n=a

b &) (_1\n nk a+k
2 (=1)"¢"" ek )@ e ek @ [ DFE=1 ]
2 (@, ~ O T T = 0 [ b—a ]
(2.3.17)

n=a

On a donc pour tout entier ¢
b b

g (=D)"(1=¢")g™ " g (=D (g7 — g
Z (Dp-—n(@n—a nz::a (@Do—n(@n—a

(1)@~ (1—q* ) sia=b
= N . 2.3.1
{ (—1)etlg=G)—e sinon (2:3.18)

n=a

On a donc ¢ = a une somme qui s’annule des que b = a. Ces différents outils
vont nous permettre de une expression polynomiale de (,,.

Proposition 2.3. On a
t—1 . i
By = — > [ g1 —ni =i+ 2y | (2.3.19)
n=ng>->n >l i=1 Mit1 = 7

Preuve de la proposition. Dans la formule (2.3.6)

o=

n=kagy > >ko=0 <Q)k2t7k2t71 o (q)klfko

qu;ll kf+i+(’§t)fzﬁ;i kiyiki—312% ki (71)’%(1 _ qktfktfl)

)

on pose n; = ki — ki—; pour tout 1 < i <t. On obtient donc

qZZ;l ni2nke ki, =Yty ke ik =305 ks
5n == E

n=ko+ny > >ki—1+n1
>ki-1>--->ko=0

t—1
Hi:l (q)ktfi_ktfi—l (q)kt—i—l_kt—i+ni+1_ni

ki A
y tlz+m (71)ktq(k2t)7ktk7t*1(1 . qktfkt,l) .
ki=kt_1 (q)kt—l“rnl*kt (q)ktfktfl

D’apres (2.3.18) pour ¢ = a,b valant ki—1,k:—1 + nq1, on a la sous-somme nulle
deés que n; = 0. On a prend donc la somme pour n; > 1 et on obtient

>

t—1
n=ko+ng > Hi:l (q)kt—i—kt—i—l (q)kt—i—l—kt—i+ni+l—n1‘,

2 ki1 +n1 > kg 2

_ — — ky_
qu:f ng+2nike_itki_=32100 ke—ike—ioa—32{2) ke (—1)ke-1g=( e

>ko=0
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On réécrit ensuite

ne—mni—1tko gFi 2 —1-ko)k

o= Y gt Y

n=ny>-->n;>1 k1=ko=0

(q)kl—ko (Q)ko+n,,—nt_1—k1

g1 ke k;_j4+(2nj—1—ki—j—1)ki—;

X oo X Z q

ko j=ki_j_1 (q)kt—j_kt—j—l (q)ktfj—1+nj+1—ﬂj—kt,j

no—ni+ki_o kt—1 o
t (71)’%71(1( 5 )tki—1(2ni—ki_2)

N Z

ki—1=kt_2

(q)ktflfktfz (q)n27nl+kt727kt71

11 s’en suit par réccurence en utilisant (2.3.17) que

ne—ni—1+ko gFi 2 —1—ko)k

D i D

n=ny>:->n1>1 k1=ko=0

(Q)lﬁ—ko (q)kO“!‘nt_nt—l —k1

. —_m . ky_ s 1 .
Pat AR ke (RIS mal g ke )k

e x 3

(q)kt—jfk?t—j—l (q)kt—j—1+nj+1*nj*kt—j

ki_j=ki_j_1
j—1 . i
« H { Niv1 — Ny —i+2) 0, ] .
i Ni+1 — 1
On arrive donc a
— k
/Bn — _ E qn?++nf_1 (_1)koq(2[22:% ni]7t+27k0)k0+(20) X

n=ny>-->n;>1
t

1 . i
[ Nip1 =N —i+23 5 4n; ] .
Nit1 — Ny

=1

Mais kg = 0, d’ou la proposition. O

2.3.4 Preuve du Théoréme 2.2

Comme £, = fqt*"C’n_l(T(*Q 2t+1),q), on déduit de la proposition précédente
que

-1 ‘ i
ntl—t Z H e [ Mip1 =i —i+2355 0,

Cn (T =
n( (2,2t+1)7Q) q N1l — Ny

n+l=ns>--->n12>1 i=1

(2.3.20)
En reprenant ’expansion cyclotomique (1.3.4)

Iy @ = Y OnlTlozesny )@l

n=0
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on obtient

JN(T(*272t+1)>q) = qit Z (qliN)m,—l(q1+N)nt—lqnt

ng>-2n1>1

t—1 . i
2 L m. — ‘ .
% | an,i |: Mgl — Mg — 1 22;:1 1
i1 Ni41 — Ny

et donc
IN (T, 00111, 9) = Ue(=a" ) (2.3.21)

qui est polynomiale en ¢, ¢~!. En particulier, pour ¢ = &y, on a
IN(T(2,2041):En) = Ue(=1,8n) - (2.3.22)

En couplant ce résultat avec (2.2.4) qui dit que

IN(T22641):En") = FL(ERD),

on a le Théoréme2.2 :

Fi(&3") = U(—1,¢én) -

Nous avons montré que les noeuds toriques T(z 241y donnent des polynomes de
Jones qui ont un lien étroit avec les formes modulaires F;. Que se passe t-il
quand on prend une autre famille de tores 7|, ;) avec s,t > 27 Nous discuterons
de cette question, dans la section qui suit, en particulier pour le cas des nceuds
toriques T{3 ¢y pour t > 2.
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3 Polynomes de Jones N-colorés des neuds toriques 1(3 1

3.1 Retour sur I’équation N-différentielle des Jy(T(sy),q)

On rappelle ici I'expression explicite des polynémes N-colorés de Jones

%St(]-*]\ﬁ) N;1 142 1) it $)j—1
INT(s),0) = %= Z q° (6]7(S+ Jits _ g=(e= )775) :
qz —q 2 1-N

J=3

On remarque que I’ensemble de sommation est méme pour 2 entiers consécutifs
aux extrémités pres. On obtient donc

1st(1-N?)

(N—1)2 - (N—1)2 _
IN(Tis,),9) = qﬂ - [q8t4+(s+t) s gt e s
q2z —q =2
e G RS ST ) Nzlé}
N-—2 _N-2
q 2 —q 2 1 —92)2_N2
+ - — q4st((N 2)°~N )!]N_Q(T(S’t)’q)_
q2 —q 2

Apres simplification on obtient

g s=DE=D-N)

IN(T(s,),9) = 1—¢ N 1— g N)=t — gta=N)=1 g q(s“)(l_N)}
1— >N t(1-N)—1
+ 17q7N qS( )= JN*Q(T(S,t%(J).
(3.1.1)
En posant
q%(sfl)(tfl)(lfN)
JN(T(s,t)7 Q) = 1— q_N KN(T(s,t)a Q) )
on obtient

Kn(T(s.0),q) = 1—q* 07N 71 g =N =14 gt DA=N) 4 st Q=N =5 o (T, q) -
(3.1.2)

3.2 Polynome de Jones pour T(3

Pour T3 4), I'équation différentielle donne
KN (T3, q) = 1—¢* N1 20N =1y qT0=N) g g RE=NT Ry 5(Tis 0y, )

De cette derniere relation on obtient une expression modulaire de Kn (7(3.4),q)-
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Théoréme 3.1 (Hikami et Kirillov [10]). On a

Kn(T3,9),9) = Z(qiN)n-H g Z q RNk
n=0 E>0

X (qN [ 2kt 1 } + [ 272:111 D ' (3.2.1)

Preuve du théoréme. On pose la fonction

2n 2k 2k(k+1) n n+1 )
Hi(@) = 3 (@™ ) 2™ ( [2k+1}+[2k+1

n>0 k>0
(3.2.2)
On remarque que le théoréme est vrai si et seulement si Ky (1(3,4),¢) = H1 (¢=N).
On va donc montrer naturellement que

Hi(z) =1 —¢*2® — ¢@®2* + ¢"2" + ¢""2"2H(¢’x) - (3.2.3)
Pour cela, on introduit la fonction

H(z) =Y (w:q?)n1a™

n>0
On a donc
1 1
H(z) = Z(% q?)an12°" + Z(m, q2)anpox?
n>0 n>0
= H(z) = Z( Y1 (2q2 )z + Z ) ns1 (22 )z
n>0 n>0

En utilisant ’identité ¢-binomiale on obtient

o= 5[ 7 | coratosa - 7] capet

k>0 k>0
et donc
1 _ m 2k 2k 1 m 2k(k+1) .2k+1
S B e ) PP
k>0 k>0
On a ainsi

H(z) =Y (@)pn1z™" ) <[ n}f } —l—a:[ n;];l D ¢ a2

2
n n+1 2%(k+1) . 2k+1
[2k+1}+x[2k+1]>q *

(3.2.4)
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On pose donc naturellement la fonction

s Fo 5 (5] P

n>0 k>0

et on a )
H(z) = Ho(z) — q22*Hy (x) - (3.2.5)

Notons que par définition des séries, on a H € Z[[q%;z]] et Hy, Hy € Z[[q; z]].
Hy et Hy sont donc déterminés de maniere unique par H.

Ici on utilise une preuve différente de celle donnée par Hikami. On va chercher
une équation différentielle de H. On a

1 _7 _ 1 7
H(gz) = (q2:q?)ns1q"a" = q 2272 (q15q7)psrq" 2 2%2"
n>0 n>0

e

= qFa%H(qr) = Y (q1q%)up1[(1-¢F T3 2)(1—¢3 3 0)— (1442 ) 1—¢F 2 2) +¢2 )"

n>0
z 1 1 1 1 1
= q22%H(qr) = > [(q7;97 )nrs — (14 ¢2)(q2; ¢? nra + 42 (g3 2 ]2
n>0
On a également

1 1 1 1 1
S0t (g npae™ = 3 (g0 s [(1— 2)(1 — g2 a) + (1 4+ 2o — 1™+
n>0 n>0

On obtient donc

4 1 1 1
q?2%H(qz) =Y (qriq?)nisz™™ — (14+¢7) > (q2507 )pyz”™
n>0 n>0

1 1 1 1
+(1+4q7) Z(q:z:; 4 ns1z"t? — Z(qx; q? )pr12" 2+ Z(x; q% )pyzr" T2
n>0 n>0 n>0

qui donne

e 1 1 1 1
q?2%H(qz) = —(qu;q7 )12° — (qu3 2 )22” + (1 + ¢7)(qw; q7 )12°

—(z; q%)l — (z; q%)zm + H(x)

= q72°H(qr) = —(1 - qz)a® — (1 — qz)(1 — ¢2)2® + (1 + ¢>)(1 — qu)a®
—(1—2)—(1—2)(1—q?z)z+ H(z),

et apres simplification on a I’équation différentielle

H(z) =1—q%2® — qz® + ¢32° + q3 2% H (qz)- (3.2.6)
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En reprenant (3.2.5), on obtient le systéeme

Ho(x) = 1 — gz* — ¢®a® Hy(qx)

(3.2.7)
Hi(z) =1 - ¢*2® — ¢®x*Hy(qx)
En composant une nouvelle fois on obtient
Ho(z) = 1 — qz° — ¢°2% + ¢'1a!! + ¢13212Hy(g2)
Hy(z) = 1-¢*2° — ¢>z* + ¢"2" + ¢' T2 Hi(¢*2)
On a donc I’équation différentielle de Hy
Hi(z) =1—q¢°2® — ¢*z* + ¢"2" + ¢" 22 H, () - (3.2.8)

On conclut simplement en remarquant que
J1(T3.4),9) =1

et en posant Jo(7(3,4),9) =0, on a
K1(T3,4,9) =1—q"

et par convention on prend Ko(7(34),q) = 0. On a vérifie que
Ko(T(3,4),q) = Hi(1)

et
Ki(T(3.4),9) = Hi(q™")-

De plus, les suites (Kn(7(3,4),q)) N0 et (Hy (=) >0 ont les mémes relations
de récurrence de second ordre. On en déduit donc que les 2 suites sont les
mémes, d’ou le résultat. O

Le théoreme précédent nous donne une expression explicite des polynomes
N-colorés de Jones avec

IN Ty ) = D (g N ) g 2N YT g 2N 2R
n>0 k>0

X (qN [ ok 11 ] + [ 272111 D - (829)

3.3 A la recherche d’une formule générale pour T3 o)

La logique suivie de la relation différentielle de Ky suggere que l'on devrait
chercher une fonction  — H, 4 (), pour laquelle

EN(T(s),9) = His (g™ ™) (3.3.1)
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et qui vérifirait la relation
H(s,t) (CL‘) =1— qs—lxs _ qt—lxt + qs-i-txs-l-t 4 qQSt_s_thtH(s7t)(q2x)' (332)

On pourrait pour cela regarder une fonction analogue a celles étudier jusque la:

H(z,q) = > (;q)ns12" (3.3.3)
n>0

3.3.1 Relations différentielles de H

On a:
H(qz,q) = Y (a2 Q)n10"2" =2 ¢ Y (g3 @)nia[(¢" P2 — 1) + 12"
n>0 n>0
= 2’ H(qz,q) = = »_(q7; Q)ni22" + Y _ (42 Q)ni12"
n>0 n>0
= 2¢*H(q,q) = — > (g2 @Q)nr22” + 2" Y _[(x — 1) + 1](q2; @) 12"
n>0 n>0
= "2 H(qw,q) = = Y (42 Qnp22" P+ (023 @nir2™ ' =D (@5 @)n oz
n>0 n>0 n>0

On obtient donc
H(z,q) = (1 -2)+ (1 - qz)x — ¢*a° H(qz, q)
d’ou I’équation différentielle de premier ordre
H(z,q) =1 - qa® — ¢*x*H(qz,q) - (3.3.4)

On peut aller plus loin en cherchant 1’équation différentielle d’ordre n. En
remarquant que

H(¢"z,q) =1 —¢" "% 2% — ¢*T* 3 H (" a,q)

on obtient facilement par réccurence que

n—1
H(z,q) = Z(_l)kq2k+3(’;)x3k(1 _ q1+2kx2) + (_1)nq2n+3(;)x3nH(qnx7q))
k=0
(3.3.5)
ou encore
n—1 n—1
k(3k+1) (k+1)(3k+2) n  nBntl) n n
H(z,q) =Y (-)Fq 7 a®=-> (-D)fqg = 22 4(-1)"¢" 2 2" H(q"x,q)-
k=0 k=0
(3.3.6)

On peut remarquer que dans la partie précédente, H(z) = H(m,q%), et lon
retrouve son équation différentielle (3.2.6). Une piste serait donc de regarder
les fonctions pour m > 1

H, : z— H,(z) = H(x,q%) .
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3.3.2 Autour des fonctions H,,

1l est facile d’observer que H,,(z) € Z[[g# ; x]]. On peut donc I'écrire de manidre

unique
m—1
Kk
- Z g™ Hyp ()
k=0

ou les H,, x sont dans Z[[g; z]]. On va déterminer des expressions explicites des
H,, 1. On a ainsi

Hm(x) = Z SC qm Z men-i-k H qu n+x(<k) *

n>0 k=0 n>0
En utilisant ’identité ¢-binomiale, on a
e j dly a1 n+y(l <k
(@7 ) nir(i<i) = Z( 1)igdgh+25H [ Xg ) }
Jj=0
et par la suite
m—1
u NS Y B R o x(l <k)
M- ¥ TC R
=1 Jm—1,"",J120 =1 o
On arrive donc a
m—1
. JL’ Jl(jl—l) TL+X(Z S k)
S I D S R O A SR
k=0 n>0jm_1,--,51>0 g

Comme la partie fractionnaire des puissances des termes est déterminée par
S il mod m, on obtient donc

—2a+57" 7 ) (miy —mt21)

Hpa(@) =Y (@)nsa™ > (—a)=im g

n=20 St i=alm]
m—1 m—1
S [roesn ]
J
k=0 =1
(3.3.7)
3.3.3 A la recherche de H 3z 9t
En prenant dans (3.3.6) g au lieu de g, on obtient
n—1
k(3k+1) (k+1)(3k+2) p nBntl oo n
Hm(x) = Z(—l) 3k Z k 3k+2+(—1) q 2m ;US Hm(qm x) .
k=0
(3.3.8)
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On regarde les entiers k(3l;+1) et (3k+22)(k+1), et on en distingue 2n sur les 2

premiéres sommes (au moins n distincts). On a également
E(Bk+1) K BK +1)

5 = 5 mod m < (k—K)3(k+k)+1] =0 mod 2m -

Pour 2m = 2¢, les deux facteurs étant de différentes parités, on obtient en
prenant 3a =1 mod 2¢(ici @ = 1 + Zi“:/ozj_l 2211 mod 2%)

k=k mod 2! ou
(k—K)Bk+K)+1]=0 mod 2 c){ = k—a mod 2
Vu que a est impair, on a donc 2!~! congruences distinctes pour les entiers

w modulo 2t7! pour n = 2¢, chacune d’elle étant atteinte exactement 2
(3k+2)(k+1)

fois. Il en est de méme pour les entiers ~~——>——. On a donc
2-1 E(3k+1) 2-1 (k+1)(3k+2)
LaCionsts § (k4+1)(Bk+2) ot ot
Hyoa(2) = 3 (~1)Fg 5 a8 37 (1)hg 5 a2 02 01002 iy (o)
k=0 k=0

En posant pour tout 0 < a < 2871 — 1 les entiers 0 < ko(a) < ki(a);ka(a) <
k3(a) < 2' — 1 de sorte que

Fo(a)Bko(a) +1) _ ki(@)Bki(a) +1) _ 1o
ot—1 - 2t—1 B

et

(ka(a) +1)(3kz(a) +2) _ (ks(a) +1)(3ks(a) +2)

= = =a mod 2171

on a naturellement

ko () (3ko (@) +1) =2

HQt—17a(.T) _ (_1)ko(a)q2—x3ko(a) + (_l)kl(a)q

(k2(a)+1)(8ka(a)+2)—2a (k3(a)+1)(3kg(a)+2)—=2a
_(—1)k2l)g % FHRa(@)+2 _(_qyksla)g % LFa(a)+2

k1(a)(3k1(a)+1)—2a
1(a)( 12(t) ) x?’kl(a)

t t
+¢* T 32 Hyen o

]

a q2.’17)'
(3.3.

9

On rappelle I'équation différentielle pour T{3 o¢):

KN (T(320),q) = 1—q N2 g2 NH2 o1y g m BH2ONAS42T 1 =3 2NHS 23 [0 o (T )2 9) -
(3.3.10)
On cherche donc H 3 5¢) de sorte que

t_ t t t ot _ ot
Hgon(z) = 1-¢?2®—¢* 7'2? +¢*1% ¥ +¢72 73252 H3 00 (¢%2) - (3.3.11)
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On pourrait donc prendre H(z ot)(z) = (—1)_h”q_h/.’l§'_hH2t—l,a(‘"E) pour des a, h
et h' convenables. On aura donc d’apres (3.3.9)

" ko(a)(SkO(a)+1) 2a ’
H(3,2t)($) ( 1)190 a)—h'" == — —h 3k0() h

1)t

( h//qw I 3k1(a)—
—(= 1) 2(a)— huq<’~2<a>+1><3k2<a>+2> 22 _p! p3k2(a)+2—h

_|_

1) (L) }//q(k3(0)+1)(3k3(“)+2) 2a —n 3k3((1)+2 h

PR 2R3 Hon(q?z)-  (3.3.12)

En regardant (3.3.11), on a plusieurs conditions suivant la congruence modulo
3 des puissances de z. On obtient donc

3(k1(a) — ko(a)) = 3

(k1(a) = ko(a)) B(ko(a) + k(@) +1) _ o (3.3.13)
215
3(k3(a) — ka(a)) =3
(k3(a) — ka(a))(B(ks(a) + k2(@) +5) _ o5 (3.3.14)
2t :
et
13(k2(a) — ko(a)) + 2| = 2* (3.3.15)
avec € € {1;2}. On déduit donc que
ko(a) = W%z—l)
: (3.3.16)
2t+671 +1
ki(0) = ———
Fa(a) = w
(3.3.17)
t—e+2 _
k3(0) = %
et
2 =22 -2 (3.3.18)

La derniere égalité reste toujours vraie pour € € {1;2}. On a également

h = min{3ko(a), 3kz(a) + 2} = min{2!Tet — 2, 2072 _ 9} (3.3.19)
I = min{ {ko(a)(?’l;cl(a) + 1)J ; {(ké(a) - 1)2(t3k:2(a) - z)J}
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et donc

)

g £ 2 1)

t—e+2 t—e+2
{(2 31)(; Q)J} (3.3.20)

et
2t+e—1 _ 2 2t—5+2 -1
5 3 )

R = min{ko(a), k2(a) + 1} = min{ (3.3.21)

On remarque par la méme occasion que € € {1;2} est de méme parité que ¢
pour assurer la divisibilité par 3 de 2t7¢ — 1 et 2t+¢=2 — 1.

(%) Pour ¢ pair, on a € = 2 et

b — t4+1 _ t+1
b= 220 k@Gkh@+]) @ -2E* -1
3 2t 3.9t
ot+1 4 1 kl(a)(,?,kl(a) + 1) (2t+1 + 2)(2t+1 + 1)
bl =T T g
) (k2(a) + 1)(3ka(a) +2) (28 —2)(2' — 1)
ka(a) = 3 et o _ i
_@-1 (ks(a) + 1)(3ks(a) +2) (26 +2)(2" +1)
ks(a) = 3 et T _ T
h=2t—2
o | @2 -1 (2 -1 @2-1)) 2 -4
- 3.2t a 3 3.9t-1 |~ " 3
21
3
t—2)(2" — t_ t—1
a:2t*1(wih/)_2t7172 1:2 +1
(3.3.22)
On obtient donc
Hs o) = (—1)132 q4g2 x2_2tH2t71,¥(x) (3.3.23)

et on a bien la relation de réccurence voulue (3.3.11) apres vérification dans
(3.3.12). On remarque en outre que cela correspond exactement pour ¢t = 2 du
neeud torique T3 4.
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(#x) Pour ¢ > 2 impair, on a e = 1 et

— 2(215*1 — 1) ko(a)(?)ko(a) —+ 1) - (2t _ 2)(2t N 1)
= R 2t N 3.2t
2t + 1 kl(a)(3k1(a) + 1) (2t + 2)(2t + 1)
=g 2t - 3.9t
— (2t+1 — 4) (k‘Q(CL) + 1)(3k-2(a) + 2) _ (2t+1 _ 2)(2t+1 . 1)
= 3 o 2 B 3.2t
ks(a) = @+ -1 L (k@) +1)Bks(a) +2) _ (27 + 22 +1)
o s 2! B 3.9t
h=2t—-2
poo |G =2 =D _j2r-2 T -D) 25
3.2 3 3.9t—1 3
2t — 2
h// —
3
2 —2)(2' - 1) 911 9t
a= 2t71((— B h’) _ g1
3.9t 3 a
(3.3.24)
On pose cette fois
(2=2% 5-2t 5 ot
Higzy = (S5 a5 2 My 2 (@) (3.3.25)

et on a notre relation de récurrence souhaitée.

3.3.4 Une formule pour Jy(T(32¢),9)

On pose naturellement dans cette partie a(t), h(t), h'(t), b’ (¢) les valeurs trouvées
précédemment suivant la parité de . On pose en plus m(t) = 2=, On peut
alors remarquer que 3a(t) =1 mod m(t). On a donc

H(372t)(z) = ( ) W g () a " Z n-&-lx
n>0

m 1 .
mty—1 . —a®+r-

1. gyl t)—1,7
X E (71) 1=1 ]lq m(f) + M() (l)

3O j=1im(t)]

)—1 m

m(t (t)—
< 3 o ] {"JFXK’“)]- (3.3.26)
k=0

=1
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On vérifie aisément que Hss2ttey(1) = 0. Ainsi, pour z = g~ ', on a avec

m=mn=m(t) =21 dans (3.3.8)

2t71_1 2t71_1

_ k(Bk+1) (k+1)(3k+2) ;.
Hy(q7) = Y (=DFg 20 7%= 3" (=1)fq 2 R

k=0 k=0

En regardant les k;(a) précédents, on observe qu’il n’y en a que 2 qui sont
inférieurs & 2!~1 et apres simplification pour chaque cas, (c’est le début de
Péquation différentielle) on obtient

Hgon(@ ) =1-¢¢ > =1-q "
Le fonction choisie est donc bien celle que I'on recherche et qui correspond a

Hzat) (") =Kn (T(3,2t),9) -

On a donc d’apres la partie précédente

Kn(T(320),q) = (_1)—h//(t)q—h/(t)+Nh(t) Z(q—N)an_Nnm(t)

n>0
m(t)—1 . 7a(t>+21m<f)_ il 'm.(f) 1.4
% Z (_q—N) =1 quT+Z (2)
3 ju=1[m ()]
m(t)—1 m(t)—1
—kN n+ X (1<k)
<L

(3.3.27)
On a donc un théoreme qui généralise le cas T3 4)

Théoréme 3.2.

In(T(3,2t),9) = (—1) "M WgF =N Z(qlfN)anNnm(t)
n>0

—a+2m O - L

(-1 .
% E (,q*N) S JigT mm t2-1

3O G=1im(t)]

m(t)—1 m(t)—1 n (l < ]{;)
— n
S | R
k=0 =1 Ji

(3.3.28)

On retrouve sans difficulté la formule du neeud torique T(3 4) pour ¢ = 2.
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3.4 Question ouverte

On pourrait se demander s'il est possible de trouver C,(T(3,2t),q) dans la for-
mule de 'expansion cyclotomique d’Habiro.

Dans un premier temps, on se pencherait naturellement sur la formule (3.3.28).
On a bien un début de formule qui correspond. Cependant

q—N(1+nm(t)+k+Zm(t) D)

donne une puissance négative de ¢V, ce qui n’est pas le cas des puissance de ¢V
dans (¢'*t"),, qui sont toutes positives.

Comme dans la section 2, il est également possible d’explorer la piste suiv-
ant laquelle on donne une expression de C,(T(32t),q) & partir de la formule
(1.3.5). On a donc

n+1

n (1—¢*) LICESS)
Cn(Ts.20,9) =4 +1Z Ont1-k( )n+1+k( Vg = (1—q )J’f(T(&?‘)aq)'

On obtient en utilisant (3.3.28) une somme assez complexe. Cependant on peut
aussi remarquer que Cy,(T(32¢,q) est lié & la somme

n+1
" t ]_— —
(1)~ g ”“E q )yt ),
n+1 k n+1+k:

(3.4.1)
qui est dans Z(q)[¢2 '], de maniere unique comme la partie rattachée a 21 ~ta(t).
Cette derniere est plus facile a manipuler car on a par I’dentité g-binomiale

vHy(2) = 3 (wig? ZZ{ ] ¢ T (3.4.2)

m>1 m>11=0

Pour les g% les sommes sont finies, et on obtient pour la grande somme

(n+1)2t1 n+1 2%k
1(1—1) 1-— q E(k=1) m
>y Z[ } Y g e,

=1 (Dnr1-k(@Dn+14k

ou encore
P (Q)n+17k(Q)n+1+k

Les transformations utilisées dans la section 2 sur les paires de Bailey ne sont
pas applicables ici (termes partiels).

On a bien une difficulté a trouver une expression explicite pour C,,(T(3,2t),q)-
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