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Résumé

Nous nous intéresserons ici à la notion de q-séries et certaines méthodes de
calculs régulièrement utilisées dans leur manipulation. Plus spécifiquement, on
se penchera sur leur lien étroit avec la théorie des nœuds.
On parlera également des formes modulaires quantiques et du rôle que les q-
séries peuvent bien jouer dans ces dernières.
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3.1 Retour sur l’équation N -différentielle des JN (T(s,t), q) . . . . . . 31
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1 Introduction aux notions de bases

1.1 Les q-séries

Pour un complexe q fixé, on pose pour tout complexe a

(a; q)k =

k−1∏
i=0

(1− aqi), ∀ k ∈ N∗

et par convention (a, q)0 = 1. On définit alors pour tout |q| < 1 et tout a
complexe

(a; q)∞ =
∏
k≥0

(1− aqk) ·

Par abus de langage, on notera souvent (a)k, (a)∞ respectivement les valeurs
(a; q)k, (a; q)∞, en sous-entendant le fait que q soit fixé. On peut remarquer que
pour tous entiers naturels m,n , on a

(a)m+n = (a)m(aqm)n ·

On a également pour tout |q| < 1 fixé et tout a complexe sous condition de
définition

(a)k =
(a)∞

(aqk)∞
, ∀k ∈ N·

On définit ainsi une q-série pour |q| < 1 comme une série avec des cœfficients
comme produits de (a)n. Un exemple important est celui des q-fonctions hy-
pergéométriques

rφs

 a1, · · · , ar
; q, z

b1, · · · , bs

 =
∑
n≥0

(a1)n · · · (ar)n
(b1)n · · · (bs)n(q)n

zn·

Le cas (r, s) = (1, 0) donne la proposition suivante

Proposition 1.1. Pour tout complexe a, on a

1φ0

 a
; q, z

−

 =
∑
n≥0

(a)n
(q)n

zn =
(az)∞
(z)∞

, ∀ |z| < 1 · (1.1.1)

Preuve. On peut remarquer que (z)∞ est une série en z, et de plus qui ne
s’annule pas sur |z| < 1. On peut donc l’inverser sur la boule unité ouverte. On
se permet ainsi d’écrire sur la boule unité

F (a, z) =
(az)∞
(z)∞

=
∑
n≥0

αnz
n·

On a donc
(1− az)F (a, qz) = (1− z)F (a, z)
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⇒
∑
n≥0

αnq
nzn − aαnqnzn+1 =

∑
n≥0

αnz
n − αnzn+1

⇒
∑
n≥0

αnz
n+1 − aαnqnzn+1 =

∑
n≥0

αnz
n − αnqnzn

⇒
∑
n≥0

(1− aqn)αnz
n+1 =

∑
n≥0

(1− qn)αnz
n

⇒ αn+1 =
1− aqn

1− qn+1
αn

par unicité des cœfficients. En remarquant que α0 = F (a, 0) = 1, on a donc

αn =

∏n
k=1(1− aqk−1)∏n
k=1(1− qk)

=
(a)n
(q)n
·

Réciproquement ∑
n≥0

(a)n
(q)n

zn

est une série de rayon de convergence 1, vu que

lim
n→∞

(1− aqn)

1− qn+1
= 1 ·

Encore par unicité des cœfficients, on a bien le résultat escompté.

On introduit également les cœfficients q-binomiaux

[
n
k

]
=


(q)n

(q)k(q)n−k
si k ∈ [[0;n]]

0 sinon

qui sont des polynômes en q, suivant la relation triangulaire analogue à celle de
Pascal pour n > 0 et tout entier k[

n
k

]
= qk

[
n− 1
k

]
+

[
n− 1
k − 1

]
ou encore [

n
k

]
=

[
n− 1
k

]
+ qn−k

[
n− 1
k − 1

]
·

On remarque alors que ces cœfficients deviennent pour q = 1 les cœfiicients
binomiaux classiques (nk ). De plus, on a pour tous entiers 0 ≤ k ≤ n[

n
k

]
=

(q)n
(q)n−k(q)k

=
(qn−k+1)k

(q)k
(1.1.2)
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En observant également que pour tous entiers naturels N ≥ n on a

(q−N )n =

−N+n−1∏
k=−N

(1− qk) = (−1)nq−Nn+(n2 )
(q)N

(q)N−n
, (1.1.3)

et (q−N )n = 0 dès que n > N , on obtient l’identité q-binomiale en remplaçant
a par q−N et z par qNz dans (1.1.1)

N∑
n=0

[
N
n

]
(−1)nq(

n
2 )zn = (z)N · (1.1.4)

Notons que l’identité, étant polynomiale, reste vraie pour tout q complexe, en
particulier pour q = 1, et l’on retrouve l’identité binomiale dite de Newton

N∑
n=0

(
N
n

)
(−1)nzn = (1− z)N ·

On termine cette présentation des q-séries par une variante de l’identité q-
binomiale obtenue en remplaçant N,n, z respectivement par b − a, n − a, zqa

:
b∑

n=a

q(
n
2 )(−z)n

(q)b−n(q)n−a
= (−z)aq(

a
2 )

(zqa)b−a
(q)b−a

· (1.1.5)

L’on remarque cependant que cette dernière identité ne peut pas prendre comme
valeurs de q certaines racines de l’unité.

1.2 Les paires de Bailey

Dans cette partie on fixe un complexe |q| < 1, et a 6= qn pour tout entier n
strictement négatif.

Définition 1.1 (Bailey [3]). Deux suites (αn)n≥0, (βn)n≥0 forment une paire
de Bailey relative à a si elles vérifient la relation

βn =

n∑
k=0

αk
(q)n−k(aq)n+k

, ∀ n ∈ N · (1.2.1)

Une relation équivalente mais moins connue est celle de l’inversion pour
a 6= 1

Lemme 1.1 (Andrews [1]). Pour tout a 6= 1, on a

αn =
1− aq2n

1− a

n∑
k=0

(a)n+k
(q)n−k

(−1)n−kq(
n−k
2 )βk , (1.2.2)

ou encore

αn =
1− aq2n

1− a
· (a)n

(q)n
(−1)nq(

n
2 )

n∑
k=0

(q−n)k(aqn)kq
kβk · (1.2.3)

5



Preuve. En effet, on peut facilement démontrer par récurrence sur m que pour
tous entiers naturels m,n, on a

m∑
k=0

(1− aq2k)(q−n)k(a)kq
nk

(1− a)(q)k(aq)n+k
=

(aq)m(q1−n)mq
nm

(q)m(aq)n+m
,

cette somme étant nulle dès que m ≥ n > 0. On en déduit avec (1.1.3) une
paire de Bailey relative à a dite triviale

αn =
(1− aq2n)(a)n(−1)nq(

n
2 )

(1− a)(q)n

et
βn = δn,0

avec δn,0 nul sauf en n = 0 où il vaut 1. Si l’on pose pour tous entiers 0 ≤ k ≤ n
et tout complexe a 6= 1

λ(a, n, k) =
1− aq2n

1− a
· (a)n+k

(q)n−k
(−1)n−kq(

n−k
2 ) ,

on a d’une part que la suite (λ(a, n, 0))n≥0 correspond à (αn)n≥0 de la paire de
Bailey triviale relative à a, et

λ(a, n, k) = λ(aq2k, n− k, 0) · (1− aq2k)(a)2k
(1− a)

·

On a donc pour tous entiers 0 ≤ l ≤ n
n∑
k=l

λ(a, k, l)

(q)n−k(aq)n+k
=

n∑
k=l

λ(aq2l, k − l, 0)(1− aq2l)(a)2l
(q)(n−l)−(l−k)(aq2l+1)(n−l)+(k−l)(aq)2l(1− a)

⇒
n∑
k=l

λ(a, k, l)

(q)n−k(aq)n+k
=

n−l∑
k=0

λ(aq2l, k, 0)

(q)(n−l)−k(aq2l+1)(n−l)+k
= δn−l,0 ·

Les matrices triangulaires supérieures infinies(
1

(q)n−k(aq)n+k

)
n≥k≥0

et (λ(a, k, l))k≥l≥0 sont donc inverse l’une de l’autre, d’où la formule d’inversion.

On peut également remarquer que les fonctions λn,k : a 7→ λ(a, n, k)
admettent des limites en 1 (λ0,0 ≡ 1 et (a)n+k/(1−a) = (aq)n−1+k pour n ≥ 1).
On a donc une inversion pour le cas a = 1 en modifiant l’écriture des λ(a, n, k):

λ(a, 0, 0) = 1
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et pour n > 0

λ(a, n, k) = (1− aq2n)
(a)n+k−1
(q)n−k

(−1)n−kq(
n−k
2 ) ·

À partir d’une paire de Bailey relative à a, on peut créer une infinité de paires
de Bailey relatives à a. L’exemple le plus important est énoncé dans le lemme
qui suit.

Lemme 1.2 (lemme de Bailey [4]). Si (αn, βn) est une paire de Bailey relative
à a, alors (α′n, β

′
n) en est une, avec

α′n =
(b)n(c)n(aq/bc)n

(aq/b)n(aq/c)n
αn

et

β′n =

n∑
k=0

(b)k(c)k(aq/bc)k(aq/bc)n−k
(aq/b)n(aq/c)n(q)n−k

βk ·

Avant de prouver ce théorème, nous allons démontrer un autre résultat dû
à Heine [2].

Proposition 1.2. On a

2φ1

 u, v
; q, z

w

 =
(v)∞(uz)∞
(w)∞(z)∞

2φ1

 w/v, z
; q, v

uz


et

2φ1

 u, v
; q, z

w

 =
(uvz/w)∞

(z)∞
2φ1

 w/u,w/v
; q , uvz/w

w

 ·
Preuve. La première égalité implique la deuxième. En effet, si la première est
vraie, alors

2φ1

 z, w/v
; q, v

uz

 =
(w/v)∞(vz)∞

(uz)∞(v)∞
2φ1

 uvz/w, v
; q, w/v

vz


et

2φ1

 v, uvz/w
; q, w/v

vz

 =
(uvz/w)∞(w)∞
(vz)∞(w/v)∞

2φ1

 w/u,w/v
; q, uvz/w

w

 ·
Les sommes 2φ1 étant symétriques pour les termes u, v, on déduit directement
la deuxième égalité de la proposition. Pour la première égalité, on a

2φ1

 u, v
; q, z

w

 =
∑
n≥0

(u)n(v)n
(w)n(q)n

zn =
(v)∞
(w)∞

∑
n≥0

(u)n(wqn)∞
(q)n(vqn)∞

zn ,
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et donc d’après (1.1.1)

2φ1

 u, v
; q, z

w

 =
∑
n≥0

(u)n(v)n
(w)n(q)n

zn =
(v)∞
(w)∞

∑
n≥0

(u)n
(q)n

zn
∑
m≥0

(w/v)m
(q)m

(vqn)m

⇒ 2φ1

 u, v
; q, z

w

 =
(v)∞
(w)∞

∑
m≥0

(w/v)m
(q)m

vm
∑
n≥0

(u)n
(q)n

(zqm)n

⇒ 2φ1

 u, v
; q, z

w

 =
(v)∞
(w)∞

∑
m≥0

(w/v)m(uzqm)

(q)m(zqm)
vm

⇒ 2φ1

 u, v
; q, z

w

 =
(v)∞(uz)∞
(w)∞(z)∞

∑
m≥0

(w/v)m(z)m
(q)m(uz)m

vm ·

La deuxième égalité donne avec (1.1.1)

∑
n≥0

(u)n(v)n
(w)n(q)n

zn =

∑
n≥0

(uv/w)n
(q)n

zn

∑
n≥0

(w/u)n(w/v)n
(w)n(q)n

zn

 ·
On déduit par produit de séries pour tout entier naturel n

(u)n(v)n
(w)n(q)n

=

n∑
k=0

(w/u)k(w/v)k
(w)k(q)k

· (uv/w)n−k
(q)n−k

· (1.2.4)

Avec ce dernier outil nous pouvons démontrer sans difficuté le lemme de Bailey.

Preuve du lemme de Bailey. On a ∀n ≥ 0

β′n =

n∑
k=0

(b)k(c)k(aq/bc)k(aq/bc)n−k
(aq/b)n(aq/c)n(q)n−k

βk

=

n∑
k=0

k∑
l=0

(b)k(c)k(aq/bc)k(aq/bc)n−k
(aq/b)n(aq/c)n(q)n−k(q)k−l(aq)k+l

αl

=

n∑
l=0

n∑
k=l

(b)k(c)k(aq/bc)k(aq/bc)n−k
(aq/b)n(aq/c)n(q)n−k(q)k−l(aq)k+l

αl ·

On pose comme dans la démonstration du lemme précédent

Λ(a, b, c, n, l) =

n∑
k=l

(b)k(c)k(aq/bc)k(aq/bc)n−k
(aq/b)n(aq/c)n(q)n−k(q)k−l(aq)k+l

·
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On a donc

Λ(a, b, c, n, l) =
(b)l(c)l(aq/bc)

l

(aq/b)l(aq/c)l(aq)2l

×
n∑
k=l

(bql)k−l(cq
l)k−l(aq/bc)

k−l(aq/bc)n−k
(aql+1/b)n−l(aql+1/c)n−l(q)n−k(q)k−l(aq2l+1)k−l

=
(b)l(c)l(aq/bc)

l

(aq/b)l(aq/c)l(aq)2l
Λ(aq2l, bql, cql, n− l, 0) ·

(1.2.5)

Pour montrer que

Λ(a, b, c, n, l) =
(b)l(c)l(aq/bc)

l

(aq/b)l(aq/c)l(q)n−l(aq)n+l
,

il faut et il suffit d’après (1.2.5) de montrer que

Λ(a, b, c, n, 0) =
1

(q)n(aq)n
·

Mais c’est exactement (1.2.4) pour u, v, w valant aq/b, aq/c, aq.

Le dernier résultat que nous donnerons sur les paires de Bailey concerne le
cas de la transformation du lemme Bailey quand b, c → ∞. En effet (x)n est
un polynôme en x de degré n, de cœfficient dominant (−1)nq(

n
2 ) et de terme

constant 1. On a donc par passage à la limite une nouvelle paire de Bailey
relative à a.

α′n = anqn
2

αn

β′n =

n∑
k=0

akqk
2

(q)n−k
βk · (1.2.6)

1.3 Nœuds toriques et polynômes N-colorés de Jones

On rappelle qu’un nœud dans l’espace est une courbe lisse qui n’est pas homo-
tope à un cercle. Par abus on fait du cercle un nœud dénoué, constituant ainsi
l’élément neutre. On le note K0. Pour un nœud K, on note K∗ son image par
un plan. La théorie des nœuds étudie entre autre le classement de ces objets
par équivalence homotopique, la classe du cercle étant nommé ”dénoué”. Une
famille particulière de nœuds est celle de nœuds toriques (autour de tores), notés
T(s,t), avec s ∧ t = 1, représentés par les équations paramétriques

T(s,t) :

 x(θ) = (R+ r cos(tθ)) cos(sθ)
y(θ) = (R+ r cos(tθ)) sin(sθ)
z(θ) = r sin(tθ)

, θ ∈ [[0; 2π]] , 0 < r < R ·

Nous nous contenterons d’énoncer certains résultats de la théorie des nœuds sans
les démontrer. Un outil utile est la notion de polynômes N -colorés de Jones.
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On les note JN (K, q), où K est le nœud et q la variable, et sont des polynômes
en q±1. Les propriétés qui nous intéressent sont les suivantes [11]:

JN (K0, q) = 1
K ≡ K ′ ⇒ JN (K, q) = JN (K ′, q)
JN (K∗, q) = JN (K, q−1) ·

Ces polymômes sont explicitement connus pour les nœuds toriques [13],[14] :

JN (T(s,t), q) =
q

1
4 st(1−N

2)

q
N
2 − q−N2

N−1
2∑

j= 1−N
2

qstj
2
(
q−(s+t)j+

1
2 − q−(s−t)j− 1

2

)
·

On obtient donc

JN (T(s,t), q) =
q

1
4 st(1−N

2)−N+1
2

1− q−N

 N−1
2∑

j= 1−N
2

q(sj−1)(tj−1) −

N−1
2∑

j= 1−N
2

qtj(sj+1)−sj

 ·
En effectuant un changement de variable k = sj− 1 pour la première somme et
k = sj pour la seconde, on a

JN (T(s,t), q) =
q

1
4 st(1−N

2)−N+1
2

1− q−N

[∑
k∈E1

q
t
sk(k+1)−k −

∑
k∈E2

q
t
sk(k+1)−k

]
,

avec

E1 =

{
s(1−N)

2
+ su− 1 / u ∈ [[0, N − 1]]

}
et

E2 =

{
s(1−N)

2
+ su / u ∈ [[0, N − 1]]

}
·

On a donc pour s > 1

JN (T(s,t), q) =
q

1
4 st(1−N

2)−N+1
2

1− q−N
∑

k∈t2
i=1Ei

(−1)i−1q
t
sk(k+1)−k · (1.3.1)

On peut également effectuer le changement de variable k = tj − 1 pour la
première somme et k = −tj pour la deuxième et l’on obtient

JN (T(s,t), q) =
q

1
4 st(1−N

2)−N+1
2

1− q−N

∑
k∈E′1

q
s
t k(k+1)−k −

∑
k∈E′2

q
s
t k(k+1)−k

 ,

avec

E′1 =

{
t(1−N)

2
+ tu− 1 / u ∈ [[0, N − 1]]

}
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et

E′2 =

{
t(1−N)

2
− tu / u ∈ [[0, N − 1]]

}
=

{
t(1−N)

2
+ tu / u ∈ [[0, N − 1]]

}
·

On a ainsi pour t > 1

JN (T(s,t), q) =
q

1
4 st(1−N

2)−N+1
2

1− q−N
∑

k∈t2
i=1E

′
i

(−1)i−1q
s
t k(k+1)−k · (1.3.2)

On peut ainsi remarquer que JN (T(s,t), q) = JN (T(t,s), q). Pour le cas des nœuds
T (2, 2t+ 1), on a

E1 = {−N + 2u /u ∈ [[0, N − 1]]}

et
E2 = {−N + 2u+ 1 / u ∈ [[0, N − 1]]} ·

On a donc

JN (T(2,2t+1), q) = (−1)N
qt−

N
2 −

2t+1
2 N2

1− q−N
N−1∑
k=−N

(−1)kq
2t+1

2 k(k+1)−k · (1.3.3)

Il existe un lien entre les polynômes de Jones et les paires de Bailey.
En effet, une relation due à Habiro [6], dite expansion cyclotomique, donne

JN (K, q) =
∑
n≥0

Cn(K, q)(q1−N )n(q1+N )n =

N−1∑
n=0

Cn(K, q)(q1−N )n(q1+N )n

(1.3.4)
avec Cn(K, q) des polynômes en q±1. Si l’on récrit

JN+1(K, q) =

N∑
n=0

(q−N )n(q2+N )nCn(K, q) ,

on remarque d’après (1.2.3)

αn =
1− q2n+2

1− q2
· (q2)n

(q)n
(−1)nq(

n
2 )Jn+1(K, q)

ou encore

αn =
(1− q2n+2)(1− qn+1)

(1− q2)(1− q)
(−1)nq(

n
2 )Jn+1(K, q)

et
βn = q−nCn(K, q)

forment une paire de Bailey relative à q2. On obtient donc de façon équivalante

q−nCn(K, q) =

n∑
k=0

(1− q2k+2)(1− qk+1)

(q)n−k(q3)n+k(1− q2)(1− q)
(−1)kq(

k
2 )Jk+1(K, q)
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⇒ q−nCn(K, q) =

n∑
k=0

(1− q2k+2)(1− qk+1)

(q)n−k(q)n+k+2
(−1)kq(

k
2 )Jk+1(K, q)

et donc

Cn(K, q) = −qn+1
n+1∑
k=1

(1− q2k)(1− qk)

(q)n+1−k(q)n+1+k
(−1)kq

k(k−3)
2 Jk(K, q) · (1.3.5)

En prenant K = T ∗(2,2t+1), on a

Cn(T ∗(2,2t+1), q) = −qn+1
n+1∑
k=1

(1− q2k)(1− qk)

(q)n+1−k(q)n+1+k
(−1)kq

k(k−3)
2 Jk(T(2,2t+1), q

−1)

et d’après (1.3.3)

Cn(T ∗(2,2t+1), q) = −qn+1−t
n+1∑
k=1

1− q2k

(q)n+1−k(q)n+1+k
q−k+(t+1)k2

k−1∑
l=−k

(−1)lq−
2t+1

2 l(l+1)+l ·

On peut donc écrire

−qt−nCn−1(T ∗(2,2t+1), q) =

n∑
k=0

1− q2k

(q)n−k(q)n+k
q(t+1)k2−k

k−1∑
l=−k

(−1)lq−
2t+1

2 l2− 2t−1
2 l

(1.3.6)
et mettre fin à cette série de résultats sur les nœuds toriques.
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2 Formes modulaires quantiques et q−séries

Les formes modulaires quantiques sont des fonctions f sur Q (ou de façon
équivalente, sur les racines de l’unité e2iπz) telles que

f(z)− χ(γ)(cz + d)−kf

(
az + b

cz + d

)
,

avec

(
a b
c d

)
∈ SL2(Z) et χ un caractère de SL2(Z), possède de bonnes pro-

priétés comme l’analycité et la continuité. On rappelle que pour les formes mod-
ulaires, la dernière expression vaut 0. Ces formes modulaires sont introduites
par Zagier. Un exemple célèbre de forme modulaire est la série de Kontsevich-
Zagier [15]

F (q) =
∑
n≥0

(q)n · (2.0.7)

Cette somme est bien définie sur les racines de l’unité car si qn = 1, alors
(q)m = 0 pour m ≥ n, et donc F (q) est une somme est finie. De plus elle n’est
pas définie sur une boule ouverte, les termes n’ayant pas de limite finie dès que
|q| > 1 et une limite valant 1 quand |q| < 1.

2.1 U−fonctions et théorème d’inversion

La U-fonction génératrice des suites uni-modales, i.e (ak)1≤k≤s , 0 < a1 < · · · <
ar > ar+1 > · · · > as > 0 , est définie par

U(x, q) =
∑
n≥0

(−xq)n(−x−1q)nqn+1 =
∑

m∈Z,n≥1
u(m,n)xmqn (2.1.1)

avec u(m,n) le nombre de suites uni-modales (ak)1≤k≤s telles que a1+· · ·+as =
n et (s − r) − (r − 1) = s − 2r + 1 = m. Cette est définie seulement pour
|q| < 1 pour un x donné, mais peut être étendue aux racines de l’unité quand
x = −1, la somme étant alors finie. Elle devient dans ce cas une forme modulaire
quantique. Le premier théorème est un lien établi par Bryson et.Al. [5] entre
(2.0.7) et (2.1.1) pour des racines primitives ξN .

Théorème 2.1. Pour ξN une racine primitive N -ième de l’unité, on a

F (ξ−1N ) = U(−1, ξN ) · (2.1.2)

Preuve. On pose

f(x) = 1 +

N−1∑
n=1

n∏
k=1

(x− ξ−kN ) ·

On a donc

f(ξ−1N x) = 1 +

N−1∑
n=1

n∏
k=1

(ξ−1N x− ξ−kN ) = 1 +

N−1∑
n=1

ξ−nN

n−1∏
k=0

(x− ξ−kN )
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⇒ f(ξ−1N x) = 1 + (x− 1)

N−1∑
n=1

ξ−nN

n−1∏
k=1

(x− ξ−kN )

⇒ f(ξ−1N x) = 1 + (x− 1)

[
x

N−1∑
n=1

n−1∏
k=1

(x− ξ−kN )−
N−1∑
n=1

n∏
k=1

(x− ξ−kN )

]

⇒ f(ξ−1N x) = 1 + (x− 1)

[
x

(
f(x)−

N−1∏
k=1

(x− ξ−kN )

)
− f(x) + 1

]

⇒ f(ξ−1N x) = 1 + (x− 1)2f(x)− (x− 1)x

[
N−1∏
k=1

(x− ξ−kN )

]
+ (x− 1)

avec comme convention le produit vide qui vaut 1. Ainsi

f(ξ−1N x) = (x− 1)2f(x)− x(xN − 1) + x = (x− 1)2f(x) + x(2− xN )· (2.1.3)

On pose en outre la suite de polynômes (uk)1≤k≤N telle que

(2− xN )uk(ξ−kN x) = f(ξ−kN x)− f(x)

k−1∏
i=0

(ξ−iN x− 1)2

ou encore

(2− xN )uk(x) =

[
f(x)− f(ξkNx)

k∏
i=1

(ξiNx− 1)2

]
· (2.1.4)

On a donc d’après (2.1.3)
u1(x) = ξNx

et

uN (x) =
f(x)(1− (xN − 1)2)

(2− xN )
= xNf(x) ·

De plus par (2.1.4) on obtient pour tout 1 ≤ k ≤ N − 1

(2− xN )(uk+1(x)− uk(x)) =
[
f(ξkNx)− (ξk+1

N x− 1)2f(ξk+1
N x)

] k∏
i=1

(ξiNx− 1)2

qui donne par (2.1.3)

(2− xN )(uk+1(x)− uk(x)) = ξk+1
N x(2− xN )

k∏
i=1

(ξiNx− 1)2

et donc

uk+1(x)− uk(x) = ξk+1
N x

k∏
i=1

(ξiNx− 1)2 ·
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On a donc par somme téléscopique

uN (x)− u1(x) = x

N−1∑
k=1

[(xξN ; ξN )k]2ξk+1
N

⇒ xNf(x) = x

N−1∑
k=0

[(xξN ; ξN )k]2ξk+1
N ·

On obtient le résultat voulu en prenant x = 1 dans la dernière égalité.

Sur la base des polynômes de Jones, [7] Hikami introduit une famille de
formes modulaires quantiques généralisant la série de Kontsevich-Zagier

Ft(q) = qt
∑

kt≥···≥k1≥0

(q)kt

t−1∏
i=1

qki(ki+1)

[
ki+1

ki

]
· (2.1.5)

Elles sont définies pour les racines de l’unité à cause du caractère polynômiale
des cœfficients q-binomiaux. Ici F1(q) = qF (q). On définit de manière analogue
les U -fonctions généralisées par

Ut(x, q) = q−t
∑

kt≥···≥k1≥1

(−xq)kt−1(−x−1q)kt−1qkt

×
t−1∏
i=1

qk
2
i

[
ki+1 − ki − i+ 2

∑i
j=1 kj

ki+1 − ki

]
(2.1.6)

définies pour |q| < 1 et s’étendant aux racines de l’unité pour x = −1, la somme
étant finie. Ici U1(x, q) = q−1U(x, q). On peut ainsi géneraliser le théorème
précédent [8].

Théorème 2.2. Pour ξN une racine primitive N -ième de l’unité, on a

Ft(ξ
−1
N ) = Ut(−1, ξN ) · (2.1.7)

Le résultat se base essentiellement sur l’égalité

JN (T ∗(2,2t+1), ξN ) = JN (T(2,2t+1), ξ
−1
N ) ·

Nous démontrerons cette propriété en établissant dans un premier temps un
lien entre JN (T(2,2t+1),−) et Ft, puis dans la deuxième partie, un lien entre
JN (T ∗(2,2t+1),−) et Ut(−1,−).

2.2 L’équation récursive de JN(T(2,2t+1), q) et lien avec Ft

On rappelle (1.3.3) :

JN (T(2,2t+1), q) = (−1)N
qt−

N
2 −

2t+1
2 N2

1− q−N
N−1∑
k=−N

(−1)kq
2t+1

2 k(k+1)−k ·
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On a donc

JN (T(2,2t+1), q) = (−1)N
qt−

N
2 −

2t+1
2 N2

1− q−N
(−1)Nq

2t+1
2 N(N−1)+N (1− q1−2N )

−q
t−(2t+1)N (1− q1−N )

1− q−N
· (−1)N−1

qt−
N−1

2 −
2t+1

2 (N−1)2

1− q−N+1

×
N−2∑

k=−N+1

(−1)kq
2t+1

2 k(k+1)−k

et donc

JN (T(2,2t+1), q) = qt(1−N) (1− q1−2N )

1− q−N
− qt−(2t+1)N 1− q1−N

1− q−N
JN−1(T(2,2t+1), q)·

(2.2.1)
En posant HN = qt(N−1)(1 − q−N )JN (T(2,2t+1), q), on obtient la relation de
récurrence suivante

HN = (1− q1−2N )− q2t−(2t+1)NHN−1 , (2.2.2)

avec H1 = 1 − q−1 car J1(T(2t+1), q) = 1. On peut même étendre la relation
avec H0 = 0. On reprend ici la démonstration d’Hikami [9] en introduisant une
fonction assez particulière, qui respectera une relation de récurrence étroitement
liée à la dernière.

Définition 2.1. On définie la fonction pour |q| < 1 fixé

Ht(x) =
∑

kt,··· ,k1≥0

(x)kt+1x
kt

t−1∏
i=1

qki(ki+1)x2ki
[
ki+1

ki

]

pour tout |x| < 1 et x = q−n avec n ∈ N.

On a donc

Ht(x) =
∑

kt≥···≥k1≥0

(x)kt+1x
kt

t−1∏
i=1

qki(ki+1)x2ki
[
ki+1

ki

]
·

Notons que le deuxième ensemble de définition est dû au fait que la somme soit
finie pour ces valeurs. On a donc la proposition suivante:

Proposition 2.1. On a la relation pour x 6= 1.

Ht(x) = 1− qx2 − q2tx2t+1Ht(qx) · (2.2.3)

Notons que si cette proposition est vraie, alors en posant hN = Ht(q
−N ),

on aura alors la même relation de récurrence qu’en (2.2.2) avec également h0 =
0 = H0. Ainsi,

HN = Ht(q
−N )
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et donc

qt(N−1)(1−q−N )JN (T(2,2t+1), q) =
∑

kt,··· ,k1≥0

(q−N )kt+1q
−Nkt

t−1∏
i=1

qki(ki+1−2N)

[
ki+1

ki

]

⇔ JN (T(2,2t+1), q) = qt(1−N)
∑

kt≥···≥k1≥0

(q1−N )ktq
−Nkt

t−1∏
i=1

qki(ki+1−2N)

[
ki+1

ki

]
·

Cette écriture étant polynomiale en q, q−1, car les termes nuls dès que kt ≥ N ,
elle sera donc bien définie pour les racines de l’unité. En particulier on aura

JN (T(2,2t+1), ξ
−1
N ) = Ft(ξ

−1
N ) · (2.2.4)

Preuve de la proposition 2.1. On pose pour m = 0, · · · , t− 1

H
(m)
t (x, y, z1, · · · , zt−1) =

∑
kt,··· ,k1≥0

(x)kty
kt

m−1∏
i=1

q(ki)
2

z2kii

[
ki+1

ki

]

× q(km)2z2kmm

[
km+1 + 1

km

]
×

t−1∏
i=m+1

qki(ki+1)z2kii

[
ki+1

ki

]
·

On a donc
Ht(x) = (1− x)H

(0)
t (qx, x, x, · · · , x) (2.2.5)

En appliquant la relation[
n+ 1
k

]
= qk

[
n
k

]
+

[
n

k − 1

]
,

on obtient pour m = 1, · · · , t− 1

H
(m)
t (x, y, z1, · · · , zt−1) = H

(0)
t (x, y, q−

1
2 z1, · · · , q−

1
2 zm−1, zm, · · · , zt−1)

+qz2mH
(m−1)
t (x, y, z1, · · · , zm−1, q

1
2 zm, zm+1 · · · , zt−1)

(2.2.6)

qui utilisé de manière récursive donne

H
(t−1)
t (qx, y, q

1
2 z1, · · · , q

1
2 zt−1) = H

(0)
t (qx, y, z1, · · · , zt−2, q

1
2 zt−1)

+q2z2t−1H
(0)
t (qx, y, z1, · · · , zt−3, q

1
2 zt−2, qzt−1))

+ · · ·+ q2(t−2)z2t−1 · · · z22H
(0)
t (qx, y, q

1
2 z1, qz2, · · · , qzt−1))

+q2(t−1)z2t−1 · · · z21H
(0)
t (qx, y, qz1, · · · , qzt−1)) · (2.2.7)
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De même en utilisant la relation[
n+ 1
k

]
=

[
n
k

]
+ qn+1−k

[
n

k − 1

]
,

on a pour m = 1, · · · , t− 2

H
(m)
t (x, y, z1, · · · , zt−1) = H

(0)
t (x, y, q−

1
2 z1, · · · , q−

1
2 zm, zm+1, · · · , zt−1)

+qz2mH
(m−1)
t (x, y, z1, · · · , zm, q

1
2 zm+1, zm+2 · · · , zt−1)

(2.2.8)

et pour m = t− 1

H
(t−1)
t (x, y, z1, · · · , zt−1) = H

(0)
t (x, y, q−

1
2 z1, · · · , q−

1
2 zt−1)

+qz2t−1H
(t−2)
t (x, qy, z1, · · · , zt−1) · (2.2.9)

On obtient de même que (2.2.7)

H
(t−2)
t (qx, y, q

1
2 z1, · · · , q

1
2 zt−1) = H

(0)
t (qx, y, z1, · · · , zt−2, q

1
2 zt−1)

+q2z2t−2H
(0)
t (qx, y, z1, · · · , zt−3, q

1
2 zt−2, qzt−1))

+ · · ·+ q2(t−3)z2t−2 · · · z22H
(0)
t (qx, y, z1, q

1
2 z2, qz3, · · · , qzt−1))

+q2(t−2)z2t−2 · · · z21H
(0)
t (qx, y, q

1
2 z1, qz2, · · · , qzt−1)) · (2.2.10)

On a également d’une part

H
(t−1)
t (qx, y, z1, · · · , zt−1) =

∞∑
kt=1

kt∑
kt−1=0

· · ·
k2∑
k1=0

(qx)kt−1y
kt−1

t−1∏
i=1

q(ki)
2

z2kii

[
ki+1

ki

]
=

1

(1− x)y
[H

(0)
t (x, y, q−

1
2 z1, · · · , q−

1
2 zt−1)− 1]

(2.2.11)

et d’autre part

H
(0)
t (qx, y, z1, · · · , zt−1) = 1 +

∞∑
kt=1

kt∑
kt−1=0

· · ·
k2∑
k1=0

(qx)kty
kt

t−1∏
i=1

qki(ki+1)z2kii

[
ki+1

ki

]

= 1 +

∞∑
kt=1

kt∑
kt−1=0

· · ·
k2∑
k1=0

(qx)kt−1(1− xqkt)ykt

×
t−1∏
i=1

qki(ki+1)z2kii

[
ki+1

ki

]
=

1

1− x
[H

(0)
t (x, y, z1, · · · , zt−1)− xH(0)

t (x, qy, z1, · · · , zt−1)] ·

(2.2.12)
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En combinant successivement (2.2.12), (2.2.9) et (2.2.11) on obtient

H
(0)
t (x, y, z1, · · · , zt−1)− xH(0)

t (x, qy, z1, · · · , zt−1) =
1

y
(H

(0)
t (x, y, z1, · · · , zt−1)− 1)

−q2(1− x)z2t−1H
(t−2)
t (qx, qy, q

1
2 z1, · · · , q

1
2 zt−1) ·

qui donne avec (2.2.10)

(1− 1

y
)H

(0)
t (x, y, z1, · · · , zt−1)− xH(0)

t (x, qy, z1, · · · , zt−1) +
1

y
=

−q2(1− x)z2t−1[H
(0)
t (qx, qy, z1, · · · , zt−2, q

1
2 zt−1)

+q2z2t−2H
(0)
t (qx, qy, z1, · · · , zt−3, q

1
2 zt−2, qzt−1))

+ · · ·+ q2(t−3)z2t−2 · · · z22H
(0)
t (qx, qy, z1, q

1
2 z2, qz3, · · · , qzt−1))

+q2(t−2)z2t−2 · · · z21H
(0)
t (qx, y, q

1
2 z1, qz2, · · · , qzt−1))] · (2.2.13)

On a également en combinant (2.2.10) et (2.2.11)

H
(0)
t (x, qy, z1, · · · , zt−1)− 1

(1− x)qy
− q2(t−1)z2t−1 · · · z21H

(0)
t (qx, qy, qz1, · · · , qzt−1)) =

H
(0)
t (qx, qy, z1, · · · , zt−2, q

1
2 zt−1)

+q2z2t−1H
(0)
t (qx, qy, z1, · · · , zt−3, q

1
2 zt−2, qzt−1))

+ · · ·+ q2(t−2)z2t−1 · · · z22H
(0)
t (qx, qy, q

1
2 z1, qz2, · · · , qzt−1)) ·

(2.2.14)

On obtient donc en prenant (z1, · · · , zt−1) = (z, · · · , z) = z dans (2.2.13) et
(2.2.14)

(1− 1

y
)H

(0)
t (x, y, z)− xH(0)

t (x, qy, z) +
1

y
=

−qz
2

y
(H

(0)
t (x, qy, z)− 1) + (1− x)q2tz2tH

(0)
t (qx, qy, qz)

et donc

(y−1)H
(0)
t (x, y, z)+1−qz2 = (xy−qz2)H

(0)
t (x, qy, z)+(1−x)q2tyz2tH

(0)
t (qx, qy, qz)

(2.2.15)
En prenant dans (2.2.15) qx, x, x au lieu de x, y, z, on obtient

(1− x)H
(0)
t (qx, x, · · · , x) = 1− qx2 − (1− qx)q2tx2t+1H

(0)
t (q · qx, qx, , · · · , qx) ·

On en déduit par (2.2.5) la relation de récurrence souhaitée

On remarque que les sommes manipulées dans la preuve sont finies pour
x = q−N , pour un N > 0. Il n’y a donc aucun souci de convergence. Le résultat
clé de cette partie qui découle de cette proposition est le (2.2.4) qu’il convient
de rappeler

JN (T(2,2t+1), ξ
−1
N ) = Ft(ξ

−1
N ) ·
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2.3 Lien entre JN(T ∗
(2t+1), q) et les U-fonctions

On commence par rappeler (1.3.6)

−qt−nCn−1(T ∗(2,2t+1), q) =

n∑
k=0

1− q2k

(q)n−k(q)n+k
q(t+1)k2−k

k−1∑
l=−k

(−1)lq−
2t+1

2 l2− 2t−1
2 l ·

L’idée dans cette partie est de poser

αn = (1− q2n)q(t+1)n2−n
n−1∑
l=−n

(−1)lq−
2t+1

2 l2− 2t−1
2 l

et de voir
βn = −qt−nCn−1(T ∗(2,2t+1), q)

de sorte que (αn, βn) soit une paire de Bailey relative à 1. Cela reste cohérent
en prenant par convention C−1(T ∗(2,2t+1), q) = 0. Le travail à effectuer est donc
de trouver une expression pour βn.

2.3.1 Opérations sur les paires de Bailey

Dans la première partie nous avons énoncé le lemme très important de Bailey qui
permet d’obtenir à partir d’une paire de nouvelles paires. La première opération
que nous mentionnerons est celle vue en (1.2.6) :

α′n = anqn
2

αn

β′n =

n∑
k=0

akqk
2

βk
(q)n−k

·

On notera cette opération T∞. Appliquée m fois cela donne la paire

α(m)
n = amnqmn

2

αn ,

β(m)
n =

∑
n=km≥···≥k1≥k0≥0

ak0+···+km−1qk
2
0+···+k

2
m−1βk0

(q)km−km−1
(q)km−km−1

· · · (q)k1−k0
· (2.3.1)

La deuxième opération est assez particulière car elle permet de conserver le βn
à un cœfficient près.

Lemme 2.1 (opération Tz). Soit (αn(z), βn(z)) la paire de Bailey relative à 1,
avec α0(z) = 1 et

αn(z) = (−1)nzn
2

(znq−n + z−nqn) ·

Alors (α′n(z), β′n(z)) l’est également, où α′0(z) = 1,

α′n(z) = (−1)nzn
2

(zn + z−n)

et
β′n(z) = qnβn(z) ·
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Preuve. Commençons par donner une expression explicite de β′n(z) et qnβn(z).
On obtient

β′n(z) =

n∑
k=−n

(−1)k

(q)n−k(q)n+k
zk(k−1)

et

qnβn(z) = qn
n∑

k=−n

(−1)kqk

(q)n−k(q)n+k
zk(k−1) ·

En remarquant que k(k − 1) = (1− k)(1− k − 1), on a

β′n(z) =
(−1)n

(q)2n
zn(n+1) +

n∑
k=1

[
(−1)k

(q)n−k(q)n+k
+

(−1)1−k

(q)n+k−1(q)n+1−k

]
zk(k−1)

et

qnβn(z) =
(−1)n

(q)2n
zn(n+1) +

n∑
k=1

[
(−1)kqn+k

(q)n−k(q)n+k
+

(−1)1−kqn+1−k

(q)n+k−1(q)n+1−k

]
zk(k−1) ·

Le résultat vient naturellement en observant que

1− qn+k

(q)n−k(q)n+k
=

1

(q)n−k(q)n+k−1
=

1− qn+1−k

(q)n+k−1(q)n+1−k
·

Essayons de composer Tβ et T∞. On a T∞ ◦ Tβ(α0(z)) = T∞(1) = 1 et

T∞ ◦Tβ(αn(z)) = T∞((−1)nzn
2

(zn+z−n)) = (−1)n(qz)n
2

(zn+z−n) = αn(qz) ,

et

T∞ ◦ Tβ(βn(z)) = T∞(qnβn(z)) =

n∑
k=0

qkqk
2

βk(z)

(q)n−k
·

On a également
Tβ ◦ T∞(α′n(z)) = α′n(qz)

et

Tβ ◦ T∞(β′n(z)) = Tβ

(
n∑
k=0

qk
2

β′k(z)

(q)n−k

)
=

n∑
k=0

qnqk
2

β′k(z)

(q)n−k
·

En répétant l’opération m fois, on obtient

αm,n(z) = α′n(qmz)

et

βm,n(z) =
∑

n=km≥···≥k1≥k0≥0

qk1+···+kmqk
2
0+···+k

2
m−1β′k0(z)

(q)km−km−1 · · · (q)k1−k0
· (2.3.2)

Les opérations que nous avons vues jusque là conservent a la valeur relative à
laquelle les paires de Bailey initiales sont liées. Dans l’opération qui suit, on
passe de a à a/q.
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Lemme 2.2 (Opération T/q). Soit (αn, βn) une paire de Bailey relative à a 6=
qm pour tout entier m ≤ 0. Alors (α′n, βn) est une paire de Bailey relative à
a/q, avec α′0 = α0 et

α′n =
1− a

1− aq2n
αn −

1− a
1− aq2n−2

aq2n−2αn−1 · (2.3.3)

Preuve. Pour n ≥ 1, on a

α′n =
1− a

1− aq2n
αn −

1− a
1− aq2n−2

aq2n−2αn−1

qui donne par le lemme d’inversion de Bailey

α′n =

n∑
k=0

(a)n+k
(q)n−k

(−1)n−kq(
n−k
2 )βk − aq2n−2

n−1∑
k=0

(a)n−1+k
(q)n−1−k

(−1)n−1−kq(
n−1−k

2 )βk

et donc

α′n = (a)2nβn−
n−1∑
k=0

(a)n−1+k
(q)n−k

(−1)n−kq(
n−k
2 )βk[(1−aqn+k−1)+a(1−qn−k)qn+k−1]

d’où

α′n = (a)2nβn −
n−1∑
k=0

(a)n−1+k
(q)n−k

(−1)n−kq(
n−k
2 )βk[1− aq2n−1] ·

On déduit donc que pour n ≥ 1

α′n = (1− aq2n−1)

n∑
k=0

(a)n−1+k
(q)n−k

(−1)n−kq(
n−k
2 )βk

qui est bien une variante de formule d’inversion des paires de Bailey en rem-
plaçant a par a/q. Le cas n = 0 étant également cohérent, on conclut donc que
(α′n, βn) est une paire de Bailey relative à a/q.

On déduit naturellement l’opération inverse du lemme suivant:

Lemme 2.3 (Opération T×q). Soit (αn, βn) une paire de Bailey relative à a.
Alors (α′n, βn) est une paire de Bailey relative à aq, avec

α′n =
1− aq2n+1

1− aq
anqn

2
n∑
k=0

a−kq−k
2

αk · (2.3.4)

Preuve. Cela vient du lemme précédent en remarquant que

α′0 = α0

et pour n ≥ 1

a−nq−n
2

αn =
1− aq

anqn2(1− aq2n+1)
α′n −

1− aq
an−1q(n−1)2(1− aq2n−1)

α′n−1

22



qui donne

αn =
1− aq

1− aq2n+1
α′n −

1− aq
1− aq2n−1

(aq2n−1)α′n−1·

Ainsi, si (β′n) la suite telle que (α′n, β
′
n) une paire de Bailey relative à aq, alors,

par le lemme précédent, (αn, β
′
n) est une paire de Bailey relative à a. Par unicité

des relations reliant les éléments d’une paire de Bailey, on a bien β′n = βn, d’où
le résultat.

Le dernier résultat présenté est le suivant: on suppose αn(a, q) une suite de
fonction et l’on considère βn(a, q) de sorte que (αn(a, q), βn(a, q)) la paire de
Bailey relative à a et aux q-séries. On suppose que les fonctions αn et βn sont
définies en (a−1, q−1).

Lemme 2.4 (Opération T−1). (αn, βn) est une paire de Bailey relative à a, où

αn = anqn
2

αn(a−1, q−1)

et
βn = a−nq−n

2−nβn(a−1, q−1) · (2.3.5)

Preuve. On écrit tout d’abord

βn(a−1, q−1) =

n∑
k=0

αn(a−1, q−1)

(q−1; q−1)n−k(a−1q−1; q−1)n+k
·

En remarquant que

(q−1; q−1)l = (−1)lq−
l(l+1)

2 (q)l

et
(a−1q−1; q−1)l = (−1)la−lq−

l(l+1)
2 (aq)l ,

on obtient

(q−1; q−1)n−k(a−1q−1; q−1)n+k = a−n−kq−
(n−k)(n−k+1)+(n+k)(n+k+1)

2 (q)n−k(aq)n+k ,

et donc

(q−1; q−1)n−k(a−1q−1; q−1)n+k = a−n−kq−n
2−n−k2(q)n−k(aq)n+k·

Le résultat s’en suit naturellement.

2.3.2 De la paire de Bailey triviale à (αn, βn)

On rappelle ici que

αn = (1− q2n)q(t+1)n2−n
n−1∑
l=−n

(−1)lq−
2t+1

2 l2− 2t−1
2 l ·

On cherchera donc une expression explicite de βn pour avoir une paire de Bailey
relative à 1. On s’inspire ici de Lovejoy [12]. On pose dans la suite χ(X) = 0 si
X est faux et χ(X) = 1 si X est vrai.
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Proposition 2.2. On a

βn =
∑

n=k2t≥···≥k0=0

q
∑t−1
i=1 k

2
t+i+(

kt
2 )−

∑t−1
i=1 ki+1ki−

∑t−2
i=1 ki(−1)kt(1− qkt−kt−1)

(q)k2t−k2t−1
· · · (q)k1−k0

(2.3.6)

Ce résultat repose essentiellement sur 2 lemmes dont le premier est enoncé
comme suit :

Lemme 2.5. Pour tous entiers 0 ≤ l ≤ m et p ≥ 0, on a

α(l,m,p)
n =

{
1, si n = 0

(−1)n
(
q(p−m+ 1

2 )n
2+(l+ 1

2 )n + q(p−m+ 1
2 )n

2−(l+ 1
2 )n
)
, sinon

et

β(l,m,p)
n =

∑
n=km+p≥···≥k0=0

q
∑p−1
i=0 k

2
m+i−

∑m−1
i=1 ki+1ki−

∑l
i=1 ki(−1)kmq−(

km+1
2 )

(q)km+p−km+p−1 · · · (q)k1−k0
(2.3.7)

forment une paire de Bailey relative à 1.

Preuve. On utilise ici comme paire de départ la paire triviale

αn =


1, si n = 0
(1− aq2n)(aq)n−1(−1)nq(

n
2 )

(q)n
sinon

et βn = δn,0 = χ(n = 0) qui est également définie pour a = 1. Par passage à la
limite en 1, on a bien

αn =


1, si n = 0
(1− q2n)(−1)nq(

n
2 )

1− qn
= (1 + qn)(−1)nq(

n
2 ) sinon

et βn = δn,0 = χ(n = 0) la paire triviale de Bailey relative à 1. On remarque
en écrivant

αn = (−1)nq
n2

2 (q
n
2 + q−

n
2 ) , n ≥ 1

que αn = α′n(q
1
2 ) dans le lemme 2.1 et donc β′n(q

1
2 ) = χ(n = 0). Ainsi d’après

(2.3.2), en appliquant l fois l’opération Tβ ◦ T∞ on obtient la paire

αn = α′n(ql+
1
2 )

et

βn =
∑

n=kl≥···≥k1≥k0≥0

qk1+···+klqk
2
0+···+k

2
l−1χ(k0 = 0)

(q)kl−kl−1
· · · (q)k1−k0

,
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et donc la paire

αn =

{
1, si n = 0

(−1)n(q(l+
1
2 )n

2+(l+ 1
2 )nq(l+

1
2 )n

2−(l+ 1
2 )n), sinon

βn =
∑

n=kl≥···≥k1≥k0=0

q
∑l−1
i=1 k

2
i+

∑l
i=1 ki

(q)kl−kl−1
· · · (q)k1−k0

· (2.3.8)

En appliquant ensuite m− l fois T∞ à cette paire, on obtient la nouvelle paire
de Bailey

αn =

{
1, si n = 0

(−1)n(q(m+ 1
2 )n

2+(l+ 1
2 )n + q(m+ 1

2 )n
2−(l+ 1

2 )n), sinon

βn =
∑

n=km≥···≥k1≥k0=0

q
∑m−1
i=1 k2i+

∑l
i=1 ki

(q)km−km−1
· · · (q)k1−k0

(2.3.9)

relative à 1. En reprenant l’égalité

(q−1; q−1)k = (−1)kq−
k2+k

2 (q)k ,

on obtient en utilisant l’opérateur T−1 du Lemme 2.4 la paire

αn =

{
1, si n = 0

(−1)nqn
2

(q(−m−
1
2 )n

2−(l+ 1
2 )n + q(−m−

1
2 )n

2+(l+ 1
2 )n), sinon

βn = q−n
2−n

∑
n=km≥···≥k1≥k0=0

(−1)
∑m−1
i=0 ki+1−ki q

∑m−1
i=0

(ki+1−ki)
2+ki+1−ki
2 −

∑m−1
i=1 k2i−

∑l
i=1 ki

(q)km−km−1
· · · (q)k1−k0

·

(2.3.10)
qui donne après simplification

αn =

{
1, si n = 0

(−1)n(q(−m+ 1
2 )n

2−(l+ 1
2 )n + q(−m+ 1

2 )n
2+(l+ 1

2 )n), sinon

βn = q−
n2+n

2 (−1)n
∑

n=km≥···≥k1≥k0=0

q−
∑m−1
i=1 ki+1ki−

∑l
i=1 ki

(q)km−km−1
· · · (q)k1−k0

· (2.3.11)

En appliquant ensuite p fois T∞, on obtient par (2.3.1) le résultat voulu.

Le deuxième lemme est une version plus poussée du premier :

Lemme 2.6. Pour tous entiers 0 ≤ l ≤ m, p ≥ 0 et 0 ≤ L ≤M , on a

α(l,m,p,L,M)
n = q(M+1)n2+Ln

n∑
j=−n

(−1)jq(p−m−
1
2 )j

2+(l+ 1
2 )j

−q(M+1)n2−Ln
n−1∑

j=−n+1

(−1)jq(p−m−
1
2 )j

2+(l+ 1
2 )j
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et

β(l,m,p,L,M)
n =

∑
n=km+p+M≥···≥k0=0

q
∑p+M−1
i=0 k2m+i+

∑L−1
i=0 km+p+i−

∑m−1
i=1 ki+1ki−

∑l
i=1 ki(−1)kmq−(

km+1
2 )

(q)km+p+M−km+p+M−1
· · · (q)k1−k0
(2.3.12)

forment une paire de Bailey relative à 1.

Preuve. On reprend la paire du lemme précédent à laquelle on applique l’opérateur
T×q du Lemme 2.3. On obtient donc la nouvelle paire de Bailey relative à q

αn =
qn

2

(1− q2n+1)

1− q

n∑
j=−n

(−1)jq(p−m−
1
2 )j

2+(l+ 1
2 )j

et

βn =
∑

n=km+p≥···≥k0=0

q
∑p−1
i=0 k

2
m+i−

∑m−1
i=1 ki+1ki−

∑l
i=1 ki(−1)kmq−(

km+1
2 )

(q)km+p−km+p−1
· · · (q)k1−k0

·

(2.3.13)
En y appliquant L fois l’opération T∞, (ici a = q) on arrive donc à une nouvelle
paire de Bailey relative à q avec

αn =
q(L+1)n2+Ln(1− q2n+1)

1− q

n∑
j=−n

(−1)jq(p−m−
1
2 )j

2+(l+ 1
2 )j

et

βn =
∑

n=km+p≥···≥k0=0

q
∑p+L−1
i=0 k2m+i+

∑L−1
i=0 km+p+i−

∑m−1
i=1 ki+1ki−

∑l
i=1 ki(−1)kmq−(

km+1
2 )

(q)km+p+L−km+p+L−1
· · · (q)k1−k0

·

(2.3.14)
On applique ensuite l’opérateur T/q du Lemme 2.2 pour obtenir

αn = q(L+1)n2+Ln
n∑

j=−n
(−1)jq(p−m−

1
2 )j

2+(l+ 1
2 )j

−q(L+1)n2−Ln
n−1∑

j=−n+1

(−1)jq(p−m−
1
2 )j

2+(l+ 1
2 )j

et

βn =
∑

n=km+p+L≥···≥k0=0

q
∑p+L−1
i=0 k2m+i+

∑L−1
i=0 km+p+i−

∑m−1
i=1 ki+1ki−

∑l
i=1 ki(−1)kmq−(

km+1
2 )

(q)km+p+L−km+p+L−1
· · · (q)k1−k0

(2.3.15)
qui forment une paire de Bailey relative à 1. Le résultat attendu dans le lemme
est obtenu en y appliquant M − L fois l’opérateur T∞.
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Muni de ces 2 lemmes, nous pouvons démontrer sans difficulté la proposition.

Preuve de la proposition. On rappelle ici que

αn = (1− q2n)q(t+1)n2−n
n−1∑
l=−n

(−1)lq−
2t+1

2 l2− 2t−1
2 l ,

et donc

αn = −q(t+1)n2+n

[
n−1∑
l=−n

(−1)lq−
2t+1

2 l2− 2t−1
2 l

]
+q(t+1)n2−n

[
n−1∑
l=−n

(−1)lq−
2t+1

2 l2− 2t−1
2 l

]
·

On a donc

αn = −q(t+1)n2+n

[
n∑

l=−n

(−1)lq−
2t+1

2 l2− 2t−1
2 l

]
+ q(t+1)n2−n

[
n−1∑

l=−n+1

(−1)lq−
2t+1

2 l2− 2t−1
2 l

]

+

{
1, si n = 0

(−1)n
[
q

1
2n

2−(t− 3
2 )n + q

1
2n

2+(t− 3
2 )n
]
, sinon

·

(2.3.16)

On pose donc naturellement

α′n = q(t+1)n2+n

[
n∑

l=−n

(−1)lq−
2t+1

2 l2− 2t−1
2 l

]
−q(t+1)n2−n

[
n−1∑

l=−n+1

(−1)lq−
2t+1

2 l2− 2t−1
2 l

]
et

α′′n =

{
1, si n = 0

(−1)n
[
q

1
2n

2−(t− 3
2 )n + q

1
2n

2+(t− 3
2 )n
]
, sinon

·

En utilisant le Lemme 2.6 pour l,m, p, L,M valant respectivement t−1, t, 0, 1, t,
on obtient

β′n =
∑

n=k2t≥···≥k0=0

q
∑t−1
i=0 k

2
t+i−

∑t−1
i=1 ki+1ki−

∑t−1
i=1 ki(−1)ktq−(

kt+1
2 )+kt

(q)k2t−k2t−1
· · · (q)k1−k0

·

On a à partir du Lemme 2.5 pour l,m, p valant respectivement (t − 2)χ(t ≥
2), t, t

β′′n =
∑

n=k2t≥···≥k0=0

q
∑t−1
i=0 k

2
t+i−

∑t−1
i=1 ki+1ki−

∑t−2
i=1 ki(−1)ktq−(

kt+1
2 )

(q)k2t−k2t−1 · · · (q)k1−k0
·

Comme αn = α′′n − α′n et k0 = 0, on a donc

βn =
∑

n=k2t≥···≥k0=0

q
∑t−1
i=0 k

2
t+i−

∑t−1
i=1 ki+1ki−

∑t−2
i=1 ki(−1)ktq−(

kt+1
2 )[1− qkt−kt−1 ]

(q)k2t−k2t−1 · · · (q)k1−k0
·

On conclut en remarquant que n− (n+1
2 ) = (n2 ).

Nous allons maintenant relier la dernière expression de βn aux U -fonctions.
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2.3.3 Identité q-binomiale et dérivé

On rappelle ici la variante de l’identité q-binomiale énoncée en (1.1.5)

b∑
n=a

q(
n
2 )(−z)n

(q)b−n(q)n−a
= (−z)aq(

a
2 )

(zqa)b−a
(q)b−a

pour tous entiers 0 ≤ a ≤ b. Il s’agit d’un polynôme en z et donc défini pour
toute valeur complexe z. En particulier, si z = qk, on a

b∑
n=a

q(
n
2 )(−1)nqnk

(q)b−n(q)n−a
= (−1)aqakq(

a
2 )

(qa+k)b−a
(q)b−a

= (−1)aqakq(
a
2 )

[
b+ k − 1
b− a

]
·

(2.3.17)
On a donc pour tout entier c

b∑
n=a

q(
n
2 )(−1)n(1− qn−c)q−an

(q)b−n(q)n−a
=

b∑
n=a

q(
n
2 )(−1)n(q−an − q(1−a)n−c)

(q)b−n(q)n−a

=

{
(−1)aq(

a
2 )−a

2

(1− qa−c) si a = b
(−1)a+1q−(

a
2 )−c sinon

· (2.3.18)

On a donc c = a une somme qui s’annule dès que b = a. Ces différents outils
vont nous permettre de une expression polynomiale de βn.

Proposition 2.3. On a

βn = −
∑

n=nt≥···≥n1≥1

t−1∏
i=1

[
ni+1 − ni − i+ 2

∑i
j=1 nj

ni+1 − ni

]
· (2.3.19)

Preuve de la proposition. Dans la formule (2.3.6)

βn =
∑

n=k2t≥···≥k0=0

q
∑t−1
i=1 k

2
t+i+(

kt
2 )−

∑t−1
i=1 ki+1ki−

∑t−2
i=1 ki(−1)kt(1− qkt−kt−1)

(q)k2t−k2t−1 · · · (q)k1−k0
,

on pose ni = kt+i − kt−i pour tout 1 ≤ i ≤ t. On obtient donc

βn =
∑

n = k0 + nt ≥ · · · ≥ kt−1 + n1

≥ kt−1 ≥ · · · ≥ k0 = 0

q
∑t−1
i=1 n

2
i+2nikt−i+k

2
t−i−

∑t−1
i=2 kt−i+1kt−i−

∑t−1
i=2 kt−i∏t−1

i=1(q)kt−i−kt−i−1(q)kt−i−1−kt−i+ni+1−ni

×
kt−1+n1∑
kt=kt−1

(−1)ktq(
kt
2 )−ktkt−1(1− qkt−kt−1)

(q)kt−1+n1−kt(q)kt−kt−1

·

D’après (2.3.18) pour c = a, b valant kt−1, kt−1 + n1, on a la sous-somme nulle
dès que n1 = 0. On a prend donc la somme pour n1 ≥ 1 et on obtient

βn = −
∑

n = k0 + nt ≥
· · ·

≥ kt−1 + n1 > kt−1 ≥
· · ·

≥ k0 = 0

q
∑t−1
i=1 n

2
i+2nikt−i+k

2
t−i−

∑t−1
i=1 kt−ikt−i−1−

∑t−1
i=1 kt−i(−1)kt−1q−(

kt−1
2 )∏t−1

i=1(q)kt−i−kt−i−1
(q)kt−i−1−kt−i+ni+1−ni

·
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On réécrit ensuite

βn = −
∑

n=nt≥···≥n1≥1

qn
2
1+···+n

2
t−1

nt−nt−1+k0∑
k1=k0=0

qk
2
1+(2nt−1−1−k0)k1

(q)k1−k0(q)k0+nt−nt−1−k1

× · · · ×
nj+1−nj+kt−j−1∑
kt−j=kt−j−1

qk
2
t−j+(2nj−1−kt−j−1)kt−j

(q)kt−j−kt−j−1
(q)kt−j−1+nj+1−nj−kt−j

× · · · ×
n2−n1+kt−2∑
kt−1=kt−2

(−1)kt−1q(
kt−1

2 )+kt−1(2n1−kt−2)

(q)kt−1−kt−2(q)n2−n1+kt−2−kt−1

·

Il s’en suit par réccurence en utilisant (2.3.17) que

βn = −
∑

n=nt≥···≥n1≥1

qn
2
1+···+n

2
t−1

nt−nt−1+k0∑
k1=k0=0

qk
2
1+(2nt−1−1−k0)k1

(q)k1−k0(q)k0+nt−nt−1−k1

× · · · ×
nj+1−nj+kt−j−1∑
kt−j=kt−j−1

(−1)kt−jq(
kt−j

2 )+(2[
∑j
i=1 ni]−j+1−kt−j−1)kt−j

(q)kt−j−kt−j−1
(q)kt−j−1+nj+1−nj−kt−j

×
j−1∏
i=1

[
ni+1 − ni − i+ 2

∑i
j=1 nj

ni+1 − ni

]
·

On arrive donc à

βn = −
∑

n=nt≥···≥n1≥1

qn
2
1+···+n

2
t−1(−1)k0q(2[

∑t−1
i=1 ni]−t+2−k0)k0+(

k0
2 )×

t−1∏
i=1

[
ni+1 − ni − i+ 2

∑i
j=1 nj

ni+1 − ni

]
·

Mais k0 = 0, d’où la proposition.

2.3.4 Preuve du Théorème 2.2

Comme βn = −qt−nCn−1(T ∗(2,2t+1), q), on déduit de la proposition précédente
que

Cn(T ∗(2,2t+1), q) = qn+1−t
∑

n+1=nt≥···≥n1≥1

t−1∏
i=1

qn
2
i

[
ni+1 − ni − i+ 2

∑i
j=1 nj

ni+1 − ni

]
·

(2.3.20)
En reprenant l’expansion cyclotomique (1.3.4)

JN (T ∗(2,2t+1), q) =

∞∑
n=0

Cn(T ∗(2,2t+1), q)(q
1−N )n(q1+N )n ,
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on obtient

JN (T ∗(2,2t+1), q) = q−t
∑

nt≥···≥n1≥1

(q1−N )nt−1(q1+N )nt−1q
nt

×
t−1∏
i=1

qn
2
i

[
ni+1 − ni − i+ 2

∑i
j=1 nj

ni+1 − ni

]
et donc

JN (T ∗(2,2t+1), q) = Ut(−qN , q) (2.3.21)

qui est polynomiale en q, q−1. En particulier, pour q = ξN , on a

JN (T ∗(2,2t+1), ξN ) = Ut(−1, ξN ) · (2.3.22)

En couplant ce résultat avec (2.2.4) qui dit que

JN (T(2,2t+1), ξ
−1
N ) = Ft(ξ

−1
N ),

on a le Théorème2.2 :

Ft(ξ
−1
N ) = Ut(−1, ξN ) ·

Nous avons montré que les nœuds toriques T(2,2t+1) donnent des polynômes de
Jones qui ont un lien étroit avec les formes modulaires Ft. Que se passe t-il
quand on prend une autre famille de tores T(s,t) avec s, t > 2? Nous discuterons
de cette question, dans la section qui suit, en particulier pour le cas des nœuds
toriques T(3,2t) pour t ≥ 2.
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3 Polynômes de Jones N-colorés des nœuds toriques T(3,2t)

3.1 Retour sur l’équation N-différentielle des JN(T(s,t), q)

On rappelle ici l’expression explicite des polynômes N -colorés de Jones

JN (T(s,t), q) =
q

1
4 st(1−N

2)

q
N
2 − q−N2

N−1
2∑

j= 1−N
2

qstj
2
(
q−(s+t)j+

1
2 − q−(s−t)j− 1

2

)
·

On remarque que l’ensemble de sommation est même pour 2 entiers consécutifs
aux extrémités près. On obtient donc

JN (T(s,t), q) =
q

1
4 st(1−N

2)

q
N
2 − q−N2

[
qst

(N−1)2

4 +(s+t)N−1
2 + 1

2 − qst
(N−1)2

4 +(s−t)N−1
2 −

1
2

+ qst
(N−1)2

4 −(s+t)N−1
2 + 1

2 − qst
(N−1)2

4 −(s−t)N−1
2 −

1
2

]
+

q
N−2

2 − q−N−2
2

q
N
2 − q−N2

q
1
4 st((N−2)

2−N2)JN−2(T(s,t), q) ·

Après simplification on obtient

JN (T(s,t), q) =
q

1
2 (s−1)(t−1)(1−N)

1− q−N
[
1− qs(1−N)−1 − qt(1−N)−1 + q(s+t)(1−N)

]
+

1− q2−N

1− q−N
qst(1−N)−1JN−2(T(s,t), q) ·

(3.1.1)

En posant

JN (T(s,t), q) =
q

1
2 (s−1)(t−1)(1−N)

1− q−N
KN (T(s,t), q) ,

on obtient

KN (T(s,t), q) = 1−qs(1−N)−1−qt(1−N)−1+q(s+t)(1−N)+qst(2−N)−s−tKN−2(T(s,t), q) ·
(3.1.2)

3.2 Polynôme de Jones pour T(3,4)

Pour T(3,4), l’équation différentielle donne

KN (T(3,4), q) = 1−q3(1−N)−1−q4(1−N)−1+q7(1−N)+q12(2−N)−7KN−2(T(3,4), q)·

De cette dernière relation on obtient une expression modulaire de KN (T(3,4), q).
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Théorème 3.1 (Hikami et Kirillov [10]). On a

KN (T(3,4), q) =
∑
n≥0

(q−N )n+1 · q−2nN
∑
k≥0

q−2kN+2k(k+1)

×
(
qN
[

n
2k + 1

]
+

[
n+ 1
2k + 1

])
· (3.2.1)

Preuve du théorème. On pose la fonction

H1(x) =
∑
n≥0

(x)n+1x
2n
∑
k≥0

x2kq2k(k+1)

(
x−1

[
n

2k + 1

]
+

[
n+ 1
2k + 1

])
·

(3.2.2)
On remarque que le théorème est vrai si et seulement siKN (T(3,4), q) = H1(q−N ).
On va donc montrer naturellement que

H1(x) = 1− q2x3 − q3x4 + q7x7 + q17x12H(q2x) · (3.2.3)

Pour cela, on introduit la fonction

H(x) =
∑
n≥0

(x; q
1
2 )n+1x

n·

On a donc

H(x) =
∑
n≥0

(x; q
1
2 )2n+1x

2n +
∑
n≥0

(x; q
1
2 )2n+2x

2n+1

⇒ H(x) =
∑
n≥0

(x)n+1(xq
1
2 )nx

2n +
∑
n≥0

(x)n+1(xq
1
2 )n+1x

2n+1 ·

En utilisant l’identité q-binomiale on obtient

(q
1
2x)m =

∑
k≥0

[
m
k

]
(−1)kq(

k
2 )+

k
2 xk =

∑
k≥0

[
m
k

]
(−1)kq

k2

2 xk

et donc

(q
1
2x)m =

∑
k≥0

[
m
2k

]
q2k

2

x2k − q 1
2

∑
k≥0

[
m

2k + 1

]
q2k(k+1)x2k+1 ·

On a ainsi

H(x) =
∑
n≥0

(x)n+1x
2n
∑
k≥0

([
n
2k

]
+ x

[
n+ 1

2k

])
q2k

2

x2k

−q 1
2

∑
n≥0

(x)n+1x
2n
∑
k≥0

([
n

2k + 1

]
+ x

[
n+ 1
2k + 1

])
q2k(k+1)x2k+1 ·

(3.2.4)
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On pose donc naturellement la fonction

H0(x) =
∑
n≥0

(x)n+1x
2n
∑
k≥0

([
n
2k

]
+ x

[
n+ 1

2k

])
q2k

2

x2k

et on a
H(x) = H0(x)− q 1

2x2H1(x) · (3.2.5)

Notons que par définition des séries, on a H ∈ Z[[q
1
2 ;x]] et H0, H1 ∈ Z[[q;x]].

H0 et H1 sont donc déterminés de manière unique par H.
Ici on utilise une preuve différente de celle donnée par Hikami. On va chercher
une équation différentielle de H. On a

H(qx) =
∑
n≥0

(qx; q
1
2 )n+1q

nxn = q−
7
2x−2

∑
n≥0

(qx; q
1
2 )n+1q

n+ 7
2x2xn

⇒ q
7
2x6H(qx) =

∑
n≥0

(qx; q
1
2 )n+1[(1−q n2 + 3

2x)(1−q n2 + 3
2x)−(1+q

1
2 )(1−q n2 + 3

2x)+q
1
2 ]xn+4

⇒ q
7
2x6H(qx) =

∑
n≥0

[(qx; q
1
2 )n+3 − (1 + q

1
2 )(qx; q

1
2 )n+2 + q

1
2 (qx; q

1
2 )n+1]xn+4 ·

On a également∑
n≥0

q
1
2 (qx; q

1
2 )n+1x

n+4 =
∑
n≥0

(qx; q
1
2 )n+1[(1− x)(1− q 1

2x) + (1 + q
1
2 )x− 1]xn+2

On obtient donc

q
7
2x6H(qx) =

∑
n≥0

(qx; q
1
2 )n+3x

n+4 − (1 + q
1
2 )
∑
n≥0

(qx; q
1
2 )n+2x

n+4

+(1 + q
1
2 )
∑
n≥0

(qx; q
1
2 )n+1x

n+3 −
∑
n≥0

(qx; q
1
2 )n+1x

n+2 +
∑
n≥0

(x; q
1
2 )n+3x

n+2

qui donne

q
7
2x6H(qx) = −(qx; q

1
2 )1x

2 − (qx; q
1
2 )2x

3 + (1 + q
1
2 )(qx; q

1
2 )1x

3

−(x; q
1
2 )1 − (x; q

1
2 )2x+H(x)

⇒ q
7
2x6H(qx) = −(1− qx)x2 − (1− qx)(1− q 3

2x)x3 + (1 + q
1
2 )(1− qx)x3

−(1− x)− (1− x)(1− q 1
2x)x+H(x) ,

et après simplification on a l’équation différentielle

H(x) = 1− q 1
2x2 − qx3 + q

5
2x5 + q

7
2x6H(qx)· (3.2.6)
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En reprenant (3.2.5), on obtient le système H0(x) = 1− qx3 − q6x8H1(qx)

H1(x) = 1− q2x3 − q3x4H0(qx)
· (3.2.7)

En composant une nouvelle fois on obtient H0(x) = 1− qx3 − q6x8 + q11x11 + q13x12H0(q2x)

H1(x) = 1− q2x3 − q3x4 + q7x7 + q17x12H1(q2x)
·

On a donc l’équation différentielle de H1

H1(x) = 1− q2x3 − q3x4 + q7x7 + q17x12H1(q2x) · (3.2.8)

On conclut simplement en remarquant que

J1(T(3,4), q) = 1

et en posant J0(T(3,4), q) = 0, on a

K1(T(3,4), q) = 1− q−1

et par convention on prend K0(T(3,4), q) = 0. On a vérifie que

K0(T(3,4), q) = H1(1)

et
K1(T(3,4), q) = H1(q−1) ·

De plus, les suites (KN (T(3,4), q))N≥0 et (H1(q−N ))N≥0 ont les mêmes relations
de récurrence de second ordre. On en déduit donc que les 2 suites sont les
mêmes, d’où le résultat.

Le théorème précédent nous donne une expression explicite des polynômes
N -colorés de Jones avec

JN (T(3,4), q) = q3(1−N)
∑
n≥0

(q1−N )n · q−2nN
∑
k≥0

q−2kN+2k(k+1)

×
(
qN
[

n
2k + 1

]
+

[
n+ 1
2k + 1

])
· (3.2.9)

3.3 À la recherche d’une formule générale pour T(3,2t)

La logique suivie de la relation différentielle de KN suggère que l’on devrait
chercher une fonction x 7→ H(s,t)(x), pour laquelle

KN (T(s,t), q) = H(s,t)(q
−N ) (3.3.1)
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et qui vérifirait la relation

H(s,t)(x) = 1− qs−1xs − qt−1xt + qs+txs+t + q2st−s−txstH(s,t)(q
2x) · (3.3.2)

On pourrait pour cela regarder une fonction analogue à celles étudier jusque là:

H(x, q) =
∑
n≥0

(x; q)n+1x
n (3.3.3)

3.3.1 Relations différentielles de H

On a:

H(qx, q) =
∑
n≥0

(qx; q)n+1q
nxn = x−1q−2

∑
n≥0

(qx; q)n+1[(qn+2x− 1) + 1]xn

⇒ xq2H(qx, q) = −
∑
n≥0

(qx; q)n+2x
n +

∑
n≥0

(qx; q)n+1x
n

⇒ xq2H(qx, q) = −
∑
n≥0

(qx; q)n+2x
n + x−1

∑
n≥0

[(x− 1) + 1](qx; q)n+1x
n

⇒ q2x3H(qx, q) = −
∑
n≥0

(qx; q)n+2x
n+2+

∑
n≥0

(qx; q)n+1x
n+1−

∑
n≥0

(x; q)n+2x
n+1·

On obtient donc

H(x, q) = (1− x) + (1− qx)x− q2x3H(qx, q)

d’où l’équation différentielle de premier ordre

H(x, q) = 1− qx2 − q2x3H(qx, q) · (3.3.4)

On peut aller plus loin en cherchant l’équation différentielle d’ordre n. En
remarquant que

H(qkx, q) = 1− q1+2kx2 − q2+3kx3H(qk+1x, q) ,

on obtient facilement par réccurence que

H(x, q) =

[
n−1∑
k=0

(−1)kq2k+3(k2 )x3k(1− q1+2kx2)

]
+ (−1)nq2n+3(n2 )x3nH(qnx, q) ,

(3.3.5)
ou encore

H(x, q) =

n−1∑
k=0

(−1)kq
k(3k+1)

2 x3k−
n−1∑
k=0

(−1)kq
(k+1)(3k+2)

2 x3k+2+(−1)nq
n(3n+1)

2 x3nH(qnx, q)·

(3.3.6)

On peut remarquer que dans la partie précédente, H(x) = H(x, q
1
2 ), et l’on

retrouve son équation différentielle (3.2.6). Une piste serait donc de regarder
les fonctions pour m > 1

Hm : x 7→ Hm(x) = H(x, q
1
m ) ·
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3.3.2 Autour des fonctions Hm

Il est facile d’observer que Hm(x) ∈ Z[[q
1
m ;x]]. On peut donc l’écrire de manière

unique

Hm(x) =

m−1∑
k=0

q
k
mHm,k(x)

où les Hm,k sont dans Z[[q;x]]. On va déterminer des expressions explicites des
Hm,k. On a ainsi

Hm(x) =
∑
n≥0

(x; q
1
m ) =

m−1∑
k=0

∑
n≥0

xmn+k
m−1∏
l=0

(q
l
mx)n+χ(l≤k) ·

En utilisant l’identité q-binomiale, on a

(q
l
mx)n+χ(l≤k) =

∑
j≥0

(−1)jxjq
jl
m+

j(j−1)
2

[
n+ χ(l ≤ k)

j

]
et par la suite

m−1∏
l=1

(q
l
mx)n+χ(l≤k) =

∑
jm−1,··· ,j1≥0

m−1∏
l=1

(−x)jlq
jll

m +
jl(jl−1)

2

[
n+ χ(l ≤ k)

jl

]
·

On arrive donc à

Hm(x) =

m−1∑
k=0

∑
n≥0

∑
jm−1,··· ,j1≥0

(x)n+1x
mn+k

m−1∏
l=1

(−x)jlq
jll

m +
jl(jl−1)

2

[
n+ χ(l ≤ k)

jl

]
·

Comme la partie fractionnaire des puissances des termes est déterminée par∑m−1
l=1 jll mod m, on obtient donc

Hm,a(x) =
∑
n≥0

(x)n+1x
mn

∑
∑m−1
l=1 jll≡a[m]

(−x)
∑m−1
l=1 jlq

−2a+
∑m−1
l=1

jl(mjl−m+2l)

2m

×
m−1∑
k=0

xk
m−1∏
l=1

[
n+ χ(l ≤ k)

jl

]
·

(3.3.7)

3.3.3 À la recherche de H(3,2t)

En prenant dans (3.3.6) q
1
m au lieu de q, on obtient

Hm(x) =

n−1∑
k=0

(−1)kq
k(3k+1)

2m x3k−
n−1∑
k=0

(−1)kq
(k+1)(3k+2)

2m x3k+2+(−1)nq
n(3n+1)

2m x3nHm(q
n
mx) ·

(3.3.8)
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On regarde les entiers k(3k+1)
2 et (3k+2)(k+1)

2 , et on en distingue 2n sur les 2
premières sommes (au moins n distincts). On a également

k(3k + 1)

2
≡ k′(3k′ + 1)

2
mod m⇔ (k − k′)[3(k + k′) + 1] ≡ 0 mod 2m ·

Pour 2m = 2t, les deux facteurs étant de différentes parités, on obtient en

prenant 3α ≡ 1 mod 2t(ici α ≡ 1 +
∑bt/2c−1
i=0 22i+1 mod 2t)

(k − k′)[3(k + k′) + 1] ≡ 0 mod 2t ⇔
{
k ≡ k′ mod 2t ou
k′ ≡ −k − α mod 2t

·

Vu que α est impair, on a donc 2t−1 congruences distinctes pour les entiers
k(3k+1)

2 modulo 2t−1 pour n = 2t, chacune d’elle étant atteinte exactement 2

fois. Il en est de même pour les entiers (3k+2)(k+1)
2 . On a donc

H2t−1(x) =
2t−1∑
k=0

(−1)kq
k(3k+1)

2t x3k−
2t−1∑
k=0

(−1)kq
(k+1)(3k+2)

2t x3k+2+q3·2
t+1x3·2

t

H2t−1(q2x)·

En posant pour tout 0 ≤ a ≤ 2t−1 − 1 les entiers 0 ≤ k0(a) < k1(a); k2(a) <
k3(a) ≤ 2t − 1 de sorte que

k0(a)(3k0(a) + 1)

2t−1
≡ k1(a)(3k1(a) + 1)

2t−1
≡ a mod 2t−1

et

(k2(a) + 1)(3k2(a) + 2)

2t−1
≡ (k3(a) + 1)(3k3(a) + 2)

2t−1
≡ a mod 2t−1 ,

on a naturellement

H2t−1,a(x) = (−1)k0(a)q
k0(a)(3k0(a)+1)−2a

2t x3k0(a) + (−1)k1(a)q
k1(a)(3k1(a)+1)−2a

2t x3k1(a)

−(−1)k2(a)q
(k2(a)+1)(3k2(a)+2)−2a

2t x3k2(a)+2 − (−1)k3(a)q
(k3(a)+1)(3k3(a)+2)−2a

2t x3k3(a)+2

+q3·2
t+1x3·2

t

H2t−1,a(q2x)·
(3.3.9)

On rappelle l’équation différentielle pour T(3,2t):

KN (T(3,2t), q) = 1−q−3N+2−q−2
tN+2t−1+q−(3+2t)N+3+2t+q−3·2

tN+5·2t−3KN−2(T(s,t), q) ·
(3.3.10)

On cherche donc H(3,2t) de sorte que

H(3,2t)(x) = 1−q2x3−q2
t−1x2

t

+q3+2tx3+2t+q5·2
t−3x3·2

t

H(3,2t)(q
2x) · (3.3.11)
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On pourrait donc prendre H(3,2t)(x) = (−1)−h
′′
q−h

′
x−hH2t−1,a(x) pour des a, h

et h′ convenables. On aura donc d’après (3.3.9)

H(3,2t)(x) = (−1)k0(a)−h
′′
q
k0(a)(3k0(a)+1)−2a

2t
−h′x3k0(a)−h

+(−1)k1(a)−h
′′
q
k1(a)(3k1(a)+1)−2a

2t
−h′x3k1(a)−h

−(−1)k2(a)−h
′′
q

(k2(a)+1)(3k2(a)+2)−2a

2t
−h′x3k2(a)+2−h

−(−1)k3(a)−h
′′
q

(k3(a)+1)(3k3(a)+2)−2a

2t
−h′x3k3(a)+2−h

+q3·2
t+1+2hx3·2

t

H(3,2t)(q
2x)· (3.3.12)

En regardant (3.3.11), on a plusieurs conditions suivant la congruence modulo
3 des puissances de x. On obtient donc

3(k1(a)− k0(a)) = 3

(k1(a)− k0(a))(3(k0(a) + k1(a)) + 1)

2t
= 2ε

, (3.3.13)


3(k3(a)− k2(a)) = 3

(k3(a)− k2(a))(3(k3(a) + k2(a)) + 5)

2t
= 23−ε ,

(3.3.14)

et
|3(k2(a)− k0(a)) + 2| = 2t (3.3.15)

avec ε ∈ {1; 2}. On déduit donc que
k0(a) =

2(2t+ε−2 − 1)

3

k1(0) =
2t+ε−1 + 1

3

, (3.3.16)


k2(a) =

4(2t−ε − 1)

3

k3(0) =
2t−ε+2 − 1

3

, (3.3.17)

et
2t = 2t|22−ε − 2ε−1| · (3.3.18)

La dernière égalité reste toujours vraie pour ε ∈ {1; 2}. On a également

h = min{3k0(a), 3k2(a) + 2} = min{2t+ε−1 − 2; 2t−ε+2 − 2} , (3.3.19)

h′ = min{
⌊
k0(a)(3k0(a) + 1)

2t

⌋
;

⌊
(k2(a) + 1)(3k2(a) + 2)

2t

⌋
}

38



et donc

h′ = min{
⌊

(2t+ε−1 − 2)(2t+ε−1 − 1)

3 · 2t

⌋
;

⌊
(2t−ε+2 − 1)(2t−ε+2 − 2)

3 · 2t

⌋
} (3.3.20)

et

h′′ = min{k0(a), k2(a) + 1} = min{2t+ε−1 − 2

3
;

2t−ε+2 − 1

3
} · (3.3.21)

On remarque par la même occasion que ε ∈ {1; 2} est de même parité que t
pour assurer la divisibilité par 3 de 2t−ε − 1 et 2t+ε−2 − 1.

(?) Pour t pair, on a ε = 2 et

k0(a) =
2(2t − 1)

3
et

k0(a)(3k0(a) + 1)

2t
=

(2t+1 − 2)(2t+1 − 1)

3 · 2t

k1(a) =
2t+1 + 1

3
et

k1(a)(3k1(a) + 1)

2t
=

(2t+1 + 2)(2t+1 + 1)

3 · 2t

k2(a) =
(2t − 4)

3
et

(k2(a) + 1)(3k2(a) + 2)

2t
=

(2t − 2)(2t − 1)

3 · 2t

k3(a) =
(2t − 1)

3
et

(k3(a) + 1)(3k3(a) + 2)

2t
=

(2t + 2)(2t + 1)

3 · 2t

h = 2t − 2

h′ =

⌊
(2t − 2)(2t − 1)

3 · 2t

⌋
=

⌊
2t − 1

3
− (2t − 1)

3 · 2t−1

⌋
=

2t − 4

3

h′′ =
2t − 1

3

a = 2t−1(
(2t − 2)(2t − 1)

3 · 2t
− h′) = 2t−1 − 2t − 1

3
=

2t−1 + 1

3
(3.3.22)

On obtient donc

H(3,2t) = (−1)
1−2t

3 q
4−2t

3 x2−2
t

H
2t−1, 2

t−1+1
3

(x) (3.3.23)

et on a bien la relation de réccurence voulue (3.3.11) après vérification dans
(3.3.12). On remarque en outre que cela correspond exactement pour t = 2 du
nœud torique T(3,4).
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(??) Pour t > 2 impair, on a ε = 1 et

k0(a) =
2(2t−1 − 1)

3
et

k0(a)(3k0(a) + 1)

2t
=

(2t − 2)(2t − 1)

3 · 2t

k1(a) =
2t + 1

3
et

k1(a)(3k1(a) + 1)

2t
=

(2t + 2)(2t + 1)

3 · 2t

k2(a) =
(2t+1 − 4)

3
et

(k2(a) + 1)(3k2(a) + 2)

2t
=

(2t+1 − 2)(2t+1 − 1)

3 · 2t

k3(a) =
(2t+1 − 1)

3
et

(k3(a) + 1)(3k3(a) + 2)

2t
=

(2t+1 + 2)(2t+1 + 1)

3 · 2t

h = 2t − 2

h′ =

⌊
(2t − 2)(2t − 1)

3 · 2t

⌋
=

⌊
2t − 2

3
− (2t−1 − 1)

3 · 2t−1

⌋
=

2t − 5

3

h′′ =
2t − 2

3

a = 2t−1(
(2t − 2)(2t − 1)

3 · 2t
− h′) = 2t−1 − 2t−1 − 1

3
=

2t + 1

3

·

(3.3.24)
On pose cette fois

H(3,2t) = (−1)
(2−2t)

3 q
5−2t

3 x2−2
t

H
2t−1, 2

t+1
3

(x) (3.3.25)

et on a notre relation de récurrence souhaitée.

3.3.4 Une formule pour JN (T(3,2t), q)

On pose naturellement dans cette partie a(t), h(t), h′(t), h′′(t) les valeurs trouvées
précédemment suivant la parité de t. On pose en plus m(t) = 2t−1. On peut
alors remarquer que 3a(t) ≡ 1 mod m(t). On a donc

H(3,2t)(x) = (−1)−h
′′(t)q−h

′(t)x−h(t)
∑
n≥0

(x)n+1x
nm(t)

×
∑

3
∑m(t)−1
l=1 jll≡1[m(t)]

(−x)
∑m(t)−1
l=1 jlq

−a(t)+
∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1
l=1 (

jl
2 )

×
m(t)−1∑
k=0

xk
m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

]
· (3.3.26)
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On vérifie aisément que H(3,22t+θ)(1) = 0. Ainsi, pour x = q−1, on a avec
m = n = m(t) = 2t−1 dans (3.3.8)

H2t−1(q−1) =

2t−1−1∑
k=0

(−1)kq
k(3k+1)

2t
−3k −

2t−1−1∑
k=0

(−1)kq
(k+1)(3k+2)

2t
−3k−2·

En regardant les ki(a) précédents, on observe qu’il n’y en a que 2 qui sont
inférieurs à 2t−1 et après simplification pour chaque cas, (c’est le début de
l’équation différentielle) on obtient

H(3,2t)(q
−1) = 1− q2q−3 = 1− q−1·

Le fonction choisie est donc bien celle que l’on recherche et qui correspond à

H(3,2t)(q
−N ) = KN (T(3,2t), q) ·

On a donc d’après la partie précédente

KN (T(3,2t), q) = (−1)−h
′′(t)q−h

′(t)+Nh(t)
∑
n≥0

(q−N )n+1q
−Nnm(t)

×
∑

3
∑m(t)−1
l=1 jll≡1[m(t)]

(−q−N )
∑m(t)−1
l=1 jlq

−a(t)+
∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1
l=1 (

jl
2 )

×
m(t)−1∑
k=0

q−kN
m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

]
·

(3.3.27)

On a donc un théorème qui généralise le cas T(3,4)

Théorème 3.2.

JN (T(3,2t), q) = (−1)−h
′′(t)q2

t−1−h′(t)−N
∑
n≥0

(q1−N )nq
−Nnm(t)

×
∑

3
∑m(t)−1
l=1 jll≡1[m(t)]

(−q−N )
∑m(t)−1
l=1 jlq

−a(t)+
∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1
l=1 (

jl
2 )

×
m(t)−1∑
k=0

q−kN
m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

]
·

(3.3.28)

On retrouve sans difficulté la formule du nœud torique T(3,4) pour t = 2.
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3.4 Question ouverte

On pourrait se demander s’il est possible de trouver Cn(T(3,2t), q) dans la for-
mule de l’expansion cyclotomique d’Habiro.

Dans un premier temps, on se pencherait naturellement sur la formule (3.3.28).
On a bien un début de formule qui correspond. Cependant

q−N(1+nm(t)+k+
∑m(t)−1
l=1 jl)

donne une puissance négative de qN , ce qui n’est pas le cas des puissance de qN

dans (q1+N )n qui sont toutes positives.

Comme dans la section 2, il est également possible d’explorer la piste suiv-
ant laquelle on donne une expression de Cn(T(3,2t), q) à partir de la formule
(1.3.5). On a donc

Cn(T(3,2t), q) = qn+1
n+1∑
k=1

(1− q2k)

(q)n+1−k(q)n+1+k
(−1)kq

k(k−1)
2 (1− q−k)Jk(T(3,2t), q) ·

On obtient en utilisant (3.3.28) une somme assez complexe. Cependant on peut
aussi remarquer que Cn(T(3,2t), q) est lié à la somme

(−1)−h
′′(t)q2

t−1−h′(t)qn+1
n+1∑
k=1

(1− q2k)

(q)n+1−k(q)n+1+k
(−1)kq

k(k−1)
2 q−kH2t−1(q−k) ,

(3.4.1)

qui est dans Z(q)[q2
1−t

], de manière unique comme la partie rattachée à 21−ta(t).
Cette dernière est plus facile à manipuler car on a par l’dentité q-binomiale

xH2t−1(x) =
∑
m≥1

(x; q2
1−t

)mx
m =

∑
m≥1

m∑
l=0

[
m
l

]
q21−t

q
l(l−1)

2t xl+m · (3.4.2)

Pour les q−k les sommes sont finies, et on obtient pour la grande somme

(n+1)2t−1∑
m=1

m∑
l=0

[
m
l

]
q21−t

q
l(l−1)

2t

n+1∑
k=1

(1− q2k)

(q)n+1−k(q)n+1+k
(−1)kq

k(k−1)
2 −k(l+m) ,

ou encore

(n+1)2t−1∑
m=1

m∑
l=0

[
m
l

]
q21−t

q
l(l−1)

2t

n+1∑
k=1

(−1)kq
k2

2 −k(l+m+ 1
2 ) − (−1)kq

k2

2 −k(−2+l+m+ 1
2 )

(q)n+1−k(q)n+1+k
·

Les transformations utilisées dans la section 2 sur les paires de Bailey ne sont
pas applicables ici (termes partiels).

On a bien une difficulté à trouver une expression explicite pour Cn(T(3,2t), q).
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