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INTRODUCTION

Considérons un corps fini Fq, et un polynôme unitaire f dans Fq [X]. On rappelle
qu’un caractère de Dirichlet χ modulo f est le prolongement sur Fq [X] d’un
morphisme de (Fq [X]/fFq [X])* dans C*, en une forme multiplicative complète
définie par

χ(g) =

{
0 si g ∧ f 6= 1
χ(g(mod f)) sinon

pour tout g dans Fq [X]. Le caractère de Dirichlet dit trivial est celui ne prenant
que la valeur 1 sur les g ∧ f = 1 de Fq [X].
On définit également la fonction de Von Mangoldt Λ sur Fq [X] par

Λ(g) =

{
0 si g n’est pas une puissance d’un irréductible de Fq [X]
deg(π) si g est une puissance du polynôme irréductible π

pour tout g dans Fq [X].

Théorème 0.1 (borne de Weil). Soit χ un caractère non trivial sur Fq [X] et
d ∈N*. On a pour les g pris unitaires

|
∑

deg(g)=d

Λ(g)χ(g)| ≤ (deg(f)− 1)q
d
2 .

Cette majoration est de l’ordre de O(q
d
2 ), tandis qu’une majoration grossière

donnerait
|
∑

deg(g)=d

Λ(g)χ(g)| ≤
∑

deg(g)=d

Λ(g) = qd .

Cette dernière égalité est obtenue en évaluant le cardinal de

{(x, πx)/x ∈ Fqd , πx polynôme minimal de x},

qui vaut d’une part ]Fqd = qd par unicité du polynôme minimal, et d’autre part∑
πx

∑
x

1 =
∑

deg(π)|d

deg(π) =
∑

g=π
d

deg(π)

Λ(g) =
∑

deg(g)=d

Λ(g)

en utilisant le critère de séparabilité dans des extensions de Fq. Notons également
que

|
∑

deg(g)=d

Λ(g)χ(g)| =
∑

deg(g)=d

Λ(g)

pour χ trivial, qui est de l’ordre de O(qd). Cette différence d’ordre suivant le
fait que χ soit trivial ou non est l’élément clé de cette borne de Weil.

2



Le but de ce travail est d’aborder la démonstration de ce théorème sous
certains critères mettant en avant une méthode astucieuse utilisée par Stepanov,
et par la suite utiliser le théorème pour étudier quelques propriétés de graphes
de Cayley dans des groupes F∗qn .

1 UNE APPROCHE DE DÉMONSTRATION

1.1 Notion de fonction L

On définit la fonction L comme étant la fonction géneratrice sur l’ensemble des
polynômes unitaires g de Fq [X] exprimée par

L(χ, T ) =
∑
g un.

χ(g)T deg(g) .

Il s’agit ici d’une série avec

L(χ, T ) =
∑
n≥0

(
∑
g un.

deg(g) = n

χ(g))Tn .

Il est clair que le coefficient constant vaut 1, le seul polynôme unitaire de degré
nul étant 1.

Proposition 1.1. Pour χ non trivial, L(χ, T ) est un polynôme de degré au plus
deg(f)− 1.

Preuve. Pour tout n ≥ deg(f), on considère l’application définie par

φn : {deg(g) = n} → {deg(g) = n− deg(f)} × {deg(g) ≤ deg(f)− 1}
g 7→ (q, r) avec g = hf + r

est une bijection en utilisant l’unicité de h et r par la division euclidienne mais
également les propriétés du degré.
Mieux encore, comme f est unitaire, on a donc g est unitaire si et seulement si
h l’est. Ainsi

]{deg(g) = n, g = r(mod f), g un.} = ]{deg(g) = n−deg(f), g un.} = qn−deg(f)

le choix du coefficient dominant étant fixé. On en déduit que∑
g un, deg(g)=n

χ(g) = qn−deg(f)
∑

r(mod f)

χ(r) = 0

par orthogonalité.

Ce théorème montre clairement que L(χ, T ) est de la forme 1 +
∑k
i=1 ciT

i

avec k = deg(f), et donc l’existence de complexes ω1, · · · , ωk tels que

L(χ, T ) =

k∏
i=1

(1− ωiT ) .
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Ceci nous permet de trouver une première forme exponentielle à la fonction
L(χ, T ). On a

T
L′(χ, T )

L(χ, T )
=

k∑
i=1

−ωiT
1− ωiT

= −
k∑
i=1

∑
n≥1

ωni T
n

= −
∑
n≥1

(

k∑
i=1

ωni )Tn .

En posant donc Sn(χ) = −
∑k
i=1 ω

n
i , et du fait du coefficient constant à 1, on a

L(χ, T ) = exp(
∑
n≥1

Sn(χ)

n
Tn) . (1)

Proposition 1.2. On a pour tout n ≥ 1,

Sn(χ) =
∑
g un.

deg(g) = d

Λ(g)χ(g) .

Preuve. L’anneau Fq [X] étant factoriel, on peut réécrire L(χ, T ) en produit
eulérien, avec

L(χ, T ) =
∏

π ir.un.

1

1− χ(π)T deg(π)
.

On a donc

T
L′(χ, T )

L(χ, T )
=

∑
π ir.un.

deg(π)χ(π)T deg(π)

(1− χ(π)T deg(π))2
· (1− χ(π)T deg(π))

=
∑

π ir.un.

deg(π)χ(π)T deg(π)

1− χ(π)T deg(π)

=
∑

π ir.un.

deg(π)
∑
n≥1

χ(π)nTn·deg(π)

=
∑

π ir.un.

∑
n≥1

Λ(πn)χ(πn)T deg(πn)

=
∑
g un.

Λ(g)χ(g)T deg(g)

=
∑
n≥1

(
∑

deg(g)=n

Λ(g)χ(g))Tn .
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Nous avons ainsi réussi à ressortir la somme à majorer de la borne de Weil.
On déduit donc que pour tout n ≥ 1,

|
∑

deg(g)=n

Λ(g)χ(g)| = |
k∑
i=1

ωni | ≤ k · max
1≤i≤k

|ωi|n ≤ (deg(f)− 1)Rn

où R > 0 est tel que ω1, · · · , ωk ∈ B(0, R). Il est donc logique de penser que R
pourrait valoir

√
q, hypothèse faisant l’objet du théorème suivant:

Théorème 1.1 (hypothèse de Riemann pour les corps finis, A. Weil). Soit f
unitaire dans Fq [X] et χ un caractère de Dirichlet non trivial modulo f . On a

L(χ, T ) =

k∏
i=1

(1− ωiT )

sous sa forme factorisée, avec k ≤ deg(f)− 1 et

|ωi| ≤
√
q

pour tout i ∈ [[1; k]].

La preuve de ce théorème entrâıne immédiatement la preuve de la Borne de
Weil. Bien que non évidente, on peut se restreindre à certains polynômes f et
des caractères particuliers modulo f pour lesquels la démonstration du théorème
sera ”moins” laborieuse.

1.2 Cas particulier de caractère de Dirichlet

On considère η un caractère multiplicatif sur Fq. Soit f un polynôme unitaire
de Fq [X]. On crée ainsi un caractère de Dirichlet dit associé à f et η vérifiant
des conditions assez particulières relatives aux normes.

Proposition 1.3. Soient η un caractère multiplicatif sur Fq et f un polynôme
unitaire de Fq [X]. Il existe un unique caractère de Dirichlet χ modulo f , tel
que pour tout n ∈N* et tout x dans Fqn , on ait

η(NFqn/Fq (f(x))) = η(−1)n·deg(f)χ(πx)
n

deg(πx) ,

où πx est le polynôme minimal de x.

Preuve. On procède tout d’abord à la vérification de l’unicité d’un tel caractère

unicité: Fq [X] étant factoriel, et un caractère de Dirichlet multiplicatif, il
suffit donc de vérifier l’unicité pour les irréductibles unitaires de Fq [X]. Soit π
un tel polynôme. On pose α l’une de ses racines et l’on prend n = deg(π). On
a donc

χ(π) = η(−1)n·deg(f)η(NFqn/Fq (f(α))) .
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Cette expression ne dépend aucunement de la racine choisie car toute autre
racine de π est de la forme αq

m

car obtenue par composition du morphisme de
Frobenius x 7→ xq. Ainsi,

NFqn/Fq (f(αq)) = NFqn/Fq (f(α)q) = NFqn/Fq (f(α))q = NFqn/Fq (f(α)) ,

les normes NFqn/Fq à valeurs dans Fq, et le morphisme de Frobenius conservant
Fq.

existence: Pour commencer, écrivons f sous sa forme factorisée. On a

f =

k∏
i=1

πlii ,

et on pose αi une racine de πi et di = deg(πi) pour tout i ∈ [[1; k]]. On définit
donc le caractère χ de la manière suivante:

χ(g) =
k∏
i=1

η(NF
qdi

/Fq (g(αi)))
li .

On rappelle que pour tout irréductible π ayant pour racine α, toutes les racines
sont exactement les αq

i

, avec i ∈ [[1; deg(π)]], avec α = αq
i

seulement pour
i = deg(π). On a également dans Fqn/Fq, la norme NFqn/Fq qui vaut exactement
pour tout x

NFqn/Fq (x) =

n∏
i=1

xq
i

.

On peut donc réécrire

χ(g) =

k∏
i=1

η(

di∏
j=1

g(αq
j

i ))li = η(

k∏
i=1

(

di∏
j=1

g(αq
j

i ))li) .

Vérifions que χ est bien le caractère recherché. Pour tout n ≥ 1 et tout x ∈ Fqn ,
on pose πx son polynôme minimal. On a donc

η(NFqn/Fq (f(x))) = η(

n∏
t=1

f(xq
t

))

= η(

n∏
t=1

k∏
i=1

(πi(x
qt))li)

= η(

n∏
t=1

k∏
i=1

(

di∏
j=1

(xq
t

− αq
j

i ))li)

= η(

k∏
i=1

(

di∏
j=1

n∏
t=1

(xq
t

− αq
j

i ))li) .
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On obtient donc

η(NFqn/Fq (f(x))) = η(

k∏
i=1

(

di∏
j=1

(−1)n
n∏
t=1

(αq
j

i − x
qt))li)

= η((−1)n·deg(f)
k∏
i=1

(

di∏
j=1

n∏
t=1

(αq
j

i − x
qt))li) ,

car deg(f) =
∑k
i=1 dili. Pour conclure, on rappelle que deg(πx) divise n pour

tout x ∈ Fqn . Ainsi, chaque racine de πx apparâıt exactement
n

deg(πx)
dans

{xq
t

/ t ∈ [[1;n]]}. On a donc pour tout y

n∏
t=1

(y − xq
t

) = (πx(y))
n

deg(πx) .

Ceci nous permet de déduire que

η(NFqn/Fq (f(x))) = η((−1))n·deg(f) · η(

k∏
i=1

(

di∏
j=1

n∏
t=1

(αq
j

i − x
qt))li)

= η((−1))n·deg(f) · η(

k∏
i=1

(

di∏
j=1

(πx(αq
j

i ))
n

deg(πx) )li)

= η((−1))n·deg(f) · η(

k∏
i=1

(

di∏
j=1

πx(αq
j

i ))li)
n

deg(πx)

η(NFqn/Fq (f(x))) = η(−1)n·deg(f) · χ(πx)
n

deg(πx) .

Le caractère ainsi créé est d’autant plus intéressant par la proposition suiv-
ante:

Proposition 1.4. Soit χ le caractère de Dirichlet associé à un polynôme uni-
taire f de Fq [X] et η un caractère multiplicatif de Fq. On a alors pour tout
n ≥ 1 ∑

x∈Fqn/Fq

η(NFqn/Fq (f(x))) = η(−1)n·deg(f) · Sn(χ) .
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Preuve. On a∑
x∈Fqn/Fq

η(NFqn/Fq (f(x))) = η(−1)n·deg(f)
∑

x∈Fqn/Fq

χ(πx)
n

deg(πx)

= η(−1)n·deg(f)
∑

π ir.un.
deg(π)|n

deg(π)χ(π)
n

deg(π)

= η(−1)n·deg(f)
∑

π ir.un.
deg(π)|n

Λ(π
n

deg(π) )χ(π
n

deg(π) ) .

On obtient donc la relation∑
x∈Fqn/Fq

η(NFqn/Fq (f(x))) = η(−1)n·deg(f) · Sn(χ) (2)

vu que ∑
g un.

deg(g) = n

Λ(g)χ(g) =
∑

π ir.un.
deg(π)|n

Λ(π
n

deg(π) )χ(π
n

deg(π) ) .

Le caractère associé χ a d’autres particularités. En effet, c’est aussi un
caractère de Dirichlet modulo fδ le plus grand diviseur sans facteur
carré de f , la fonction multiplicative g 7→ g(αi) se faisant modulo πi, avec

f =

k∏
i=1

πlii .

D’autre part, si f n’est pas une puissance d-ième, avec d = ord(η) > 1,
η non trivial, alors χ est également non trivial. Pour s’en convaincre, on
choisit i0 tel que li0 ne soit pas un multiple de d. Comme η n ’est pas trivial et
d’ordre d, on peut trouver β dans Fq tel que η(β)li0 6= 1. La fonction norme
étant surjective, on peut donc trouver θ dans Fqdi/Fq tel que NF

qdi
/Fq (θ) = β.

Un tel θ peut toujours être mis sous la forme gi0(αi0). Enfin, en prenant par le
théorème chinois {

g = 1 mod(πi) pour i 6= i0
g = gi0 mod(πi0)

on obtient automatiquement χ(g) = η(β)li0 6= 1. On a donc

Proposition 1.5. Soient η un caractère non trivial de Fq d’ordre d, et f
un polynôme unitaire dans Fq [X] qui n’est pas une puissance d-ième. Alors
le caractère χ associé a pour fonction de Dirichlet L(χ, T ) = L(f, η, T ) un
polynôme de degré au plus deg(fδ) − 1 , où fδ est le plus grand diviseur sans
facteur carré de f .
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1.3 Méthode de Stepanov

La méthode de Stepanov consiste en une suite d’astuces visant à amoindrir
la difficulté du problème. En effet, on ramène le problème au comptage d’un
ensemble de points. Pour cet ensemble de points, si l’on trouve un polynôme A,
tel que tout point de notre ensemble est racine de A de multiplicité un entier m
fixé, alors on pourra majorer son cardinal par deg(A)/M . Le choix du polynôme
se fait astucieusement pour obtenir l’inégalité souhaitée.

1.3.1 Astuce 1: ne plus se limiter à un seul caractère

Lemme 1.1. Soient a1, · · · , am des complexes non nuls avec m ≥ 1. On sup-
pose qu’il existe A,B > 0, tels que pour tout n ∈N*

|
k∑
i=1

ani | ≤ A.Mn .

Alors a1, · · · , am ∈ B(0,M).

Preuve. Considérons la série entière

F (z) =
∑
n≥0

(

k∑
i=1

ani )zn .

Par hypothèse elle est définie et holomorphe sur B(0, 1
M ). Mais on peut réecrire

F (z) =
∑
n≥0

(

k∑
i=1

ani )zn =

k∑
i=1

∑
n≥0

ani z
n =

k∑
i=1

1

1− aiz
.

Cette écriture n’est valable que sur des boules de rayons R ≤ min1≤i≤k
1
|ai| et

y est holomorphe. On en déduit que 1
M ≤ min1≤i≤k

1
|ai| .

Cette première astuce nous permet de directement d’évaluer des sommes∑
χ Sn(χ) et de conclure pour chacun des ω de chacun de ses caractères χ.

L’astuce qui suit évalue une somme sur un ensemble bien précis de caractères
χ.

1.3.2 Astuce 2: réduction à un comptage de points

Soient 1 < d|(q − 1), et f un polynôme unitaire de Fq [X] tel d ∧ deg(f) = 1.
On considère l’ensemble caractère multiplicatif η non triviaux de Fq, tels que ηd

soit trivial. Il est important de remarquer que la condition d ∧ deg(f) = 1 est
cruciale, car c’est l’unique condition pour laquelle aucun diviseur de d différent
de 1 ne divise deg(f), ce qui assure que f ne peut être une puissance d’ordre de
ce dernier. Le caractère χ associé à chaque η est donc non trivial, et on a pour
tout n ≥ 1

−
∑
i

(η(−1)deg(f) · ωi,χ)n = η(−1)n·deg(f) · Sn(χ) =
∑
x∈Fqn

η(NFqn/Fq (f(x)))
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et donc ∑
η 6=1,ηd=1

∑
x∈Fqn

η(NFqn/Fq (f(x))) =
∑
ω

ωn

où les ω sont égaux au module près aux ωi,χ, et donc une somme finie.

Lemme 1.2 (Réduction au comptage de points). Soient d|(q − 1), et f un
polynôme unitaire de Fq [X]. On a pour tout n ≥ 1∑

η 6=1,ηd=1

∑
x∈Fqn

η(NFqn/Fq (f(x))) = ]{(x, y) ∈ Fqn × Fqn/ yd = f(x)} − qn .

Preuve. Notons tout d’abord que l’application

η 7→ η ◦NFqn/Fq

est un morphisme de groupe de l’ensemble des caractères de Fq d’ordre divisant
d vers l’ensemble des caractères de Fqn d’ordre divisant d, (q−1|qn−1). Ces deux
groupes sont cycliques d’ordre d. Mieux encore, il s’agit d’un isomorphisme,
puisque ce morphisme est injectif. En effet, la norme étant surjective sur Fq,
tout η non trivial donne un caractère non trivial. On peut donc réécrire∑

η 6=1,ηd=1

∑
x∈Fqn

η(NFqn/Fq (f(x))) =
∑

ζ 6=1,ζd=1

∑
x∈Fqn

ζ(f(x))

avec ζ caractère dans Fqn . On a donc∑
η 6=1,ηd=1

∑
x∈Fqn

η(NFqn/Fq (f(x))) =
∑
x∈Fqn

∑
ζ 6=1,ζd=1

ζ((f(x))) .

On rappelle que∑
ζd=1

ζ(t) =

{
d si t est une puissance d-ième dans F∗qn
0 sinon.

Comme d|qn − 1, c’est aussi le nombre de solutions de l’équation t = ud dans
Fqn , pour t ∈ F∗qn . Ainsi pour tout t ∈ F∗qn ,∑

ζ 6=1,ζd=1

ζ(t) = ]{u ∈ Fqn/ un = t} − 1 .

Pour t = 0, on a également∑
ζ 6=1,ζd=1

ζ(t) = 0 = ]{u ∈ Fqn/ un = t} − 1 ,

vu que l’équation admet comme unique solution u = 0. Pour tout t dans Fqn ,
on a donc ∑

ζ 6=1,ζd=1

ζ(t) = ]{u ∈ Fqn/ un = t} − 1 .
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On déduit ainsi le lemme énoncé∑
η 6=1,ηd=1

∑
x∈Fqn

η(NFqn/Fq (f(x))) = ]{(x, y) ∈ Fqn × Fqn/ yd = f(x)} − qn .

1.3.3 Astuce 3: théorème de Stepanov, Bombieri

Le théorème de Stepanov, Bombieri est l’astuce clé permettant de contourner
la variable entière n. En effet pour tout n ≥ 1, un polynôme de Fq [X] est
également un polynôme de Fqn [X] et le cardinal de Fqn est qn. Il est donc
souhaitable d’évaluer |]{(x, y) ∈ Fq × Fq/ yd = f(x)} − q| pour un corps donné
Fq.

Théorème 1.2 (Stepanov, Bombieri). Soit Fq un corps fini, extension paire
de son corps premier. Soit f un polynôme non constant de Fq [X] et un entier
d|q−1 tel que d∧deg(f) = 1. Alors il existe une constante C ≥ 0 ne dépendant
que de d et de deg(f), tel que

|]{(x, y) ∈ Fq × Fq/ yd = f(x)} − q| ≤ C√q .

Notons que ce théorème implique que

|
∑
ω

ω2n| ≤ qn

pour tout n, et donc par le lemme 1.1 que |ω|2 ≤ q pour tout ω. par passage
à la racine carré on obtient le résultat souhaité.

Une astuce complémentaire est se restreindre uniquement à l’étude de ]{(x, y) ∈
Fq × Fq/ yd = f(x)}:

Lemme 1.3 (de la borne sup à la borne inf). Soit Fq un corps fini. Soit f un
polynôme non constant de Fq [X] et un entier d|q − 1 tel que d ∧ deg(f) = 1.
On définie a(f) par

]{(x, y) ∈ Fq × Fq/ yd = f(x)} = q + a(f) .

Alors
]{(x, y) ∈ Fq × Fq/ yd = f(x)} ≥ q − (d− 1) max

ε∈F∗q
|a(εf)| .

Si l’on réussit à majorer a(f) par un C ′
√
q, avec C ′ ≥ 0 ne dépendant que

de d et deg(f), les εf étant de même degré que f , on aura

(1− d)C ′
√
q ≤ ]{(x, y) ∈ Fq × Fq/ yd = f(x)} − q ≤ C ′√q

et donc
|]{(x, y) ∈ Fq × Fq/ yd = f(x)} − q| ≤ C√q

pour C = dC ′ qui ne dépendra que de d et deg(f).
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Preuve. On considère le sous groupe (Fq*)d des puissances d-ième dans Fq*. Fq*
étant cyclique, il en est de même pour le quotient Fq*/(Fq*)d, ayant exactement
d éléments. Notons {1 = ε1, · · · , εd} des réprésentants des classes Fq*/(Fq*)d.
Pour tout εi, on a

]{(x, y) ∈ Fq × F∗q/ yd = εif(x)} = q + a(εif)− r(f)

avec r(f) le nombre de racines de f dans Fq, qui est le même que le nombre
de racines de εf pour tout ε dans Fq*. D’autre part, pour tout x n’étant pas
racine de f , f(x) est dans (Fq*)d à un εi près. On a donc

d(q − r(f)) =

d∑
i=1

]{(x, y) ∈ Fq × F∗q/ yd = εif(x)} =

d∑
i=1

q + a(εif)− r(f)

et donc
d∑
i=1

a(εif) = 0 .

Pour tout ε dans Fq*, a(εf) = a(εif), pour εi le représentant de la classe de ε,
on a donc

a(f) = −
d∑
i=2

a(εif) ≥ −(d− 1) max
ε∈F∗q
|a(εf)|

L’idée émise par Stepanov était de créer un polynôme A dans Fq [X] qui
s’annulerait pour tous les x de Fq admettant des solutions à f(x) = yd, et de
multiplicité au moins m, pour un m fixé. On aurait donc

]{(x, y) ∈ Fq × Fq/ yd = f(x)} ≤ d · deg(A)

m

vu que f(x) = yd admet au plus d solutions à chaque x. Le problème est que les
critères de multiplicité relatifs aux dérivées ne peuvent être utilisés, car m! = 0
dès que m ≥ p caractéristique de Fq. La méthode utilisée par Stepanov fait
appel aux dérivées de Hasse, pour parer à ce problème.

Bombieri propose une autre méthode, toujours dans la même logique que Stepanov,
mais en passant par Fq[X,Y ], et qui généralise le théorème de Stepanov, ce qui
nous donne le nom final de Stepanov, Bombieri. C’est cette méthode que nous
verrons par la suite.

1.3.4 Astuce 4: comportements dans Fq[X,Y ]

On se place dans la clôture de Fq notée Fq. On considère la courbe

C = {(x, y) ∈ Fq × Fq/ yd = f(x)} .
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En posant Fr le morphisme de Frobenius (x, y) 7→ (xq, yq), on a donc

C(Fq) = {(x, y) ∈ C/Fr(x, y) = (x, y)} = {(x, y) ∈ F2
q/ y

d = f(x)} .

Le polynôme que l’on recherche doit tout particulièrement s’annuler sur C(Fq) ⊂
C. On se place donc dans O(C) = Fq[X,Y ]/(Y d − f(X)). C’est un anneau
intègre. En regardant Fq[X,Y ] sous la forme Fq[X][Y ], on a Y d−f(X) unitaire
dans cet anneau, et on obtient par division euclidienne pour tout g dans Fq[X,Y ]
un unique reste de la forme

d−1∑
i=0

= giY
i, avec gi ∈ Fq[X] .

Dans O(C), tout polynôme est donc de la forme

d−1∑
i=0

= giY
i

avec gi ∈Fq [X]. On définit donc pour un g O(C) son degré par

deg(g) = max
gi 6=0
{d · deg(gi) + i · deg(f)}

si g 6= 0 et −∞ si g = 0. Cette définition tient toujours si l’on pose deg(0) = −∞
dans Fq [X] l’on retire la condition gi 6= 0. Il peut tre difficile de cerner le fait
que O(C) soit intègre, mais nous le verrons par la suite à travers les propriétés
particulières de deg sur O(C). On commence tout d’abord par énoncer un lemme
capital pour la suite.

Lemme 1.4. Pour tout entier k, il existe un unique i ∈ [[0; d−1]], et un unique
entier t tel que

k = dt+ i · deg(f) .

De plus, t ≥ 0 dès que k ≥ (d− 1)(k − 1).

Preuve. Notons que d ∧ deg(f) = 1 entrâıne que deg(f) génère Z/dZ. On en
déduit que pour tout k entier, il existe un unique i mod(d) tel que

k = i · deg(f) (mod(d))

et donc l’existence d’un unique entier t et d’un unique i ∈ [[0; d− 1]] tels que

k = dt+ i · deg(f) .

Supposons maintenant que t < 0. On a donc

k = dt+ i · deg(f) ≤ −d+ (d− 1) deg(f) < 1− d+ (d− 1) deg(f)

et donc k < (d− 1)(deg(f)− 1).

13



Une conséquence directe de ce lemme est que

{d · deg(gi) + i · deg(f)/ gi 6= 0}

contient des éléments deux à deux distincts, et donc que le degré défini pour
g ∈O(C)* est atteint en un unique i, d’où la proposition suivante:

Proposition 1.6. Pour tous g1 et g2 dans O(C), on a

deg(g1 + g2) ≤ max{deg(g1); deg(g1)}

avec égalité dès que deg(g1) 6= deg(g2), et

deg(g1g2) = deg(g1) + deg(g2) .

La preuve est triviale en axant la démontration sur les valeurs maximales i1
et i2 de g1 et g2. On y trouve une justification à l’intégrité de O(C). On définit
également une notion de multiplicité de racine de g de la façon suivante:
g de multiplicité ≥ m en (x, y) dans C avec y 6= 0, si

g

(X − x)m
=
p

q
,

où p et q sont dans O(C) tels que q(x, y) 6= 0.

Lemme 1.5. (x, y) un zéro de g, avec y 6= 0, est de multiplicité au moins 1.

Preuve. Écrivons

g =

d−1∑
i=0

gi(X)Y i .

On a pour tout i,

gi(X) = gi(x) + (X − x)ui(X) et Y i = yi + (Y − y)vi(Y ) .

On en déduit que

g

X − x
=

d−1∑
i=0

ui(X)Y i +

∑d−1
i=0 gi(x)yi

X − x
+
Y − y
X − x

d−1∑
i=0

gi(x)vi(Y ) .

Comme g(x, y) = 0, on a donc

g

X − x
=

d−1∑
i=0

ui(X)Y i +
Y − y
X − x

d−1∑
i=0

gi(x)vi(Y ) .

Or Y d − yd = g(X)− g(x), ce qui implique que

Y − y
X − x

=
h(X)∑d−1

i=0 Y
iyd−1−i

qui est défini en (x, y) dès que en y 6= 0.
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On définit également r0(g) de nombre de ces racines comptées avec multi-
plicité.

Proposition 1.7. On a pour tout g dans O(C)*

r0(g) ≤ deg(g) .

Preuve. Notons que d|q− 1, et donc l’ensemble des racines d-ième de l’unité est
dans Fq. Pour tout g dans O(C)*, on considère le polynôme dèfini par

N(g) =
∏
εd=1

g(X, εY ) ,

qui ne dépend pas de Y , vu que N(g) = N(εg) pour tout ε. Il est donc à la fois
dans Fq [X] et O(C)*. Comme deg(g(X, εY )) = deg(g) dans O(C)*, on a donc

d · deg(g) = deg(N(g)) = d · degFq [X](N(g))

et donc deg(g) = degFq [X](N(g)).
Aussi, si (x, y) est un zéro de g, alors x est un zéro de N(g)(X). En remarquant
de plus que

g1

(X − x)m1
· g2

(X − x)m2
=

g1g2

(X − x)m1+m2
,

on a donc que la multiplicité x comme racine dans Fq [X]est supérieure à la
somme des multiplicités des (x, εy) de g dans O(C)*. On déduit donc le résultat
souhaité.

Ceci est important car si toutes les racines de g dans O(C)* sont de multi-
plicités au moins m, alors on a

]{g(x, y) = 0} ≤ deg(g)

m
+ deg(f)

en dissociant les (x, 0) racines de g qui ajoute au plus au cardinal le nombre de
x annulant f et donc deg(f). Si l’on réussit donc à majorer deg(g)/m par une
expression de la forme q + C

√
q, avec C en fonction de d et deg(f), alors il en

sera de même pour deg(g)/m+deg(f) qu’on pourra majorer par q+C ′
√
q, avec

C ′ = C + deg(f) ne dépendant également que de d et deg(f). Nous allons donc
chercher un tel polynôme g et un bon entier m, pour lesquels cette majoration
est possible.

1.3.5 Astuce 5: recherche d’un polynôme dans O(C)*

On considère les entiers qui, par le lemme 1.4, ont une unique décomposition
pour 0 ≤ i ≤ d− 1

k = dt+ i · deg(f)

avec t ≥ 0. Ce sont des entiers naturels, car d, t, i, deg(f) ≥ 0. On les ordonne
en une unique suite strictement croissante

(kj)j∈N∗ .
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Il est clair que tous les degrés dans O(C)* possibles sont éléments de cette suite.
De plus, pour tout j ≥ 1, on peut écrire kj = dtj + ij · deg(f) de façon unique.
On a donc pour XtjY ij = sj dans O(C)* que

deg(sj) = dtj + ij deg(f) = kj .

La suite (kj) constitue ainsi l’ensemble des degrés possibles dans O(C)*. On
remarque que d1 = 0. Rappelons également que le lemme 1.4 veut que pour
tout

k ≥ (d− 1)(deg(f)− 1)

une telle décomposition soit possible. On en déduit donc l’existence d’une plus
petite valeur, noté j0, pour laquelle on ait kj+1 = kj + 1 pour tout j ≥ j0. On
a évidemment kj0 ≤ (d− 1)(deg(f)− 1).

Pour tout k ≥ 0, on considère l’ensemble

H(k) = {g ∈ O(C)∗/ deg(g) ≤ k} ∪ {0}

qui, par la proposition 1.6 est un Fq-espace vectoriel. Il est clair queH(0) =Fq,
et de donc de dimension 1. Pour un

g =

d−1∑
i=0

gi(X)Y i =

d−1∑
i=0

deg(gi)∑
j=0

aj,iX
jY i

dans H(k), on a clairement dans O(C)*

deg(XjY i) ≤ k

pour tout 0 ≤ i ≤ d− 1, et 0 ≤ j ≤ deg(gi). On a donc que H(k) est engendré
par les sj , pour les kj ≤ k. Mieux encore, il s’agit d’une base, puisque tous les
kj sont distincts. On a donc clairement que

dimFq (H(k)) = ]{kj ≤ k} = max
j
{kj ≤ k} .

On en déduit directement la proposition suivante :

Proposition 1.8. Il existe δ ≥ 0 un entier tel que, pour tout k ≥ kj0 , on a

dimFq (H(k)) = k + 1− δ .

En particulier
δ = kjo − j0 + 1 ≤ (d− 1)(deg(f)− 1) .

Pour un κ ≥ 0, on considère les sj pour kj ≤ κ. Pour chacun d’eux, l’élément

Sj = sj ◦ Fr = Fr ◦ sj = sqj

qui est également dans O(C)* et de degré qkj .
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Proposition 1.9. Soient κ, k ≥ 0 deux entiers, et m un diviseur de q. Alors
l’ensemble des fonctions

h =
∑
kj≤κ

(hj)
mSj ,

où les hj sont dans H(k) est un sous-espace vectoriel de H(mk + qκ), noté
H′(m, k, κ), qui est exactement le sous-espace vectoriel formé par les éléments
de la forme (g1)m(g2 ◦ Fr), où g1 dans H(k) et g2 dans H(κ).

Preuve. Il est clair que tout élément h de cette forme est dans H(mk + qκ).
Supposons maintenant que

h = (g1)m(g2 ◦ Fr)

où g1 dans H(k) et g2 dans H(κ). On peut donc écrire

g2 =
∑
kj≤κ

ajsj .

On a donc
h = (g1)m(

∑
kj≤κ

ajSj) ,

Fq étant fixe par Fr. De plus, aj = aqj = (a
q
m
j )m. Comme q/m est une puissance

de p, caractéristique de Fq, a
q
m
j est dans Fq, et on en déduit que

h =
∑
kj≤κ

(hj)
mSj ,

avec hj = a
q
m
j g1. D’autre part, si u, v dans H′(m, k, κ) et a, b dans Fq, on a

a · u+ b · v =
∑
kj≤κ

(a(uj)
m + b(vj)

m)Sj =
∑
kj≤κ

(a
q
muj + b

q
m vj)

mSj

qui est encore un élément de H′(m, k, κ).

Les fonctions de cette forme sont particulières par le lemme suivant :

Lemme 1.6. Si
h =

∑
kj≤κ

(hj)
mSj

tel que ∑
kj≤κ

(hj)
msj = 0

dans O(C), alors h(C(Fq)) = 0, et toutes les racines sont de multiplicité au
moins m.
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Preuve. Il est évident que h(C(Fq)) = 0. D’autre part,

h =
∑
kj≤κ

(hj · (sj)
q
m )m = (

∑
kj≤κ

hj · (sj)
q
m )m

une puissance m-ième dans O(C).

Nous avons ainsi résolu le problème des éléments de C(Fq) comme racines de
multiplicité au moins m d’un polynôme. La dernière idée est de s’assurer que
l’écriture de h de cette forme peut être unique sous certaines conditions.

Lemme 1.7. Soit
h =

∑
j

(hj)
mSj

dans H′(m, k, κ). Si km < q, alors h = 0 si et seulement si hj = 0 pour tout
kj ≤ κ. En d’autres termes, cette écriture est unique dans H′(m, k, κ).

Preuve. Par l’absurde si h = 0 et au moins un hj 6= 0. On considère le j
maximal pour lequel hj 6= 0. On a

(hj)
mSj = −

∑
j′<j

(hj′)
mSj′ .

On a d’une part
deg((hj)

mSj) ≥ deg(Sj) = qkj

et d’autre part

deg(−
∑
j′<j

(hj′)
mSj′) ≤ mk + q(kj − 1) .

On a donc
qkj ≤ mk + q(kj − 1) ⇒ q ≤ mk

d’où la contradiction.

Ainsi, pour la condition mk < q, on a

dimFq (H′(m, k, κ)) = dimFq (H(k))× dimFq (H(κ)) .

Comme Fp est stable par tous les x 7→ xp
α

, on a donc que H′(m, k, κ) est un Fp-
espace vectoriel avec linéarité pour cette écriture. On définit donc l’application
Fp-linéaire

∆ :


H′(m, k, κ) → H(mk + κ)∑

kj≤κ(hj)
mSj 7→

∑
kj≤κ(hj)

msj

Par le théorème du rang, on a

dimFp(H′(m, k, κ)) = dimFp(Ker(∆)) + dimFp(Im(∆))
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et donc

dimFp(H′(m, k, κ)) ≤ dimFp(Ker(∆)) + dimFp(H(mk + κ)) .

On en déduit que

dimFp(Ker(∆)) ≥ dimFp(H′(m, k, κ))− dimFp(H(mk + κ)) .

On obtiet donc une minoration concrète de dimFp(Ker(∆))

dimFp(Ker(∆)) ≥ [Fq : Fp][dimFq (H(k)) · dimFq (H(κ))− dimFq (H(mk + κ))] .

1.3.6 Astuce 6: choix des paramètres

On est donc sûr qu’un élément h dans H′(m, k, κ) non nul admet pour racines
de multiplicité au moins m tous les éléments convenables de C(Fq) dès que

dimFq (H(k)) · dimFq (H(κ))− dimFq (H(mk + κ)) > 0 . (3)

On aurait donc pour ce h que

deg(h)

m
≤ mk + qκ

m
= k + q · κ

m
.

Cette dernière égalité nous montre qu’il serait judicieux que κ et m soient du
même ordre. Aussi dès que m, k ≥ kj0 , et κ ≥ m, on a par la proposition 1.8
une expression exacte des dimensions. Pour satisfaire à l’inégalité du théorème
de Stepanov, vu que q est une puissance paire de p, on peut donc poser{

m =
√
q

κ =
√
q + 2δ

On aurait donc mk < q ⇔ k <
√
q, et pour (3) que

(k + 1− δ)(√q + δ + 1)− (k
√
q +
√
q + δ + 1) > 0 ⇔ k >

δ

δ + 1

√
q + δ .

Autrement dit, k est un entier strictement compris entre δ
δ+1

√
q + δ et

√
q, qui

existe dès que

δ

δ + 1

√
q + δ + 1 <

√
q ⇔ (δ + 1)2 <

√
q

Notons également que si cette dernière inégalité est vérifiée, alors on peut choisir
k =
√
q − 1 ≥ kj0 , qui est immédiatement vrai dès que

√
q > kj0 . Ainsi, sous la

condition que
q > q0 = max{(δ + 1)4; k2

j0} ,

on obtient
deg(h)

m
≤ q + (1 + 2δ)

√
q ≤ q + 2q0

√
q
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et donc
]C(Fq) ≤ q + (2q0 + deg(f))

√
q .

Si q0 ≥ q, on a directement que

]C(Fq) ≤ dq ≤ d
√
q0
√
q ≤ q + d

√
q0
√
q .

On peut remarquer que q0 ne dépend que de d et deg(f) par construction de la
suite (kj), et on a q0 ≤ [d·deg(f)]4. En posant donc C = [d+deg(f)][d·deg(f)]4,
on a pour tout q puissance paire de caractéristique p

]C(Fq) ≤ q + C
√
q .

2 GRAPHE DE CAYLEY DANS F∗qn

Soit f un polynôme unitaire irréductible de Fq [X]. On pose deg(f) = n. On
peut donc identifier ainsi Fqn à Fq[α], où α est une racine de f . On considère
donc le groupe

Γf = F∗qn ' (Fq[α])∗ .

Soit 1 ≤ d < n un entier. On pose

Id = {π un. ir. ∈ Fq[X]/ deg(g)|d}

Ed = {π
d

deg(π) / π ∈ Id}

et
Pd = {g(α)/ g ∈ Ed} .

On a évidemment ]Id = ]Ed, mais vu que d < n et tout élement de Ed de degré
d, on a aussi ]Ed = ]Pd. Enfin, on remarque que Pd ⊂ F∗qn .

Le graphe de Cayley considéré par la suite est le grapheG(F∗qn , Pd), où l’ensemble
des sommets est le groupe F∗qn et l’ensemble des arêtes

{(x, y)/ y = λx, λ ∈ Pd} .

On note ce graphe Gd(n, q, α), car ici F∗qn est assimilé à (Fq[α])∗. Avant
d’attaquer les propriétés de ce graphe particulier, rappelons que∑

g∈Ed

Λ(g) =
∑
g un.

deg(g) = d

Λ(g) = qd

et que

]Id =
∑
k|d

ι(k)
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où ι(k) est le nombre de polynônes unitaires irréductibles de Fq [X] de degré k.
On rappelle que pour la fonction de Mobius µ,

ι(k) =
1

k

∑
l|k

µ(l)q
k
l ≤ qk

k
,

le produit de tous ces polynômes étant un diviseur de Xqk −X.

2.1 CONNEXITÉ ET DIAMÈTRE DE Gd(n, q, α)

Un graphe de Cayley Γ(G,S) est connexe si et seulement si S engendre G. On
a donc le premier théorème qui suit:

Théorème 2.1. On suppose que n < q
d
2 + 1. Alors Gd(n, q, α) est connexe et

son diamètre D satisfait à l’inégalité

D ≤ 2
n

d
+ 1 +

4nd log(n− 1)

d log(q)− 2 log(n− 1)
.

Preuve. Supposons par l’absurde que Gd(n, q, α) n’est pas connexe. Alors <
Pd > est un sous groupe propre de (Fq[α])∗. On peut donc trouver un caractère
non trivial χ tel que χ(< Pd >) = 1. On a par la borne de Weil

qd =
∑
g un.

deg(g) = d

Λ(g) = |
∑
g un.

deg(g) = d

Λ(g)χ(g(α))| ≤ (n− 1)q
d
2

et donc que q
d
2 +1 ≤ n ce qui contredit l’hypothèse de départ. Ainsi, Gd(n, q, α)

est connexe.

Pour le calcul du diamètre, on pose pour tout entier k > 0 et tout β et Γf ,
Nk(β) le nombre de solutions de l’équation

β =

k∏
i=1

gi(α) , gi ∈ Ed .

On a évidemment que

Nk(β) =
1

qn − 1

∑
g1,··· ,gk∈Ed

∑
χ

χ(

∏k
i=1 gi(α)

β
) .

On remarque que Nk(β) > 0 si et seulement si

0 < Mk(β) =
1

qn − 1

∑
g1,··· ,gk∈Ed

k∏
i=1

Λ(gi)
∑
χ

χ(

∏k
i=1 gi(α)

β
)
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On a donc

Mk(β) =
1

qn − 1

∑
g1,··· ,gk∈Ed

k∏
i=1

Λ(gi)
∑
χ

χ(

∏k
i=1 gi(α)

β
)

=
1

qn − 1

∑
g1,··· ,gk∈Ed

∑
χ

χ−1(β)

k∏
i=1

Λ(gi)χ(gi(α))

=
1

qn − 1

∑
χ

χ−1(β)
∑

g1,··· ,gk∈Ed

k∏
i=1

Λ(gi)χ(gi(α))

=
1

qn − 1

∑
χ

χ−1(β)[
∑
g∈Ed

Λ(g)χ(g(α))]k .

Ainsi,

Mk(β) =
qkd

qn − 1
+

1

qn − 1

∑
χ 6=1

χ−1(β)[
∑
g∈Ed

Λ(g)χ(g(α))]k

et donc par la borne de Weil

Mk(β) ≥ qkd

qn − 1
− qn − 2

qn − 1
(n− 1)kq

kd
2 >

qkd

qn − 1
− (n− 1)kq

kd
2 .

Pour que Mk(β) > 0, il suffit juste que

qkd ≥ qn(n− 1)kq
kd
2 ⇔ qkd−2n ≥ (n− 1)2k

Par passage au log, on obtient

(kd− 2n) log(q) ≥ 2k log(n− 1) ⇔ k(d log(q)− 2 log(n− 1)) ≥ 2n log(q) .

Or

d log(q)− 2 log(n− 1) = log(
qd

(n− 1)2
) > log(1) = 0

par hypothèse. On a donc que dès que

k ≥ 2n log(q)

d log(q)− 2 log(n− 1)
= 2

n

d
+

4nd log(n− 1)

d log(q)− 2 log(n− 1)

Mk(β) > 0 et donc Nk(β) > 0 pour tout β.

2.2 Gd(n, q, α) COMME GRAPHE EXPANSEUR

On considère la matrice d’adjacence M de Gd(n, q, α) une matrice carré de taille
(qn − 1) × (qn − 1). M agit sur le C-espace vectoriel de dimension qn − 1 des
fonctions CΓf , par

M(h) 7−→ x ∈ Γf 7→
∑
g∈Ed

h(xg(α)) ∈ C .
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Pour tout caractère multiplicatif χ de Γf , et tout x ∈ Γf , on a

M(χ)(x) =
∑
g∈Ed

χ(xg(α)) = [
∑
g∈Ed

χ(g(α))]χ(x)

et donc M(χ) = λd(χ)χ, avec λd(χ) =
∑
g∈Ed

χ(g(α)) . χ est donc vecteur propre

de M pour la valeur propre λd(χ). De plus, par le lemme d’Artin, les qn − 1
caractères de Γf sont C-linéairement indépendants. On a donc que les λd(χ)
sont exactement les valeurs propres de M . On remarque que

λtriv = ]Ed .

Pour χ 6= 1, on peut majorer λd(χ) avec

|λd(χ)| = |
∑
g∈Ed

χ(g(α))|

= |
∑
g∈Ed

(
Λ(g)

d
+ 1− Λ(g)

d
)χ(g(α))|

= |1
d

∑
g∈Ed

Λ(g)χ(g(α)) +
∑
g∈Ed

(1− Λ(g)

d
)χ(g(α))|

≤ n− 1

d
q
d
2 +

∑
g∈Ed,Λ(g)<1

1

≤ n− 1

d
q
d
2 +

d/2∑
k=1

ι(k)

≤ n− 1

d
q
d
2 +

d/2∑
k=1

qk

k

≤ n− 1

d
q
d
2 + q

d
2 .

Ainsi, pour tout χ caractère non trivial, on a

|λd(χ)| ≤ n+ d− 1

d
q
d
2 .

On remarque que
qd

d
=
∑
g∈Ed

Λ(g)

d
≤
∑
g∈Ed

1 = ]Ed .

On en déduit directement le théorème suivant :
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Théorème 2.2. Soit 0 < δ < 1. On suppose que (n + d − 1) ≤ q
d
2 (1 − δ).

On a donc pour toute valeur propre λ non triviale de la matrice d’adjacence de
Gd(n, q, α)

|λ| ≤ qd

d
(1− δ) ≤ λtriv(1− δ) .

En particulier, Gd(n, q, α) est un graphe λtrivδ
2 -expanseur.

Pour un graphe G = (X,E) donné, et pour toute partie S de X, on note
∆(S) le nombre d’arêtes reliant S etX\S. Et on définit la constante d’expansion
h(G) par

min
S⊂X
{∆(S)

]S
} = min

S⊂X,]S≤]X
{∆(S)

]S
} ,

puisque ∆(S) = ∆(X \ S) par définition. On remarque que h(G) = 0 si et
seulement si G est connexe. On dit d’un graphe qu’il est ε−expanseur si h(G) ≥
ε. Et un théorème nous donne u encadrement plus précis pour des graphes
k−réguliers connexe, avec

k − λ1

2
≤ h(G) ≤

√
2k(k − λ1) ,

où λ1 est la deuxième plus grande valeur propre de la matrice d’adjacence de
G.

Preuve du thórème. L’inégalité est direct. Le fait que Gd(n, q, α) est un graphe
λtrivδ

2 -expanseur se déduit de

h(G) ≥ k − λ1

2
≥ λtriv − (1− δ)λtriv

2
=
λtrivδ

2

avec k égalant λtriv la plus grande valeur propre et λ1 la deuxième.
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