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INTRODUCTION

Considérons un corps fini Fy, et un polynéme unitaire f dans F, [X]. On rappelle
qu’un caractére de Dirichlet x modulo f est le prolongement sur F, [X] d'un
morphisme de (F, [X]/fF, [X])* dans C*, en une forme multiplicative complete
définie par

|0 si gNf#1
x(g) = { Xx(g(mod f)) sinon

pour tout g dans I, [X]. Le caractere de Dirichlet dit trivial est celui ne prenant
que la valeur 1 sur les g A f =1 de Fy [X].
On définit également la fonction de Von Mangoldt A sur F, [X] par

Ag) = 0 si g n’est pas une puissance d’un irréductible de F, [X]
9) = deg(m) si g est une puissance du polynome irréductible 7

pour tout g dans Fy [X].

Théoréme 0.1 (borne de Weil). Soit x un caractére non trivial sur F, [X] et
d eN*. On a pour les g pris unitaires

| > Alg)x(g)l < (deg(f) — 1)g? .

deg(g) d

Cette majoration est de 'ordre de O(q%), tandis qu’une majoration grossiére

donnerait
> Al D Ay

deg(g)=d deg(g)=d

Cette derniere égalité est obtenue en évaluant le cardinal de
{(z,7;)/x € Fya, m, polynome minimal de x},
qui vaut d'une part §F . = q¢ par unicité du polynéme minimal, et d’autre part

Zzl— Y odeg(m= > AMg)= Y, A

deg(m)|d g:ﬂm deg(g)=d

en utilisant le critére de séparabilité dans des extensions de F,. Notons également

que Z A Z A

deg(g) d deg(g)=d

pour x trivial, qui est de I'ordre de O(g?). Cette différence d’ordre suivant le
fait que x soit trivial ou non est 1’élément clé de cette borne de Weil.



Le but de ce travail est d’aborder la démonstration de ce théoreme sous
certains criteres mettant en avant une méthode astucieuse utilisée par Stepanov,
et par la suite utiliser le théoreme pour étudier quelques propriétés de graphes
de Cayley dans des groupes Fy..

1 UNE APPROCHE DE DEMONSTRATION

1.1 Notion de fonction L

On définit la fonction L comme étant la fonction géneratrice sur ’ensemble des
polynémes unitaires g de F, [X] exprimée par

L, T) =Y x(g)T* .
g un.
Il s’agit ici d’une série avec

LOoT)=> . > x(g)T" .

n>0 g un.
deg(g) = n

Il est clair que le coefficient constant vaut 1, le seul polynome unitaire de degré
nul étant 1.

Proposition 1.1. Pour x non trivial, L(x,T) est un polynome de degré au plus
deg(f) — 1.

Preuve. Pour tout n > deg(f), on considere application définie par

¢n: {deg(g) =n} — {deg(g) =n —deg(f)} x {deg(g) < deg(f) — 1}
g — (g,r) avec g =hf +r

est une bijection en utilisant ['unicité de h et r par la division euclidienne mais
également les propriétés du degré.

Mieux encore, comme f est unitaire, on a donc g est unitaire si et seulement si
h Test. Ainsi

t{deg(9) = n, g =r(mod f), g un.} = t{deg(g) = n—deg(f), g un.} = "~/

le choix du coefficient dominant étant fixé. On en déduit que

Yoo Xl =g YT x(r) =0

g un,deg(g)=n r(mod f)
par orthogonalité. O
Ce théoréme montre clairement que L(x,T) est de la forme 1 + Zle e T?
avec k = deg(f), et donc l'existence de complexes wy, - -+ ,wy tels que
k

Lix,T) = [[(1 —wiT) .

i=1



Ceci nous permet de trouver une premiere forme exponentielle a la fonction
L(x,T). On a
L'(x,T .
T . 7) _ Z
L(x,T) 1l-w T

S 9 L

i=1n>1

o)

n>1 =1

En posant donc S, (x) = — Zle w!, et du fait du coefficient constant a 1, on a

Lo T) = exp(Y T2 ey )

n>1
Proposition 1.2. On a pour tout n > 1,

S0 = >, AMogxlg) -

g un.
deg(g) =d

Preuve. L’anneau F, [X] étant factoriel, on peut réécrire L(x,T) en produit
eulérien, avec

1
L(X,T) = H 1— X(?T)Tdeg('”) .

7 ir.un.

On a donc

L'(x,T deg(7)x ()T des(m) eg(m
T (X ) = Z (1g_(X)(>7<T()T)‘deg(7r))2 ’ (1 _X(ﬂ-)Td ( ))

7 ir.un.

_ y destmmr)
B I — x(m) T

7 ir.un.

— Z deg Z X nTn deg()

7 ir.un. n>1

— Z ZA myrdes(=)

7 iroun. n>1

— Z Ag Tdeg(g

= > (> AMgx)r"
n21 deg(g)=n



Nous avons ainsi réussi a ressortir la somme a majorer de la borne de Weil.
On déduit donc que pour tout n > 1,

k
| Y. Mox(@)l =D @l < k- max |wi" < (deg(f) ~ 1)R"
deg(g)=n i=1 -

ol R > 0 est tel que wy, -+ ,wi € B(0, R). 1l est donc logique de penser que R
pourrait valoir /g, hypothese faisant 1'objet du théoreme suivant:

Théoréme 1.1 (hypotheése de Riemann pour les corps finis, A. Weil). Soit f
unitaire dans Fy [X] et x un caractére de Dirichlet non trivial modulo f. On a

k

L T) =[]0~ w1)

i=1

sous sa forme factorisée, avec k < deg(f) —1 et

|lwi| < /g
pour tout i € [1;k].

La preuve de ce théoreme entraine immédiatement la preuve de la Borne de
Weil. Bien que non évidente, on peut se restreindre a certains polynomes f et
des caracteres particuliers modulo f pour lesquels la démonstration du théoreme
sera "moins” laborieuse.

1.2 Cas particulier de caractere de Dirichlet

On considere n un caractere multiplicatif sur F,. Soit f un polynéme unitaire
de F, [X]. On crée ainsi un caractére de Dirichlet dit associé & f et n vérifiant
des conditions assez particulieres relatives aux normes.

Proposition 1.3. Soient n un caractére multiplicatif sur Fy et f un polynome
unitaire de Fy [X]. Il existe un unique caractére de Dirichlet x modulo f, tel
que pour tout n € N* et tout x dans Fyn, on ait

N(Ng, s, (f(@))) = n(=1)" 4D\ (r,) Toalmar |

ot Ty est le polynome minimal de x.

Preuve. On procede tout d’abord a la vérification de 'unicité d’un tel caractere

unicité: TF,[X] étant factoriel, et un caractére de Dirichlet multiplicatif, il
suffit donc de vérifier 'unicité pour les irréductibles unitaires de F, [X]. Soit ®
un tel polynéme. On pose « I'une de ses racines et 'on prend n = deg(w). On
a donc

x(m) = n(=1)" 4Dy (N s, (f (@) -



Cette expression ne dépend aucunement de la racine choisie car toute autre
. m o, . .

racine de 7 est de la forme a? car obtenue par composition du morphisme de

Frobenius x — 9. Ainsi,

Nrnyr, (f(@?)) = Ny r, (f(@)?) = Np,. r, (f(@)? = Npoyr, (f(@))

les normes Ny, /F, a valeurs dans [y, et le morphisme de Frobenius conservant
F

q-

existence: Pour commencer, écrivons f sous sa forme factorisée. On a

et on pose «; une racine de m; et d; = deg(m;) pour tout ¢ € [1;k]. On définit
donc le caractere x de la maniére suivante:

k

x(9) = Hn(Nqui /v, (g(a)) .

i=1

On rappelle que pour tout irréductible 7 ayant pour racine o, toutes les racines
sont exactement les a?, avec i € [1;deg(w)], avec a = a4 seulement pour
i = deg(m). On a également dans Fyn /Fy, la norme Ng,_, /r, qui vaut exactement
pour tout x

N]Fqn/]Fq (LC) = Hitql .
i=1

On peut donc réécrire

k .

x(9) =[] n([T oef 0" = (I 9t )" -
j=1 j=1

i=1 i=1

Vérifions que x est bien le caractere recherché. Pour tout n > 1 et tout x € Fyn,
on pose 7, son polynéme minimal. On a donc

1(Neu e, (f(@) = n(J] /@)

[=p}



On obtient donc

k d; n )
1(Ne e, (F@)) = ([ TATED" TTE =)

car deg(f) = Zle d;l;. Pour conclure, on rappelle que deg(m,) divise n pour

tout x € Fgn. Ainsi, chaque racine de m, apparait exactement n dans
deg(ms)
{xqt/ t € [1;n]}. On a donc pour tout y
n
[T 57 = ety
t=1
Ceci nous permet de déduire que
k dri n X
n-de; J t .
N(Neo e, (F(2))) = (=)D (I T T —27)")
i=1 j=1t=1
de Joy—n g
= (=)D ([ [(] [ (ra(ef ) ==E0))
i=1 j=1
k ds )
_ n((_l))n'deg(f) n(H( ﬂ-x(a;f))li)m
i=1 j=1
N(Ne o m, (f(2) = n(=1)"90) (7, )Tt
O

Le caractere ainsi créé est d’autant plus intéressant par la proposition suiv-
ante:

Proposition 1.4. Soit x le caractére de Dirichlet associé a un polynome umni-
taire f de Fy [X] et n un caractére multiplicatif de Fy. On a alors pour tout

n>1
S n(Ney e, (@) = (=150 S, (x)

zE€Fn /Fy



Preuve. On a

S a(Nep e, (F@) = n(=1)mED ST ()

IGFQn /]Fq wE]Fqn /Fq

= (=)D ST deg(m)x(m) TS

7 ir.un.

deg(m)|n

= 77(71)n<deg;(f) Z A(wﬁ)x(ﬂ-ﬁ) )

7 ir.un.

deg(m)|n

On obtient donc la relation

S 0Ny m, (F2)) = (=1 D -5, (x) (2)

z€Fyn /Fq

vu que

Yo Agxl9= Y A@ETED )x(rmo)

g un. 7 ir.un.
deg(g) = n deg(m)|n

O

Le caractere associé y a d’autres particularités. En effet, c’est aussi un
caractére de Dirichlet modulo f° le plus grand diviseur sans facteur
carré de f, la fonction multiplicative g — ¢(«;) se faisant modulo 7;, avec

D’autre part, si f n’est pas une puissance d-iéme, avec d = ord(n) > 1,
1 non trivial, alors y est également non trivial. Pour s’en convaincre, on
choisit i tel que l;, ne soit pas un multiple de d. Comme 7 n ’est pas trivial et
d’ordre d, on peut trouver 3 dans F, tel que n(3)" # 1. La fonction norme
étant surjective, on peut donc trouver ¢ dans F 4, /IF, tel que qudi Jr,(0) = B.
Un tel € peut toujours étre mis sous la forme g;,(a;,). Enfin, en prenant par le
théoreme chinois

g = 1 mod(m;) pour i # ig

g = G mOd(ﬂ-’io)
on obtient automatiquement x(g) = n(3)% # 1. On a donc

Proposition 1.5. Soient n un caractére non trivial de F, d’ordre d, et f
un polynome unitaire dans Fq[X] qui n’est pas une puissance d-iéme. Alors
le caractére x associé a pour fonction de Dirichlet L(x,T) = L(f,n,T) un
polynéme de degré au plus deg(f°) — 1, ou f° est le plus grand diviseur sans
facteur carré de f.



1.3 Meéthode de Stepanov

La méthode de Stepanov consiste en une suite d’astuces visant & amoindrir
la difficulté du probleme. En effet, on ramene le probléeme au comptage d’un
ensemble de points. Pour cet ensemble de points, si I’on trouve un polynéme A,
tel que tout point de notre ensemble est racine de A de multiplicité un entier m
fixé, alors on pourra majorer son cardinal par deg(A)/M. Le choix du polynéme
se fait astucieusement pour obtenir I'inégalité souhaitée.

1.3.1 Astuce 1: ne plus se limiter & un seul caractére

Lemme 1.1. Soient aq,--- ,a,, des compleres non nuls avec m > 1. On sup-
pose qu’il existe A, B > 0, tels que pour tout n eN*

k
1> aP| < AM™.

i=1
Alors a1, -+ ,am € B(0, M).
Preuve. Considérons la série entiere
k
F(z2) =Y anz" .
n>0 =1

Par hypothese elle est définie et holomorphe sur B(0, 4;). Mais on peut réecrire

k k k
1
FE) =3 (O anz =33 ar =3 g

n>0 i=1 i=1n>0 i=1

Cette écriture n’est valable que sur des boules de rayons R < minj<;<g ﬁ et
- k3

y est holomorphe. On en déduit que ﬁ < mini<i<g |Tl| O

Cette premiere astuce nous permet de directement d’évaluer des sommes
Zx Sn(x) et de conclure pour chacun des w de chacun de ses caracteres x.
L’astuce qui suit évalue une somme sur un ensemble bien précis de caracteres

X-

1.3.2 Astuce 2: réduction a un comptage de points

Soient 1 < d|(g — 1), et f un polynéme unitaire de F, [X] tel d A deg(f) = 1.
On considere ’ensemble caractére multiplicatif  non triviaux de IFy, tels que n?
soit trivial. Il est important de remarquer que la condition d A deg(f) = 1 est
cruciale, car c’est 'unique condition pour laquelle aucun diviseur de d différent
de 1 ne divise deg(f), ce qui assure que f ne peut étre une puissance d’ordre de
ce dernier. Le caracteére x associé a chaque 7 est donc non trivial, et on a pour
tout n > 1

,Z(n(il)deg(f) Wiy ) = n(il)n-deg(f) - Sn(x) = Z 1(Ne v, (f(2)))

wEFqn



et donc

Yo > iNepm,(f(2) =) w"

n#£l,mi=1x€Fn w

ot les w sont égaux au module pres aux wj 4, et donc une somme finie.

Lemme 1.2 (Réduction au comptage de points). Soient d|(q — 1), et f un
polynome unitaire de Fq [X]. On a pour tout n > 1

S S aWNey s, (F@)) = H(2) € Fyn x Byn/ 4 = f(2)} — ¢
n#lnd=1z€Fn

Preuve. Notons tout d’abord que ’application

n =10 Ng_./F,

est un morphisme de groupe de I’ensemble des caracteres de F; d’ordre divisant
d vers I’ensemble des caracteres de Fy» d’ordre divisant d, (g—1|¢"—1). Ces deux
groupes sont cycliques d’ordre d. Mieux encore, il s’agit d’un isomorphisme,
puisque ce morphisme est injectif. En effet, la norme étant surjective sur Fy,
tout 1 non trivial donne un caractére non trivial. On peut donc réécrire

Z Z (Ng,n /7, (f(2))) = Z Z C(f(z))

n#£l,nd=12x€Fn ¢#1,d=1z€Fyn

avec ( caractere dans Fg». On a donc
Yo D 1WVepm,( =y > o
n#1,nd=12€Fn @€Fn (£1,¢0=1
On rappelle que
Z C(t) = d sitest une puissance d-ieme dans Fy.
B sinon.

¢i=1

Comme d|g"™ — 1, c’est aussi le nombre de solutions de I’équation ¢ = u? dans
Fyn, pour t € Fy... Ainsi pour tout ¢ € Fy.,

Y W) =H{u€eFg/u" =t} -1.
¢#1,¢4=1
Pour t = 0, on a également
> ) =0=HueF,/u" =t} -1,
(#1,¢4=1
vu que I’équation admet comme unique solution u = 0. Pour tout ¢ dans Fn,

on a donc
Y ) =t{ueFp/u" =t} 1.
¢#1,¢d=1

10



On déduit ainsi le lemme énoncé

Yo D 1Wepr,(f(2)) = H{(2,y) € Fgn x B/ y? = f(2)} —¢"

n#£lnd=1z€Fyn

1.3.3 Astuce 3: théoréeme de Stepanov, Bombieri

Le théoreme de Stepanov, Bombieri est ’astuce clé permettant de contourner
la variable entiere n. En effet pour tout n > 1, un polynéme de F, [X] est
également un polynéme de Fgn[X] et le cardinal de Fgn est ¢". Il est donc
souhaitable d’évaluer |¢{(z,y) € F, x F,/ y? = f(x)} — ¢| pour un corps donné
F,.
Théoréme 1.2 (Stepanov, Bombieri). Soit F, wun corps fini, extension paire
de son corps premier. Soit f un polynéme non constant de F, [X] et un entier
dlg—1 tel que dNdeg(f) = 1. Alors il existe une constante C > 0 ne dépendant
que de d et de deg(f), tel que

\ﬁ{(x,y) € IFq X IE‘q/ yd = f(x)} - (I| < C\/a .

Notons que ce théoréeme implique que
‘ Zw2n| < qn
w

pour tout n, et donc par le lemme 1.1 que |w|2 < g pour tout w. par passage
a la racine carré on obtient le résultat souhaité.

Une astuce complémentaire est se restreindre uniquement a 1’étude de #{(z,y) €
Fg xFo/ y! = f(2)}:

Lemme 1.3 (de la borne sup & la borne inf). Soit F, un corps fini. Soit f un
polynéme non constant de Fy [X] et un entier dlg — 1 tel que d A deg(f) = 1.
On définie a(f) par

H{(z,y) €Fg xFy/ y* = f(2)} = q+a(f) .

Alors
a(ef)| -

H(e,y) € Fy x B/ = f(@)} 2 g — (d— 1) ma

Si 'on réussit & majorer a(f) par un C',/q, avec C’ > 0 ne dépendant que
de d et deg(f), les ef étant de méme degré que f, on aura

(1-d)C"Va < t{(z,y) € Fy x Fy/ y? = f(2)} —q < C' Vg

et donc
li{(z,y) € F, x ]Fq/ yd = f(z)} —q| < Cyvaq
pour C' = dC’ qui ne dépendra que de d et deg(f).

11



Preuve. On considére le sous groupe (IF,*)? des puissances d-ieme dans F *. F,*
étant cyclique, il en est de méme pour le quotient F,*/(F,*)?, ayant exactement
d éléments. Notons {1 = €1, , €4} des réprésentants des classes F,*/(F,*)<.
Pour tout ¢;, on a

H(z,y) € Fy xFy/ y' = i f(2)} = g +aleif) —r(f)

avec 7(f) le nombre de racines de f dans g, qui est le méme que le nombre
de racines de ef pour tout € dans F,*. D’autre part, pour tout = n’étant pas
racine de f, f(z) est dans (F,*)? & un ¢; prés. On a donc

d

d
dg—r(f) =Y t(z,y) €Fy xFy/ y? = cif(a)} = Zq +alef) —r(f)

i=1
et donc
> a(eif) =0.
i=1

Pour tout € dans F,*, a(ef) = a(e; f), pour ¢; le représentant de la classe de e,
on a donc

d
a(f) = = aleif) = ~(d — 1) max|a(cf)|

i=2
O

L’idée émise par Stepanov était de créer un polynéme A dans Fy [X] qui
s’annulerait pour tous les z de F, admettant des solutions & f(z) = y?, et de
multiplicité au moins m, pour un m fixé. On aurait donc

deg(A)

H(r,y) € By x By y' = @)} < d- B2

vu que f(z) = y¢ admet au plus d solutions & chaque . Le probléme est que les
criteres de multiplicité relatifs aux dérivées ne peuvent étre utilisés, car m! = 0
des que m > p caractéristique de Fy;. La méthode utilisée par Stepanov fait
appel aux dérivées de Hasse, pour parer a ce probleme.

Bombieri propose une autre méthode, toujours dans la méme logique que Stepanov,
mais en passant par F,[X,Y], et qui généralise le théoreme de Stepanov, ce qui
nous donne le nom final de Stepanov, Bombieri. C’est cette méthode que nous
verrons par la suite.

1.3.4 Astuce 4: comportements dans F,[X,Y]

On se place dans la cloture de Fy; notée ﬁq. On considere la courbe

C={(z,y) e Fy xF,/ y' = f(z)}.

12



En posant Fr le morphisme de Frobenius (z,y) — (z9,y?), on a donc

C(Fy) = {(z,y) € C/Fr(z,y) = (x,y)} = {(z,y) € F5/ y? = f(2)} .

Le polynéme que I'on recherche doit tout particulierement s’annuler sur C(F,) C
C. On se place donc dans O(C) = F,[X,Y]/(Y¢ — f(X)). C’est un anneau
intégre. En regardant F,[X, Y] sous la forme F,[X][Y], on a Y¢ — f(X) unitaire
dans cet anneau, et on obtient par division euclidienne pour tout g dans F,[X, Y]
un unique reste de la forme

d—1

Z =g, Y? avec g; € F,[X] .
i=0

Dans O(C), tout polynoéme est donc de la forme
d—1
> -
i=0

avec g; €F, [X]. On définit donc pour un g O(C) son degré par
deg(g) = max{d - deg(gi) +i - deg(f)}

sig # 0et —oosi g = 0. Cette définition tient toujours si ’on pose deg(0) = —oo
dans F, [X] Don retire la condition g; # 0. Il peut tre difficile de cerner le fait
que O(C) soit inteégre, mais nous le verrons par la suite & travers les propriétés
particulieres de deg sur O(C). On commence tout d’abord par énoncer un lemme
capital pour la suite.

Lemme 1.4. Pour tout entier k, il existe un unique i € [0;d — 1], et un unique
entier t tel que

k=dt+i-deg(f) .
De plus, t > 0 dés que k > (d—1)(k —1).

Preuve. Notons que d A deg(f) = 1 entraine que deg(f) génere Z/dZ. On en
déduit que pour tout k entier, il existe un unique i mod(d) tel que

k=i - deg(f) (mod(d))
et donc l'existence d’un unique entier ¢ et d’'un unique ¢ € [0;d — 1] tels que
k=dt+i-deg(f) .
Supposons maintenant que t < 0. On a donc
k=dt+i-deg(f) < —d+ (d—1)deg(f) <1—d+ (d—1)deg(f)

et donc k < (d — 1)(deg(f) — 1). O

13



Une conséquence directe de ce lemme est que

{d - deg(g;) +i - deg(f)/ g: # 0}

contient des éléments deux & deux distincts, et donc que le degré défini pour
g € O(C)* est atteint en un unique 4, d’ou la proposition suivante:

Proposition 1.6. Pour tous g1 et go dans O(C), on a

deg(g1 + g2) < max{deg(g1);deg(g1)}

avec égalité dés que deg(g1) # deg(gs), et

deg(g192) = deg(g1) + deg(g2) .

La preuve est triviale en axant la démontration sur les valeurs maximales 41
et io de g1 et go. On y trouve une justification a Uintégrité de O(C). On définit
également une notion de multiplicité de racine de g de la fagon suivante:

g de multiplicité > m en (z,y) dans C avec y # 0, si

)

9 _P
(X —2)™ ¢

ol p et ¢ sont dans O(C) tels que ¢(z,y) # 0.
Lemme 1.5. (x,y) un zéro de g, avec y # 0, est de multiplicité au moins 1.

Preuve. Ecrivons i
qg= Z gi (X)Yi .
i=0
On a pour tout 1,
9i(X) = gi(z) + (X — 2)u;(X) et Y=yt + Y —yvi(Y).

On en déduit que

g - S gi@y Y —y
= ZXYl i:O t i ZY M
X2 ;U( Y+ = +X_x;9(x)v( )

Comme g(z,y) =0, on a donc

g d—1 nyd_l
= J(X)Y? () (V) .
X —a = 2O D g

Or Y¢ —y? = g(X) — g(x), ce qui implique que

Y-y _ WX
X -z S yigd-1-i

qui est défini en (x,y) dés que en y # 0. O

14



On définit également 7¢(g) de nombre de ces racines comptées avec multi-
plicité.

Proposition 1.7. On a pour tout g dans O(C)*

ro(g) < deg(g) -

Preuve. Notons que d|q — 1, et donc ’ensemble des racines d-ieme de 1'unité est
dans F,. Pour tout g dans O(C)*, on considere le polynéme defini par

N(g) =[] 9(x.ev),

ed=1

qui ne dépend pas de Y, vu que N(g) = N(eg) pour tout e. Il est donc & la fois
dans F, [X] et O(C)*. Comme deg(g(X,eY)) = deg(g) dans O(C)*, on a donc

d-deg(g) = deg(N(g)) = d - degg,_x)(N(9))

et donc deg(g) = degp, [x] (N(9)).
Aussi, si (z,y) est un zéro de g, alors z est un zéro de N(g)(X). En remarquant
de plus que

91 92 9192

X —z)m (X —az)me (X —g)ymFme
on a donc que la multiplicité x comme racine dans F, [X]est supérieure a la
somme des multiplicités des (z, ey) de g dans O(C)*. On déduit donc le résultat
souhaité. 0O

Ceci est important car si toutes les racines de g dans O(C)* sont de multi-
plicités au moins m, alors on a

tH{g(x,y) =0} < degT@ + deg(f)

en dissociant les (z,0) racines de g qui ajoute au plus au cardinal le nombre de
x annulant f et donc deg(f). Sil’on réussit donc & majorer deg(g)/m par une
expression de la forme ¢ + C/q, avec C en fonction de d et deg(f), alors il en
sera de méme pour deg(g)/m 4 deg(f) qu’on pourra majorer par ¢+ C',/q, avec
C'" = C + deg(f) ne dépendant également que de d et deg(f). Nous allons donc
chercher un tel polynéme g et un bon entier m, pour lesquels cette majoration
est possible.

1.3.5 Astuce 5: recherche d’un polynéme dans O(C)*

On considere les entiers qui, par le lemme 1.4, ont une unique décomposition
pour 0 <i<d-1
k=dt+i-deg(f)

avec t > 0. Ce sont des entiers naturels, car d,t,i,deg(f) > 0. On les ordonne
en une unique suite strictement croissante

(kj)jens .
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Il est clair que tous les degrés dans O(C)* possibles sont éléments de cette suite.
De plus, pour tout j > 1, on peut écrire k; = dt; + i; - deg(f) de facon unique.
On a donc pour X% Y% = s; dans O(C)* que

deg(s;) = dt; +1i;deg(f) =k, .

La suite (k;) constitue ainsi I’ensemble des degrés possibles dans O(C)*. On
remarque que d; = 0. Rappelons également que le lemme 1.4 veut que pour
tout

k> (d—1)(deg(f) — 1)

une telle décomposition soit possible. On en déduit donc 'existence d’une plus
petite valeur, noté jo, pour laquelle on ait k;; = k; + 1 pour tout j > jo. On
a évidemment k;, < (d —1)(deg(f) —1).

Pour tout k > 0, on considere ’ensemble
H(k) ={g € O(C)"/ deg(g) < k} U {0}

qui, par la proposition 1.6 est un F-espace vectoriel. Il est clair que #(0) =F,,
et de donc de dimension 1. Pour un

d-1 ~ d—1deg(gi) o
g= Zgi(X)YZ = Z Z ij,iXJYZ
i=0 i=0 ;=0

dans H(k), on a clairement dans O(C)*
deg(XjYi) <k

pour tout 0 <i<d—1,et 0<j <deg(g;). On a donc que H(k) est engendré
par les s;, pour les k; < k. Mieux encore, il s’agit d'une base, puisque tous les
k; sont distincts. On a donc clairement que

dimp, (H(k)) = #{k; < k} = max{k; < k} .
J
On en déduit directement la proposition suivante :
Proposition 1.8. Il existe 6 > 0 un entier tel que, pour tout k > k;,, on a
dimg, (H(k)) =k+1—-0.

En particulier
§ = kj, —jo+1 < (d—1)(deg(f) — 1) .

Pour un x > 0, on considere les s; pour k; < k. Pour chacun d’eux, 1'élément
.. _ 4
S;=s;0Fr =Fros, = 5]

qui est également dans O(C)* et de degré gk;.
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Proposition 1.9. Soient k,k > 0 deux entiers, et m un diviseur de q. Alors
l’ensemble des fonctions
h= (h)"S;
k‘jgfi

ot les hj sont dans H(k) est un sous-espace vectoriel de H(mk + gr), noté
H'(m, k, k), qui est exactement le sous-espace vectoriel formé par les éléments
de la forme (g1)™ (g2 o Fr), ot g1 dans H(k) et go dans H(k).

Preuve. 1l est clair que tout élément h de cette forme est dans H(mk + gr).
Supposons maintenant que

h'=(g1)" (g2 o Fr)
o g; dans H(k) et g2 dans H(x). On peut donc écrire
g = Z ajSj .
kjgfi

On a donc

h=(g)™( Y a;5;),

kj Sh}

a
F, étant fixe par Fr. De plus, a; = a? = (a;")™. Comme g/m est une puissance

4
de p, caractéristique de Fy, a;* est dans Fg, et on en déduit que

h=Y (h)"S;

kj<w
avec h; = ajf%gl. D’autre part, si u,v dans H'(m, k, k) et a,b dans Fy, on a
a-utb-v="Y (a(u)™ +b(v;)")S; = Y (a7mu; +bwv;)™S;
kj<w kj<w
qui est encore un élément de H'(m, k, k). O
Les fonctions de cette forme sont particuliéres par le lemme suivant :
Lemme 1.6. Si

h=73_ (h)"S;

kj SK

> (hj)™s; =0

k‘j SK

tel que

dans O(C), alors h(C(Fq)) = 0, et toutes les racines sont de multiplicité au
moins m.
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Preyve. 11 est évident que h(C(F,)) = 0. D’autre part,
h=" " (h-(s;)™)™ = (> by~ (s;)7)"
ki<k ki<k
une puissance m-ieme dans O(C). O

Nous avons ainsi résolu le probleme des éléments de C(FF,;) comme racines de
multiplicité au moins m d’un polynome. La derniere idée est de s’assurer que
I’écriture de h de cette forme peut étre unique sous certaines conditions.

Lemme 1.7. Soit
h=> (h;)™S;
J
dans H'(m,k,k). Si km < q, alors h = 0 si et seulement si h; = 0 pour tout

k; < k. En d’autres termes, cette écriture est unique dans H'(m, k, k).

Preuyve. Par I'absurde si h = 0 et au moins un h; # 0. On considere le j
maximal pour lequel h; # 0. On a

(hj)™Sj == (hj)™S;r .
J'<j

On a d’une part
deg((h;)™S;) > deg(S;) = qk;

et d’autre part
deg(— Y (hj)™S;) < mk +q(k; — 1) .
3'<j

On a donc
gk; <mk+q(kj —1) = ¢ <mk

d’ou la contradiction. O

Ainsi, pour la condition mk < ¢, on a
dimg, (H'(m, k, k)) = dimg, (H(k)) x dimg, (H(k)) .

Comme F,, est stable par tous les  — 2P on a donc que H'(m, k, k) est un F-
espace vectoriel avec linéarité pour cette écriture. On définit donc 'application
Fp-linéaire
H (m,k, k) — H(mk+ k)
A
Doky<n(hi) ™S = Dk < (h)™s;

Par le théoréeme du rang, on a

dimp, (#'(m, k, k)) = dimp, (Ker(A)) + dimg, (Im(A))
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et donc
dimg (H'(m, k, k)) < dimg, (Ker(A)) + dimg, (H(mk + k)) .
On en déduit que
dimg, (Ker(A)) = dimg, (H'(m, k, £)) — dimg, (H(mk + £)) .
On obtiet donc une minoration concréte de dimg, (Ker(A))
dimg, (Ker(A)) > [Fy : Fp)[dimg, (#(k)) - dimp, (H(x)) — dimg, (H(mk + £))] .

1.3.6 Astuce 6: choix des parameétres

On est donc siir qu’un élément h dans H'(m, k, k) non nul admet pour racines
de multiplicité au moins m tous les éléments convenables de C(F,) deés que

dimg, (H(k)) - dimp, (H(x)) — dimg, (H(mk + )) > 0. (3)
On aurait donc pour ce h que

deg(h) < mk’-i*(]ﬁ:k_’_q.ﬁ
m ~ m m’

Cette derniere égalité nous montre qu’il serait judicieux que k et m soient du
méme ordre. Aussi des que m,k > kj,, et K > m, on a par la proposition 1.8
une expression exacte des dimensions. Pour satisfaire a l'inégalité du théoreme
de Stepanov, vu que ¢ est une puissance paire de p, on peut donc poser
(v v
K Va+26

On aurait donc mk < ¢ & k < /g, et pour (3) que

(k+1-0)(vg+6+1)—(kv/g++q+d+1)>0 < k>%\/cj+6.

Autrement dit, k£ est un entier strictement compris entre 6%\/6 +46 et \/q, qui
existe des que

)
m\/a+6+1<\/gj < ((5+1)2<\/Z]

Notons également que si cette derniere inégalité est vérifiée, alors on peut choisir
k=./q—12>kj,, qui est immédiatement vrai des que ,/q > kj,. Ainsi, sous la
condition que

q > go = max{(§ + 1)*; k3 } ,

7770

on obtient
deg(h)

m

<q+ (1420)v/q <q+2qq
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et donc
1C(Fq) < a+ (2q0 + deg(f))Va -

Si qg > ¢, on a directement que
1C(Fy) < dg < d/q0/q < q+d\/q0/q -

On peut remarquer que g ne dépend que de d et deg(f) par construction de la
suite (k;), et on a gy < [d-deg(f)]*. En posant donc C = [d+deg(f)][d-deg(f)]*,
on a pour tout ¢ puissance paire de caractéristique p

iC(Fy) <q+Cyq .

2 GRAPHE DE CAYLEY DANS F.

Soit f un polynéme unitaire irréductible de Fy [X]. On pose deg(f) = n. On
peut donc identifier ainsi Fgn & Fy[a, ol a est une racine de f. On considere
donc le groupe

Dy =Fj. = (Fyla])"

Soit 1 < d < n un entier. On pose

Iy = {m un. ir. € F [X]/ deg(g)|d}

By = {n @ [ 1€ I}

et
Py={g(a)/ g € Ea} .

On a évidemment §1; = §F,4, mais vu que d < n et tout élement de E; de degré
d, on a aussi {Fq = §Py. Enfin, on remarque que Py C Fy. .

Le graphe de Cayley considéré par la suite est le graphe G(IF};.., P;), ot I'ensemble
des sommets est le groupe Fy. et I'ensemble des arétes

{(z,9)/ y= Az, Ae Py} .

On note ce graphe Gg(n,q,«a), car ici Fy. est assimilé a (Fy[a])*. Avant
d’attaquer les propriétés de ce graphe particulier, rappelons que

oAM= Y Mg =¢"

g€E, g un.
deg(g) =d
et que
iIg = u(k)
k|d
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ou (k) est le nombre de polynones unitaires irréductibles de F, [X] de degré k.
On rappelle que pour la fonction de Mobius p,

le produit de tous ces polynémes étant un diviseur de X @ _ X,

2.1 CONNEXITE ET DIAMETRE DE Gy(n, ¢, )

Un graphe de Cayley I'(G, S) est connexe si et seulement si S engendre G. On
a donc le premier théoreme qui suit:

Théoréme 2.1. On suppose que n < q% + 1. Alors G4(n,q,a) est conneze et
son diamétre D satisfait a l'inégalité

n 4%Jog(n — 1)
D<2-+1 .
—d T dlog(q) — 2log(n — 1)

Preuve. Supposons par labsurde que G4(n,q,«) n'est pas connexe. Alors <
P,; > est un sous groupe propre de (F,[a])*. On peut donc trouver un caractere
non trivial x tel que x(< P; >) = 1. On a par la borne de Weil

¢'= D AMo=| > AMoxlg(e) <(n-1)qg
deg;g(;)n; d degg(;)n; d

I

et donc que q% +1 < n ce qui contredit 'hypothese de départ. Ainsi, G4(n, ¢, «)
est connexe.

Pour le calcul du diametre, on pose pour tout entier £ > 0 et tout 5 et I'y,
N (B) le nombre de solutions de 1’équation

k
ﬁ:]:[gi(a), gi € Eq .
i—1

On a évidemment que

M=ty YAl

g1, ,9k€E4 X

On remarque que Ni(8) > 0 si et seulement si

k
o< =y T HAgzZ ALz 1l

n—1
q g1, gk €Eq i=1 B
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On a donc

k (o
we) = % HAgzZ Hmrnte),

g1, g €Eg i=1

k
- qnl_l X S [TAwde)
i=1

. 9gk€Eq X

k
=D SCIED S | EONIB)

X g1, gk €EEq 1=1

= Y ONY A (e

7 X g€Eq
Ainsi,
qkd k
Mi(B) = == B Ma)x(g(a))]
X7£1 geEE,
et donc par la borne de Weil
kd n kd
q q" —2 k kd q L kd
M > - -1 —(n—1
W)z g - T - > -1

Pour que My (5) > 0, il suffit juste que
e
Par passage au log, on obtient
(kd — 2n)log(q) > 2klog(n — 1) & k(dlog(q) — 2log(n — 1)) > 2nlog(q) .

Or
d

dlog(q) — 2log(n — 1) = log( n z 1)2

) >log(1) =0

par hypothese. On a donc que des que

2nlog(q) n 4% log(n — 1)
~ dlog(q) — 2log(n — 1) d " dlog(q) — 2log(n — 1)
B.

My(8) > 0 et donc Ni(8) > 0 pour tout

2.2 Gy(n,q,a) COMME GRAPHE EXPANSEUR

On considere la matrice d’adjacence M de G4(n, ¢, o) une matrice carré de taille
(¢" = 1) x (¢" —1). M agit sur le C-espace vectoriel de dimension ¢ — 1 des
fonctions CI'7, par

M(h)— ze€Ty— Z h(zg(a)) € C.
geEq
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Pour tout caractére multiplicatif x de I'y, et tout € I'y, on a

M) =Y x(zg(@) =D x(g(a)]x(x)

gEEq geEy

et donc M (x) = Aa(x)x, avec Ag(x) = Z x(g(a)) . x est donc vecteur propre
gEE,

de M pour la valeur propre Ay(x). De plus, par le lemme d’Artin, les ¢" — 1

caracteres de I'; sont C-linéairement indépendants. On a donc que les Ag(x)

sont exactement les valeurs propres de M. On remarque que

Atriv = ﬁEd .

Pour x # 1, on peut majorer Ag() avec

M)l = 1D x(g(a))]

geE

= 1Y Ay A, ()

gEEq

IN
S
|
—_
e
_|_
(]
—_

IN
3

&l |
—_

(=}
vl

+
S
=

IN
3
|
[a—
%\m
+
‘»Q

n—1 g4 d

< 2 g2 .
= a7 q

Ainsi, pour tout y caractére non trivial, on a

n+d-—1
d

wla

[Aa()l < q

On remarque que

TRPIS SIS

gEE, gEE,

On en déduit directement le théoréeme suivant :
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Théoréeme 2.2. Soit 0 < § < 1. On suppose que (n+d —1) < ¢2(1 — 0).
On a donc pour toute valeur propre A non triviale de la matrice d’adjacence de
Gd(n7 q, Oé)

d
q
Al < E(l —0) < Agrin(1=9) .
En particulier, G4(n,q, ) est un graphe %—ewpanseur,

Pour un graphe G = (X, E) donné, et pour toute partie S de X, on note
A(S) le nombre d’arétes reliant S et X \.S. Et on définit la constante d’expansion
h(G) par

. A(S) . A(S)
glcl?({ gs 1 sc)?%lgﬁx{ gs 7
puisque A(S) = A(X \ S) par définition. On remarque que h(G) = 0 si et
seulement si G est connexe. On dit d’un graphe qu’il est e—expanseur si h(G) >
€. Et un théoréeme nous donne u encadrement plus précis pour des graphes
k—réguliers connexe, avec

B2 <@y < VIR

ou \; est la deuxiéme plus grande valeur propre de la matrice d’adjacence de

G.

Preuve du théréme. L’inégalité est direct. Le fait que Gy4(n, ¢, &) est un graphe
’\"T”‘;—expanseur se déduit de

k— X\ Atriv — (1 — 5)>\t7"iv )\trw(;
G) > > =

avec k égalant Ai.;, la plus grande valeur propre et A\; la deuxieme. O
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