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“...I delight in weaknesses, in insults, in hardships, in persecutions, in difficulties. For when I am weak, then I am
strong.”

A wise man.

“Mon plus grand succès est d’avoir connu beaucoup d’échecs.”

Un homme sage.
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Identités de type Rogers-Ramanujan: preuves bijectives et approche à la théorie de
Lie

Mots clefs: Théorie des partitions d’entiers, identités de type Rogers-Ramanujan type identity, Théorie
des représentation des algèbres de Lie affine

Résumé

Cette thèse relève de la théorie des partitions d’entiers, à l’intersection de la combinatoire et de la théorie
de nombres. En particulier, nous étudions les identités de type Rogers-Ramanujan sous le spectre de la
méthode des mots pondérés. Une révision de cette méthode nous permet d’introduire de nouveaux ob-
jets combinatoires au delà de la notion classique de partitions d’entiers: partitions colorées généralisées.
À l’aide de ces nouveaux éléments, nous établissons de nouvelles identités de type Rogers-Ramanujan
via deux approches différentes.
La première approche consiste en une preuve combinatoire, essentiellement bijective, des identités
étudiées. Cette approche nous a ainsi permis d’établir des identités généralisant plusieurs identités
importantes de la théorie: l’identité de Schur et l’identité Göllnitz, l’identité de Glaisher généralisant
l’identité d’Euler, les identités de Siladić, de Primc et de Capparelli issues de la théorie des représenta-
tions de algèbres de Lie affines.
La deuxième approche fait appel à la théorie des cristaux parfaits, issue de la théorie des représentations
des algèbres de Lie affines. Nous interprétons ainsi le caractère des représentations standards comme
des identités de partitions d’entiers colorées généralisées. En particulier, cette approche permet d’établir
des formules assez simplifiées du caractère pour toutes les représentations standards de niveau 1 des
types affines A(1)
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Rogers-Ramanujan type identities: bijective proofs and Lie-theoretic approach
Keywords: Integer partition theory, Rogers-Ramanujan type identity, Representation theory of affine

Lie algebra

Abstract

The topic of this thesis belongs to the theory of integer partitions, at the intersection of combinatorics
and number theory. In particular, we study Rogers-Ramanujan type identities in the framework of the
method of weighted words. This method revisited allows us to introduce new combinatorial objects
beyond the classical notion of integer partitions: the generalized colored partitions. Using these combi-
natorial objects, we establish new Rogers-Ramanujan identities via two different approaches.
The first approach consists of a combinatorial proof, essentially bijective, of the studied identities. This
approach allowed us to establish some identities generalizing many important identities of the theory of
integer partitions: Schur’s identity and Göllnitz’ identity, Glaisher’s identity generalizing Euler’s iden-
tity, the identities of Siladić, of Primc and of Capparelli coming from the representation theory of affine
Lie algebras.
The second approach uses the theory of perfect crystals, coming from the representation theory of affine
Lie algebras. We view the characters of standard representations as some identities on the generalized
colored partitions. In particular, this approach allows us to establish simple formulas for the characters
of all the level one standard representations of type A(1)
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A.2 Beyond Siladić’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.2.1 Proof of Lemma 4.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.2.2 Proof of Lemma 4.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.2.3 Proof of Lemma 4.3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.2.4 Proof of Proposition 4.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.2.5 Proof of Proposition 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.2.6 Proof of Proposition 4.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.2.7 Proof of Proposition 4.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.2.8 Proof of Proposition 4.3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.2.9 Proof of Proposition 4.3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.2.10 Proof of Proposition 4.3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.3 Beyond the Durfee square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.3.1 Proof of Lemma 6.1.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.3.2 Proof of Lemma 6.1.26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.3.3 Proof of Lemma 6.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.3.4 Proof of Lemma 6.2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.3.5 Proof of Lemma 6.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.3.6 Proof of Lemma 6.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.3.7 Proof of Lemma 6.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.3.8 Proof of Lemma 6.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.3.9 Proof of Lemma 6.3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.3.10 Proof of Lemma 6.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
A.3.11 Proof of Proposition 6.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.3.12 Proof of Proposition 6.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.3.13 Proof of Proposition 6.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.3.14 Proof of Proposition 6.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.4 Perfect crystal and multi-grounded partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 196
A.4.1 Proof of Lemma 8.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
A.4.2 Proof of Proposition 8.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
A.4.3 Proof of Proposition 8.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.4.4 Proof of Proposition 8.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.4.5 Proof of Proposition 8.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Bibliography 201



xv

List of Figures

1.1 Ferrers diagram of (5, 3, 1, 1) and its conjugate (4, 2, 2, 1, 1) . . . . . . . . . . . . . . . . . . 5

2.1 s = 4, λ = (9, 7, 3, 0) and µ = (5, 4, 2, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9.1 Vector representation B of for type A(1)
n−1(n ≥ 3) . . . . . . . . . . . . . . . . . . . . . . . . 139

9.2 Local i-arrows of B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.3 Dual B∨ of the vector representation for type A(1)

n−1(n ≥ 3) . . . . . . . . . . . . . . . . . . 140

9.4 tensor product B ⊗ B∨ for type A(1)
n−1(n ≥ 3) . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.5 Subgraph with i-arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.6 Local configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.1 Crystal graph B of the vector representation for type A(2)
2n (n ≥ 2) . . . . . . . . . . . . . . 153

10.2 Crystal graph of B ⊗ B for type A(2)
2n (n ≥ 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10.3 Crystal graph B of the vector representation for type D(2)
n+1(n ≥ 2) . . . . . . . . . . . . . . 155

10.4 Crystal graph of B ⊗ B for type D(2)
n+1(n ≥ 2) . . . . . . . . . . . . . . . . . . . . . . . . . . 155

10.5 Crystal graph B of the vector representation for type A(2)
2n−1(n ≥ 3) . . . . . . . . . . . . . 157

10.6 Crystal graph of B ⊗ B for type A(2)
2n−1(n ≥ 3) . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.7 Crystal graph B of the vector representation for type B(1)
n (n ≥ 3) . . . . . . . . . . . . . . 160

10.8 Crystal graph of B ⊗ B for type B(1)
n (n ≥ 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.9 Crystal graph B of the vector representation for type D(1)
n (n ≥ 4) . . . . . . . . . . . . . . 162

10.10Crystal graph of B ⊗ B for type D(1)
n (n ≥ 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.1 Durfee-like decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.2 Decomposition of the Ferrers board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.3 A partition as a path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.4 Decomposition of the Ferrers board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190





xvii

Dedicated to people who believed in me since the very beginning of my
mathematical journey.





1

Part I

Introduction





3

Chapter 1

State of the art

1.1 Integer Partitions

By all accounts, the history of integer partitions started in 1674 with a letter of Leibniz to Bernoulli, in
which he asked for the number of ways to decompose a positive integer into a sum of smaller positive
integers. To uniquely identify such sums of integers, we sort the terms in a non-increasing order.

Definition 1.1.1. A partition of a positive integer n is then defined as a non-increasing sequence of
positive integers, called the parts of the partition, whose sum is equal to n.

The problem raised by Leibniz is then equivalent to the following: for a fixed positive integer n, what
is the exact cardinality p(n) of the set P(n) of partitions of n?

Example 1.1.2. For example, here we give the list of the partitions of n ≤ 5.

n p(n) P(n)
1 1 (1)
2 2 (2), (1, 1)
3 3 (3), (2, 1), (1, 1, 1)
4 5 (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)
5 7 (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1)

While these combinatorial objects are simple to visualize, the study of integer partitions remained
difficult for Leibniz and his contemporaries. The actual significant study started with the works of Euler
in (Euler, 1741-43, 1751; Euler, 1748).

To compute p(n) the number of partitions of a positive integer n, Euler formally introduced one of
the most useful tools of the combinatorial theory: generating functions.

Definition 1.1.3. LetA be a countable family of combinatorial objects, and let (ak) be a countable family
of functions from A to Z, called statistics of the objects. Suppose that for each π ∈ A, all but finitely
many of the ak(π) are equal to 0. The generating function of A with respect to the statistics (ak)k is then
the series in Z≥0[[xk, x−1

k ]] defined by

GFA,(ak)
((xk)) = ∑

π∈A
∏

k
xak(π)

k · (1.1.1)

Using this definition, the method presented by Euler is the following.

Let us formally define an integer partition λ as a finite non-increasing sequence of positive integers
(λ1, . . . , λs). The positive integers λ1, . . . , λs are referred to as the parts of the partitions λ. By conven-
tion, the empty sequence is set to be the empty partition ∅. We now define the following statistics.

1. The size of λ, denoted |λ|, is the sum λ1 + · · ·+ λs.

2. The length of λ, denoted `(λ), is the number of parts of λ, namely the value s.

3. For each k ∈ Z>0, nk(λ) denotes the number of occurrences of k in λ, i.e nk(λ) = {i ∈ {1, . . . , s} :
λi = k}.

We take by convention |∅| = `(∅) = nk(∅) = 0. A partition of n is then an integer partition having size
n. We remark that the empty partition is the only partition having size 0. We also note that the partition



4 Chapter 1. State of the art

λ is uniquely determined by the statistics (nk)k>0, and we obtain the following relations:

`(λ) = ∑
k>0

nk(λ) ,

|λ| = ∑
k>0

knk(λ) ·

The latter relations are indeed well-defined, as the partition λ is a finite sequence, and then all but finitely
many of the terms of sequence (nk(λ))k>0 are equal to 0. Let us now compute the generating function
according to the occurrences (nk)k>0. Since the number of occurrences determined the partitions, We
then have the equality

∑
λ

∞

∏
k=1

xnk(λ)
k =

∞

∏
k=1

(
∞

∑
mk=0

xmk
k

)
=

∞

∏
k=1

1
1− xk

· (1.1.2)

Using a change of variables xk 7→ xqk for all positive integer k, we are able to compute the generating
function with respect to the size and the length of the partitions:

∑
λ

x`(λ)q|λ| =
∞

∏
k=1

1
1− xqk ·

In particular, the number p(n) Leibniz was looking for is the coefficient of n in the above series with
x = 1, namely

∞

∑
n=0

p(n)qn =
∞

∏
k=1

1
1− qk · (1.1.3)

With the same reasoning, Euler succeeded in computing the generating function of partitions into
distinct parts. This condition is equivalent to saying that nk(λ) ∈ {0, 1} for all k > 0. By setting
D(n), d(n) to be respectively the set and the number of such partitions of n, with the convention that
∅ ∈ D(0) (so that d(0) = 1)), we then obtain

∞

∑
n=0

d(n)qn =
∞

∏
k=1

(1 + qk) · (1.1.4)

Using the same method on the set of partitions into odd parts, i.e n2k(λ) = 0 for all k > 0, and setting
O(n), o(n) to be the set and the number of such partitions of n, with the convention that ∅ ∈ O(0) (so
that o(0) = 1)), we obtain the corresponding generating function

∞

∑
n=0

o(n)qn =
∞

∏
k=1

1
1− q2k−1 · (1.1.5)

By observing that
∞

∏
k=1

(1 + qk) =
∞

∏
k=1

(1− q2k)

1− qk =
∞

∏
k=1

1
1− q2k−1 ,

Euler stated the first relation that links different sets of partitions, known as the Euler distinct-odd
identity.

Theorem 1.1.4 (Euler). For any non-negative integer n, the set of partitions of n into distinct parts and the set
of partitions of n into odd parts are equinumerous.

Example 1.1.5. For example, here we give the list of the partitions of D(n) and O(n) for n ≤ 5.

n D(n) O(n)
1 (1) (1)
2 (2) (1, 1)
3 (3), (2, 1) (3), (1, 1, 1)
4 (4), (3, 1) (3, 1), (1, 1, 1, 1)
5 (5), (4, 1), (3, 2) (5), (3, 1, 1), (1, 1, 1, 1, 1, 1, 1)

We end this section by presenting a graphical representation of integer partitions, namely the Ferrers
diagram, as well as a key transformation on integer partitions, the conjugacy.
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Definition 1.1.6. Let λ = (λ1, . . . , λs) be a integer partition. The Ferrers diagram of the partition λ is the
subset of the plane R2 defined by

{(i, j) : 0 < i < s , 0 < j < λdie} .

The conjugate of the partition λ is the partition λ′ = (λ′1, . . . , λ′r), where r = λ1, and for all j ∈ {1, . . . , r},

λ′j = |{i ∈ {1, . . . , s} : λi ≥ j}| ,

where |set| is the cardinality of the set set.

=

FIGURE 1.1: Ferrers diagram of (5, 3, 1, 1) and its conjugate (4, 2, 2, 1, 1)

The area of the Ferrers diagram of λ is exactly |λ|, and the conjugacy is an involution of the set of
integer partitions that preserves the size of the partitions, and maps the length of the partitions to the
first (greatest) part of their image.

1.2 Partition identities

In the spirit of Euler’s distinct-odd identity, we define the general notion of partition identity.

Definition 1.2.1. A partition identity is a combinatorial identity that links two or several sets of integer
partitions.

We now introduce an important tool for the computation of partition generating functions.

Definition 1.2.2. The q-Pochhammer symbol is defined by (x; q)m = ∏m−1
k=0 (1− xqk) for any integer m ∈

Zm≥0 ∪{∞} and any complex numbers x, q such that |q| < 1. More generally, we define for any complex
numbers x1, . . . , xs the expression (x1, . . . , xs; q)m = (x1; q)m · · · (xs; q)m. A q-series is a series whose
coefficients can be expressed in terms of the symbols (x1, . . . , xs; q)m.

Using this notation, the generation function given in (1.1.3) is 1/(q; q)∞ and the Euler distinct-odd
identity becomes (−q; q)∞ = 1/(q; q2)∞. In this section, we focus on two such identities, the Glaisher
identity and the Rogers-Ramanujan identities.

1.2.1 Glaisher’s identity

While the Euler identity is not difficult to prove by computing the generating function of both sets of
partitions, finding a bijection that links these sets is not a trivial task. In (Glaisher, 1883; Sylvester, 1973),
Glaisher and Sylvester gave two different bijections.

In (Glaisher, 1883), Glaisher bijectively proved the first broad generalization of the Euler identity.
Here we present the machinery of Glaisher’s bijection.

Let us take a partition into odd parts. Then, as long as two parts are equal, sum them up to obtain a
new part corresponding to their double. Since the partition has a finite number of parts, the algorithm
then necessarily ends, and this when all the parts in the sequence are distinct.

The inverse bijection then consists in starting from a partition into distinct parts and splitting, as long
as it is possible, any even part into two parts both equal to its half. The process then ends when all the
parts are odd, and this because of the fact that any positive integer has a maximal divisor which a power
of 2.

Example 1.2.3. Apply this algorithm on the partition (9, 9, 7, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1), and we obtain
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(9, 9, 7, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1)

(18, 7, 10, 5, 3, 2, 2, 2, 1)

(18, 7, 10, 5, 3, 4, 2, 1)

By sorting the final sequence, the corresponding image is then (18, 10, 7, 5, 4, 3, 2, 1). Reciprocally, by applying
the inverse bijection on (18, 10, 7, 5, 4, 3, 2, 1), we have

(18, 10, 7, 5, 4, 3, 2, 1)

(9, 9, 5, 5, 7, 5, 2, 2, 3, 1, 1, 1)

(9, 9, 5, 5, 7, 5, 1, 1, 1, 1, 3, 1, 1, 1)

and by sorting the parts, we obtain as image the original partition into odd parts (9, 9, 7, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1).

One can observe that the order in which we sum the parts does not matter, and the final image only
depends on the binary decomposition of the numbers of occurrences n2k−1(λ) for k > 0. In the example
above with λ = (9, 9, 7, 5, 5, 5, 3, 1, 1, 1, 1, 1, 1), we respectively have

(n1(λ), n3(λ), n5(λ), n7(λ), n9(λ)) = (7, 1, 3, 1, 2) = (4 + 2 + 1, 1, 2 + 1, 1, 2)

and then the image is obtained after sorting the sequence

(4× 1, 2× 1, 1× 1, 1× 3, 2× 5, 1× 5, 1× 7, 2× 9) = (4, 2, 1, 3, 10, 5, 7, 18) .

The well-definedness of the inverse bijection relies on the fact that any positive integer can be uniquely
written as a product of a odd number and a power of 2. At the end of the process, the part (2k− 1)× 2n

will then result in 2n parts equal to 2k− 1.

Glaisher observed that the above machinery behind the bijection only depends on the binary decom-
position. Then, using a similar approach in base m for any positive m > 1, he stated the first broad result
beyond the Euler identity.

Definition 1.2.4. Let m be a positive integer. We define an m-flat partition to be a partition where the
differences between two consecutive parts, as well the smallest part, are less than m, and an m-regular
partition to be a partition with parts not divisible by m.

The generalization of Euler’s identity given by Glaisher, and which makes the connection between
m-flat and m-regular partitions, is stated in the following theorem.

Theorem 1.2.5 (Glaisher). For a fixed positive integer n, the following sets of partitions are equinumerous:

1. the m-regular partitions of n,

2. the partitions of n with fewer than m occurrences for each positive integer,

3. the m-flat partitions of n.

In terms of q-series, they can be stated

∏
n≥1

(1 + qn + q2n + · · ·+ qn(m−1)) =
(qm; qm)∞

(q; q)∞
= ∏

n≥1
m-n

1
(1− qn)

· (1.2.1)

The conjugacy allows us to link the m-flat partitions to the partitions with fewer than m occurrences
for each integer. The Glaisher bijection analogous to the one given for Euler’s distinct-odd identity, that
links the m-regular partitions and the partitions with fewer than m occurrences for each integer, is the
following: for any m-regular partition, as long as a part appears m times, we sum then up to the part
which is the m times the repeated part.
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The bijective proof of the Euler identity, given by Sylvester (Sylvester, 1973), is more subtle and will
be presented in Chapter 5. It was a open problem to find a suitable generalization of Sylvester’s bijection
for the Glaisher identity. This problem was solved, a century after the paper of Sylvester, by Stockhofe
in his Ph.D thesis (Stockhofe, 1982). In the 90’s, seminal works of Bessenrodt (Bessenrodt, 1994), and Pak
and Postinkov (Pak and Postnikov, 1998), related the Sylvester algorithm to the alternating sign sum of
integer partitions. They then gave new refinements of the Euler identity.

In this thesis, we especially focus on a broad refinement of Glaisher’s identity given by Keith and
Xiong (Keith and Xiong, 2019).

Theorem 1.2.6 (Keith-Xiong). Let m ≥ 2, u1, . . . , um−1, n be non-negative integers. Then, the number of m-flat
partitions of n with ui parts congruent to i mod m is equal to the number of m-regular partitions of n into ui
parts congruent to i mod m.

Their proof used a variant of the Sylvester-style bijection given by Stockhofe. In Chapter 5, we adapt
this bijection to give a result beyond their refinement.

1.2.2 Rogers-Ramanujan type identities

The most famous partition identities are probably the Rogers-Ramanujan identities (Rogers and Ra-
manujan, 1919). They can be stated as follows.

Theorem 1.2.7 (Rogers 1894, Ramanujan 1913). Let i = 0 or 1. Then

∑
n≥0

qn2+(1−i)n

(q; q)n
=

1
(q2−i; q5)∞(q3+i; q5)∞

. (1.2.2)

By interpreting both sides of (1.2.2) as generating functions for partitions, MacMahon (MacMahon,
1916) gave the following combinatorial version of the identities. This very interpretation was indepen-
dently given by Schur.

Theorem 1.2.8 (Rogers-Ramanujan identities, partition version). Let a = 0 or 1. For every natural number
n, the number of partitions of n such that the difference between two consecutive parts is at least 2 and the part 1
appears at most 1− a times is equal to the number of partitions of n into parts congruent to ±(1 + a) mod 5.

In this spirit, we define the notion of Rogers-Ramanujan type identity.

Definition 1.2.9. A partition identity of the Rogers-Ramanujan type is a theorem stating that for all n,
the number of partitions of n satisfying some difference conditions equals the number of partitions of n
satisfying some congruence conditions.

Dozens of proofs of these identities have been given, using different techniques, see for example
(Andrews, 1984b; Bressoud, 1983; Watson, 1929). Especially, in (Garsia and Milne, 1981), Garsia and
Milne gave the first bijective proof for these identities, laying the foundations of the involution principle.
One can also observe that the Glaisher identity is of Rogers-Ramanujan type.

Following in the track of the Rogers-Ramanujan identities, Schur gave in (Schur, 1926) one of the
most important identities in the theory of partitions, probably the most studied after the Rogers-Ramanujan
identities.

Theorem 1.2.10 (Schur 1926). For any positive integer n, the number of partitions of n into distinct parts
congruent to±1 mod 3 is equal to the number of partitions of n where parts differ by at least three and multiples
of three differ by at least six.

There have been a number of proofs of Schur’s result over the years, including a q-difference equa-
tion proof of Andrews (Andrews, 1968) and a simple bijective proof of Bressoud (Bressoud, 1980).

Another important identity is Göllnitz’ theorem Göllnitz, 1967.

Theorem 1.2.11 (Göllnitz 1967). For any positive integer n, the number of partitions of n into distinct parts
congruent to 2, 4, 5 mod 6 is equal to the number of partitions of n into parts different from 1 and 3, and where
parts differ by at least six with equality only if parts are congruent to 2, 4, 5 mod 6.

Like Schur’s theorem, Göllnitz’ identity can be proved using q-difference equations (Andrews, 1969b)
and elegant Bressoud-style bijections (Padmavathamma and Sudarshan, 2004; Zhao, 2015).
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The Rogers-Ramanujan type identities have a rich history, and the study of such identities allowed
mathematicians to develop several key methods for the theory of integer partitions. In this thesis we in-
vestigate two such methods: a combinatorial method, the weighted words, and a Lie-theoretic method,
the (KMN)2 character formula.

1.3 Weighted words

The weighted words were introduced by Alladi and Gordon to understand the combinatorial machinery
behind the Schur identity. They consist in associating to the part of a classical partition some colors. In
this section we present major works using weighted words.

1.3.1 From the Alladi-Gordon identity to the Alladi-Andrews-Berkovich identity

Seminal work of Alladi, Andrews, and Gordon in the 90’s showed how the theorems of Schur and Göll-
nitz emerge from more general results on colored partitions (Alladi and Gordon, 1993; Alladi, Andrews,
and Gordon, 1995).

In the case of Schur’s theorem, we consider parts in three colors {a, b, ab} and order them as follows:

1ab < 1a < 1b < 2ab < 2a < 2b < 3ab < · · · · (1.3.1)

We then consider the partitions with colored parts different from 1ab and satisfying the minimal differ-
ence conditions in the table

λi\
λi+1 ab b b

ab 2 2 2
a 1 1 2
b 1 1 1

· (1.3.2)

Here, the part λi with color in the row and the part λi+1 with color in the column differ by at least
the corresponding entry in the table. An example of such a partition is (7ab, 5b, 4a, 3ab, 1b). The Alladi-
Gordon refinement of Schur’s partition theorem (Alladi and Gordon, 1993) is stated as follows:

Theorem 1.3.1. Let u, v, n be non-negative integers. Denote by A(u, v, n) the number of partitions of n into u
distinct parts with color a and v distinct parts with color b, and denote by B(u, v, n) the number of partitions of
n satisfying the conditions above, with u parts with color a or ab, and v parts with color b or ab. We then have
A(u, v, n) = B(u, v, n) and the identity

∑
u,v,n≥0

B(u, v, n)aubvqn = ∑
u,v,n≥0

A(u, v, n)aubvqn = (−aq; q)∞(−bq; q)∞ · (1.3.3)

Note that a transformation implies Schur’s theorem :{
dilation : q 7→ q3

translations : a, b 7→ q−2, q−1 · (1.3.4)

In fact, the minimal difference conditions given in (1.3.2) give after these transformations the minimal
differences in Schur’s theorem. Moreover, finding such refinements and non-dilated versions of parti-
tion identities can be helpful to find bijective proofs of them.

In the case of Göllnitz’ theorem, we consider parts that occur in six colors {a, b, c, ab, ab, bc} with the
order

1ab < 1ac < 1a < 1bc < 1b < 1c < 2ab < 2ac < 2a < 2bc < 2b < 2c < 3ab < · · · , (1.3.5)

and the partitions with colored parts different from 1ab, 1ac, 1bc and satisfying the minimal difference
conditions in

λi\
λi+1 ab ac a bc b c

ab 2 2 2 2 2 2
ac 1 2 2 2 2 2
a 1 1 1 2 2 2
bc 1 1 1 2 2 2
b 1 1 1 1 1 2
c 1 1 1 1 1 1

· (1.3.6)
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The Alladi-Andrews-Gordon refinement of Göllnitz’s partition theorem can be stated as follows:

Theorem 1.3.2. Let u, v, w, n be non-negative integers. Denote by A(u, v, w, n) the number of partitions of n
into u distinct parts with color a, v distinct parts with color b and w distinct parts with color c, and denote by
B(u, v, w, n) the number of partitions of n satisfying the conditions above, with u parts with color a, ab or ac, v
parts with color b, ab or bc and w parts with color c, ac or bc. We then have A(u, v, w, n) = B(u, v, w, n) and the
identity

∑
u,v,w,n≥0

B(u, v, w, n)aubvcwqn = ∑
u,v,w,n≥0

A(u, v, w, n)aubvcwqn = (−aq; q)∞(−bq; q)∞(−cq; q)∞ ·

(1.3.7)

Note that a transformation implies Göllnitz’ theorem :{
dilation : q 7→ q6

translations : a, b, c 7→ q−4, q−2, q−1 · (1.3.8)

Observe that while Schur’s theorem is not a direct corollary of Göllnitz’ theorem, Theorem 1.3.1 is im-
plied by Theorem 1.3.2 by setting c = 0. Therefore Göllnitz’ theorem may be viewed as a level higher
than Schur’s theorem, since it requires three primary colors instead of two.

Following the work of Alladi, Andrews, and Gordon, it was an open problem to find a partition
identity beyond Göllnitz’ theorem, in the sense that it would arise from four primary colors. This was
famously solved by Alladi, Andrews, and Berkovich (Alladi, Andrews, and Berkovich, 2003). To de-
scribe their result, we consider parts that occur in eleven colors {a, b, c, d, ab, ab, ad, bc, bd, cd, abcd} and
ordered as follows:

1abcd < 1ab < 1ac < 1ad < 1a < 1bc < 1bd < 1b < 1cd < 1c < 1d < 2abcd < · · · · (1.3.9)

Let us consider the partitions with the length of the secondary parts greater than one and satisfying the
minimal difference conditions in

λi\
λi+1 ab ac ad a bc bd b cd c d

ab 2 2 2 2 2 2 2 2 2 2
ac 1 2 2 2 2 2 2 2 2 2
ad 1 1 2 2 2 2 2 2 2 2
a 1 1 1 1 2 2 2 2 2 2
bc 1 1 1 1 2 2 2 2 2 2
bd 1 1 1 1 1 2 2 2 2 2
b 1 1 1 1 1 1 1 2 2 2
cd 1 1 1 1 1 1 1 2 2 2
c 1 1 1 1 1 1 1 1 1 2
d 1 1 1 1 1 1 1 1 1 1

, (1.3.10)

and such that parts with color abcd differ by at least 4, and the smallest part with color abcd is at least
equal to 4 + 2τ− χ(1a is a part), where τ is the number of primary and secondary parts in the partition.
The theorem is then stated as follows.

Theorem 1.3.3. Let u, v, w, t, n be non-negative integers. Denote by A(u, v, w, t, n) the number of partitions of
n into u distinct parts with color a, v distinct parts with color b, w distinct parts with color c and t distinct parts
with color d, and denote by B(u, v, w, t, n) the number of partitions of n satisfying the conditions above, with u
parts with color a, ab, ac, ad or abcd, v parts with color b, ab, bc, bd or abcd, w parts with color c, ac, bc, cd or abcd
and t parts with color d, ad, bd, cd or abcd. We then have A(u, v, w, t, n) = B(u, v, w, t, n) and the identity

∑
u,v,w,t,n≥0

B(u, v, w, t, n)aubvcwdtqn = (−aq; q)∞(−bq; q)∞(−cq; q)∞(−dq; q)∞ · (1.3.11)

Note that the result of Alladi-Andrews-Berkovich uses four primary colors, the full set of secondary
colors, along with one quaternary color abcd. When d = 0, we recover Theorem 1.3.2. Their main tool
was a difficult q-series identity:

∑
i,j,k,l−constraints

qTτ+TAB+TAC+TAD+TCB+TBD+TCD−BC−BD−CD+4TQ−1+3Q+2Qτ

(q)A(q)B(q)C(q)D(q)AB(q)AC(q)AD(q)BC(q)BD(q)CD(q)Q
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·{(1− qA) + qA+BC+BD+Q(1− qB) + qA+BC+BD+Q+B+CD}

= ∑
i,j,k,l−constraints

qTi+Tj+Tk+Tl

(q)i(q)j(q)k(q)l
(1.3.12)

where A, B, C, D, AB, AC, AD, BC, BD, CD, Q are variables which count the number of parts with re-
spectively color a, b, c, d, ab, ab, ad, bc, bd, cd, abcd,

i = A + AB + AC + AD + Q
j = B + AB + BC + BD + Q
k = C + AC + BC + CD + Q
l = D + AD + BD + CD + Q
τ = A + B + C + D + AB + AC + AD + BC + BD + CD + Q

,

Tn = n(n+1)
2 is the nth triangular number and (q)n = (q; q)n. While this identity is difficult to prove, it is

relatively straightforward to show that it is equivalent to the statement in Theorem 1.3.3.

One of the contribution of this thesis consists in using a bijective approach to show, not only the
Alladi-Andrews-Gordon theorem, but a more general result beyond Göllnitz’ theorem for an arbitrary
number of primary colors.

1.3.2 On Siladić’s partition theorem

Another rich source of Rogers-Ramanujan type identities is the representation theory of Lie algebras.
This has its origins in work of Lepowsky and Wilson (Lepowsky and Wilson, 1984), who proved the
Rogers-Ramanujan identities by using representations of the affine Lie algebra sl(2, C)∼. Subsequently,
Capparelli (Capparelli, 1993), Meurman and Primc (Meurman and Primc, 1987) and others examined re-
lated standard modules and affine Lie algebras and found many new Rogers-Ramanujan type identities.
We present some of these identities in the next section.

Here, we shall be concerned by one such identity given by Siladić (Siladić, 2017) in his study of
representations of the twisted affine Lie algebra A(2)

2 .

Theorem 1.3.4 (Siladić). The number of partitions λ1 + · · ·+ λs of an integer n into distinct odd parts is equal
to the number of partitions of n, into parts different from 2, such that λi − λi+1 ≥ 5 and

λi − λi+1 = 5⇒ λi + λi+1 ≡ ±3 mod 16 ,
λi − λi+1 = 6⇒ λi + λi+1 ≡ 0,±4, 8 mod 16 ,
λi − λi+1 = 7⇒ λi + λi+1 ≡ ±1,±5,±7 mod 16 ,
λi − λi+1 = 8⇒ λi + λi+1 ≡ 0,±2,±6, 8 mod 16 ·

Rephrased, we obtain the following equivalent formulation.

Theorem 1.3.5 (Siladić, rephrased by Dousse). The number of partitions λ1 + · · ·+ λs of an integer n into
distinct odd parts is equal to the number of partitions of n into parts different from 2 such that λi − λi+1 ≥ 5 and

λi − λi+1 = 5⇒ λi ≡ 1, 4 mod 8 ,
λi − λi+1 = 6⇒ λi ≡ 1, 3, 5, 7 mod 8 ,
λi − λi+1 = 7⇒ λi ≡ ±0, 1, 3, 4, 6, 7 mod 8 ,
λi − λi+1 = 8⇒ λi ≡ 0, 1, 3, 4, 5, 7 mod 8 ·

For example, for n = 16, the partitions into distinct odd parts are

15 + 1, 13 + 3, 11 + 5, 9 + 7 and 7 + 5 + 3 + 1 ,

while the partitions of the second kind are

15 + 1, 13 + 3, 11 + 5, 16 and 12 + 4 ·

Siladić’s theorem has recently been refined by Dousse (Dousse, 2017b) via weighted words. Her frame-
work is as follows: we consider parts colored by two primary colors a, b and three secondary colors
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a2, b2, ab, with the colored parts ordered as follows:

1ab < 1a < 1b2 < 1b < 2ab < 2a < 3a2 < 2b < 3ab < 3a < 3b2 < 3b < · · · · (1.3.13)

Note that only odd parts can be colored by a2, b2. The transformations

q→ q4 , a→ aq−3 , b→ bq−1 , (1.3.14)

leads to the natural order

0ab < 1a < 2b2 < 3b < 4ab < 5a < 6a2 < 7b < 8ab < 9a < 10b2 < 11b < · · · · (1.3.15)

We then impose the minimal differences according the following table

λi\
λi+1 a2

odd aodd aeven b2
odd bodd beven abodd abeven

a2
odd 4 4 3 4 4 3 4 3

aodd 2 2 3 2 2 3 2 1
aeven 3 3 2 3 3 2 3 2
b2

odd 2 2 3 4 4 3 2 3
bodd 2 2 1 2 2 3 2 1
beven 1 1 2 3 3 2 1 2
abodd 2 2 3 4 4 3 2 3
abeven 3 3 2 3 3 2 3 2

, (1.3.16)

which can be reduced to the table :

λi\
λi+1 a2

odd a b2
odd b abodd abeven

a2
odd 4 3 4 3 4 3
a 2 2 2 2 2 1

b2
odd 2 2 4 3 2 3
b 1 1 2 2 1 1

abodd 2 2 4 3 2 3
abeven 3 2 3 2 3 2

· (1.3.17)

One can check that these minimal differences define a partial strict order on the set of parts colored by
primary and secondary colors. With this coloring, Dousse refined the Siladić theorem as follows:

Theorem 1.3.6 (Dousse). Let (u, v, n) ∈N3. Denote byD(u, v, n) the set of all the partitions of n, such that no
part is equal to 1ab, 1a2 or 1b2 , with the difference between two consecutive parts following the minimal conditions
in (1.3.16), and with u equal to the number of parts with color a or ab plus twice the number of parts colored by
a2, and v equal to the number of parts with color b or ab plus twice the number of parts colored by b2. Denote by
C(u, v, n) the set of all the partitions of n with u distinct parts colored by a and v distinct parts colored by b. We
then have ]D(u, v, n) = ]C(u, v, n).

In terms of q-series, we have the equation

∑
u,v,n≥0

]D(u, v, n)aubvqn = ∑
u,v,n≥0

]C(u, v, n)aubvqn = (−aq; q)∞(−bq; q)∞ · (1.3.18)

Dilating (1.3.16) by (1.3.14) gives exactly the minimal difference conditions in Siladić’s theorem and
(1.3.18) becomes the generating function for partitions into distinct odd parts, so that Theorem 1.3.5 is a
corollary of Theorem 1.3.6.

In this thesis, we bijectively prove a broad generalization of the refinement of Siladić ’s theorem for
an arbitrary number of primary colors.

1.4 Partition identities and Representation theory of affine Lie alge-
bras

In the representation theory of Lie algebras, the character is a statistic of representations whose expres-
sion can be seen as a generating function in terms of simple roots. The starting point of our discussion is
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the Weyl-Kac character formula (Kac, 1978; Kac, 1990), whose principal specialization gives an expres-
sion of the character as an infinite q-product. This provides good candidates for Rogers-Ramanujan type
identities, whose expressions consist of a equality between a sum (partitions satisfying some difference
conditions) and a product (partitions satisfying some congruence conditions). Seminal works of repre-
sentation theorists allowed to develop techniques to build the sum-side for the character. In this section,
we discuss two such tools: the vertex operator theory and the theory perfect crystals.

1.4.1 Lie-theoretic proof of the Rogers-Ramanujan identities

First, Lepowsky and Milne (Lepowsky and Milne, 1978a; Lepowsky and Milne, 1978b) noticed that the
product side of the Rogers-Ramanujan identities (1.2.2) multiplied by the “fudge factor” 1/(q; q2)∞ is
equal to the principal specialisation of the Weyl-Kac character formula for level 3 standard modules of
the affine Lie algebra A(1)

1 . Then, Lepowsky and Wilson (Lepowsky and Wilson, 1984; Lepowsky and
Wilson, 1985) gave an interpretation of the sum side by constructing a basis of these standard modules
using vertex operators. Very roughly, they proceed as follows. They start with a spanning set of the
module V, indexed by monomials of the form Z f1

1 . . . Z fs
s for s, f1, . . . , fs ∈ N. Then by the theory of

vertex operators, there are some relations between these monomials, which allows them to reduce the
spanning set by removing the monomials containing Z2

j and ZjZj+1. The last step is then to prove
that this reduced family of monomials is actually free, and therefore a basis of the representation. The
connection to Theorem 1.2.7 is then done by noting that monomials Z f1

1 . . . Z fs
s which do not contain Z2

j
or ZjZj+1 for any j are in bijection with partitions which do not contain twice the part j or both the part
j and j + 1 for any j, i.e. partitions with difference at least 2 between consecutive parts.

The theory of vertex operator algebras developed by Lepowsky and Wilson turned out to be very
influential: for example, it was used by Frenkel, Lepowsky, and Meurman to construct a natural repre-
sentation of the Monster finite simple group (Frenkel, Lepowsky, and Meurman, 1988), and was key in
the work of Borcherds on vertex algebras and his resolution of the Conway-Norton monstrous moon-
shine conjecture (Borcherds, 1992).

1.4.2 Capparelli’s identity

Following Lepowsky and Wilson’s discovery, several other representation theorists studied other Lie
algebras or representations at other levels, and discovered new interesting and intricate partition identi-
ties, that were previously unknown to the combinatorics community, see for example (Capparelli, 1993;
Meurman and Primc, 1987; Meurman and Primc, 1999; Meurman and Primc, 2001; Nandi, 2014; Primc,
1994; Primc and Šikić, 2016; Siladić, 2017),

After Lepowsky and Wilson’s work, Capparelli (Capparelli, 1993) was the first to conjecture a new
identity, by studying the level 3 standard modules of the twisted affine Lie algebra A(2)

2 . It was first
proved combinatorially by Andrews in (Andrews, 1992), then refined by Alladi, Andrews and Gordon
in (Alladi, Andrews, and Gordon, 1995) using the method of weighted words, and finally proved by
Capparelli (Capparelli, 1996) and Tamba and Xie (Tamba and Xie, 1995) via representation theoretic
techniques. Later, Meurman and Primc (Meurman and Primc, 1999) showed that Capparelli’s identity
can also be obtained by studying the (1, 2)-specialisation of the character formula for the level 1 modules
of A(1)

1 . Capparelli’s original identity can be stated as follows.

Theorem 1.4.1 (Capparelli’s identity (Andrews 1992)). Let C(n) denote the number of partitions of n into
parts > 1 such that parts differ by at least 2, and at least 4 unless consecutive parts add up to a multiple of 3.
Let D(n) denote the number of partitions of n into distinct parts not congruent to ±1 mod 6. Then for every
positive integer n, C(n) = D(n).

In this thesis, we will mostly be interested in the weighted words version of Theorem 1.4.1. We now
describe Alladi, Andrews, and Gordon’s refinement of Capparelli’s identity (slightly reformulated by
Dousse in (Dousse, 2020)).

Consider partitions into natural numbers in three colours, a, c, and d (the absence of the color b will
be made clear in a few paragraphs, when we will mention the connection with Primc’s identity), with
the order

1a < 1c < 1d < 2a < 2c < 2d < · · · , (1.4.1)
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satisfying the difference conditions in the matrix

C2 =


a c d

a 2 2 2
c 1 1 2
d 0 1 2

 · (1.4.2)

The non-dilated version of Capparelli’s identity can be stated as follows.

Theorem 1.4.2 (Alladi–Andrews–Gordon 1995). Let C2(n; i, j) denote the number of partitions of n into
colored parts satisfying the difference conditions in matrix C2, having i parts colored a and j parts colored d. We
have

∑
n,i,j≥0

C(n; i, j)aidjqn = (−q)∞(−aq; q2)∞(−dq; q2)∞.

Performing the dilations
q→ q3, a→ aq−1, d→ dq,

which correspond to the following transformations on the parts of the partitions

ka → (3k− 1)a, kb → 3k, kd → (3k + 1)d,

we obtain a refinement of Capparelli’s original identity. Other dilations can lead to infinitely many other
(but related) partition identities.

1.4.3 Primc’s identities

Another way to obtain Rogers-Ramanujan type partition identities using representation theory is the
theory of perfect crystals of affine Lie algebras. Much more detail on crystals is given in Chapter 8,
but the rough idea is the following. The generating function for partitions with congruence condi-
tions, which is always an infinite product, is still obtained via a specialisation of the Weyl-Kac character
formula. The equality with the generating function for partitions with difference conditions is estab-
lished through the crystal base character formula of Kang, Kashiwara, Misra, Miwa, Nakashima, and
Nakayashiki (Kang et al., 1992c). This formula expresses, under certain specialisations, the character
as the generating function for partitions satisfying difference conditions given by energy matrices of
perfect crystals.

The identity which we study in this section, due to Primc (Primc, 1999), was obtained that way by
studying crystal bases of A(1)

1 . The energy matrix of the perfect crystal coming from the tensor product
of the vector representation and its dual is given by

P2 =


a b c d

a 2 1 2 2
b 1 0 1 1
c 0 1 0 2
d 0 1 0 2

. (1.4.3)

Let P(n; i, j, k, `) denote the number of partitions of n into four colors a, b, c, d, with i (resp. j, k, `) parts
colored a (resp. b, c, d), satisfying the difference conditions of the matrix P2. Then the crystal base char-
acter formula and the Weyl-Kac character formula imply that under the dilations

ka → 2k− 1, kb → 2k, kc → 2k, kd → 2k + 1, (1.4.4)

the generating function for these colored partitions becomes 1/(q; q)∞.

Theorem 1.4.3 (Primc 1999). We have

∑
n,i,j,k,`

P(n; i, j, k, `)q2n−i+` =
1

(q; q)∞
.
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By taking the same approach for the affine Lie algebra A(1)
2 , Primc also gave the following energy

matrix (where the naming of the colors comes from our generalization):

P3 =



a2b0 a2b1 a1b0 a0b0 a2b2 a1b1 a0b1 a1b2 a0b2

a2b0 2 2 2 1 2 2 2 2 2
a2b1 1 2 1 1 2 1 2 2 2
a1b0 1 1 2 1 1 2 2 2 2
a0b0 1 1 1 0 1 1 1 1 1
a2b2 0 0 1 1 0 1 1 2 2
a1b1 0 1 0 1 1 0 2 1 2
a0b1 0 1 0 1 1 0 2 1 2
a1b2 0 0 1 1 0 1 1 2 2
a0b2 0 0 0 1 0 0 1 1 2


. (1.4.5)

Theorem 1.4.4 (Primc 1999). Under the dilations

ka2b0 → 3k− 2, ka2b1 → 3k− 1, ka1b0 → 3k− 1,
ka0b0 → 3k, ka1b1 → 3k, ka2b2 → 3k,
ka0b1 → 3k + 1, ka1b2 → 3k + 1, ka0b2 → 3k + 2,

(1.4.6)

the generating function for 9-colored partitions satisfying the difference conditions of (1.4.5) becomes 1/(q; q)∞.

When seeing these two theorems of Primc, one might find it surprising that the generating function
for partitions with such intricate difference conditions simply becomes 1/(q; q)∞, the generating func-
tion for unrestricted partitions. However recently, Dousse and Lovejoy (Dousse and Lovejoy, 2018) gave
a weighted words version of Theorem 1.4.3.

Theorem 1.4.5 (Dousse-Lovejoy 2018, non-dilated version of Primc’s identity). Let P(n; i, j, k, `) be defined
as above. We have

∑
n,i,j,k,`

P(n; i, j, k, `)qnaickd` =
(−aq; q2)∞(−dq; q2)∞

(q; q)∞(cq; q2)∞
.

Performing the dilations of (1.4.4) indeed transforms the infinite product above into 1/(q; q)∞. But
the theorem above shows that keeping track of all colors except b leads to a much more intricate infi-
nite product as well, and that the extremely simple expression 1/(q; q)∞ appears only because of the
particular dilation that Primc considered. Later, Dousse (Dousse, 2020) even gave an expression for the
generating function for P(n; i, j, k, `) keeping track of all the colors, but it can be written as an infinite
product only if we do not keep track of the color b.

Thus it is interesting from a combinatorial point of view to see whether a similar phenomenon hap-
pens with Theorem 1.4.4 as well. To do so, we would like to compute the generating function for colored
partitions satisfying the difference conditions (1.4.5), at the non-dilated level, keeping track of as many
colors as possible. In a joint-work with Dousse (Dousse and Konan, 2019a; Dousse and Konan, 2019b),
not only do we succeed in doing this, but we embed both of Primc’s theorems into an infinite family of
identities about partitions satisfying difference conditions given by n2 × n2 matrices.

Apart from the fact that they can be obtained from the same Lie algebra A(1)
1 , Capparelli’s and

Primc’s identities didn’t seem related from the representation theoretic point of view, as they were
obtained in completely different ways, and Capparelli’s identity did not seem related to perfect crys-
tals. However, recently, Dousse (Dousse, 2020) gave a bijection between colored partitions satisfying the
difference conditions (1.4.3) and pairs of partitions (λ, µ), where λ is a colored partition satisfying the
difference conditions (1.4.2), and µ is a partition colored b. This bijection preserves the total weight, the
number of parts, the size of the parts, and the number of parts colored a and d. Therefore, combinatori-
ally, these two identities are very closely related. We generalized this bijection to our new generalization
of Primc’s identity and obtain two families of partition identities with difference conditions given by
(n2 − 1)× (n2 − 1) matrices, which generalize Capparelli’s identity.

In this thesis, we present a broad result beyond the generalizations of both Capparelli’s and Primc’s
identities for more general families of colored partitions.
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1.4.4 Character formula as series with positive coefficients

Finding an explicit expression of the character as a series with positive coefficients is an important prob-
lem. While the principal specialisation of the Weyl-Kac character formula is a product of q-series with
obvious positive coefficients, the original formula expresses the character as a product with a factor
which has negative coefficient according to the parity of the elements of the Weyl group. In (Kac
and Peterson, 1984), using modular forms and string functions, Kac and Peterson gave a formula for
e−Λch(L(Λ)) for all the irreducible highest weight level 1 modules Λ of all classical types as a series in
Z[[e−α0 , e−α1 , · · · , e−αn−1 ]] with obviously positive coefficients. This built on earlier work of Kac (Kac,
1978), in which he proved the particular case where M = L(Λ0) in A(1)

n , D(1)
n , and E(1)

n .

In (Bartlett and Warnaar, 2015), Bartlett and Warnaar used Hall-Littlewood polynomials to give ex-
plicitly positive formulas for the characters of certain highest weight modules of the affine Lie alge-
bras C(1)

n , A(2)
2n , and D(2)

n+1, which also led to generalisations for the Macdonald identities in types B(1)
n ,

C(1)
n , A(2)

2n−1, A(2)
2n , and D(2)

n+1. However their approach failed to give a formula for the case A(1)
n . Us-

ing Macdonald-Koornwinder theory, Rains and Warnaar (“Bounded Littlewood identities”) later found
additional character formulas for these types, together with new Rogers-Ramanujan type identities.
In (Griffin, Ono, and Warnaar, 2016), Griffin, Ono, and Warnaar obtained a limiting Rogers-Ramanujan
type identity for the principal specialisation of the character of some particular weights (m− k)Λ0 + kΛ1

in A(1)
n . On the other hand, Meurman and Primc Meurman and Primc, 1999 treated the case of all levels

of A(1)
1 via vertex operator algebras.

In the paper dealing with the Lie-theoretic interpretation of the generalization of Capparelli’s and
Primc’s identities (Dousse and Konan, 2019b), we introduced a tool which allowed us to compute the
precise formulas of all the level one standard modules of type A(1)

n . In this thesis, we present the gener-
alization of this tool, which allows us to compute the character of level one standard module for other
types A(2)

2n , D(2)
n+1, A(2)

2n−1, B(1)
n , D(1)

n .
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Chapter 2

Contribution of the thesis

Here we present an exhaustive list of the works that comprise this thesis. We start with a new notion
of weighted words, the foundation of all the remaining results. We present all these results as general-
izations, which, from our viewpoint, are easier to prove when they are well-formalized. In addition, for
each generalization, we give explicit results as particular cases of the generalization.

2.1 Weighted words revisited

We present in this section our weighted words in a more general and formal way than the original
method given by Alladi and Gordon. The purpose of this exposition is to set the major tools that will
enable us to generalize the identities presented in Chapter 1.

2.1.1 Generalized colored partitions

Let C be a set of colors, and let ZC = {kc : k ∈ Z, c ∈ C} be the set of colored integers. First, we relax the
condition that parts of colored partitions have to be in non-increasing order.

Definition 2.1.1. Let� be a binary relation defined on ZC . A generalized colored partition with relation
� is a finite sequence (π1, . . . , πs) of colored integers, where for all i ∈ {1, . . . , s− 1}, πi � πi+1.

In the following, c(πi) ∈ C denotes the color of the part πi. The quantity |π| = π1 + · · ·+ πs is the
size of π, and C(π) = c(π1) · · · c(πs) is its color sequence.

Remark 2.1.2. The binary relation is not necessarily an order. When� is a strict order, we can easily check that
every finite set of colored parts defines a classical colored partition, by ordering the parts. In the same way, for an
order, the generalized colored partitions are finite multi-sets of colored integers.

Definition 2.1.3. An energy ε on C is a function from C2 to Z. Note that when C = {c1, . . . , cn} is a finite
color set, the data given by ε is equivalent to a matrix Mε = (ε(ci, cj))

n
i,j=1, called energy matrix. The

binary relation�ε on ZC , associated to an energy ε, is defined by

kc �ε ld ⇐⇒ k− l ≥ ε(c, d) ·

We then call the relation�ε the minimal difference condition given by energy ε, and denote by Pε the set
of generalized colored partitions with relation�ε.

An energy ε is said to be minimal if it has value in {0, 1}. For such an energy, we refer respectively to
�ε and Oε instead of�ε and Pε.

Example 2.1.4. For the set of classical integer partitions π = (π1, . . . , πs), where parts satisfy π1 ≥ · · · ≥
πs > 0, the empty partition is such that s = 0. This set is in bijection with the set of generalized colored partitions
of Pε with C = {c} and the minimal energy ε satisfying ε(c, c) = 0, and such that the last part size is at least
equal to 1. The bijection is given by

(π1, . . . , πs) 7→ ((π1)c, . . . , (πs)c) ·

Example 2.1.5. The weighted words used by Alladi-Gordon in Theorem 1.3.1 consist of two color sets C1 = {a, b}
and C2 = {ab, a, b}, the energies ε1 and ε2 represented by the energy matrices

Mε1 =

(
1 1
0 1

)
and Mε2 =

2 2 2
1 1 2
1 1 1

 ,
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and the sets of colored partitions counted by A(u, v, n) and B(u, v, n) correspond to some subsets of generalized
colored partitions of Pε1 and Pε2 with some restrictions on the minimal part sizes.

Examples 2.1.6. Let C = {c1, . . . , cn} be a set of colors.

1. For the minimal energy ε(ci, cj) = χ(i < j), where χ(prop) equals 1 if the proposition prop is true and 0
otherwise, we can set an order c1 < · · · < cn on C and the energy relation �ε becomes the lexicographic
order on ZC :

· · · �ε (k + 1)c1 �ε kcn �ε kcn �ε kcn−1 �ε kcn−1 �ε · · · �ε kc2 �ε kc2 �ε kc1 �ε kc1 �ε · · · ·

The corresponding energy matrix is given by

Mε =



c1 c2 · · · cn−1 cn

c1 0 1 · · · 1 1

c2 0 0
. . . 1 1

...
...

...
. . . . . .

...
cn−1 0 0 · · · 0 1
cn 0 0 · · · 0 0

 ·

2. For the minimal energy ε(ci, cj) = χ(i ≤ j), we can set an order c1 < · · · < cn on C and the energy
relation �ε is the strict lexicographic order on ZC :

· · · �ε (k + 1)c1 �ε kcn �ε kcn−1 �ε · · · �ε kc2 �ε kc1 �ε · · · ·

The corresponding energy matrix is given by

Mε =



c1 c2 · · · cn−1 cn

c1 1 1 · · · 1 1
c2 0 1 · · · 1 1
...

...
. . . . . .

...
...

cn−1 0 0
. . . 1 1

cn 0 0 · · · 0 1

 ·

Example 2.1.7. Let C ′ = {c1, · · · , cn} be a set of colors. If we set C ′ = {c : c ∈ C ′} and C = C ′ t C′ we can
then define ε on C, for any i, j ∈ {1, · · · , n}, by the following:

1. ε(ci, cj) = χ(i < j) ,

2. ε(ci, cj) = 0 , ε(ci, cj) = 1 ,

3. ε(ci, cj) = χ(i ≥ j) ·

The relation �ε is then an order on ZC , where over-lined colored particles can occur at most once in any ordered
chain:

· · · �ε (k+ 1)cn �ε kcn �ε kcn �ε kcn−1 �ε · · · �ε kc2 �ε kc1 �ε kc1 �ε kc1 �ε kc2 �ε · · · kcn−1 �ε kcn �ε · · · ·

The latter inequalities give some generalized colored partitions that can be identified as overpartitions (Corteel and
Lovejoy, 2004). The corresponding energy matrix is given by

Mε =



cn · · · c1 c1 · · · cn

cn 1 · · · 1 1 · · · 1
...

...
. . .

...
... 1?

...
c1 0 · · · 1 1 · · · 1
c1 0 · · · 0 0 · · · 1

· · ·
... 0?

...
...

. . .
...

cn 0 · · · 0 0 · · · 0


·

Note that Examples 2.1.6 respectively correspond to the restriction to {c1, . . . , cn} in the first case, and the restric-
tion to {cn, . . . , c1}, with ci ≡ cn+1−i in the second case.
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Example 2.1.8. Let us consider C = {a, b}, and the minimal energy ε given by the following energy matrix:

Mε =

( a b
a 1 0
b 0 1

)
·

The well-ordered sequences of particles with the same potential have the form

· · · �ε ka �ε kb �ε ka �ε kb �ε · · · ·

Degree of the coloring

We now define the notion of degree of the coloring.

Definition 2.1.9. For a fixed set of colors C, referred to as primary colors, we define the set of secondary
colors by C2 = {cc′ : c, c′ ∈ C}, and we note that the secondary colors are non-commutative products
of two primary colors, i.e cc′ 6= c′c for c 6= c′ ∈ C. We extend this definition to degree d for any d ≥ 1.
The set Cd of colors with degree d is the set of all the non-commutative products of d primary colors. We
then have C1 = C, and we use the term "secondary" for degree 2. We finally set for any integer d ≥ 1

〈C〉d =
d⊔

k=1

Ck (2.1.1)

the set of colors of degree at most d, and
〈C〉 =

⊔
k≥1

Ck (2.1.2)

the set of all the colors without restriction of the degree. The weighted words method is said to be at
degree d if it only involves colors with degree at most d, i.e if the set of colors is a subset of 〈C〉d.

Remark 2.1.10. Note that whatever the degree of the weighted words, the color sequence of a non-empty general-
ized colored partition can always be seen as a finite non-commutative product of primary colors. In the following,
we then consider that the color sequence belongs to 〈C〉. Conversely, any color in 〈C〉 can be seen as the color
sequence of a partition equal to a sequence of parts with the corresponding sequence of primary colors.

The first two theorems of this thesis will then have the following formulations.

Theorem 2.1.11. Let C1 be a set of primary colors. Then, for some suitable energies ε1 on C1 and ε2 on C1 t C2,
there exists a bijection between a certain subset of Pε1 and a certain subset of Pε2 .

Grounded partitions

As in the subsequent example 2.1.5, all the colored partitions of the theorems of Chapter 1 satisfy some
restrictions on the minimal part size. Contrary to these colored partitions, for a given energy ε on C,
the generalized colored partitions of Pε do not have any restriction on last part size. To deal with that
problem, we introduce the notion of ground partitions. Let us choose a particular color cg in C. We then
define the notion of grounded partitions as follows.

Definition 2.1.12. A grounded partition with ground cg and relation� is a non-empty generalized col-
ored partition π = (π0, . . . , πs) with relation�, such that πs = 0cg , and when s > 0, πs−1 6= 0cg . Let
P�cg denote the set of such partitions.

In the following, we explicitly write π = (π0, . . . , πs−1, 0cg). The trivial partition in P�cg is then (0cg).

Example 2.1.13. For example, the set of classical partitions is in bijection with the set Pc of the grounded parti-
tions, with ground cg = c and relation�ε, where C = {c} and the energy ε satisfies ε(c, c) = 0. The bijection
is given by

(π1, . . . , πs) 7→ ((π1)c, . . . , (πs)c, 0c),

where the empty partition ∅ corresponds to the grounded partition (0c).

In the following, most of the chosen grounds cg will satisfy the condition 0cg � 0cg . The condition
“πs−1 6= 0cg ” is then to avoid repeated part 0cg at the end of the generalized colored partitions. However,
in general, especially when the conditions on the minimal part sizes are rather difficult to express in
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terms of the colors in C and an energy ε that defines the relation, we add a “fictitious” color c∞ as the
ending color. In that case, we extend the energy ε to C ∪ {c∞} in such a way that ε(c(πs−1), c∞) is the
minimal part size for any color c.

Remark 2.1.14. Note that in the case where the ground is an existing color cg in C, we can still replace it by
a fictitious color c∞ satisfying ε(c, cg) = ε(c, c∞) and ε(cg, c) = ε(c∞, c) for all c 6= cg, and ε(cg, c∞) =
max{ε(cg, cg), 1}.

Regularity

Let us now generalize the notion of regularity defined for the m-regular partitions.

Definition 2.1.15 (Regularity in c). Let c be a color in C. A c-regular partition with ground cg and relation
� is a grounded partition π = (π0, . . . , πs−1, 0cg) with ground cg and relation�, such that c(πk) 6= c
for all k ∈ {0, . . . , s− 1}.

Example 2.1.16. Examples of such partitions are the m-regular partitions. It suffices to consider the set of colors
C = {c0, . . . , cm−1}, c = cg = c0 and define the relation� by

kci � lcj ⇐⇒ k ≥ l and k− l ≡ i− j mod m ,

so that, in any regular partition, the size of parts with color ci is necessarily congruent to i modulo m. We then
associate to any m-regular partition λ = (λ1, . . . , λs) the regular partition π = (π0, . . . , πs−1, 0c0) such that,
for all k ∈ {0, . . . , s− 1},

πk = λk+1 and c(πk) = c[λk+1]m
,

where [λk+1]m = λk+1 mod m.

In the following, unless otherwise stated, we generally choose c = cg.

Definition 2.1.17. In the case we add a fictitious color c∞ to define the minimal conditions on part
sizes, we then consider the generalized colored partitions c∞-regular with ground c∞ and the extended
relation�ε. We denote the set of such partitions P c∞

ε .

Flatness

We now extend the notion of flatness defined for the m-flat partitions to the grounded partitions.

Definition 2.1.18. A flat partition with ground cg and energy ε is a grounded partition with ground cg
and relation mε defined by

kc mε ld ⇐⇒ k− l = ε(c, d) ·

We call the relation mε the flat difference condition defined by the energy ε.

These partitions are determined by their color sequence as well as the energy ε. This comes from
the fact that for such a partition π = (π0, . . . , πs−1, 0cg), the computation of the size of πk gives the
following relation:

πk =
s−1

∑
l=k

ε(c(πl), c(πl+1)) ·

Remark 2.1.19. In the case where ε(cg, cg) = 0, the condition πs−1 6= 0cg on the grounded partitions implies
that c(πs−1) 6= cg for any flat partition with ground cg and energy ε.

Example 2.1.20. A good example of flat partitions are the m-flat partitions. It suffices to consider the set of colors
C = {c0, . . . , cm−1}, cg = c0 and define the energy ε by

ε(ci, cj) =

{
i− j if i ≥ j
m + i− j if i < j

·

With these definitions, for any flat partition, its parts with color ci necessarily have a size congruent to i modulo m.
We also observe that ε has values in {0, . . . , m− 1}. We then associate to any m-flat partition λ = (λ1, . . . , λs)
the flat partition π = (π0, . . . , πs−1, 0c0) such that, for all k ∈ {0, . . . , s− 1},

πk = λk+1 and c(πk) = c[λk+1]m
.
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Considering the set of colors and the energy ε given in Example 2.1.20, by Theorem 1.2.6, there exists
a bijection between the corresponding flat partitions with ground c0 and energy ε and the c0-regular
partitions with ground c0 and minimal difference condition defined by ε, such that the parts with color
ci have sizes congruent to i mod m. The latter c0-regular partitions are those described in Example
2.1.16. Furthermore, the bijection occurs between the partitions of both kinds with a fixed total size and
numbers of occurrences of the colors different from the ground c0.

In this thesis, we give three theorems having the same formulation.

Theorem 2.1.21 (Duality between flatness and regularity). Let C be a set of colors and let cg ∈ C be the
ground. Then, for some suitable energies ε′ and ε, there exists a bijection between a certain set of flat partitions
with ground cg and energy ε and a certain set of c-regular partitions with ground cg and with the minimal
difference condition defined by energy ε′.

The duality between flat and regular partitions naturally arises from representation theory via vertex
operators and crystal theory. The first theory permits to describe a basis of standard modules as a set
of partitions that satisfy minimal difference conditions (Meurman and Primc, 1987), while the (KMN)2

character formula builds a basis of standard modules as a set of partitions satisfying flat difference
conditions (see Chapter 8).

Multi-grounded partitions

One of the theorems that we present in this thesis, with the form of Theorem 2.1.21, will allow us to
compute the character of certain standard modules using the perfect crystals and the (KMN)2 character
formula. However, in general, the partitions that we define for a perfect crystal have conditions on
minimal parts which depend not only on one but several colors. To deal with these conditions, we
define, in the spirit of the grounded partitions, the notion of the multi-grounded partitions.

Definition 2.1.22. Let C be a set of colors, ZC the set of colored integers, and� a binary relation defined
on ZC . Suppose that there exist some colors cg0 , . . . , cgt−1 in C and unique colored integers u(0)

cg0
, . . . , u(t−1)

cgt−1
such that

u(0) + · · ·+ u(t−1) = 0 , (2.1.3)

u(0)
cg0
� u(1)

cg1
� . . .� u(t−1)

cgt−1
� u(0)

cg0
· (2.1.4)

Then, the multi-grounded partitions with grounds cg0 , . . . , cgt−1 and relation� are the generalized col-

ored partitions π = (π0, · · · , πs−1, u(0)
cg0

, . . . , u(t−1)
cgt−1

) with relation � and such that (πs−t, · · · , πs−1) 6=

(u(0)
cg0

, . . . , u(t−1)
cgt−1

) in terms of colored integers.

Example 2.1.23. Let us consider the set of color C = {c1, c2, c3}, and the energy matrix

Mε =

 2 2 2
0 0 2
−2 0 2

 ·
If we choose (g0, g1) = (1, 3), and we then have the unique pair (u(0), u(1)) = (1,−1). Therefore, the generalized
colored partitions

(3c3 , 3c2 , 3c1 ,−1c3 , 1c1 ,−1c3), (1c3 , 3c1 , 1c3 , 3c1 ,−1c3 , 1c1 ,−1c3)

are multi-grounded with grounds c3, c1 and energy ε, while the generalized colored partition

(1c1 ,−1c3 , 1c1 ,−1c3)

is not.

In Definition 2.1.22, we note that for fixed grounds cg0 , . . . , cgt−1 and colored integers u(0)
cg0

, . . . , u(t−1)
cgt−1

,
the condition (2.1.4) implies the definition of multi-grounded partitions for any cyclic permutation of
0, . . . , t− 1, with the ground sequences having the form cgi , . . . , cgt−1 , cg0 , . . . , cgi−1 . This has a direct
connection with the notion of ground state path defined for the perfect crystals. In particular, using the
(KMN)2 character formula, we compute the character of standard modules as generating function of
certain multi-grounded partitions.
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2.1.2 Generalized colored Frobenius partitions

Following Andrews (Andrews, 1984a), a generalized Frobenius partition is a two-rowed array(
λ1 λ2 · · · λs
µ1 µ2 · · · µs

)
,

where s is a non-negative integer and λ := λ1 + λ2 + · · · + λs and µ := µ1 + µ2 + · · · + µs are two
partitions into s non-negative parts. The Frobenius partitions are then the special cases where λ and
µ consist of distinct parts. Frobenius partitions of length s and size m = s + ∑s

i=1 λi + ∑s
i=1 µi are in

bijection with the partitions of m whose Durfee square (the largest square fitting in the top-left corner of
the Ferrers board of the partition) is of side s. A formal expression of the Durfee square’s length side for
a classical partition π = (π1, . . . , πt) is

max{i ∈ {1, . . . , t} : πi ≥ i} .

Example 2.1.24. We give an example for the Ferrers diagram corresponding to the partitions (10, 9, 6, 4, 3, 2)

µ1 µ2 µ3

λ1

λ2

λ3

FIGURE 2.1: s = 4, λ = (9, 7, 3, 0) and µ = (5, 4, 2, 0).

The bijection through the Durfee square implies the following combinatorial identity:

∑
s≥0

qs2

(q; q)2
s
=

1
(q; q)∞

. (2.1.5)

The generating function for the number F(m) of Frobenius partitions of m is given by

∑
m≥0

F(m)qm = [x0](−xq; q)∞(−x−1; q)∞.

Indeed, the product (−xq; q)∞ generates the partition λ together with the boxes on the diagonal where
the power of x counts the number of parts, (−x−1; q)∞ generates the partition µ where the power of x−1

counts the number of parts, and taking the coefficient of x0 in the above ensures that λ and µ have the
same number of parts. Using Jacobi’s triple product identity (see, e.g., Andrews, 1984b),

(−xq; q)∞(−x−1; q)∞(q; q)∞ = ∑
k∈Z

xkq
k(k+1)

2 , (2.1.6)

we see that the generating function for Frobenius partitions equals 1/(q; q)∞, the generating function
for partitions.

We now extend the notion of generalized Frobenius partitions to the framework of weighted words.
Let C be a set of colors, and

Z2
C = {(z, z′)c : z, z′ ∈ Z , c ∈ C}

be the set of colored pair of integers.

Definition 2.1.25. Let� be a binary relation defined on Z2
C . A generalized colored partition with relation

� is a finite sequence (π1, . . . , πs) of colored integers, where for all i ∈ {1, . . . , s− 1}, πi � πi+1.

As we defined before for the generalized colored partitions, we set c(πi) ∈ C to be the color of the
part πi. By setting πi = (λi, µi), the quantity |πi| = λi + µi is called the size of the part π. We then
define the size |π| of π to be the sum |π1|+ · · ·+ |πs|, and C(π) = c(π1) · · · c(πs) is its color sequence.



2.2. Rogers-Ramanujan type identities via bijective approaches 23

Example 2.1.26. Let us set C = {c}, and let us consider the relation� on Z2
c defined by

(k, l)c � (k′, l′)c ⇐⇒ k ≥ k′ and l ≥ l′ ·

The map

((λ1, µ1)c, · · · , (λs, µs)c) 7→
(

λ1 − 1 · · · λs − 1
µ1 · · · µs

)
implies a bijection between the generalized colored Frobenius partitions, whose last part (λs, µs)c is well related to
(1, 0)c in terms of�, and the generalized Frobenius partitions. Moreover, this bijection preserves the size of the
generalized Frobenius partitions.

In the following, we consider the relation�ε1,ε2 defined by two energies ε1 and ε2 on C as follows:

(k, l)c �ε1,ε2 (k′, l′)c′ ⇐⇒
{

k− k′ ≥ ε1(c, c′) and
l − l′ ≥ ε2(c, c′)

· (2.1.7)

We then define the set Fε1,ε2 of generalized colored Frobenius partition with relation �ε1,ε2 . This def-
inition yields to a natural correspondence between Fε1,ε2 and the subset of Pε1 × Pε2 of pairs (λ, µ) of
generalized colored partitions having the same number of parts.

We finally extend the notion of ground to the generalized colored Frobenius partitions.

Definition 2.1.27. A grounded Frobenius partition with ground cg and relation� is a non-empty gener-
alized colored Frobenius partition π = (π0, . . . , πs) with relation�, such that πs = (0, 0)cg , and when
s > 0, πs−1 6= (0, 0)cg .

In the same way, one can extend the notion of flatness and regularity to the generalized colored
Frobenius Partitions, as well as the addition of a fictitious color at the end of the color sequence.

In this thesis, we will present a generalization of the identity (2.1.5) which has the following formu-
lation.

Theorem 2.1.28. Let C be a set of colors. Then, for some suitable energies ε and ε1, ε2, there exists a bijection
between a certain set of generalized colored partitions in Pε and a certain set of generalized colored Frobenius
partitions in Fε1,ε2 .

The correspondence between the classical partitions and the Frobenius partitions is the case where
C = {c}, ε(c, c) = 0 with a positive size for the last part, and ε1(c, c) = ε2(c, c) = 1 with a positive size
for the last pair of integer.

2.2 Rogers-Ramanujan type identities via bijective approaches

Throughout history, most of the Rogers-Ramanujan type identities were primarily discovered via the
computation of q-series. Then, a combinatorial interpretation of these identities led to a equality between
the cardinalities of the corresponding partition sets. A subsequent problem then consisted in building
a suitable bijection to link these sets of partitions. However, in general, this still remains a difficult
problem to deal with. For example, the Rogers-Ramanujan identities were prove bijectively by Garsia
and Milne (Garsia and Milne, 1981) via the involution principle, and their bijection does not establish
a direct correspondence between the partitions of the sets involved. A bijective proof without a sign-
reversing involution is yet to be found for these identities.

In this thesis we present several identities established via bijections. We start from the identities pre-
sented in Chapter 1, formalize via our weighted words the corresponding partitions and then outline
the general rules followed by these partitions. These formal rules not only allow us to build an adequate
bijection for the original identities, but also allow us to discover identities which generalize them. This
process succeeded for the four following identities: Göllnitz’ identity, Siladić’s identity, Glaisher’s iden-
tity and Capparelli’s identity. A fifth result on a generalization of the duality between partitions and
Frobenius partitions is given is this section, but contrary to the four other generalizations, the proof is
partially bijective, and the last part of the proof rests on the computation of the generation functions.

2.2.1 Beyond Göllnitz theorem: a generalization of Bressoud’s algorithm

In a pair of papers (Konan, 2019a; Konan, 2019b), we gave a result beyond the Göllnitz theorem for an
arbitrary number of primary colors.
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Refinement and bijective proof of Theorem 1.3.3

In paper one (Konan, 2019a), we showed an equivalent version of Theorem 1.3.3. We supposed that the
parts occur in only primary colors a, b, c, d and secondary colors ab, ac, ad, bc, bd, cd, and are ordered as
in (1.3.9) by omitting quaternary parts:

1ab < 1ac < 1ad < 1a < 1bc < 1bd < 1b < 1cd < 1c < 1d < 2ab < · · · · (2.2.1)

We then considered the partitions with the size of the secondary parts greater than one and satisfying
the minimal difference conditions in

λi\
λi+1 ab ac ad a bc bd b cd c d

ab 2 2 2 2 2 2 2 2 2 2
ac 1 2 2 2 2 2 2 2 2 2
ad 1 1 2 2 1 2 2 2 2 2
a 1 1 1 1 2 2 2 2 2 2
bc 1 1 1 1 2 2 2 2 2 2
bd 1 1 1 1 1 2 2 2 2 2
b 1 1 1 1 1 1 1 2 2 2
cd 0 1 1 1 1 1 1 2 2 2
c 1 1 1 1 1 1 1 1 1 2
d 1 1 1 1 1 1 1 1 1 1

, (2.2.2)

and which avoid the forbidden patterns

((k + 2)cd, (k + 2)ab, kc), ((k + 2)cd, (k + 2)ab, kd), ((k + 2)ad, (k + 1)bc, ka) , (2.2.3)

except the pattern (3ad, 2bc, 1a) which is allowed. We then obtained the following theorem:

Theorem 2.2.1. Let u, v, w, t, n be non-negative integers. Denote by A(u, v, w, t, n) the number of partitions of
n into u distinct parts with color a, v distinct parts with color b, w distinct parts with color c and t distinct parts
with color d, and denote by B(u, v, w, t, n) the number of partitions of n satisfying the conditions above, with u
parts with color a, ab, ac or ad, v parts with color b, ab, bc or bd, w parts with color c, ac, bc or cd and t parts with
color d, ad, bd or cd. We then have A(u, v, w, t, n) = B(u, v, w, t, n), and the corresponding q-series identity is
given by

∑
u,v,w,t,n∈N

B(u, v, w, t, n)aubvcwdtqn = (−aq; q)∞(−bq; q)∞(−cq; q)∞(−dq; q)∞ · (2.2.4)

The proof of Theorem 2.2.1 consisted of a bijection established between the two sets of partitions. We
also used a second bijection to show that Theorem 2.2.1 is equivalent to Theorem 1.3.3.

By specializing the variables in Theorem 2.2.1, one can deduce many partition identities. For exam-
ple, by considering the following transformation in (2.2.4){

dilation : q 7→ q12

translations : a, b, c, d 7→ q−8, q−4, q−2, q−1 , (2.2.5)

we obtain a corollary of Theorem 2.2.1.

Corollary 2.2.2. For any positive integer n, the number of partitions of n into distinct parts congruent to
−23,−22,−21,−20 mod 12 is equal to the number of partitions of n into parts not congruent to 1, 5 mod 12
and different from 2, 3, 6, 7, 9, such that the difference between two consecutive parts is greater than 12 up to the
following exceptions:

• λi − λi+1 = 9 =⇒ λi ≡ ±3 mod 12 and λi − λi+2 ≥ 24,

• λi − λi+1 = 12 =⇒ λi ≡ −23,−22,−21,−20 mod 12,

except that the pattern (27, 18, 4) is allowed.

Example 2.2.3. For example, with n = 49, the partitions of the first kind are

(35, 10, 4), (34, 11, 4), (28, 11, 10), (23, 22, 4),

(23, 16, 10), (22, 16, 11) and (16, 11, 10, 8, 4)
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and the partitions of the second kind are

(35, 14), (34, 15), (33, 16), (45, 4), (39, 10), (38, 11) and (27, 18, 4) ·

Generalization to an arbitrary number of primary colors

We now give a general result beyond Göllnitz’ theorem, by proving a generalization of Theorem 2.2.1
for an arbitrary finite set of primary colors. Let C = {a1, . . . , an} be an ordered set of primary colors,
with a1 < · · · < an and let us set Co = {aiaj : 1 ≤ i < j ≤ n}. Note that Co 6= C2 as we do not have
color aiaj for i ≥ j.

We can naturally extend the order from C to C t Co with

a1a2 < · · · < a1an < a1 < a2a3 < · · · < a2an < a2 < · · · < ai−1 (2.2.6)
< aiai+1 < · · · < aian < ai < · · · < an−1an < an−1 < an ·

We also set
SPo = {(akal , aiaj) ∈ C2

o : i < j < k < l or k < i < j < l} (2.2.7)

to be the set of the special pairs of secondary colors. Note that the pairs of SPo use four different primary
colors.

Definition 2.2.4. The lexicographic order � on the set of colored parts is defined by the following rela-
tion:

kp � lq ⇐⇒ k− l ≥ χ(p ≤ q) . (2.2.8)

Explicitly, this relation implies an order on colored parts

1a1a2 ≺ · · · ≺ 1an ≺ 2a1a2 ≺ · · · ≺ 2an ≺ 3a1a2 ≺ · · · · (2.2.9)

We remark that the relation � on ZCtCo is implied by the energy ε defined by

ε(c, c′) = χ(c ≤ c′) , (2.2.10)

where we consider the order on the colors set in (2.2.6).

Definition 2.2.5. Let P be the set of the positive parts with primary color, and let S be the set of the
parts with secondary color in Co and size greater than one. We then define two relations . and � on
P t S as follows :

kp . lq ⇐⇒
{

kp � (l + 1)q if p or q ∈ C
kp � (l + 1)q if p and q ∈ Co

, (2.2.11)

and

kp � lq ⇐⇒


kp � (l + 1)q if p or q ∈ C
kp � (l + 1)q if (p, q) ∈ C2

o \ SPo
kp � lq if (p, q) ∈ SPo

· (2.2.12)

We observe that the relation . is the minimal difference condition with respect to the energy ε2
defined by

ε2(c, c′) = 1 + χ(c ≤ c′)− χ(c = c′ ∈ C) , (2.2.13)

and the relation� is related to the energy ε1 defined by

ε2(c, c′) = 1 + χ(c ≤ c′)− χ(c = c′ ∈ C)− χ((c, c′) ∈ SPo) . (2.2.14)

Note that kp . lq implies kp � lq. We can easily check that in the case n = 4 and C = {a < b < c < d},
the energies ε2 and ε1 correspond respectively to the minimal differences λi− λi+1 in (1.3.10) and (2.2.2).
We also remark that these differences constitute an exhaustive list of all the minimal differences for our
relations, since at most four primary colors occur in any pair of colors in C t Co.

Definition 2.2.6. A secondary color is just a product of two primary colors. For any type of partition λ,
its size |λ| is the sum of its part sizes.

1. We denote by O the set of generalized colored partitions with parts in P and relation by �. We
recall that c(λi) in C is the color of λi, and the color sequence is C(λ) = c(λ1) · · · c(λt), here viewed
as a commutative product of primary colors in C.
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2. We denote by E the set of generalized colored partitions with parts inP tS and relation� defined
in (2.2.12). We then have the colors c(νi) ∈ C t Co depending on whether νi is in P or S , and we
view the color sequence C(ν) = c(ν1) · · · c(νt) as a commutative product of colors in C.

3. We finally denote by E2 the subset of partitions of E with relation ..

We can now state the first theorem that stand for the basement of our result beyond Göllnitz’ theo-
rem.

Theorem 2.2.7. Let m be a non-negative integer and C a commutative product of primary colors in C. Denote
by U(C, m) the number of partitions λ in O with (C(λ), |λ|) = (C, m), and denote by V(C, m) the number of
partitions ν in E with (C(ν), |ν|) = (C, m). We then have the following inequality :

U(C, m) ≤ V(C, m) · (2.2.15)

The previous theorem implies that O can be associated to a set E1 such that E1 ⊂ E . We define this
set E1 using two technical tools : the different-distance and the bridge. The definition of the different-
distance is stated here, while the definition of the bridge, which is more intricate, will be given in 3.

Definition 2.2.8. Let λ = (λ1, · · · , λs) be a sequence, where the elements λi belong to a set of colored
numbers ordered by a relation �, and let d be a positive number. For any i, j ∈ {1, . . . , s}, we say that λi
is d-different-distant from λj if we have the following relation:

λi � λj + d(j− i) · (2.2.16)

Note that the relation "being d-different-distant from" is transitive, as λi is d-different-distant from λj
and λj is d-different-distant from λk implies that λi is d-different-distant from λk.

A good example of a partition having such a property is a partition ν = (ν1, · · · , νs) ∈ E2. In fact, by
(2.2.11), we recursively obtain for any i ≤ j ∈ {1, . . . , s} that νi is 1-different-distant from νj. This is not
true in general when ν ∈ E , as by (2.2.11) and (2.2.12), a part νi not well-ordered with νi+1 in terms of .
is also not 1-different-distant from νi+1.

The generalization of Theorem 2.2.1 can be stated as follows.

Theorem 2.2.9. Let E1 be the set of partitions ν = (ν1, . . . , νs) ∈ E such that, for all i ∈ {1, . . . , s− 1} with

νi−1 . νi 6 . νi+1 , (2.2.17)

the part νi is 1-different-distant from its bridge. Then, for any non-negative integer m and any commutative
product of primary colors C in C, by setting U(C, m) as before in Theorem 2.2.7, and by setting W(C, m) to be the
number of partitions ν in E1 with (C(ν), |ν|) = (C, m), we then have that U(C, m) = W(C, m) and the identity

∑
m,u1,...,un≥0

W(
n

∏
i=1

aui
i , m)

n

∏
i=1

aui
i qm = ∑

m,u1,...,un≥0
U(

n

∏
i=1

aui
i , m)

n

∏
i=1

aui
i qm = (−a1q; q)∞ · · · (−anq; q)∞ ·

(2.2.18)

Another identity, discovered by Corteel and Lovejoy, 2006, relates the same set of partitions, with
primary colored parts, to a set of partitions with parts having some colors as products of at most n
different primary colors, giving 2n − 1 colors in total.

Note that by definition, a partition in E2 never satisfies (2.2.17), so that the definition of E1 still holds
for this partition. We thus have E2 ⊂ E1 ⊂ E . We also remark that SPo is empty for C with fewer than
four primary colors, so that in that case, E2 = E . Therefore, Theorem 2.2.9 implies the Alladi-Andrews-
Gordon refinement of Göllnitz’ identity. For n ≥ 4, the set E1 can be seen as a subset of E that avoids
some patterns. When n = 4, we show that the forbidden patterns are the ones described in Theorem
2.2.1. For n > 4, the enumeration of forbidden patterns becomes more intricate. Chapter 3 is dedicated
to the discussion on the result beyond Göllnitz’ theorem.

2.2.2 Beyond Siladić’s theorem: weighted words in the framework of statistical
mechanics

In papers (Konan, 2020a; Konan, 2020b), we gave a result beyond the Dousse refinement of Siladić’s
theorem for an arbitrary number of primary colors. In this section, we view the weighted words in the
framework of statistical mechanics.
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Integer partitions in statistical mechanics

The connection between integer partitions and physics was first pointed out by Bohr and Kalckar (Bohr
and Kalckar, 1937). In the same year, Van Lier and Uhlenbeck noted links between the problem of
counting microstates of the systems obeying Bose or Fermi statistics and some problems related to inte-
ger partitions (Lier and Uhlenbeck, 1937).

Since then, a current approach in statistical mechanics consists in considering a partition of a given
integer into parts with certain restrictions as a sharing of a fixed amount of energy among the different
possible states of an assembly. This approach can be found in the seminal works of Auluck and Kothari
(Auluck and Kothari, 1946), Temperley (Temperley, 1949) and Nanda (Nanda, 1951).

We now refer to the colors as states, and the sizes of parts as potentials. The main goal will consist in
using a new variant of Bressoud’s algorithm as a process in which we operate energy transfers according
the states involved in the generalized colored partition. Recall that the allowable differences between
the potentials of consecutive particles in Siladić’s identity are defined by a certain energy. By taking a
larger family of allowable energies, we generate an infinite family of identities generalizing the Siladić
theorem for a arbitrary number of primary states.

Let C be a set of states, countable or not, and let P = ZC be the corresponding set of particles. We
recall that the energetic particle kc is identified by its potential k and its state c. In the remainder of this
section, such a particle is called a primary particle. We consider a relation �ε on ZC related to a minimal
energy, and we recall thatOε is the set of generalized colored partitions with relation�ε. Here, we recall
that

kp �ε lq =⇒ k− l ≥ ε(p, q) · (2.2.19)

The sequence of colors in now referred to as the State of the partition.

Suitable secondary particles and generalization of Dousse’s refinement

We recall that a secondary state is the product of two primary states. The key idea is to build secondary
particles starting from the primary particles. The following definition permits a suitable construction
for these secondary particles.

Definition 2.2.10. We define the secondary particles as sums of two consecutive primary particles in terms
of �ε. We denote by S = Z× C2 the set of secondary particles, in such a way that the particle

(k, c, c′) = (k + ε(c, c′), c) + (k, c′) (2.2.20)

has potential 2k + ε(c, c′) and state cc′. In fact, (k + ε(c, c′), c) is exactly the primary particle of state c
with smallest potential, which is well-related to (k, c′) in terms of �ε. We then set the functions γ and µ
on S , defined by

γ(k, c, c′) = (k + ε(c, c′), c) and µ(k, c, c′) = (k, c′) , (2.2.21)

to be respectively the upper and lower halves of (k, c, c′). In the following, we identify a secondary particle
as (k, c, c′) or (2k + ε(c, c′))cc′ .

Example 2.2.11. Let us take C = {a, a} in Example 2.1.7. We then have

( a a
a 1 1
a 0 0

)
and we obtain with Definition 2.2.10 and (2.2.35) the following secondary particles:

(k, a, a) = 2ka2 ,
(k, a, a) = 2kaa ≡ 2ka2 ,
(k, a, a) = 2k + 1aa ≡ 2k + 1a2 ,
(k, a, a) = 2k + 1a2 ≡ 2k + 1a2 ·

We now build a relation on the set P t S of primary and secondary particles.

Definition 2.2.12. We define the relation�ε on P t S as follows:
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1. Two primary particles of P are well-ordered by �ε if and only if they are well-ordered but not
consecutive in terms of �ε:

(k, c)�ε (k′, c′)⇐⇒ k− k′ > ε(c, c′) · (2.2.22)

2. A primary particle ofP is well-ordered with a secondary particle of S if and only if their potentials’
difference is at least equal to the energy of transfer from the first to the last primary states:

(k, c)�ε (k′, c′, c′′)⇐⇒ k− (2k′ + ε(c′, c′′)) ≥ ε(c, c′) + ε(c′, c′′) · (2.2.23)

3. A secondary particle of S is well-ordered with a primary particle ofP if and only if their potentials’
difference is greater than the transfer energy (from first to last state):

(k, c, c′)�ε (k′, c′′)⇐⇒ (2k + ε(c, c′))− k′ > ε(c, c′) + ε(c′, c′′) · (2.2.24)

4. Two secondary particles of S are well-ordered by�ε if and only if the lower half of the first one
is greater than the upper half of the second in terms of �ε:

(k, c, c′)�ε (k′, c′′, c′′′)⇐⇒ µ(k, c, c′) �ε γ(k′, c′′, c′′′) · (2.2.25)

This is equivalent to saying that the potentials’ difference k − k′ is at least equal to the energy of
transfer ε(c′, c′′) + ε(c′′, c′′′).

One can check that for C ′ = {a < b} and the minimal energy ε described in Example 2.1.7, the
relations in the latter definition exactly give the minimal difference conditions presented in (2.2.34).

Remark 2.2.13. We notice that

(k, c) �ε (k′, c′) and (k, c) 6�ε (k′, c′)⇐⇒ k− k′ = ε(c, c′) · (2.2.26)

Such pair of primary particles is called a troublesome pair.

Definition 2.2.14. We define Oε (respectively Eε) to be the set of all generalized colored partitions with
particles in P (respectively P t S) and relation �ε (respectively�ε).

For ρ ∈ {0, 1}, we consider the following sets:

• Pρ+ = Z≥ρ × C and Sρ+ = Z≥ρ × C2 = {(k, c, c′) ∈ S : k ≥ ρ},

• Pρ− = Z≤ρ × C and Sρ− = {(k, c, c′) ∈ S : k + ε(c, c′) ≤ ρ}.

We then denote by Oρ+
ε (respectively Oρ−

ε ) the subset of Oε of generalized colored partitions with par-
ticles in Pρ+ (respectively Pρ− ), and by E ρ+

ε (respectively E ρ−
ε ) the subset of Eε of generalized colored

partitions with particles in Pρ+ t Sρ+ (respectively Pρ− t Sρ− ).

Since the secondary states are products of two primary states, the States of partitions in Oε and Eε

are then seen as a finite non-commutative product of primary states in C.

We now state the main result of this part.

Theorem 2.2.15. For any integer n and any State C as a finite non-commutative product of states in C, there
exists a bijection between {λ ∈ Oε : (C(λ), |λ|) = (C, n)} and {ν ∈ Eε : (C(ν), |ν|) = (C, n)}. In particular,
for ρ ∈ {0, 1}, we have the identities

|{ν ∈ Eρ+
ε : (C(ν), |ν|) = (C, n)}| = |{λ ∈ Oρ+

ε : (C(λ), |λ|) = (C, n)}| , (2.2.27)

|{ν ∈ Eρ−
ε : (C(ν), |ν|) = (C, n)}| = |{λ ∈ Oρ−

ε : (C(λ), |λ|) = (C, n)}| · (2.2.28)

One can observe that, for any integer n and any State C with at least two primary states, the sets
{λ ∈ Oε : (C(λ), |λ|) = (C, n)} and {ν ∈ Eε : (C(ν), |ν|) = (C, n)} are infinite. However, as soon as we
give an upper or a lower bound on the particles’ potentials, the corresponding subsets are finite.

Example 2.2.16. Let us consider C ′ = {a < b} in Example 2.1.7 and the corresponding minimal energy. We
then have for n = 10 and C = baba the relation {λ ∈ O1−

ε : (C(λ), |λ|) = (baba, 10)} = {λ ∈ E1−
ε :
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(C(λ), |λ|) = (baba, 10)} = ∅ and the corresponding partitions for ρ+ are given in the following table:

O0+
ε O1+

ε E0+
ε E1+

ε

(9b, 1a, 0b, 0a) (9b, 1a, 0ba)
(8b, 2a, 0b, 0a) (8b, 2a, 0ba)
(7b, 3a, 0b, 0a) (7b, 3a, 0ba)
(7b, 2a, 1b, 0a) (7b, 3ab, 0a)
(6b, 4a, 0b, 0a) (6b, 4a, 0ba)
(6b, 3a, 1b, 0a) (6b, 3a, 1b, 0a)
(6b, 2a, 1b, 1a) (6b, 2a, 1b, 1a) (6b, 3ab, 1a) (6b, 3ab, 1a)
(5b, 4a, 1b, 0a) (9ba, 1b, 0a)
(5b, 3a, 2b, 0a) (7ba, 3b, 0a)
(5b, 3a, 1b, 1a) (5b, 3a, 1b, 1a) (5b, 3a, 2ba) (5b, 3a, 2ba)
(4b, 3a, 2b, 1a) (4b, 3a, 2b, 1a) (7ba, 2b, 1a) (7ba, 2b, 1a)

·

We have for n = −8 and C = baba the relation {λ ∈ O0+
ε : (C(λ), |λ|) = (baba,−8)} = {λ ∈ E0+

ε :
(C(λ), |λ|) = (baba,−8)} = ∅ and the corresponding partitions for ρ− are given in the following table:

O1−
ε O0−

ε E1−
ε E0−

ε

(1b, 0a,−1b,−8a) (1b,−1ab,−8a)
(1b, 0a,−2b,−7a) (1ba,−2b,−7a)
(1b, 0a,−3b,−6a) (1ba,−3b,−6a)
(1b,−1a,−2b,−6a) (1b,−3ab,−8a)
(1b, 0a,−4b,−5a) (1ba,−4b,−5a)
(1b,−1a,−3b,−5a) (1b,−1a,−3b,−5a)
(0b,−1a,−2b,−5a) (0b,−1a,−2b,−5a) (0b,−3ab,−5a) (0b,−3ab,−5a)
(1b,−1a,−4b,−4a) (1b,−1a,−8ba)
(1b,−2a,−3b,−4a) (1b,−3a,−6ba)
(0b,−1a,−3b,−4a) (0b,−1a,−3b,−4a) (−1b,−3a,−4ba) (−1b,−3a,−4ba)
(0b,−2a,−3b,−3a) (0b,−2a,−3b,−3a) (0b,−2a,−6ba) (0b,−2a,−6ba)

We obtain the following corollary of Theorem 2.2.15.

Corollary 2.2.17. For any set C of primary states and any minimal energy ε on C2, we have

∑
n≥0

C∈<C>

|{ν ∈ Eρ+
ε : (C(ν), |ν|) = (C, n)}|Cqn = ∑

n≥0
C∈<C>

|{λ ∈ Oρ+
ε : (C(λ), |λ|) = (C, n)}|Cqn = ∏

m≥ρ

FC(ε; qm)

(2.2.29)
where < C > is the non-commutative group generated by the primary states of C, and FC(ε, x) is a series in the
commutative algebra Z[[C, x]], and C is the commutative product corresponding to C in Z[[C, x]]. In particular,
we have the following explicit expressions for FC(ε, x):

1. For C = {c1, . . . , cn}, we have

ε(ci, cj) FC(ε, x)

0
1

1− (c1 + · · ·+ cn)x
1 1 + (c1 + · · ·+ cn)x

χ(i 6= j) 1 +
n

∑
i=1

cix
1− cix

χ(i < j)
n

∏
i=1

1
1− cix

χ(i ≤ j)
n

∏
i=1

(1 + cix)

(2.2.30)

2. For C ′ = {c1, . . . , cn} and ε as described in Example 2.1.7,

FC(ε, x) =
n

∏
i=1

1 + cix
1− cix

· (2.2.31)
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3. For C = {a, b} and ε as described in Example 2.1.8,

FC(ε, x) =
(1 + ax)(1 + bx)

(1− abx2)
· (2.2.32)

Application to overpartitions

We now give an example that will generalize Siladić’s theorem to overpartitions. Recall that an overpar-
tition is a partition where we can over-line at most one occurrence of each positive integer (Corteel and
Lovejoy, 2004). It has been a recurrent problem in partition theory to extend some partition identities to
overpartitions (Dousse, 2014; Dousse, 2017a; Lovejoy, 2003; Lovejoy, 2004).

Consider the set of colors C = {b < a < a < b} and the relation�ε defined by the minimal difference
conditions in the following energy matrix

D :=


b a a b

b 1 1 1 1
a 0 1 1 1
a 0 0 0 1
b 0 0 0 0

 · (2.2.33)

These differences correspond to the energy of Example 2.1.7 for (c1, c2) = (a, b). They imply that a par-
tition in Oε can have any number of primary particles with a fixed potential and a non over-lined state,
while there is at most one primary particle with a fixed potential and an over-lined state. The partitions
of Oε are then identified as the generalized overpartitions whose definition is given by the following.

Definition 2.2.18. Let us fix a set of states C. A generalized overpartition is a generalized partition where
we are allowed to over-line at most one particle with a fixed potential and state.

Example 2.2.19. The generalized partition (1a, 1a, 1b, 0b, 0b, 0a, 0a, 0a, 0b,−1b,−1a) belongs to O, and corre-
sponds to the generalized overpartition (1a, 1a, 1b, 0b, 0b, 0a, 0a, 0a, 0b,−1b,−1a).

We then call the partitions in Oε the colored overpartitions, and this means that we can have any
number of particles with a fixed potential and state, with at most one such particle over-lined. We
observe that once a particle is over-lined, by the difference conditions in D, it no longer has the same
order with respect to the other particles. For example, we have 1b � 1a but 1b ≺ 1a. This is different from
the usual convention, but the way we defined these relative orders plays a major role in the definition
of the corresponding secondary particles.

The relation�ε then corresponds the minimal difference conditions in the following table

D′ :=

b a a b b
2

ba ba bb ab a2 aa ab ab aa a2 ab bb ba ba b2

b 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1
a 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1 2 1 1 1 1
a 1 1 1 2 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1
b 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
bb 3 3 3 3 4 4 4 4 3 4 4 4 3 3 3 4 3 3 3 3
ba 2 3 3 3 2 2 2 2 3 4 4 4 3 3 3 4 3 3 3 3
ba 2 2 2 3 2 2 2 2 1 2 2 2 1 1 1 2 3 3 3 3
bb 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1
ab 1 1 1 1 3 3 3 3 2 3 3 3 2 2 2 3 2 2 2 2
a2 2 3 3 3 2 2 2 2 3 4 4 4 3 3 3 4 3 3 3 3
aa 2 2 2 3 2 2 2 2 1 2 2 2 1 1 1 2 3 3 3 3
ab 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1
ab 1 1 1 1 3 3 3 3 2 3 3 3 2 2 2 3 2 2 2 2
aa 1 2 2 2 1 1 1 1 2 3 3 3 2 2 2 3 2 2 2 2
a2 1 1 1 2 1 1 1 1 0 1 1 1 0 0 0 1 2 2 2 2
ab 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1
bb 1 1 1 1 3 3 3 3 2 3 3 3 2 2 2 3 2 2 2 2
ba 1 2 2 2 1 1 1 1 2 3 3 3 2 2 2 3 2 2 2 2
ba 1 1 1 2 1 1 1 1 0 1 1 1 0 0 0 1 2 2 2 2
b2 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0

· (2.2.34)

By definition, the secondary particles with state cc′ then have a potential with the same parity as the en-
try of D corresponding to the row c and the column c′. Therefore, we have the following correspondence
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for secondary states:


b a a b

b b2
odd baodd baodd b

2
odd

a abeven a2
odd a2

odd abodd
a abeven a2

even a2
even abodd

b b
2
even baeven baeven b2

even

 , (2.2.35)

where cparity refers to a particle with state c and potential with the same parity as the index. Here
again, the generalized partitions in Eε can be identified as some generalized overpartitions for the set of
colors {a, b, a2, ab, ba, b2}. We now state the corresponding corollary of Theorem 2.2.15. To simplify the
formulation of the corollary, we assume that the symbols a, b and c commute in the generating functions.

Corollary 2.2.20. Let u, v, w and n be non-negative integers. Let us denote by A(n; u, v, w) the number of colored
overpartitions of size n with positive potentials and colors in {a, b}, with u particles with color a, v particles with
color b and w over-lined particles. Let us denote by B(n; u, v, w) the number of colored overpartitions of size n
with colors in {a, b, a2, ab, ba, b2}, with positive potential for the primary particles and potential greater than one
for the secondary particles, satisfying the minimal difference conditions given D′, with u occurrences of the symbol
a, v occurrences of the symbol b, and such that w equals the number of over-lined particles plus twice the number of
even particles with color ab and odd particles with color a2, ba or b2. We then have A(n; u, v, w) = B(n; u, v, w)
and the identity

∑
n,u,v,w≥0

B(n; u, v, w)aubvcwdu+v−wqn = ∑
n,u,v,w≥0

A(n; u, v, w)aubvcwdu+v−wqn =
(−acq; q)∞(−bcq; q)∞

(adq; q)∞(bdq; q)∞
·

(2.2.36)

In the previous corollary, if we restrict the partitions in Oε to those with only over-lined particles,
i.e u + v = w, and by applying the transformations (q, a, b, c, d) 7→ (q4, q−1, q−3, 1, 0), we recover the
identity given by Siladić and corresponding to Theorem 1.3.4.

On the other hand, by restricting the partitions in Oε to those with only non over-lined particles, i.e
w = 0, and by applying the transformations (q, a, b, c, d) 7→ (q4, q−3, q−1, 0, 1), we obtain the following
analogue of Siladić’s theorem.

Theorem 2.2.21. The number of partitions λ1 + · · ·+ λs of an integer n into odd parts is equal to the number of
partitions of n such that

λi − λi+1 = 0⇒ λi + λi+1 ≡ ±4 mod 16 ,
λi − λi+1 = 1⇒ λi + λi+1 ≡ ±3 mod 16 ,
λi − λi+1 = 2⇒ λi + λi+1 ≡ ±2,±6 mod 16 ,
λi − λi+1 = 3⇒ λi + λi+1 ≡ ±1,±5,±7 mod 16 ·

Example 2.2.22. For n = 10, the partitions of n into odd parts are

(9, 1), (7, 3), (7, 1, 1, 1), (5, 5), (5, 3, 1, 1), (5, 1, 1, 1, 1, 1), (3, 3, 3, 1), (3, 3, 1, 1, 1, 1)

(3, 1, 1, 1, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

and the partitions of given by Theorem 2.2.21 are

(10), (9, 1), (8, 2), (7, 3), (7, 2, 1), (6, 4), (6, 2, 2), (5, 2, 2, 1), (4, 2, 2, 2) and (2, 2, 2, 2, 2) ·

Remark 2.2.23. For Siladić’s theorem, since we have b < a, we carry out the transformation (a, b) 7→ (q−1, q−3)
to keep the order, while for its analogue, we have a < b and we then apply (a, b) 7→ (q−3, q−1).

The proof of Theorem 2.2.15 will be given in Chapter 4.

2.2.3 Beyond Glaisher’s theorem: a duality between flat and regular partitions

In paper (Konan, 2020c), we gave a result beyond the refinement of Keith-Xiong, that links our general
definition of flat partitions and regular partitions given in terms of weighted words. Here again, we see
the weighted words in the framework of statistical mechanics.
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Weighted words at degree one

Let C be a set of primary states, and let ε be a minimal energy. We set F ε,cg
1 to be the set of primary flat

partitions, which are the flat partitions with ground cg and energy ε. Recall that the energy ε defines a
relation mε as follows,

kc mε k′c′ ⇐⇒ k− k′ = ε(c, c′)· (2.2.37)

Let us also recall the energy relation �ε defined by

kc �ε k′c′ ⇐⇒ k− k′ ≥ ε(c, c′) , (2.2.38)

and let Rε,cg
1 be the set of primary cg-regular partitions, which are the cg-regular partitions with ground

cg and relation �ε.

Assuming that cg = 1, one can see, for both flat or regular partitions, the state sequence as a product
of states in C \ {cg}. Let us set C ′ = C \ {cg}. Depending on certain properties of ε, we can build a
bijection betweenRε,cg

1 and F ε,cg
1 which preserves both the Energy and the State of partitions.

Theorem 2.2.24 (degree one). Let us assume that ε(cg, cg) = 0, and that for all c, c′ 6= 0,

ε(c′, cg) = ε(c, cg) = 1− ε(cg, c) · (2.2.39)

There then exists a bijection Ω between F ε,cg
1 andRε,cg

1 which preserves the total energy and the sequence of states
different from cg.

This theorem is a generalization of Theorem 1.2.6. To see that Theorem 2.2.24 implies Theorem 1.2.6,
we take the set C = {c0, . . . , cm−1}, and set cg = c0. Theorem 1.2.6 then corresponds to the energy
ε(ci, cj) = χ(i < j), followed by the transformation

(q, c0, c1, . . . , cm−1) 7→ (qm, 1, q, . . . , qm−1) ·

The latter operation means that the particle is kci is transformed into the part mk + i, and the relations in
(2.2.37) and (2.2.38) induced by ε then become

mk + i mε mk′ + i′ ⇐⇒ (mk + i)− (mk′ + i′) =

{
i− i′ if i ≥ i′

m + i− i′ if i < i′
,

mk + i �ε mk′ + i′ ⇐⇒ (mk + i)− (mk′ + i′) ≥
{

i− i′ if i ≥ i′

m + i− i′ if i < i′
·

Note that the last part corresponds to 0 for both flat and regular partitions after this transformation. We
then retrieve the flat partitions of Example 2.1.20 and the regular partitions in Example 2.1.16, except
that we implicitly assimilate the congruence modulo m of the part size to the unique corresponding state
in C.

Similarly, Theorem 1.2.6 is also implied by Theorem 2.2.24 with the energy ε(ci, cj) = χ(i > j)
followed by the transformation (q, c0, c1, . . . , cm−1) 7→ (qm, 1, q−1, . . . , q1−m), in which case the particle
kci is assimilated to the part km− i.

In the same way, we obtain the analogue of Glaisher, stated in Corollary 2.2.25, by considering the
same set of states C = {c0, . . . , cm−1}, the ground cg = c0, the transformation (q, c0, c1, . . . , cm−1) 7→
(qm, 1, q, . . . , qm−1), but a slightly different energy ε defined by

ε(ci, cj) =


χ(i < j) if i 6= j
0 if i = j = 0
1 if i = j 6= 0

·

Note that the restriction of ε to C \ {c0} = C ′ then gives ε(ci, cj) = χ(i ≤ j).

Here we give a corollary of Theorem 2.2.24 as the following analogue of Glaisher’s theorem for m-
regular partitions into distinct parts.

Corollary 2.2.25. Let m and n be positive integers. Then, the number of m-regular partitions of n into distinct
parts is equal to the number of (m + 1)-flat partitions of n, such that
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• the smallest part is less than m,

• two consecutive parts divisible by m are necessarily equal,

• two consecutive parts not divisible by m and with the same congruence modulo m are necessarily distinct.

Example 2.2.26. Here we take m = 3 and n = 16, and the 3-regular partition of 16 into distinct parts are

(16), (14, 2), (13, 2, 1), (11, 5), (11, 4, 1), (10, 5, 1), (10, 4, 2), (8, 7, 1), (8, 5, 2, 1), and (7, 5, 4)

and the 4-flat partitions of 16 of the second kind are

(8, 5, 2, 1), (7, 5, 3, 1), (7, 4, 3, 2), (6, 5, 4, 1), (6, 5, 3, 2), (6, 4, 3, 2, 1), (5, 4, 3, 3, 1), (5, 3, 3, 3, 2), (4, 3, 3, 3, 2, 1),

and (3, 3, 3, 3, 3, 1) ·

Another consequence of Theorem 2.2.24 consists in easing the computation of characters of the rep-
resentations of some affine Lie algebras.

Weighted words at degree two

The second result, Theorem 2.2.31 below, concerns weighted words at degree two, and energies satis-
fying ε = ε′ up to some exceptions. This second theorem uses Theorem 2.2.24 and Theorem 2.2.15. In
the particular case of representations of affine Lie algebras we study here, Theorem 2.2.31 allows us to
connect the difference conditions of Theorem 2.2.15 and the energy function of the square, in terms of
tensor product, of the vector representation. Let us now assume that ε satisfies the conditions of Theo-
rem 2.2.24 and consider the set of secondary particles S defined in Definition 2.2.10. We set δg to be the
common value of ε(cg, c) for all c ∈ C ′.

Definition 2.2.27. We define F ε,cg
2 to be the set of secondary flat partitions, which are the flat partitions

into secondary particles in S , with ground c2
g and energy ε2 defined by

ε2(cc′, dd′) = ε(c, c′) + 2ε(c′, d) + ε(d, d′) · (2.2.40)

Remark 2.2.28. The definition of ε2 is equivalent to defining a relation mε2 on secondary particles which satisfies
the following:

(2k + ε(c, c′))cc′ mε2 (2l + ε(d, d′))dd′ ⇐⇒ (2k + ε(c, c′))− (2l + ε(d, d′)) = ε(c, c′) + 2ε(c′, d) + ε(d, d′) ·
⇐⇒ k− (l + ε(d, d′)) = ε(c′, d)

⇐⇒ µ((2k + ε(c, c′))cc′)mε γ((2l + ε(d, d′))dd′) · (2.2.41)

Definition 2.2.29. We set Rε,cg
2 to be the set of secondary regular partitions, which are the regular parti-

tions into secondary particles in S , with ground c2
g and the energy ε′ defined by

ε′2(cc′, dd′) = ε2(cc′, dd′) + 2δε(cc′, dd′) , (2.2.42)

where δε(cc′, dd′) = 0 apart from

δε(ccg, cgd′) = ε(c, d′) for all c, d′ ∈ C ′ , (2.2.43)

and the additional exceptions when δg = 1:

δε(cc′, dd′) = −1 if

{
c = cg, c′, d, d′ ∈ C ′ and ε(c′, d) = 1
c′ = cg, c, d, d′ ∈ C ′ and ε(c, d) = 0

(2.2.44)

δε(cc′, dd′) = 1 if

{
d′ = cg, c′, d ∈ C ′ and ε(c′, d) = 0
d = cg, c, c′, d′ ∈ C ′ and ε(c′, d′) = 1

· (2.2.45)

Remark 2.2.30. Note that the energy ε′2 defines a binary relation�ε on secondary particles of S as follows,

(2k + ε(c, c′))cc′ �ε (2l + ε(d, d′))dd′ ⇐⇒ k− l − ε(c′, d)− ε(d, d′) ≥ δε(cc′, dd′) · (2.2.46)
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The level above Theorem 2.2.24 can be stated as follows.

Theorem 2.2.31 (degree two). Assuming that cg = 1, there exists a bijection between Rε,cg
2 and F ε,cg

2 which
preserves the total energy and the sequence of states different from cg.

Let us give a example of such an identity. Consider the set C = {a, b}, cg = b and the energy matrix

Mε =

( a b
a 1 1
b 0 0

)
·

We then obtain the energy matrix for ε2

Mε2 =


a2 ab ba b2

a2 4 4 3 3
ab 2 2 1 1
ba 3 3 2 2
b2 1 1 0 0

 ,

and the energy matrix for ε′2

Mε′2
=


a2 ab ba b2

a2 4 4 3 3
ab 2 2 3 1
ba 3 3 2 2
b2 1 1 0 0

 ·
Since in the regular partitions we never have a state b2 except for the last part 0b2 , one can consider
these partitions as partitions into particles with state in {a2, ab, ba}, satisfying the minimal difference
condition in

Mε′2
=


a2 ab ba

a2 4 4 3
ab 2 2 3
ba 3 3 2


and such that the minimal potentials for the particle with state a2, ab and ba are respectively 3, 1 and
2. By applying the transformation (q, a, b) 7→ (q3, q−2, 1), we obtain the following corollary of Theorem
2.2.31.

Corollary 2.2.32. Let n be a non-negative integer. Let A(n) be the number of partitions of n into distinct parts
congruent to 1, 4, 5 modulo 6 such that two consecutive parts differ by at least 6 with equality only if they are
not congruent to 5. Let B(n) be the number of 13-flat partitions into parts congruent to 0, 1, 4, 5 modulo 6, the
smallest part less than 6, and such that:

• two consecutive parts congruent to 1, 4, 5 modulo 6 differ by at least 6 with equality only if they are not
congruent to 5 mod 6, with the exception that that they differ by 3 if the greater is congruent to 1 and the
smaller to 4 modulo 6,

• two consecutive parts, with at least one divisible by 6, differ by less than 6, except that they differ by 7 when
the larger part is divisible by 6 and the smaller part is congruent to 5 modulo 6.

We then have that A(n) = B(n), and the corresponding identity is

∑
n≥0

B(n)qn = ∑
n≥0

A(n)qn = (−q; q3)∞ · (2.2.47)

Example 2.2.33. As examples, the partitions of 30 of the first kind are

(29, 1), (25, 5), (23, 7), (22, 7, 1), (19, 11), (19, 10, 1) and (16, 10, 4) ,

and the partitions of 30 of the second kind are

(18, 11, 1), (16, 10, 4), (16, 7, 6, 1), (13, 12, 5), (13, 10, 6, 1), (13, 7, 6, 1) and (11, 6, 6, 6, 1) ·

We then have A(30) = B(30) = 7.
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2.2.4 Beyond the Durfee square: a duality between colored partitions and colored
Frobenius partitions

In this section we present a result generalizing the identity that links partitions to Frobenius partitions.
For a particular case, we retrieve the generalization of Primc’s identities given in (Dousse and Konan,
2019a). Chapter 6 is dedicated to the proof of the duality theorem.

Color reduction and duality

Let C be a set of colors, and Cfree t Cbound a set-partition of C. We called Cfree the set of free colors, and
Cbound the set of bound colors. Let a and b be two functions from Cbound to Cfree. We now define the first
notion needed for the duality theorem.

Definition 2.2.34. Let c1, . . . , cs be a finite sequence of colors in C. We then define the reduced color
sequence of c1, . . . , cs with respect to a and b, as the unique maximal subsequence reda,b(c1, . . . , cs) of
c1, . . . , cs which satisfies the following:

1. all the colors in Cbound are preserved,

2. for all c ∈ Cfree, we do not have the pattern c, c ,

3. for all c ∈ Cbound, we do not have the patterns a(c), c or c, b(c).

A sequence of colors c1, . . . , cs is said to be reduced if reda,b(c1, . . . , cs) = c1, . . . , cs, which is equivalent to
saying that the sequence of colors c1, . . . , cs does not have the forbidden patterns defined above.

Given a sequence c1, . . . , cs of colors taken from C, the reduced color sequence reda,b(c1, . . . , cs) is
then obtained after applying the following operations:

• if there is some i such that ci ∈ Cfree and ci+1 = ci, then remove ci+1 from the color sequence,

• if there is some i such that ci ∈ Cbound and ci+1 = b(ci), then remove ci+1 from the color sequence,

• if there is some i such that ci ∈ Cbound and ci = a(ci+1), then remove ci from the color sequence.

The reduction operation only removes free colors and the order in which removals are done does not
have any influence on the final result.

Example 2.2.35. Let us consider the set of colors C = {aibj : i, j ∈ N} for two sequences of symbols (an)n≥0
and (bn)n≥0. Let us set Cfree = {aibi : i ∈N} and the function a and b such that for all i 6= j ∈N,

a(aibj) = aibi and b(aibj) = ajbj ·

The reduction of
a1b1, a1b2, a2b2, a3b3, a3b1, a1b3, a3b3, a3b3, a3b2, a1b1

is
a1b2, a3b1, a1b3, a3b2, a1b1.

Definition 2.2.36. Let π = (π1, · · · , πs) be a generalized colored (Frobenius) partition such that c(π1) =
c1, . . . , c(πs) = cs ∈ C. The kernel of π with respect to the function a and b, denoted by kera,b(π), is the
reduced color sequence reda,b(c1, . . . , cs).

Definition 2.2.37. In the following, we consider a fictitious color c∞, and an energy ε defined on C t{c∞}
satisfying the following,

1. for any c, c′ ∈ Cfree t {c∞},
ε(c, c′) = χ(c 6= c′) , (2.2.48)

2. for any c ∈ Cbound,
ε(a(c), c) + ε(c, b(c)) = 1 , (2.2.49)

and for any c′ ∈ (Cfree t {c∞}) \ {a(c)},

ε(c′, c) ∈ {ε(a(c), c), ε(a(c), c) + 1} , (2.2.50)

and for any c′ ∈ (Cfree t {c∞}) \ {b(c)},

ε(c, c′) ∈ {ε(c, b(c)), ε(c, b(c)) + 1} , (2.2.51)
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3. for any c, c′ ∈ Cbound,

ε(c, c′) = ε(c, a(c′)) + ε(b(c), c′)− χ(b(c) 6= a(c′)) · (2.2.52)

Such an energy ε is said to be well-defined according to the reduction with respect to a and b.

Let us now consider weighted words on C t {c∞}, and denote by P c∞
ε the set of generalized colored

partitions c∞-regular with ground c∞ and relation�ε as defined in Definition 2.1.3. It is then equivalent
to consider weighted words on C and the generalized colored partitions in Pε with ε restricted to C, and
such that the minimal size for the last part with color c is ε(c, c∞).

Example 2.2.38. For the set of colors as in Example 2.2.35, as well as the free and bound colors, and function a
and b, one can check that the energy ε defined by

ε(aibj, akbl) = χ(i ≥ k)− χ(i = j = k) + χ(j ≤ l)− χ(j = k = l) ,

ε(c∞, aibj) = 1 and ε(aibj, c∞) = 1

is well-defined according to the reduction with respect to a and b.

Let us now consider two energies ε1 and ε2 on C t {c∞} such that

ε1(c, c′) + ε2(c, c′) =


2 if c = c′ ∈ Cfree t {c∞}
ε(c, c′) + 1 if c′ ∈ Cbound and c = a(c′)
ε(c, c′) + 1 if c ∈ Cbound and c′ = b(c)
ε(c, c′) otherwise .

(2.2.53)

Denote by F c∞
ε1,ε2 the set of generalized colored Frobenius partitions c∞-regular with ground c∞ and

relation�ε1,ε2 as defined in (2.1.7).

We are now ready to state the duality theorem. Unlike most classical Rogers-Ramanujan type iden-
tities, we relate the generalized colored partitions to the generalized colored Frobenius partitions.

Theorem 2.2.39. Let ε be an energy well-defined according to the reduction with respect to a and b, and ε1, ε2
defined as in (2.2.53). There exists a bijection between P c∞

ε and F c∞
ε1,ε2 which preserves the size and the kernel of

the generalized colored partitions and Frobenius partitions.

We retrieve the correspondence between the classical partitions and Frobenius partitions by setting
C = Cfree = {c}, ε1(c, c∞) = 1 and ε2(c, c∞) = 0.

Generalized n2-colored Primc’s partitions and n2-colored Frobenius partitions

Here, we consider the set of colors defined in Example 2.2.35. Recall that C = {aibj : i, j ∈ N}. The free
colors are the elements of the set Cfree = {aibi : i ∈ N}, and the bound colors are the elements of the set
Cbound = {aibk : i 6= k, i, k ∈ N}. We now define the difference conditions, which generalize those of
matrices (1.4.3) and (1.4.5) in the two identities of Primc.

Definition 2.2.40. For all i, k, i′, k′ ∈ N, we define the minimal difference ∆ between a part colored aibk
and a part colored ai′bk′ in the following way:

∆(aibk, ai′bk′) = χ(i ≥ i′)− χ(i = k = i′) + χ(k ≤ k′)− χ(k = i′ = k′), (2.2.54)

For non-negative integers ` < n, we defineP`,n to be the set of grounded partitions λ = (λ1, · · · , λs, 0a`b`)
with ground a`b` and relation �∆. To simplify some calculations throughout the thesis, we adopt the
following convention: if c1, . . . , cs, is the color sequence of the partition λ1, · · · , λs, we remove the last
color a`b` and add fictitious colors c0 = cs+1 = c∞ to both extremities of the color sequence. The differ-
ence conditions are, for all i, k ∈N,

∆(c∞, aibk) = 1 and ∆(aibk, c∞) = χ(i ≥ `) + χ(j < `) ·

In particular, when ` = 0, we have ∆(aibk, c∞) = 1 for all i, j ∈ N. The difference conditions defining
P0,n generalized Primc’s difference conditions matrices P2 and P3 in (1.4.3) and (1.4.5), as we shall see in
the next two examples.
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Example 2.2.41. If we set a = a1b0, b = a0b0, c = a1b1, d = a0b1, as shown in Table (2.2.55), then P0,2 is
exactly the set of partitions with difference conditions (1.4.3) of Primc’s 4-colored theorem.

bi
\ai 0 1
0 b a
1 d c

(2.2.55)

For example,

∆(a, b) = ∆(a1b0, a0b0)

= χ(1 ≥ 0)− χ(1 = 0 = 0) + χ(0 ≤ 0)− χ(0 = 0 = 0)
= 1− 0 + 1− 1
= 1.

This is exactly the entry in row a and column b in (1.4.3).

Example 2.2.42. The set P0,3 is exactly the set of partitions with difference conditions (1.4.5) of Primc’s 9-colored
theorem. For example,

∆(a2b0, a2b1) = χ(2 ≥ 2)− χ(2 = 0 = 2) + χ(0 ≤ 1)− χ(0 = 2 = 1)
= 1− 0 + 1− 0
= 2.

This is exactly the entry in row a2b0 and column a2b1 in (1.4.5).

Recall the functions a and b defined from Cbound to Cfree by

a(aibj) = aibi and b(aibj) = ajbj ·

By setting ∆(c∞, c∞) = 0, one can check that ∆ is an energy well-defined according to the reduction with
respect to a and b, and the set P`,n then corresponds to the set P c∞

∆ . Let us now set energies ∆1 and ∆2
on C t {c∞} as follows:

∆1(aibj, akbl) = χ(i ≥ k) ,
∆1(c∞, aibj) = 1 ,
∆1(aibj, c∞) = χ(i ≥ `) ,
∆1(c∞, c∞) = 0

and


∆2(aibj, akbl) = χ(j ≤ k) ,
∆2(c∞, aibj) = 1 ,
∆2(aibj, c∞) = χ(j < `) ,
∆2(c∞, c∞) = 0 .

(2.2.56)

This allows us to define the set F c∞
ε1,ε2 the set of generalized colored Frobenius partitions c∞-regular with

ground c∞ and relation �ε1,ε2 . This set is in bijection with the set of the pairs of generalized colored
partitions in (λ, µ) having the same numbers of parts, for any λ being a finite subsequence of

· · · > 2an−1 > 1a0 > · · · > 1an−1 > 0a0 > · · · > 0a`−2 > 0a`−1

and any µ being a finite subsequence of

· · · > 2a0 > 1an > · · · > 1a0 > 0an−1 > · · · > 0a`+1 > 0b` ·

We denote by F`,n the latter set of pairs of generalized colored partitions.

This allows us to find simple and elegant formulations for the generating functions. Following the
same reasoning as for classical Frobenius partitions, the generating function for the number
F`,n(m; u0, . . . , un−1; v0, . . . , vn−1) of n2-colored Frobenius partitions of m where for i ∈ {0, . . . , n − 1},
the symbol ai (resp. bi) appears ui (resp. vi) times, is

∑
m,u0,...,un−1,v0,...,vn−1≥0

Fn(m; u0, . . . , un−1; v0, . . . , vn−1)qmau0
0 · · · a

un−1
n−1 bv1

1 · · · b
vn−1
n−1 (2.2.57)

= [x0]
n−1

∏
i=0

(−xaiqχ(i≥`); q)∞(−x−1biqχ(i<`); q)∞. (2.2.58)
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This refines the following expression due to Andrews (Andrews, 1984a, (5.14)):

CΦn(q) = [x0](−xq; q)n
∞(−x−1; q)n

∞,

for the case ` = 0, and where the colors were not taken into account in the generating function. Note
that the generating function (2.2.57) only depends on the condition “all parts are distinct” in λ and µ.
In (Andrews, 1984a, (4.8)), Andrews defined a generalization of Frobenius partitions where λ and µ are
partitions into distinct parts chosen from {k j : k ∈N, 1 ≤ j ≤ n}, where k j = k′j′ if and only if k = k′ and
j = j′. Their generating function CΦn(q) has been widely studied from the point of view of modular
forms and congruences, see for example (Chan, Wang, and Yang, 2019; Lovejoy, 2000; Sellers, 1994).

The n2-colored Frobenius partitions are very natural objects to consider when studying our gen-
eralizations of Primc’s identity. In fact, one can check that the energies defined in (2.2.56) satisfy the
conditions in (2.2.53) with ε = ∆, ε1 = ∆1 and ε2 = ∆2. Indeed, by Theorem 2.2.39 and the fact that
the reduced color sequence conserves the bound colors, it suffices to consider in our enumeration only
the bound colors. Moreover, when we set for all i, bi = a−1

i , then all free colors vanish and we have an
elegant expression for our generating functions as the constant term in an infinite product.

Theorem 2.2.43 (Generalisation of Primc’s identity). Let ` < n be non-negative integers.

Let P`,n(m; u0, . . . , un−1; v0, . . . , vn−1) be the number of generalized colored partitions in P`,n with size m,
where for i ∈ {0, . . . , n− 1}, the symbol ai (resp. bi) appears ui (resp. vi) times in their bound colors.

Let F`,n(m; u0, . . . , um−1; v0, . . . , vm−1) be the number of n2-colored Frobenius partitions F`,n with size m,
in where for i ∈ {0, . . . , n− 1}, the symbol ai (resp. bi) appears ui (resp. vi) times in their bound colors. Then

P`,n(m; u0, . . . , un−1; v0, . . . , vn−1) = F`,n(m; u0, . . . , un−1; v0, . . . , vn−1) ,

and we have

∑
m,u0,...,un−1,v0,...,vn−1≥0

P`,n(m; u0, . . . , un−1; v0, . . . , vn−1)qmau0−v0
0 · · · aun−1−vn−1

n−1

= ∑
m,u0,...,un−1,v0,...,vn−1≥0

F`,n(m; u0, . . . , un−1; v0, . . . , vn−1)qmau0−v0
0 · · · aun−1−vn−1

n−1

= [x0]
n−1

∏
i=0

(−xaiqχ(i≥`); q)∞(−x−1a−1
i qχ(i<`); q)∞.

Let us set

GP
n (q; b0, · · · , bn−1) = [x0]

n−1

∏
i=0

(−xb−1
i q; q)∞(−x−1bi; q)∞ ·

We then obtain that

GP
n (q; qb0, · · · , q`−1b`, b`, · · · , bn−1) = [x0]

n−1

∏
i=0

(−xb−1
i qχ(i≥`); q)∞(−x−1biqχ(i<`); q)∞ · (2.2.59)

From this theorem, it is easy to deduce a corollary, corresponding to the principal specialization, which
generalizes both of Primc’s original identities. By performing the dilations q → qn, and for all i ∈
{0, . . . , n− 1}, ai → q−i, the generating function above becomes [x0](−xq1−`; q)∞(−x−1q`; q)∞, which
is also equal to 1/(q; q)∞.

Corollary 2.2.44 (Principal specialization). Let n be a positive integer. We have

∑
m,u0,...,un−1,v0,...,vn−1≥0

P`,n(m; u0, . . . , un−1; v0, . . . , vn−1)qnm−∑n−1
i=0 i(vi−ui) =

1
(q; q)∞

.

Moreover, by using Jacobi’s triple product repeatedly, we are able to give an expression of the gen-
erating function for colored Frobenius partitions as a sum of infinite products, which gives yet another
expression for the generating function for P0,n.

Theorem 2.2.45. Let n be a positive integer. Then

∑
m,u0,...,un−1,v0,...,vn−1≥0

P0,n(m; u0, . . . , un−1; v0, . . . , vn−1)qmau0−v0
0 · · · aun−1−vn−1

n−1
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=
1

(q; q)n
∞

∑
s1,...,sn−1∈Z

sn=0

a−s1
0

n−1

∏
i=1

asi−si+1
i qsi(si−si+1) (2.2.60)

=
1

(q; q)∞

n−1

∏
i=1

(
qi(i+1); qi(i+1)

)
∞

(q; q)∞

 ∑
r1,...,rn−1 :
0≤rj≤j−1

rn=0

n−1

∏
i=1

ari−ri+1
i qri(ri−ri+1)

×
(
−
(

i−1

∏
`=0

aia−1
`

)
q

i(i+1)
2 +(i+1)ri−iri+1 ; qi(i+1)

)
∞

(2.2.61)

×
(
−
(

i−1

∏
`=0

a`a−1
i

)
q

i(i+1)
2 −(i+1)ri+iri+1 ; qi(i+1)

)
∞

.

The formula (2.2.61) gives an expression for Andrews’ function CΦn(q) as a sum of infinite products,
which makes it is easy to express this function as a sum of modular forms. An expression for CΦn(q) as
a sum of infinite products was already given by Andrews (Andrews, 1984a) (without the colors) in the
cases n = 1, 2, 3. This is the first time that the case of general k is treated and that a refinement with color
variables is introduced.

2.2.5 Beyond Capparelli’s theorem: regularity over Primc’s theorem

This section is dedicated to the exposition of the main result that generalizes the Capparelli theorem. We
start by presenting the formal tools as well as the formal result beyond Capparelli, and then discuss in
the second part an explicit generalization of Capparelli’s theorem by using the generalization of Primc’s
theorem. The proof of the main theorem is postponed till Chapter 7.

Another duality theorem between flat and regular partitions

Let C be a set of colors, and let Csup t Cfree t Cinf be a set-partition of C. Consider now an energy ε on C2

with values in {0, 1, 2}.

Definition 2.2.46. The energy ε is said to be well-defined according to the decomposition Csup tCfree tCinf
if it satisfies the following.

1. For all c, c′ ∈ Cfree, we have
ε(c, c′) = χ(c 6= c′) · (2.2.62)

2. For all (c, c′) ∈ Csup × Cfree, we have

ε(c, c′) ∈ {0, 1} and ε(c′, c) ∈ {1, 2} , (2.2.63)

and in particular, for all c ∈ Csup, there exists c′ ∈ Cfree such that ε(c, c′) = 0.

3. For all (c, c′) ∈ Cfree × Cinf, we have

ε(c, c′) ∈ {0, 1} and ε(c′, c) ∈ {1, 2} , (2.2.64)

and in particular, for all c′ ∈ Cinf, there exists c ∈ Cfree such that ε(c, c′) = 0.

4. For all (c, c′) ∈ Csup × Cinf, we have

ε(c, c′) ∈ {0, 1} and ε(c′, c) ∈ {1, 2} (2.2.65)

and in particular, if ε(c, c′) = 0, there then exists c′′ ∈ Cfree such that

ε(c, c′′) = 0 and ε(c′′, c′) = 0 · (2.2.66)

5. For all c, c′ ∈ Csup, if ε(c, c′) ∈ {0, 1}, there then exists c′′ ∈ Cfree such that

ε(c, c′′) = 0 and ε(c′′, c′) = 1 · (2.2.67)
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6. For all c, c′ ∈ Cinf, if ε(c, c′) ∈ {0, 1}, there then exists c′′ ∈ Cfree such that

ε(c, c′′) = 1 and ε(c′′, c′) = 0 · (2.2.68)

Example 2.2.47. Let us consider C = {aibj : i, j ∈N}, and set

Csup = {aibj : i < j ∈N} ,

Cfree = {aibj : i ∈N} ,

Cinf = {aibj : i > j ∈N} ·

Then, the energy ∆ defined in (2.2.54) is well-defined according to the above decomposition.

Definition 2.2.48. Let δ be a function from Csup t Cinf to Cfree, and let γ be a function from the set

{(c, c′) ∈ Csup × Cinf : ε(c, c′) = 0} t {(c, c′) ∈ C2
sup : ε(c, c′) ∈ {0, 1}} t {(c, c′) ∈ C2

inf : ε(c, c′) ∈ {0, 1}}
(2.2.69)

to Cfree. We say that δ is well-defined according to ε if

• for all c ∈ Csup, we have ε(c, δ(c)) = 0, and

• for all c ∈ Cinf, we have ε(δ(c), c) = 0.

Similarly, we say that γ is well-defined according to ε if

• for all (c, c′) ∈ Csup × Cinf such that ε(c, c′) = 0, we have ε(c, γ(c, c′)) = ε(γ(c, c′), c′) = 0,

• for all (c, c′) ∈ C2
sup such that ε(c, c′) ∈ {0, 1}, we have ε(c, γ(c, c′)) = 0 and ε(γ(c, c′), c′) = 1,

• for all (c, c′) ∈ C2
inf such that ε(c, c′) ∈ {0, 1}, we have ε(c, γ(c, c′)) = 1 and ε(γ(c, c′), c′) = 0.

For any energy well-defined according to the decomposition Csup tCfree tCinf, the conditions (2.2.63)
and (2.2.64) imply the existence of some function δ well-defined according to ε, and by (2.2.66), (2.2.67)
and (2.2.68), there exists some function γ well-defined according to ε.

We finally add a fictitious color c∞, and extend the energy ε such that

ε(Cfree, c∞) = {1} , (2.2.70)
ε(Csup, c∞) ⊂ {1, 2} , (2.2.71)

ε(Cinf, c∞) ⊂ {0, 1} · (2.2.72)

Recall that P c∞
ε is the set of c∞-regular partitions with ground c∞ and relation �ε. We now define a

subset of P c∞
ε of partitions avoiding forbidden pattern according to δ and γ.

Definition 2.2.49. We denote by c0
δ,γP

c∞
ε the set of generalized colored partitions of P c∞

ε , c0-regular, and
which avoid the following forbidden patterns:

1. for all c ∈ Cfree \ {c0}, the pattern
pc, pc (2.2.73)

2. for all (c, c′) ∈ Csup × Cinf such that ε(c, c′) = 0, the pattern

pc, pγ(c,c′), pc′ (2.2.74)

3. for all (c, c′) ∈ C2
sup such that ε(c, c′) ∈ {0, 1}, the pattern

pc, pγ(c,c′), (p− 1)c′ (2.2.75)

4. for all (c, c′) ∈ C2
inf such that ε(c, c′) ∈ {0, 1}, the pattern

(p + 1)c, pγ(c,c′), pc′ (2.2.76)

5. for all c ∈ Csup,
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(a) for all c′ ∈ (Cfree \ {c0}) t Cinf t {c∞}, the pattern

pc, pδ(c), (p− 1)c′ (2.2.77)

(b) for all c′ ∈ (C \ {c0}) t {c∞}, and for all positive integers u ≥ 2, the pattern

pc, pδ(c), (p− u)c′ (2.2.78)

6. for all c′ ∈ Cinf,

(a) at the head of the partition, the pattern

pδ(c′), pc′ (2.2.79)

(b) for all c ∈ (Cfree \ {c0}) t Csup, the pattern

(p + 1)c, pδ(c′), pc′ (2.2.80)

(c) for all c ∈ C \ {c0}, and for all positive integers u ≥ 2, the pattern

(p + u)c, pδ(c′), pc′ (2.2.81)

Remark 2.2.50. One can observe that the forbidden patterns, apart from (2.2.73) and (2.2.79), have the form

p(1)c1 , p f , p(2)c2

with the allowed pattern p(1)c1 , p(2)c2 and f a unique free color depending on c1, c2, δ and γ. Also, we remark that
either c1 or c2 is not a free color. We extend the above notation to the forbidden pattern (2.2.79), by setting
p(1) = ∞. We will show in Chapter 7 that the above cases form the exhausted list of all the insertions, between
two consecutive parts p(1)c1 , p(2)c2 , of a part p f with a color f ∈ Cfree and with the same size as one of the two parts.

We are now ready to state the main theorem of this section.

Theorem 2.2.51. Assume that there exists a color c0 in Cfree such that for all c 6= c0, ε(c0, c) = ε(c, c0) =

1. Then, for the functions δ and γ defined above, there exist a bijection Φ between P c∞
ε and the product set

c0
δ,γP

c∞
ε × P , where P is the set of classical integer partitions. Furthermore, for Φ(λ) = (µ, ν), we have that

|λ| = |µ|+ |ν|, the number of parts of π is equal to the number of parts of µ plus the number of parts of ν, and
the color sequence of λ, restricted to the colors in Csup t Cinf, is the same as the color sequence of µ restricted to the
colors in Csup t Cinf.

Duality between Capparelli’s identity and Primc’s identity

Since its discovery, Capparelli’s identity has been one of the most studied partition identities in the
literature, see for example (Bringmann and Mahlburg, 2015; Berkovich and Uncu, 2015; Berkovich and
Uncu, 2019; Dousse and Lovejoy, 2019; Fu and Zeng, 2018; Kanade and Russell, 2018; Kursungoz, 2018;
Sills, 2004) for articles from the combinatorial point of view. While the other most important partition
identities, such as the Rogers-Ramanujan identities (Rogers and Ramanujan, 1919) and Schur’s theorem
(Schur, 1926) have been successfully embedded in large families of identities, such as the Andrews-
Gordon identities for Rogers-Ramanujan (Andrews, 1974; Gordon, 1965) and Andrews’ theorems for
Schur’s theorem (Andrews, 1969a; Andrews, 1968), finding such a broad generalization of Capparelli’s
identity was still an open problem. Here, we solve this problem by giving two different families of
identities which generalize Capparelli.

In the previous section, we gave difference conditions which generalize those of Primc’s identities
(1.4.3) and (1.4.5). In this section, we define two other families of difference conditions which generalise
those of Capparelli’s identity (1.4.2). For these two generalizations, we refer to the set C = {aibj : i, j ∈
N} and the energy ∆ as defined in (2.2.54). Let us start with the first energy.
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Definition 2.2.52. Let us define the energy ∆1 on C = {aibj : i, j ∈N} in the following way:

∆1(akbk, akbk) = 1 for all k ∈N∗,
∆1(akbk, akb`) = 1 for all ` < k,
∆1(a`bk, akbk) = 1 for all ` < k,
∆1(aibk, ai′bk′) = ∆(aibk, ai′bk′) in all the other cases.

(2.2.82)

Remark 2.2.53. By (2.2.54), in all the cases where ∆1 6= ∆, we have ∆1 = 1 and ∆ = 0.

For any non-negative integers ` < n, we restrict the set of colors to {aibj : i, j ≤ n− 1}, and we define
a fictitious color c∞ and extend ∆1 with the following:

∆1(c∞, c∞) = 0,
∆1(c∞, aiaj) = 1,

∆1(aiaj, c∞) = χ(i ≥ `) + χ(j < `) ·

Recall that these definitions are the same as the case where we set c∞ instead of a`b` for the generalized
Primc’s partitions of P`,n. We now define C`,n to be the set of a0b0-regular and c∞-regular partitions with
ground c∞ and relation�∆1 , and which avoid the following forbidden patterns:

• for all n− 1 ≥ k ≥ k′ > l > l′ ≥ 0, the forbidden pattern

(p + 1)akbl
, pal+1bl+1

, pak′ bl′
, (2.2.83)

• for all 0 ≤ k < k′ < l ≤ l′ ≤ n− 1, the forbidden pattern

(p + 1)akbl
, (p + 1)ak+1bk+1

, pak′ bl′
· (2.2.84)

The difference conditions implied by the energy ∆1 generalize those of Capparelli’s identity stated in
(1.4.2).

Example 2.2.54. If we define a, c, d (omitting b = a0b0) as previously in Table (2.2.55), then C2 is exactly the set
of partitions with difference conditions (1.4.2) of Capparelli’s identity. For example,

∆1(c, a) = δ(a1b1, a1b0) = 1.

Example 2.2.55. The set C3 is the set of partitions with difference conditions shown in the following matrix:

C3 =



a2b0 a2b1 a1b0 a2b2 a1b1 a0b1 a1b2 a0b2

a2b0 2 2 2 2 2 2 2 2
a2b1 1 2 1 2 1 2 2 2
a1b0 1 1 2 1 2 2 2 2
a2b2 1 1 1 1 1 1 2 2
a1b1 0 1 1 1 1 2 1 2
a0b1 0 1 0 1 1 2 1 2
a1b2 0 0 1 1 1 1 2 2
a0b2 0 0 0 1 0 1 1 2


. (2.2.85)

Let us now turn to the second energy.

Definition 2.2.56. Let us define the energy ∆2 on C = {aibj : i, j ∈N} in the following way:

∆2(akbk, akbk) = 1 for all k ∈N∗,
∆2(akbk, a`bk−1) = 1 for all ` ≥ k ≥ 1,
∆2(ak−1b`, akbk) = 1 for all ` ≥ k ≥ 1,

∆2(aibk, ai′bk′) = ∆(aibk, ai′bk′) in all the other cases.

(2.2.86)

For any non-negative integers ` < n, we restrict the set of colors to {aibj : i, j ≤ n− 1}, and we define
a fictitious color c∞ and extend ∆1 with the following:

∆2(c∞, c∞) = 0,
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∆2(c∞, aiaj) = 1,

∆2(aiaj, c∞) = χ(i ≥ `) + χ(j < `) ·

We now define C`,n to be the set of a0b0-regular and c∞-regular partitions with ground c∞ and relation
�∆2 , which avoid the following forbidden patterns:

• for all n− 1 ≥ k′ > k > l′ ≥ l ≥ 0, the forbidden pattern

(p + 1)akbl
, pak′ bk′

, pak′ bl′
, (2.2.87)

• for all 0 ≤ k′ ≤ k < l′ < l ≤ n− 1, the forbidden pattern

(p + 1)akbl
, (p + 1)albl

, pak′ bl′
· (2.2.88)

The difference conditions implied by ∆2 also generalize those of Capparelli’s identity (1.4.2), as well as
those of another partition identity mentioned in Primc’s paper (Primc, 1999).

Example 2.2.57. Defining the colors a, c, d as before in Table (2.2.55), C ′2 is again exactly the set of partitions
with difference conditions of Capparelli’s identity.

Example 2.2.58. The set C ′3 is the set of partitions with difference conditions shown in the following matrix,
which appeared in Primc’s paper (Primc, 1999).

C′3 =



a2b0 a2b1 a1b0 a2b2 a1b1 a0b1 a1b2 a0b2

a2b0 2 2 2 2 2 2 2 2
a2b1 1 2 1 2 1 2 2 2
a1b0 1 1 2 1 2 2 2 2
a2b2 0 1 1 1 1 1 2 2
a1b1 1 1 1 1 1 2 1 2
a0b1 0 1 0 1 1 2 1 2
a1b2 0 0 1 1 1 1 2 2
a0b2 0 0 0 0 1 1 1 2


. (2.2.89)

It was proved by Meurman and Primc in (Meurman and Primc, 2001), using basic A(1)
2 modules, that after

performing the dilations (1.4.6), the generating function for these partitions becomes (q; q3)−1
∞ (q2; q3)−1

∞ .

Recently in (Dousse, 2020), Dousse built a bijection between Primc’s partitions P2 and pairs (λ, µ)
where λ ∈ C2 is a Capparelli partition and µ is a classical partition. This bijection only modifies some free
colors, so it preserves the size, the number of parts, the size of the parts, and the number of appearances
of colors a and d. In this way, she showed that Capparelli’s identity is very closely related to Primc’s
identity and can be deduced from it, even though until then, these two identities seemed unrelated from
a representation theoretic point of view. The proof of Theorem 2.2.51 uses a broad generalization of the
Dousse bijection. Here we give a generalization of the Dousse result.

Theorem 2.2.59. For any non-negative integers ` < n, let CC`,n (resp. CC ′`,n) denote partition pairs (λ, µ),
where λ ∈ C`,n (resp. C ′`,n) and µ is a classical partition. There is a bijection between:

• colored partitions in P`,n,

• colored partition pairs in CC`,n,

• colored partition pairs in CC ′`,n,

This bijection preserves the total size, the number of parts, the size of the parts, and the color subsequence of bound
colors.

The result stated in (Dousse and Konan, 2019a) is the particular case where ` = 0. We note that
both Capparelli’s identity and Meurman and Primc’s identity with difference conditions (2.2.89) did not
have any apparent connection to the theory of perfect crystals. The bijection between P0,2 and CC0,2 in
(Dousse, 2020) gave an unexpected connection with Primc’s identity and the theory of perfect crystals.
The present theorem shows that Meurman and Primc’s identity with difference conditions (2.2.89) can
actually be deduced from Primc’s Theorem 1.4.4. More generally, through the bijection with the P`,n’s,
we related both families of generalisations of Capparelli’s identity to the theory of perfect crystals.
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2.3 Rogers-Ramanujan type identities via representations of affine
Lie algebras

We will define all the necessary notions from crystal base theory in Chapter 8. For now, let us define a
few notations which will allow us to state our main theorems.

Let n be a non-negative integer, and consider the Cartan datum (A, Π, Π∨, P, P∨) for a generalized
Cartan matrix A of affine type and rank n. Here Π is the set of the simple roots αi(i ∈ {0, . . . , n}),
and we denote by P̄ = ZΛ0 ⊕ · · · ⊕ZΛn the lattice of the classical weights, where the elements Λ`

(` ∈ {0, . . . , n}) are the fundamental weights. We denote by δ the null root. L(Λ) denotes the irreducible
module of highest weight Λ, also called the standard module.

In this section, we present the connection between the theory of perfect crystals and our notion of
weighted words. In particular, we compute via our method explicit formulas for the character of level
one standard module for several classical affine types.

2.3.1 Perfect crystals and multi-grounded partitions

Let B be a perfect crystal of level `, and let Λ ∈ P̄+
` be a level ` dominant classical weight such that the

corresponding ground state path is pΛ = (gk)k≥0. The finiteness of the set P` implies the periodicity of
the sequence (gi)i≥0 (see (8.1.10)). We then set t to the smallest non-negative integer k such that gk = g0.
Let H be an energy function on B ⊗ B. Since B ⊗ B is connected, H is then unique up to a constant. We
then define the function HΛ on B ⊗ B satisfying

HΛ(b⊗ b′) = H(b⊗ b′)− 1
t

t−1

∑
k=0

H(gk+1 ⊗ gk) . (2.3.1)

Note that for any energy function H, we always have

t−1

∑
k=0

(k + 1)HΛ(gk+1 ⊗ gk) =
t−1

∑
k=0

(k + 1)H(gk+1 ⊗ gk)−
t + 1

2

t−1

∑
k=0

H(gk+1 ⊗ gk) ∈
1
2

Z ·

The above number is an integer when t is odd, and is equal to 0 when t = 1. We can then choose a
suitable divisor D of 2χ(t even)t such that DHΛ(B ⊗B) ⊂ Z and 1

t ∑t−1
k=0(k + 1)DHΛ(gk+1 ⊗ gk) ∈ Z. For

the particular case t = 1, we can choose D = 1. Let us now consider the set of colors CB with indices in
B, and let us define the relation m on ZCB by

kcb m k′cb′
⇐⇒ k− l = DHΛ(b′ ⊗ b) · (2.3.2)

We also define the relation� on ZCB by

kcb � k′cb′
⇐⇒ k− l ≥ DHΛ(b′ ⊗ b) · (2.3.3)

By taking

u(k) = −1
t

t−1

∑
l=0

(l + 1)DHΛ(gl+1 ⊗ gl) +
t−1

∑
l=k

DHΛ(gl+1 ⊗ gl) , (2.3.4)

the colors cg0 , . . . , cgt−1 and the colored integers u(0)
cg0

, . . . , u(t−1)
cgt−1

satisfy the conditions in Definition 2.1.22
for both relations m and�. We can then define the multi-grounded partition with grounds cg0 , . . . , cgt−1
and relation m. We denote by Pm

cg0 ···cgt−1
the set of all such partitions. We also define the set P�cg0 ···cgt−1

of the multi-grounded partitions with grounds g0, . . . , gt−1 and the relation � defined in (2.3.3). In
particular for any positive integer d, we denote by dP�cg0 ···cgt−1

the set of the partitions

π = (π0, · · · , πs−1, u(0)
cg0

, . . . , u(t−1)
cgt−1

)

of P�cg0 ···cgt−1
with c(πk) = cpk for all k ∈ {0, . . . , s− 1}, such that

πk − πk+1 − DHΛ(gk+1 ⊗ gk) ∈ dZ≥0 , (2.3.5)
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where we set πs to be u(0)
cg0

. We finally set d
tP�cg0 ···cgt−1

to be the set of partitions of dP�cg0 ···cgt−1
with

a number of parts divisible by t. The main theorem that connects the perfect crystals and the multi-
grounded partitions is the following.

Theorem 2.3.1. Setting q = e−δ/d0D and cb = ewtb for all b ∈ B, we have cg0 · · · cgt−1 = 1, and the character
of the irreducible highest weight Uq(ĝ)-module L(Λ) is given by the following expressions:

∑
µ∈tPm

cg0 ···cgt−1

C(π)q|π| = e−Λch(L(Λ)), (2.3.6)

∑
π∈ d

t P�cg0 ···cgt−1

C(π)q|π| =
e−Λch(L(Λ))

(qd; qd)∞
. (2.3.7)

In Chapter 8, we present the crystal base theory and the proof of Theorem 2.3.1

2.3.2 Level one standard modules of A(1)
n−1: a Lie-theoretic interpretation of Primc’s

theorem

We present in this section the main results of (Dousse and Konan, 2019b) which make the connection
between the generalization of Primc’s identity and the representations of the affine type A(1)

n−1.

Let n be a positive integer, and consider the Cartan datum for the generalized Cartan matrix of
affine type A(1)

n−1. We denote by P̄ = ZΛ0 ⊕ · · · ⊕ZΛn−1 the lattice of the classical weights, where the
elements Λ` (` ∈ {0, . . . , n− 1}) are the fundamental weights. The set of all the level 1 classical weights
is given by P̄+

1 = {Λ` : ` ∈ {0, · · · , n − 1}}. The null root is denoted by δ, and the simple roots by
αi, i ∈ {0, · · · , n− 1}. Let B = {vi : i ∈ {0, · · · , n− 1}} be the crystal of the vector representation of
A(1)

n−1 and let B∨ = {v∨i : i ∈ {0, · · · , n − 1}} be its dual. For all vi ∈ B, we denote by wtvi ∈ P̄ the
classical weight of vi. We finally set B to be the tensor product B ⊗ B∨.

Given that (1.4.3) and (1.4.5) are energy matrices for perfect crystals coming from the tensor product
of the vector representation and its dual in A(1)

1 and A(1)
2 , respectively, it is natural to wonder whether

our generalized difference conditions ∆ define in (2.2.54) are also energy functions for certain perfect
crystals. We answer this question in the affirmative by showing the following.

Theorem 2.3.2. Let n be a positive integer, and let B denote the crystal of the vector representation of A(1)
n−1.

The crystal B = B ⊗ B∨ is a perfect crystal of level 1. Furthermore, the energy function on B⊗ B such that
H((v0 ⊗ v∨0 )⊗ (v0 ⊗ v∨0 )) = 0 satisfies for all k, `, k′, `′ ∈ {0, . . . , n− 1},

H((v`′ ⊗ v∨k′)⊗ (v` ⊗ v∨k )) = ∆(akb`; ak′b`′), (2.3.8)

where ∆ is the minimal difference for Primc generalized partitions defined in (2.2.54).

Primc showed Theorem 2.3.2 in the cases n = 2 and n = 3. The theorem is still true when n = 1, in
which case the crystal B has a single vertex and a loop 0, and the corresponding partitions are simply
the classical partitions.

In (Benkart et al., 2006), Benkart, Frenkel, Kang, and Lee gave another formulation of the energy
function of certain level 1 perfect crystals of classical types, including the A(1)

n−1-crystal studied in Theo-
rem 2.3.2. However, they did not give a closed expression valid for all k, `, k′, `′ ∈ {0, . . . , n− 1} as we
have done in Theorem 2.3.2 and (2.2.54). They used the fact that, when removing the 0-arrows from the
crystal graph on Figure 9.4, the energy function H is constant on each connected component, and gave
a table with the value of H for a representative of each connected component. The value of H for the
other vertices can then be obtained by determining to which connected component they belong. Both
their and our energy functions satisfy H((v0 ⊗ v∨0 ) ⊗ (v0 ⊗ v∨0 )) = 0, so they must be the same, even
though their expressions differ. In this sense, Theorem 2.3.2 gives a simpler, more explicit and unified
formula for the A(1)

n−1 energy function in (Benkart et al., 2006).

Our proof of Theorem 2.3.2 in Chapter 9 relies on explicitly building paths in the crystal graph. We
only treat the case n ≥ 3, as n = 1 and n = 2 give crystals with a slightly different shape, and we already
know that the theorem is true in these cases.
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Theorem 2.3.2 gives a simple explicit expression for the energy function. Using the (KMN)2 crystal
base character formula of (Kang et al., 1992a), it allows us to relate the generating function GP

n (q; b0, · · · , bn−1)
of generalized Primc partitions with the character of the irreducible highest weight module L(Λ0). This
result gives an evaluation of the character of the irreducible highest weight module for the particular
weight Λ0, but we can extend our techniques to retrieve the characters for the other level 1 weights of
P̄+

1 .

Theorem 2.3.3. Let n be a positive integer, and let Λ0, . . . , Λn−1 be the fundamental weights of A(1)
n−1. By setting

ewtvi = bi and e−δ = q, we have the following identities for any ` ∈ {0, . . . , n− 1}:

GP
n (q; b0q, · · · , b`−1q, b`, . . . , bn−1) =

e−Λ`ch(L(Λ`))

(q; q)∞
,

GC
n (q; b0q, · · · , b`−1q, b`, . . . , bn−1) = GC′

n (q; b0q, · · · , b`−1q, b`, . . . , bn−1) = e−Λ`ch(L(Λ`)).

Unlike previous connections between character formulas and partition generating functions, where
a specific specialization (often the principal specialization) was needed, here we give a non-dilated
character formula.

Theorem 2.3.4. Let n be a positive integer, and let Λ0, . . . , Λn−1 be the fundamental weights of A(1)
n−1. For all

` ∈ {0, . . . , n− 1}, we have

e−Λ`ch(L(Λ`))

=
1

(e−δ; e−δ)n−1
∞

∑
s1,...,sn−1∈Z

s0=sn=0

e−s`δ
n−1

∏
i=1

esiαi esi(si+1−si)δ (2.3.9)

=

n−1

∏
i=1

(
e−i(i+1)δ; e−i(i+1)δ

)
∞

(e−δ; e−δ)∞

 ∑
r1,...,rn−1 :
0≤rj≤j−1

rn=0

e−rlδ
n−1

∏
i=1

eriαi eri(ri+1−ri)δ

×
(
−e(iri+1−(i+1)ri−

i(i+1)
2 −`χ(i≥l>0))δ+∑i

j=1 jαj ; e−i(i+1)δ
)

∞
(2.3.10)

×
(
−e((i+1)ri−iri+1−

i(i+1)
2 +`χ(i≥l>0))δ−∑i

j=1 jαj ; e−i(i+1)δ
)

∞
,

where δ = α0 + · · ·+ αn−1 is the null root.

The character formula (2.3.9) is, up to a change of variables, a reformulation of the Kac-Peterson
character formula for the type A(1)

n−1 given in (Kac and Peterson, 1984, p. 217). Thus, our partition
identity Theorem 2.2.45 combined with theorem 2.3.1, makes the connection between the KMN2 crystal
base character formula and the Kac-Peterson character formula.

The principal specialization (Kac, 1990, Chapter 10) for the affine type A(1)
n−1 consists in transforming

the generators with
e−αi 7→ q for all i ∈ {1, . . . , n− 1}.

In that case, we have a natural transformation bi := qib0 and a dilated version of the character formula
can be deduced from Theorems 2.2.43 and 2.3.4.

Corollary 2.3.5. Let n be a positive integer, and let Λ0, . . . , Λn−1 be the fundamental weights of A(1)
n−1. For

all ` ∈ {0, · · · , n− 1}, the principal specialization of e−Λ`ch(L(Λ`)), denoted by F1(e−Λ`ch(L(Λ`))), is the
generating function of the classical integer partitions with no parts divisible by n :

F1(e−Λ`ch(L(Λ`))) = (qn; qn)× GP
n (q

n; qnb0, · · · , qn+`−1b0, q`, · · · , qn−1b0)

= (qn; qn)× [x0]

(
`−1

∏
i=0

(−q−ib−1
0 x; qn)∞(−qn+ib0x−1; qn)∞

×
n−1

∏
i=`

(−qn−ib−1
0 x; qn)∞(−qib0x−1; qn)∞

)
= (qn; qn)× [x0](−q1−`b−1

0 x; q)∞(q`b0x−1; q)∞
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=
(qn; qn)

(q; q)∞
.

In this particular case, we recover the principal specialization of the Weyl-Kac character formula
(Kac, 1990).

2.3.3 Level one standard modules of A(2)
2n , D(2)

n+1, A(2)
2n−1, B(1)

n , D(1)
n

We compute the following characters ch(L(Λ)).

Theorem 2.3.6. Let n ≥ 2, and let Λ0, . . . , Λn be the fundamental weights and let α0, . . . , αn be the simple roots
of A(2)

2n . We have in Z[[e−α0 , e−α1 , · · · , e−αn ]] that

e−Λ0ch(L(Λ0)) =
n

∏
u=1

(−e−δ′− 1
2 αn−∑n−1

i=u αi ,−e−δ′+ 1
2 αn+∑n−1

i=u αi ; e−2δ′)∞ , (2.3.11)

where 2δ′ = δ = 2α0 + · · ·+ 2αn−1 + αn is the null root.

Theorem 2.3.7. Let n ≥ 2, and let Λ0, . . . , Λn be the fundamental weights and let α0, . . . , αn be the simple roots
of D(2)

n+1. We have in Z[[e−α0 , e−α1 , · · · , e−αn ]] that

e−Λ0ch(L(Λ0)) =
1

(e−δ; e−2δ)∞
·

n

∏
u=1

(−e−δ−∑n
i=u αi ,−e−δ+∑n

i=u αi ; e−2δ)∞ , (2.3.12)

e−Λn ch(L(Λn)) =
1

(e−δ; e−2δ)∞
·

n

∏
u=1

(−e−∑n
i=u αi ,−e−2δ+∑n

i=u αi ; e−2δ)∞ , (2.3.13)

where δ = α0 + · · ·+ αn is the null root.

Theorem 2.3.8. Let n ≥ 3, and let Λ0, . . . , Λn be the fundamental weights and let α0, . . . , αn be the simple roots
of A(2)

2n−1. We have in Z[[e−α0 , e−α1 , · · · , e−αn ]] that

e−Λ0ch(L(Λ0)) =
(e−δ; e−2δ)

2
·
( n

∏
u=1

(−e−
δ
2−

αn
2 −∑n−1

i=u αi ,−e−
δ
2+

αn
2 +∑n−1

i=u αi ; e−δ)∞

+
n

∏
u=1

(e−
δ
2−

αn
2 −∑n−1

i=u αi , e−
δ
2+

αn
2 +∑n−1

i=u αi ; e−δ)∞

)
, (2.3.14)

e−Λ1ch(L(Λ1)) =
(e−δ; e−2δ)

2
·
( n

∏
u=1

(−e−
1−2χ(u=1)

2 δ− αn
2 −∑n−1

i=u αi ,−e−
1+2χ(u=1)

2 δ+ αn
2 +∑n−1

i=u αi ; e−δ)∞

+
n

∏
u=1

(e−
1−2χ(u=1)

2 δ− αn
2 −∑n−1

i=u αi , e−
1+2χ(u=1)

2 δ+ αn
2 +∑n−1

i=u αi ; e−δ)∞

)
,

(2.3.15)

where δ = α0 + α1 + 2α2 · · ·+ 2αn−1 + αn is the null root.

Theorem 2.3.9. Let n ≥ 3, and let Λ0, . . . , Λn be the fundamental weights and let α0, . . . , αn be the simple roots
of B(1)

n . We have in Z[[e−α0 , e−α1 , · · · , e−αn ]] that

e−Λn ch(L(Λn)) =
1

(e−δ; e−2δ)∞
·

n

∏
u=1

(−e−∑n
i=u αi ,−e−δ+∑n

i=u αi ; e−δ)∞ (2.3.16)

e−Λ0ch(L(Λ0)) =
(−e−

δ
2 ; e−δ)

2
·

n

∏
u=1

(−e−
δ
2−∑n

i=u αi ,−e−
δ
2+∑n

i=u αi ; e−δ)∞

+
(e−

δ
2 ; e−δ)

2
·

n

∏
u=1

(e−
δ
2−∑n

i=u αi , e−
δ
2+∑n

i=u αi ; e−δ)∞ , (2.3.17)

e−Λ1ch(L(Λ1)) =
(−e−

δ
2 ; e−δ)

2
·

n

∏
u=1

(−e−
1−2χ(u=1)

2 δ−∑n
i=u αi ,−e−

1+2χ(u=1)
2 δ+∑n

i=u αi ; e−δ)∞

+
(e−

δ
2 ; e−δ)

2
·

n

∏
u=1

(e−
1−2χ(u=1)

2 δ−∑n
i=u αi , e−

1+2χ(u=1)
2 δ+∑n

i=u αi ; e−δ)∞ , (2.3.18)
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where δ = α0 + α1 + 2α2 · · ·+ 2αn is the null root.

Theorem 2.3.10. Let n ≥ 4, and let Λ0, . . . , Λn be the fundamental weights and let α0, . . . , αn be the simple
roots of D(1)

n . We have in Z[[e−α0 , e−α1 , · · · , e−αn ]] that

e−Λ0ch(L(Λ0)) =
1
2

n

∏
u=1

(−e−
δ
2−

αn−αn−1
2 −∑n−1

i=u αi ,−e−
δ
2+

αn−αn−1
2 +∑n−1

i=u αi ; e−δ)∞

+
1
2

n

∏
u=1

(e−
δ
2−

αn−αn−1
2 −∑n−1

i=u αi , e−
δ
2+

αn−αn−1
2 +∑n

i=u αi ; e−δ)∞ , (2.3.19)

e−Λ1ch(L(Λ1)) =
1
2

n

∏
u=1

(−e−
1−2χ(u=1)

2 δ− αn−αn−1
2 −∑n−1

i=u αi ,−e−
1+2χ(u=1)

2 δ+
αn−αn−1

2 +∑n−1
i=u αi ; e−δ)∞

+
1
2

n

∏
u=1

(e−
1−2χ(u=1)

2 δ− αn−αn−1
2 −∑n−1

i=u αi , e−
1+2χ(u=1)

2 δ+
αn−αn−1

2 +∑n−1
i=u αi ; e−δ)∞ ,

(2.3.20)

e−Λn−1ch(L(Λn−1)) =
1
2

n

∏
u=1

(−e−χ(u=n)δ− αn−αn−1
2 −∑n−1

i=u αi ,−e−χ(u 6=n)δ+
αn−αn−1

2 +∑n−1
i=u αi ; e−δ)∞

+
1
2

n

∏
u=1

(e−χ(u=n)δ− αn−αn−1
2 −∑n−1

i=u αi , e−χ(u 6=n)δ+
αn−αn−1

2 +∑n
i=u αi ; e−δ)∞ , (2.3.21)

e−Λn ch(L(Λn)) =
1
2

n

∏
u=1

(−e−
αn−αn−1

2 −∑n−1
i=u αi ,−e−δ+

αn−αn−1
2 +∑n−1

i=u αi ; e−δ)∞

+
1
2

n

∏
u=1

(e−
αn−αn−1

2 −∑n−1
i=u αi , e−δ+

αn−αn−1
2 +∑n

i=u αi ; e−δ)∞ , (2.3.22)

where δ = α0 + α1 + 2α2 · · ·+ 2αn−2 + αn−1 + αn is the null root.

An analogous computation for the type C(1)
n is part of a work in progress.
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Part II

Rogers-Ramanujan type identities via
bijections
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Chapter 3

Beyond Göllnitz’ theorem

In this chapter, we discuss the results beyond Göllnitz’ theorem presented in Section 2.2.1.

In Section 3.1, we will present some tools that will be useful for the proof of Theorem 2.2.7 and
Theorem 2.2.9. After that, in Section 3.2, we will give two mappings Φ and Ψ for Theorem 2.2.7 that
preserve the size and the color product of partitions. Then, in Section 3.3, we will prove Theorem 2.2.7 by
showing that Φ(O) ⊂ E and Ψ ◦Φ|O = Id|O . In Section 3.4, we will set E1 = Φ(O), describe the notion
of bridge, and prove Theorem 2.2.9. In Section 3.5, we explain how to generate the forbidden patterns of
Theorem 2.2.9, and we especially retrieve in the case of four primary colors the three forbidden patterns
as enumerated in Theorem 2.2.1, and we prove that, for more than four primary colors, there is an
infinite set of forbidden patterns. In Section 3.6, we give the bijective proof of Theorem 1.3.3. Finally, in
Section 3.7, we relate the mapping Ψ to Motzkin paths and oriented rooted forests, giving new perspectives
for the study of the forbidden patterns.

We postpone the proof of the technical lemmas and propositions to Appendix A.1.

3.1 Preliminaries

3.1.1 The setup

Let us first analyze the secondary parts in S . For any 1 ≤ i < j ≤ n, and any positive integer k, we have

(2k)aiaj = kaj + kai (3.1.1)

(2k + 1)aiaj = (k + 1)ai + kaj ·

Recall that the sum of two colored parts consists of the part whose size and color are respectively the
sum of the sizes and the product (here, commutative) of the colors of the added parts. In fact, any
secondary part in S with color aiaj can be uniquely written as the sum of two consecutive parts in P
with colors ai and aj in terms of �.

Definition 3.1.1. For any 1 ≤ i < j ≤ n, we define the functions α and β on S by

α :
{

2kaiaj 7→ kaj

(2k + 1)aiaj 7→ (k + 1)ai
and β :

{
2kaiaj 7→ kai

(2k + 1)aiaj 7→ kaj
, (3.1.2)

respectively named upper and lower halves.

One can check that for any kaiaj ∈ S ,

α((k + 1)aiaj) = β(kaiaj) + 1 and β((k + 1)aiaj) = α(kaiaj) · (3.1.3)

In the previous sum, adding an integer to a part only changes its size but does not change its color. We
can then deduce by induction that for any m ≥ 0,

α((k + m)aiaj) � α(kaiaj) + m and β((k + m)aiaj) � β(kaiaj) + m · (3.1.4)

Remark 3.1.2. In fact, we have

α((k + 2m)aiaj) = α(kaiaj) + m and β((k + 2m)aiaj) = β(kaiaj) + m · (3.1.5)
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Remark 3.1.3. Let us consider a partition λ in O. By definition (2.2.6), it does not belong to E if and only if it
has two consecutive parts λi, λi+1 such that λi 6� λi+1. We then have by (2.2.12) that

λi � λi+1 and λi 6� λi+1 ⇐⇒ λi+1 + 1 � λi � λi+1 · (3.1.6)

An equivalent reformulation consists in saying that λi and λi+1 are two primary parts with distinct colors,
consecutive in terms of �. Then, by (3.1.2), λi + λi+1 can be seen as the unique secondary part with respectively
λi and λi+1 as its upper and lower halves.

3.1.2 Technical lemmas

We will state some important lemmas for the proof of Theorem 2.2.7 and Theorem 2.2.9. The proofs can
be found in Appendices A.1.1, A.1.2 and A.1.3.

Lemma 3.1.4 (Ordering primary and secondary parts). For any (lp, kq) ∈ P × S , we have the following
equivalences:

lp 6� kq ⇐⇒ (k + 1)q � (l − 1)p , (3.1.7)

lp � α(kq)⇐⇒ β((k + 1)q) 6� (l − 1)p · (3.1.8)

Lemma 3.1.5 (Ordering secondary parts). Let us consider the table ∆ in (2.2.2). Then, for any secondary
colors p, q ∈ Co,

∆(p, q) = min{k− l : β(kp) � α(lq)} · (3.1.9)

Moreover, if the secondary parts kp, lq are such that β(kp) � β(lq), then

(k + 1)p � lq · (3.1.10)

Furthermore, if k− l ≥ ∆(p, q), we then have either β(kp) � α(lq) or

α(lq) + 1� α((k− 1)p) � β((k− 1)p) � β(lq) · (3.1.11)

In the case of equality k− l = ∆(p, q), we necessarily have

β(lq) + 1 � β(kp) , (3.1.12)

and in the other case, we necessarily have that β(kp) � α(lq).

Lemma 3.1.6 (1-different-distance on E2). Let us consider a partition ν = (ν1, . . . , νt) ∈ E2. Then, for any
1 ≤ i < j ≤ t, we have

νi . νj + j− i− 1 · (3.1.13)

3.2 Bressoud’s algorithm

Here we adapt the algorithm given by Bressoud in his bijective proof of Schur’s partition theorem (Bres-
soud, 1980). The mappings are easy to describe and execute, but their justifications are more subtle and
are given in the next section.

3.2.1 Machine Φ: from O to E
Let us consider the following machine Φ:

Step 1: For a sequence λ = λ1, . . . , λt, take the smallest i < t such that λi, λi+1 ∈ P and λi � λi+1 but
λi 6� λi+1, if it exists, and replace

λi � λi + λi+1 as a part in S
λj ← λj+1 for all i < j < t (3.2.1)

and move to Step 2. We call such a pair of parts a troublesome pair. We observe that λ loses two
parts in P and gains one part in S . The new sequence is λ = λ1, . . . , λt−1. Otherwise, exit from
the machine.
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Step 2: For λ = λ1, . . . , λt, take the smallest i < t such that (λi, λi+1) ∈ P × S and λi 6� λi+1 if it exists,
and replace

(λi, λi+1)# (λi+1 + 1, λi − 1) ∈ S × P (3.2.2)

and redo Step 2. We say that the parts λi, λi+1 are crossed. Otherwise, move to Step 1.

Let Φ(λ) be the resulting sequence after putting any λ = (λ1, . . . , λt) ∈ O in Φ. This transformation
preserves the size and the commutative product of primary colors of partitions.

Example 3.2.1. For C = {a < b < c < d}, let us apply this machine on the partition (5b, 3d, 2a, 1d, 1c, 1b, 1a):

5b
3d
2a
1d
1c
1b
1a

�

5b
3d
3ad
1c
1b
1a

#

5b
4ad
2d
1c
1b
1a

�

5b
4ad
2d
2bc
1a

#

5b
4ad
3bc
1d
1a

�

5b
4ad
3bc
2ad

· (3.2.3)

This example shows that Φ(O) 6⊆ E2.

3.2.2 Machine Ψ: on E
Let us consider the following machine Ψ:

Step 1: For a sequence ν = ν1, . . . , νt, take the greatest i ≤ t such that νi ∈ S if it exists. If νi+1 ∈ P and
β(νi) 6� νi+1, then replace

(νi, νi+1)# (νi+1 + 1, νi − 1) ∈ P × S (3.2.4)

and redo Step 1. We say that the parts νi, νi+1 are crossed. Otherwise, move to Step 2. If there are
no more parts in S , exit from the machine.

Step 2: For ν = ν1, . . . , νt, take the the greatest i ≤ t such that νi ∈ S . By Step 1, it satisfies β(νi) � νi+1.
Then replace

νj+1 ← νj for all t ≥ j > i
(νi) ⇒ (α(νi), β(νi)) as a pair of parts in P ,

(3.2.5)

and move to Step 1. We say that the part νi splits. We observe that ν gains two parts in P and loses
one part in S . The new sequence is ν = ν1, . . . , νt+1.

Let Ψ(ν) be the resulting sequence after putting any ν = (ν1, . . . , νt) ∈ E in Ψ. This transformation
preserves the size and the product of primary colors of partitions.

Examples 3.2.2. For example, we choose C = {a < b < c < d < e < f } and we apply the machine Ψ
respectively on (4ae, 3cd, 3ab), (4a, 3ae, 2cd, 1b) and (4e, 3e f , 3cd, 3ab, 1 f ), and we obtain

4ae
3cd

2a + 1b

⇒

4ae
2c + 1d

2a
1b

#

4ae
3a

1d + 1c
1b

⇒

2e + 2a
3a
1d
1c
1b

#

4a
2a + 1e

1d
1c
1b

⇒

4a
2a
1e
1d
1c
1b

,

4a
3ae

1d + 1c
1b

⇒

4a
2a + 1e

1d
1c
1b

⇒

4a
2a
1e
1d
1c
1b

,
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4e
3e f
3cd

2a + 1b
1 f

#

4e
3e f
3cd
2 f

1b + 1a

⇒

4e
3e f

2c + 1d
2 f
1b
1a

#

4e
3e f
3 f

1d + 1c
1b
1a

⇒

4e
2e + 1 f

3 f
1d
1c
1b
1a

#

4e
4 f

1 f + 1e
1d
1c
1b
1a

⇒

4e
4 f
1 f
1e
1d
1c
1b
1a

·

With these examples, we can see that Ψ is not injective on E and Ψ(E) 6⊆ O.

3.3 Proof of Theorem 2.2.7

In this section, we prove Theorem 2.2.7 by showing the following theorem.

Theorem 3.3.1. The transformation Φ describes an injection from O into E such that Ψ ◦Φ|O = Id|O .

Theorem 3.3.1 follows from the next three propositions whose proofs can be found in Appendices
A.1.8, A.1.9 and A.1.10.

In the following for any sequence U = u1, . . . , ut, we set g(U ) = u1 and s(U ) = ut respectively the
first and the last terms of U .

Proposition 3.3.2. Let us consider any λ = (λ1, . . . , λt) ∈ O. Then, in the process Φ on λ, before the uth

application of Step 1, there exists a triplet of partitions (δu, γu, µu) ∈ E × (E ∩ O)×O such that the sequence
obtained is δu, γu, µu. Moreover, the triplet (δu, γu, µu) satisfies the following conditions:

1. The uth application of Step 1 occurs in the pairs (s(γu), g(µu)),

2. s(δu) is the (u− 1)th secondary part of δu and satisfies s(δu)� g(γu),

3. µu+1 is the tail of the partition µu and has at least one less part than µu,

4. δu is the head of δu+1.

Note that the first triplet for u = 1 has the form (∅, γ1, µ1) with (γ1, µ1) ∈ (E ∩ O) × O and
(s(γu), g(µu)) the first troublesome pair of λ. The fact that Φ(O) ⊂ E follows from Proposition 3.3.2
since µu strictly decreases in terms of number of parts and the process stops as soon as µu = ∅. In fact,
if µu 6= ∅, then g(µu) exists and we can still apply Step 1 on the pair (s(γu), g(µu)). The last triplet then
has the form (δS+1, γS+1, ∅) with (δS+1, γS+1) ∈ E × (E ∩O), s(δS+1) the Sth and last secondary part of
Φ(λ) and s(δS+1)� g(γS+1) if γS+1 6= ∅.

Example 3.3.3. We again take the example λ = (5b, 3d, 2a, 1d, 1c, 1b, 1a) given in (3.2.3). We summarize the
triplets of Proposition 3.3.2 in the following table:

u δu γu µu

1 ∅ 5b, 3d, 2a 1d, 1c, 1b, 1a
2 5b, 4ad 2d, 1c 1b, 1a
3 5b, 4ad, 3bc 1d 1a
4 5b, 4ad, 3bc, 2ad ∅ ∅

·

Proposition 3.3.4. Let us consider any ν = ν1, . . . , νt ∈ E . Then, in the process Ψ on ν, after the (v − 1)th

application of Step 2, there exists a triplet of partitions (δv, γv, µv) with δv ∈ E and γv, µv some sequences
of primary parts, such that the sequence obtained is δv, γv, µv. Moreover, the triplet (δu, γu, µu) satisfies the
following conditions:

1. (s(γv), g(µv)) is the troublesome pair resulting from the (v− 1)th splitting in Step 2,

2. s(δv) ∈ S so that the next iterations of Step 1 after the (v− 1)th Step 2 occur on this part,

3. µv is the tail of the sequence µv+1 and has at least one less part than µv+1,

4. δv+1 is the head of δv.
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The process stops as soon as δv = ∅, which means that we have split every secondary part of ν. If
we set S to be the number of secondary parts of ν, the last triplet then has the form (∅, γS+1, µS+1) with
(s(γS+1), g(µS+1)) being a troublesome pair of primary parts. Also, we remark that the first triplet for
v = 1 is such that (δ1, γ1, ∅) with δ1 equal to the head of ν up to the last secondary part, and with γ1

equal to the tail of ν after this last part, so that (δ1, γ1) ∈ E × (E ∩ O) with s(δ1)� g(γ1) if γ1 6= ∅.

Example 3.3.5. We take the example ν = Φ(λ) = 5b, 4ad, 3bc, 2ad in (3.2.3). We summarize the triplets of
Proposition 3.3.4 in the following table:

v δv γv µv

1 5b, 4ad, 3bc, 2ad ∅ ∅
2 5b, 4ad, 3bc 1d 1a
3 5b, 4ad 2d, 1c 1b, 1a
4 ∅ 5b, 3d, 2a 1d, 1c, 1b, 1a

·

We now show that Ψ ◦Φ|O = Id|O using the following proposition.

Proposition 3.3.6. For any λ ∈ O, if we set ν = Φ(λ) and S to be the number of secondary parts of ν, then for
any v ∈ [1, S + 1], the triplet of Proposition 3.3.4 is equal to the triplet of Proposition 3.3.2 for u = S + 2− v.

3.4 Description of E1 = Φ(O) and proof of Theorem 2.2.9

In this section, we set E1 = Φ(O), and we give an explicit definition of the bridge for a partition ν ∈ E
in order to fit with the condition given in Theorem 2.2.9. Note that, by setting E1 = Φ(O), the mapping
Φ then describes a bijection between O and E1, and Ψ = Φ−1, so that the identity (2.2.18) holds and this
implies Theorem 2.2.9.

3.4.1 Enumeration of parts

Let us consider a partition ν = (ν′1, . . . , ν′p+s) with p primary parts and s secondary parts. We can thus
consider the p + 2s primary parts that occur in ν by counting both the upper and lower halves of the
secondary parts. We then set

ν = (ν1, . . . , νp+2s) (3.4.1)

with J, I and I + 1 defined to be respectively the sets of indices of the primary parts, the upper and lower
halves of secondary parts. The secondary parts of ν are indeed the parts νi + νi+1 for i ∈ I. We can then
retrieve the corresponding indices for the parts ν′k with

νj = ν′j−|I∩[1,j)| for all j ∈ J ,

νi + νi+1 = ν′i−|I∩[1,i)| for all i ∈ I ·

For ease of notation, we set I = {i1 < · · · < is} and J = {j1 < · · · < jp}. We then consider the index set
of the troublesome secondary parts as defined in (2.2.16),

T S(ν) = {i ∈ I : ν−(i) . νi + νi+1 6 . νi+2 + νi+3} , (3.4.2)

where ν−(i) = ν′i−|I∩[1,i]| is the (primary or secondary) part to the left of νi + νi+1. We recall that, by
(2.2.11) and (2.2.12), we do not have νi + νi+1 . νi+2 + νi+3 only if the pair of consecutive secondary
parts has a pair of colors in SPo.

Example 3.4.1. We take ν = (14bd, 11a, 10ad, 9bc, 8ac, 3c, 2cd, 2ab) ∈ E with (p, s) = (2, 6). Our enumeration
gives

ν = (7d, 7d︸ ︷︷ ︸, 11a, 5d, 5a︸ ︷︷ ︸, 5b, 4c︸ ︷︷ ︸, 4c, 4a︸ ︷︷ ︸, 3c, 1d, 1c︸ ︷︷ ︸, 1b, 1a︸ ︷︷ ︸)
J = {3, 10}, I = {1, 4, 6, 8, 11, 13}, I + 1 = {2, 5, 7, 9, 12, 14} ,

and T S(ν) = {4, 11}.

We will then define, in the first part of this section, for any i ∈ I, the Bridge Brν(i) ≥ i as an index
in I ∪ J, and the bridge as the part νBrν(i) corresponding to this index. This definition will fit with the
definition of E1 given in Theorem 2.2.9, that we can explicitly state in the following theorem.
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Theorem 3.4.2 (Explicit definition of E1). The following are equivalent:

(1) ν ∈ E1 = Φ(O),

(2) For any i ∈ I such that Brν(i) > i, we have

ν−(i)� νBrν(i) +
Brν(i)− i

2
6� νi + νi+1 ,

(3) (Necessary and sufficient checks) For all i ∈ T S(ν) such that Brν(i) > i, we have

νi + νi+1 � νBrν(i) +
Brν(i)− i

2
· (3.4.3)

Recall that if ν ∈ E2, then T S(ν) = ∅ so that (3) is true. We thus recover the fact that E2 ⊂ E1.

In the remainder of this section, we will first give an explicit definition of the bridge, describe its
properties and show how to easily compute it. Then, we prove Theorem 3.4.2 by proceeding as follows.
We first prove that (1) implies (2). After that, we show that (2) implies (1). Finally, we give a proof of
the equivalence between (2) and (3).

3.4.2 Definition and properties of the Bridge

For any i ∈ I, let us consider j = min(i, p + 2s] ∩ J, if it exists, which is the index of the greatest primary
part to the right of the secondary part νi + νi+1. Otherwise, there is no primary part to its right, and we
set j = p + 2s + 1. Note that j− i is twice the number of secondary parts (νi + νi+1 included) between
νi + νi+1 and νj, even if we set νp+2s+1 = 0an . In all cases, we can set j = min(i, p + 2s + 1] ∩ (J ∪ {p +
2s + 1}).

Definition 3.4.3. We define the Bridge Brν(i) to be as follows :

• If j satisfies

νi′+1 6� νj +
j− i′

2
− 1 (3.4.4)

for all i′ ∈ [i, j) ∩ I, we set Brν(i) = j. Note that for j = p + 2s + 1, the relation (3.4.4) is never
satisfied for the last secondary part, since its upper and lower halves have size greater than 0.

• Otherwise, we define

Si = {u ∈ (i, j) ∩ I : νi′+1 6� νu +
u− i′

2
− 1 ∀i′ ∈ [i, u) ∩ I}. (3.4.5)

If Si 6= ∅, we then set
Brν(i) = maxSi · (3.4.6)

Otherwise, we set Brν(i) = i.

Here, we observe that Brν(i) ≥ i, and for Brν(i) > i, we have the relation

νi′+1 6� νBrν(i) +
Brν(i)− i′

2
− 1 (3.4.7)

for all i′ ∈ [i, Brν(i)) ∩ I. Also note that the function Brν is local, as it only depends on the maximal
sequence of secondary parts and not on the entire partition ν.

Remark 3.4.4. The value Brν(i)−i′
2 indeed corresponds to the difference between the index of the secondary part

ν′i′−|I∩[1;i′)| and the index of the primary or secondary part ν′Brν(i)−|I∩[1;Brν(i))|, so that the relation (3.4.7) can be
formulated as follows: the lower half νi′+1is not 1-distant-different from νBrν(i) − 1.

The definition of bridge as stated above has the sole purpose to make our results simpler to prove.

Hint for the computation of the Bridge

It may seem difficult to compute, but the calculation of the bridge is indeed quite simple as it can be
done recursively. In fact, the first hint for the computational method is given by the following lemma,
whose proof is postponed to Appendix A.1.4.
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Lemma 3.4.5. The function Brν is non-decreasing on I, and for any i such that Brν(i) ∈ I, we have

Brν(Brν(i)) = Brν(i) .

Lemma 3.4.5 allows us to state that for any i ∈ I, Brν(i) is either the index of the greatest primary part
to the right of νi + νi+1, or the smallest fixed point (by Brν) to its right. This fact leads to the following
proposition, which gives us the second and final hint for the computation of Brν.

Proposition 3.4.6 (Crossing rules for Ψ). By applying Ψ on ν = (ν1, . . . , νp+2s), we have that the secondary
part νi + νi+1:

• does not cross any primary part if and only if Brν(i) = i,

• otherwise, for iu = i < Brν(i), it first crosses the primary part that comes from νBrν(i):

g(γs+1−u) = νBrν(iu) +
Brν(iu)− iu

2
− 1 · (3.4.8)

The proof is given in Appendix A.1.11. The relevance of this proposition consists in saying that,
during Ψ, the fixed points are the indices of the secondary parts which split directly with no application
of Step 1, and if a fixed point i = Brν(i) is found, then the next fixed point to its left is the index of the
smallest secondary part which is not crossed by the upper half νi during iterations of Step 1.
Note that, by definition, the bridges are exactly the parts νi for the fixed points i, along with the primary
parts νj after the tail of a sequence of secondary parts. The key idea to compute the bridge is then to
retrieve the fixed points by performing iterations of Step 1 with the bridges νj and νi.

Method to compute the Bridge

The function Brν being local, we then consider a maximal sequence of secondary parts, with the ending
primary part to its right. The reasoning will be the same when we do not have a primary part at the
tail of the sequence. Without loss of generality, we can restrict the partition ν to such sequence: ν =
(ν1, . . . , ν2s+1) with

ν1 + ν2 � ν3 + ν4 � · · · � ν2s−1 + ν2s � ν2s+1 ·

For simplicity, we show the computation on the following example. We take the set of primary colors
C = {a < b < c < d < e < f } and the partition

ν = (20e f , 20ad, 19bc, 16de, 14a f , 11ad, 6c) ,

or rewritten with our enumeration

ν = (10 f , 10e︸ ︷︷ ︸
i=1

, 10d, 10a︸ ︷︷ ︸
i=3

, 10b, 9c︸ ︷︷ ︸
i=5

, 8e, 8d︸ ︷︷ ︸
i=7

, 7 f , 7a︸ ︷︷ ︸
i=9

, 6a, 5d︸ ︷︷ ︸
i=11

, 6c︸︷︷︸
j=13

) ·

Recall that to perform Step 1 of Ψ, we always compare a primary part to the lower half of a secondary
part. We then proceed as follows:

1. We start with the sequence

(β1, β2, · · · , βs, αs+1) = (ν2, ν4, · · · , ν2s, ν2s+1)

consisting of the lower halves and the primary part. Our example gives the sequence

(10e, 10a, 9c, 8d, 7a, 5d︸ ︷︷ ︸
βu ,u=1,...,6

, 6c︸︷︷︸
α7

) ·

The first fixed point (starting from the right) corresponds to the first βu which is 1-different-distant
from αs+1 − 1 in the order �. We then have i1 = 2u1 − 1 if such u1 exists. If there is no such u1, it
means that j is the Bridge of all i ∈ 2{1, . . . , s} − 1. With our example, we just have to compare the
two sequences

(10e, 10a, 9c, 8d, 7a, 5d)

(11c, 10c, 9c, 8c, 7c, 6c)
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starting from the right, and we identify the first fixed point, i1 = 2u1 − 1 = 7, corresponding to
the underlined lower half.

2. We redo the same process for the sequence

(β1, β2, · · · , βu1−1, αu1) = (ν2, ν4, · · · , νi1−1, νi1) ,

where βu are the lower halves of the (u1 − 1) first secondary parts, and αu1 is the upper half
the uth

1 secondary part, which corresponds to the first Bridge. Our example gives the sequence
(10e, 10a, 9c︸ ︷︷ ︸

β1,2,3

, 8e) and the sequence comparison

(10e, 10a, 9c)

(10e, 9e, 8e)

and the second fixed point is i2 = 2u2 − 1 = 5.

3. Following the same process, we apply the comparisons for the sequence

(β1, β2, · · · , βuk−1, αuk ) = (ν2, ν4, · · · , νik−1, νik ) ,

in order to retrieve the (k + 1)th fixed point. Here again, we have ik = 2uk − 1. If there is no βu
which is 1-different-distant from αuk − 1 in the order �, we stop the process, as ik is the last fixed
point and becomes the Bridge of the remaining i < ik. In our example the last fixed point is indeed
i2, since we have the sequence (10e, 10a︸ ︷︷ ︸

β1,2

, 10b) and the sequence comparison

(10e, 10a)

(11b, 10b)·

Note that applying this computation requires in fact s comparisons, starting from the right to the left, to
retrieve all of the fixed points, but computing the precise bridge for an i will require as many compar-
isons as the number of secondary parts to its right. For our example, we summarize the computation of
the Bridge with the following table.

i 1 3 5 7 9 11
Brν(i) 5 5 5 7 13 13 · (3.4.9)

By condition (3) of Theorem 3.4.2, to see if ν ∈ E1, we only need to check the secondary part 20e f ,
whose bridge corresponds to 10b, and we have 20e f � 10b + 2. We then have ν ∈ E1. One can check that

Ψ(ν) = (12b, 11a, 9 f , 9e, 9d, 9c, 8e, 8d, 8c, 7a, 6 f , 5d, 5a) ,

and that Φ(Ψ(ν)) = ν.

For the case where the sequence ν = (ν1, . . . , ν2s) does not end by a primary part, the first splitting
occurs at the right most secondary part, and we set the first fixed point i1 = 2u1 − 1 = 2s− 1. We then
start the process at step (2) and the remainder of the computation of the bridges is the same.

3.4.3 Proof of Theorem 3.4.2

Proof that (1) implies (2)

We suppose that i = is+1−v for some v ∈ [1, s]. Then by the Proposition 3.4.6 and Proposition 3.3.4,
νi + νi+1 = s(δv) and g(γv) = νBrν(i) +

Brν(i)−i
2 − 1. After crossing, the primary part becomes νBrν(i) +

Brν(i)−i
2 and the secondary part becomes νi + νi+1 − 1. But, by Proposition 3.3.6, the crossing is the

reverse crossing of Step 2 in process Φ, so that we have

νBrν(i) +
Brν(i)− i

2
6� νi + νi+1 − 1⇐⇒ νBrν(i) +

Brν(i)− i
2

6� νi + νi+1 ·
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Also, note that the sequence

δv \ {νi + νi+1} , νBrν(i) +
Brν(i)− i

2

is indeed the head of the sequence δv+1, γv+1, which is a partition in E by Proposition 3.3.6. In fact,
this pair of sequences corresponds to the same pair in Proposition 3.3.2 for u = s − v, and is a pair
in E × (E ∩ O) satisfying s(δu) � g(γu). We then deduce that the part ν−(i) to the left νi + νi+1 is
well-ordered with νBrν(i) +

Brν(i)−i
2 in terms of�, so that

ν−(i)� νBrν(i) +
Brν(i)− i

2
·

With this, we have proved that (1) implies (2) in Theorem 3.4.2.

Proof that (2) implies (1)

We prove that (2) implies (1) with the following proposition whose proof is given in Appendix A.1.12.

Proposition 3.4.7. If ν satisfies condition (2) in Theorem 3.4.2, then in Proposition 3.3.4, the triplet (δv, γv, µv)
satisfies the following properties:

1. (γv, µv) ∈ (E ∩ O)×O,

2. s(δv)� g(γv).

3. If we apply Step 1 once and some iterations of Step 2 of the process Φ on the sequence δv+1, γv+1, µv+1, we
obtain the sequence δv, γv, µv.

Proposition 3.4.7 says that, for any ν ∈ E that satisfies (2) of Theorem 3.4.2, we have that Ψ(ν) ∈ O,
since the last sequence δS+1, γS+1, µS+1 is such that δS+1 = ∅ and (s(γv), g(µv)) is a troublesome pair
so that s(γv) � g(µv). The fact that all the crossings and the splitting of Ψ are invertible by Φ means
that the process Ψ on ν is invertible by Φ, and we then have E1 3 Φ(Ψ(ν)) = ν.

Proof of the equivalence between (2) and (3)

In this part, we will show that it is sufficient to satisfy the condition (2) only on T S(ν). In fact, condition
(2) of Theorem 3.4.2 implies that (3.4.3) is true on T S(ν), so that (2) implies (3). To prove that (3)
implies (2), we will use the following lemmas (for the proof, see Appendices A.1.5 and A.1.6).

Lemma 3.4.8. For consecutive secondary parts νi + νi+1 � · · · � νi′ + νi′+1 such that

νi + νi+1 6 . · · · 6 . νi′ + νi′+1 ,

the following holds:

νi′ + νi′+1 +
i′ − i

2
� νi + νi+1 · (3.4.10)

Lemma 3.4.9. For consecutive secondary parts νi + νi+1 � · · · � νi′ + νi′+1 such that the size differences
between consecutive parts are minimal, the following holds: if Brν(i′) > i′, then Brν(i) = Brν(i′).

Proof that (3) implies (2). Let us consider a maximal sequence of consecutive secondary parts νi + νi+1 �
· · · � νi′ + νi′+1 with

νi + νi+1 6 . · · · 6 . νi′ + νi′+1 ·

We then have that the leftmost and rightmost parts are well-ordered in terms of . with the parts to the
left and to the right of the sequence, and we have the inequality

· · · . νi + νi+1 6 . · · · 6 . νi′ + νi′+1 . · · · (3.4.11)

In particular, i ∈ T S(ν). Now, let us consider the set

{u ∈ [i, i′] ∩ I : Brν(u) > u} ·

If it is empty, then any u ∈ [i, i′] ∩ I is a fixed-point of Brν. Otherwise, by Lemma 3.4.9, it has the form
[i, u] ∩ I and Brν is the identity on (u, i′] ∩ I. Furthermore, Brν(i) = Brν(u′) > u′ for all u′ ∈ [i, u] ∩ I.
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If we assume that

νi + νi+1 � νBrν(i) +
Brν(i)− i

2
,

by (3.4.10), we then have for all u′ ∈ [i, u] ∩ I

νu′ + νu′+1 � νBrν(u′) +
Brν(u′)− u′

2
⇐⇒ νBrν(u′) +

Brν(u′)− u′

2
6� νu′ + νu′+1 ·

In addition, by (2.2.12), we obtain, for all u′ ∈ (i, u] ∩ I, that u′ − 2 ∈ [i, u) ∩ I. We thus have Brν(u′ −
2) = Brν(u′), and

νu′−2 + νu′−1 � νBrν(u′−2) +
Brν(u′ − 2)− u′ + 2

2
⇐⇒ νu′−2 + νu′−1 � νBrν(u′) +

Brν(u′)− u′

2
,

so that the condition (2) is also satisfied. Note that condition (2) is also satisfied in i, since we have by
definition (2.2.11)

ν−(i) . νi + νi+1 � νBrν(i) +
Brν(i)− i

2
=⇒ ν−(i) . νBrν(i) +

Brν(i)− i
2

6� νi + νi+1

=⇒ ν−(i)� νBrν(i) +
Brν(i)− i

2
6� νi + νi+1 ·

It thus follows that the condition (2) is satisfied for any element of I in a sequence of the form (3.4.11).

Now let us take i ∈ I such that i is not in a sequence of the form (3.4.11). This is equivalent to saying
that νi + νi+1 is well-ordered to its left and to its right in terms of ., so that

· · · . νi + νi+1 . · · · ·

We can then see by (2.2.11) that, for Brν(i) > i,

ν−(i) . νi + νi+1 � νBrν(i) +
Brν(i)− i

2
=⇒ ν−(i) . νBrν(i) +

Brν(i)− i
2

6� νi + νi+1

=⇒ ν−(i)� νBrν(i) +
Brν(i)− i

2
6� νi + νi+1 ·

This means that we only need to prove that νi + νi+1 � νBrν(i) +
Brν(i)−i

2 in order to satisfy the condition
(2).

• Suppose first that there exists i′ ∈ T S(ν) such that i′ ∈ (i, Brν(i)). We then have by Lemma 3.4.5
that Brν(i′) = Brν(i). By taking i′ to be the minimum of all such elements, we obtain the sequence

νi + νi+1 . · · · . νi′ + νi′+1

so that, by (2.2.11) and the fact that the parts between these two are in S , we obtain

νi + νi+1 � νi′ + νi′+1 +
i′ − i

2
·

Since i′ satisfies condition (3), we then have

νi′ + νi′+1 � νBrν(i′) +
Brν(i′)− i′

2
,

and thus,

νi + νi+1 � νBrν(i) +
Brν(i)− i

2
·

• If (i, Brν(i)) ∩ T S(ν) = ∅, we then have the sequence

νi + νi+1 . · · · . νBrν(i)−2 + νBrν(i)−1 . νBrν(i)

if Brν(i) ∈ J, and otherwise,

νi + νi+1 . · · · . νBrν(i)−2 + νBrν(i)−1 . νBrν(i) + νBrν(i)+1 ·
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By (2.2.11), in the first case, we directly have

νi + νi+1 � νBrν(i) +
Brν(i)− i

2
,

while in the second case, we obtain

νi + νi+1 � νBrν(i) + νBrν(i)+1 +
Brν(i)− i

2
·

But, in terms of part sizes for the second case, we have by definition (2.2.9) that

νi + νi+1 −
(

νBrν(i) +
Brν(i)− i

2

)
≥ νBrν(i)+1 ≥ 1 ,

so that, again by (2.2.9),

νi + νi+1 � νBrν(i) +
Brν(i)− i

2
·

3.5 Forbidden patterns of E1

In this section, we study the forbidden patterns that a partition in E has to avoid to be in E1.

By the definition of bridge and Theorem 3.4.2, we can see that the invertibility of Ψ by Φ is a local
problem. In fact, for any secondary part in a partition ν ∈ E , the invertibility only depends on the
sequence starting from this part up to either the greatest primary part to its right if it exists, or the last
part of ν if there is no primary part to its right. Furthermore, by condition (3) of Theorem 3.4.2, we
only have to consider the sequences whose head is a sequence which is not well-ordered by .. Then, it
suffices to restrict the forbidden patterns to those such that the first part does not satisfy (3.4.3):

ν = ν1 + ν2 6 . ν3 + ν4 � · · · � ν2s+1 or ν2s+1 + ν2s+2 , (3.5.1)

such that Brν(1) = 2s + 1 and ν2s+1 + s � ν1 + ν2.

Remark 3.5.1. It is sufficient to consider the last part to be a primary part. In fact, a sequence that ends by a
secondary part can be viewed as the same sequence with this last part replaced by its upper half, as by (2.2.8) and
(2.2.12),

ν2s−1 + ν2s � ν2s+1 + ν2s+2 =⇒ ν2s−1 + ν2s � ν2s+1 + ν2s+2

=⇒ ν2s−1 + ν2s � ν2s+1 + 1
=⇒ ν2s−1 + ν2s � ν2s+1 ·

Note that, if a pattern ν is forbidden, then any pattern η whose head or tail is ν is also forbidden.
This is obvious when the tail of η is ν since the troublesome crossing will not change. When ν is the
head of η, we have that Brη(1) = Brη(Brν(1)) and we use the same reasoning as in the proof of Lemma
3.1.6 given in Appendix A.1.3 to show that

νBrν(1) +
Brν(1)− 1

2
� ν1 + ν2 =⇒ ηBrη(1) +

Brη(1)− 1
2

� η1 + η2 ·

Therefore, the optimal forbidden patterns are the ones that are allowed after removing either the first part
or the last part. Furthermore, these forbidden patterns satisfy the fact that the Bridge of the first part
is the position of the last part, so that all along the transformation Ψ, every secondary part is crossed
by the last part if it is a primary part, or by its upper half. The optimization also implies that all these
crossings are invertible by Φ, except the last one which occurs with the first part of the pattern.

In the next subsections, we first give some particular properties of the optimal forbidden patterns,
and after that, we aim at retrieving the optimal forbidden patterns for four primary colors. Finally, we
enumerate the optimal forbidden patterns, with some restrictions, for five primary colors, showing that
there is an infinitude of optimal forbidden patterns for more than four primary colors.
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3.5.1 Properties of optimal forbidden patterns

We first define a tool that will lead to a better understanding of the optimal forbidden patterns.

Definition 3.5.2. We say that two secondary colors p and q are primary equivalent if and only if their
orders according to the primary colors are the same, which means that p = aiau and q = aiav for
some u, v ∈ (i, n]. If p and q are primarily equivalent, we write kp ≡ kq and write the corresponding
equivalence class of primarily equivalent colored parts by kp. This matters in the sense that for any
primary color c, we have the equivalence between kp ≡ kq and

kp � lc ⇐⇒ kq � lc · (3.5.2)

We can then write kp � lc. For two secondary colors p and q, we say that kp � hq if and only if we
can find a primary part lc such that kp � lc � hq. This is equivalent to saying that k > h or k = h and
(p, q) = (aiau, ajav) with i > j.

Let us now consider an optimal forbidden pattern

ν = ν1 + ν2 6 . ν3 + ν4 � · · · � ν2s+1 (3.5.3)

where the secondary parts are ν2i−1 + ν2i and the last part ν2s+1 is a primary part. In the remainder of
the section, we consider the different-distance with respect to the order �. We thus have the following
properties:

1. For all i ∈ [1, s], we have Brν(2i− 1) = 2s + 1.

2. The part ν2s+1 is 1-different-distant from ν1 + ν2:

ν2s+1 + s � ν1 + ν2 · (3.5.4)

3. The fact that the pattern ν3 + ν4 � · · · � ν2s−1 + ν2s � ν2s+1 is allowed implies by Theorem 3.4.2,
for all i ∈ [2, s], that ν2i−1 + ν2i is 1-different-distant from ν2s+1,

ν2i−1 + ν2i � ν2s+1 + s + 1− i , (3.5.5)

and by transitivity, this implies that ν2i−1 + ν2i is 1-different-distant from ν1 + ν2 − i + 1,

ν2i−1 + ν2i � ν1 + ν2 − i + 1 · (3.5.6)

4. We obtain the following inequality

ν3 + ν4 + 1 � ν2s+1 + s � ν1 + ν2 · (3.5.7)

5. If we replace the primary part ν2s+1 by another ν′2s+1 satisfying ν1 + ν2 � ν′2s+1 + s, we then obtain
the following allowed pattern

ν′ = ν1 + ν2 6 . ν3 + ν4 � · · · � ν2s−1 + ν2s � ν′2s+1 ·

Remark 3.5.3. By (3.5.1), a pattern ν1 + ν2 � · · · � ν2s−1 + ν2s � ν2s+1 + ν2s+2 only consisting of secondary
parts is optimal and forbidden if and only if ν1 + ν2 � · · · � ν2s−1 + ν2s � ν2s+1 is an optimal forbidden
pattern. Note that in this case, (3.5.6) is also satisfied for i = s + 1.

We now define a special kind of pattern, that we call a shortcut.

Definition 3.5.4. A pattern ν1 + ν2 � · · · � ν2s+1 + ν2s+2 is said to be a shortcut if

ν2s+1 + ν2s+2 � ν1 + ν2 − s + 1· (3.5.8)

One can check that a shortcut has at least three secondary parts, and that the relation (3.5.8) is
stronger than (3.5.6). The following property makes the enumeration of optimal forbidden patterns
which contain shortcuts quite difficult (see Appendix A.1.13 for the proof).

Proposition 3.5.5. We can always build a forbidden pattern starting from any allowed pattern and iterating of a
shortcut (iterate here means use consecutively the same pattern several times).
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By considering the optimal forbidden pattern ν = ν1 + ν2 6 . ν3 + ν4 � · · · � ν2s+1 which does
not contain any shortcut, we then have by (3.5.4), (3.5.5) and (3.5.8) the following relation for all i ∈
{1, . . . , s− 1}:

ν1 + ν2 − i + 1 � ν2i+1 + ν2i+2 � ν2s+1 + s− i � ν1 + ν2 − i · (3.5.9)

The latter implies the following properties:

1. By definition of the head and (2.2.12), ν1 + ν2 and ν3 + ν4 are consecutive for �.

2. For all i ∈ {2, . . . , s− 1}, two consecutive parts ν2i−1 + ν2i and ν2i+1 + ν2i+2 are either consecutive
in terms of � (or equivalently not well-ordered by .), or consecutive in terms of .. In fact, by
(3.5.9), we necessarily have

ν2i+1 + ν2i+2 + 2 � ν2i−1 + ν2i =⇒ ν2i−1 + ν2i 6� ν2i+1 + ν2i+2 + 2 ·

3. By (3.5.9), we have

ν2s+1 + 2 � ν1 + ν2 − s + 2 � ν2s−1 + ν2s � ν2s+1 + 1 ,

so that, by (2.2.11), ν2s−1 + ν2s and ν2s+1 are consecutive for ..

We see that the optimal forbidden patterns with no shortcut have their parts either consecutive in
the order � or in the order .. Let us then consider the following moves:

• The arrow p→q means that (p, q) is a special pair and it represents a pattern of the form

(k + χ(p ≤ q))p, kq ·

• The two-headed arrow p�q represents a move from a part with color p to the greatest secondary
part with color q smaller than the first part in terms of .. In fact, it indeed represents the pattern

k + 1 + χ(p ≤ q))p, kq ·

Therefore, the optimal forbidden patterns with no shortcut have the form

c1 ◦ · · · ◦ cm , k (3.5.10)

where c1, . . . , cm are some colors, ◦ is either→ or�, and k is the size of the smallest part, so that the last
part is kcm .

Example 3.5.6. For C = {a < b < c < d} , the pattern

ad→ bc� cd� b , 5

will represent the pattern 9ad, 8bc, 6cd, 5b.

Since an optimal forbidden pattern is allowed after removing the last part, we will consider the
following form

c1 ◦ · · · ◦ cm−1| ◦ cm , k (3.5.11)

If we refer to an optimal pattern into another one (see Proposition 3.5.10), then it means that we only use
the allowed pattern obtained after removing the last part.

3.5.2 Optimal forbidden patterns of E1 for four primary colors

For four primary colors a < b < c < d, recall (2.2.6), the total order on primary and secondary colors

ab < ac < ad < a < bc < bd < b < cd < c < d (3.5.12)

and the set of special pairs SPo = {(ad, bc), (cd, ab)}.

Theorem 3.5.7. The optimal forbidden patterns are the following:

cd→ ab|� c, d , k ≥ 1 (3.5.13)
ad→ bc|� a , k ≥ 2 · (3.5.14)
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Proof. Let us consider the following diagram:

−
abac

ad

bc bd
a b

c

d

cd

general diagram

abac

ad

bc bd

cd

actual moves with examples
cd�ab and ab→cd

We can see that the main nodes are the secondary colors, and we remark that a move p�q is indeed
between p and the color q of the greatest secondary part smaller, in terms of ., than a part with color p.
Thus, any move p�q′ with another secondary color q′ will be greater than the move p�q represented in
the first diagram. As we notice on the second diagram, proceeding clockwise, we need more than one
loop for a move p�q, while a move p→q requires less than one loop.
Since a forbidden pattern must necessarily begin with a sequence of secondary parts not well-ordered
by ., we then have as the head of the pattern either cd→ ab or ad→ bc.

• Suppose that the pattern begins by cd→ ab. By (3.5.7), if it ends with a primary part kcs , by setting
ν1 + ν2 = hcd we then have

hab + 1 � kcs + s � hcd

so that cm ∈ {c, d}. Another interpretation is that, in the diagram, the color cm is in the clockwise
arc (ab, cd), and it leads to the same result. Suppose now that s ≥ 3, which means that the third
part is secondary. Since the next move can be at least ab� cd, we then obtain that

hcd − 2 � ν5 + ν6 =⇒ hcd − 2 � ν5 + ν6·

This contradicts (3.5.6). Therefore, s = 2 and, by (3.5.7), we obtain the pattern cd → ab � c, d.
It actually corresponds to the pattern (k + 2)cd, (k + 2)ab, kc,d. Here kc,d means kc or kd. Since we
must necessarily have that

β((k + 2)ab) 6� kc,d

and a quick check according to the parity of k shows that is always the case for k ≥ 1.

• The same reasoning occurs when the pattern begins by ad→ bc. We obtain the pattern ad→ bc�
a which corresponds to (k + 2)ad, (k + 1)bc, ka. We then look for k such that

β((k + 1)bc) 6� ka

and a quick check according to the parity of k shows that is always the case for k ≥ 2.

Note that we cannot have a optimal forbidden pattern consisting of three secondary parts, since what-
ever the head is, the third secondary part does not respect the relation (3.5.6).

Theorem 3.5.7 and Proposition 3.5.5 imply that, for four primary colors, we do not have any shortcut.
This is not the case for more than four primary colors, as we now see in the next subsection.

3.5.3 Optimal forbidden patterns of E1 for more than four primary colors

We can restrict the study to five colors, as the set of colored partitions generated by five primary colors
is embedded in any set of colored partitions generated by more than four primary colors. We then
consider the set of primary colors C = {a < b < c < d < e}. The corresponding diagram with the
primary equivalence classes for the secondary colors gives
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−

ab

acad

ae

bc de

ce

cdbe

bd

d
e

a

b

c

a·

b·
c·

d·

Let us first discuss the behaviour of the patterns with moves → p →. We can see in the diagram that
this happens only if p = cd. Consider now the pattern

ae→ cd→ ab� de→ bc , k

which actually represents the pattern

(k + 3)ae, (k + 2)cd, (k + 2)ab, kde, kbc ·

We notice that this pattern is a shortcut. As we saw in Proposition 3.5.5, the enumeration of the forbidden
patterns then becomes intricate. We give the following lemma to restrict our study to some particular
patterns without shortcut.

Lemma 3.5.8. For five primary colors, the patterns of secondary parts without the moves→ cd→ do not contain
any shortcut.

The proof of the lemma is given in Appendix A.1.7. The patterns without shortcut listed by the
previous lemma are not exhaustive. In fact, we can have a pattern with moves→ cd→without shortcut,
as we give in the following example.

Example 3.5.9. The pattern ae→ cd→ ab , k is not a shortcut and is even allowed for k 6= 3.

The following theorem gives an exhaustive list of optimal forbidden patterns without moves →
cd→. The notation 〈g1, . . . , gt〉 denotes the multiplicative group generated by g1, . . . , gt, and the notation
(pattern) means that the move pattern is optional.

Theorem 3.5.10. The optimal forbidden patterns with no move→ p→ are the following:

head : ad→ bc
ad→ bc| � a , k ≥ 2 (3.5.15)

head : be→ cd
be→ cd| � b , k ≥ 2 (3.5.16)

head : de→ ab
de→ ab| � d, e , k ≥ 1 (3.5.17)

head : de→ ac
de→ ac(� ab)| � d, e , k ≥ 1 (3.5.18)

head : ae→ bc
ae→ bc| � a , k ≥ 2 (3.5.19)

head : ae→ bd
ae→ bd(� bc)| � a , k ≥ 2 (3.5.20)

head : ae→ cd
ae→ cd| � b , k ≥ 2 (3.5.21)

ae→ cd(pattern)| � a , k ≥ 2 (3.5.22)
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where pattern ∈ 〈� (3.5.16)〉
(3.5.22)(� be)(� bd)(� bc)| � a , k ≥ 2 (3.5.23)

head : de→ bc
de→ bc| � a , k ≥ 2 (3.5.24)

de→ bc (pattern)| � e , k ≥ 1 (3.5.25)
where pattern ∈ 〈� (3.5.23),� (3.5.20),� (3.5.19), (� ae)� (3.5.15)〉

(3.5.25)(� ae)(� ad)(� ac)(� ab)| � e , k ≥ 1 (3.5.26)
(3.5.26)| � d , k ≥ 2 (3.5.27)
(3.5.26)| � d , 1 (3.5.28)

with (3.5.26) not ending by ae, be
(3.5.25)� (3.5.22)| � be, bd , 2 (3.5.29)
(3.5.25)� (3.5.23)| � ae , 2 (3.5.30)

(3.5.30)| � ad , 2 (3.5.31)
with (3.5.30) not ending by be

head : cd, ce→ ab
cd, ce→ ab| � d, e , k ≥ 1 (3.5.32)

cd, ce→ ab(pattern)| � c , k ≥ 2 (3.5.33)
where pattern ∈ 〈� (3.5.17),� (3.5.18),� (3.5.26)〉

(3.5.33)� de| � c , k ≥ 2 (3.5.34)
(3.5.33)| � c , 1 (3.5.35)

with (3.5.33) ending by ac, ab, bc
(3.5.33)� (3.5.29)� be| → cd , 3 (3.5.36)
(3.5.33)� (3.5.30)� ae| → cd , 3 (3.5.37)

(3.5.33)� (3.5.25)(� ae)� ad| � ac , 2 (3.5.38)
(3.5.33)� (3.5.25)| � ac , 2 (3.5.39)

with (3.5.25) ending by bc

Proof of Theorem 3.5.10. We recall that the optimal forddiden patterns

ν = ν1 + ν2 6 . ν3 + ν4 � · · · � ν2s+1

with no shortcut have the form described in (3.5.11):

c1 ◦ · · · ◦ cs| ◦ cs+1 , k ·

The part ν2i−1 + ν2i has the secondary color ci for all i ∈ [1, s], and the primary part ν2s+1 has the color
cs+1.

Rule 1 : For all i ∈ [2, s], cs+1 belongs to the clockwise arc (ci, c1). In fact, by (3.5.9), we have that

ν2s+1 + s− i + 2 � ν1 + ν2 − i + 2 � ν2i−1 + ν2i � ν2s+1 + s− i + 1 ,

so that by starting a clockwise loop in the diagram from ci, we respectively meet cs+1, c1 and ci.

Rule 2 : If we have a move ci � ci+1, then ci+1 strictly belongs to the clockwise arc (ci, cs+1). In fact, we
have by the primary equivalence definition and (3.5.9) that

ν2s+1 + s + 2− i � ν2i−1 + ν2i � ν2s+1 + s + 1− i � ν2i+1 + ν2i+2 � ν2s+1 + s− i

and the move ci � ci+1 implies that

ν2i−1 + ν2i . ν2i+1 + ν2i+2 ⇐⇒ ν2i−1 + ν2i − 1 � ν2i+1 + ν2i+2 ·

We thus obtain the following inequality

ν2s+1 + s + 1− i � ν2i−1 + ν2i − 1 � ν2i+1 + ν2i+2 � ν2s+1 + s− i ·
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With these two rules, we can retrieve all the optimal forddiden patterns. In our construction, we will see
that our moves are indeed mimimal with respect to�. This means that, in the case where (ci, ci+1) ∈
SPo, we necessarily make the move ci → ci+1. By Lemma 3.4.9, with the minimality of the consecutive
size differences, once the part ν2s+1 crosses the parts ν2s−1 + ν2s, it then crosses all the parts up to ν1 + ν2.
Therefore, the choice of the size k is such that the part kcs+1 crosses the last secondary part (k+ 1+χ(cs ≤
cs+1))cs . We thus have

kcs+1 � β((k + 1 + χ(cs ≤ cs+1))cs) · (3.5.40)

We then proceed as follows.

1. We select a head c1 → c2, and cs+1 a primary color in the clockwise arc (c2, c1). Let us begin with
those with the shortest arc.

2. The next move must necessarily be of the form c2 � c3.

(a) With Rule 2, the patterns (3.5.15),(3.5.16),(3.5.17) and (3.5.19) follow immediately. In fact, in
these cases, the only primary colors in the arc (c1, c2) directly follow c2 in the clockwise sense
before all the secondary colors.
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(b) We also obtain the patterns (3.5.21),(3.5.24), and (3.5.32) since the chosen primary color is
directly after c2.
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(c) In the case (3.5.18) and (3.5.20), there is only one secondary color in the arc which occurs
before the chosen primary color, and we can see that from this color we only have moves of
the form �. The only possibility if we choose c3 to be this secondary color will be then to
directly reach the primary color at c4. We can also decide to choose c3 as the primary color.
We recall that

c1 → c2(� c3)|� c4

means that the choice of the secondary color in between c2 and the primary color c4 is op-
tional.
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For all these cases, one can check that it is not possible to build from them some forbidden pattern
with only secondary parts.

3. The remaining case is where c3 is in the arc (c2, cs+1) and such that we can have a move c3 → c4.
We then use the following property of our optimal forbidden pattern due to (3.5.9): when we do m
moves from the first color to another secondary color, in the diagram, we do around the first color fewer than
m but at least m− 1 primary loops. This means that, by taking the allowed pattern resulting from
the removal of the last part in an optimal forbidden pattern beginning by c3 → c4, we will always
satisfy (3.5.9). For this reason, we begin with c1 → c2 = ae→ cd and cs+1 = a.



68 Chapter 3. Beyond Göllnitz’ theorem

(a) For c1 → c2 = ae→ cd and cs+1 = a.
−

ab

acad

ae

bc de

ce

cdbe

bd

d
e

a

b

c

If c3 6= cs+1 = a, by both rules, we have that c3 ∈ {be, bd, bc}. As soon as c3 6= be, we obtain
by the second rule that the pattern is

ae→ cd� bc|� a or ae→ cd� bd(� bc)|� a ·

If c3 = be, then we can iterate the pattern (3.5.16) (which is be → cd) as many times as we
want. By doing this, we do as many loops as the number of moves, which is twice the number
of iterations. However, once we terminate this iteration, we can only move to a by optionally
passing by be, bd, bc through�. In fact, anytime we reach cd, we cannot make a move cd →,
so that by the second rule, we need to move back to either be, bd, bc or a using�. We then
obtain the patterns (3.5.22) and (3.5.23). Note that for these patterns, we stay in the arc (cd, a),
and the passage from ae = c1 to cs requires more than s− 1 primary loops, so that the pattern

ae · · · cs � ae

requires s + 1 primary loops. We also observe that apart from c1 = ae and cs+1, all colors ci
belong to {cd, be, bd, bc}, so that their upper halves can never be a primary part with color a
and we do not have any optimal forbidden patterns with only secondary parts coming from
a forbidden pattern of that form.

(b) For c1 → c2 = de→ bc and cs+1 = d, e.
−

ab

acad

ae

bc de

ce

cdbe

bd

d
e

a

b

c

We use the same reasoning to show that the only moves that can leave the arc (bc, a) are
(3.5.15), (3.5.19),(3.5.20) and (3.5.23). For (3.5.15) (the move ad → bc), in order to make as
many loops as the number of moves, we can optionally add a move� ae� before reaching
ad. This is why we can compose a pattern using the patterns (3.5.19),(3.5.20) and (3.5.23) and
ae� (3.5.15), and we obtain (3.5.25). In this composition, we can remark that we do not make
a move cd →. In fact, the only way to reach cd is to do a move (3.5.23), but in this move cd
can only be reached after the move ae→ cd, so that we cannot do cd→.
Once we move out of this composition, we can only reach the primary color d, e by optionally
passing by the primary equivalent class a., which consists of the secondary colors ae, ad, ac, ab.
In addition, these moves have the form�. We then obtain (3.5.26), (3.5.27) and (3.5.28). Note
that for these patterns, the secondary colors stay in the arc (cd, d), and the passage from
de = c1 to cs requires more than s− 1 primary loops, so that the pattern

de · · · cs � de

requires s+ 1 primary loops. To obtain the forbidden patterns with only secondary colors, we
just need to choose those which correspond to the forbidden patterns ending by a primary
color and such that the upper half of the last part corresponds to the primary color and is
at least equal than the lower half of the previous secondary part. We then have the patterns
(3.5.29),(3.5.30) and (3.5.31).

(c) For c1 → c2 = cd, ce→ bc and cs+1 = c.
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We use the same reasoning to show that the only moves that can leave the arc (ab, c) are
(3.5.26), (3.5.18),(3.5.17). As before, in the composition of these moves, we remark that we do
not make a move cd→ and the secondary colors stay in the clockwise arc (cd, c). Once we do
not make these moves, we can only go to c by optionally passing by de through�. For these
patterns, the passage from de = c1 to cs requires more than s− 1 primary loops, so that the
pattern

cd, ce · · · cs � ce, cd

requires s+ 1 primary loops. We obtain the optimal forbidden patterns consisting of only sec-
ondary parts, always by choosing those corresponding to optimal forbidden patterns ending
primary colors and such that the upper half of the last part corresponds to the primary color
and is at least equal to the lower half of the previous secondary part.

To conclude, we see that for more than four colors, there exist some shortcuts. However, even for five
colors, the set of optimal forbidden patterns without shorcut is infinite, as a consequence of Theorem
3.5.10, since some patterns use as many iterations of others. The enumeration of the forbidden patterns
then becomes intricate for more than four primary colors.

3.6 Bijective proof of Theorem 1.3.3

In this section, we will describe a bijection for proving Theorem 1.3.3. For brevity, we refer to the par-
titions in Theorem 1.3.3 as quaternary partitions. We first observe the following major fact. Looking at
the forbidden patterns in Theorem 3.5.7, one can check by (2.2.6) that if we have in ν, the pattern

kcd, kab, lp

we then necessarily have (k− 2)cd � lp, and if we have the pattern

(k + 1)ad, kbc, lp 6= 3ad, 2bc, 1a ,

we then necessarily have (k− 1)ad � lp. In all cases, if we have in a partition of E1 a pattern

M, m, lp

with (M, m) ∈ {(kcd, kab), ((k + 1)ad, kbc)} such that M, m, lp 6= 3ad, 2bc, 1a, then

M− 2 � lp · (3.6.1)

3.6.1 From E1 to quaternary partitions

We consider the patterns ((k + 1)ad, kbc), (kcd, kab) and sum them as follows :

(k + 1)ad + kbc = (2k + 1)abcd

kcd + kab = 2kabcd · (3.6.2)

Let us now take a partition ν in E1. We then identify all the patterns (Mi, mi) ∈ {((k+ 1)ad, kbc), (kcd, kab)}
and assume that

ν = (ν1, . . . , νx, M1, m1, νx+1, . . . , νy, M2, m2, νy+1, . . . , Mt, mt, . . . , νs) ·

As long as we have a pattern νj, Mi, mi, we cross the parts by replacing them using

νj, Mi, mi 7−→ Mi + 1, mi + 1, νj − 2 · (3.6.3)
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At the end of the process, we obtain a final sequence

N1, n1, N2, n2, . . . , Nt, nt, ν′1, . . . , ν′s ·

Finally, the associated pair of partitions is set to be (K1, . . . , Kt), ν′ = (ν′1, . . . , ν′t), where Ki = Ni + ni

according to (3.6.2).
We remark that, for each quaternary part Ki obtained by summing of the original pattern Mi, mi, we add
twice the number of the remaining primary and secondary parts in ν to the left of the pattern that gave
Ki, while we subtract from these parts two times the number of quaternary parts obtained by patterns
that occur to their right.

Example 3.6.1. With the example 11c, 10cd, 10ab, 6d, 5ab, 3ad, 2bc, 1a,

11c
10cd
10ab
6d
5ab
3ad
2bc
1a

7→

11c
10cd, 10ab

6d
5ab

3ad, 2bc
1a

7→

11cd, 11ab
9c
6d
5ab

3ad, 2bc
1a

7→

11cd, 11ab
9c
6d

4ad, 3bc
3ab
1a

7→

11cd, 11ab
9c

5ad, 4bc
4d
3ab
1a

7→

11cd, 11ab
6ad, 5bc

7c
4d
3ab
1a

·

we obtain [(22abcd, 11abcd), (7c, 4d, 3ab, 1a)].

We now proceed to show that the image of this mapping is indeed a quaternary partition. The
inverse mapping will be presented in the next subsection.

1. Quaternary parts are well-ordered. Let us consider two consecutive patterns (Mj, mj) = (kp, lq)
and (Mj+1, mj+1) = (k′p′ , l′q′). Since ν is well-ordered by�, we have by (2.2.12) and (2.2.11) that

lq . l1
p1
. · · · . li

pi
. k′p′ · (3.6.4)

By (2.2.11), we then have that lq � k′p′ + i + 1 so that l − k′ ≥ i + 1 + χ(q ≤ p′). Since by (2.2.12),
k− l = χ(p ≤ q) and k′ − l′ = χ(p′ ≤ q′), we then have that

k + l − (k′ + l′) = χ(p ≤ q) + χ(p′ ≤ q′) + 2(l − k′)

≥ χ(p ≤ q) + χ(p′ ≤ q′) + 2χ(q ≤ p′) + 2i + 2

and we obtain that

χ(cd ≤ ab)+χ(cd ≤ ab) + 2χ(ab ≤ cd) = 2
χ(cd ≤ ab)+χ(ad ≤ bc) + 2χ(ab ≤ ad) = 3
χ(ad ≤ bc)+χ(cd ≤ ab) + 2χ(bc ≤ cd) = 3
χ(ad ≤ bc)+χ(ad ≤ bc) + 2χ(bc ≤ ad) = 2 ,

so that k + l − (k′ + l′) ≥ 4 + 2i. We will then have, after adding twice the remaining primary and
secondary elements to their left, that the difference between two consecutive quaternary parts will
be at least 4.

2. The partition ν′ is in E2. Let us consider two consecutive elements νx = kp, νx+1 = lq. We then
have for consecutive patterns Mu, mu in between kp and lq that

kp . Mi � mi � · · · � Mj � mj . lq · (3.6.5)

Then, in the case that (Mj, mj, lp) 6= (3ad, 2bc, 1a), we necessarily have by (3.6.1) that Mu � Mu+1 +

2, Mj � lq + 2, and by (2.2.12), we have that kp � Mi + 1, and then

kp � 1 + 2(j− i + 1) + lq =⇒ kp . 2(j− i + 1) + lq · (3.6.6)

For the case (Mj, mj, lp) = (3ad, 2bc, 1a), we obtain by (3.6.1) that

kp − 2(j− i + 1) + 1 � 3ad (3.6.7)

and this means that kp − 2(j− i + 1) + 1 � 3a so that kp − 2(j− i + 1) � 2a . 1a .



3.6. Bijective proof of Theorem 1.3.3 71

In any case, kp . 2(j− i + 1) + lp, and this implies that after the subtraction of twice the number of
the quaternary parts obtained to their right, these parts will be well-ordered by ..

3. The minimal quaternary part is well-bounded. Let us first suppose that the tail of ν consists only
of patterns Mu, mu. We then have that

νs . Mi � mi � · · · � Mt � mt

and, then by (3.6.1), νs − 2(t− i + 1) + 1 � Mt � 2cd, so that ν′s = νs − 2(t− i + 1) � 1cd � 1a.
This means that 1a /∈ ν′. We also obtain that Kt = Mt + mt + 2s ≥ 2s + 4.

Now suppose that the tail of ν has the form

lq . νu . · · · . νs , (3.6.8)

with Mt, mt = kp, lq. By (2.2.11), we obtain that lq � νs + s− u + 1.

• If νs = 1a, we then have

k + l = χ(p ≤ q) + 2l
≥ χ(p ≤ q) + 2(s− u + 2 + χ(q ≤ a))
= 2(s− u + 1) + 2 + χ(p ≤ q) + 2χ(q ≤ a)) ,

and with (p, q) ∈ {(ad, bc), (cd, ab)} we have

χ(ad ≤ bc) + 2χ(bc ≤ a)) = 1
χ(cd ≤ ab) + 2χ(ab ≤ a)) = 2

so that k + l ≥ 2(s− u + 1) + 3. Then after the addition of 2(u− 1) for the remaining primary
and secondary parts of ν to the left of the pattern (Mt, mt), we obtain that the smallest qua-
ternary part is at least 2s + 3. Note that ν′s = νs = 1a.

• When νs = hr 6= 1a, we obtain that

k + l ≥ χ(p ≤ q) + 2(s− u + 1 + h + χ(q ≤ r))
= 2(s− u + 1) + 2h + χ(p ≤ q) + 2χ(q ≤ r)) ,

so that if h ≥ 2, then k + l ≥ 2(s− u + 1) + 4. If not, h = 1, and since there is no secondary
part of length 1, we necessary have that r ≥ b, so that χ(q ≤ r) = 1 whenever q ∈ {ab, bc}.
We thus obtain k + l ≥ 2(s − u + 1) + 4. We then conclude that for νs 6= 1a, the smallest
quaternary part is at least 2s + 4.

In any case, we have that the smallest quaternary part is at least 2s + 4− χ(1a ∈ ν′).

3.6.2 From quaternary partitions to E1

Recall by (3.6.2) that Kabcd splits as follows :

(k + 1)ad + kbc = (2k + 1)abcd

kcd + kab = 2kabcd ·

Let us consider partitions (K1, . . . , Kt) and ν = (ν1, . . . , νs) ∈ E2, with quaternary part Ku such that
Kt ≥ 4 + 2s− χ(1a ∈ ν) and Ku − Ku+1 ≥ 4. We also set Ku = (ku, lu), the decomposition according to
(3.6.2). We then proceed as follows by beginning with Kt and ν1,

Step 1: If we do not encounter Ku+1 = (ku+1, lu+1) and νi 6= 1a and νi + 2 . ku − 1, then replace

νi 7−→ νi + 2
(ku, lu) 7−→ (ku − 1, lu − 1)

and move to i + 1 and redo Step 1. Otherwise, move to Step 2.
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Step 2 If we encounter Ku+1 = ku+1 � lu+1, then split (ku, lu) into ku � lu. If not, it means that we have
met νi such that νi + 2 6 . ku − 1. Then we split ku � lu. Since we have νi + 2 6 . ku − 1, which is
equivalent by (2.2.11) to ku � νi + 2, by (3.6.1), this is exactly the condition to avoid the forbidden
patterns, with ku � lu . νi.
We can now move to Step 1 with u− 1 and i = 1.

With the example [(22abcd, 11abcd), (7c, 4d, 3ab, 1a)], we obtain

11cd, 11ab
6ad, 5bc

7c
4d
3ab
1a

7→

11cd, 11ab
9c

5ad, 4bc
4d
3ab
1a

7→

11cd, 11ab
9c
6d

4ad, 3bc
3ab
1a

7→

11cd, 11ab
9c
6d
5ab

3ad, 2bc
1a

7→

11cd, 11ab
9c
6d
5ab
3ad
2bc
1a

7→

11c
10cd, 10ab

6d
5ab
3ad
2bc
1a

7→

11c
10cd
10ab
6d
5ab
3ad
2bc
1a

·

It is easy to check that when two quaternary parts meet in Step 2, we will always have lu � ku+1, since
this is exactly the condition for the minimal difference Ku−Ku+1 ≥ 4 and they crossed the same number
of νi. We can also check that even if the minimal part crossed ν1, . . . , νs 6= 1a, we will still have at the end
Kt ≥ 4 and for νs = 1a, Kt ≥ 5. We see with (3.6.2) that the length of mt is at least equal to 2, and for the
case νs = 1a, mt is a least equal to 2bc � 1a. The partition obtained is then in E1.

3.7 Bressoud’s algorithm, Motzkin paths and oriented rooted forests

In this section, we relate the partitions in E to oriented rooted forests, and give a new potential approach
to deal with the enumeration of the forbidden patterns.

Let us take a partition ν ∈ E and write it as

ν = (ν1, · · · , νp+2s) , (3.7.1)

where as before, p is the number of primary parts and s is the number of secondary parts. We recall that
the set J is the set of indices that correspond to the primary parts, and I corresponds to the upper halves,
so that I + 1 is associated to the lower halves.

We observe that the sequence λ = Ψ(ν) has also p+ 2s primary parts. We then have λ = λ1, . . . , λp+s.
For any x ∈ [1, p + 2s], we set θx to be the index in λ of the primary part that comes from νx.

Example 3.7.1. As an example, we apply Φ to the partition λ = (12a, 7b, 6d, 6c, 5a, 4d, 4c, 4b, 4a, 3c, 1d, 1c, 1b, 1a)
and take ν = Φ(λ):

12a
7b
6d
6c
5a
4d
4c
4b
4a
3c
1d
1c
1b
1a

�

12a
13bd

6c
5a
4d
4c
4b
4a
3c
1d
1c
1b
1a

#

14bd
11a
6c
5a
4d
4c
4b
4a
3c
1d
1c
1b
1a

�

14bd
11a
6c

9ad
4c
4b
4a
3c
1d
1c
1b
1a

#

14bd
11a
10ad
5c
4c
4b
4a
3c
1d
1c
1b
1a

�

14bd
11a
10ad
5c
8bc
4a
3c
1d
1c
1b
1a

#

14bd
11a
10ad
9bc
4c
4a
3c
1d
1c
1b
1a

�

14bd
11a
10ad
9bc
8ac
3c
1d
1c
1b
1a

�

14bd
11a
10ad
9bc
8ac
3c
2cd
1b
1a

�

14bd
11a
10ad
9bc
8ac
3c
2cd
2ab

·

(3.7.2)
We retrieve the partition ν of Example 3.4.1. By considering the occurrences of the primary parts, we obtain the

following diagram:
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λx : 12a 7b 6d 6c 5a 4d 4c 4b 4a 3c 2d 2c 2b 2a

ν = Φ(λ) : 14bd 11a 10ad 9bc 8ac 3c 2cd 2ab

νx : 7d 7b 11a 5d 5a 5b 4c 4c 4a 3c 2d 2c 2b 2a .

We recall that

(p, s) = (2, 6), J = {3, 10}, I = {1, 4, 6, 8, 11, 13}, I + 1 = {2, 5, 7, 9, 12, 14}

and we have
x 1 2 3 4 5 6 7 8 9 10 11 12 13 14
θx 2 3 1 5 6 7 8 4 9 10 11 12 13 14 · (3.7.3)

We also compute Brν for ν = Φ(λ) and we obtain

i 1 4 6 8 11 13
Brν(i) 3 8 8 8 11 13 · (3.7.4)

The most important results of this part are the following (proofs in Appendices A.1.14 and A.1.15).

Proposition 3.7.2 (Motzkin path behavior of the final positions). For any (i, i′, j, j′) ∈ I2 × J2, we have
the following relations:

If i < i′, then either θi < θi+1 < θi′ < θi′+1 or θi′ < θi < θi+1 < θi′+1 · (3.7.5)

If j < j′, then θj < θj′ · (3.7.6)

i + 1 ≤ θi+1 and θj ≤ j · (3.7.7)

Either θj < θi or θi+1 < θj · (3.7.8)

Proposition 3.7.3 (Bridge according to the final positions). For any i ∈ I, we have the following:

• If there exists i < j ∈ J such that θj < θi, then

Brν(i) = min{j ∈ J : j > i and θj < θi} · (3.7.9)

• Otherwise,
Brν(i) = max{i′ ∈ I : i′ ≥ i and θi′ ≤ θi} · (3.7.10)

Remark 3.7.4. We indeed have by Proposition 3.7.2 for all i ∈ I that

θi+1 − (i + 1) = |{u ∈ I t J : u > i and θu < θi}| ,

and Proposition 3.7.3 gives the following equivalence:

Brν(i) = i ⇐⇒ θi+1 = i + 1 ·

Let us set I = {i1 < · · · < is} and J+ = J t {0, p + 2s + 1} = {j0 < j1 < · · · < jp < jp+1}
and (θ0, θp+2s+1) = (0, p + 2s + 1). Then, by (3.7.6) and (3.7.8) of Proposition 3.7.2, for any consecutive
j, j′ ∈ J+, there exists a unique V ⊂ {1, . . . , s} such that

{θj + 1, . . . , θj′ − 1} = {θx : x ∈ {iv, iv + 1 : v ∈ V}} ·

This means that the final positions between those of consecutive primary parts consist of those of the
upper and lower halves of some secondary parts. By (3.7.5), we can check that those secondary parts
are consecutive, and V is indeed an interval. Since the positions θi+1 form an increasing sequence, we
then have a unique decomposition

{1, . . . , s} = V0 tV1 t · · · tVp

where the Vy are consecutive intervals.
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We refer the reader to the book of R. Stanley (Stanley, 1997) for the definition of the combinatorial
terms we use in the following. In each interval, the positions behave like a Dyck path. In fact, the
positions θi of the upper halves occur as the moves (1, 1) and the positions θi+1 of the lower halves as
the moves (1,−1). We also draw the positions θj of the primary parts as the moves (1, 0), and we obtain
what is called a Motzkin path (also see Donaghey and Shapiro, 1977). With the bijection between Dyck
paths of length 2l and the oriented rooted trees with l egdes, one can then see the initial positions as an
oriented rooted forest with exactly p + 1 trees and s edges.

Example 3.7.5. We take the corresponding representations for the example (3.7.2). We then have that

(i1, i2, i3, i4, i5, i6) = (1, 4, 6, 8, 11, 13), (j0, j1, j2, j3) = (0, 3, 10, 15)

and
0, . . . , 15 = θj0 , θj1 , θi1 , θi1+1, θi4 , θi2 , θi2+1, θi3 , θi3+1, θi4+1, θj2 , θi5 , θi5+1, θi6 , θi6+1, θj3

and the representations correspond to the following diagrams:

Motzkin path representation

j0 j1 j2 j3
i1 i4

i2 i3

i5 i6

Forest representation

j0 j1 j2 j3

i1

i2

i5i4

i3

i6

Note that while we still keep track of the primary parts as the horizontal moves in Motzkin paths,
they vanish in oriented rooted forests. However, we can manage to record all information of the partition
ν in the oriented rooted forest by weighting the edges with the corresponding secondary part, while
recording each primary part on the root to its right. The optimal forbidden pattern ending by a primary
part will then be represented by a weighted oriented rooted tree.

Let us now consider the edges of the roots. In terms of Motzkin paths, they exactly correspond to the
meeting points with the horizontal axis. For the final positions, they correspond to the elements i ∈ I
that satisfy θi+1 < θi′ for all i′ > i. By Proposition 3.7.3, in the case where the Bridge is not a element of
J, it then corresponds to some root’s edge. This means that the study of optimal forbidden patterns not
ending by a primary part can be reduced to the study of planted trees weighted by the secondary parts.
The planted trees are indeed in bijection with the oriented trees with one fewer edge, and the problem
then becomes the same as the previous case.

To conclude, we see that we can reduce the study of the optimal forbidden patterns to the study of
weighted oriented rooted trees, and this give a new perspective to investigate the precise enumeration
of these patterns.
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Chapter 4

Beyond Siladić’s theorem

In this chapter, we discuss the result beyond Siladić’s theorem.

We first present in Section 4.1 the main operator for our bijection, which acts as an energy transfer
on the particles. Then, in Section 4.2, we explicitly give the bijective maps for Theorem 2.2.15, whose
well-definedness is proved in Section 4.3. Finally, in Section 4.4, we conclude with some remarks related
to the theory of perfect crystals.

4.1 Energy transfer

In this section, we define an operator on the pairs of particles of different degree (primary and sec-
ondary), presented as an energy transfer. This operator is a variant of the crossing operator used in
Chapter 3 for the generalization of Göllnitz’ theorem.

The proof of the technical lemmas and propositions are postponed to Appendix A.2.

Definition 4.1.1. We define a mapping Λ on P × S t S × P by the following:

P × S −→ S ×P
(k, c), (k′, c′, c′′) 7−→ (k′ + ε(c′, c′′), c, c′), (k− ε(c, c′)− ε(c′, c′′), c′′) , (4.1.1)

S × P −→ P × S
(k, c, c′), (k′, c′′) 7−→ (k′ + ε(c, c′) + ε(c′, c′′), c), (k− ε(c′, c′′), c′, c′′) · (4.1.2)

What does Λ do to the particles? Let us consider the following diagrams according to the occurrences
of primary states:

P × S −→ S ×P : c c′ c′′
+ε(c′, c′′)+ε(c, c′)

−ε(c, c′)− ε(c′, c′′)

S × P −→ P × S : c c′ c′′
−ε(c′, c′′)−ε(c, c′)

+ε(c, c′) + ε(c′, c′′)

These diagrams encode the transfer of energies that occurs during the application of Λ. For example,
one can understand the process on the first diagram as follows:

1. The lower half (k′, c′′) moves from state c′′ to c′ and gains the minimal energy ε(c′, c′′):

c′ ←− c′′

k′ + ε(c′, c′′) ←− k′ ·

2. The upper half (k′ + ε(c′, c′′), c′) moves from state c′ to c and gains the minimal energy ε(c, c′):

c ←− c′

k′ + ε(c, c′) + ε(c′, c′′) ←− k′ + ε(c′, c′′) ·
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3. The primary particle (k, c) moves from state c to state c′′, through state c′, and loses the energy of
transfer ε(c, c′) + ε(c′, c′′):

c −→ c′ −→ c′′

k −→ k− ε(c, c′) −→ k− ε(c, c′)− ε(c′, c′′) ·

The second diagram follows exactly the same transfer of energies. We can then see Λ as a energy transfer
that conserves the sequence of states but switches particles with the minimal loss or gain of energies.
One can check that the operator Λ is an involution, i.e. Λ2 = Id.

In the following, if we apply Λ to a pair of particles (x, y) in P ×S t S ×P , we say that we cross the
particles x and y.

Example 4.1.2. We take C ′ = {a < b} in Example 2.1.7. We then have that Λ(3ab,−10a) = (−9a, 2ba). The
energy transfer that occurs can be summarized by the following diagram

2a + 1b −10a

1b + 1a−9a

−1 −0

+1

The main proposition that follows from the definition of Λ is the following.

Proposition 4.1.3. For any (p, s) ∈ P × S , let (s′, p′) = Λ(p, s). We then have the following:

p 6�ε s⇐⇒ s′ �ε p′ , (4.1.3)

p 6�ε γ(s)⇐⇒ µ(s′)�ε p′ · (4.1.4)

The proof is given in Appendix A.2.4. The relation (4.1.3) means that the operator Λ allows us to
order, in terms of�ε, two particles of different degree which are not well-related. This property stands
as the key result that will allow us to construct the mapping Φ from Oε to Eε. On the other hand, the
relation (4.1.4), more subtle to explain, will play a major role in the inverse Ψ of Φ.

4.2 Bijective maps for Theorem 2.2.15

We present in this section the bijective proof of Theorem 2.2.15. This bijection rests on the energy transfer
defined in the previous section.

4.2.1 From Oε to Eε

We now present the map Φ from Oε to Eε.

Let us take any λ ∈ Oε. We set λ = (λ1, . . . , λs) with λk �ε λk+1 for any k ∈ {1, . . . , s − 1}. We
illustrate this map on an example with C ′ = {a < b} and ε as described in Example 2.1.7:

λ = (11b, 5b, 5a, 5a, 4a, 2a, 1b, 1a, 0a, 0b,−1b,−2b) ·

Step 1: First identify the consecutive disjoint troublesome pairs of particles (λk, λk+1 such that λk 6�ε

λk+1), by beginning by those with the smallest potentials (from the right to the left). Then, sum
up these troublesome pairs (λk, λk+1) to have the secondary particles corresponding to λk + λk+1,
without changing the order of the particles. We then obtain a new sequence of particles (where
particles are not necessarily well-related in terms of�ε) λ′ = (λ′1, . . . , λ′t), with particles λ′k in Oε

and Eε. With our example, we have the troublesome pairs

λ = (11b, 5b, 5a, 5a︸ ︷︷ ︸, 4a, 2a, 1b︸ ︷︷ ︸, 1a, 0a︸ ︷︷ ︸, 0b,−1b︸ ︷︷ ︸,−2b)

and we obtain
λ′ = (11b, 5b, 10a2︸︷︷︸, 4a, 3ab︸︷︷︸, 1aa︸︷︷︸,−1bb︸ ︷︷ ︸,−2b) ·
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Step 2: As long as there is a pair (λ′k, λ′k+1) ∈ (P × S) t (S ×P) such that λ′k 6�ε λ′k+1, cross the particles
in the pair with the operator Λ:

(λ′k, λ′k+1) −→ Λ(λ′k, λ′k+1) ·

The order in which we operate the crossings is not specified here. Let us then apply this process
on our example according to whether we choose the particles with the greatest or the smallest
potentials for each application of Λ. We then have the following diagrams:

choice of the greastest potentials

11b 5b 10a2 4a 3ab 1aa −1bb −2b

11b 10ba 5a 4a 3ab 1aa −1bb −2b

11b 10ba 5a 5aa 2b 1aa −1bb −2b

11b 10ba 6aa 4a 2b 1aa −1bb −2b

11b 10ba 6aa 4a 2b 1aa −1b −2b2

choice of the smallest potentials

11b 5b 10a2 4a 3ab 1aa −1bb −2b

11b 5b 10a2 4a 3ab 1aa −1b −2b2

11b 5b 10a2 5aa 2b 1aa −1b −2b2

11b 10ba 5a 5aa 2b 1aa −1b −2b2

11b 10ba 6aa 4a 2b 1aa −1b −2b2

One can observe with our example that the final result is the same in both choices. This is indeed
the case in general, whatever the choice of the applications of Λ.

We claim that Step 2 always ends, and that the final result λ′′ is unique and belongs to Eε (two consec-
utive particles are always well-related by�ε). We then set Φ(λ) to be the final partition λ′′ obtained at
the end of Step 2. Our example gives

Φ(11b, 5b, 5a, 5a, 4a, 2a, 1b, 1a, 0a, 0b,−1b,−2b) = (11b, 10ba, 6aa, 4a, 2b, 1aa,−1b,−2b2) ·

4.2.2 From Eε to Oε

Here we present the inverse map Ψ of Φ. Let us take any ν = (ν1, . . . , νt) ∈ Eε. We illustrate Ψ on the
example ν = (11b, 10ba, 6aa, 4a, 2b, 1aa,−1b,−2b2), the final result obtained before for the map Φ.

Step 1: As long as there is a pair (νk, νk+1) ∈ P × S such that νk 6�ε γ(νk+1) or (νk, νk+1) ∈ S × P such
that µ(νk) 6�ε νk+1, cross the particles in the pair with Λ:

(νk, νk+1) −→ Λ(νk, νk+1) ·

Here again, the order in which the applications of Λ occur is not specified. We proceed, as before,
according to whether we choose the smallest or the greatest potentials.

choice of the smallest potentials

11b 5b 10a2 4a 3ab 1aa −1bb −2b

11b 10ba 5a 4a 3ab 1aa −1bb −2b

11b 10ba 5a 5aa 2b 1aa −1bb −2b

11b 10ba 6aa 4a 2b 1aa −1bb −2b

11b 10ba 6aa 4a 2b 1aa −1b −2b2

choice of the greatest potentials

11b 5b 10a2 4a 3ab 1aa −1bb −2b

11b 5b 10a2 4a 3ab 1aa −1b −2b2

11b 5b 10a2 5aa 2b 1aa −1b −2b2

11b 10ba 5a 5aa 2b 1aa −1b −2b2

11b 10ba 6aa 4a 2b 1aa −1b −2b2

We observe that the process by choosing the smallest potentials is the exact reverse process of Step
2 of Φ by selecting the greatest potentials. The same occurs between the choice of the greatest
potentials, that gives the reverse process of Step 2 of Φ by choosing the smallest potentials. We
again have the same final result at the end of Step 1 for both choices. Let us set ν′ = (ν′1, . . . , ν′t) as
the final sequence.
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Step 2: Split all the secondary particles ν′k of ν′ into their upper and lower halves:

ν′k −→ γ(ν′k), µ(ν′k) ·

We then obtain ν′′. With our example, we have that

ν′′ = (11b, 5b, 5a, 5a, 4a, 2a, 1b, 1a, 0a, 0b,−1b,−2b) ·

We claim that Step 1 always ends in a unique result, whatever the choice of the applications of Λ, and
that the final result ν′′ after Step 2 belongs to Oε (the primary particles are well-related in terms of �ε).
We finally set Ψ(ν) = ν′′ . Our example gives

Ψ(11b, 10ba, 6aa, 4a, 2b, 1aa,−1b,−2b2) = (11b, 5b, 5a, 5a, 4a, 2a, 1b, 1a, 0a, 0b,−1b,−2b) ·

4.3 Proof of Theorem 2.2.15

In this section, we prove that the maps Φ and Ψ given in Section 4.2 are well-defined and Φ−1 = Ψ.

4.3.1 Well-definedness of Φ

Let us take any λ = (λ1, . . . , λs) ∈ Oε, and set λk = (lk, ck) ∈ P for all k ∈ {1, . . . , s}. Here we take the
example from Section 4.2.1,

λ = (11b, 5b, 5a, 5a, 4a, 2a, 1b, 1a, 0a, 0b,−1b,−2b) ·

We then have s = 12 and the following table:

k 1 2 3 4 5 6 7 8 9 10 11 12
ck b b a a a a b a a b b b
lk 11 5 5 5 4 2 1 1 0 0 −1 −2

· (4.3.1)

In the following, we first define some functions related to the partition λ, that will be useful for the sec-
ond part which concerns the proof of the well-definedness of Φ. We explicitly compute all the functions
defined in the following for our example.

The setup

We first define the function ∆ on {1, . . . , s}2 as follows,

∆ : (k, k′) 7→
s−1

∑
u=k

ε(cu, cu+1)−
s−1

∑
u=k′

ε(cu, cu+1) · (4.3.2)

We remark that, for any k ≤ k′,

0 ≤ ∆(k, k′) ≤ k′ − k , ∆(k, k′) = −∆(k′, k) , (4.3.3)

and for all k ∈ {1, . . . , s− 1}, we have by (4.3.2) that

lk − lk+1 ≥ ε(ck, ck+1) = ∆(k, k + 1) ·

Moreover, the function ∆ satisfies Chasles’ relation:

∆(k, k′) + ∆(k′, k′′) = ∆(k, k′′)

for all k, k′, k′′ ∈ {1, . . . , s}. We then identify ∆(k, k′) as the formal energy of transfer from the primary
state ck to the primary state c′k. Using (4.3.1), we obtain the following table in our example

k 1 2 3 4 5 6 7 8 9 10 11
∆(k, k + 1) 1 0 0 0 1 1 0 1 0 1 0 · (4.3.4)
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We now formalize the choice of troublesome pairs of primary particles in Step 1. In order to select
the pairs with smallest potentials, from the right to the left, we proceed as follows:

• i1 is the greatest k ∈ {1, . . . , s− 1} such that lk − lk+1 = ∆(k, k + 1),

• if it−1 is selected, then, whenever it is still possible, it is the greatest k ∈ {1, . . . , it−1 − 2} such that
lk − lk+1 = ∆(k, k + 1).

We then set I = {it} and J = {1, . . . , s} \ (I t (I + 1)). In our example, we have by (4.3.1) and (4.3.4) that

i1 = 10 , i2 = 8 , i3 = 6 , i4 = 3 ,

and then
I = {3, 6, 8, 10} and J = {1, 2, 5, 12} ·

Remark 4.3.1. The sets I and J are the unique sets satisfying the following relations:

1. I′, I′ + 1, J′ form a set-partition of {1, . . . , s},

2. for all i ∈ I′, li − li+1 = ∆(i, i + 1),

3. for all j ∈ {2, . . . , s} ∩ J′, lj−1 − lj > ∆(j− 1, j).

We now define the function α on {1, . . . , s}2 to be such that

α : (k, k′) 7→
{
|(k, k′] ∩ J| if k ≤ k′

−α(k′, k) if k > k′ , (4.3.5)

we then have that α satisfies Chasles’ relation. One can also observe that α(k, k) = 0 for all k ∈ {1, . . . , s}.
Therefore, using Remark 4.3.1, we obtain for all k ≤ k′ ∈ {1, . . . , s} that

lk − lk′ ≥ α(k, k′) + ∆(k, k′) · (4.3.6)

We finally define the function β on {1, . . . , s}2 by

β : (k, k′) 7→
{
|[k, k′) ∩ J| if k ≤ k′

−β(k′, k) if k > k′ , (4.3.7)

and we have that β satisfies Chasles’ relation. Our example gives the table

k 1 2 3 4 5 6 7 8 9 10 11
α(k, k + 1) 1 0 0 1 0 0 0 0 0 1 0
β(k, k + 1) 1 1 0 0 1 0 0 0 0 0 0

· (4.3.8)

Using this table, Chasles’ relation then allows us to compute all the values for α and β. For example,

α(2, 4) = α(2, 3) + α(3, 4) = 0 and β(4, 2) = β(4, 3) + β(3, 2) = −0− 1 = −1 ·

To conclude, we observe that, at the end of Step 1, the particles in S are λi + λi+1 for i ∈ I. The set I
then corresponds to the index set of the upper halves, the set I + 1 to the index set of the lower halves,
and J represents the index set of the particles λj that stay in P .

Proof of the well-definedness of Φ

During Step 2, the positions of particles change by the actions of Λ. Here we see the secondary particles
in S as the corresponding pair of two consecutive particles inP . We can then consider the permutation σ
of {1, . . . , s}which determines the new positions of these primary particles, and σ satisfies the following
properties:

• σ(i + 1) = σ(i) + 1 for all i ∈ I, since we move the upper and lower halves together,

• σ is increasing on I and J, since Λ never crosses the particles of the same degree.

We can now state the main results that will ensure the well-definedness of the map Φ.
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Proposition 4.3.2 (Final positions). Let φ be the function on J × I defined by

φ : (j, i) 7→ lj − 2li+1 − ∆(j, i + 1)− ∆(i + 1− β(j, i), i + 1) · (4.3.9)

Then the final position σ after Step 2 is such that for any (j, i) ∈ J × I,

σ(j) < σ(i)⇐⇒ φ(j, i) ≥ 0 · (4.3.10)

Furthermore, Step 2 comes to an end after exactly

|{(j, i) ∈ J × I : j > i and φ(j, i) ≥ 0 , or j < i and φ(j, i) < 0}| (4.3.11)

applications of Λ.

The above proposition ensures that the process Step 2 always ends. Using (4.3.1), (4.3.4) and (4.3.8),
we obtain with our example the following table corresponding to φ:

j\i 3 6 8 10
1 0 4 5 6
2 −5 −1 1 2
5 −6 −1 0 1

12 −8 −2 −1 0

·

By the proposition, we have exactly four crossings which occur in the pairs (j, i) in {(2, 3), (2, 6), (5, 6), (12, 10)},
and this corresponds to the illustration of Step 2 in Section 4.2.1.

The well-belonging of the final partition is given by the next two propositions.

Proposition 4.3.3. The partition obtained after Step 2 belongs to Eε.

Proposition 4.3.4. For any ρ ∈ {0, 1}, we have Φ(Oρ±
ε ) ⊂ E ρ±

ε .

The proofs of the above propositions can be found in Appendices A.2.5, A.2.9 and A.2.10. Here we
state two lemmas that will be useful for these proofs.

Lemma 4.3.5. If a primary particle (lk, ck) originally at position k moves to position σ(k), then it becomes
energetic particle (lk + ∆(σ(k), k), cσ(k)).

Lemma 4.3.6. The function φ is non-increasing on J and non-decreasing on I.

For the proofs the lemmas, see Appendices A.2.1 and A.2.2.

Lemma 4.3.5 plays a central role in the understanding of the operator Λ. Rephrased, it can be stated
as follows: a primary particle that moves from a state ck to a state ck′ gains the formal energy of transfer
from ck to ck′ . By (4.3.3), this energy is non-negative if k ≤ k′, and non-positive if k ≥ k′.

4.3.2 Well-definedness of Ψ

Let us consider ν ∈ Eε with ν = (ν1, . . . , νt). We rename the indices by enumerating all primary particles
that occur in ν. This means that we count the secondary particles as a pair of consecutive primary
particles. We take the example in Section 4.2.2

ν = (11b, 10ba, 6aa, 4a, 2b, 1aa,−1b,−2b2) ,

and the rewriting gives

ν = (11b, 5b, 5a︸ ︷︷ ︸, 3a, 3a︸ ︷︷ ︸, 4a, 2b, 1a, 0a︸ ︷︷ ︸,−1b,−1b,−1b︸ ︷︷ ︸) ·
As we did before for the process Φ, we first give some functions related to ν, and then prove the well-
definedness of Ψ. We explicitly compute the value of these functions for our example.

The setup

We consider ν = (ν′1, . . . , ν′s) written according to the primary particles that occur in ν. There then exist
unique sets I, J such that {1, . . . , s} = J t I t (I + 1), where J is the index set of the particles in P , and



4.3. Proof of Theorem 2.2.15 81

I and I + 1 are respectively the index sets of upper and lower halves of the particles in S . In the case of
our example

I = {2, 4, 8, 11} and J = {1, 6, 7, 10} ·

Also set
ν′k = (lk, ck) for all k ∈ {1, . . . , s} ,

and define the function ∆ on {1, . . . , s}2 in a similar manner as in (4.3.2). Finally define the function η
on {1, . . . , s}2 to be as

η : (k, k′) 7→
{
|(k, k′] ∩ J| if k ≤ k′

−η(k′, k) if k > k′ · (4.3.12)

Note that η satisfies Chasles’ relation. In our example, we obtain the following table:

k 1 2 3 4 5 6 7 8 9 10 11 12
ck b b a a a a b a a b b b
lk 11 5 5 3 3 4 2 1 0 −1 −1 −1

∆(k, k + 1) 1 0 0 0 1 1 0 1 0 1 0
η(k, k + 1) 0 0 0 0 1 1 0 0 1 0 0

· (4.3.13)

We now give in the following lemma the relations that link the particles’ potentials. The proof is given
in Appendix A.2.3.

Lemma 4.3.7. Let us set

l′k =
{

lk if k ∈ J
2lk if k ∈ I t (I + 1) ·

Then for all k ≤ k′ ∈ {1, . . . , s}, we have

l′k − l′k′ ≥ η(k, k′) + ∆(k, k′) · (4.3.14)

In particular, for all i ≤ i′ ∈ I t (I + 1), we have

li − li′ ≥ ∆(i, i′) · (4.3.15)

Proof of the well-definedness of Ψ

We can now focus on the position σ of the particles during Step 1 of Ψ. Note that Lemma 4.3.5 still holds
here, as well as the fact that σ(i + 1) = σ(i) + 1 for all i ∈ I and σ is increasing on I t (I + 1) and J.

We now give the analogues of Proposition 4.3.2, Proposition 4.3.3 and Proposition 4.3.10 that ensure
the well-definedness of Ψ. The proof of the following propositions are given in Appendices A.2.8, A.2.6
and A.2.7.

Proposition 4.3.8 (Final position). Let ψ be a function on J × I defined by :

ψ : (j, i) 7−→ lj − li − ∆(j, i) · (4.3.16)

Then, the final position σ of Ψ after Step 1 is such that, for all (j, i) ∈ J × I,

σ(j) < σ(i)⇐⇒ ψ(j, i) ≥ 0 , (4.3.17)

and Step 1 comes to an end after exactly

|{(j, i) ∈ J × I : j > i and ψ(j, i) ≥ 0 , or j < i and ψ(j, i) < 0}| (4.3.18)

applications of Λ.

Proposition 4.3.9. The resulting partition after Step 2 belongs to Oε.

Proposition 4.3.10. For any ρ ∈ {0, 1}, we have Ψ(E ρ±
ε ) ⊂ Oρ±

ε .
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In our example, the following table for Ψ is obtained:

j\i 2 4 8 11
1 5 7 7 7
6 0 2 2 2
7 −1 1 1 1
10 −3 −1 −1 −1

·

By Proposition 4.3.8, there are four crossings that occur in the pairs (j, i) in {(6, 2), (6, 4), (7, 4), (10, 11)}.

Remark 4.3.11. One can check that the sets σ(I), σ(I) + 1 and σ(J) form the unique set-partition of {1, . . . , s}
such that

1. For all i ∈ σ(I), ν′′i − ν′′i+1 = ∆(i, i + 1),

2. for any j ∈ σ(J) ∩ {2, . . . , s}, ν′′j−1 �ε ν′′j .

4.3.3 Reciprocity between Φ and Ψ

The relation Ψ ◦Φ = IdOε

For any λ = (λ1, . . . , λs) ∈ Oε, we choose unique sets I, J such that

1. I, I + 1, J form a set-partition of {1, . . . , s},

2. for all i ∈ I, li − li+1 = ∆(i, i + 1),

3. for all j ∈ {2, . . . , s} ∩ J, lj−1 − lj > ∆(j− 1, j).

Let σ be the final position after application ofΦ. Since by Lemma 4.3.5

λ′′σ(k) − λ′′σ(k′) − ∆(σ(k), σ(k′)) = lk − lk′ − ∆(k, k′) ,

by considering the function ψ in Proposition 4.3.8, we obtain, for all (j, i) ∈ J × I, that

j < i⇐⇒ ψ(σ(j), σ(i)) = lj − li − ∆(j, i)

≥ α(j, i)
= |(j, i] ∩ J|
≥ 0

and

j > i⇐⇒ ψ(σ(j), σ(i)) = lj − li − ∆(j, i)

≤ −α(i, j)
= −|(i, j] ∩ J|
≤ −1 ,

so that I, J are exactly the final positions of σ(I), σ(J) after applying Ψ. Thus Ψ(Φ(λ)) = λ.

The relation Φ ◦Ψ = IdEε

Let us now take any ν ∈ Eε, and let σ be the final position after Ψ, and Ψ(ν) = ν′′ = (ν′′1 , . . . , ν′′s ) with the
enumeration of primary particles. We saw Remark 4.3.11 that, σ(I), σ(I) + 1 and σ(J) form the unique
set-partition of {1, . . . , s}, such that

• for all σ(i) ∈ σ(I), ν′′
σ(i) − ν′′

σ(i)+1 = ∆(σ(i), σ(i) + 1),

• for all σ(j) ∈ σ(J) ∩ {2, . . . , s}, ν′′
σ(j)−1 �ε ν′′

σ(j).

The sets σ(I) and σ(J) then are the unique sets obtained after Step 1 in the process of Φ on ν′′. Let us
recall β. For k ≤ k′

β(k, k′) = |[k, k′) ∩ σ(J)| and β(k, k′) = −β(k′, k) ·
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Then, since σ is increasing on J and I t (I + 1), for any (j, i) ∈ J × I,

β(σ(j), σ(i)) = |[1, σ(i)) ∩ σ(J)| − |[1, σ(j)) ∩ σ(J)|
= σ(i)− 1− |[1, σ(i)) ∩ σ(I u (I + 1))| − |[1, j) ∩ J|
= σ(i)− 1− |[1, i) ∩ (I u (I + 1))| − |[1, j) ∩ J|
= σ(i)− i + |[1, i) ∩ J| − |[1, j) ∩ J| ·

We then obtain in Proposition 4.3.2, by the fact that li = li+1 + ∆(i, i + 1),

φ(σ(j), σ(i)) = (lj + ∆(σ(j), j)− 2(li+1 + ∆(σ(i + 1), i + 1))− ∆(σ(j), σ(i + 1))

− ∆(σ(i + 1)− β(σ(j), σ(i)), σ(i + 1))
= lj − 2li+1 − ∆(j, i + 1)− ∆(i + 1− |[1, i) ∩ J|+ |[1, j) ∩ J|, i + 1)

= lj − 2li − ∆(j, i)− ∆(i + 1− |[1, i) ∩ J|+ |[1, j) ∩ J|, i)·

By (4.3.3) and (4.3.14), we obtain

j < i⇐⇒ φ(σ(j), σ(i)) ≥ η(j, i)− ∆(i− |(j, i) ∩ J|, i)
≥ |(j, i] ∩ J| − |(j, i) ∩ J|
= 0

and

j > i⇐⇒ φ(σ(j), σ(i)) ≤ −η(i + 1, j)− ∆(i + 1 + |[i + 1, j) ∩ J|, i + 1)
≤ −|(i + 1, j] ∩ J|+ |[i + 1, j) ∩ J|
= −1 ·

The final positions for σ(I), σ(J) after applying Φ on ν′′ are then exactly I, J. Thus Φ(Ψ(ν)) = ν.

4.4 Closing remarks

We end this paper with three remarks.

First, we consider another relation �ε on P t S , which is the same as �ε for (2.2.22) and (2.2.25),
but slightly different for other comparisons :

(k, c)�ε (k′′, c′, c′′)⇐⇒ k− (2k′′ + ε(c′, c′′)) > ε(c, c′) + ε(c′, c′′) (4.4.1)

(k′, c, c′)�ε (k′′, c′′)⇐⇒ (2k′ + ε(c, c′))− k′′ ≥ ε(c, c′) + ε(c′, c′′) · (4.4.2)

One can easily check that, for ε∗(c′, c) = ε(c, c′):

(k, c)�ε (k′, c′)⇐⇒ (−k′, c′)�ε∗ (−k, c) ,

(k, c)�ε (k′, c′, c′′)⇐⇒ (−k′ − ε∗(c′′, c′), c′′, c′)�ε∗ (−k, c) ,

(k, c, c′)�ε (k′, c′′)⇐⇒ (−k′, c′′)�ε∗ (−k− ε∗(c′, c), c′, c) ,

(k, c, c′)�ε (k′, c′′, c′′′)⇐⇒ (−k′ − ε∗(c′′′, c′′), c′′′, c′′)�ε∗ (−k− ε∗(c′, c), c′, c).

If we define Eε to be the set of all generalized colored partitions with particles in P tS and with relation
�ε, we obtain the following corollary of Theorem 1.1.

Corollary 4.4.1. For any integer n and any finite non-commutative product C of colors in C, there exists a
bijection between {λ ∈ Oε : (C(λ), |λ|) = (C, n)} and {ν ∈ Eε : (C(ν), |ν|) = (C, n)}.

While the relation�ε differs from�ε, they both give similar difference conditions. A good example
of the similarity between these relations is the fact that we can retrieve Siladić’s theorem by taking
C = {a < b}, ε(i, j) = χ(i ≤ j) with non-negative primary part size, followed by the transformation
(q, a, b) 7→ (q4, q, q3), in Corollary 4.4.1.

Second, we point out that another major result, the Euler distinct-odd identity, can be retrieved from
Corollary 2.2.20. Let us consider the restriction of C to the singleton {a}. The corresponding difference
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condition gives the matrix ( a
a 0

)
and the corresponding generalized partitions in Corollary 2.2.20 are the classical partitions where all the
parts have state a. The restriction of D′ to the states a, a2 gives the matrix

( a a2

a 1 0
a2 1 0

)
·

One can view the corresponding partitions in E as the generalized partitions into distinct positive par-
ticles with state a, along with some particles with states a2 having positive even potentials. In other
words, we have a pair of partitions, the first partition into distinct positive particles with state a, and the
second into particles with positive even potential and state a2.

We then redo the process with the following rules. At step k, we apply the transformation (q, a) 7→
(q2k−1

, a2k−1
) to the identity given by the step 1. This leads to the following identity: the number of

partitions of n into particles with state a2k−1
and potential divisible by 2k−1 is equal to the number of

partitions of n into distinct particles with state a2k−1
and potential divisible by 2k−1, and particles with

state a2k
and potential divisible by 2k.

By considering the initial step 1, and iterating the steps k, we then have the following identity: the
number of partitions of n into positive particles with state a is equal to the number of partitions of n
into distinct particles, with the particles with states a2k

(k ∈ Z≥0) having a potential divisible by 2k. We
finally recover the Euler distinct-odd identity by applying the transformation (q, a) 7→ (q2, q−1).

Finally, we remark that the maps given in Section 4.2.1 and Section 4.2.2 differ from the variant
of Bressoud’s algorithm in (Konan, 2020a) for the generalization of Siladić’s theorem. In Step 1 of Φ,
instead of choosing the troublesome pairs of primary particles from the right to the left, we started in
(Konan, 2020a) from the left to the right by first choosing the greatest potentials. This choice could have
been made here. The major observation by proceeding this way is that the map Φ remains the same. This
comes from the fact that the choice of troublesome pairs only depends on the maximal sub-sequences
of λ of the form λk, . . . , λk′ , which satisfy li − li+1 = ∆(i, i + 1) for all i ∈ {k, . . . , k′}, with notation as in
Section 4.3.1. For such a sub-sequence with an even length, whatever the choice made, we always take
the primary particles pairwise. When the length is odd, our choice implies that we take the particles
pairwise from the right to the left so that there still remains a primary particle to the left of the sequence.
By crossing this primary particle with the secondary particles obtained after summing the pairs in the
sequence, by Lemma 4.3.5, we exactly obtain the pairs resulting from the choice of the troublesome pairs
starting from the left to the right, and the primary particle then becomes the rightmost particle of the
sequence.

This observation unveils a strong property that links the generalized partitions of Oε and Eε, both
kinds of partitions seen as sequences of primary particles: their major attribute are the maximal se-
quences of consecutive primary particles. In the next chapter, we will see how this attribute allows us
to define the particles of degree k for a positive k ≥ 3, and how this definition is closely related to the
notion of crystal and energy function in the quantum mechanics.
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Chapter 5

Beyond Glaisher’s theorem

In this chapter, bijective proofs of the results beyond Glaisher’s theorem are presented.

5.1 Bijective proof of Theorem 2.2.24

In this section we construct a bijection Ω1 between the set F ε,cg
1 and Rε,cg

1 of Theorem 2.2.24. In the
following, we illustrate Ω1 with the set of states C = {a, b, c}, the ground c, and the energy ε defined by
the energy matrix

Mε =


a b c

a 1 0 1
b 0 0 1
c 0 0 0

 ·
5.1.1 The setup

Let δg be the common value of ε(cg, c) for c 6= cg given by (2.2.39). Note that for any c 6= cg, for any
k, l ∈ Z

kc 6�ε lcg ⇐⇒ k− l ≤ ε(c, cg)− 1

⇐⇒ l − k ≥ 1− ε(c, cg)

⇐⇒ l − k ≥ ε(cg, c)

⇐⇒ lcg �ε kc (5.1.1)

(5.1.2)

so that the particles with state cg can be always related in terms of� with the particles with state different from
cg.

Here we can see the classical integer partitions as the non-increasing sequences of non-negative
integers, with all but a finite number of parts equal to 0.

Let us recall the conjugate of classical partitions. The partitions ν = (νi)
∞
i=0 and ν′ = (ν′i )

∞
i=0 are

conjugate if and only if their part sizes satisfy

νi = |{ν′j ≥ i + 1}| (5.1.3)

The transformation ν 7→ ν′ is an involution, and we then have ν′i = |{νj ≥ i + 1}|.

The setRε,cg
1

We identify a partition π = (π0, . . . , πs−1, 0cg) ofRε,cg
1 as the unique pair of partitions

(µ, ν) = [(µ0, . . . , µs−1, 0c0), (ν0, . . . , νs−1)] ,

such that C(π) = C(µ) = c0 · · · cs−1cg, and for all k ∈ {1, . . . , s− 1}, we have ck 6= cg,

µk =

(
s−1

∑
l=k

ε(ck, ck+1)

)
ck
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and

νk = πk −
s−1

∑
l=k

ε(ck, ck+1) ·

The partition µ is then the unique element in F ε,cg
1 ∩Rε,cg

1 satisfying C(π) = C(µ) = c0 · · · cs−1cg, and
ν is the residual partition with s parts, possibly ending with some parts equal to 0. The partition ν then
corresponds to a unique classical partition, with at most s parts.

Example 5.1.1. The partition

π = (10a, 8a, 8b, 7b, 5a, 4a, 3a, 2b, 1a, 1b, 1b, 0c)

is identified with the pair (µ, ν) with

µ = (4a, 3a, 3b, 3b, 3a, 2a, 1a, 1b, 1a, 1b, 1b, 0c)

and
ν = (6, 5, 5, 4, 2, 2, 2, 1, 0, 0, 0) ·

Let us now fix C = c0 · · · cs−1. The partition µ in the pair then becomes fixed. By considering the set
of regular partitions inRε,cg

1 with State Ccg, we have the bijection

Rε,cg
1 (C) = {π ∈ Rε,cg

1 : C(π) = Ccg} ≈ {µ} × {(ν0, · · · , νs−1) ∈ Z≥0 : ν0 ≥ · · · ≥ νs−1} · (5.1.4)

The setRε,cg
1 (C) is then isomorphic to the set of classical partitions with at most s positive parts.

We now consider the set of the descents

D = {k : {1, . . . , s} : ε(ck−1, ck) = 0} = {k0 < · · · < k|D|−1} and D = {1, . . . , s− 1} \ D · (5.1.5)

Note that, since ε(cs−1, cg) = 1− δg, we recursively have for all k ∈ {1, . . . , s− 1} that

µk =
s−1

∑
l=k

ε(cl , cl+1) = 1− δg + |{k + 1, · · · , s− 1} ∩ D| ≤ s− k− δg · (5.1.6)

We obtain with Example 5.1.1 that C = aabbaaababb, s = 11, D = {2, 3, 4, 7, 8, 9, 10} and D = {0, 1, 5, 6}.

For a fixed non-negative n, we construct Ω in such a way that the partitions π in Rε,cg
1 satisfying

(|π|, C(π)) = (n, Ccg) correspond to the partitions π in F ε,cg
1 which satisfy (n, C) = (|π|, C(π)|cg=1).

This means that the sequence of states different from cg is equal to C.

The set F ε,cg
1

We now consider the set F ε,cg
1 (C) of flat partitions π in F ε,cg

1 such that C(π)|c0=1 = C. For such a
partition π, there exists a unique set S = {u0 < · · · < us−1} ⊂ Z≥0 such that

π = (π0, · · · , πus−1 , 0c0) ,
c(πuk ) = ck ∀ k ∈ {0, . . . , s− 1} ,

cπk = cg ∀ k ∈ {0, . . . , us−1} \ S ·
(5.1.7)

In fact, we cannot have c(πus−1) = cg, otherwise πus−1 = ε(cg, cg) = 0, so that πus−1 = 0cg , which
contradicts the definition of grounded partitions. Let us set

s′ = us−1 + 1− s
W = {0 ≤ v < |D| : ukv − ukv−1 > 1} = {v0 < · · · < v|W|−1} , (5.1.8)

DW = {kv : v ∈W} ,
DW = D \ DW ·
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If there are particles with state cg between uk and uk+1 (which means that k + 1 /∈ D), their potentials’
differences gives

ε(ck, cg) + 0 + · · ·+ 0︸ ︷︷ ︸
]parts inserted−1

+ε(cg, ck+1) = ε(ck, cg) + ε(cg, ck+1)

= 1− δg + δg

= 1

which differs from ε(ck, ck+1) if and only if k + 1 ∈ D. Then

πuk = µk + |{k + 1, · · · , s− 1} ∩ DW | ,

so that by (5.1.6). Since πus−1 = 1− δg, we obtain recursively that for all k ∈ {0, . . . , s− 2},

πuk = 1− δg + |{k + 1, . . . , s− 1} ∩ (D t DW)| · (5.1.9)

Note that by (5.1.9), for all uk−1 < u < uk, we necessarily have that k ∈ D t DW , and then

πu = δg + πuk = |{k, . . . , s− 1} ∩ (D t DW)| ·

We now construct the bijection between F ε,cg
1 (C) andRε,cg

1 (C).

5.1.2 The map Ω from F ε,cg
1 (C) toRε,cg

1 (C).

For any partition π ∈ F ε,cg
1 (C) described above, let ν′ be the classical partition whose parts are the

following:

1. for k /∈ D, the uk − uk−1 − 1 particles between uk−1 and uk with potential

πu = |{k, . . . , s− 1} ∩ (D t DW)| ,

with the convention u−1 = −1.

2. For k ∈ DW , we take uk − uk−1 − 2 particles between uk−1 and uk with potential

πu = |{k, . . . , s− 1} ∩ (D t DW)| ,

and one particle (called the weighted particle) with potential

πu + k = |{k, . . . , s− 1} ∩ (D t DW)|+ k · (5.1.10)

We then set Ω(π) = (µ, ν) where ν is the conjugate of ν′.

Example 5.1.2. For example, we illustrate these transformations with C = aabbaaababb and

π = (6a, 5a, 5b, 4c, 4c, 4c, 4b, 4a, 3c, 3a, 2a, 1c, 1c, 1b, 1a, 1b, 1b, 0c) ·

Recall that µ = (4a, 3a, 3b, 3b, 3a, 2a, 1a, 1b, 1a, 1b, 1b, 0c), D = {2, 3, 4, 7, 8, 9, 10} and D = {0, 1, 5, 6}. Here

k 0 1 2 3 4 5 6 7 8 9 10
uk 0 1 2 6 7 9 10 13 14 15 16

and thus DW = {3, 7}. We thus obtain that ν′ is the classical partition with parts 3, 4, 4, 7 and 1, 8. We thus have
ν′ = (8, 7, 4, 4, 3, 1) and the conjugation then gives the following partition with 11 parts

ν = (6, 5, 5, 4, 2, 2, 2, 1, 0, 0, 0) ·

By adding the parts of ν to the corresponding particles of µ, we finally obtain

Ω(6a, 5a, 5b, 4c, 4c, 4c, 4b, 4a, 3c, 3a, 2a, 1c, 1c, 1b, 1a, 1b, 1b, 0c) = (10a, 8a, 8b, 7b, 5a, 4a, 3a, 2b, 1a, 1b, 1b, 0c) ·
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We first note that the total energy is conserved by these transformations, since

s−1

∑
k=0
|{k + 1, · · · , s− 1} ∩ DW | = ]{(k, l) : l ∈ {k + 1, · · · , s− 1} : l ∈ DW}

= ∑
l∈DW

]{0 ≤ k < l}

= ∑
l∈DW

l

and thus

us−1

∑
u=0

πu =
s−1

∑
k=0

πuk + ∑
k

1<uk−uk−1

(uk − uk−1 − 1)πuk−1

= ∑
u/∈S

πu +
s−1

∑
k=0

µk + ∑
l∈DW

l

= |µ|+ ∑
l∈DW

l + πul−1 + (ul − ul−1 − 2)πul−1

+ ∑
l /∈D

(ul − ul−1 − 1)πul−1 ·

The unweighted particles are those which are not weighted. We then remark that for all k ∈ {1, . . . , s−
1},

|{k, . . . , s− 1} ∩ (D t DW)|+ k = |D t DW |+ |{0, . . . , k− 1} ∩ DW |
= πu0 + δg + |{0, . . . , k− 1} ∩ DW |

so that the weighted particles all have potentials greater than or equal to the potentials of the unweighted
particles. We also notice that unweighted particles coming from different k are distinct, since the poten-
tials’ difference gives

|{k, . . . , s− 1} ∩ (D t DW)| − |{k + 1, . . . , s− 1} ∩ (D t DW)| = χ(k ∈ D t DW)

and this is exactly the condition required to insert a particle in ν′. Also when we take two consecutive
weighted particles in kvj < kvj+1 ∈ DW , we obtain the difference of potential

kvi − kvi+1 + |{kvi , . . . , kvi+1 − 1} ∩ (D t DW)| = −|{kvi , . . . , kvi+1 − 1} ∩ DW |

so that the weighted particles appear in a non-decreasing order according to the indices i in {0, |W| − 1}.
We then obtain ν′ = (ν′0, · · · , ν′s′−1), where for all i ∈ {0, . . . , |W| − 1}

ν′|W|−1−i = |{kvi , s− 1} ∩ (D t DW)|+ kvi

= s− |DW ∩ {kvi , . . . , s− 1}|
= s− |{vi ≤ p < |D| : p /∈W}| by (5.1.8)
= s + |W| − |D|+ vi − i
≤ s ,

and the rest of the particles consists of uk − uk−1 − 1− χ(k ∈ DW) particles for k ∈ D t DW , each of
them with potential

|{k, s− 1} ∩ (D t DW)| ≥ 1 ·

Note that ν′ viewed as a classical partition has s′ parts, all with size at most equal to s, and by (5.1.3), the
partition ν then has at most s positive parts and satisfies ν0 = s′. Our map from F ε,cg

1 (C) to Rε,cg
1 (C) is

then well-defined.

We conclude by observing the following equality: for all i ∈ {0, . . . , |W| − 1} we have

ν′|W|−1−i − |W|+ i = s− |D|+ vi

= |{0, . . . , kvi − 1}|+ |{kvi , s− 1} ∩ D|



5.1. Bijective proof of Theorem 2.2.24 89

= δg + µkvi
+ kvi , (5.1.11)

and for all u ∈ {|W|, . . . , s′ − 1},

ν′u − u− 1 ≤ ν′|W| − |W| − 1 < δg + µ0 · (5.1.12)

5.1.3 The map Ω−1 fromRε,cg
1 (C) to F ε,cg

1 (C)

Let consider a partition π in Rε,cg
1 (C), and the corresponding pair (µ, ν). The partition ν then corre-

sponds to a classical partition with at most s positive parts. The partitions ν′ then has ν0 positive parts,
whose sizes are at most equal to s. Let us set s′ = ν0 and write ν′ = (ν′0, · · · , ν′s′−1). We then apply the
following transformations:

1. For each k ∈ {1, . . . , s− 1}, change the part µk into µ′k with the relations{
c(µ′k) = c(µk) = ck

µ′k = µk + |{0 ≤ u < s′ : δg + µk + k ≤ ν′u − u− 1}|
· (5.1.13)

2. For each u ∈ {0, . . . , s′ − 1}, change the part ν′u into ν′′u with the relations{
c(ν′′u ) = cg

ν′′u = ν′u − |{0 ≤ k < s : δg + µk + k ≤ ν′u − u− 1}|
· (5.1.14)

The final partition Ω−1(π) is obtained by inserting the particles ν′′u into the sequence of particles µ′k
according �ε, and adding the ground 0cg . The partition Ω−1(π) then has s + s′ particles different from
0cg and by double counting, it follows that |Ω−1(π)| = |µ|+ |ν| = |π|.

Example 5.1.3. For example, we illustrate these transformations with C = aabbaaababb and

π = (10a, 8a, 8b, 7b, 5a, 4a, 3a, 2b, 1a, 1b, 1b, 0c) ,

corresponding to
µ = (4a, 3a, 3b, 3b, 3a, 2a, 1a, 1b, 1a, 1b, 1b, 0c) ,

and
ν = (6, 5, 5, 4, 2, 2, 2, 1, 0, 0, 0) ·

By conjugation,
ν′ = (8, 7, 4, 4, 3, 1)

Recall that δg = 0. Using the following tables

k 0 1 2 3 4 5 6 7 8 9 10
µk + k 4 4 5 6 7 7 7 8 9 10 11

u 0 1 2 3 4 5
ν′u − u− 1 7 5 1 0 −2 −5 ,

it follows that

µ′ = (6a, 5a, 5b, 4b, 4a, 3a, 2a, 1b, 1a, 1b, 1b, 0c) , ν′′ = (1c, 4c, 4c, 4c, 3c, 1c)

and the insertion then gives

Ω−1(π) = (6a, 5a, 5b, 4c, 4c, 4c, 4b, 4a, 3c, 3a, 2a, 1c, 1c, 1b, 1a, 1b, 1b, 0c) ·

Let us now show that π ∈ F ε,cg
1 . First note that

δg + µs−1 + s− 1 = s ,

and since ν′u ≤ s for all u ∈ {0, . . . , s′ − 1}, it follows that µ′s−1 = µs−1 = 1− δg. Moreover, for all the
k ∈ {0, . . . , s− 1},

(δg + µk + k)− (δg + µk−1 + k− 1) = 1 + µk − µk−1
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= 1− ε(ck−1, ck) ∈ {0, 1} ·

This means that the sequence (δg + µk + k)s−1
k=0 is non-decreasing, and with the difference between con-

secutive terms at most equal to 1, with equality if and only if k ∈ D.

On the other hand, for u ∈ {1, . . . , s− 1}, we have for all u ∈ {0, . . . , s′ − 1} that

ν′u−1 − u− (ν′u − u− 1) = 1 + ν′u−1 − ν′u ≥ 1 ·

The sequence (ν′u − u− 1)s′−1
u=0 is then decreasing.

Let us now set
DV = {k ∈ {1, . . . , s} : µ′k−1 − µ′k 6= µk−1 − µk} ·

Since ε(ck−1, ck) ∈ {0, 1}, the set DV then contains all the k ∈ {1, · · · , s− 1} such that

0 < |{0 ≤ u < s′ : δg + µk−1 + k− 1 ≤ ν′u − u− 1 < δg + µk + k}| ≤ 1− ε(ck−1, ck) ,

so that we necessarily have DV ⊂ D. For such k, there exists a unique u such that

δg + µk−1 + k− 1 ≤ ν′u − u− 1 < δg + µk + k · (5.1.15)

In fact, the sequence (ν′u − u− 1)s′−1
u=0 being decreasing, and the interval [δg + µk−1 + k− 1, δg + µk + k),

which is a singleton for k ∈ DV , contains at at most one element of the latter sequence. Also,

|{0 ≤ l < s : δg + µl + l ≤ ν′u − u− 1}| = |{0, . . . , k− 1}| = k

|{0 ≤ v < s′ : δg + µk−1 + k− 1 ≤ ν′v − v− 1}| = |{0, . . . , u}| = u + 1 ·

Therefore,

ν′u = ν′′u + k , (5.1.16)

µ′k = µk + u

µ′k−1 = µk−1 + u + 1 ,

and by (5.1.1) and (5.1.15), we necessarily have

µ′k−1 mε ν′′u mε µ′k · (5.1.17)

The particle ν′′u is then inserted between µ′k−1 and µ′k. Note that this insertion occurs once for all u such
that

|D| = δg + µ0 ≤ ν′u − u− 1,

so that
|DV | = |{0 ≤ k < s : δg + µ0 ≤ ν′u − u− 1}| ·

Then, for all u ≥ |DV |, we have
ν′u − u− 1 < δg + µ0 ,

so that ν′′u = ν′u. In particular, we have

ν′′|DV | − |DV | − 1 < δg + µ0 ⇐⇒ ν′′|DV | ≤ δg + µ0 + |DV | = δg + µ′0 · (5.1.18)

We remark that for all k ∈ D \ DV , since µ′k−1 − µ′k = µk−1 − µk = 0, the parts µ′k−1, µ′k have the same
size, and then the same relation with all particles with state cg. This means that, after inserting of the
particles ν′′u into µ′, there is no particle between the parts µ′k−1 and µ′k. Note that, for all k ∈ D t DV ,
µ′k−1 − µ′k = 1, so that we can insert any number of particles with state cg and potential δg + µ′k, and
since ε(cg, cg) = 0, these particle with the same potential and state cg are well-related by mε.

These facts, together with (5.1.17) and (5.1.18), imply that π belongs to F ε,cg
1 .

We conclude by observing that, by (5.1.17), DV can be also defined as the unique subset of D with
satisfies the following: k ∈ D belongs to DV if and only if there exists u ∈ {0, · · · , s′} such that µ′k−1 mε

ν′′u mε µ′k.
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5.1.4 Inversion of the maps

Using (5.1.11) and (5.1.12), we straightforward to observe by the definition of Ω−1 that Ω−1 ◦ Ω =
IdF ε,cg

1 (C). On the other hand, the fact that Ω ◦Ω−1 = IdRε,cg
1 (C) comes from the correspondence between

DW and DV . In fact, this correspondence is deduced from the equivalence between the definition of W
and the above definition of DV . We also observe that the only particles whose potential changes from
one set of partitions to another are those related to the set DW and DV . We finally conclude by observing
the reciprocity between the definition of the weighted particles related to DW given in (5.1.10), and the
definition of the particles related to DV given by the formula (5.1.16).

Remark 5.1.4. The maps described here give a more refined property that the bijection between the sets F ε,cg
1 (C)

andRε,cg
1 (C), as for a fixed State C product of s states different from cg, it leads to the correspondence between the

partitions ν with at most s parts such that the greatest part has size s′ and the flat partitions having s′ additional
particles with states cg different from 0cg .

5.2 Bijective proof of Theorem 2.2.31

In this section, we prove the following.

Theorem 5.2.1. For a fixed State C as product of colors different from cg and a fixed non-negative integer n, the
following sets of generalized partitions are equinumerous:

1. F ε,cg
2 (C, n) = {π ∈ F ε,cg

2 : C(π)|cg=1 = C, |π| = n},

2. F ε,cg
1 (C, n) = {π ∈ F ε,cg

1 : C(π)|cg=1 = C, |π| = n},

3. Rε,cg
1 (C, n) = {π ∈ Rε,cg

1 : C(π)|cg=1 = C, |π| = n},

4. Rε,cg
2 (C, n) = {π ∈ Rε,cg

2 : C(π)|cg=1 = C, |π| = n}.

In the previous section, we have shown in the proof of Theorem 2.2.24 that |F ε,cg
1 (C, n)| = |Rε,cg

1 (C, n)|.
In the following, we first show that there is a bijection between F ε,cg

2 (C, n) and F ε,cg
1 (C, n), and after that

we describe a bijection betweenRε,cg
1 (C, n) andRε,cg

2 (C, n).

5.2.1 Bijection between F ε,cg
2 (C, n) and F ε,cg

1 (C, n)

Here recall that, by Definition 2.2.27, the partitions of F ε,cg
2 have the form (π0, . . . , πs−1, 0c2

g
), such that

for all k ∈ {0, . . . , s− 1}, πk ∈ S , and by setting c(πk) = c2kc2k+1 ∈ C2, we have by (2.2.41) that

µ(πk)mε γ(πk+1) · (5.2.1)

We also observe that c2s−2c2s−1 6= c2
g, otherwise the above equation gives that πs−1 − 0c2

g
= 4ε(cg, cg) =

0, and then πs−1 = 0c2
g
, which contradicts the definition of grounded partitions. Furthermore, note that

µ(πs−1) = 0cg if and only if c2s−1 = cg.

Consider the map F from F ε,cg
2 to F ε,cg

1 defined by

(π0, . . . , πs−1, 0c2
g
) 7→


(γ(π0), µ(π0), γ(π1), µ(π1), . . . , γ(πs−2), µ(πs−2), γ(πs−1), 0cg) if c2s−1 = cg

(γ(π0), µ(π0), γ(π1), µ(π1), . . . , γ(πs−2), µ(πs−2), γ(πs−1), µ(πs−1), 0cg) if c2s−1 6= cg

·

(5.2.2)
It is easy to check that both the total energy and the sequence of primary states are preserved. To show
that F (π0, . . . , πs−1, 0c2

g
) ∈ F ε,cg

1 , we proceed according to whether c2s−1 = cg or c2s−1 6= cg. Note that
by definition of the secondary particles, for all k ∈ {0, . . . , s− 1},

γ(πk)− µ(πk) = ε(c2k, c2k+1)⇐⇒ γ(πk)mε µ(πk) ·
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• If c2s−1 = cg, then the above equation and (5.2.1) give that F (π0, . . . , πs−1, 0c2
g
) is well-defined up

to µ(πs−1), and with the fact that c2s−2 6= cg and µ(πs−1) = 0cg , we obtain thatF (π0, . . . , πs−1, 0c2
g
) ∈

F ε,cg
1 .

• If c2s−1 6= cg, then the above equation and (5.2.1) give that F (π0, . . . , πs−1, 0c2
g
) is well-defined up

to µ(πs−1), with the fact that c2s−1 6= cg and µ(πs−1) = ε(c2s−1, cg), we obtain thatF (π0, . . . , πs−1, 0c2
g
) ∈

F ε,cg
1 .

The inverse map F−1 is even easier to build. We simply proceed as follows:

(π0, . . . , πs−1, 0cg) 7→


(π0 + π1, . . . , πs−1 + 0cg , 0c2

g
) if s ≡ 1 mod 2

(π0 + π1, . . . , πs−2 + πs−1, 0c2
g
) if s ≡ 0 mod 2

· (5.2.3)

The primary particles being consecutive in terms of�ε, the map F−1 is well-defined, and one can check
that the first case of F−1 is the inverse of the first case of F , so as the second case of F−1 is the inverse
of the second case of F .

5.2.2 Bijection betweenRε,cg
1 (C, n) andRε,cg

2 (C, n)

Let us recall that C ′ = C \ {cg}, and set C ′o = {cc′ : c, c′ ∈ C ′}. We now set ρ = 1− δg the common value
of ε(c, cg) for all c ∈ C ′. Here we refer to Oε and E as the sets corresponding to the set C ′ in Chapter 4.
We now show the following proposition.

Theorem 5.2.2. For a fixed State C as product of states in C ′ and a fixed non-negative integer n, the following
sets of generalized partitions are equinumerous:

1. Rε,cg
1 (C, n) = {π ∈ F ε,cg

2 : C(π)|cg=1 = C, |π| = n},

2. Oρ+
ε (C, n) = {π ∈ Oρ+

ε : C(π) = C, |π| = n},

3. E ρ+(C, n) = {π ∈ Eρ+ : C(π) = C, |π| = n},

4. Rε,cg
2 (C, n) = {π ∈ Rε,cg

2 : C(π)|cg=1 = C, |π| = n}.

By Theorem 2.2.15, we already have that |Oρ+
ε (C, n)| = |Eρ+(C, n)|. We show in the remainder of

this section thatRε,cg
1 (C, n) and Oρ+

ε (C, n) are in bijection, as are E ρ+(C, n) andRε,cg
2 (C, n).

Bijection betweenRε,cg
1 (C, n) and Oρ+

ε (C, n)

This is straightforward by considering the following map fromRε,cg
1 (C, n) to Oρ+

ε (C, n):

(π0, . . . , πs−1, 0cg) 7→ (π0, . . . , πs−1) · (5.2.4)

In fact, we have that c(πk) ∈ C ′ for all k ∈ {0, . . . , s− 1}, and by (2.2.38), that

πk − πk+1 ≥ ε(c(πk), c(πk+1)) ,

so that πs−1 ≥ ε(c(πk+1), cg) = 1− δg = ρ. By Definition 2.1.3 and Definition 2.2.14, we then have that
the partition (π0, . . . , πs−1) belongs to Oρ+

ε (C, n).

The inverse map is obtained by adding a 0cg to the right to a partition in Oρ+
ε (C, n), and the above

relations imply that the resulting partition indeed belongs toRε,cg
1 (C, n).

Bijection between E ρ+(C, n) andRε,cg
2 (C, n)

It may seem intricate to construct a bijection between these two sets, as a partition in the first set can have
primary particles while a partition in the second set cannot. The regularity in c2

g allows us to overcome
this obstacle. For simplicity, we write S(C), S(C ′) and P(C ′) respectively the sets of the secondary
particles with states as a product of two primary states in C, the secondary particles with states as a
product of two primary states in C ′ and the primary particles with state in C ′. We observe that we have
a natural embedding S(C ′) ↪→ S(C).
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By definition, for any c ∈ C ′, the potential of the secondary particle with state ccg has the same
parity as ε(c, cg) = ρ, while the potential of the secondary particle with color cgc has the same parity as
ε(cg, c) = 1− ρ. The embedding P(C′) ↪→ S(C) can then be described as follows:

kc 7→
{

kccg if k ≡ ρ mod 2
kcgc if k ≡ 1− ρ mod 2

·

Therefore, we obtain a natural bijectionR betweenP(C′)tS(C ′) and S(C) \ {(2Z)c2
g
}with the relations

S(C ′) 3(2k + ε(c, c′))cc′ 7→ (2k + ε(c, c′))cc′ (5.2.5)

P(C′) 3kc 7→
{

kccg if k ≡ ρ mod 2
kcgc if k ≡ 1− ρ mod 2

· (5.2.6)

Note that the inverse R−1 is also the identity on S(C ′), and for a particle with state ccg or cgc, we
associate the particle in P(C ′) with the same potential and state c.

The mapR can now be extended to the partitions in E ρ+ with

R : (π0, . . . , πs−1) 7→ (R(π0), . . . ,R(πs−1), 0c2
g
) , (5.2.7)

resulting in the following proposition.

Proposition 5.2.3. The mapR defines a bijection between E ρ+(C, n) andRε,cg
2 (C, n).

Recall that�ε in Definition 2.2.10 is the relation that relates the particles of a partition in E ρ+ , and
the relation�ε defined in (2.2.46) relates the particles of a partition inRε,cg

2 .

Note that the mapR fromP(C′)tS(C ′) to S(C) \ {(2Z)c2
g
} conserves the potential and the sequence

of states different from cg, so that extended to E ρ+ , it also preserves the total energy and the sequence of
states different from cg. The proof of Proposition 5.2.3 is straightforward using the two next lemmas.

Lemma 5.2.4. Let c ∈ C ′ t C ′o and c = c(πs−1). Then the minimal potential of πs−1 ∈ Pρ+ t Sρ+ is the
minimal potential ofR(πs−1) satisfyingR(πs−1)� 0c2

g
.

Lemma 5.2.5. For all particles kp, lq ∈ P(C′) t S(C ′), we have the following :

kp �ε lq ⇐⇒ R(kp)�ε R(lq) · (5.2.8)

Lemma 5.2.4 gives the equivalence of the minimal potential condition for the last particle, while
Lemma 5.2.5 states that the difference conditions are equivalent for both sets of partitions, and we di-
rectly obtain Proposition 5.2.3.

Proof of Lemma 5.2.4. We reason on whether c ∈ C ′o, or c ∈ C ′ and πs−1 has a potential with the same
parity as ρ or 1− ρ.

• If c ∈ C ′o, write c = c0c1. Then,

πs−1 ∈ Sρ+ ⇐⇒ µ(πs−1) ≥ ρ by Definition 2.2.14
⇐⇒ µ(πs−1) ≥ ε(c1, cg)

⇐⇒ R(πs−1) = πs−1 �ε 0c2
g
· (2.2.46)

• If c ∈ C ′ and πs−1 ≡ ρ mod 2,

πs−1 ∈ Pρ+ ⇐⇒ πs−1 ≥ ρ and π ≡ ρ mod 2 by Definition 2.2.14
⇐⇒ πs−1 ∈ 2Z≥0 + ρ

⇐⇒ c(µ(R(πs−1))) = cg and µ(R(πs−1)) ≥ 0 (1.2.2)

⇐⇒ µ(R(πs−1)) ≥ ε(cg, cg)

⇐⇒ R(πs−1)�ε 0c2
g
· (2.2.46)
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• If c ∈ C ′ and πs−1 ≡ 1− ρ mod 2,

πs−1 ∈ Pρ+ ⇐⇒ πs−1 ≥ ρ and π ≡ 1 + ρ mod 2 by Definition 2.2.14
⇐⇒ πs−1 ∈ 2Z≥0 + 1 + ρ

⇐⇒ µ(R(πs−1)) ≥ ρ and c(µ(R(πs−1))) = c (1.2.2)
⇐⇒ µ(R(πs−1)) ≥ ε(c, cg)

⇐⇒ R(πs−1)�ε 0c2
g
· (2.2.46)

To conclude, one can observe that we always have the equivalence

πs−1 ∈ Pρ+ t Sρ+ ⇐⇒ R(πs−1)�ε 0c2
g

and this conclude the proof of the lemma.

Proof of Lemma 5.2.5. Let us first state an obvious fact: for all integer a, b, we have the following,

1. if b ∈ {−1, 0, 1}, then
2a ≥ b⇐⇒ a ≥ χ(b = 1) , (5.2.9)

2. if b ∈ {−2,−1, 0}, then
2a ≥ b⇐⇒ a ≥ −χ(b = −2) · (5.2.10)

As before, we reason on whether particles kp and lq are primary or secondary.

• If kp ∈ S , write kp = (2u + ε(c0, c1))c0c1 .

– If lq ∈ S , write lq = (2v + ε(c2, c3))c2c3 .

kp �ε lq ⇐⇒ u− v− ε(c1, c2)− ε(c2, c3) ≥ 0 (2.2.25)

⇐⇒ R(kp)�ε R(lq) · (2.2.46)

– If q ∈ C ′ and l ≡ ρ mod 2, write lq = (2v + ε(q, cg))q. Then,

kp �ε lq ⇐⇒ (2u + ε(c0, c1))− (2v + ε(q, cg)) ≥ 1 + ε(c0, c1) + ε(c1, q) (2.2.24)

⇐⇒ 2(u− v− ε(q, cg)− ε(c1, q)) ≥ ε(cg, q)− ε(c1, q)

⇐⇒ u− v− ε(q, cg)− ε(c1, q) ≥ ε(cg, q)(1− ε(c1, q)) (5.2.9)

⇐⇒ R(kp)�ε R(lq) · (2.2.45)

– If q ∈ C ′ and l ≡ 1− ρ mod 2, write lq = (2v + ε(cg, q))q.

kp �ε lq ⇐⇒ (2u + ε(c0, c1))− (2v + ε(cg, q)) ≥ 1 + ε(c0, c1) + ε(c1, q) (2.2.24)

⇐⇒ 2(u− v− ε(c1, cg)− ε(cg; q)) ≥ ε(c1, q) + ε(cg, q)− 1

⇐⇒ 2(u− v− ε(c1, cg)− ε(cg; q)) ≥ ε(c1, q)− ε(q, cg)

⇐⇒ u− v− ε(c1, cg)− ε(cg; q) ≥ ε(c1, q)ε(cg, q) (5.2.9)

⇐⇒ R(kp)�ε R(lq) · (2.2.45) ·

• If p ∈ C ′ and k ≡ ρ mod 2, write kp = (2u + ε(p, cg))p

– If lq ∈ S , write lq = (2v + ε(c2, c3))c2c3 . Then

kp �ε lq ⇐⇒ (2u + ε(p, cg))− (2v + ε(c2, c3)) ≥ ε(p, c2) + ε(c2, c3) (2.2.23)

⇐⇒ 2(u− v− ε(cg, c2)− ε(c2, c3)) ≥ ε(p, c2)− ε(p, cg)− 2ε(cg, c2)

⇐⇒ 2(u− v− ε(cg, c2)− ε(c2, c3)) ≥ (ε(p, c2)− 1)− ε(cg, p)

⇐⇒ u− v− ε(cg, c2)− ε(c2, c3)) ≥ −(1− ε(p, c2))ε(cg, p) (5.2.10)

⇐⇒ R(kp)�ε R(lq) · (2.2.44)

– If q ∈ C ′ and l ≡ ρ mod 2, write lq = (2v + ε(q, cg))q. Then

kp �ε lq ⇐⇒ (2u + ε(p, cg))− (2v + ε(q, cg)) ≥ 1 + ε(p, q) (2.2.22)
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⇐⇒ 2(u− v− ε(cg, q)− ε(q, cg)) ≥ ε(p, q)− 1

⇐⇒ u− v− ε(cg, q)− ε(q, cg) ≥ 0 (5.2.9)

⇐⇒ R(kp)�ε R(lq) · (2.2.46)

– If q ∈ C ′ and l ≡ 1− ρ mod 2, write lq = (2v + ε(cg, q))q. Then

kp �ε lq ⇐⇒ (2u + ε(p, cg))− (2v + ε(cg, q)) ≥ 1 + ε(p, q) (2.2.22)

⇐⇒ 2(u− v− ε(cg, cg)− ε(cg, q)) ≥ ε(p, q) + ε(cg, p)− ε(cg, q)

⇐⇒ 2(u− v− ε(cg, cg)− ε(cg, q)) ≥ ε(p, q)

⇐⇒ u− v− ε(cg, cg)− ε(cg, q) ≥ ε(p, q) (5.2.9)

⇐⇒ R(kp)�ε R(lq) · (2.2.43)

• If p ∈ C ′ and k ≡ 1− ρ mod 2, write kp = (2u + ε(cg, p))p.

– If lq ∈ S , write lq = (2v + ε(c2, c3))c2c3 . Then

kp �ε lq ⇐⇒ (2u + ε(cg, p))− (2v + ε(c2, c3)) ≥ ε(p, c2) + ε(c2, c3) (2.2.23)

⇐⇒ 2(u− v− ε(p, c2)− ε(c2, c3)) ≥ −ε(p, c2)− ε(cg, p)

⇐⇒ u− v− ε(p, c2)− ε(c2, c3) ≥ −ε(p, c2)ε(cg, p) (5.2.10)

⇐⇒ R(kp)�ε R(lq) · (2.2.44)

– If q ∈ C ′ and l ≡ ρ mod 2, write lq = (2v + ε(q, cg))q. Then

kp �ε lq ⇐⇒ (2u + ε(cg, p))− (2v + ε(q, cg)) ≥ 1 + ε(p, q) (2.2.22)

⇐⇒ 2(u− v− ε(p, q)− ε(q, cg)) ≥ ε(cg, q)− ε(p, q)

⇐⇒ u− v− ε(p, q)− ε(q, cg) ≥ ε(cg, q)(1− ε(p, q)) (5.2.9)

⇐⇒ R(kp)�ε R(lq) · (2.2.45)

– If q ∈ C ′ and l ≡ 1− ρ mod 2, write lq = (2v + ε(cg, q))q. Then

kp �ε lq ⇐⇒ (2u + ε(cg, p))− (2v + ε(cg, q)) ≥ 1 + ε(p, q) (2.2.22)

⇐⇒ 2(u− v− ε(p, cg)− ε(cg, q)) ≥ ε(p, q)− 1

⇐⇒ u− v− ε(p, cg)− ε(cg, q) ≥ 0 (5.2.9)

⇐⇒ R(kp)�ε R(lq) · (2.2.46)

5.3 Beyond Glaisher’s theorem at degree k ≥ 3

We begin this section by defining a particle of degree k.

Definition 5.3.1. Let C be a set of primary states. For any k ∈ Z≥1, define the set of states of degree k as
the set of the products of k primary states:

Ck = {c1 · · · ck : c1, . . . , ck ∈ C} ·

For an energy ε and the corresponding flat relation mε defined on the set of primary particles, define the
set P k = Z× Ck of particles of degree k as the sum of k primary particles well-related by mε:

(p, c1 · · · ck) =
k

∑
u=1

(
p +

k−1

∑
v=u

ε(cv, cv+1)

)
cu

=

(
kp +

k−1

∑
u=1

uε(cu, cu+1)

)
c1···ck

· (5.3.1)

We set the function γ1, . . . , γk on P k such that

γi(p, c1 · · · ck) =

(
p +

k−1

∑
u=i

ε(ci, ci+1)

)
ci

· (5.3.2)
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Then

(p, c1 · · · ck) =
k

∑
i=1

γi(p, c1 · · · ck) , (5.3.3)

γ1(p, c1 · · · ck)mε γ2(p, c1 · · · ck)mε · · ·mε γk(p, c1 · · · ck) · (5.3.4)

We can then naturally define a flat relation mk on P k as follows:

(p, c1 · · · ck)mk (q, d1 · · · dk)⇐⇒ p− q = ε(ck, d1) +
k−1

∑
u=1

ε(du, du+1)

⇐⇒ γk(p, c1 · · · ck)mε γ1(q, d1 · · · dk) · (5.3.5)

The latter is equivalent to saying that the smallest primary particle of (p, c1 · · · ck) is greater than the
greatest primary particle of (q, d1 · · · dk) in terms of mε.

One can check that the relation mk is indeed the flat relation linked to the energy εk defined on Ck×Ck

by

εk : (c1 · · · ck, d1 · · · dk) 7→
k−1

∑
u=1

uε(cu, cu+1) + nε(ck, d1) +
k−1

∑
u=1

(k− u)ε(du, du+1) · (5.3.6)

In fact, by using (5.3.1) and (5.3.5), the difference of potentials of the particles (p, c1 · · · ck) and (q, d1 · · · dk)
is exactly equal to εk(c1 · · · ck, d1 · · · dk).

This extension of the flatness to degree k has a strong connection with crystal base theory via the
following proposition.

Proposition 5.3.2. Let B be a crystal and suppose that there exists an energy function H on B ⊗ B. Then, the
function Hk on B⊗k ⊗B⊗k defined by

b1 ⊗ · · · ⊗ bk ⊗ bk+1 ⊗ · · · ⊗ b2k 7→
2k−1

∑
i=1

min{i, 2k− i}H(bi ⊗ bi+1) (5.3.7)

is also an energy function on B⊗k ⊗B⊗k.

Proof. Since the tensor product is associative, for all i ∈ {0, · · · , n} and for all j ∈ {1, . . . , 2k}, that

ẽi(b1 ⊗ · · · ⊗ b2k) = b1 ⊗ · · · ⊗ ẽi(bj)⊗ · · · b2k =⇒
{

ẽi(bj−1 ⊗ bj) = bj−1 ⊗ ẽi(bj)

ẽi(bj ⊗ bj+1) = ẽi(bj)⊗ bj+1
·

We thus obtain by (8.1.7) that, for j ≤ k, (the following still holds for j = 1)

Hk(ẽi(b1 ⊗ · · · ⊗ b2k))− Hk(b1 ⊗ · · · ⊗ b2k) = (j− 1)
(

H(bj−1 ⊗ ẽi(bj))− H(bj−1 ⊗ bj)
)
+

j
(

H(ẽi(bj)⊗ bj−1)− H(bj ⊗ bj+1)
)

= −(j− 1)χ(i = 0) + jχ(i = 0)
= χ(i = 0) ·

On the other hand by (8.1.7), for j > k(the following still holds for j = 2k)

Hk(ẽi(b1 ⊗ · · · ⊗ b2k))− Hk(b1 ⊗ · · · ⊗ b2k) = (2k− j + 1)
(

H(bj−1 ⊗ ẽi(bj))− H(bj−1 ⊗ bj)
)
+

(2k− j)
(

H(ẽi(bj)⊗ bj−1)− H(bj ⊗ bj+1)
)

= −(2k− j + 1)χ(i = 0) + (2k− j)χ(i = 0)
= −χ(i = 0) ·

The tensor product of level ` perfect crystals being a level ` perfect crystal as well (Kang et al., 1992c),
we then obtain that B⊗k is a perfect crystal if B is.

We note that the energy function of the perfect crystal B studied in Chapter 7 can be obtained by
carrying out a transformation, which preserves the ground, on a certain minimal energy satisfying the
condition in Theorem 2.2.24 and such that δg = 0. Therefore, we can define both secondary flat and
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regular partitions corresponding to this energy function. In particular, since the corresponding minimal
energy satisfies δg = 0, the energies related to these flat and regular partitions are almost equal by
(2.2.41) and (2.2.46). By Proposition 5.2.3, this means that the partitions, corresponding to those in E1+

after applying the transformation on the minimal energy, satisfy some difference condition equal to the
difference implied by the corresponding energy function of B2. In particular, one can view the case
A(2)

2n as a result that links the generalization of the Siladić theorem for 2n primary colors to the unique
level one standard module L(Λ0). This fits with the original work of Siladić (Siladić, 2017), where he
stated his identity after describing a basis of the unique level one standard module of A(2)

2 through
vertex operators. A suitable subsequent work is then to build the vertex operators, for the level one
standard module of A(2)

2n (n ≥ 2), which will allow us to describe a basis corresponding to the difference
conditions given by the generalization of Siladić’s theorem.

We now define the degree k flat partitions.

Definition 5.3.3. The set F ε,cg
k , of degree k flat partitions, is defined as the set of the flat partitions into

degree k particles in P k, with ground ck
g and energy εk defined in (5.3.6).

In particular, when ε(cg, cg) = 0, the bijection of Section 5.2.1 can be generalized.

Proposition 5.3.4. For any k ≥ 1, there is a bijection Fk between F ε,cg
k and F ε,cg

1 that preserves the total energy
and the sequence of states different from cg of the flat partitions.

Proof. For any flat partition π = (π0, . . . , πs−1, 0ck
g
) in F ε,cg

k , we associate the partition Fk(π) defined by
the sequence

(γ1(π0), . . . , γk(π0), γ1(π1), . . . , γk(π1), . . . , γ1(πs−2), . . . , γk(πs−2), γ1(πs−1), . . . , γi(πs−1), 0cg) ,

where i = max{j ∈ {1, . . . , k} : γj(πs−1) 6= 0cg}. The existence of such index i is ensured by the fact
that πs−1 6= 0ck

g
. It suffices to assume by contradiction that for all j ∈ {1, . . . , k} we have γj(πs−1) = 0cg .

Since ε(cg, cg) = 0, we then have 0cg mε 0cg , and by (5.3.3),

0ck
g
6= πs−1 =

k

∑
j=1

γj(πs−1) =
k

∑
j=1

0cg = 0ck
g
·

To prove that Fk(π) belongs to F ε,cg
1 , we use (5.3.4) along with (5.3.5) to see that Fk(π) is well related

up to γi(πs−1), and to show that γi(πs−1)mε 0cg , we distinguish two cases.

• If i < k, then γi+1(πs−1) = 0cg , so that (5.3.4) follows.

• If i = k, then by (5.3.5) γk(πs−1)mε γ1(0ck
g
), and we are done.

Next we describe the inverse map F−1
k . For any π = (π0, . . . , πs−1, 0c0), we write the decomposition

s = km− s′ with the unique non-negative integers m, s′ such that s′ ∈ {0, . . . , k− 1}. We then set

F−1
k (π) = (π0 + · · ·+ πk−1︸ ︷︷ ︸, πk + · · ·+ π2k−1︸ ︷︷ ︸, . . . , π(m−2)k + · · ·+ πmk−k−1︸ ︷︷ ︸, π(m−1)k + · · ·+ πs−1 + s′ × 0cg︸ ︷︷ ︸, 0ck

g
) ·

Here we see by (5.3.3), (5.3.4) and (5.3.5), this sequence is well-defined up to the particle π(m−1)k + · · ·+
πs−1 + s′ × 0cg . Note that since πs−1 6= 0cg , we necessarily have that π(m−1)k + · · ·+ πs−1 + s′ × 0cg 6=
0ck

g
. We distinguish two cases.

• If s′ > 0, since πs−1 mε 0cg mε 0cg , then by (5.3.3), π(m−1)k + · · ·+ πs−1 + s′ × 0cg is in P k, and by
(5.3.5), π(m−1)k + · · ·+ πs−1 + s′ × 0cg �k 0ck

g
.

• If s′ = 0, then by (5.3.3), π(m−1)k + · · ·+ πs−1 is in P k, and since πs−1 mε 0cg , by (5.3.5), π(m−1)k +

· · ·+ πs−1 �k 0ck
g
.

The inversion comes from the correspondence between the case s′ = 0 for F−1
k and i = k for Fk.
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Proposition 5.3.4 implies the following correspondences

degree one :

degree two :

degree k :

F ε,cg
1

F ε,cg
2

F ε,cg
k

Rε,cg
1

Rε,cg
2

Rε,cg
k

Definition?

Theorem 2.2.24

Theorem 2.2.31

Theorem 2.1.21

Proposition 5.3.4

Konan, 2020b

Bressoud’s algorithm at degree k?

A major subsequent work would be to find a suitable energy to define regular partitions for degree k
which would allow us to state an analogue of Theorem 2.1.21 at degree k. This problem appears to be
closely related to the problem of finding a generalization to weighted words at degree k of the result
stated in Theorem 2.2.15.
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Chapter 6

Beyond the Durfee square

This chapter is dedicated to the proof of Theorem 2.2.39 and organized as followed. In Section 6.1, we
give a precise characterization of the set of partitions in P c∞

ε with a fixed kernel as in Definition 2.2.36,
compute their generating function, and state the main theorem, Theorem 6.1.28. After that, in Section
6.2, assuming Theorem 6.1.28 is true, we carry out the same steps and compute the generating function
for the generalized colored Frobenius partitions in F c∞

ε1,ε2 with the same fixed kernel, and prove Theorem
2.2.39. Then, in Section 6.3, we prove Theorem 6.1.28. Finally, in Section 6.4, we prove the identity given
in Theorem 2.2.45 for the n2-colored Frobenius partitions.

6.1 Reduced color sequences and minimal partitions

During this section, we illustrate different results on Example 2.2.35. In that case, we have

C = {aibj : i, j ∈N} ,

Cfree = {aibi : i ∈N} ,
Cbound = {aibj : i 6= j ∈N} ,

a : aibj → aibi ,

b : aibj → ajbj ·

6.1.1 Minimal partitions

The original method of weighted words of Alladi and Gordon (Alladi and Gordon, 1993; Alladi, An-
drews, and Gordon, 1995) relies on the idea, which can be tracked back to Schur and MacMahon that
any partition with m parts satisfying difference conditions can be obtained from the minimal partition
satisfying difference conditions and adding a partition with at most m parts to it. For example, all
Rogers-Ramanujan partitions into m parts, satisfying difference at least 2 between consecutive parts,
can be obtained by starting with the minimal partition (2m− 1) + (2m− 3) + · · ·+ 3 + 1, and adding
some partition into at most m parts to it.

Here, to compute the generating function for generalized colored partitions in P c∞
ε , we also use

minimal partitions. But while Alladi, Andrews, and Gordon computed minimal partitions with a certain
number of parts, here we compute minimal partitions with a certain kernel.

Definition 6.1.1. Let c1, . . . , cs be a sequence of colors taken from C. The minimal partition in P c∞
ε as-

sociated to c1, . . . , cs is the colored partition λ = (λ1, · · · , λs, 0c∞) with minimal size such that for all
i ∈ {1, . . . , s}, c(λi) = ci. We denote this partition by minε(c1, . . . , cs). The size of minε(c1, . . . , cs) is then
equal to

|minε(c1, . . . , cs)| =
s

∑
k=1

kε(ck, ck+1) ,

where cs+1 = c∞.

Example 6.1.2. Considering the energy ε from matrix P3 in (1.4.5), the minimal partition with color sequence
a1b0, a0b0, a2b2, a1b1, a1b1, a0b1, a1b2, a0b2 in P1,3 is

minε(a1b0, a0b0, a2b2, a1b1, a1b1, a0b1, a1b2, a0b2) = 8a1b0 + 7a0b0 + 6a2b2 + 5a1b1 + 5a1b1 + 3a0b1 + 2a1b2 + 0a0b2 .

It has size 52.
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6.1.2 Combinatorial description of reduced color sequences

We want to study the partitions in P c∞
ε with a given kernel. To do so, we need to understand combi-

natorially the set of color sequences having a certain reduction. Recall that a sequence of colors in C is
reduced if and only if it does not contains the patterns

c · c for all c ∈ Cfree ,
c · b(c) for all c ∈ Cbound ,
a(c) · c for all c ∈ Cbound ·

The above definition of reduced color sequences along with Definition 2.2.34 immediately yield the
following proposition.

Proposition 6.1.3. Let S be a reduced color sequence. Any color sequence C such that reda,b(C) = S can be
obtained by performing a certain number of insertions of the following types in S:

1. if there is a free color c in S, insert the same color c arbitrarily many times to its right,

2. if there is a bound color c in S, insert the free color a(c) arbitrarily many times to its left,

3. if there is a bound color c in S, insert the free color b(c) arbitrarily many times to its right.

Example 6.1.4.
S = a1b2, a3b1, a2b2, a4b3, a3b2.

The sequence
C = a1b1, a1b1, a1b2, a2b2, a3b3, a3b3, a3b3, a3b1, a2b2, a2b2, a4b3, a3b2

is obtained from S by inserting a1b1 twice to the left of a1b2 (insertion (2)), a2b2 once to the right of a1b2 (insertion
(3)), a3b3 three times to the left of a3b1 (insertion (2)), and a2b2 once to the right of a2b2 (insertion (1)).

Remark 6.1.5. The way one obtains C from S via the insertions above is not unique (even up to the order in which
we perform the insertions). Indeed, it could be that in S = c1, . . . , cs, the color that can be inserted to the right of
some cj is the same as the one that can be inserted to the left of cj+1. For example a1b2, a2b2, a2b3 can be obtained
from a1b2, a2b3 either by inserting a2b2 to the right of a1b2 (insertion (3)) or to the left of a2b3 (insertion (2)).

To understand reduced color sequences and insertions combinatorially, and make sure that we count
our partitions in an unique way, we need some definitions.

Definition 6.1.6. A primary pair is a pair (c, c′) of bound colors such that in the insertion rules of Propo-
sition 6.1.3, the free color that can be inserted to the right of c is the same as the one that can be inserted
to the left of c′. This is equivalent to saying that (c, c′) is such that b(c) = a(c′).

We will be interested in maximal sequences of primary pairs in S.

Definition 6.1.7. Let S = c1, . . . , cs be a reduced color sequence. The maximal primary subsequences of S
are subsequences ci, ci+1, . . . , cj of S such that

• for all k ∈ {i, . . . , j− 1}, (ck, ck+1) is a primary pair,

• (ci−1, ci) and (cj, cj+1) are not primary pairs.

We denote by t(S) the number of maximal primary subsequences of S, and by S1, . . . , St(S) these maximal
primary subsequences.

Example 6.1.8. Let
S = a1b2, a2b3, a2b2, a1b4, a3b2, a2b1, a3b3, a2b2.

Here t(S) = 3 and the maximal primary subsequences of S are, from left to right,

S1 := a1b2, a2b3,
S2 := a1b4,
S3 := a3b2, a2b1.

Let us now define secondary pairs of colors, inside which two different colors can be inserted.

Definition 6.1.9. A secondary pair is a pair (c, c′) of colors satisfying one of the following assertions:



6.1. Reduced color sequences and minimal partitions 101

1. The colors c and c′ are both bound, and the free color that can be inserted to the right of c is
different from the one that can be inserted to the left of c′. These are the pairs of bound colors are
such that b(c) 6= a(c).

2. The color c is free, c′ is bound, and the color that can be inserted to the left of c′ is different from c.
These are the pairs such that c 6= a(c′).

3. The color c is bound, c′ is free, and the color which can be inserted to the right of c is different from
c′. These are the pairs such that b(c) 6= c′.

Remark 6.1.10. In the above, the colors c or c′ can be equal to c∞, considered here as a free color. This allows
us to avoid treating the case of insertions at one of the ends of the color sequence C = c1, . . . , cs separately, with
the convention that c0 = cs+1 = c∞. Indeed, by our convention, inserting a(c1) to the left of c1 is the same as
inserting a(c1) inside the pair (c0, c1) = (c∞, c1). This is included in Case (2). Similarly, inserting b(cs) to the
right of cs is the same as inserting b(cs) inside the pair (cs, cs+1) = (cs, c∞), which is included in Case (3).

With the definitions and propositions above, we can now uniquely determine the places where in-
sertions can occur in a reduced color sequence.

Let S = c1, . . . , cs be a reduced color sequence of length s. Then S can be written uniquely in the form

S = T1S1T2S2 . . . TtStTt+1,

where S1, . . . , St are the maximal primary subsequences of S, and T1, . . . , Tt+1 are (possibly empty) se-
quences of consecutively distinct free colors.

For all u ∈ {1, . . . , t}, let i2u−1 (resp. i2u) be the index of the first (resp. last) color of Su, i.e.

Su = ci2u−1 , . . . , ci2u .

We have i2u−1 ≤ i2u, with equality when Su is a singleton. By the definition of maximal primary subse-
quences, for all u, the pairs (ci2u−1−1, ci2u−1) and (ci2u , ci2u+1) are secondary pairs. We can now state the
following.

Proposition 6.1.11. Using the notation above, the insertions of free colors in S can occur exactly in the following
s + t places (possibly multiple times in the same place):

• to the right of ci, for all i ∈ {1, . . . , s},

• to the left of ci2u−1 , for all u ∈ {1, . . . , t}.

Let f1, . . . , fs+t be the s + t free colors that can be inserted in S (in order). Let n1, . . . , ns+t be non-
negative integers. We denote by S(n1, . . . , ns+t) the color sequence obtained from S by inserting ni times
the color bi in S, for all i. Using this notation, we finally have the uniqueness of the insertions.

Proposition 6.1.12. For each color sequence C such that red(C) = S, there exist a unique (s + t)-tuple of
non-negative integers (n1, . . . , ns+t) such that C = S(n1, . . . , ns+t).

Example 6.1.13. In Example 6.1.4, we have s = 5, t = 3,

S1 = a1b2, S2 = a3b1, S3 = a4b3, a3b2

T1 = ∅, T2 = ∅, T3 = a2b2, T4 = ∅,

and
C = S(2, 1, 3, 0, 1, 0, 0, 0).

6.1.3 Influence of the insertions on the minimal partition

Recall the well-definedness according to the reduction as stated in (2.2.48), (2.2.49), (2.2.50), (2.2.51) and
(2.2.52). An energy ε well-defined according to reduction with respect to a and b if

1. for any c, c′ ∈ Cfree t {c∞},
ε(c, c′) = χ(c 6= c′) ,
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2. for any c ∈ Cbound,
ε(a(c), c) + ε(c, b(c)) = 1 ,

and for any c′ ∈ (Cfree t {c∞}) \ {a(c)},

ε(c′, c) ∈ {ε(a(c), c), ε(a(c), c) + 1} ,

and for any c′ ∈ (Cfree t {c∞}) \ {b(c)},

ε(c, c′) ∈ {ε(c, b(c)), ε(c, b(c)) + 1} ,

3. for any c, c′ ∈ Cbound,

ε(c, c′) = ε(c, a(c′)) + ε(b(c), c′)− χ(b(c) 6= a(c′)) ·

Example 6.1.14. With our example of color set and a and b, and an non-negative integer l, the energy ε` is defined
by 

ε`(aibj, akbl) = χ(i ≥ k)− χ(i = j = k) + χ(j ≤ l)− χ(j = k = l)
ε`(c∞, aibj) = 1
ε`(aibj, c∞) = χ(i ≥ `) + χ(j < `)

ε`(c∞, c∞) = 0

is well-defined according to the reduction with respect to a and b. In fact, we have

1. for any i, j ∈N,

ε`(aibi, ajbj) = χ(i > j) + χ(j < i)

= χ(i 6= j) ,
ε`(c∞, aibi) = 1 ,
ε`(aibi, c∞) = χ(i ≥ `) + χ(i < `)

= 1
ε`(c∞, c∞) = 0 ,

2. for any i 6= j ∈N,

ε`(aibi, aibj) + ε`(aibj, ajbj) = χ(i < j) + χ(i > j)

= 1 ,

and for any k 6= i ∈N,

ε`(akbk, aibj) = χ(k > i) + χ(k ≤ j)

∈ {χ(i < j), χ(i < j) + 1} ,
ε`(c∞, aibj) = 1

∈ {χ(i < j), χ(i < j) + 1} ,

and for any k 6= j ∈N,

ε`(aibj, akbk) = χ(i ≥ k) + χ(j < k)

∈ {χ(i > j), ε`(i > j) + 1} ,
ε`(aibi, c∞) = χ(i ≥ `) + χ(j < `)

∈ {χ(i > j), χ(i > j) + 1} ,

3. for any i 6= j, k 6= l ∈N ,

ε`(aibj, akbl) = χ(i ≥ k) + χ(j ≤ l)

= (χ(i ≥ k) + χ(j < k)) + ((j ≤ l) + χ(j > k))− (χ(j < k) + χ(j > k))
= ε`(aibj, akbk) + ε`(ajbj, akbl)− χ(j 6= k) ·
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We now study how insertions inside a color sequence affect the corresponding minimal partition. If S is
a reduced color sequence, we want to see how the insertion of some free color in S affects the minimal
partition, or equivalently the minimal differences between successive parts.

Let us start with an observation. Because for all free colors c, ε(c, c) = 0, inserting a free color c once
or multiple times inside a given pair has exactly the same effect on the rest of the minimal partition.
Therefore we only need to study the case where we insert a single free color inside a primary or sec-
ondary pair. First, let us see what happens to the minimal differences if we insert a free color inside a
primary pair.

Proposition 6.1.15. Let C = c1, . . . , cs be a color sequence, and let minε(C) = (λ1, · · · , λs, 0c∞) be the corre-
sponding minimal partition. Inserting a free color c′ = b(ci) = b(ci+1) inside a primary pair (ci, ci+1) doesn’t
disrupt the minimal differences. The minimal partition after insertion will be minε(c1, . . . , ci, c′, ci+1, . . . , cs) =
(λ1, · · · , λi, λ′, λi+1, · · · , λs, , 0c∞), with λ′ = λi+1 + ε(c′, ci+1).

This follows immediately from (2.2.52), as we have b(ci) = a(ci+1) and then

ε(ci, ci+1) = ε(ci, a(ci+1)) + ε(b(ci), ci+1) .

We now turn to insertions inside secondary pairs. In certain cases, it will disrupt the minimal differences.

We first study the case where we insert a free color to the left of c′ in a secondary pair (c, c′). This
means that c′ is necessarily bound, and either c is a free color (possibly equal to c∞) different from a(c′),
or c is also bound with b(c) 6= a(c′).

1. When c is free, we then have that

ε(c, a(c′)) + ε(a(c′), c′)− ε(c, c′) = 1 + ε(a(c′), c′)− ε(c, c′) by (2.2.48)
∈ {0, 1} by (2.2.50)

2. When c is bound, we have

ε(c, a(c′)) + ε(a(c′), c′)− ε(c, c′) = χ(b(c) 6= a(c′)) + ε(a(c′), c′)− ε(b(c), c′) by (2.2.52)
∈ {0, 1}

by what precedes. In both cases, we always have ε(c, a(c′)) + ε(a(c′), c′)− ε(c, c′) ∈ {0, 1}.

Definition 6.1.16. When the above is 0 (resp. 1), we call (c, c′) a type 0 (resp. type 1) left pair for ε, and the
corresponding insertion a type 0 (resp. type 1) left insertion for ε.

Remark 6.1.17. The type of the left pair (c, c′) for c bound is the same as the type of (b(c), c′).

Similarly, we study the case where we insert a free color to the right of c in a secondary pair (c, c′). This
happens when c is a bound color and either c′ is free (possibly equals to c∞) such that b(c) 6= c′, or c′ is
bound such that b(c) 6= a(c′), and this essentially works in the same way as left insertions.

1. When c′ is free, we then have that

ε(c, b(c)) + ε(b(c), c′)− ε(c, c′) = ε(c, b(c)) + 1− ε(c, c′) by (2.2.48)
∈ {0, 1} by (2.2.51)

2. When c is bound, we have

ε(c, b(c)) + ε(b(c), c′)− ε(c, c′) = ε(c, b(c)) + χ(b(c) 6= a(c′))− ε(c, a(c′)) by (2.2.52)
∈ {0, 1}

by what precedes. In both cases, we always have ε(c, b(c)) + ε(b(c), c′)− ε(c, c′) ∈ {0, 1}. As before, we
define type 0 and type 1.

Definition 6.1.18. When the difference above is 0 (resp. 1), we call (c, c′) a type 0 (resp. type 1) right pair
for ε, and the corresponding insertion a type 0 (resp. type 1) right insertion for ε.

Remark 6.1.19. The type of the right pair (c, c′) for c′ bound is the same as the type of (c, a(c′)).
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We now understand the effect that an insertion inside a secondary pair has on the minimal partition,
depending on the type of this insertion.

Proposition 6.1.20 (Type 0 insertion). Let C = c1, . . . , cs be a color sequence, and let minε(C) = (λ1, . . . , λs, 0c∞)
be the corresponding minimal partition. For any i ∈ {0, . . . , s}, the type 0 insertion of a free color c′ inside a
secondary pair (ci, ci+1) doesn’t disrupt the minimal differences. The minimal partition after insertion will be
minε(c1, . . . , ci, c′, ci+1, . . . , cs) = (λ1, . . . , λi, λ′, λi+1, . . . , λs, 0c∞), with λ′ = λi+1 + ε(c′, ci+1).

Example 6.1.21. The minimal partition with color sequence

C = a2b2, a1b0, a0b2, a1b0, a2b1

is
minε(C) = 5a2b2 + 4a1b0 + 2a0b2 + 2a1b0 + 1a2b1 .

We insert a1b1 inside (a0b2, a1b0). The minimal partition with color sequence

C′ = a2b2, a1b0, a0b2, a1b1, a1b0, a2b1

is
minε(C′) = 5a2b2 + 4a1b0 + 2a0b2 + 2a1b1 + 2a1b0 + 1a2b1 .

The part 2a1b1 was inserted, but all the other parts stay the same.

Proposition 6.1.22 (Type 1 insertion). Let C = c1, . . . , cs be a color sequence, and let minε(C) = (λ1, . . . , λs, , 0c∞)
be the corresponding minimal partition. For any i ∈ {0, . . . , s}, the type 1 insertion of a free color c′ inside a sec-
ondary pair (ci, ci+1) adds 1 to the minimal difference between ci and ci+1. This forces us to add 1 to each part
to the left of the newly inserted part in the minimal partition, which becomes minε(c1, . . . , ci, c′, ci+1, . . . , cs) =
(λ1 + 1, . . . , λi + 1, λ′, λi+1, . . . , λs, 0c∞), with λ′ = λi+1 + ε(c′, ci+1).

Example 6.1.23. In the color sequence C of the previous example, we insert a2b2 inside (a0b2, a1b0). The minimal
partition with color sequence

C′′ = a2b2, a1b0, a0b2, a2b2, a1b0, a2b1

is
minε(C′′) = 6a2b2 + 5a1b0 + 3a0b2 + 3a2b2 + 2a1b0 + 1a2b1 .

All the parts to the left of the newly inserted part are increased by one compared to minε(C).

So far we have only studied the case of a single insertion (either left or right) inside a secondary pair.
We still need to understand what happens to the minimal differences if, inside a secondary pair (c, c′)
for c, c′ are bound colors such that b(c) 6= a(c′), when we insert both free colors b(c) and a(c′).

Lemma 6.1.24 (Left and right insertion). Let (c, c′), with c, c′ bound colors such that b(c) 6= a(c′). We have

ε(c, b(c)) + ε(b(c), a(c′)) + ε(a(c′), c′)− ε(c, c′)

=


0 if both the right and left insertions inside (c, c′) are of type 0,
1 if exactly one of the insertions inside (c, c′) is of type 1,
2 if both the right and left insertions inside (c, c′) are of type 1.

The proof can be found in Appendix A.3.1. Thus performing both a left and right insertion inside
a secondary pair is the same as performing the two insertions separately. We conclude this section by
summarizing the influence of all the possible insertions on the minimal partition.

Proposition 6.1.25 (Summary of the different types of insertion). Let C = c1, . . . , cs be a color sequence, and
let minε(C) = (λ1, · · · , λs, 0c∞) be the corresponding minimal partition. When we insert a free color c′ inside a
pair (ci, ci+1), the minimal partition transforms as follows:

• if ci is a free color and c′ = ci, the minimal partition becomes (λ1, · · · , λi, λi, λi+1, · · · , λs, , 0c∞) (i.e. the
part λi repeats, and the rest of the partition remains unchanged);

• if (ci, ci+1) is a primary pair, the minimal partition becomes (λ1, · · · , λi, λ′, λi+1, · · · , λs, , 0c∞), with
λ′ = λi+1 + ε(c′, ci+1);

• if (ci, ci+1) is a secondary pair and the insertion of c′ is of type 0, the minimal partition becomes
(λ1, · · · , λi, λ′, λi+1, · · · , λs, , 0c∞), with λ′ = λi+1 + ε(c′, ci+1);
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• if (ci, ci+1) is a secondary pair and the insertion of c′ is of type 1, the minimal partition becomes
(λ1 + 1, · · · , λi + 1, λ′, λi+1, · · · , λs, , 0c∞), with λ′ = λi+1 + ε(c′, ci+1) (i.e. we add 1 to all the parts to
the left of the newly inserted part λ′).

We call the first two types of insertions above neutral insertions.

6.1.4 Generating function for partitions with a given kernel

Our goal is to count partitions of P c∞
ε with a given kernel. The results from the previous section will

help us do so.

Let S = c1, . . . , cs be a reduced color sequence of length s, having t maximal primary subsequences.
Let f1, . . . , fs+t be the free colors that can be inserted in S. In the following, we denote by N (resp. T0,
T1) the set of indices i such that the insertion of fi is neutral (resp. of type 0, of type 1). We have N t
T0 t T1 = {1, . . . , s + t}. Moreover, the secondary pairs in S are exactly (ci2u−1−1, ci2u−1) and (ci2u , ci2u+1),
for u ∈ {1, . . . , t}, where Su = ci2u−1 , . . . , ci2u . So we can write

T0 =
t⊔

u=1

T u
0 , T1 =

t⊔
u=1

T u
1 ,

where T u
0 (resp. T u

1 ) is the set of indices j such that f j can be inserted inside (ci2u−1−1, ci2u−1) or (ci2u , ci2u+1)
and is of type 0 (resp. 1). For all u ∈ {1, . . . , t}, we have |T u

0 | = 2− |T u
1 |.

We want to study the minimal partition of the color sequence S(n1, . . . , ns+t). Denote by Su
1 (resp.

S1) the indices j of T u
1 (resp. T1) such that nj > 0. We start with the following lemma whose proof is

given in Appendix A.3.2.

Lemma 6.1.26. For all j ∈ {1, . . . , s + t}, if nj > 0, i.e. the color f j is actually inserted, then the corresponding
part λ( f j) in the minimal partition of S(n1, . . . , ns+t) is equal to

λ( f j) = # ({j, . . . , s + t} ∩ (N t T0 t S1)) . (6.1.1)

We can now give a formula for the weight of the minimal partition with color sequence S(n1, . . . , ns+t).
We start with the minimal partition minε(S) with color sequence S. It has weight |minε(S)|. Then we
insert the parts corresponding to colors of type 1. Let j ∈ S1. By Proposition 6.1.25, inserting f j adds 1
to all the parts of minε(S) which are to the left of λ( f j). So this adds P(j) to the total weight. Moreover,
by Lemma 6.1.26, the part λ( f j) is of size # ({j, . . . , s + t} ∩ (N ∪ T0 ∪ S1)), and we insert it nj times.
Summing over all j ∈ S1 gives the first sum. Finally, the insertion of parts corresponding to colors f j
with j ∈ N ∪ T0 yields the following proposition.

Proposition 6.1.27. With the notation above, the size of the minimal partition with color sequence S(n1, . . . , ns+t)
is

|minε(S(n1, . . . , ns+t))| = |minε(S)|
+ ∑

j∈S1

(
P(j) + nj × # ({j, . . . , s + t} ∩ (N t T0 t S1))

)
+ ∑

j∈N∪T0

nj × # ({j, . . . , s + t} ∩ (N t T0 t S1)) ,

(6.1.2)

where P(j) is the number of colors of S that are to the left of f j.

Starting from Proposition 6.1.27, we will show a key theorem, which will be very useful to establish
the connection with generalized colored Frobenius partitions. Recall that the q-binomial coefficient is
defined as follows: [

n
k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
,

and we assume that [nk]q = 0 if k < 0 or k > n.

Theorem 6.1.28. Let n be a positive integer and m a non-negative integer. Let S = c1, . . . , cs be a reduced color
sequence of length s, having t maximal primary subsequences. The generating function for minimal partitions in
P c∞

ε with kernel S, having s + m parts (apart from 0c∞ ), is the following:

∑
Ccolor sequence of length s+m

such that reda,b(C)=S

q|minε(C)| = q|minε(S)|+m
t

∑
u=0

qu(s−t)gu,t(q; |T 1
0 |, . . . , |T t

0 |)
[

s + m− 1
m− u

]
q
, (6.1.3)
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where g0,0 = 1, and for u ≤ v,

gu,v(q; x1, . . . , xv) = ∑
θ1,...,θv∈{0,1}:
θ1+···+θv=u

quv+(u
2)

v

∏
k=1

q(xk−1)∑k−1
i=1 θi .

By observing that all partitions of P c∞
ε with a given color sequence C of length s + m can be obtained

in a unique way by adding a partition with at most s + m parts to the minimal partition minε(C), The-
orem 6.1.28 is actually equivalent to the following generating function for all partitions of P c∞

ε with a
given kernel.

Proposition 6.1.29. Let n be a positive integer and m a non-negative integer. Let S = c1, . . . , cs be a reduced
color sequence of length s, having t maximal primary subsequences. The generating function for partitions in P c∞

ε

with kernel S, having s + m parts, is the following:

∑
λ∈P c∞

ε :
`(λ)=s+m

kera,b(λ)=S

q|λ| =
q|minε(S)|+m

(q; q)s+m

t

∑
u=0

qu(s−t)gu,t(q; |T 1
0 |, . . . , |T t

0 |)
[

s + m− 1
m− u

]
q
. (6.1.4)

The proof of Theorem 6.1.28 from Proposition 6.1.27, quite technical, is postponed to Section 6.3. Its
reading is not necessary to understand the connection between P c∞

ε and F c∞
ε1,ε2 , which we will study in

the next section.

6.2 Generalized colored Frobenius partitions

In this section, we compute the generating function for generalized colored Frobenius in F c∞
ε1,ε2 with

a given kernel and show that it is the same as the generating function (6.1.4) for generalized colored
partitions in P c∞

ε with the same kernel.

6.2.1 The difference conditions corresponding to minimal colored Frobenius par-
titions

We start by observing that minimal generalized colored Frobenius in F c∞
ε1,ε2 are in bijection with minimal

generalized colored partitions in P c∞
ε1+ε2

.

Definition 6.2.1. Let c1, . . . , cs be a sequence of colors taken from C. The minimal colored Frobenius parti-
tion in F c∞

ε1,ε2 associated to c1, . . . , cs is the generalized colored Frobenius partition
π = ((λ1, µ1), · · · , (λs, µs), (0, 0)c∞) with minimal size such that for all i ∈ {1, . . . , s}, c(λi, µi) = ci. We
denote this partition by minε1,ε2(c1, . . . , cs). This is equivalent to saying that

(λ1, · · · , λs, 0c∞) = minε1(c1, . . . , cs)

and
(µ1, · · · , µs, 0c∞) = minε2(c1, . . . , cs) ·

The size of minε1,ε2(c1, . . . , cs) is then equal to

|minε1,ε2(c1, . . . , cs)| =
s

∑
k=1

k(ε1(ck, ck+1) + ε2(ck, ck+1))

= |minε1+ε2(c1, . . . , cs)|

Recall that

ε1(c, c′) + ε2(c, c′) =


2 if c = c′ ∈ Cfree t {c∞}
ε(c, c′) + 1 if c′ ∈ Cbound and c = a(c′)
ε(c, c′) + 1 if c ∈ Cbound and c′ = b(c)
ε(c, c′) otherwise .

Using the fact that reduced color sequences do not contain any pair (c, c′) of the three first above cases,
we then have the following proposition.
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Proposition 6.2.2. Let S be a reduced color sequence. Then

minε(S) = minε1+ε2(S).

When C is a colored sequence which is not reduced, we do not have minε(C) = minε1+ε2(C) in
general. So to compute the generating function for the generalized colored Frobenius partitions, we
define one last difference condition

ε′ := 2− ε1 − ε2,

which shares many properties with ε. The proof of the following proposition can be found in Appendix
A.3.11.

Proposition 6.2.3. The energy ε′ is well-defined according to the reduction with respect to a and b. Furthermore,
the type of insertion in a secondary pair for ε′ is 0 if and only if the type of insertion in a secondary pair for ε is 1.

In other words, using the notation at the beginning of Section 6.1.4, given a reduced color sequence
S = c1, . . . , cs and f1, . . . , fs+t the free colors that can be inserted in S, N (resp. T0, T1) is exactly the set
of indices i such that the insertion of fi is neutral (resp. of type 1, of type 0) for ε′.

6.2.2 The generating function for the generalized colored Frobenius partitions in
F c∞

ε1,ε2 with a given kernel

Now that we understand the orders ε1 + ε2 and ε′, we will use them to compute the generating function
for generalized colored Frobenius partitions in F c∞

ε1,ε2 with a given kernel.

Before doing this, we need a technical lemma about the function gu,v defined in Theorem 6.1.28,
which will appear again in this section (proof in Appendix A.3.3).

Lemma 6.2.4. Let gu,v be the function defined in Theorem 6.1.28. Then

gu,v(q−1; 2− x1, . . . , 2− xv) = q−u(2v+u−1)gu,v(q; x1, . . . , xv).

We now give the generating function for minimal generalized colored partitions in P c∞
ε1+ε2

and a
given kernel (see proof in Appendix A.3.12).

Proposition 6.2.5. Let n be a positive integer and m a non-negative integer. Let S = c1, . . . , cs be a reduced color
sequence of length s, having t maximal primary subsequences. Using the notation of Section 6.1.4, the generating
function for minimal partitions in

P c∞
ε1+ε2

with kernel S, having s + m parts, is given by:

∑
Ccolor sequence
of length s+m

such that reda,b(C)=S

q|minε1+ε2 (C)| = q|minε(S)|+m(s+m+1)
t

∑
u=0

q−u(t+m)gu,t(q; |T 1
0 |, . . . , |T t

0 |)
[

s + m− 1
m− u

]
q
.

(6.2.1)

By Definition 6.2.1, the generating function in (6.2.1) is also the generating function for minimal gen-
eralized colored Frobenius partitions in F c∞

ε1,ε2 with kernel S. Finally, using the fact that any generalized
colored Frobenius partitions with color sequence C of length s + m (apart from c∞) can be obtained in a
unique way by adding a partition into at most s + m parts to λ and another partition into at most s + m
parts to µ in the minimal colored Frobenius partition, we obtain the following key expression for the
generating function.

Proposition 6.2.6. Let n be a positive integer and m a non-negative integer. Let S = c1, . . . , cs be a reduced color
sequence of length s, having t maximal primary subsequences. Using the notation of Section 6.1.4, the generating
function for n2-colored Frobenius partitions with kernel S, having length s + m, is the following:

∑
F∈F c∞

ε1,ε2 :
`(F)=s+m
ker(F)=S

q|F| =
q|minε(S)|+m(s+m+1)

(q; q)2
s+m

t

∑
u=0

q−u(t+m)gu,t(q; |T 1
0 |, . . . , |T t

0 |)
[

s + m− 1
m− u

]
q
. (6.2.2)
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6.2.3 Proof of Theorem 2.2.39

Proposition 6.1.29 gives the generating function for colored partitions of P c∞
ε with kernel S, and Proposi-

tion 6.2.6 gives the generating function for colored Frobenius partitions of F c∞
ε1,ε2 with the same kernel S.

In this section, we show that these two generating functions are actually equal and then obtain Theorem
2.2.39. But before doing so, we need a lemma about q-binomial coefficients. For the proof, see Appendix
A.3.4.

Lemma 6.2.7. Let s be a positive integer and m, u two non-negative integers. Then

1
(q; q)s+m

= ∑
m′≥0

q(m
′−u)(s+m′)

(q; q)s+m′

[
m− u
m′ − u

]
q
.

We are now ready to prove Theorem 2.2.39.

By Proposition 6.1.29,

∑
λ∈P c∞

ε :
ker(λ)=S

q|λ| = ∑
m≥0

q|minε(S)|+m

(q; q)s+m

t

∑
u=0

qu(s−t)gu,t(q; |T 1
0 |, . . . , |T t

0 |)
[

s + m− 1
m− u

]
q

=
t

∑
u=0

q|minε(S)|+u(s−t)gu,t(q; |T 1
0 |, . . . , |T t

0 |) ∑
m≥0

qm

(q; q)s+m

[
s + m− 1

m− u

]
q
,

and by Proposition 6.2.6,

∑
F∈F c∞

ε1,ε2 :
ker(F)=S

q|F| = ∑
m≥0

q|minε(S)|+m(s+m+1)

(q; q)2
s+m

t

∑
u=0

q−u(t+m)gu,t(q; |T 1
0 |, . . . , |T t

0 |)
[

s + m− 1
m− u

]
q

=
t

∑
u=0

q|minε(S)|+u(s−t)gu,t(q; |T 1
0 |, . . . , |T t

0 |) ∑
m≥0

q(m−u)(s+m)+m

(q; q)2
s+m

[
s + m− 1

m− u

]
q

Thus, to prove the theorem, it is sufficient to show that for u ∈ {0, . . . , t},

∑
m≥0

qm

(q; q)s+m

[
s + m− 1

m− u

]
q
= ∑

m≥0

q(m−u)(s+m)+m

(q; q)2
s+m

[
s + m− 1

m− u

]
q
· (6.2.3)

By Lemma 6.2.7,

1
(q; q)s+m

[
s + m− 1

m− u

]
q
= ∑

m′≥0

q(m
′−u)(s+m′)

(q; q)s+m′

[
m− u
m′ − u

]
q

[
s + m− 1

m− u

]
q

= ∑
m′≥0

q(m
′−u)(s+m′)

(q; q)s+m′

[
s + m′ − 1

m′ − u

]
q

[
s + m− 1
s + m′ − 1

]
q
.

Thus

∑
m≥0

qm

(q; q)s+m

[
s + m− 1

m− u

]
q
= ∑

m≥0
∑

m′≥0

q(m
′−u)(s+m′)+m

(q; q)s+m′

[
s + m′ − 1

m′ − u

]
q

[
s + m− 1
s + m′ − 1

]
q

= ∑
m′≥0

q(m
′−u)(s+m′)+m′

(q; q)s+m′

[
s + m′ − 1

m′ − u

]
q

∑
m≥0

qm−m′
[

s + m− 1
s + m′ − 1

]
q
.

The last thing to show is that

∑
m≥0

qm−m′
[

s + m− 1
s + m′ − 1

]
q
=

1
(q; q)s+m′

,

which is true by separating the partitions into at most s + m′ parts counted by 1
(q;q)s+m′

according to the

length m−m′ of their largest part.
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6.3 Proof of Theorem 6.1.28

In this section, we give a proof of Theorem 6.1.28. Let S = c1, . . . , cs be a reduced colour sequence of
length s, having t maximal primary subsequences. We use the same notation as in Section 6.1.4. In
addition, we define for all u ∈ {1, . . . , t}, j2u−1 (resp. j2u) to be the index of the free colour which can be
inserted to the left (resp. right) of Su. Thus we have T u

0 = {j2u−1, j2u} ∩ T0 and T u
1 = {j2u−1, j2u} ∩ T1.

For brevity, from now we denote on the set of all integers between i and j by Ji; jK. Our starting point
is the equality

GS,m(q) := ∑
Ccolour sequence of length s+m

such that red(C)=S

q|minε(C)| = ∑
n1,...,ns+t :

n1+···+ns+t=m

q|minε(S(n1,...,ns+t))|, (6.3.1)

which simply follows from the definition of reduced color sequences. Proposition 6.1.27 gives us an
expression for |minε(S(n1, . . . , ns+t))|, which we will use to derive Theorem 6.1.28. Let us start with a
lemma which evaluates a sum appearing in the formula for |minε(S(n1, . . . , ns+t))|.

Lemma 6.3.1 (Proof in Appendix A.3.5). Let

Σ1 := ∑
j∈S1

(P(j) + # (Jj; s + tK∩ (N t T0 t S1))) ,

where P(j) is the number of colours of S that are to the left of f j. Then

Σ1 =
t

∑
u=1

(|N |+ u− 1 +
t

∑
v=u

(|T v
0 |+ |Sv

1 |)
)
|Su

1 |+ ∑
j∈Su

1

#{j′ < j : j′ ∈ Su
1 }

 ,

where Su
1 := T u

1 \ Su
1 is the set of indices j of T u

1 such that the free color f j is not inserted.

We can now give a formula for the generating function for minimal partitions minε(S(n1, . . . , ns+t)
for a fixed set S1. The desired generating function GS,m(q) of (6.3.1) will then be obtained by summing
over all possible sets S1.

Lemma 6.3.2 (Proof in Appendix A.3.6). Let S1 be fixed. Define

HS,S1(q) := ∑
n1,...,ns+t :

n1+···+ns+t=m,
{j∈T1 :nj>0}=S1

q|minε(S(n1,...,ns+t))|.

We have

HS,S1(q) = q|minε(S)|+Σ1+m−|S1|
[

m− 1 + |N |+ |T0|
m− |S1|

]
q
. (6.3.2)

Before we compute GS,m(q), one more lemma about q-binomial coefficients is needed.

Lemma 6.3.3 (Proof in Appendix A.3.7). Let a and b be non-negative integers. We have

∑
A⊆J1;a+bK
|A|=a

q∑j∈A #{j′<j:j′∈J1;a+bK\A} =

[
a + b

a

]
q
.

We are now ready to sum HS,S1(q) over all possible sets S1 to obtain a formula for GS,m(q).

Proposition 6.3.4 (Proof in Appendix A.3.13). Let S be a reduced colour sequence, and m a non-negative
integer. We have

GS,m(q) = ∑
k1,...,kt :
ku≤|T u

1 |

q|minε(S)|+∑t
u=1 ku(|N |+u−1+∑t

v=u(|T v
0 |+kv))qm−∑t

u=1 ku

[
m− 1 + |N |+ |T0|

m−∑t
u=1 ku

]
q

t

∏
u=1

[
|T u

1 |
ku

]
q
.

What remains to be done is show that the expression for GS,m(q) in Proposition 6.3.4 is actually the
same as (6.1.3). First, let us give yet another lemma about q-binomial coefficients.
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Lemma 6.3.5 (Proof in Appendix A.3.8). Let m, `1, . . . , `t be non-negative integers. We have

qm
[

m + `1 + · · ·+ `t − 1
m

]
q
= qm ∑

0=x0≤x1≤···≤xt=m

t

∏
r=1

q`r xr−1

[
xr − xr−1 + `r − 1

xr − xr−1

]
q
.

In the above, we use the convention that [−1
0 ] = 1.

We use the lemma above to rewrite a part of the expression in Proposition 6.3.4.

Proposition 6.3.6 (Proof in Appendix A.3.14). We have:

qm−∑t
u=1 ku

[
m− 1 + |N |+ |T0|

m−∑t
u=1 ku

]
q
= qm−∑t

u=1 ku(1+|N |+∑t
v=u+1(kv+|T v

0 |))

× ∑
0=m0≤m1≤···≤mt≤m

(
t

∏
u=1

q(ku+|T u
0 |)mu−1

[
mu −mu−1 + |T u

0 | − 1
mu −mu−1 − ku

]
q

)
q|N |mt

[
m−mt + |N | − 1

m−mt

]
q
.

Substituting Proposition 6.3.6 in Proposition 6.3.4 leads to

GS,m(q) = q|minε(S)|+m ∑
k1,...,kt :
ku≤|T u

1 |

t

∏
u=1

qku(u−2+ku+|T u
0 |)
[
|T u

1 |
ku

]
q

× ∑
0=m0≤m1≤···≤mt≤m

(
t

∏
u=1

q(ku+|T u
0 |)mu−1

[
mu −mu−1 + |T u

0 | − 1
mu −mu−1 − ku

]
q

)
q|N |mt

[
m−mt + |N | − 1

m−mt

]
q
.

Interchanging the order of the two multisums, we obtain:

GS,m(q) = q|minε(S)|+m ∑
0=m0≤m1≤···≤mt≤m

 ∑
k1,...,kt :
ku≤|T u

1 |

t

∏
u=1

qku(u−2+ku+|T u
0 |)+(ku+|T u

0 |)mu−1

×
[
|T u

1 |
ku

]
q

[
mu −mu−1 + |T u

0 | − 1
mu −mu−1 − ku

]
q

 q|N |mt

[
m−mt + |N | − 1

m−mt

]
q
.

(6.3.3)

We need one last lemma to complete our proof of Theorem 6.1.28.

Lemma 6.3.7 (Proof in Appendix A.3.9). We have

∑
0=m0≤m1≤···≤mt

∑
k1,...,kt :
ku≤|T u

1 |

t

∏
u=1

qku(u−2+ku+|T u
0 |)+(ku+|T u

0 |)mu−1

[
|T u

1 |
ku

]
q

[
mu −mu−1 + |T u

0 | − 1
mu −mu−1 − ku

]
q

=
t

∑
v=0

gv,t(q; |T 1
0 |, . . . , |T t

0 |)
[

mt + t− 1
mt − v

]
q
,

where gv,t was defined in Theorem 6.1.28.

We can now write

GS,m(q) = q|minε(S)|+m
t

∑
v=0

gv,t(q; |T 1
0 |, . . . , |T t

0 |) ∑
0≤mt≤m

q|N |mt

[
m−mt + |N | − 1

m−mt

]
q

[
mt + t− 1

mt − v

]
q

= q|minε(S)|+m
t

∑
v=0

gv,t(q; |T 1
0 |, . . . , |T t

0 |) ∑
0≤m′t≤m−v

q|N |(m
′
t+v)

[
m−m′t − v + |N | − 1

m−m′t − v

]
q

[
m′t + v + t− 1

m′t

]
q
,

where the second equality follows from the change of variables m′t = mt − v. Using Lemma 6.3.5 with
t = 2, m = m− v, `1 = v + t, and `2 = |N |, this becomes

GS,m(q) = q|minε(S)|+m
t

∑
v=0

qv|N |gv,t(q; |T 1
0 |, . . . , |T t

0 |)
[

m + t + |N | − 1
m− v

]
q
.
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Observing that |N | = s− t concludes the proof of Theorem 6.1.28.

6.4 Proof of Theorem 2.2.45

By Theorem 2.2.39, Theorem 2.2.43 relates the generating function for generalized Primc partitions to
the generating function for colored Frobenius partitions. In this section, we study the particular case
bi = a−1

i for all i ∈ {0, . . . , n}. All the free colors vanish, and the generating function can now be written
as a sum of infinite products.

Let n be a positive integer. By Theorem 2.2.43 with bi = a−1
i for all i, it follows that

Pn := ∑
m,u0,...,un−1,v0,...,vn−1≥0

P0,n(m; u0, . . . , un−1; v0, . . . , vn−1)qmau0−v0
0 · · · aun−1−vn−1

n−1

= [x0]
n−1

∏
i=0

(−xaiq; q)∞(−x−1a−1
i ; q)∞.

Using the Jacobi triple product (2.1.6) in each term of this product, we obtain

Pn =
1

(q; q)n
∞
[x0]

n−1

∏
i=0

(
∑

mi∈Z

xmi ami
i q

mi(mi+1)
2

)

=
1

(q; q)n
∞

∑
m0,...,mn−1∈Z

m0+···+mn−1=0

(
n−1

∏
i=0

ami
i

)
q∑n−1

i=0
mi(mi+1)

2 .

Now replacing m0 by −m1 − · · · −mn−1 and using that

m0(m0 + 1)
2

=
∑n−1

i=1 m2
i −∑n−1

i=1 mi

2
+ ∑

1≤i<j≤n−1
mimj,

we get

Pn =
1

(q; q)n
∞

∑
m1,...,mn−1∈Z

(
n−1

∏
i=1

(aia−1
0 )mi

)
q∑n−1

i=1 m2
i +∑1≤i<j≤n−1 mimj . (6.4.1)

We want to apply the Jacobi triple product again inside the n − 1-parameters sum, in order to obtain
a sum of infinite products. To do so, we carry out a change of variables. We first need the following
lemma whose proof is given in Appendix A.3.10.

Lemma 6.4.1. Let

M(n) :=
n−1

∑
i=1

m2
i + ∑

1≤i<j≤n−1
mimj.

Let sn = 0 and for all i ∈ {1, . . . , n− 1},

si :=
n−1

∑
j=i

mj.

Then,

M(n) =
n−1

∑
i=1

si(si − si+1) =
n−1

∑
i=1

((i + 1)si − isi+1)
2

2i(i + 1)
.

By Lemma 6.4.1 and (6.4.1), we obtain

Pn =
1

(q; q)n
∞

∑
s1,...,sn−1∈Z

sn=0

(
n−1

∏
i=1

(aia−1
0 )si−si+1

)
q∑n−1

i=1 si(si−si+1)

=
1

(q; q)n
∞

∑
s1,...,sn−1∈Z

sn=0

a−s1
0

n−1

∏
i=1

asi−si+1
i qsi(si−si+1).

This is (2.2.60). Let us do perform a few more changes of variables to obtain (2.2.61).
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For all i ∈ {1, . . . , n − 1}, let us write si = i × di + ri, with ri ∈ {0, . . . , i − 1}. This is the euclid-
ian division by i, so this expression is unique, and for r1, . . . , rn−1 fixed, there is a bijection between
{(s1, . . . , sn−1) ∈ Zn−1 : si ≡ ri mod i} and {(d1, . . . , dn−1) ∈ Zn−1}. Moreover our choice sn = 0
corresponds to dn = rn = 0. We obtain

M(n) =
n−1

∑
i=1

(
i(i + 1)

2
(di − di+1)

2 +
((i + 1)ri − iri+1)

2

2i(i + 1)
+ (di − di+1)((i + 1)ri − iri+1)

)
.

By a last change of variables pi = di − di+1, equivalent to di = ∑n−1
j=i pj, {(d1, . . . , dn−1) ∈ Zn−1} is in

bijection with {(p1, . . . , pn−1) ∈ Zn−1}. This yields

M(n) =
n−1

∑
i=1

(
i(i + 1)

2
p2

i +
((i + 1)ri − iri+1)

2

2i(i + 1)
+ pi((i + 1)ri − iri+1)

)

=
n−1

∑
i=1

ri(ri − ri+1) +
n−1

∑
i=1

(
i(i + 1)

2
p2

i + pi((i + 1)ri − iri+1)

)
·

Backtracking all these changes of variables, we have for all i ∈ {1, . . . , n− 1},

mi = si − si+1 (with sn = 0)
= idi + ri − (i + 1)di+1 − ri+1 (with dn = rn = 0)
= i ∑n−1

j=i pj + ri − (i + 1)∑n−1
j=i+1 pj − ri+1

= ipi −∑n−1
j=i+1 pj + ri − ri+1.

Thus, by the above and Lemma 6.4.1, the generating function in (6.4.1) becomes

Pn =
1

(q; q)n
∞

∑
r1,...,rn−1
0≤rj≤j−1

∑
p1,...,pn−1∈Z

(
n−1

∏
i=1

(aia−1
0 )

ipi−∑n−1
j=i+1 pj+ri−ri+1

)

× q∑n−1
i=1 ri(ri−ri+1)+∑n−1

i=1

(
i(i+1)

2 p2
i +pi((i+1)ri−iri+1)

)
.

(6.4.2)

It can be shown by induction on n that

n−1

∏
i=1

(aia−1
0 )

ipi−∑n−1
j=i+1 pj =

n−1

∏
i=1

(
i−1

∏
`=0

aia−1
`

)pi

.

Therefore reorganizing (6.4.2) leads to

Pn =
1

(q; q)n
∞

∑
r1,...,rn−1
0≤rj≤j−1

(
n−1

∏
i=1

(aia−1
0 )ri−ri+1 qri(ri−ri+1)

)

× ∑
p1,...,pn−1∈Z

n−1

∏
i=1

((
i−1

∏
`=0

aia−1
`

)
q(i+1)ri−iri+1

)pi

q
i(i+1)

2 p2
i

=
1

(q; q)n
∞

∑
r1,...,rn−1
0≤rj≤j−1

(
n−1

∏
i=1

ari−ri+1
i qri(ri−ri+1)

)

×
n−1

∏
i=1

∑
p1,...,pn−1∈Z

((
i−1

∏
`=0

aia−1
`

)
q−

i(i+1)
2 +(i+1)ri−iri+1

)pi

qi(i+1) pi(pi+1)
2

=
1

(q; q)n
∞

∑
r1,...,rn−1
0≤rj≤j−1

n−1

∏
i=1

ari−ri+1
i qri(ri−ri+1)

×
(

qi(i+1); qi(i+1)
)

∞

(
−
(

i−1

∏
`=0

aia−1
`

)
q

i(i+1)
2 +(i+1)ri−iri+1 ; qi(i+1)

)
∞
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×
(
−
(

i−1

∏
`=0

a`a−1
i

)
q

i(i+1)
2 −(i+1)ri+iri+1 ; qi(i+1)

)
∞

,

where over the last equality, we used Jacobi’s triple product identity in each of the sums in the pi’s.
Theorem 2.2.45 is proved.

Remark 6.4.2. Andrews (Andrews, 1984a) gave the particular cases n = 1, 2, 3 of this formula, but without
keeping track of the colors. Our result is more general, as it keeps track of the colors and is valid for all n.
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Chapter 7

Beyond Capparelli’s theorem: a
regularity over Primc’s theorem

In this chapter, we discuss another duality between flatness and regularity which is presented in The-
orem 2.2.51. The chapter is organized as follows. In Section 7.1, the necessary tools for our bijective
proof of Theorem 2.2.51 are given. Then, in Section 7.2, we describe our bijection and prove its well-
definedness. Finally, in Section 7.3, it is proved that Theorem 2.2.51 implies Theorem 2.2.59.

7.1 The setup

Before proving Theorem 2.2.51, we first need to understand the properties of the energy ε with values
in {0, 1, 2} as described in Definition 2.2.46.

7.1.1 Insertion of parts with free colors

Let us consider the partial order defined on C with

Csup > Cfree > Cinf ·

This means that c1 > c2 > c3 for any (c1, c2, c3) ∈ Csup × Cfree × Cinf. The relations in (2.2.63), (2.2.64)
and (2.2.65) can be summarized in a single relation: for any c1 and c2 not belonging to the same set of
colors,

ε(c1, c2) ∈ {χ(c1 < c2), χ(c1 < c2) + 1} · (7.1.1)

One can deduce from the above relation the following property: in P c∞
ε , for c1 and c2 not belonging to

the same set of colors, the pattern
pc1 , pc2

is allowed if only if ε(c1, c2) = 0, and this implies that c1 > c2. Another key property of ε is the relation
(2.2.62). This means that for any c1, c2 in Cfree, the pattern

pc1 , pc2

is allowed if and only if c1 = c2. These properties on the allowed patterns having parts with the same
size imply the following proposition.

Proposition 7.1.1. Let C = c1 · · · cs be a sequence of colors such that for all i ∈ {1, . . . , s− 1}, ε(ci, ci+1) = 0.
Then, there exist unique integers 1 ≤ u ≤ v ≤ s + 1 such that

{c1, . . . , cu−1} ⊂ Csup ,
cu = · · · = cv−1 ∈ Cfree , (7.1.2)

{cv, . . . , cs} ⊂ Cinf ,

with the convention that {ca, . . . , cb} = ∅ if a > b.

The above proposition then implies the following insertion rules:

1. if there is a part p f with f ∈ Cfree, then for any f ′ ∈ Cfree, insert a part p f ′ next to the part p f if and
only if f = f ′,



116 Chapter 7. Beyond Capparelli’s theorem: a regularity over Primc’s theorem

2. if there is a part pc with c ∈ Csup, then for any f ∈ Cfree, since the part p f cannot be inserted to its
left, then insert p f to its right if and only if ε(c, f ) = 0,

3. if there is a part pc with c ∈ Cinf, then for any f ∈ Cfree, since the part p f cannot be inserted to its
right, then insert p f to its left if and only if ε( f , c) = 0.

7.1.2 Insertion in a pair of parts

We now study the case when a part p f with a color f ∈ Cfree is inserted between two consecutive parts

p(1)c1 , p(2)c2 , and has the same size as one of the two parts, i.e p ∈ {p(1), p(2)}. Observe that when a part
p f with the same size as a part with a free color is inserted, this necessarily means that f equals this free
color. In the following, we then study the case when the insertion is such that the color of the part with
the same size as the inserted part belongs to Csup t Cinf.

By the two last insertion rules, we only need to investigate the insertions of the type p = p(1) and
c1 ∈ Csup, and the insertions of the type p = p(2) and c2 ∈ Cinf.

We start with the case where the two parts have the same size, which gives a pattern of the form
pc1 , pc2 . By the insertion rules, such a insertion is not possible when both colors c1 and c2 are either in
Csup or in Cinf. Also, as soon as one of the color belongs to Cfree, the first insertion rule implies that only
a part p f with f equal to this free color can be inserted. The following lemma deals with the last case.

Lemma 7.1.2. For any pair (c1, c2) ∈ Csup × Cinf such that ε(c1, c2) = 0, we can insert a part p f with f ∈ Cfree
between the parts of the pattern pc1 , pc2 to obtain

pc1 , p f , pc2

if and only if ε(c1, f ) = ε( f , c2) = 0.

We now study the case where p(1) 6= p(2). This necessarily means that p(1) > p(2). We first start with
the insertion of p f to the right of pc1 with c1 ∈ Csup.

Lemma 7.1.3. For any colors (c1, f ) ∈ Csup × Cfree and , we have the following:

1. for any color c2 in C t {c∞}, and any integer u ≥ 2, we can insert a part p f between the parts of the pattern
pc1 , (p− u)c2 to obtain

pc1 , p f , (p− u)c2

if and only if ε(c1, f ) = 0,

2. for any color c2 ∈ Cfree t Cinf, we can insert a part p f between the parts of the pattern pc1 , (p − 1)c2 to
obtain

pc1 , p f , (p− 1)c2

if and only if ε(c1, f ) = 0,

3. for any color c2 ∈ Csup such that ε(c1, c2) ∈ {0, 1}, we can insert a part p f between the parts of the pattern
pc1 , (p− 1)c2 to obtain

pc1 , p f , (p− 1)c2

if and only if ε(c1, f ) = 0 and ε( f , c2) = 1.

The second case concerns the insertion of p f to the left of pc2 with c2 ∈ Csup.

Lemma 7.1.4. For any color (c2, f ) ∈ Cinf × Cfree, we have the following:

1. for any color c1 in C, and any integer u ≥ 2, we can insert a part p f between the parts of the pattern
(p + u)c1 , pc2 to obtain

(p + u)c1 , p f , pc2

if and only if ε(c1, f ) = 0,

2. for any color c1 ∈ Csup t Cfree, we can insert a part p f between the parts of the pattern (p + 1)c1 , pc2 to
obtain

(p + 1)c1 , p f , pc2

if and only if ε( f , c2) = 0,
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3. for any color c1 ∈ Cinf such that ε(c1, c2) ∈ {0, 1}, we can insert a part p f between the parts of the pattern
(p + 1)c1 , pc2 to obtain

(p + 1)c1 , p f , pc2

if and only if ε(c1, f ) = 1 and ε( f , c2) = 0.

The color f of the possible inserted part depends on both colors c1 and c2 only if (c1, c2) belongs to

{(c, c′) ∈ Csup×Cinf : ε(c, c′) = 0}t {(c, c′) ∈ C2
sup : ε(c, c′) ∈ {0, 1}}t {(c, c′) ∈ C2

inf : ε(c, c′) ∈ {0, 1}} ·

The existence of such a color f is rendered possible by the relations (2.2.66), (2.2.67) and (2.2.68). When
the color f only depends on the color of the part with the same size as p f , the existence of such a color
f is ensured by (2.2.64) and (2.2.63).

The definition of the functions δ and γ in Definition 2.2.48 then allows us to forbid in c0
δ,γP

c∞
ε a unique

insertion in all the corresponding pairs p(1)c1 , p(2)c2 of consecutive parts.

Remark 7.1.5. For any (c1, c2) ∈ Csup × Cinf, we can insert in the pair (p + 1)c1 , pc2 two parts (p + 1) f1 and
p f2 with f1, f2 in Csup if only if ε(c1, f1) = ε( f2, c2) = 0. The choice of the color f1 only depends on c1, as well
as the choice of f2 only depends on c2.

7.1.3 Insertion at the extremities

Recall that

ε(Cfree, c∞) = {1} ,
ε(Csup, c∞) ⊂ {1, 2} ,

ε(Cinf, c∞) ⊂ {0, 1} ·

Then, by Proposition 7.1.1, the only possible tail for a partition in P c∞
ε , consisting of parts of size 0, has

the form
0c1 , . . . , 0cs , 0c∞

with c1, . . . , cs ∈ Csup. This means that we cannot insert a part 0 f for any f ∈ Cfree. We now study the
insertion of at 1 f the tail of the partitions.

• When the tail has the form 1c, 0c∞ with c ∈ Csup, for any free color f , one can insert a part 1 f to the
right to 1c as long as ε(c, f ) = 0.

• When the tail has the form 1c, 0c∞ with c ∈ Cinf, for any free color f , the only possible insertion of
a part 1 f next to the 1c occurs its left. The part 1c then remains the last part before 0c∞ .

We finally study the case of insertion at the head of the partition.

• When the first part is pc with c ∈ Csup, for any free color f , the only possible insertion of a part p f
next to the pc occurs its right. The part 1c then remains the first part of the partitions.

• When the first part is pc with c ∈ Cinf, for any free color f , for any free color f , one can insert a part
p f to the right to pc as long as ε( f , c) = 0.

The above insertion properties at the extremities allow us to extend the insertion into the pair p(1)c1 , p(2)c2
for the following cases,

1. the insertion of p f in the pair pc1 , 0c∞ with c1 ∈ c ∈ Csup and p ≥ 1,

2. the insertion of p f in the pair ∞c1 , pc2 with c2 ∈ c ∈ Cinf and u ≥ 1, which means that pc2 is at the
head of the partitions.

7.2 Bijective proof of Theorem 2.2.51

7.2.1 The map Φ

Let us consider a partition λ ∈ P c∞
ε . We want to build Φ(λ) = (µ, ν) ∈ c0

δ,γP
c∞
ε × P . First, note that

ε(c, c0) = ε(c, c0) = χ(c 6= c0) for any color c ∈ C. This is equivalent to saying that, in λ, the parts
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colored by c0 have a size different from the parts with color different from c0. We first consider ν to be
the empty partition. We then proceed by transforming some parts p f for free colors f into parts p and
insert them into ν as follows.

1. We take all the parts of λ with color c0 and add them to ν, while removing their color c0.

Since the parts to the left and to the right of a maximal sequence of the form

pc0 , . . . , pc0

have respectively a size greater and less than p, this means that their sizes differ by at least 2. The
fact that ε(C, C t {c∞}) ⊂ {0, 1, 2} implies that, by removing the parts with color c0 from λ, we
obtain a partition λ′ that is still in P c∞

ε . Furthermore, the parts of λ′ have sizes different from the
sizes of the parts of ν.

2. For all the parts p f in λ′ with f ∈ Cfree \ {c0} which appear more than twice, we transform all the
parts p f but one into p and move them to ν.

Since there is still one occurrence for all such parts, we obtain a partition λ′′ that is still in P c∞
ε ,

and has no repeated parts p f with free colors, and no part colored by c0. Also, the only parts of λ′′

having the same size as some part of ν are those with the same size as a certain part p f with a free
color.

3. For all the parts p f that appear in patterns p(1)c1 , p f , p(2)c2 of λ′′ which are forbidden in c0
δ,γP

c∞
ε , we

then transform the parts p f into p and add these parts to ν.

Note that such parts p f may have been repeated in the previous step, and can only appear in
forbidden patterns with p = p(1) and c1 ∈ Csup, or p = p(2) and c2 ∈ Cinf. One can also observe

that, by removing p f from such patterns, the patterns p(1)c1 , p(2)c2 are always allowed in c0
δ,γP

c∞
ε . At

the end of this step, the partition obtained does not have any forbidden pattern or any part with
color c0, and the part with free color p f cannot be repeated. We then set this partition to be µ.

We then obtain at the end a pair of partitions (µ, ν) ∈ c0
δ,γP

c∞
ε ×P .

Remark 7.2.1. We remark that the only parts in ν which do not have the same size as the parts in µ are those
coming from the parts of λ with color c0.

7.2.2 The map Φ−1

We will now describe the inverse map Φ−1. For any (µ, ν) ∈ c0
δ,γP

c∞
ε × P , we proceed by inserting the

parts p of ν in the partition µ as follows.

1. Suppose that there is no part p f with f ∈ Cfree \ {c0}, but there is a part pc with c ∈ Csup t Cinf. We
then proceed as follows.

• If there exists a pair of colors (c1, c2) ∈ Csup×Cinf such that the pattern pc1 , pc2 is in µ, we then
necessarily have that ε(c1, c2) = 0, and γ(c1, c2) is defined. By Proposition 7.1.1, the existence
of such a pair is unique in the maximal sequence of parts with size p. Then set f = γ(c1, c2),
transform the part p into p f and we insert p f between pc1 and pc2 , to obtain the pattern

pc1 , pγ(c1,c2)
, pc2

which is forbidden in c0
δ,γP

c∞
ε .

Note that this is the only suitable insertion in the maximal sequence of parts with size p.

(a) We cannot insert a part p f with a free color in the sequence to the left of pc1 , as it consists
of parts with color in Csup, and the second insertion rule forbids such insertion.

(b) Similarly, we cannot insert a part p f with a free color in the sequence to the right of pc2 ,
as it consists of parts with color in Cinf, and the third insertion rule forbids such insertion.
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(c) Finally, inserting a part p f into the pair pc1 , pc2 for any free color f 6= γ(c1, c2) such that
ε(c1, f ) = ε( f , c2) = 0 is useless and troublesome, as the pattern

pc1 , p f , pc2

is allowed in c0
δ,γP

c∞
ε , and this insertion renders the map Φ−1 not injective.

• If all the parts pc have colors in Csup, we denote by c1 the color of the rightmost part. With
the same reasoning as above, we cannot insert a part p f with a free color in the sequence to
the left of pc1 . Remark that the part to its right has necessarily a size less than p.

(a) If the part to the right of pc1 has size less than p − 1, then transform p into pδ(c1)
, and

insert pδ(c1)
to the right of pc1 , to obtain for an integer 2 ≤ u the pattern

pc1 , pδ(c1)
, (p− u)c2

which is forbidden in c0
δ,γP

c∞
ε .

(b) If the part to the right of pc1 has size p− 1 and a color c1 ∈ (Cfree \ {c0}) t Cinf t {c∞},
then transform p into pδ(c1)

, and we insert pδ(c1)
to the right of pc2 , to obtain the pattern

pc1 , pδ(c1)
, (p− 1)c2

which is forbidden in c0
δ,γP

c∞
ε .

(c) If the part to the right of pc1 has size than p− 1 and a color c2 ∈ Csup, we necessarily have
that ε(c1, c2) ∈ {0, 1}. In that case, define γ(c1, c2), and then transform p into pγ(c1,c2)

,
and insert pγ(c1,c2)

to the right of pc1 , to we obtain the pattern

pc1 , pγ(c1,c2)
, (p− 1)c2

which is forbidden in c0
δ,γP

c∞
ε .

• There now remains the case where all the parts pc are such that c ∈ Csup. We then take the
color of the leftmost part, denoted c2. We remark that we cannot insert a part p f with a free
color in the sequence to the right of pc1 . Also, the part to its left, if such a part exists, has
necessarily a size greater than p,

(a) If there is no part to the left of pc2 , then transform the part p into pδ(c2)
and insert pδ(c2)

to the left of pc2 , to obtain the pattern

pδ(c2)
, pc2

which is forbidden in c0
δ,γP

c∞
ε .

(b) If the part to the left of pc2 has a size greater than p + 1, then transform the part p into
pδ(c2)

and insert pδ(c2)
to the left of pc2 , to obtain for some integer 2 ≤ u the pattern

(p + u)c1 , pδ(c2)
, pc2

which is forbidden in c0
δ,γP

c∞
ε .

(c) If the part to the left of pc2 has size p + 1 and a color c1 ∈ (Cfree \ {c0}) t Csup, then
transform the part p into pδ(c2)

and insert pδ(c2)
to the left of pc2 , to obtain the pattern

(p + 1)c1 , pδ(c2)
, pc2

which is forbidden in c0
δ,γP

c∞
ε .

(d) If the part to the left of pc2 has size p + 1 and a color c1 ∈ Cinf, we necessarily have that
ε(c1, c2) ∈ {0, 1}. Then transform the part p into pγ(c1,c2)

and insert pγ(c1,c2)
to the left of

pc2 , to obtain the pattern
(p + 1)c1 , pγ(c1,c2)

, pc2

which is forbidden in c0
δ,γP

c∞
ε .

The order in which we insert the parts p f does not matter, as the only case where the color of
the inserted part depends on both colors c1 and c2 are the only insertion for which the value of
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p is unique for the pair p(1)c1 , p(2)c2 . Moreover, for the above cases, which form a exhaustive list of

insertions p f into a pair p(1)c1 , p(2)c2 with p = p(1) and c1 ∈ Csup, or p = p(2) and c2 ∈ Cinf, the choice

of the color f to render the obtained pattern p(1)c1 , p f , p(2)c2 forbidden in c0
δ,γP

c∞
ε is unique.

At the end of this process, we obtain a partition µ′ with some forbidden patterns of c0
δ,γP

c∞
ε , with

no repeated part p f with a free color f and no part colored by c0. This is then the exact reverse
step of the third step of Φ.

2. If there is a part p f in µ′ with f ∈ Cfree \ {c0}, then transform all the parts p into p f and insert them
in µ′. We then obtain a partition µ′′ with some forbidden patterns of c0

δ,γP
c∞
ε and repeated parts p f ,

but no part colored by c0.

This is the reverse step of the second step of Φ, and allows us to have repeated parts with free
color.

3. There now remains the parts p in ν such that there is no in µ′′ with the same size. We transform
these parts into pc0 and insert them into µ′′. The partition obtained has some forbidden patterns
of c0

δ,γP
c∞
ε , repeated parts p f with free color f , and parts colored by c0. We then set this partition to

be λ.

This is the exact reverse step of the first step of Φ.

The partition λ then obtained is a partition of P c∞
ε , and we set Φ−1(µ, ν) = λ.

The inversion between the maps Φ and Φ−1 comes from the fact that the steps in their respective
process are inverse and lead exactly to the same subsets of partitions.

7.3 Duality between Capparelli’s and Primc’s identities

Let us consider the set C = {aibj : i, j ∈N}, and the set-partition

Csup = {aibj : i < j ∈N} ,

Cfree = {aibj : i ∈N} ,

Cinf = {aibj : i > j ∈N} ·

7.3.1 Well-definedness according to the decomposition

Recall that for all i, j, k, l ∈ {0, . . . , n− 1}, we have the energy ∆ in (2.2.54) defined by

∆(aibj, akbl) = χ(i ≥ k)− χ(i = j = k) + χ(j ≤ l)− χ(j = k = l) ·

We then have the following.

1. By comparing the free colors, for all i, k ∈N

∆(aibi, akbk) = χ(i 6= k) · (7.3.1)

2. For all i, j, k ∈N with i < j, we have

∆(aibj, akbk) = 1− χ(i < k ≤ j) (7.3.2)

∆(akbk, aibj) = 1 + χ(i < k ≤ j) , (7.3.3)

and the conditions (2.2.63) are satisfied. Furthermore, for all i < j,

{k ∈N : ∆(aibj, akbk) = 0} = {k ∈N : ∆(akbk, aibj) = 2} = {i + 1, . . . , j} 6= ∅ ·

3. For all i, j, k ∈N with i > j ∈N, we have

∆(aibj, akbk) = 1 + χ(i ≥ k > j) (7.3.4)

∆(akbk, aibj) = 1− χ(i ≥ k > j) , (7.3.5)
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and the conditions (2.2.64) are satisfied. Furthermore, for all i > j ∈N,

{k ∈N : ∆(aibj, akbk) = 2} = {k ∈N : ∆(akbk, aibj) = 0} = {j + 1, . . . , i} 6= ∅ ·

4. For all i, j, k, l ∈N such that i 6= j and k 6= l,

∆(aibj, akbl) = χ(i ≥ k) + χ(j ≤ l) · (7.3.6)

In particular, we have the following

∆(aibj, akbl) = 2⇐⇒ i ≥ k and i ≤ l

∆(aibj, akbl) = 0⇐⇒ i < k and i > l

The above equation implies the following relations.

(a) If i < j and k > l, then

∆(aibj, akbl) = 1− χ(i < k)χ(j > l) (7.3.7)

∆(akbl , aibj) = 1 + χ(i ≤ k)χ(j ≥ i) , (7.3.8)

and the conditions (2.2.65) are satisfied. Also, when ∆(aibj, akbl) = 0, we then have that i < k
and j > l, so that

{u ∈N : ∆(aibj, aubu) = 0} ∩ {u ∈N : ∆(aubu, akbl) = 0} = {i + 1, . . . , j} ∩ {l + 1, . . . , k}
= {max{i, l}+ 1, . . . , min{k, j}}
6= ∅ ,

and the conditions (2.2.66) are satisfied.

(b) If i < j and k < l then

∆(aibj, akbl) = 2⇐⇒ i ≥ k and j ≤ l

⇐⇒ {i + 1, . . . , j} ⊂ {k + 1, . . . , l}
⇐⇒ {i + 1, . . . , j} \ {k + 1, . . . , l} = ∅
⇐⇒ {u ∈N : ∆(aibj, aubu) = 0} ∩ {u ∈N : ∆(aubu, akbl) = 1} = ∅ ·

We then have equivalently

∆(aibj, akbl) ∈ {0, 1} ⇐⇒ {u ∈N : ∆(aibj, aubu) = 0} ∩ {u ∈N : ∆(aubu, akbl) = 1} 6= ∅ ,

and the conditions (2.2.67) are satisfied.

(c) If i > j and k > l, then

∆(aibj, akbl) = 2⇐⇒ i ≥ k and j ≤ l

⇐⇒ {l + 1, . . . , k} ⊂ {j + 1, . . . , i}
⇐⇒ {l + 1, . . . , k} \ {j + 1, . . . , i} = ∅
⇐⇒ {u ∈N : ∆(aibj, aubu) = 1} ∩ {u ∈N : ∆(aubu, akbl) = 0} = ∅ ·

We then have equivalently

∆(aibj, akbl) ∈ {0, 1} ⇐⇒ {u ∈N : ∆(aibj, aubu) = 1} ∩ {u ∈N : ∆(aubu, akbl) = 0} 6= ∅ ,

and the conditions (2.2.68) are satisfied.

Then, by Definition 2.2.46, the energy ∆ is well-defined according to the decomposition CsuptCfreetCinf.
We now fix ` ∈N, and introduce the fictitious color c∞ and extend ∆ with the relations

∆(c∞, c∞) = 0,
∆(c∞, aiaj) = 1,

∆(aiaj, c∞) = χ(i ≥ `) + χ(j < `) ·
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7.3.2 Forbidden patterns

By Definition 2.2.48, the functions δ and γ satisfy the following properties:

1. for all akbl(k 6= l),
δ(akbl) ∈ {aibi : i ∈ {min{k, l}+ 1, . . . , max{k, l}} , (7.3.9)

2. For the pairs of bound colors (c1, c2) = (ak1 bl1 , ak2 bl2),

• if k1 < l1 and k2 > l2 such that max{k1, l2} < min{k2, l1}, then

γ(c1, c2) ∈ {aibi : i ∈ {max{k1, l2}+ 1, . . . , min{k2, l1}} · (7.3.10)

• if k1 > l1 and k2 > l2 such that we do not have k1 ≥ k2 > l2 ≥ l1, then

γ(c1, c2) ∈ {aibi : i ∈ {l2 + 1, . . . , k2} \ {l1 + 1, . . . , k1}} , (7.3.11)

• if k1 < l1 and k2 < l2 such that we do not have k2 ≤ k1 < l1 ≤ l2, then

γ(c1, c2) ∈ {aibi : i ∈ {k1 + 1, . . . , l1} \ {k2 + 1, . . . , l2}} · (7.3.12)

Definition 7.3.1. For all non-negative integers ` < n, the set C`,n(δ, γ) of the Capparelli partitions related
to δ and γ is the set of generalized Primc partitions of P`,n, with no parts colored by a0b0, and which
avoid the following forbidden patterns (we here set (c1, c2) = (ak1 bl1 , ak2 bl2))

• For all integer i > 0,
paibi

paibi
.

• For all max{k1, l2} < min{k2, l1} and f = aibi with i = γ(c1, c2),

pc1 p f pc2 .

• For all integers k1 < l1:

– For all integers 2 ≤ u, the pattern (with c2 possibly equal to c∞)

pc1 pδ(c1)
(p− u)c2 .

– For all integers k2 ≥ l2 or for c2 equal to c∞, the pattern

pc1 , pδ(c1)
, (p− 1)c2 .

– For all k1 < l1, k2 < l2 such that we do not have k2 ≤ k1 < l1 ≤ l2, the pattern

pc1 , pγ(c1,c2)
, (p− 1)c2 .

• For all integers k2 > l2:

– For all integers 2 ≤ u ≤ ∞, the pattern

(p + u)c1 , pδ(c2)
, pc2 .

Here the part ∞c1 means that the pattern pδ(c2)
pc2 is at the head of the partition.

– For all integers k1 ≤ l1, the pattern,

(p + 1)c1 , pδ(c2)
, pc2 .

– For all integers k1 > l1 such that we do not have k1 ≥ k2 > l2 ≥ l1, the pattern

(p + 1)c1 , pγ(c1,c2)
, pc2 .

Then the following corollary of Theorem 2.2.51 holds.

Corollary 7.3.2. There is a bijection Φ between the set P`,n of generalized Primc partitions and the product set
C`,n(δ, γ)× P , where C`,n(δ, γ) is the set of the Capparelli partitions related to δ and γ, and P is the set of the
classical partitions.
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7.3.3 Proof of Theorem 2.2.59

We now define the suitable functions δ and γ to retrieve the sets C`,n and C ′`,n.

Functions δ1 and γ1 for C ′`,n

We define δ1 and γ1 as follows: for k 6= l,

δ1(akbl) = aibi with i = 1 + min{k, l} , (7.3.13)

and for (c1, c2) = (ak1 bl1 , ak2 bl2),

1. if max{k1, l2} < min{k2, l1}, we set

γ1(c1, c2) = aibi with i = 1 + max{k1, l2} , (7.3.14)

2. if k1 > l1 and k2 > l2 such that we do not have k1 ≥ k2 > l2 ≥ l1, then

• if l2 < l1, then
γ1(c1, c2) = al2+1bl2+1 (7.3.15)

• if l2 ≥ k1, then
γ1(c1, c2) = al2+1bl2+1 (7.3.16)

• if k2 > k1 > l2 ≥ l1, then
γ1(c1, c2) = ak2 bk2 , (7.3.17)

3. if k1 < l1 and k2 < l2 such that we do not have l2 ≥ l1 > k1 ≤ k2, then

• if k2 > k1, then
γ1(c1, c2) = ak1+1bk1+1 (7.3.18)

• if k1 ≥ l2, then
γ1(c1, c2) = ak1+1bk1+1 (7.3.19)

• if l1 > l2 > k1 ≥ k2, then
γ1(c1, c2) = al1 bl1 · (7.3.20)

We then have the corresponding proposition

Proposition 7.3.3. We have C`,n(δ1, γ1) = C ′`,n.

Functions δ2 and γ2 for C`,n

We define δ2 and γ2 as follows: for k 6= l,

δ2(akbl) = aibi with i = max{k, l} , (7.3.21)

and for (c1, c2) = (ak1 bl1 , ak2 bl2),

1. if max{k1, l2} < min{k2, l1}, we set

γ2(c1, c2) = aibi with i = min{k2, l1} , (7.3.22)

2. if k1 > l1 and k2 > l2 such that we do not have k1 ≥ k2 > l2 ≥ l1, then

• if k2 > k1, then
γ2(c1, c2) = ak2 bk2 (7.3.23)

• if l1 ≥ k2, then
γ2(c1, c2) = ak2 bk2 (7.3.24)

• if k1 ≥ k2 > l1 > l2, then
γ2(c1, c2) = al2+1bl2+1 , (7.3.25)

3. if k1 < l1 and k2 < l2 such that we do not have l2 ≥ l1 > k1 ≥ k2, then
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• if l1 > l2, then
γ2(c1, c2) = al1 bl1 (7.3.26)

• if k2 ≥ l1, then
γ2(c1, c2) = al1 bl1 (7.3.27)

• if l2 ≥ l1 > k2 > k1, then
γ2(c1, c2) = ak1+1bk1+1 · (7.3.28)

We then have the corresponding proposition

Proposition 7.3.4. We have C`,n(δ2, γ2) = C`,n.

7.3.4 The case of Capparelli’s and Meurman-Primc’s identities

For n = 2, there is only one possibility for the functions δ and γ, having both values in {a1b1}. Also,
the only possible pair in the preimage of γ is (a0b1, a1b0). The Propositions 7.3.3 and 7.3.4 are equivalent
and give the identity of Capparelli.

For n = 3, there are possibilities for δ and γ.

• We have

δ(a0b1) = δ(a1b0) = a1b1

δ(a1b2) = δ(a2b1) = a2b2

δ(a0b2), δ(a2b0) ∈ {a1b1, a2b2} ·

• We have

γ(a0b1, a1b0) = γ(a0b1, a2b0) = γ(a0b2, a1b0) = a1b1

γ(a1b2, a2b1) = γ(a1b2, a2b0) = γ(a0b2, a2b1) = a2b2

γ(a0b2, a2b0) ∈ {a1b1, a2b2}

and

γ(a1b0, a2b0) = γ(a1b0, a2b1) = a2b2

γ(a2b1, a2b0) = γ(a2b1, a1b0) = a1b1

γ(a1b2, a0b1) = γ(a0b2, a0b1) = a2b2

γ(a0b1, a1b2) = γ(a0b2, a1b2) = a1b1 ·

The functions δ1 and γ1 then correspond to the choice

δ(a0b2) = δ(a2b0) = γ(a0b2, a2b0) = a1b1

and we obtain the forbidden pattern

(p + 1)a1b0 , pa2b2 , pa2b0 and (p + 1)a0b2(p + 1)a2b2 pa0b1 ·

This is the case 8× 8 given by Meurman-Primc.

The functions δ2 and γ2 then correspond to the choice

δ(a0b2) = δ(a2b0) = γ(a0b2, a2b0) = a2b2

and we obtain the forbidden pattern

(p + 1)a2b1 , pa1b1 , pa2b0 and (p + 1)a0b2(p + 1)a1b1 pa1b2 ·
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Part III

Rogers-Ramanujan type identities via
representations of affine Lie algebras
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Chapter 8

Perfect crystals and multi-grounded
partitions

In this chapter, we present the connection between the theory of perfect crystals and the notion of multi-
grounded partitions.

In Section 8.1, we first introduce the fundamentals of crystal base theory, and present the main tool
that allows us to make a connection with the theory of integer partitions, namely the (KMN)2 character
formula. Then, in Section 8.2, we discuss a special case of the connection, related to the grounded
partitions. Finally, in Section 8.3, we give the general results that link the perfect crystals to the multi-
grounded partitions.

8.1 Basics on Crystals

In this section, we recall the definitions and basic theorems from crystal base theory which are necessary
for our purpose. We refer to the book (Hong and Kang, 2002), which we consider to be a good summary
of the basic theory of Kac-Moody algebras (Hong and Kang, 2002, Chapter 2), quantum groups (Hong
and Kang, 2002, Chapter 3) and crystal bases (Hong and Kang, 2002, Chapters 4, 10). For a more combi-
natorial approach and more emphasis on the finite dimensional case, we refer the reader to (Bump and
Schilling, 2017).

Throughout this section, n is a fixed positive integer.

8.1.1 Cartan datum and quantum affine algebras

A square matrix A =
(
ai,j
)

i,j∈N is said to be a generalised Cartan matrix if A has the following proper-
ties:

• for all i ∈ N , ai,i = 2,

• for all i 6= j in N , ai,j ∈ Z≤0,

• ai,j = 0 if and only if aj,i = 0.

Moreover, if there exists a diagonal matrix D with positive integer coefficients such that DA is symmet-
ric, then A is said to be symmetrisable. In addition, if the rank of the matrix A is n− 1, then A is said to
be of affine type. In this paper, we always assume that this is the case.

Let us consider such a matrix A. Let P∨ be a free abelian group of rank n+ 1 with Z-basis {h0, . . . , hn−1, d} :

P∨ = Zh0 ⊕Zh1 ⊕ · · · ⊕Zhn−1 ⊕Zd.

We call P∨ the dual weight lattice. The complexification h = C⊗Z P∨ is called the Cartan subalgebra. The
linear functions αi and Λi (i ∈ N ) on h given by

〈hj, αi〉 := αi(hj) = aj,i 〈d, αi〉 := αi(d) = δi,0
〈hj, Λi〉 := Λi(hj) = δi,j 〈d, Λi〉 := Λi(d) = 0 (i, j ∈ N )

(8.1.1)

are respectively the simple roots and fundamental weights. Let h∗ be the dual space of h. We denote by
Π = {αi | i ∈ N} ⊂ h∗ the set of simple roots, and define Π∨ = {hi | i ∈ N} ⊂ h to be the set of simple
coroots. We also set

P = {λ ∈ h∗ | λ(P∨) ⊂ Z}
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to be the weight lattice. It contains the set of dominant integral weights

P+ = {λ ∈ P | λ(hi) ∈ Z≥0 for all i ∈ N}.

The quintuple (A, Π, Π∨, P, P∨) is said to be a Cartan datum for the Cartan matrix A. The affine Kac-
Moody Lie algebra ĝ attached to this datum is the Lie algebra with generators ei, fi (i ∈ N ) and h ∈ P∨,
with the following defining relations (Hong and Kang, 2002, Definition 2.1.3):

1. [h, h′] = 0 for all h, h′ ∈ P∨,

2. [ei, f j] = δijhj,

3. [h, ei] = αi(h)ei for all h ∈ P∨,

4. [h, fi] = −αi(h) fi for all h ∈ P∨,

5. (adei)
1−ai,j ej = (ad fi)

1−ai,j f j = 0 for i 6= j,

where adx : y 7→ [x, y].
We also define the coroot lattice

P̄∨ = Zh0 ⊕Zh1 ⊕ · · · ⊕Zhn−1,

and its complexification h̄ = C⊗Z P̄∨. The restriction of the Z-submodule

ZΛ0 ⊕ZΛ1 ⊕ · · · ⊕ZΛn−1

of P to P̄∨ is called the lattice of classical weights and is denoted by P̄.

Remark 8.1.1. By (8.1.1), for all j 6= 0, we have

αj =
n−1

∑
i=0

ai,jΛi ∈ P̄.

We will denote by α0 the restriction of α0 to P̄.

Let P̄+ := ∑n
i=0 Z≥0Λi denote the corresponding set of dominant weights.

The center
Zc = {h ∈ P∨ : 〈h, αi〉 = 0 for all i ∈ N}

of the affine Lie algebra ĝ is one-dimensional and generated by the canonical central element c, where

c = c0h0 + · · ·+ cn−1hn−1.

The space of imaginary roots

Zδ = {λ ∈ P : 〈hi, λ〉 = 0 for all i ∈ N}

of ĝ is also one-dimensional, generated by the null root δ, where

δ = d0α0 + d1α1 + · · ·+ dn−1αn−1,

and the vector t(d0, d1, . . . , dn−1) ∈ Cn spans the kernel of the Cartan matrix A. The level ` of a dominant
weight λ ∈ P+ is given by the expression 〈c, λ〉 := λ(c) = `.

For any k ∈ Z and an indeterminate q, let us set

[k]q =
qk − q−k

q− q−1 .

We also set [0]q ! = 1 and for k ≥ 1, [k]q ! = [k]q[k− 1]q · · · [1]q. For m ≥ k ≥ 0, define〈
m
k

〉
q
=

[m]q !
[k]q ! [m− k]q !

.

We now have all the definitions necessary to introduce quantum affine Lie algebras.
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Definition 8.1.2. (Hong and Kang, 2002, Definition 3.1.1) The quantum affine algebra Uq(ĝ) associated
with the Cartan datum (A, Π, Π∨, P, P∨) is the associative algebra with unit element over C(q) (where
q is an indeterminate) with generators ei, fi (i ∈ N ) and qh (h ∈ P∨), satisfying the defining relations:

(1) q0 = 1, qhqh′ = qh+h′ for h, h′ ∈ P∨,

(2) qheiq−h = qαi(h)ei for h ∈ P∨, i ∈ N ,

(3) qh fiq−h = q−αi(h) fi for h ∈ P∨, i ∈ N ,

(4) ei f j − f jei = δi,j
Ki − K−1

i

qi − q−1
i

for i, j ∈ N ,

(5)
1−ai,j

∑
k=0

〈
1− ai,j

k

〉
qi

e
1−ai,j−k
i ejek

i = 0 for i 6= j,

(6)
1−ai,j

∑
k=0

〈
1− ai,j

k

〉
qi

f
1−ai,j−k
i f j f k

i = 0 for i 6= j.

Here qi = qsi and Ki = qsihi , where D = diag(si : i ∈ {0, . . . , n− 1}) is a symmetrising matrix of A.

Definition 8.1.3. The quantum affine algebra U′q(ĝ) is the subalgebra of Uq(ĝ) generated by ei, fi, K±1
i (i ∈

N ).

Contrary to Uq(ĝ), the quantum affine algebra U′q(ĝ) admits some non-trivial finite-dimensional
irreducible modules.

8.1.2 Integrable modules, highest weight modules and character formula

We are now ready to define irreducible highest weight modules and characters.

Definition 8.1.4. Let g be a Lie algebra with bracket [·, ·], and let V be a vector space. Then V is a g-
module if there is a bilinear map g×V → V, denoted by (x, v) 7→ x · v, satisfying for all x, y ∈ g and all
v ∈ V:

[x, y] · v = x · (y · v)− y · (x · v).

A subspace W of a g-module V is called a submodule of V if for all x ∈ g, x ·W ⊆W.
A g-module V is said to be irreducible if its only submodules are V and 0.
The notion of modules extends naturally from an affine Lie algebra ĝ to its quantum affine algebra

Uq(ĝ).

Definition 8.1.5. A Uq(ĝ)-module M is said to be integrable if it satisfies the following properties:

(a) M has a weight space decomposition: M =
⊕

λ∈P Mλ, where Mλ = {v ∈ M | qh · v = qλ(h)v for
all h ∈ P∨};

(b) there are finitely many λ1, . . . , λk ∈ P such that wt(M) ⊆ Ω(λ1) ∪ · · · ∪Ω(λk), where wt(M) =
{λ ∈ P | Mλ 6= 0} and Ω(λj) = {µ ∈ P | µ ∈ λj + ∑i∈N Z≤0αi};

(c) the elements ei and fi act locally nilpotently on M for all i ∈ N .

We denote by Oq
int the category of integrable Uq(ĝ)-modules.

For all λ ∈ P, a module of highest weight λ is an integrable module such that:

(a) wt(M) ⊆ Ω(λ);

(b) dim Mλ = 1;

(b) M = Uq(ĝ)Mλ.

For all λ ∈ P, up to isomorphism, there exists a unique highest weight module which is irreducible. We
denote by L(λ) the irreducible highest weight Uq(ĝ)-module of highest weight λ.
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Definition 8.1.6. Let M be an integrable module such that dim Mλ < ∞ for all λ ∈ wt(M). The character
of M is defined by

ch(M) = ∑
λ∈wt(M)

dim Mλ · eλ, (8.1.2)

where the eλ’s are formal basis elements of the group algebra C[h∗], with the multiplication defined by
eλeµ = eλ+µ.

When M is a highest weight module of highest weight λ, its character satisfies

e−λch(M) = ∑
µ∈wt(M)

dim Mλ · eµ−λ ∈ Z≥0[[e−αi , i ∈ N ]].

All these definitions on modules also hold in the case of the ĝ-modules M′, where the weight spaces
are given by M′λ = {v ∈ M′ | h · v = λ(h)v for all h ∈ P∨}. Thus, looking at the generators of the
weight spaces, for a fixed weight λ ∈ P, the irreducible highest weight ĝ-module can be identified with the
irreducible highest weight Uq(ĝ)-module, and we have equality of characters.

8.1.3 Crystal bases

Crystal base theory was developed independently by Kashiwara (Kashiwara, 1990) and Lusztig (Lusztig,
1990) to study the category Oq

int of integrable Uq(ĝ)-modules. If M is a module in the category Oq
int,

then for each i ∈ N , a weight vector u ∈ Mλ can be written uniquely in the form u = ∑N
k=0 f (k)i uk, for

some N ≥ 0 and uk ∈ Mλ+kαi
∩ ker ei for all k = 0, 1, . . . , N, with f (k)i = f k

i /([k]qi !). The Kashiwara
operators ẽi and f̃i, for i ∈ N , are then defined as follows:

ẽiu =
N

∑
k=1

f (k−1)
i uk, f̃iu =

N

∑
k=0

f (k+1)
i uk. (8.1.3)

Crystal bases will be seen as bases at q = 0. To do so, let us define the localisation of C[q] at q = 0 by
A0 = { f = g/h | g, h ∈ C[q], h(0) 6= 0}.

Definition 8.1.7. (Hong and Kang, 2002, Definition 4.2.2) Assume that M is a Uq(ĝ)-module in the
category Oq

int. A free A0-submodule L of M is a crystal lattice if

(i) L generates M as a vector space over C(q);

(ii) L =
⊕

λ∈P Lλ where Lλ = Mλ ∩ L;

(iii) ẽiL ⊂ L and f̃iL ⊂ L, for all i ∈ N .

Since the operators ẽi and f̃i preserve the lattice L, they also define operators on the quotient L/qL.

Definition 8.1.8. (Hong and Kang, 2002, Definition 4.2.3) A crystal base for a Uq(ĝ)-module M ∈ Oq
int is

a pair (L,B) such that

(1) L is a crystal lattice of M;

(2) B is a C-basis of L/qL ∼= C⊗A0 L;

(3) B = tλ∈PBλ, where Bλ = B ∩ (Lλ/qLλ);

(4) ẽiBλ ⊂ Bλ+αi ∪ {0} and f̃iBλ ⊂ Bλ−αi ∪ {0} for all i ∈ N ;

(5) f̃ib = b′ if and only if b = ẽib′, for b, b′ ∈ B and i ∈ N .

To each module M ∈ Oq
int, we can associate a corresponding crystal base (L,B). Furthermore, the

crystal graph associated to (L,B) can be defined as follows. The set of vertices is B, and the oriented
edges are built as follows:

b i−→ b′ if and only if f̃ib = b′ (or equivalently ẽib′ = b).

Remark 8.1.9. When f̃ib = 0 (resp. ẽib = 0), then there is no edge labelled i coming out of b (resp. arriving in
b).

The crystal graph can be viewed as combinatorial data of the module M.
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For i ∈ N , let us define functions εi, ϕi : B → Z as follows:

εi(b) = max{k ≥ 0 | ẽk
i b ∈ B},

ϕi(b) = max{k ≥ 0 | f̃ k
i b ∈ B}.

In other words, εi(b) is the length of the longest chain of i-arrows ending at b in the crystal graph, and
ϕi(b) is the length of the longest chain of i-arrows starting from b. Furthermore, we have ϕi(b)− εi(b) =
λ(hi) for all b ∈ Bλ. Thus, by setting wtb = λ,

ε(b) =
n−1

∑
i=0

εi(b)Λi, and ϕ(b) =
n−1

∑
i=0

ϕi(b)Λi, (8.1.4)

we then have wtb = ϕ(b)− ε(b) for all b ∈ Bλ, where wtb is the projection of wtb on P. Also, by the
definition of the weight vectors uk in the Kashiwara operators (8.1.3), we have for all b ∈ B such that
ẽib 6= 0,

wtẽib−wtb = αi. (8.1.5)

Let us now introduce the notion of a crystal.

Definition 8.1.10. (Hong and Kang, 2002, Definition 4.5.1) Let A = (ai,j)0≤i,j≤n−1 be a Cartan matrix
with associated Cartan datum (A, Π, Π∨, P, P∨). A crystal associated with (A, Π, Π∨, P, P∨) is a set B
together with maps

wt : B −→ P,

ẽi, f̃i : B −→ B ∪ {0} (i ∈ N ),
εi, ϕi : B −→ Z∪ {−∞} (i ∈ N ),

satisfying the following properties for all i ∈ N :

1. ϕi(b) = εi(b) + 〈hi, wt(b)〉,

2. wt(ẽib) = wtb + αi if ẽib ∈ B,

3. wt( f̃ib) = wtb− αi if f̃ib ∈ B,

4. εi(ẽib) = εi(b)− 1 if ẽib ∈ B,

5. ϕi(ẽib) = ϕi(b) + 1 if ẽib ∈ B,

6. εi( f̃ib) = εi(b) + 1 if f̃ib ∈ B,

7. ϕi( f̃ib) = ϕi(b)− 1 if f̃ib ∈ B,

8. f̃ib = b′ if and only if b = ẽib′ for b, b′ ∈ B,

9. if ϕi(b) = −∞ for b ∈ B, then ẽib = f̃ib = 0.

In particular, if (L,B) is a crystal base, then B is a crystal.

Let B1 and B2 be two crystals. A crystal morphism between B1 and B2 is a map Ψ : B1 ∪ {0} →
B2 ∪ {0} such that

• Ψ(0) = 0;

• Ψ commutes with wt, εi, ϕi for all i ∈ N ;

• for b, b′ ∈ B1 such that f̃ib = b′ and Ψ(b), Ψ(b′) ∈ B2, we have f̃iΨ(b) = Ψ(b′), ẽiΨ(b′) = Ψ(b).

A morphism Ψ is said to be strict if it commutes with ẽi, f̃i for all i ∈ N .

The theory of crystal bases behaves very nicely with respect to the tensor product of Oq
int-modules,

as can be seen in the next theorem.
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Theorem 8.1.11. (Hong and Kang, 2002, Theorem 4.4.1) Let M1, M2 ∈ Oint, and let (L1,B1), (L2,B2) be the
corresponding crystal bases. We set L = L1 ⊗A0 L2 and B = B1 ⊗ B2 ≡ B1 × B2. Then (L,B) is a crystal
base of M1 ⊗C(q) M2, with

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2),
b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),
b1 ⊗ f̃ib2 if ϕi(b1) ≤ εi(b2),

(8.1.6)

where b1 ⊗ 0 = 0⊗ b2 = 0 for all b1 ∈ B1 and b2 ∈ B2. Furthermore, we have

wt(b1 ⊗ b2) = wtb1 + wtb2,
εi(b1 ⊗ b2) = max{εi(b1), εi(b1) + εi(b2)− ϕi(b1)},
ϕi(b1 ⊗ b2) = max{ϕi(b2), ϕi(b1) + ϕi(b2)− εi(b2)}.

The last but not the least tool we need in this paper is the notion of energy function, defined as
follows.

Definition 8.1.12. (Hong and Kang, 2002, Definition 10.2.1) Let M ∈ Oq
int be a module, and (L,B) be

the corresponding crystal base. An energy function on B ⊗ B is a map H : B ⊗ B → Z satisfying

H (ẽi(b1 ⊗ b2)) =


H(b1 ⊗ b2) if i 6= 0,
H(b1 ⊗ b2) + 1 if i = 0 and ϕ0(b1) ≥ ε0(b2)

H(b1 ⊗ b2)− 1 if i = 0 and ϕ0(b1) < ε0(b2),
(8.1.7)

for all i ∈ N and b1, b2 with ẽ(b1 ⊗ b2) 6= 0.

By definition, in the crystal graph of B ⊗ B, the value of H(b1 ⊗ b2), when it exists, determines all
the values H(b′1 ⊗ b′2) for vertices b′1 ⊗ b′2 in the same connected component as b1 ⊗ b2. Note that the
conditions (8.1.7) are equivalent to the following:

H (ẽi(b1 ⊗ b2)) =

{
H(b1 ⊗ b2) + χ(i = 0) if ϕi(b1) ≥ εi(b2)

H(b1 ⊗ b2)− χ(i = 0) if ϕi(b1) < εi(b2),

H( f̃i(b1 ⊗ b2)) =

{
H(b1 ⊗ b2)− χ(i = 0) if ϕi(b1) > εi(b2)

H(b1 ⊗ b2) + χ(i = 0) if ϕi(b1) ≤ εi(b2).

(8.1.8)

Figure 8.1 gives the crystal graph B of the vector representation of A(1)
1 (Hong and Kang, 2002,

p. 10.5.2), the tensor product B ⊗ B, and an energy function H on B ⊗ B.

Figure 8.1.
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H: ⊗i j 7→ χ(i ≥ j)

8.1.4 Perfect crystals

The theory of perfect crystals was developed by Kang, Kashiwara, Misra, Miwa, Nakashima, and
Nakayashiki (Kang et al., 1992a; Kang et al., 1992b) to study the irreducible highest weight modules over
quantum affine algebras. Indeed, perfect crystals provide a construction of the crystal base B(λ) of any
irreducible Uq(ĝ)-module L(λ) corresponding to a classical weight λ ∈ P̄+. An affine crystal is an crys-
tal associated with an affine Cartan datum (A, Π, Π∨, P, P∨) (quantum algebra Uq(ĝ)), while the term
classical crystal is used for an abstract crystal associated to the classical Cartan datum (A, Π, Π∨, P̄, P̄∨)
(quantum algebra U′q(ĝ) defined in Definition 8.1.3).
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All the theorems in this section are due to Kang, Kashiwara, Misra, Miwa, Nakashima, and Nakayashiki,
but we give references to the book (Hong and Kang, 2002) for the reader’s convenience. Let us start by
defining perfect crystals.

Definition 8.1.13. (Hong and Kang, 2002, Definition 10.5.1) For a positive integer `, a finite classical
crystal B is said to be a perfect crystal of level ` for the quantum affine algebra Uq(ĝ) if

(1) there is a finite-dimensional U′q(ĝ)-module with a crystal base whose crystal graph is isomorphic
to B (when the 0-arrows are removed);

(2) B ⊗ B is connected;

(3) there exists a classical weight λ0 such that

wt(B) ⊂ λ0 +
1
d0

∑
i 6=0

Z≤0αi and |Bλ0 | = 1;

(4) for any b ∈ B, we have

〈c, ε(b)〉 =
n−1

∑
i=0

εi(b)Λi(c) ≥ `;

(5) for each λ ∈ P̄+
` := {µ ∈ P̄+ | 〈c, µ〉 = `}, there exist unique vectors bλ and bλ in B such that

ε(bλ) = λ and ϕ(bλ) = λ.

In the remainder of this section, we fix a perfect crystal B.
The maps λ 7→ ε(bλ) and λ 7→ ϕ(bλ) then define two bijections on P̄+

` .
As a consequence of the last condition, for any λ ∈ P̄+

` , the vertex operator theory (Hong and Kang,
2002, (10.4.4)) leads to a natural crystal isomorphism

B(λ) ∼→ B(ε(bλ))⊗B (8.1.9)
uλ 7→ uε(bλ)

⊗ bλ.

Definition 8.1.14. For λ ∈ P̄+
` , the ground state path of weight λ is the tensor product

pλ =
(

gk)
∞
k=0 = · · · ⊗ gk+1 ⊗ gk ⊗ · · · ⊗ g1 ⊗ g0,

where the elements gk ∈ B are such that

λ0 = λ g0 = bλ

λk+1 = ε(bλk ) gk+1 = bλk+1
for all k ≥ 0 · (8.1.10)

A tensor product p = (pk)
∞
k=0 = · · · ⊗ pk+1 ⊗ pk ⊗ · · · ⊗ p1 ⊗ p0 of elements pk ∈ B is said to be a λ-path

if pk = gk for k large enough.

Iterating the isomorphism (8.1.9), we obtain

B(λ) ∼→ B(λ1)⊗B
∼→ B(λ2)⊗B ⊗B

∼→ · · ·
uλ 7→ uλ1 ⊗ g0 7→ uλ2 ⊗ g1 ⊗ g0 7→ · · · ,

and this gives a natural bijection, stated in the next theorem.

Theorem 8.1.15. (Hong and Kang, 2002, Theorem 10.6.4) Let λ ∈ P̄+
` . Then there is a crystal isomorphism

B(λ) ∼→ P(λ)
uλ 7→ pλ

between the crystal base B(λ) of L(λ) and the set P(λ) of λ-paths.

We describe the crystal structure of P(λ) as follows (Hong and Kang, 2002, (10.48)). For any p =
(pk)

∞
k=0 ∈ P(λ), let N ≥ 0 be the smallest integer such that pk = gk for all k ≥ N. We then set

wtp = λN +
N−1

∑
k=0

wtpk,
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ẽip = · · · ⊗ gN+1 ⊗ ẽi (gN ⊗ · · · ⊗ p0) ,

f̃ip = · · · ⊗ gN+1 ⊗ f̃i (gN ⊗ · · · ⊗ p0) ,

εi(p) = max
(
εi(p

′)− ϕi(gN), 0
)

,

ϕi(p) = ϕi(p
′) + max

(
ϕi(gN)− εi(p

′), 0
)

,

where p′ := pN−1 ⊗ · · · ⊗ p1 ⊗ p0, and wt is viewed as the classical weight of an element of B or P(λ).

The explicit expression for the affine weight wtp in P is given in the following theorem, which is
known as the (KMN)2 crystal base character formula, and plays a key role in connecting characters with
partition generating functions.

Theorem 8.1.16. (Hong and Kang, 2002, Theorem 10.6.7) Let λ ∈ P̄+
` , let H be an energy function on B ⊗ B,

and let p = (pk)
∞
k=0 ∈ P(λ). Then the weight of p and the character of the irreducible highest weight Uq(ĝ)-

module L(λ) are given by the following expressions:

wtp = λ +
∞

∑
k=0

(wtpk −wtgk)−
(

∞

∑
k=0

(k + 1)
(

H(pk+1 ⊗ pk)− H(gk+1 ⊗ gk)
)) δ

d0
,

= λ +
∞

∑
k=0

(wtpk −wtgk)−
(

∞

∑
l=k

(H(pl+1 ⊗ pl)− H(gl+1 ⊗ gl))

)
δ, (8.1.11)

ch(L(λ)) = ∑
p∈P(λ)

ewtp. (8.1.12)

8.2 Perfect crystals and grounded partitions

Let B be a perfect crystal of level `. A specialisation of Theorem 8.1.16 gives the following corollary.

Corollary 8.2.1. Suppose that Λ is such that bΛ = bΛ = g, and set H(g⊗ g) = 0. Then wtg = 0, gk = g for
all k ∈ Z≥0, and we have

wtp = λ +
∞

∑
k=0

wtpk −
(

∞

∑
l=k

H(pl+1 ⊗ pl)

)
δ

d0
. (8.2.1)

In the remainder of this section, we make the connection between grounded partitions and crystal
base theory. Let us fix a weight Λ ∈ P̄+

` such that bΛ = bΛ = g, and assume that H(g⊗ g) = 0. Let
CB = {cb : b ∈ B} be the set of colours indexed by B. We define the binary relation m on ZCB by

kcb m k′cb′
if and only if k− k′ = H(b′ ⊗ b). (8.2.2)

This relation leads to the following.

Proposition 8.2.2. Let φ be the map between λ-paths and grounded partitions defined as follows:

φ : p 7→ (π0, . . . , πs−1, 0cg),

where p = (pk)k≥0 is a Λ-path in P(Λ), s ≥ 0 is the unique non-negative integer such that ps−1 6= g and
pk = g for all k ≥ s, and for all k ∈ {1, . . . , s− 1}, the part πk has colour cpk and size

s−1

∑
l=k

H(pk+1 ⊗ pk).

Then φ is a bijection between P(Λ) and Pm
cg . Furthermore, by taking cb = ewtb, we have for all π ∈ Pm

cg ,

e−Λ+wt(φ−1(π)) = C(π)e−
δ|π|
d0 . (8.2.3)

The bijective proof of the above proposition is given in Appendix A.4.2.

The next proposition allows us to describe the set P�cg of grounded partitions for the relation �
defined by

kcb � k′cb′
if and only if k− k′ ≥ H(b′ ⊗ b). (8.2.4)
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We refer to this relation as the minimal difference conditions. One can view the partitions of Pm
cg as the

partitions of P�cg such that the differences between consecutive parts are minimal. Note that contrarily
to Pm

cg , the set P�cg has some partitions π = (π0, . . . , πs−1, 0cg) such that c(πs−1) = cg. For this reason,
the set Pm

cg is not exactly the set of all minimal partitions of P�cg , but is related to it.

Proposition 8.2.3. Recall that Pcg is the set of grounded partitions where all parts have colour cg. There is a
bijection Φ between P�cg and Pm

cg ×Pcg , such that if Φ(π) = (µ, ν), then |π| = |µ|+ |ν|, and by setting cg = 1,
we have C(π) = C(µ).

A proof of the above proposition can be found in Appendix A.4.3.

We are now able to give a character formula in terms of generating functions for grounded partitions.

Theorem 8.2.4. Setting q = e−δ/d0 and cb = ewtb for all b ∈ B, we have cg = 1, and the character of the
irreducible highest weight Uq(ĝ)-module L(Λ) is given by the following expressions:

∑
π∈Pm

cg

C(π)q|π| = e−Λch(L(Λ)),

∑
π∈P�cg

C(π)q|π| =
e−Λch(L(Λ))

(q; q)∞
.

Proof. By Proposition 8.2.2 and (8.2.1),

∑
π∈Pm

cg

C(π)q|π| = ∑
p∈P(λ)

e−Λewtp = e−Λch(L(Λ)).

By Corollary 8.2.1, wtg = 0. Thus cg = e0 = 1, and Proposition 8.2.3 yields

∑
π∈P�cg

C(π)q|π| =
1

(q; q)∞
∑

π∈Pm
cg

C(π)q|π| =
e−Λch(L(Λ))

(q; q)∞
.

By this theorem, the characters of some irreducible highest weight modules of level ` can be com-
puted as the generating functions of some grounded partitions, in the very special case where the ground
state path of Λ is reduced to a constant sequence. In general, we can always reach this case by consider-
ing, for any perfect crystal B, the tensor product of B = B ⊗ B∨, where B∨ is the dual of B. However, it
is not always easy to compute an energy function for B⊗B knowing an energy function of B ⊗ B. We
then use in the next section the notion of multi-grounded partitions, that will allow us to deal with the
case where the ground state path is not a constant sequence.

8.3 Multi-grounded partitions

Let B be a perfect crystal of level `, and let Λ ∈ P̄+
` be a level ` dominant classical weight such that

the corresponding ground state path is pΛ = (gk)k≥0. By (8.1.10), since P` has a finite cardinality, the
sequence (gi)i≥0 is then periodic. We then set t to be the smallest non-negative integer k such that
gk = g0. This yields the following:

t−1

∑
k=0

wt(gk) =
t−1

∑
k=0

ϕ(gk)− ε(gk)

=
t−1

∑
k=0

ϕ(gk)− ϕ(gk+1) by (8.1.10)

= ϕ(g0)− ϕ(gt)

= 0 · (8.3.1)

Let H be an energy function on B ⊗ B. Since B ⊗ B is connected, H is then unique up to a constant. We
then define the function HΛ on B ⊗ B satisfying

HΛ(b⊗ b′) = H(b⊗ b′)− 1
t

t−1

∑
k=0

H(gk+1 ⊗ gk) (8.3.2)
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for all b, b′ ∈ B, which does not depend of the choice of H. We observe that HΛ is the unique function
on B ⊗ B which satisfies (8.1.8) the conditions of energy functions and such that

t−1

∑
k=0

HΛ(gk+1 ⊗ gk) = 0 · (8.3.3)

However, the function HΛ is not an energy function unless t divides ∑t−1
k=0 H(gk+1 ⊗ gk) for any energy

function H. Besides, we always have that HΛ(B ⊗ B) ⊂ Z ∈ 1
t Z. In the particular case when t = 1, HΛ

is then the unique energy function that satisfies HΛ(g0 ⊗ g0) = 0.

Let us now take any Λ-path p = (pk)k≥0 in P(Λ) different from the ground state path pΛ. There then
exists a unique positive integer m such that

(p(m−1)t, . . . , pmt−1) = (g0, . . . , gt−1)

(pm′t, . . . , pm′t+t−1) 6= (g0, . . . , gt−1) for all m′ ≥ m ·

Lemma 8.3.1. The weight wt(p) of p is given by the following formula:

wt(p) = Λ +
mt−1

∑
k=0

wt(pk)−
δ

d0

(
−1

t

t−1

∑
l=0

(l + 1)HΛ(gl+1 ⊗ gl) +
mt−1

∑
l=k

HΛ(pl+1 ⊗ pl)

)
· (8.3.4)

A proof of the above lemma can be found in Appendix A.4.1. Note that for any energy function H,
we always have

t−1

∑
k=0

(k + 1)HΛ(gk+1 ⊗ gk) =
t−1

∑
k=0

(k + 1)H(gk+1 ⊗ gk)−
t + 1

2

t−1

∑
k=0

H(gk+1 ⊗ gk) ∈
1
2

Z ·

The above number is an integer as soon as t is odd, and is equal to 0 when t = 1. We can then choose a
suitable divisor D of 2χ(t even)t such that DHΛ(B ⊗B) ⊂ Z and 1

t ∑t−1
k=0(k + 1)DHΛ(gk+1 ⊗ gk) ∈ Z. For

the particular case t = 1, we can choose D = 1.

Let us consider the set of color CB with indices in B, and let us define the relation m on ZCB by

kcb m k′cb′
⇐⇒ k− l = DHΛ(b′ ⊗ b) · (8.3.5)

By taking

u(k) = −1
t

t−1

∑
l=0

(l + 1)DHΛ(gl+1 ⊗ gl) +
t−1

∑
l=k

DHΛ(gl+1 ⊗ gl) , (8.3.6)

the colors cg0 , . . . , cgt−1 and the colored integers u(0)
cg0

, . . . , u(t−1)
cgt−1

satisfy the condition in Definition 2.1.22.
We can then define the multi-grounded partition with grounds cg0 , . . . , cgt−1 and relation m. We denote
by Pm

cg0 ···cgt−1
the set of all such partitions. We then obtain the following proposition, whose proof is

given in Appendix A.4.4.

Proposition 8.3.2. Let us define the map φ from P(Λ) to Pm
cg0 ···cgt−1

, such that φ(pΛ) = (u(0)
cg0

, . . . , u(t−1)
cgt−1

), and
for all pΛ 6= p ∈ P(Λ) and m defined above,

p 7→ (π0, · · · , πmt−1, u(0)
cg0

, . . . , u(t−1)
cgt−1

)

with c(πk) = cpk and

πk = −
1
t

t−1

∑
l=0

(l + 1)DHΛ(gl+1 ⊗ gl) +
mt−1

∑
l=k

DHΛ(pk+1 ⊗ pk) ,

for all k ∈ {0, · · · , mt− 1}. Then, φ defines a bijection between P(Λ) and the set tPm
cg0 ···cgt−1

of partitions of

Pm
cg0 ···cgt−1

with the number of parts divisible t. Furthermore, by setting cb = ewt(b) for all b ∈ B, we have for all
π ∈t Pm

cg0 ···cgt−1

e−Λ+wt(φ−1(π)) = C(π)e−
δ|π|
d0D . (8.3.7)
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We now define another set of multi-grounded partitions. Let� be the relation of ZCB defined by

kcb � k′cb′
⇐⇒ k− l ≥ DHΛ(b′ ⊗ b) · (8.3.8)

Here again, for

u(k) = −1
t

t−1

∑
l=0

(l + 1)DHΛ(gl+1 ⊗ gl) +
t−1

∑
l=k

DHΛ(gl+1 ⊗ gl) ,

the colors cg0 , . . . , cgt−1 and the colored integers u(0)
cg0

, . . . , u(t−1)
cgt−1

satisfy the condition in Definition 2.1.22.

In fact, the choice of the integers u(0), . . . , u(t−1) is unique, as they must satisfy both conditions

0 = u(0) − u(1) + u(1) − u(2) + · · ·+ u(t−2) − u(t−1) + u(t−1) − u(0)

≥ DHΛ(g1 ⊗ g0) + DHΛ(g2 ⊗ g1) + · · ·+ DHΛ(gt−1 ⊗ gt−2) + DHΛ(gt ⊗ gt−1)

= 0

and

0 = u(0) + · · ·+ u(t−1)

= u(0) − u(1) + 2(u(1) − u(2)) + · · ·+ t(u(t−1) − u(0)) + tu(0) ·

This implies that u(k) − u(k+1) = DHΛ(gk+1 ⊗ gk) for all k ∈ {0, . . . , t− 1} (with the convention u(0) =

u(t)) and that

u(0) = −1
t

t−1

∑
l=0

(l + 1)DHΛ(gl+1 ⊗ gl) ·

We then define the set P�cg0 ···cgt−1
of the multi-grounded partitions with grounds g0, . . . , gt−1 and the

relation� defined in (2.3.3). In particular for any positive integer d, we denote by dP�cg0 ···cgt−1
the set of

the partitions π = (π0, · · · , πs−1, u(0)
cg0

, . . . , u(t−1)
cgt−1

) of P�cg0 ···cgt−1
with c(πk) = cpk for all k ∈ {0, . . . , s− 1},

such that
πk − πk+1 − DHΛ(gk+1 ⊗ gk) ∈ dZ≥0 , (8.3.9)

where we set πs to be u(0)
cg0

. We finally set d
tP�cg0 ···cgt−1

to be the set of partitions of dP�cg0 ···cgt−1
with the

number of parts divisible by t. We then obtain the following proposition.

Proposition 8.3.3. Let dP be the set of classical partitions where all parts are divisible by d. There is a bijection
Φd between d

tP�cg0 ···cgt−1
and tPm

cg0 ···cgt−1
× dP , such that if Φd(π) = (µ, ν), then |π| = |µ|+ |ν|, and by setting

cg0 · · · cgt−1 = 1, we have C(π) = C(µ).

The proof of the above proposition is given in Appendix A.4.5. This proposition, along with Theorem
8.1.16, yields Theorem 2.3.1.

We remark that we can choose D = 1 when t = 1, and Theorem 8.2.4 is then implied by Theorem
2.3.1. The use of a parameter d allows us to have a finer equality, and appears especially practical when
DHΛ(B ⊗ B) ∈ dZ, in which case the parts of our partitions have the same congruence modulo d.
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Chapter 9

Level one standard modules of type
A(n)

n−1

9.1 Perfect crystal of type A(1)
n−1: tensor product of the vector repre-

sentation and its dual

We now describe the perfect crystal B used in Theorem 2.3.2. Throughout this section, we fix an integer
n ≥ 3.

Consider the Cartan datum for the matrix A = (aij)i,j∈N where for all i, j ∈ N ,

aij = 2δi,j − χ(i− j ≡ ±1 mod n). (9.1.1)

It corresponds to the affine type A(1)
n−1 (Hong and Kang, 2002, p. 10.1.1). We then have the corresponding

canonical central element c and null root δ, which are expressed in the following way:

c = h0 + h1 + · · ·+ hn−1,
δ = α0 + α1 + · · ·+ αn−1. (9.1.2)

Any dominant integral weight λ = k0Λ0 + · · ·+ kn−1Λn−1 ∈ P̄+ has level

〈c, λ〉 = k0 + · · ·+ kn−1.

Thus, the set of classical weights of level 1 is exactly P̄+
1 = {Λi : i ∈ N}, the set of fundamental weights.

A perfect crystal of level 1 is given by the crystal graph in Figure 9.1 (Hong and Kang, 2002, p. 11.1.1).

B : 0 1 n− 2 n− 1· · ·1 2 n− 21 n− 1

0

FIGURE 9.1: Vector representation B of for type A(1)
n−1(n ≥ 3)

The U′q(ĝ)-module corresponding to this crystal is called the vector representation of A(1)
n−1. The most

important property of this crystal is the order in which the arrows occur. The only purpose of labelling
the vertices is to ease the calculations in the remainder of this paper. Noting that this crystal graph is
cyclic, we identify N with the group (Z/nZ,+). In this way, the crystal graph of B can be defined
locally around each arrow i as shown on Figure 9.2.

B( i−→) : i− 1 ii

FIGURE 9.2: Local i-arrows of B
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Remark 9.1.1. For the type A(1)
1 , the Cartan matrix A is defined differently and is given by(

2 −2
−2 2

)
.

Nonetheless, the crystal graph of the vector representation behaves in the same way as in the case n ≥ 3.

For all i ∈ N , let vi be the element of B corresponding to the vertex labelled i. The functions of this
crystal are given by the following relations:

wtvi = Λi+1 −Λi for all i ∈ N , (9.1.3)
f̃ivi−1 = vi

ϕivi−1 = 1
f̃ivj = ϕivj = 0 if j 6= i− 1,

(9.1.4)


ẽivi = vi−1
εivi = 1

ẽivj = εivj = 0 if j 6= i.
(9.1.5)

We note that for this crystal, the unique maximal weight λ0, as defined in Condition (3) of Definition
8.1.13, is attained in v0 (i.e. λ0 = wtv0). For all i ∈ N , we have

wtv0 −wtvi =
i

∑
j=1

wtvj−1 −wtvj

=
i

∑
j=1

αj by (8.1.5).

The fact that the null root vanishes on h̄ implies that in P̄, α0 = −(α1 + · · ·+ αn−1). We also remark that
the crystal B has a unique minimal weight, attained in vn−1 :

wtvi −wtvn−1 =
n−1

∑
j=i+1

wtvj−1 −wtvj

=
n−1

∑
j=i+1

αj by (8.1.5).

Let us consider the dual B∨ of B, which is the crystal obtained from B by reversing the edges in its
graph, as shown on Figure 9.3.

B∨ : 0 1 n− 2 n− 1· · ·1 2 n− 21 n− 1

0

FIGURE 9.3: Dual B∨ of the vector representation for type A(1)
n−1(n ≥ 3)

Let v∨ denote the element of B∨ corresponding to v in B. We then have the relations

wtv∨ = −wtv , f̃iv∨ = (ẽiv)∨ , ϕiv∨ = εiv , ẽiv∨ = ( f̃iv)∨ and εiv∨ = ϕiv. (9.1.6)

Recall that the duality is an involution, since by the previous equalities, we have

( f̃i[(v∨)∨], ẽi[(v∨)∨], ϕi[(v∨)∨], εi[(v∨)∨]) = ( f̃i[(v∨)∨], ẽi[(v∨)∨], ϕiv, εiv), (9.1.7)

and the map v 7→ (v∨)∨ is an isomorphism between B and (B∨)∨. Thus (B∨)∨ can be identified with B.

The dual B∨ is also a perfect crystal of level 1, as its maximal weight is attained in the dual v∨n−1 of
the minimal vertex vn−1 of B.
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By Theorem 8.1.11, B ⊗ B∨ is a crystal for the tensor product of the vector representation of A(1)
n−1

and its dual, and the tensor rules (8.1.6) on B ⊗ B∨ become

ẽi(vk ⊗ v∨l ) =

{
ẽivk ⊗ v∨l if ϕi(vk) ≥ ϕi(vl)

vk ⊗ ẽiv∨l if ϕi(vk) < ϕi(vl)
,

f̃i(vk ⊗ v∨l ) =

{
f̃ivk ⊗ v∨l if ϕi(vk) > ϕi(vl)

vk ⊗ f̃iv∨l if ϕi(vk) ≤ ϕi(vl)
.

Using (9.1.4) and (9.1.5), we can draw the corresponding crystal graph, given in Figure 9.4.

B ⊗ B∨ : v0 ⊗ v∨n−1 v1 ⊗ v∨n−1 vn−2 ⊗ v∨n−1 vn−1 ⊗ v∨n−1

v0 ⊗ v∨n−2 v1 ⊗ v∨n−2 vn−2 ⊗ v∨n−2 vn−1 ⊗ v∨n−2

v0 ⊗ v∨2 v1 ⊗ v∨2 vn−2 ⊗ v∨2 vn−1 ⊗ v∨2

v0 ⊗ v∨1 v1 ⊗ v∨1 vn−2 ⊗ v∨1 vn−1 ⊗ v∨1

v0 ⊗ v∨0 v1 ⊗ v∨0 vn−2 ⊗ v∨0 vn−1 ⊗ v∨0

v2 ⊗ v∨n−1

v2 ⊗ v∨n−2

v2 ⊗ v∨2

v2 ⊗ v∨1

v2 ⊗ v∨0

n− 1 n− 1 n− 1 n− 1

n− 1

n− 1

n− 1

n− 1

2 2 2 2

2

2

2

2

1 1 1 1

1

1

1

1

0

0

0

0

0 0 0 0

FIGURE 9.4: tensor product B ⊗ B∨ for type A(1)
n−1(n ≥ 3)

Again, the crystal graph of B ⊗B∨ can be defined locally by giving the vertices adjacent to the edges
labelled i, as shown on Figure 9.5.

B ⊗ B∨( i−→) :

k /∈ {i− 1, i}

vk ⊗ v∨i vi−1 ⊗ v∨i vi ⊗ v∨i

vk ⊗ v∨i−1 vi ⊗ v∨i−1

vi−1 ⊗ v∨k vi ⊗ v∨k

i i

i

i

FIGURE 9.5: Subgraph with i-arrows

We obtain, for all i, the relations
ϕi(vi−1 ⊗ v∨i ) = εi(vi ⊗ v∨i−1) = 2
ϕi(vi ⊗ v∨i−1) = εi(vi−1 ⊗ v∨i ) = 0
ϕi(vi ⊗ v∨i ) = εi(vi ⊗ v∨i ) = 1
ϕi(vi−1 ⊗ v∨i−1) = εi(vi−1 ⊗ v∨i−1) = 0

,


ϕi(vk ⊗ v∨i ) = εi(vi ⊗ v∨k ) = 1
ϕi(vi−1 ⊗ v∨k ) = εi(vk ⊗ v∨i−1) = 1
ϕi(vk ⊗ v∨l ) = εi(vl ⊗ v∨k ) = 0

, ∀ l, k /∈ {i, i− 1}.

(9.1.8)

The local configurations for the vertices are given in Figure 9.6.
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k− l /∈ {±1}:
vi−1 ⊗ v∨i vi ⊗ v∨i

vi ⊗ v∨i−1

vk ⊗ v∨l i

i− 1

i + 1
i

i + 1

i− 1

k + 1k

l + 1

l

FIGURE 9.6: Local configurations

The values of the functions ε, ϕ defined in (8.1.4) are
ϕ(vi−1 ⊗ v∨i ) = ε(vi ⊗ v∨i−1) = 2Λi

ε(vi−1 ⊗ v∨i ) = ϕ(vi ⊗ v∨i−1) = Λi−1 + Λi+1

ϕ(vi ⊗ v∨i ) = ε(vi ⊗ v∨i ) = Λi

,

{
ϕ(vk ⊗ v∨l ) = Λk+1 + Λl

ε(vk ⊗ v∨l ) = Λl+1 + Λk
,

(9.1.9)

where k− l /∈ {0,±1}. For all k, l ∈ N , the weight of vk ⊗ v∨l is given by

wt(vk ⊗ v∨l ) = Λk+1 −Λk + Λl −Λl+1. (9.1.10)

We then observe that
〈c; ε(vk ⊗ v∨l )〉 = 1 + χ(k 6= l). (9.1.11)

By (Kang et al., 1992a, Lemma 4.6.2), since B and B∨ are perfect crystals of level 1, their tensor
product B is also a perfect crystal of level 1. We observe that the potential grounds of B are the vertices
vi ⊗ v∨i , since by (9.1.9), for all i ∈ N , we have that

ε(bΛi ) = Λi if and only if bΛi = vi ⊗ v∨i and ϕ(bΛi ) = Λi if and only if bΛi = vi ⊗ v∨i .

9.2 Proof of the character formulas

In this section, we prove our character formulas given in Theorems 2.3.3, and 2.3.4, under the assump-
tion that Theorem 2.3.2 is true. We will then prove Theorem 2.3.2 in the last two sections.

9.2.1 Proof of Theorem 2.3.3

By definition, the generalized colored partitions in P`,n are the grounded partitions with ground a`b`
with energy ∆. This exactly corresponds to the grounded partitions P�cg with ground cg and the color
correspondence cvl⊗v∨k

↔ akbl . Thus their generating functions are the same with the correspondence

ewtvi = bi, since by (9.1.10),
ewt(vl⊗v∨k ) = ewt(l)−wt(k) = b−1

k bl .

Using the character formula of Theorem 8.2.4, this gives the desired result.

9.2.2 Proof of Theorem 2.3.4

Finally, we turn to the proof of Theorem 2.3.4, which gives the expression of the character for L(Λ`) as a
sum of series with positive coefficients.

By the definition of characters, e−Λ`ch(L(Λ`)) can be expressed as a power series in e−αi for i ∈ N ,
or, by a change of variables, as a power series in e−δ and eαi for i 6= 0. By definition of the crystal
graph B, we have f̃ivi−1 = vi, so that by (8.1.5), we have wtvi−1 −wtvi = αi for i ∈ {1, . . . , n− 1} and
wtvn−1 −wtv0 = α0. The change of variables ewtvi = bi then gives eαi = bi−1b−1

i for i ∈ {1, . . . , n− 1}
and then

eα0 = bn−1b−1
0 =

n−1

∏
i=1

bib−1
i−1 =

n−1

∏
i=1

e−αi .
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The changes of variables are then natural, since for all i 6= 0, the weight αi in P is indeed a classical weight
in P̄. In addition, the series GP

n (b0q, · · · , b`−1q, b`, · · · , bn−1) can be expressed in terms of summands of
the form (

n−1

∏
i=0

bri
i

)
qm with

n−1

∑
i=0

ri = 0,

so that we can always retrieve the exponent of bi−1b−1
i , for all i ∈ {1, . . . , n− 1}, which corresponds to

∑i−1
j=0 rj. Thus the identification

e−δ ←→ q

eαi ←→ bi−1b−1
i

is unique, and our generalization of Primc’s identity allows us to retrieve the non-dilated version of the
characters for all the irreducible highest weight modules with classical weight of level 1 for the type
A(1)

n−1.

Looking at Formula (2.2.61), we obtain the following correspondences (recall that r1 = 0 = rn)

n−1

∏
i=1

b−ri+ri+1
i =

n−1

∏
i=1

(bi−1b−1
i )ri =

n−1

∏
i=1

eriαi

i−1

∏
j=0

bjb−1
i =

i

∏
j=1

(bj−1b−1
j )j = e∑i

j=1 jαj

By carrying out these transformations in (2.2.61), we then obtain by Theorem 2.2.43 that

e−Λ0ch(L(Λ0)) =
1

(e−δ; e−δ)n−1
∞

∑
s1,...,sn−1∈Z

sn=0

n−1

∏
i=1

esiαi esi(si+1−si)δ

=
1

(e−δ; e−δ)n−1
∞

∑
r1,...,rn−1 :
0≤rj≤j−1

rn=0

n−1

∏
i=1

eriαi eri(ri+1−ri)δ
(

e−i(i+1)δ; e−i(i+1)δ
)

∞

×
(
−e(iri+1−(i+1)ri−

i(i+1)
2 )δ+∑i

j=1 jαj ; e−i(i+1)δ
)

∞

×
(
−e((i+1)ri−iri+1−

i(i+1)
2 )δ−∑i

j=1 jαj ; e−i(i+1)δ
)

∞
.

Note that for all ` ∈ {0, . . . , n− 1} and j ∈ {1, . . . , n− 1}, the transformation bj 7→ bjqχ(j<`) is equivalent

to bj−1b−1
j 7→ qχ(j=`)bj−1b−1

j . This corresponds to the transformations eαj 7→ e−χ(j=`)δ+αj for all j ∈
{1, . . . , n− 1}, and Theorem 2.3.4 follows.

9.3 Proof of Theorem 2.3.2

We already know that the crystal graph of B⊗B is connected, as B is a perfect crystal. However, here
we reprove this by constructing the paths in this graph, as these paths will allow us to compute the
energy function. First, let us define some tools that will help us simplify the construction of the paths.

9.3.1 Symmetry in the crystal graph of B⊗B

First, we observe a symmetry in the crystal graph of B⊗B.

Proposition 9.3.1. Let B be a crystal, let B∨ be the dual of B, and let us set B = B ⊗ B∨. Denote by σ∨

the element in B∨ corresponding to σ ∈ B. Then for any σ1, σ2, σ3, σ4, τ1, τ2, τ3, τ4 ∈ B, we have the following
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equivalence in the crystal B⊗B :

f̃i[(σ1⊗ σ∨2 )⊗ (σ3⊗ σ∨4 )] = (τ1⊗ τ∨2 )⊗ (τ3⊗ τ∨4 )⇐⇒ ẽi[(σ4⊗ σ∨3 )⊗ (σ2⊗ σ∨1 )] = (τ4⊗ τ∨3 )⊗ (τ2⊗ τ∨1 ),
(9.3.1)

and an energy function H on B⊗B satisfies

H[(σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 )]− H[ f̃i((σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 ))] = H[(σ4 ⊗ σ∨3 )⊗ (σ2 ⊗ σ∨1 )]

− H[ẽi((σ4 ⊗ σ∨3 )⊗ (σ2 ⊗ σ∨1 ))]. (9.3.2)

Furthermore, there exists a path between (σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 ) and (τ1 ⊗ τ∨2 )⊗ (τ3 ⊗ τ∨4 ) if and only if there
exists a path between (σ4 ⊗ σ∨3 )⊗ (σ2 ⊗ σ∨1 ) and (τ4 ⊗ τ∨3 )⊗ (τ2 ⊗ τ∨1 ). Moreover, in the case where τ4 = τ1
and τ3 = τ2, we have

H[(σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 )] = H[(σ4 ⊗ σ∨3 )⊗ (σ2 ⊗ σ∨1 )]. (9.3.3)

The relevance of this proposition lies in the fact that if we find a path from (v0 ⊗ v∨0 )⊗ (v0 ⊗ v∨0 ) to
(vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k ), then we immediately have a path from (v0⊗ v∨0 )⊗ (v0⊗ v∨0 ) to (vk⊗ v∨l )⊗ (vk′ ⊗
v∨l′ ) as well, by reversing the edges and taking the symmetric of the vertices in the path. By (9.3.3), this
gives the following symmetry on the energy function:

H[(vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k )] = H[(vk ⊗ v∨l )⊗ (vk′ ⊗ v∨l′ )].

Besides, by (2.2.54), we have

∆(akbl ; ak′bl′) = χ(k ≥ k′)− χ(k = l = k′) + χ(l ≤ l′)− χ(l = k′ = l′)

=

{
χ(k > k′) + χ(l < l′) if l = k′

χ(k ≥ k′) + χ(l ≤ l′) if l 6= k′
, (9.3.4)

and then
∆(akbl ; ak′bl′) = ∆(al′bk′ ; albk).

Therefore, if we prove that H[(vl′ ⊗ v∨k′) ⊗ (vl ⊗ v∨k )] = ∆(akbl ; ak′bl′), we equivalently have H[(vk ⊗
v∨l ) ⊗ (vk′ ⊗ v∨l′ )] = ∆(al′bk′ ; albk). Thus, to prove Theorem 2.3.2 in Section 9.3.3, we will distinguish
several cases according to some relations between k, k′, l, l′, and by interchanging k ≡ l′ and k′ ≡ l, the
symmetry will then imply the remaining cases.

Proof of Proposition 9.3.1. First, let us recall (9.1.6). For all v ∈ B and i ∈ N , we have:

( f̃iv∨, ẽiv∨, ϕiv∨, εiv∨) = ((ẽiv)∨, ( f̃iv)∨, εiv, ϕiv),

so that wtv∨ = −wtv.
The tensor rules on B are given by:

ẽi(σ1 ⊗ σ∨2 ) =

{
ẽiσ1 ⊗ σ∨2 if ϕi(σ1) ≥ ϕi(σ2)

σ1 ⊗ ẽiσ
∨
2 if ϕi(σ1) < ϕi(σ2),

f̃i(σ1 ⊗ σ∨2 ) =

{
f̃iσ1 ⊗ σ∨2 if ϕi(σ1) > ϕi(σ2)

σ1 ⊗ f̃iσ
∨
2 if ϕi(σ1) ≤ ϕi(σ2),

or equivalently,

f̃i(σ2 ⊗ σ∨1 ) =

{
f̃iσ2 ⊗ σ∨1 if ϕi(σ2) > ϕi(σ1)

σ2 ⊗ (ẽiσ1)
∨ if ϕi(σ2) ≤ ϕi(σ1),

ẽi(σ2 ⊗ σ∨1 ) =

{
ẽiσ2 ⊗ σ∨1 if ϕi(σ2) ≥ ϕi(σ1)

σ2 ⊗ ( f̃iσ1)
∨ if ϕi(σ2) < ϕi(σ1).

Consider the involution η defined by

η : Bt {0} −→ Bt {0}
0 7−→ 0

σ1 ⊗ σ∨2 7−→ σ2 ⊗ σ∨1

.

The tensor rules on B give, for all i ∈ N ,

(η ◦ ẽi, η ◦ f̃i) = ( f̃i ◦ η, f̃i ◦ η),
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so that
(ϕi ◦ η, εi ◦ η) = (εi, ϕi).

By (8.1.8), we obtain, for all σ1, σ2, σ3, σ4 ∈ B ,

ϕi(σ1 ⊗ σ∨2 ) > εi(σ3 ⊗ σ∨4 )⇐⇒ f̃i((σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 )) = f̃i(σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 ) ·

By symmetry of the action of η, we deduce

ϕi(σ1 ⊗ σ∨2 ) > εi(σ3 ⊗ σ∨4 )⇐⇒ ϕi(η(σ3 ⊗ σ∨4 )) < εi(η(σ1 ⊗ σ∨2 ))

⇐⇒ ẽi(η(σ3 ⊗ σ∨4 )⊗ η(σ1 ⊗ σ∨2 )) = η(σ3 ⊗ σ∨4 )⊗ ẽi ◦ η(σ1 ⊗ σ∨2 )

⇐⇒ ẽi(η(σ3 ⊗ σ∨4 )⊗ η(σ1 ⊗ σ∨2 )) = η(σ3 ⊗ σ∨4 )⊗ η ◦ f̃i(σ1 ⊗ σ∨2 ).

We also obtain that

ϕi(σ1 ⊗ σ∨2 ) > εi(σ3 ⊗ σ∨4 ) and f̃i(σ1 ⊗ σ∨2 ) 6= 0

⇐⇒ H[(σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 )]− H[ f̃i(σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 ))] = χ(i = 0)

⇐⇒ H[η(σ3 ⊗ σ∨4 )⊗ η(σ1 ⊗ σ∨2 )]− H[ẽi(η(σ3 ⊗ σ∨4 )⊗ η(σ1 ⊗ σ∨2 ))] = χ(i = 0).

In the other case we have

ϕi(σ1 ⊗ σ∨2 ) ≤ εi(σ3 ⊗ σ∨4 )⇐⇒ f̃i((σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 )) = (σ1 ⊗ σ∨2 )⊗ f̃i(σ3 ⊗ σ∨4 )

⇐⇒ ẽi(η(σ3 ⊗ σ∨4 )⊗ η(σ1 ⊗ σ∨2 )) = η ◦ f̃i(σ3 ⊗ σ∨4 )⊗ η(σ1 ⊗ σ∨2 ),

and

ϕi(σ1 ⊗ σ∨2 ) ≤ εi(σ3 ⊗ σ∨4 ) and f̃i(σ3 ⊗ σ∨4 ) 6= 0

⇐⇒ H[(σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 )]− H[ f̃i((σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 ))] = −χ(i = 0)

⇐⇒ H[η(σ3 ⊗ σ∨4 )⊗ η(σ1 ⊗ σ∨2 )]− H[ẽi(η(σ3 ⊗ σ∨4 )⊗ η(σ1 ⊗ σ∨2 ))] = −χ(i = 0),

and we obtain (9.3.1) and (9.3.2).
Let us now define the involution

ζ : B⊗Bt {0} −→ B⊗Bt {0}
0 7−→ 0

(σ1 ⊗ σ∨2 )⊗ (σ3 ⊗ σ∨4 ) 7−→ (σ4 ⊗ σ∨3 )⊗ (σ2 ⊗ σ∨1 )
.

By (9.3.1), we see that ẽi ◦ ζ = ζ ◦ f̃i and f̃i ◦ ζ = ζ ◦ ẽi. Thus for all g1, · · · , gs ∈ {ẽi, f̃i : i ∈ N}, we have

ζ ◦ g1 ◦ · · · ◦ gs = g1 ◦ · · · ◦ gs ◦ ζ,

where f̃i = ẽi and ẽi = f̃i. Therefore, for b, b′ ∈ B⊗B, we have

g1 ◦ · · · ◦ gs(b) = b′ ⇐⇒ g1 ◦ · · · ◦ gs(ζ(b)) = ζ(b′),

so that there is a path between two vertices if and only if there is a path between their images by ζ. By (9.3.2), we
also observe that

H(b)− H(b′) = H(b)− H(gs(b)) + H(gs(b))− H(gs−1 ◦ gs(b)) + · · ·+ H(g2 ◦ · · · gs(b))− H(b′)
= H(ζ(b))− H(gs(ζ(b))) + H(gs(ζ(b)))− H(gs−1 ◦ gs(b)) + · · ·

+ H(g2 ◦ · · · gs(ζ(b))− H(ζ(b′))

= H(ζ(b))− H(ζ(b′)). (9.3.5)

Choosing any b′ such that b′ = ζ(b′) gives (9.3.3).
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9.3.2 Redefining the minimal differences ∆

To construct a path from (v0 ⊗ v∨0 )⊗ (v0 ⊗ v∨0 ) to (vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k ) and show that

H[(vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k )] = ∆(akbl ; ak′bl′),

we will distinguish the cases k′ = l and k′ 6= l. But first, let us define a tool which will make our problem
easier to solve.

Definition 9.3.2. Identify N with Z/nZ, and consider the natural order on N ,

0 < 1 < · · · < n− 2 < n− 1.

We also define, for all i, j ∈ N , the intervals

int(i, j) := {i + 1, i + 2, . . . , j− 1, j}.

Lemma 9.3.3. For all i ∈ N , we have the following:

i < i− 1 ⇐⇒ i = 0,
int(i, i) = N ,

I \ int(i, j) = int(i, j) ⇐⇒ i 6= j,
0 /∈ int(j, i) ⇐⇒ j < i,
0 ∈ int(i, j) ⇐⇒ j ≤ i.

The aim of this lemma is to rewrite the difference conditions ∆ according to the fact that 0 belongs to
some interval or not. By (9.3.4), ∆ can be reformulated as follows:

∆(akbl ; ak′bl′) =

{
χ(0 /∈ int(k′, k)) + χ(0 /∈ int(l, l′)) if l = k′

χ(0 ∈ int(k, k′)) + χ(0 ∈ int(l′, l)) if l 6= k′
. (9.3.6)

Proof of Lemma 9.3.3. The first equivalence is straightforward, since i > i − 1 if and only if i 6= 0, and
0 < n− 1 = −1. The second equality follows from the definition of int, since we go around N . Note
that

int(i, j) = {i + 1, i + 2, . . . , j− 1, j},

while
int(j, i) = {j + 1, j + 2, . . . , i− 1, i},

and if i 6= j, these two sets are complementary in N . Moreover, when i 6= j, we have i ∈ int(j, i) and
j ∈ int(i, j), so that both sets never equal ∅ or N . Otherwise, when i = j, they both equal N . This gives
the third equivalence.

For the fourth equivalence, the fact that 0 ∈ N gives

0 /∈ int(j, i)⇐⇒ 0 /∈ {j + 1, i + 2, . . . , j− 1, i},
⇐⇒ i 6= j and ∅ 6= {j + 1, j + 2, . . . , i− 1, i} ⊆ {1, . . . , n− 1}
⇐⇒ j < j + 1 ≤ i.

Finally, for the last equivalence, we note that

χ(j ≤ i) = χ(j < i) + χ(j = i)
= χ(j < i)χ(j 6= i) + χ(j = i)
= χ(0 /∈ int(j, i))χ(i 6= j) + χ(i = j)
= χ(0 ∈ int(i, j))χ(i 6= j) + χ(i = j)χ(0 ∈ int(i, i)).

This concludes the proof.

9.3.3 Construction of the paths in B ⊗ B
We are now ready to construct the paths in B⊗B, and use them to compute the energy function H[(vl′ ⊗
v∨k′)⊗ (vl ⊗ v∨k )]. We will use the relations in (9.1.8) and the local configurations of the vertices as defined
in (9.6). The symmetric of (vl′ ⊗ v∨k′) ⊗ (vl ⊗ v∨k ) is (vk ⊗ v∨l ) ⊗ (vk′ ⊗ v∨l′ ), obtained by interchanging
k′ ≡ l, l′ ≡ k. We distinguish several cases:
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1. k′ = l′ and l = k,

2. k′ = l 6= k = l′,

3. k′ = l and k 6= l′,

4. k′ 6= k = l = l′ (Symmetric: l 6= k = k′ = l′),

5. l′ 6= k′ = k 6= l (Symmetric: k 6= l = l′ 6= k′),

6. k 6= k′, k′ 6= l and l 6= l′

(a) k + 1, k′ /∈ int(l, l′) (Symmetric: l′ + 1, l /∈ int(k′, k)),

(b) k + 1 ∈ int(l, l′) and k′ /∈ int(l, l′) (Symmetric: l′ + 1 ∈ int(k′, k) and l /∈ int(k′, k))

(c) k + 1 /∈ int(l, l′) and k′ ∈ int(l, l′) (Symmetric: l′ + 1 /∈ int(k′, k) and l ∈ int(k′, k))

(d) k + 1, k′ ∈ int(l, l′) and l′ + 1, l ∈ int(k′, k).

The case k′ = l′ and l = k

We construct a path from (vk′ ⊗ v∨k′)⊗ (v′k ⊗ v∨k′) to (vk′ ⊗ v∨k′)⊗ (vl ⊗ v∨l ). We consider the case k′ 6= l,
as otherwise the two elements are the same. By (9.1.9), we have

ϕi(vk′ ⊗ v∨k′) = εi(vk′ ⊗ v∨k′) = χ(i = k′).

By the tensor rules (8.1.6), we then obtain the path

(vk′ ⊗ v∨k′)⊗ (vk′ ⊗ v∨k′)
k′−−→ (vk′ ⊗ v∨k′)⊗ (vk′ ⊗ v∨k′−1)

k′−1−−→ · · · l+1−−→︸ ︷︷ ︸
empty if k′=l+1

(vk′ ⊗ v∨k′)⊗ (vk′ ⊗ v∨l )

yk′+1

(vk′ ⊗ v∨k′)⊗ (vl ⊗ v∨l )
l←− (vk′ ⊗ v∨k′)⊗ (vl−1 ⊗ v∨l )

l−1←−− · · · k′+2←−− (vk′ ⊗ v∨k′)⊗ (vk′+1 ⊗ v∨l )︸ ︷︷ ︸
empty if k′+1=l

·

This path is only made of forward moves f̃i, with i ∈ int(l, k′) t int(k′, l) appearing once, where we
change the right side of the tensor products. By (8.1.8), we then have

H[(vk′ ⊗ v∨k′)⊗ (vl ⊗ v∨l )]−H[(vk′ ⊗ v∨k′)⊗ (vk′ ⊗ v∨k′)] = χ(0 ∈ int(l, k′)) + χ(0 ∈ int(k′, l)) = 1. (9.3.7)

By (9.3.3), we have the symmetry

H[(vl ⊗ v∨l )⊗ (vk′ ⊗ v∨k′)] = H[(vk′ ⊗ v∨k′)⊗ (vl ⊗ v∨l )].

Here we need to compute H((vk′ ⊗ v∨k′)⊗ (vk′ ⊗ v∨k′)). By interchanging k′ and l, we obtain a path be-
tween (vk′ ⊗ v∨k′)⊗ (vl ⊗ v∨l ) and (vl ⊗ v∨l )⊗ (vl ⊗ v∨l ), and

H[(vk′ ⊗ v∨k′)⊗ (vl ⊗ v∨l )]− H[(vl ⊗ v∨l )⊗ (vl ⊗ v∨l )] = 1.

We have a path from (vk′ ⊗ v∨k′)⊗ (vk′ ⊗ v∨k′) to (vl ⊗ v∨l )⊗ (vl ⊗ v∨l ) and

H[(vk′ ⊗ v∨k′)⊗ (vk′ ⊗ v∨k′)] = H[(vl ⊗ v∨l )⊗ (vl ⊗ v∨l )].

Recall that by definition, H[(v0 ⊗ v∨0 )⊗ (v0 ⊗ v∨0 )] = 0. Thus setting k′ = 0 yields by (9.3.6) that for all
l ∈ N ,

H[(vl ⊗ v∨l )⊗ (vl ⊗ v∨l )] = 0 = 2χ(0 /∈ int(l, l)) = ∆(albl ; albl). (9.3.8)

Plugging this into (9.3.7) gives, for all k′ 6= l,

H[(vk′ ⊗ v∨k′)⊗ (vl ⊗ v∨l )] = 1 = χ(0 ∈ int(l, k′)) + χ(0 ∈ int(k′, l)) = ∆(albl ; ak′bk′). (9.3.9)
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The case k′ = l 6= k = l′

We now construct a path from (vl ⊗ v∨l )⊗ (vk ⊗ v∨k ) to (vl ⊗ v∨k )⊗ (vk ⊗ v∨l ). By (9.1.9), we know that
εi(vk ⊗ v∨k ) = χ(i = k) and εi(vk ⊗ v∨l ) = 0 if i /∈ {l + 1, k}. Since k 6= l, we have for all i ∈ int(k, l) that

(vl ⊗ v∨i ) 6= (vl ⊗ v∨l+1), and then (vl ⊗ v∨i )
i−→ (vl ⊗ v∨i−1). We obtain the path

(vl ⊗ v∨l )⊗ (vk ⊗ v∨k )
k−→ (vl ⊗ v∨l )⊗ (vk ⊗ v∨k−1)

k−1−−→ · · · l+1−−→︸ ︷︷ ︸
empty if l+1=k

(vl ⊗ v∨l )⊗ (vk ⊗ v∨l )

yl

(vl ⊗ v∨k )⊗ (vk ⊗ v∨l )
k+1←−−− (vl ⊗ v∨k+1)⊗ (vk ⊗ v∨l )

k+2←−− · · · l−1←−− (vl ⊗ v∨l−1)⊗ (vk ⊗ v∨l )︸ ︷︷ ︸
empty if l=k+1

·

In the upper part of the path, we moved forward (by some f̃i) by modifying the right side of the tensor
product with arrows in int(l, k) appearing once. Then, in the lower part of the path, we moved forward
by modifying the left side of the tensor product with arrows in int(k, l) appearing once. Using that k 6= l,
the energy function satisfies:

H[(vl ⊗ v∨k )⊗ (vk ⊗ v∨l )] = H[(vl ⊗ v∨l )⊗ (vk ⊗ v∨k )] + χ(0 ∈ int(l, k))− χ(0 ∈ int(k, l)) by (8.1.8)
= 1 + 2χ(0 ∈ int(l, k))− 1 by (9.3.9)
= ∆(albk; akbl) by (9.3.6).

The case k′ = l and k 6= l′

The vertices (vl′ ⊗ v∨l )⊗ (vl ⊗ v∨k ) and (vk ⊗ v∨l )⊗ (vl ⊗ v∨l′ ) are symmetric.
Since k 6= l′, we have that int(k, l) 6= int(l′, l). By symmetry, we can assume that int(l′, l) 6⊂ int(k, l) ⊂

int(l′, l), so that l′ + 1 /∈ int(k, l). In that case, we necessarily have k 6= l. Then, ϕl(vl′ ⊗ v∨l ) = 1 =
ε l(vl ⊗ v∨l ) and ϕi(vl′ ⊗ v∨l ) = 0 for all i ∈ int(k, l) \ {l}, and we have the path

(vl ⊗ v∨l )⊗ (vl ⊗ v∨l )
l←− (vl−1 ⊗ v∨l )⊗ (vl ⊗ v∨l )

l−1←−− · · · l′+1←−−︸ ︷︷ ︸
empty if l=l′

(vl′ ⊗ v∨l )⊗ (vl ⊗ v∨l )

yl

(vl′ ⊗ v∨l )⊗ (vl ⊗ v∨k )
k+1←−−− · · · l+1←−−− (vl′ ⊗ v∨l )⊗ (vl ⊗ v∨l−1)

and the energy function is given by

H[(vl′ ⊗ v∨l )⊗ (vl ⊗ v∨k )] = χ(l′ 6= l)χ(0 ∈ int(l′, l)) + χ(0 ∈ int(k, l)) by (8.1.8)
= χ(0 /∈ int(l, l′)) + χ(0 /∈ int(l, k)) by Lemma 9.3.3
= ∆(akbl ; albl′) by (9.3.6).

This was the last case where k′ = l. Also, we have already studied a special case where k′ 6= l, which
was the case l′ = k′ 6= l = k. We now study the other cases where k′ 6= l.

The case k′ 6= k = l = l′ (Symmetric case: l 6= k = k′ = l′)

Since l /∈ int(l, k′), we have the path

(vl+1 ⊗ v∨l+1)⊗ (vl ⊗ v∨l )
l+1←−− (vl ⊗ v∨l+1)⊗ (vl ⊗ v∨l )

l+2←−− · · · k′←−−︸ ︷︷ ︸
empty if k′=l+1

(vl ⊗ v∨k′)⊗ (vl ⊗ v∨l ) .

Thus the energy function satisfies

H[(vl ⊗ v∨k′)⊗ (vl ⊗ v∨l )] = 1 + χ(0 ∈ int(l, k′)) by (8.1.8) and (9.3.9)
= χ(0 ∈ int(l, l)) + χ(0 ∈ int(l, k′)) by Lemma 9.3.3
= ∆(albl ; ak′bl) by (9.3.6).
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The case l′ 6= k′ = k 6= l (Symmetric case: k 6= l = l′ 6= k′)

We first assume that l′ + 1 /∈ int(k′, l). Since l′ 6= k′, it means that

int(l′, k′) t int(k′, l) = int(l′, l).

Since l′ + 1 and k′ do not belong to int(k′, l), we have by (9.1.9) that ϕi(vl′ ⊗ v∨k′) = 0 for all i ∈ int(k′, l).
This gives the path

(vl′+1 ⊗ v∨l′+1)⊗ (vk′+1 ⊗ v∨k′+1)
l′+1←−−− (vl′ ⊗ v∨l′+1)⊗ (vk′+1 ⊗ v∨k′+1)

l′+2←−− · · · k′←−−︸ ︷︷ ︸
empty if k′=l′+1

(vl′ ⊗ v∨k′)⊗ (vk′+1 ⊗ v∨k′+1)

yk′+1

(vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k′)
l←− · · · k′+2←−−−− (vl′ ⊗ v∨k′)⊗ (vk′+1 ⊗ v∨k′)︸ ︷︷ ︸

empty if k′+1=l

·

We deduce the following formula for the energy function:

H[(vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k′)] = 1 + χ(0 ∈ int(l′, k′)) + χ(0 ∈ int(k′, l)) by (8.1.8) and (9.3.9)
= χ(0 ∈ int(k′, k′)) + χ(0 ∈ int(l′, l)) by Lemma 9.3.3
= ∆(ak′bl ; ak′bl′) by (9.3.6).

Let us now assume that l′ + 1 ∈ int(k′, l). Since int(k′, l) 6= ∅ and l′ 6= k′, we necessarily have that
k′ + 1 6= l and int(k′, l′) ⊂ int(k′, l − 1), so that l′ 6= l. Note also that, by (9.1.9),

ϕk′(vl′ ⊗ v∨k′−1) = 0 = εk′(vk′−1 ⊗ v∨k′),

since k′ 6= l′ + 1, and ϕi(vl′ ⊗ v∨k′) = 0 for all i ∈ int(l, k′) \ {k′}. We then have the path

(vk′ ⊗ v∨k′−1)⊗ (vk′ ⊗ v∨k′−1)
k′←−︸︷︷︸
•

(vk′ ⊗ v∨k′−1)⊗ (vk′ ⊗ v∨k′)
k′+1−−→ · · · l′−−→︸ ︷︷ ︸

nonempty since k′ 6=l′+1

(vl′ ⊗ v∨k′−1)⊗ (vk′ ⊗ v∨k′)

xk′︸︷︷︸
?

(vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k′)
l+1−−−→ · · · k′−1−−−→︸ ︷︷ ︸

•

(vl′ ⊗ v∨k′)⊗ (vk′−1 ⊗ v∨k′)
k′−−→︸︷︷︸
?

(vl′ ⊗ v∨k′−1)⊗ (vk′−1 ⊗ v∨k′) ·

By the previous case (l′ 6= k′ = k 6= l), we obtain the energy function

H[(vk′ ⊗ v∨k′−1)⊗ (vk′ ⊗ v∨k′−1)] = χ(0 ∈ int(k′, k′)) + χ(0 ∈ int(k′ − 1, k′ − 1)) = 2χ(0 ∈ int(k′, k′)).
(9.3.10)

In the computation of H, by (8.1.8), the moves marked by ? cancel each other, since it is the same arrow
that operates backward consecutively on the right and on the left side of the tensor product. Besides,
the moves marked by • give int(l, k′) and operate backward on the right side of the tensor product. As
a consequence,

H[(vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k′)] = H[(vk′ ⊗ v∨k′−1)⊗ (vk′ ⊗ v∨k′−1)]− χ(0 ∈ int(k′, l′))− χ(0 ∈ int(l, k′)) by (8.1.8)
= 2χ(0 ∈ int(k′, k′))− χ(0 ∈ int(k′, l′))− χ(0 ∈ int(l, k′)) by (9.3.10)
= χ(0 ∈ int(k′, k′)) + χ(0 ∈ int(k′, l))− χ(0 ∈ int(k′, l′))
= χ(0 ∈ int(k′, k′)) + χ(0 ∈ int(l′, l)) by Lemma 9.3.3
= ∆(ak′bl ; ak′bl′) by (9.3.6).

The case k 6= k′, k′ 6= l and l 6= l′

The sub-case k + 1, k′ /∈ int(l, l′) (Symmetric case : l′ + 1, l /∈ int(k′, k)) We have l′ + 1, k′ /∈ int(l, l′),
so that ϕi(vl′ ⊗ v∨k′) = 0 for all i ∈ int(l, l′). Besides, k + 1 /∈ int(l, l′), so that ẽi(vi ⊗ v∨k ) = (vi−1 ⊗ v∨k ).
We obtain the path

(vl′ ⊗ v∨k′)⊗ (vl′ ⊗ v∨k )
l′←− · · · l+1←−−− (vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k ).
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By Case 7.4 and the symmetric of Case 7.5, we have

H[(vl′ ⊗ v∨k′)⊗ (vl′ ⊗ v∨k )] = χ(0 ∈ int(k, k′)) + χ(0 ∈ int(l′, l′)), (9.3.11)

and the energy function becomes

H[(vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k )] = H[(vl′ ⊗ v∨k′)⊗ (vl′ ⊗ v∨k )]− χ(0 ∈ int(l, l′)) by (8.1.8)
= χ(0 ∈ int(k, k′)) + χ(0 ∈ int(l′, l′))− χ(0 ∈ int(l, l′)) by (9.3.11)
= χ(0 ∈ int(k, k′)) + χ(0 ∈ int(l′, l)) by Lemma 9.3.3
= ∆(akbl ; ak′bl′) by (9.3.6).

The sub-case k + 1 ∈ int(l, l′) and k′ /∈ int(l, l′) (Symmetric case: l′ + 1 ∈ int(k′, k) and l /∈ int(k′, k))
This case is very similar to the previous one. We use the following path:

(vl′ ⊗ v∨k′)⊗ (vl′ ⊗ v∨k )
l′←− · · · k+2←−−− (vl′ ⊗ v∨k′)⊗ (vk+1 ⊗ v∨k )︸ ︷︷ ︸

?

k−→︸︷︷︸
•

(vl′ ⊗ v∨k′)⊗ (vk+1 ⊗ v∨k−1)xk+1︸︷︷︸
?

(vl′ ⊗ v∨k′)⊗ (vl′ ⊗ v∨k )
l+1−−−→ · · · k−→ (vl′ ⊗ v∨k′)⊗ (vk ⊗ v∨k )︸ ︷︷ ︸

?

k−→︸︷︷︸
•

(vl′ ⊗ v∨k′)⊗ (vk ⊗ v∨k−1)

Note that the moves marked by • cancel each other, and the moves marked by ? give int(l, l′), so that
the calculation is the same as in the previous case.

The sub-case k + 1 /∈ int(l, l′) and k′ ∈ int(l, l′) (Symmetric case: l′ + 1 /∈ int(k′, k) and l ∈ int(k′, k))
We have l, k + 1 /∈ int(l, l′), so that εi(vl ⊗ v∨k ) = 0 for all i ∈ int(l, l′). Note that k′ + 1 ∈ int(l, l′), since
k′ ∈ int(l, l′) and k′ 6= l′. This gives the path

(vl ⊗ v∨k′)⊗ (vl ⊗ v∨k )
l+1−−−→ · · · k′−−→ (vk′ ⊗ v∨k′)⊗ (vl ⊗ v∨k )︸ ︷︷ ︸

?

k′−−→︸︷︷︸
•

(vk′ ⊗ v∨k′−1)⊗ (vl ⊗ v∨k )yk′+1︸ ︷︷ ︸
?

(vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k )
l′←− · · · k′+2←−−−− (vk′+1 ⊗ v∨k′)⊗ (vl ⊗ v∨k )︸ ︷︷ ︸

?

k′−−→︸︷︷︸
•

(vk′+1 ⊗ v∨k′−1)⊗ (vl ⊗ v∨k )

As before, the moves marked by • cancel each other, and the moves ? give int(l, l′). We move with the
f̃i’s by changing the left side of the tensor product, and we get

H[(vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k )] = H[(vl ⊗ v∨k′)⊗ (vl ⊗ v∨k )]− χ(0 ∈ int(l, l′)) by (8.1.8)
= χ(0 ∈ int(k, k′)) + χ(0 ∈ int(l, l))− χ(0 ∈ int(l, l′)) by (9.3.11)
= χ(0 ∈ int(k, k′)) + χ(0 ∈ int(l′, l)) by Lemma 9.3.3
= ∆(akbl ; ak′bl′) by (9.3.6).

The sub-case k + 1, k′ ∈ int(l, l′) and l′ + 1, l ∈ int(k′, k) Note that this case overlaps with the case
k′ = l′ 6= k = l that we already checked in the first part. Omitting that case, we can assume by
symmetry that k 6= l. We obtain the path

(vl′ ⊗ v∨l′ )⊗ (vk ⊗ v∨k )
l′−→ · · · k′+1−−−→︸ ︷︷ ︸

empty if k′=l′

(vl′ ⊗ v∨k′)⊗ (vk ⊗ v∨k )
k←− · · · l+1←−−− (vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k ) ·

Since k 6= l, the fact that l ∈ int(k′, k) implies that int(k′, k) = int(k′, l) t int(l, k), and the fact that
k + 1 ∈ int(l, l′) implies that int(l, l′) = int(l, k) t int(k, l′), so that k′, l′ + 1 /∈ int(l, k). Also, if k′ 6= l′,
then l′ + 1 ∈ inter(k′, k) implies that int(k′, k) = int(k′, l′) t int(l′, k), so that k /∈ int(k′, l′). Since l 6= l′

and k′ 6= l, the fact that k′ ∈ int(l, l′) implies that

int(l′, k′) = int(l′, l) t int(l, k′),
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and the fact that l ∈ int(k′, k) and l 6= k implies that

int(l, k′) = int(l, k) t int(k, k′).

Thus the computation of H gives

H[(vl′ ⊗ v∨k′)⊗ (vl ⊗ v∨k )] = 1− χ(k′ 6= l′)χ(0 ∈ int(k′, l′))− χ(0 ∈ int(l, k)) by (8.1.8) and (9.3.9)
= 1− χ(0 /∈ int(l′, k′))− χ(0 ∈ int(l, k)) by Lemma 9.3.3
= χ(0 ∈ int(l′, k′))− χ(0 ∈ int(l, k))
= χ(0 ∈ int(l′, l)) + χ(0 ∈ int(l, k′))− χ(0 ∈ int(l, k))
= χ(0 ∈ int(l′, l)) + χ(0 ∈ int(k, k′))
= ∆(akbl ; ak′bl′) by (9.3.6).

We have checked all the possible choices of k, l, k′, l′. Our proof of Theorem 2.3.2 is thus complete.
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Chapter 10

Level one standard modules of
A(2)

2n , D(2)
n+1, A(2)

2n−1, B(1)
n , D(1)

n

In this chapter, we compute the character formula corresponding to the following level one weights:

• Λ0 for the affine type A(2)
2n (n ≥ 2),

• Λ0 and Λn for the affine type D(2)
n+1(n ≥ 2),

• Λ0, Λ1 for the affine type A(1)
2n−1(n ≥ 3),

• Λ0, Λ1, Λn for the affine type B(1)
n (n ≥ 3),

• Λ0, Λ1, Λn−1, Λn for the affine type D(1)
n (n ≥ 4).

10.1 Case of affine type A(2)
2n (n ≥ 2)

The crystal B of the vector representation of A(2)
2n (n ≥ 2) is given by the crystal graph below

B :

bΛ0 = bΛ0 = 0

pΛ0 = (· · · 000)

0

1 2 n− 1 n· · ·

1 2 n− 1 n· · ·

0

0

1

1

2

2

n− 2

n− 2

n− 1

n− 1

n

FIGURE 10.1: Crystal graph B of the vector representation for type A(2)
2n (n ≥ 2)

with wt(0) = 0 and for all u ∈ {1, . . . , n},

−wt(u) = wtu =
1
2

αn +
n−1

∑
i=u

αi · (10.1.1)

Here, we have δ = αn + 2 ∑n−1
i=0 αi. We thus obtain the following crystal graph for B ⊗ B
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: 0-arrow

: n-arrow

: paths of i-arrows, for consecutive i 6= 0, n

: connected components without 0-arrows
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FIGURE 10.2: Crystal graph of B ⊗ B for type A(2)
2n (n ≥ 2)

We then consider the set of states C = {c1, . . . , cn, cn, . . . , c1, c0}, cg = c0, and by setting ε′(cu, cv) =
H(v⊗ u) and H(0⊗ 0) = 0, we obtain the following energy matrix for ε′:


c1 · · · c1 c0

c1 2 · · · 2 1
...

...
. . .

...
...

c1 0 · · · 2 1
c0 1 · · · 1 0

 ·
This energy matrix can be obtain by taking the energy matrix of ε defined by


c1 · · · c1 c0

c1 1 · · · 1 1
...

...
. . .

...
...

c1 0 · · · 1 1
c0 0 · · · 0 0


followed by the transformation

(q, c1, c1, . . . , cn, cn) 7→ (q2, c1q−1, c1q−1, . . . , cnq−1, cnq−1) · (10.1.2)

This means that, for c 6= c0, the particle kc for the energy ε is identified as the particle (2k− 1)c for the
energy ε′, and since we do not modify the ground c0, the particle kc0 for ε is identified as (2k)c0 for ε′, so
that the last particle still remains 0c0 .

By setting c0 = 1, we can apply Theorem 2.2.24 to the flat partitions with ground c0 and with energy
ε to obtain the generation function

∑
π∈F ε,cg

1

C(π)q|π| = ∑
π∈Rε,cg

1

C(π)q|π| = (−c1q,−c1q, . . . ,−cnq,−cnq; q)∞ ·

In fact, by the definition of the energy ε, one can view the partitions ofRε,cg
1 as the finite sub-sequences,

ending with 0c0 , of the infinite sequence

· · · �ε 3c1 �ε 2c1
�ε · · · �ε 2c1 �ε 1c1

�ε · · · �ε 1cn �ε 1cn �ε · · · �ε 1c1 �ε 0c0 ·

Using (10.1.2), the flat partitions with ground cg and energy ε′ are generated by the function

(−c1q,−c1q, . . . ,−cnq,−cnq; q2)∞ ·

Using Theorem 8.2.4 and (10.1.1), we obtain the formula for the character for Λ0 given in Theorem 2.3.6.
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Another way to retrieve Theorem 2.3.6 is to consider in Theorem 2.3.1 the set 2
1P�c0

, with D = 1. This
set consists of the partitions grounded in c0, and which are finite subsequences of

· · · �ε 5c1 �ε 4c0 �ε 3c1
�ε · · · �ε 3c1 �ε 2c0 �ε 1c1

�ε · · · �ε 1cn �ε 1cn �ε · · · �ε 1c1 �ε 0c0 ,

with possible repeated parts 2kc0 for k > 0. It suffices to observe that, by definition of 2
1P�c0

, the size
difference between the two consecutive parts with colors cb and cb′ has the same parity as HΛ0(b

′⊗ b) =
H(b′ ⊗ b). This implies that all the parts with colors c1, c1, . . . , cn, cn have the same parity, different from
the parity of the parts with color c0. Since the ground have size 0 and color c0, we obtain the sequence
above.

By setting c0 = 1, we then obtain

∑
π∈2

1P
�
cg0 ···cgt−1

C(π)q|π| =
(−c1q,−c1q, . . . ,−cnq,−cnq; q2)∞

(q2; q2)∞
·

Using (2.3.7) yields Theorem 2.3.6.

10.2 Case of affine type D(2)
n+1(n ≥ 2)

The crystal graph of the vector representation B of D(1)
n+1(n ≥ 2) is the following,

B :

pΛ0 = (· · · 0 0 0 0)

pΛn = (· · · 0 0 0 0)

0 0

1 2 n− 1 n· · ·

1 2 n− 1 n· · ·

0

0

1

1

2

2

n− 2

n− 2

n− 1

n− 1

n

n

FIGURE 10.3: Crystal graph B of the vector representation for type D(2)
n+1(n ≥ 2)

with wt(0) = wt(0) = 0 and for all u ∈ {1, . . . , n},

−wt(u) = wtu =
n

∑
i=u

αi · (10.2.1)

Here, we have δ = ∑n
i=0 αi. We thus obtain the following crystal graph for B ⊗ B

: 0-arrow

: n-arrow

: chains of two n-arrows

: vertex of the form 0⊗ · or · ⊗ 0

: paths of i-arrows, for consecutive i 6= 0, n

: connected components without 0-arrows
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FIGURE 10.4: Crystal graph of B ⊗ B for type D(2)
n+1(n ≥ 2)
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Consider the set of states C = {c1, . . . , cn, c0, cn, . . . , c1, c0}. By setting ε′(cu, cv) = H(v ⊗ u) and
H(0⊗ 0) = 0, this yields the following energy matrix for ε′:



c1 · · · cn c0 cn · · · c1 c0

c1 2 · · · 2 2 2 · · · 2 1
...

...
. . .

...
...

... 2?
...

...
cn 0 · · · 2 2 2 · · · 2 1
c0 0 · · · 0 0 2 · · · 2 1
cn 0 · · · 0 0 2 · · · 2 1
...

... 0?
...

...
...

. . .
...

...
c1 0 · · · 0 0 0 · · · 2 1
c0 1 · · · 1 1 1 · · · 1 0


· (10.2.2)

10.2.1 Character for Λ0

In the following, the ground is set to be cg = c0 = 1. We obtain the energy matrix in (10.2.2) by
considering the energy matrix for ε



c1 · · · cn c0 cn · · · c1 c0

c1 1 · · · 1 1 1 · · · 1 1
...

...
. . .

...
...

... 1?
...

...
cn 0 · · · 1 1 1 · · · 1 1
c0 0 · · · 0 0 1 · · · 1 1
cn 0 · · · 0 0 1 · · · 1 1
...

... 0?
...

...
...

. . .
...

...
c1 0 · · · 0 0 0 · · · 1 1
c0 0 · · · 0 0 0 · · · 0 0


followed by the transformation

(q, c0, c1, c1, . . . , cn, cn) 7→ (q2, c0q−1, c1q−1, c1q−1, . . . , cnq−1, cnq−1) · (10.2.3)

By applying Theorem 2.2.24 to the corresponding flat partitions with ground c0 and energy ε, this leads
to the generation function

∑
π∈F ε,cg

1

C(π)q|π| = ∑
π∈Rε,cg

1

C(π)q|π| =
(−c1q,−c1q, . . . ,−cnq,−cnq; q)∞

(c0q; q)
·

In fact, by the definition of the energy ε, one can view the partitions ofRε,cg
1 as the finite sub-sequences,

ending with 0c0 , of the infinite sequence

· · · �ε 3c1 �ε 2c1
�ε · · · �ε 2c1 �ε 1c1

�ε · · · �ε 1cn �ε 1c0
�ε 1cn �ε · · · �ε 1c1 �ε 0c0 ·

with the particles kc0
possibly repeated. Using (10.2.3), we then have that the flat partitions with ground

c0 and energy ε′ are generated by the function

(−c1q,−c1q, . . . ,−cnq,−cnq; q2)∞

(c0q; q2)
·

By Theorem 8.2.4, (10.2.1) and the fact that c0 = 1 with the convention of Theorem 8.2.4, we finally

obtain the formula for the character in Theorem 2.3.7 corresponding to Λ0. As for the case A(2)
2n (n ≥ 2),

the character formula can be obtained by (2.3.7) with t = D = 1 and d = 2 and ground c0.
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10.2.2 Character for Λn

Here we set the ground to be cg = c0 = 1. The energy matrix in (10.2.2) is obtained by considering the
energy matrix of ε



c1 · · · cn c0 cn · · · c1 c0

c1 1 · · · 1 1 0 · · · 0 0
...

...
. . .

...
...

... 0?
...

...
cn 0 · · · 1 1 0 · · · 0 0
c0 0 · · · 0 0 0 · · · 0 0
cn 1 · · · 1 1 1 · · · 1 1
...

... 1?
...

...
...

. . .
...

...
c1 1 · · · 1 1 0 · · · 1 1
c0 1 · · · 1 1 0 · · · 0 0


≡



cn · · · c1 c0 c1 · · · cn c0
cn 1 · · · 1 1 1 · · · 1 1
...

...
. . .

...
...

... 1?
...

...
c1 0 · · · 1 1 1 · · · 1 1
c0 0 · · · 0 0 1 · · · 1 1
c1 0 · · · 0 0 1 · · · 1 1
...

... 0?
...

...
...

. . .
...

...
cn 0 · · · 0 0 0 · · · 1 1
c0 0 · · · 0 0 0 · · · 0 0


,

followed by the transformation

(q, c0, c1, . . . , cn) 7→ (q2, c0q−1, c1q−2, . . . , cnq−2) · (10.2.4)

Here the particle kc0 for ε is transformed into (2k− 1)c0 for ε′, and the particle kci
into (2k− 2)ci

. Since
c0 and ci are not modified, the particle kc then becomes (2k)c for any c ∈ {c0, ci : i ∈ {1, . . . , n}}.

Applying Theorem 2.2.24 to the flat partitions with ground c0 and energy ε, this leads to the gener-
ating function

∑
π∈F ε,cg

1

C(π)q|π| = ∑
π∈Rε,cg

1

C(π)q|π| =
(−c1q,−c1q, . . . ,−cnq,−cnq; q)∞

(c0q; q)
·

In fact, by the definition of the energy ε, one can view the partitions ofRε,cg
1 as the finite sub-sequences,

ending with 0c0
, of the infinite sequence

· · · �ε 3cn �ε 2cn �ε · · · �ε 2cn �ε 1cn �ε · · · �ε 1c1 �ε 1c0 �ε 1c1
�ε · · · �ε 1cn �ε 0c0

,

with the particles kc0 possibly repeated. Using (10.2.4), the flat partitions with ground c0 and energy ε′

are generated by the function
(−c1q2,−c1, . . . ,−cnq2,−cn; q2)∞

(c0q; q2)
·

By Theorem 8.2.4, (10.2.1) and the fact that c0 = 1 with the convention of Theorem 8.2.4, the formula for
the character in Theorem 2.3.7 corresponding to Λn holds. This character formula can also be obtained
by (2.3.7) with t = D = 1 and d = 2 and ground c0.

10.3 Case of affine type A(1)
2n−1(n ≥ 3)

The crystal graph of the vector representation B of A(2)
2n−1(n ≥ 3) is the following,

B :

bΛ0 = bΛ1 = 1 bΛ1 = bΛ0 = 1

pΛ0 = (· · · 1 1 1 1 1) pΛ1 = (· · · 1 1 1 1 1)

1 2 n− 1 n· · ·

1 2 n− 1 n· · ·
0 0

1

1

2

2

n− 2

n− 2

n− 1

n− 1

n

FIGURE 10.5: Crystal graph B of the vector representation for type A(2)
2n−1(n ≥ 3)

and for all u ∈ {1, . . . , n},

−wt(u) = wtu =
1
2

αn +
n−1

∑
i=u

αi · (10.3.1)
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Here,

δ = α0 + α1 + αn + 2
n−1

∑
i=2

αi ·

We thus have the following crystal graph for B ⊗ B

: 0-arrow
: 1-arrow

: n-arrow

: paths of i-arrows, for consecutive i 6= 0, 1, n

: connected component of 1⊗ 1

: connected component of 1⊗ 2

: connected component of 1⊗ 1

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗n n n n n n n

n

n

n

n

n

n

n

n n n n n n nn

n

n

n

n

n

n

2 2 2 2 2 2 2

2

2

2

2

2

2

2

1 1 1 1 1 1 1

1

1

1

1

1

1

1

1 1 1 1 1 1 1

1

1

1

1

1

1

1

2 2 2 2 2 2 2

2

2

2

2

2

2

2

n n n n n n n

n

n

n

n

n

n

n

FIGURE 10.6: Crystal graph of B ⊗ B for type A(2)
2n−1(n ≥ 3)

We then consider C = {c1, . . . , cn, cn, . . . , c1}, and by setting H(1⊗ 1) = −1, we obtain the following
energy matrix: 

cn · · · c2 c1 c1 c2 · · · cn

cn 1 · · · 1 1 0 0 · · · 0
... 0

. . .
...

...
...

... 0?
...

c2 0 · · · 1 1 0 0 · · · 0
c1 0 · · · 0 1 −1 0 · · · 0
c1 1 · · · 1 1 1 1 · · · 1
c2 1 · · · 1 1 0 1 · · · 1
...

... 1?
...

...
...

...
. . .

...
cn 1 · · · 1 1 0 0 · · · 1


·

10.3.1 Character for Λ0

We now refer to the notation of Section 8.3. Recall that the ground state path of Λ0 is pΛ0 = (gk)
∞
k=0 with

g2k = 1 and g2k+1 = 1 for all k ≥ 0. Here, t = 2 and our convention for the energy function gives

H(g2k+2 ⊗ g2k+1) = −H(g2k+1 ⊗ g2k) = 1 · (10.3.2)

Then, by (2.3.1), it follows that HΛ0 = H. This yields the equality HΛ(g1⊗ g0) + 2H(g2⊗ g1) = −1, and
we can then choose D = 2. We finally obtain by (2.3.4) that u0 = −1 and u(1) = 1. Using Theorem 2.3.1,
this yields the character formula via the generating function of the set 2

2P�c1c1
.

We observe that, by the choice D = d = 2 and the fact that u(0) = −1, the partitions of 2
2P�c1c1

have
parts with odd sizes, as the differences between consecutive parts are even and the grounds’ sizes are
odd (we always have the tail ((−1)c1

, 1c1)). Besides, computing the generating function of partitions in
2
2P�c1c1

is not difficult. It suffices to remark that � is a partial order on the set of colored odd integers,
with

(−1)c1
1c1

� 1c2 � · · · � 1cn � 1cn � · · · � 1c2
� 1c1

3c1

� 3c2 � · · · ·

We also remark that, since H(b⊗ b) = 1 for all b ∈ B, any part cannot appear twice, expect in sequences
of the form

· · · � (2k− 1)c1
� (2k + 1)c1 � (2k− 1)c1

� · · · � (2k− 1)c1
� (2k + 1)c1 � · · · · (10.3.3)

To compute the generating function of such sequences for a fixed k, we distinguish 4 cases:
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1. When the sequences begin and end with (2k − 1)c1
, there are an odd number of parts, and by

gathering the pairs (2k + 1)c1 � (2k− 1)c1
after the first element (eventually no pairs), we obtain

the series
c1q2k−1

(1− c1c1q4k)
·

2. In the same way, when the sequences begin and end with (2k + 1)c1 , then

c1q2k+1

(1− c1c1q4k)
·

3. When the sequences have an even non zero number of parts, by taking pairwise and considering
whether the sequences begin by either (2k− 1)c1

or (2k + 1)c1 , we obtain

2c1c1q4k

(1− c1c1q4k)
·

4. Finally, in absence of both (2k− 1)c1
and (2k + 1)c1 , the generating function is 1.

Gathering these 4 cases, the generating function of such sequences (possibly empty or having one ele-
ment) for a fixed positive integer k is

(1 + c1q2k−1)(1 + c1q2k+1)

(1− c1c1q4k)
· (10.3.4)

Note that, for k = 0, only the sequence (1c1 , (−1)c1
, 1c1) can occur at the tail of the partitions grounded in

c1, c1, but not the sequence ((−1)c1
, 1c1 , (−1)c1

, 1c1). We then obtain, without the condition on the even
number of parts, that the generation function is

(1 + c1q) ·
(−c1q3,−c1q,−c2q,−c2q, . . . ,−cnq,−cnq; q2)

(c1c1q4; q4)
=

(−c1q,−c1q, . . . ,−cnq,−cnq; q2)

(c1c1q4; q4)
·

The partitions in 2
2P�c1c1

having an even number of parts, so that

∑
2
2P
�
c1c1

C(π)q|π| =
(−c1q,−c1q, . . . ,−cnq,−cnq; q2) + (c1q, c1q, . . . , cnq, cnq; q2)

2(c1c1q4; q4)
· (10.3.5)

We obtain e−Λ0ch(L(Λ0)) by using (2.3.7) and setting q = e−
δ
2 and cb = ewtb.

10.3.2 Character for Λ1

We follows the same reasoning as before. Recall that the ground state path of Λ1 is (gk)
∞
k=0 with g2k+1 =

1 and g2k = 1 for all k ≥ 0. Hence, HΛ1 = H, and by setting D = 2, we have by (2.3.4) that u0 = 1 and
u(1) = −1. Here we consider the set of multi-grounded partitions with ground c1, c1 corresponding to
2
2P�c1c1

. We have almost the set of partitions as in 2
2P�c1c1

, except that the tail is always 1c1 , (−1)1, and we
can have the sequence ((−1)1, 1c1 , (−1)1) at the tail, but not (1c1 , (−1)1, 1c1 , (−1)1).

The generating function without the parity of the number of parts is given by

(1+ c1q−1) ·
(−c1q3,−c1q,−c2q,−c2q, . . . ,−cnq,−cnq; q2)

(c1c1q4; q4)
=

(−c1q3,−c1q−1,−c2q,−c2q, . . . ,−cnq,−cnq; q2)

(c1c1q4; q4)
·

The partitions in 2
2P�c1c1

having an even number of parts leads to the identity

∑
2
2P
�
c1c1

C(π)q|π| =
(−c1q3,−c1q−1,−c2q,−c2q, . . . ,−cnq,−cnq; q2) + (c1q3, c1q−1, c2q, c2q, . . . , cnq, cnq; q2)

2(c1c1q4; q4)
·

(10.3.6)
We obtain e−Λ1ch(L(Λ1)) by using (2.3.7) and setting q = e−

δ
2 and cb = ewtb.



160 Chapter 10. Level one standard modules of A(2)
2n , D(2)

n+1, A(2)
2n−1, B(1)

n , D(1)
n

10.4 Case of affine type B(1)
n (n ≥ 3)

The crystal graph of the vector representation B of B(1)
n (n ≥ 3) is the following,

B :

pΛn = (· · · 0 0 0 0)

pΛ1 = (· · · 1 1 1 1 1)

pΛ0 = (· · · 1 1 1 1 1)

0

1 2 n− 1 n· · ·

1 2 n− 1 n· · ·
0 0

1

1

2

2

n− 2

n− 2

n− 1

n− 1

n

n

FIGURE 10.7: Crystal graph B of the vector representation for type B(1)
n (n ≥ 3)

with wt(0) = 0 and for all u ∈ {1, . . . , n},

−wt(u) = wtu =
n

∑
i=u

αi · (10.4.1)

Here δ = α0 + α1 + 2 ∑n
i=2 αi. We thus obtain the following crystal graph for B ⊗ B

: 0-arrow

: 1-arrow

: n-arrow

: paths of i-arrows, for consecutive i 6= 0, 1, n

: connected component of 1⊗ 1

: connected component of 1⊗ 2

: connected component of 1⊗ 1
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FIGURE 10.8: Crystal graph of B ⊗ B for type B(1)
n (n ≥ 3)

10.4.1 Character for Λn

Here, the only suitable ground to apply Theorem 8.2.4 is c0. Consider C = {c1, . . . , cn, cn, . . . , c1, c0}. By
setting ε′(cu, cv) = H(v⊗ u) and H(0⊗ 0) = 0, we obtain the following energy matrix for ε′:



cn · · · c2 c1 c1 c2 · · · cn c0
cn 1 · · · 1 1 0 0 · · · 0 0
... 0

. . .
...

...
...

... 0?
...

...
c2 0 · · · 1 1 0 0 · · · 0 0
c1 0 · · · 0 1 −1 0 · · · 0 0
c1 1 · · · 1 1 1 1 · · · 1 1
c2 1 · · · 1 1 0 1 · · · 1 1
...

... 1?
...

...
...

...
. . .

...
...

cn 1 · · · 1 1 0 0 · · · 1 1
c0 1 · · · 1 1 0 0 · · · 0 0


·



10.4. Case of affine type B(1)
n (n ≥ 3) 161

This energy matrix can be obtained by taking the energy matrix of ε defined by



cn · · · c2 c1 c1 c2 · · · cn c0
cn 1 · · · 1 1 1 1 · · · 1 1
... 0

. . .
...

...
...

... 1?
...

...
c2 0 · · · 1 1 1 1 · · · 1 1
c1 0 · · · 0 1 0 1 · · · 1 1
c1 0 · · · 0 0 1 1 · · · 1 1
c2 0 · · · 0 0 0 1 · · · 1 1
...

... 0?
...

...
...

...
. . .

...
...

cn 0 · · · 0 0 0 0 · · · 1 1
c0 0 · · · 0 0 0 0 · · · 0 0


,

followed by the transformation

(q, c1, . . . , cn) 7→ (q, c1q−1, . . . , cnq−1) · (10.4.2)

Here the particle kci
for ε is transformed into (k− 1)ci

for ε′. The other particles kc remain unchanged.
By setting the ground cg = c0 = 1, we can apply Theorem 2.2.24 to the flat partitions generated by ε.
This results in the generation function

∑
π∈F ε,cg

1

C(π)q|π| = ∑
π∈Rε,cg

1

C(π)q|π| =
(−c1q,−c1q, . . . ,−cnq,−cnq; q)∞

(c1c1q2; q2)∞
·

In fact, by the definition of the energy ε, one can view the partitions ofRε,cg
1 as the finite sub-sequences,

ending with 0c0
, of the infinite sequence

· · · �ε 3cn �ε 2cn �ε · · · �ε 2cn �ε 1cn �ε · · · �ε 1c2 �ε 1c1
�ε 1c1 �ε 1c1

�ε 1c2
�ε · · · �ε 1cn �ε 0c0

,

with the additional condition that we have possibly alternating sub-sequences of the form

· · · �ε kc1 �ε kc1
�ε kc1 �ε kc1

�ε · · · ·

By reasoning on the parity of the length and the first element, the generating function of such alternating
sequences for a fixed potential k, possibly empty or reduced to one element, is equal to

(1 + c1qk)(1 + c1qk)

1− c1c1q2k ·

Using (10.4.2), we then have that the flat partitions with ground cg and energy ε′ are generated by the
function

(−c1q,−c1, . . . ,−cnq,−cn; q)∞

(c1c1q; q2)∞
·

Using Theorem 8.2.4 and (10.4.1), we obtain the formula for the character corresponding to Λn in Theo-
rem 2.3.9.

10.4.2 Character for Λ0

We proceed exactly as we did for the type A(1)
2n−1(n ≥ 3), all the combinatorial elements are defined in

the same way. Here, we only add the color c0, the part colored by c0 being odd, and with the fact that
the the part (2k + 1)c0 can appear several times, and wt0 = 0, we obtain

∑
π∈ 2

2P
�
c1c1

C(π)q|π| =
1

2(c1c1q4; q4)

(
(−c1q,−c1q, . . . ,−cnq,−cnq; q2)

(c0q; q2)
+

(c1q, c1q, . . . , cnq, cnq; q2)

(−c0q; q2)

)
·



162 Chapter 10. Level one standard modules of A(2)
2n , D(2)

n+1, A(2)
2n−1, B(1)

n , D(1)
n

By taking c1c1 = c0 = 1, we then obtain

∑
π∈ 2Pm

c1c1

C(π)q|π| =
1
2

(
(−q,−c1q,−c1q, . . . ,−cnq,−cnq; q2) + (q, c1q, c1q, . . . , cnq, cnq; q2)

)
(10.4.3)

and we conclude with Theorem 2.3.1.

10.4.3 Character for Λ1

We reason as before and by taking c1c1 = c0 = 1, this yields

∑
π∈ 2Pm

c1c1

C(π)q|π| =
1
2

(
(−q,−c1q3,−c1q−1,−c2q,−c2q, . . . ,−cnq,−cnq; q2) + (q, c1q3, c1q−1, c2q, c2q . . . , cnq, cnq; q2)

)
(10.4.4)

resulting in Theorem 2.3.1.

10.5 Case of affine type D(1)
n (n ≥ 4)

The crystal graph of the vector representation B of D(1)
n (n ≥ 4) is the following,

B :

bΛ0 = bΛ1 = 1 bΛ1 = bΛ0 = 1

pΛ0 = (· · · 1 1 1 1 1) pΛ1 = (· · · 1 1 1 1 1)

bΛn = bΛn−1 = n bΛn−1 = bΛn = n

pΛn−1 = (· · · n n n n n) pΛn = (· · · n n n n n)

1 2 n− 1 n· · ·

1 2 n− 1 n· · ·
0 0 n n

1

1

2

2

n− 2

n− 2

n− 1

n− 1

FIGURE 10.9: Crystal graph B of the vector representation for type D(1)
n (n ≥ 4)

and for all u ∈ {1, . . . , n},

−wt(u) = wtu =
1
2
(αn − αn−1) +

n−1

∑
i=u

αi · (10.5.1)

Here,

δ = α0 + α1 + αn−1 + αn + 2
n−2

∑
i=2

αi ·

With the convention n− 1 ≡ −1 this gives the crystal graph
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: 0-arrow

: 1-arrow

: −1-arrow

: n-arrow

: paths of i-arrows, for consecutive i 6= 0, 1,−1, n

: connected component of 1⊗ 1

: connected component of 1⊗ 2

: connected component of 1⊗ 1

a 6= n,−1

b 6= n,−1
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FIGURE 10.10: Crystal graph of B ⊗ B for type D(1)
n (n ≥ 4)

Let n − 1 ≡ −1 and consider C = {c1, . . . , cn, cn, . . . , c1, c0}. Setting H(1⊗ 1) = −1 results in the
following energy matrix:



cn c−1 · · · c2 c1 c1 c2 · · · c−1 cn

cn 1 1 · · · 1 1 0 0 · · · 0 0
c−1 0 1 · · · 1 1 0 0 · · · 0 0
...

...
...

. . .
...

...
...

... 0?
...

...
c2 0 0 · · · 1 1 0 0 · · · 0 0
c1 0 0 · · · 0 1 −1 0 · · · 0 0
c1 1 1 · · · 1 1 1 1 · · · 1 1
c2 1 1 · · · 1 1 0 1 · · · 1 1
...

...
... 1?

...
...

...
...

. . .
...

...
c−1 1 1 · · · 1 1 0 0 · · · 1 1
cn 0 1 · · · 1 1 0 0 · · · 0 1


·

Noting that
H(1⊗ 1) = −H(1⊗ 1) = 1

and
H(0⊗ 0) = H(0⊗ 0) = 0 ,

this gives the partial order

· · · � 0c−1 �
0cn

0cn
� 0c−1

� · · · � 0c2
� 0c1

1c1

� 1c2 � · · · � 1c−1 � · · · ·

10.5.1 Character for Λ0

We follow the same reasoning as for the case A(2)
2n−1, with the same choices for D, d. Here, we also have

the consider alternating sequences of the form

· · · � (2k + 1)cn � (2k + 1)cn � (2k + 1)cn · · · ·

This yields the generating function

∑
π∈2

2P
�
c1c1

C(π)q|π| =
1

2(c1c1q4; q4)(cncnq2; q4)

(
(−c1q,−c1q, . . . ,−cnq,−cnq; q2) + (c1q, c1q, . . . , cnq, cnq; q2)

)
·
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By taking c1c1 = cncn = 1, this yields

∑
π∈2Pm

c1c1

C(π)q|π| =
1
2

(
(−c1q,−c1q, . . . ,−cnq,−cnq; q2) + (c1q, c1q, . . . , cnq, cnq; q2)

)
(10.5.2)

resulting in Theorem 2.3.1.

10.5.2 Character for Λ1

Here

∑
π∈ 2Pm

c1c1

C(π)q|π| =
1
2

(
(−c1q3,−c1q−1,−c2q,−c2q, . . . ,−cnq,−cnq; q2) + (c1q3, c1q−1, c2q, c2q . . . , cnq, cnq; q2)

)
(10.5.3)

and Theorem 2.3.1 follows.

10.5.3 Character for Λn

Since H(0⊗ 0) = H(0⊗ 0) = 0, HΛn = H, and u(0) = u(1) = 0 irrespective of the choice of D. In
particular, by choosing D = d = 1 and reasoning on the tail of the multi-grounded partitions in 2P�cncn

as for the case of A(2)
2n−1, it follows that

∑
π∈2

2P
�
cncn

C(π)q|π| =
1

2(c1c1q; q2)(cncnq2; q2)

(
(−c1q,−c1, . . . ,−c−1q,−c−1,−cnq,−cn; q)

+ (c1q, c1, . . . , c−1q, c−1, cnq, cn; q)
)

(10.5.4)

and Theorem 2.3.1, with the convention cb = ewtb which gives c1c1 = cncn = 1, together with (2.3.7),
result in the expected generating function.

10.5.4 Character for Λn−1

As before, it follows that

∑
π∈2

2P
�
cncn

C(π)q|π| =
1

2(c1c1q; q2)(cncnq2; q2)

(
(−c1q,−c1, . . . ,−c−1q,−c−1,−cn,−cnq; q)

+ (c1q, c1, . . . , c−1q, c−1, cn, cnq; q)
)

(10.5.5)

and we conclude with (2.3.7).
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Appendix A

Proofs of technical lemmas and
propositions

A.1 Beyond Göllnitz’s theorem

A.1.1 Proof of Lemma 3.1.4

To prove (3.1.7), we observe that, for any (lp, kq) ∈ P × S , by (2.2.12),

lp 6� kq ⇐⇒ lp 6� (k + 1)q ,

and

(k + 1)q � (l − 1)p ⇐⇒ (k + 1)q � lp

⇐⇒ (k + 1)q 6� lp ·

To prove (3.1.8), we first remark that, by (3.1.3), α(kq) = β((k + 1)q). We then obtain by (2.2.12) that

lp � α(kq)⇐⇒ (l − 1)p � α(kq)

and

β((k + 1)q) 6� (l − 1)p ⇐⇒ α(kq) 6� (l − 1)p

⇐⇒ α(kq) � (l − 1)p ·

A.1.2 Proof of Lemma 3.1.5

Let us consider min{k− l : β(kp) � α(lq)}. An abstract way to show (3.1.9) is to use the explicit formula

∆(p, q) = χ(r ≤ y) + χ(r ≤ x)χ(s ≤ y)

with q = axay and p = aras. Recall that x < y and r < s. In fact, by considering (2.2.6) and the
lexicographic order �, one can check that the minimal difference between the secondary colors p and q
for the relation . is

1 + χ(p ≤ q) = 1 + χ(r < x) + χ(r = x)χ(s ≤ y) ·

By definition (2.2.7),
χ((p, q) ∈ SPo) = χ(r > y) + χ(r < x)χ(s > y)

so that, by (2.2.12), the minimal difference between the secondary colors p and q for the relation � is
given by

1 + χ(r < x) + χ(r = x)χ(s ≤ y)− χ((p, q) ∈ SPo) = χ(r ≤ y) + χ(r ≤ x)χ(s ≤ y) ·

Now, we reason first according to the parity of k. For k = 2u, we have by (3.1.2) that α(kp) = uas

and βkp = uar . In order to minimize k − l, α(lq) and β(lq) have to be the greatest primary parts with
color ax and ay smaller than uar in terms of �, so that, by (2.2.8), they must necessarily be the parts
(u− χ(r ≤ x))ax and (u− χ(r ≤ y))ay . We then obtain the difference

χ(r ≤ x) + χ(r ≤ y) ·
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With the same reasoning for k = 2u + 1, since α(kp) = (u + 1)ar and β(kp) = uas , we then reach the
difference

1 + χ(s ≤ x) + χ(s ≤ y) ≥ χ(r ≤ y) + χ(s ≤ y)·

Since the mimimum is reached either for k even or k odd, we then have that

min{k− l : β(kp) � α(lq)} ≥ min{χ(r ≤ y) + χ(s ≤ y), χ(r ≤ x) + χ(r ≤ y)} ·

We finally consider the case l = 2v, so that α(lq) = vay and β(lq) = vax , and to minimize k − l, α(kp)

and β(kp) have to be the smallest primary parts with color ar and as greater than vay in terms of �, so
that they must necessarily be the parts (v + χ(r ≤ y))ar and (v + χ(s ≤ y))as . We obtain the difference
χ(r ≤ y) + χ(s ≤ y) and then the inequality

min{k− l : β(kp) � α(lq)} ≤ min{χ(r ≤ y) + χ(s ≤ y), χ(r ≤ x) + χ(r ≤ y)}·

Since min{χ(r ≤ y) + χ(s ≤ y), χ(r ≤ x) + χ(r ≤ y)} = χ(r ≤ y) + χ(r ≤ x)χ(s ≤ y), we then have
(3.1.9).

To prove (3.1.10), we have by (3.1.3) that α((l− 1)q) = β(lq). Since β(kp) � β(lq) = α((l− 1)q), this then
implies by (3.1.9) that kp � (l − 1)q, and this is equivalent to (k + 1)p � lq.

Let us now suppose that k − l ≥ ∆(p, q). We just saw that this minimum value was reached at k or
k− 1. Then if we do not have β(kp) � α(lq), we necessarily have β((k− 1)p) � α((l − 1)q) = β(lq) by
(3.1.3). Moreover, by (2.2.12), we have

β(kp) 6� α(lq)⇐⇒ α(lq) + 1� α((k− 1)p) ,

so that we obtain (3.1.11). Suppose now that we have k− l = ∆(p, q). If β(kp) � α(lq) then we necessar-
ily have

β(kp) � α(lq) � β(lq) � β(kp)− 1 ·

In fact, we saw that the minimal difference is obtained when the primary parts α(lq) and β(lq) are the
closest possible to β(kp) with the primary colors of q. If β(kp) 6� α(lq), since we have β(lq) + 1 � α(lq),
we also have

β(lq) + 1 � α(lq) � β(kp) ·

In both cases, the relation (3.1.12) holds. If we have that k− l− 1 ≥ ∆(p, q), then we necessarily have by
(3.1.3) that

β(kq) � β(l + 1)q = α(lq) ·

A.1.3 Proof of Lemma 3.1.6

For any ν = (ν1, . . . , νt) ∈ E2 and any i ∈ [1, t− 2], we have

νi . · · · . νj ·

By (2.2.11), we have
νi � νi+1 + 1 � · · · � νj + j− i⇒ νi � νj + j− i ,

with a strict inequality as soon as we have νi or νj in S , and we thus obtain (3.1.13).

A.1.4 Proof of Lemma 3.4.5

By definition, for all i ∈ I, Brν(i) ∈ ([i, j) ∩ I) ∪ {j}, for j = min(i, p + 2s + 1] ∩ J. This means that, for
any I 3 i′ > j,

Brν(i′) ≥ i′ > j ≥ Brν(i) ·

Let us now consider the function Brν on [i, j) ∩ I. It is obvious that, for all i′ ∈ [i, j) ∩ I, we have
j = min(i′, p + 2s + 1] ∩ J.

• If Brν(i) = i, then
Brν(i′) ≥ i′ ≥ i = Brν(i) ·
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• If we have Brν(i) = j, then by (3.4.4)

νu+1 6� νj +
j− u

2
− 1

for all u ∈ [i, j) ∩ I, and since [i′, j) ⊂ [i, j), we also obtain that Brν(i′) = j.

• Finally, if Brν(i) ∈ (i, j)∩ I, then we have either j > i′ ≥ Brν(i), or i ≤ i′ < Brν(i). In the first case,
we obtain

Brν(i′) ≥ i′ ≥ Brν(i) ·

In the second case, we observe that, by (3.4.5) and (3.4.6),

νu+1 6� νBrν(i) +
Brν(i)− u

2
− 1

for all u ∈ [i, Brν(i)) ∩ I, and in particular for all u ∈ [i′, Brν(i)) ∩ I. Thus, if Brν(i′) 6= j, we
necessarily have by (3.4.6) that Brν(i′) ≥ Brν(i).

In any case, we have that Brν(i′) ≥ Brν(i).

Let us now suppose that Brν(i) ∈ I. If Brν(i) = i, then Brν(Brν(i)) = i = Brν(i). Otherwise, let us
assume that Brν(Brν(i)) > Brν(i).

• If Brν(Brν(i)) = j, this means that

νu+1 6� νj +
j− u

2
− 1⇐⇒ νj +

j− u
2
− 1 � νu+1

for all u ∈ [Brν(i), j) ∩ I. Since νBrν(i) and νBrν(i)+1 have different primary colors and are consecu-
tive with respect to �, we then obtain that νBrν(i)+1 + 1 � νBrν(i), so that

νj +
j− Brν(i)

2
� νBrν(i) ·

We also have by (3.4.5) and (3.4.6) that

νu+1 6� νBrν(i) +
Brν(i)− u

2
− 1⇐⇒ νBrν(i) +

Brν(i)− u
2

− 1 � νu+1

for all u ∈ [i, Brν(i)) ∩ I, so that

νj +
j− u

2
− 1 � νu+1 ⇐⇒ νu+1 6� νj +

j− u
2
− 1 ·

We then conclude by (3.4.4) that Brν(i) = j, which contradicts the fact that Brν(i) /∈ J.

• For Brν(Brν(i)) > Brν(i), we reason exactly in the same way, by replacing j by Brν(Brν(i)), and
we obtain by (3.4.6) that Brν(i) ≥ Brν(Brν(i)) > Brν(i).

To conclude, we necessarily have that Brν(Brν(i)) = Brν(i) for Brν(i) ∈ I.

A.1.5 Proof of Lemma 3.4.8

By (2.2.11), (2.2.12) and the fact that all the pairs in SPo have distinct secondary colors, we have that
for any u ∈ [i, i′) ∩ I

νu+2 + νu+3 + 1 � νu + νu+1 � νu+2 + νu+3 ,

so that we obtain (3.4.10) recursively.

A.1.6 Proof of Lemma 3.4.9

By (3.1.12) of Lemma 3.1.5, we have for any u ∈ [i, i′) ∩ I that

νu+3 + 1 � νu+1 ,
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so that we recursively have

νi′+1 +
i′ − u

2
� νu+1 ·

By (3.4.7), if we suppose that Brν(i′) > i′, we then have

νi′+1 6� νBrν(i′) +
Brν(i′)− i′

2
− 1⇐⇒ νBrν(i′) +

Brν(i′)− i′

2
− 1 � νi′+1 ,

and we obtain that

νBrν(i′) +
Brν(i′)− u

2
− 1 � νu+1 ⇐⇒ νu+1 6� νBrν(i′) +

Brν(i′)− u
2

− 1

for all u ∈ [i, i′) ∩ I. Since the previous relation is also true for for all u ∈ [i′, Brν(i′)) ∩ I, by (3.4.5) and
(3.4.6), we have that Brν(i′) ≤ Brν(i). Finally, by Lemma 3.4.5, the fact that Brν is non-decreasing on I
gives that Brν(i′) = Brν(i).

A.1.7 Proof of Lemma 3.5.8

We can notice that for any pair (kp, lq) of secondary parts different from a pattern cd → ab and that
satisfies kp � lq, we can always find an integer h such

kp � hcd � lp · (A.1.1)

This is obvious when (p, q) /∈ SPo. In fact,

kp � lq ⇐⇒ kp � (l + 1)q � lq

and we can find a unique hcd satisfying (l + 1)q � hcd � lq. Note that if q = cd, we then have at
least two possible integers h = l, l + 1. Suppose now that (p, q) ∈ SPo. Recall that here, we set
{a1 < a2 < a3 < a4 < a5} = {a < b < c < d < e}. We then have two kinds of pairs.

• First, we have the pairs (aiaj, akal) with 5 ≥ j > i > l > k ≥ 1, so that i ≥ 3 and l ≤ 3. Thus,
aiaj ≥ cd, while akal ≤ bc < cd. If aiaj 6= cd, we have that aiaj > cd, and then

kaiaj � kcd � kakal

and the property (A.1.1) is true for (kp, lq) = (kaiaj , kakal ).

• The second kind of pair is of the form (aiaj, akal) with 5 ≥ j > l > k > i ≥ 1, so that l ≤ 4 and
i ≤ 2. Thus, aiaj ≤ be < cd, while akal ≤ cd. We have that aiaj > cd, and then

(l + 1)aiaj � lcd � lakal

and the property (A.1.1) is true for (kp, lq) = ((l + 1)aiaj , lakal ).

Let us now consider a pattern of secondary parts (ν1, ν2, · · · , ν2s−1, ν2s, ν2s+1, ν2s+2) with no moves →
cd→.

If ν1 + ν2, ν3 + ν4 6= cd→ ab, we recursively show on 1 ≤ i ≤ s that there exists h such that

ν1 + ν2 � (h + i− 1)cd � hcd � ν2i+1 + ν2i+2 · (A.1.2)

In fact, by (A.1.1), the previous statement holds for i = 1. Suppose now it holds by induction up to i. If
ν2i+1 + ν2i+2, ν2i+3 + ν2i+4 6= cd→ ab, then by (A.1.1), we have h′ such that

hcd � ν2i+1 + ν2i+2 � h′cd � ν2i+3 + ν2i+4 ·

We thus have h > h′, and by choosing h′, we obtain

ν1 + ν2 � (h′ + i)cd � h′cd � ν2i+3 + ν2i+4 ·

If ν2i+1 + ν2i+2, ν2i+3 + ν2i+4 = cd → ab, we then necessarily have that ν2i−1 + ν2i . ν2i+1 + ν2i+2 not to
have the moves→ cd→. Therefore, by setting hcd = ν2i+1 + ν2i+2, we have that ν2i−1 + ν2i � (h + 1)cd.
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Since the statement (A.1.2) also holds for i− 1, there exists h′ such that

ν1 + ν2 � (h′ + i− 2)cd � h′cd � ν2i−1 + ν2i ·

We can then remark that h′ ≥ h + 2, and we conclude that

ν1 + ν2 � (h + i)cd � hcd � ν2i+3 + ν2i+4 ·

We have thus proved the statement (A.1.2) when the head is different from cd→ ab.

If the head is equal to cd→ ab, we then apply (A.1.2) on the pattern (ν3, ν4, · · · , ν2s−1, ν2s, ν2s+1, ν2s+2),
and we obtain that there exists h such that

ν1 + ν2 � ν2 + ν3 � (h + i− 2)cd � hcd � ν2i+1 + ν2i+2

so that ν1 + ν2 � (h + i− 1)cd. In both cases, we always have that ν1 + ν2 − s + 1 � ν2s+1 + ν2s+2 so that

ν1 + ν2 − s + 1 � ν2s+1 + ν2s+2 ·

By definition (3.5.8), (ν1, ν2, · · · , ν2s−1, ν2s, ν2s+1, ν2s+2) cannot be a shortcut. Since a pattern that does
not contain the moves→ cd→ does not have any subpattern that contains these moves, we then obtain
our lemma.

A.1.8 Proof of Proposition 3.3.2

Let λ = (λ1, . . . , λt) be a partition inO. Let us set c1, . . . , ct to be the primary colors of the parts λ1, . . . , λt.

First Step 1 Now consider the first troublesome pair (λi, λi+1) at Step 1 in Φ. We then set

δ1 = ∅

γ1 = λ1 � · · · � λi ,

µ1 = λi+1 � · · · � λt ·

The first resulting secondary part is λi + λi+1.

First iterations of Step 2

• If there is a part λi+2 after λi+1, we have that

λi + λi+1 − λi+2 = χ(ci < ci+1) + 2λi+1 − λi+2 by (3.1.6)
≥ χ(ci < ci+1) + 2χ(ci+1 ≤ ci+2) + λi+2 by (2.2.8)
≥ 1 + χ(ci ≤ ci+2) + χ(ci+1 ≤ ci+2) ·

Since by (2.2.6), we have that ci > ci+2 and ci+1 > ci+2 implies cici+1 > ci+2, we then have that
λi + λi+1 − λi+2 ≥ 1 + χ(cici+1 ≤ ci+2), and we conclude that λi + λi+1 � λi+2. This means that
if there is no iteration of Step 2 (which happens if i = 1 or λi+1 � λi + λi+1), then the secondary
part is well-ordered with the primary part to its right.

• The primary parts of γ1 are well-ordered by�. By (2.2.12) and (3.1.4), we have that for any j < i,
if λi + λi+1 crosses λj after i− j iterations of Step 2, we then have by (3.1.7) that

(λi + λi+1 + i− j)� (λj − 1)� · · · � λi−1 − 1 ·

• We also have by (2.2.12) that

λi−1 � λi � λi+1 � λi+2 =⇒ λi−1 − 1 � λi � λi+1 � λi+2

=⇒ λi−1 − 1 � λi+2 ·
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If we can no longer apply Step 2 after i − j iterations, we then obtain (even when there is no crossing
which means that j = i)

λ1 � · · · � λj−1 � (λi + λi+1 + i− j)� (λj − 1)� · · · � λi−1 − 1 � λi+2 � · · · � λt·

Second Step 1 Now, by applying Step 1 for the second time, we see that the next troublesome pair is
either λi−1 − 1, λi+2, or λi+2+x, λi+3+x for some x ≥ 0.

• If λi−1 − 1 6� λi+2, this means that (λi−1 − 1, λi+2) is a troublesome pair, and Step 1 occurs there.
We then set

δ2 = λ1 � · · · � λj−1 � (λi + λi+1 + i− j)

γ2 = (λj − 1)� · · · � λi−1 − 1

µ2 = λi+2 � · · · � λt ·

By (3.1.10), we have that (λi + λi+1 + 1) � (λi−1 + λi+2 − 1). Then, even if (λi−1 + λi+2 − 1)
crosses the primary parts (λj − 1)� · · · � λi−2 − 1 after i− j− 1 iterations of Step 2, by (2.2.12),
we will still have that

(λi + λi+1 + i− j)� (λi−1 + λi+2 + i− j− 2) ·

We have before the third application of Step 1 that

δ3 = λ1 � · · · � (λi + λi+1 + i− j)� λj − 1� · · · � λj′−1 − 1� (λi−1 + λi+2 − 2 + i− j′)

γ3, µ3 = λj′ − 2� · · · � λi−2 − 2� λi+3 � · · · � λt ,

for some i− 1 ≥ j′ ≥ j. Observe that µ3 is the tail of the partition λi+3 � · · · � λt.

• If λi−1 − 1 � λi+2, then the next troublesome pair appears at λi+2+x, λi+3+x for some x ≥ 0, and
it forms the secondary part λi+2+x + λi+3+x. We then set

δ2 = λ1 � · · · � λj−1 � (λi + λi+1 + i− j)

γ2 = (λj − 1)� · · · � λi−1 − 1� λi+2 � · · · � λi+2+x

µ2 = λi+x+3 � · · · � λt ·

We also have
λi � λi+1 � λi+2 � · · · � λi+2+x � λi+3+x ·

By (2.2.12), we can easily check that

λi � λi+1 � λi+2 � λi+2+x + x � λi+3+x + x

so that, by (3.1.9),
(λi + λi+1)� (λi+2+x + λi+3+x + 2x) ·

This means by (2.2.12) that,

(λi + λi+1)� (λi+2+x + λi+3+x + x)

and, as soon as x ≥ 1, by (2.2.11)

(λi + λi+1) . (λi+2+x + λi+3+x + x) ·

We then obtain that, even if the secondary part λi+2+x + λi+3+x crosses, after x + i− j iterations of
Step 2, the primary parts

λj − 1� · · · � (λi−1 − 1)� λi+2 � · · · � λi+1+x ,

we still have
(λi + λi+1 + i− j)� (λi+2+x + λi+3+x + x + i− j) ·
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However, as soon as x ≥ 1, we directly have

(λi + λi+1 + i− j) . (λi+2+x + λi+3+x + x + i− j) ·

We thus obtain before the third application of Step 1 that,

δ3 = λ1 � · · · � (λi + λi+1 + i− j)� · · · � (λi+2+x + λi+3+x + x + i− j′)

γ3, µ3 = · · · � λi+4+x � · · · � λt ,

for some i + x ≥ j′ ≥ j. Observe that µ3 is the tail of the partition λi+x+3 � · · · � λt. Moreover,
we have the following inequalities

– λj′−1 − 1� (λi+2+x + λi+3+x + x + i− j′)� λj′ − 2 for x− 1 ≥ j′ ≥ j,

– λi−1 − 1� (λi+2+x + λi+3+x + x)� λi+2 − 1 for j′ = i,

– λj′+1 � (λi+2+x + λi+3+x + x + i− j′)� λj′+2 − 1 for x + i ≥ j′ ≥ i + 1.

Observe that the partition to the left of λi+x+4 is well-ordered by �, so that µ3 is the tail of the
partition λi+x+4 � · · · � λt.

In both cases, the conditions in the proposition are satisfied. In fact, the partition δ2 belongs to E and is
the head of the partition δ3 that also belongs to E , and the fourth statement is true. By comparing µ1, µ2

(and µ3), the third statement is true since µ2 is a strict tail of µ1. The two first statements directly come
from the way we established the sequences, and the fact that s(δu)� g(γu) is true for u = 2, 3.

By induction, we only apply Step 1 once to the troublesome pair (s(γu), g(µu)) in the partition
∅, γu, µu ∈ O and then some iterations of Step 2. We then obtain some sequence δ′u, γ′u, µ′u with
the same form as (δ2, γ2, µ2), and we set the triplet (δu+1, γu+1, µu+1) = ((δu, δ′u), γ′u, µ′u). Note that
the sequence δu, δ′u is indeed a partition in E by considering the process from the (u− 1)th Step 1.
Then, the sequence (δu, γu, µu) becomes the sequence (δu+1, γu+1, µu+1) after applying Step 1 once to
the troublesome pair (s(γu), g(µu)), and some iterations of Step 2 by crossing the secondary part s(γu)+
g(µu) with some primary parts of γu \ {s(γu)}. Proposition 3.3.2 follows naturally.

A.1.9 Proof of Proposition 3.3.4

Let us consider E 3 ν = (ν1, . . . , νt). If we suppose that the secondary parts of ν are νi1 , . . . , νiS for
i1 < · · · < iS, we can then set for all v ∈ [1, S]

δv = ν1 � · · · � νiS+1−v

and δS+1 = ∅. By setting i = iS, we also have that

δ1 = ν1 � · · · � νi

γ1 = νi+1 � · · · � νt

µ1 = ∅ ·

• If νi crosses all the primary parts up to νt after iterating Step 1, we have that

β(νi − t + i + 1) 6� νt ·

But, we also have that
νi . · · · . νt

since νi+1, . . . , νt are all primary parts. We thus have by Lemma 3.1.6 that

νi − t + i � νt ,

so that, if νi − t + i has size 1, then νt has also size 1 and a color smaller than the color of νi. But by
(3.1.1) and (2.2.6), we necessarily have that β(νi − t + i + 1) has size 1 and a color greater than the
color of νi. We then obtain by (2.2.9) that

β(νi − t + i + 1) � νi − t + i � νt ,
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and we do not cross νi − t + i + 1 and νt, which is aburd by assumption. This means that in any
case after crossing, we still have that the secondary part size is greater than 1, so that after splitting,
its upper and lower halves stay in P .

• if νi crosses all the primary parts up to νj after iterating Step 1 and stops before νj+1, we then set

δ2 = ν1 � · · · � νiS−1

γ2 = νiS−1+1, . . . , νiS−1, νiS+1 + 1, . . . , νj + 1, α(νiS + iS − j)

µ2 = β(νiS + iS − j), νj+1, . . . , νt ·

The statements of Proposition 3.3.4 are then satisfied.

• Suppose now that (δv, γv, µv) satisfies the conditions in Proposition 3.3.4. Note that s(γv), g(µv)
are respectively the upper and the lower halves after the splitting of the secondary part coming
from νiS+2−v . We also have by (2.2.12) that

νiS+1−v � νiS+1−v � · · · � νiS+2−v � νiS+2−v =⇒ νiS+1−v + iS+1−v − iS+2−v + 1� νiS+2−v

since the parts between these secondary parts are primary parts. By Lemma 3.1.5, even if these
secondary parts meet after crossing the primary parts, the splitting of the part coming from νiS+1−v
will then occur either before the upper half or between the upper and the lower halves obtained
after the splitting of νiS+2−v . Thus the splitting of s(δv) = νiS+1−v occurs before g(µv). By taking
s(γv+1), g(µv+1) as the upper and the lower halves of the split secondary part coming from νiS+2−v ,
we thus obtain a sequence (δv+1, γv+1, µv+1) such that µv is the strict tail of µv+1. Note that these
sequences also satisfy the other statements.

A.1.10 Proof of Proposition 3.3.6

Note that Step 1 of Φ is reversible by the splitting in Step 2 of Ψ. Let us now show that iterations of Step
2 of Φ are also reversible by iterations of Step 1 in Ψ.

We saw in the proof of Proposition 3.3.2 in Appendix 3.3.2 that for any u ≥ 1, the sequence (δu, γu, µu)
becomes the sequence (δu+1, γu+1, µu+1) after applying Step 1 once to the troublesome pair (s(γu), g(µu)),
and some iterations of Step 2 by crossing the secondary part s(γu) + g(µu) with some primary parts of
γu \ {s(γu)}. Without loss of generality, let us set

γu = π1 � · · · � πi

µu = πi+1 � · · · � πr

and suppose that the secondary parts πi + πi+1 crossed the primary parts πj � · · · � πi−1. Since
γu ∈ E ∩O ⊂ E2, by Lemma 3.1.6 and (3.1.4), we have that

πj � πi + i− j− 1 � α(πi + πi+1 + i− j− 1) ·

Using (3.1.8) of Lemma 3.1.4, this is equivalent to saying that

α(πi + πi+1 + i− j) 6� πj − 1 · (A.1.3)

If the iteration of Step 2 ceases before πk−1, we then have that

δ′u = π1 � · · · � πi + πi+1 + i− k

γ′u, µ′u = πj − 1� · · · � πi−1 − 1 � πi+2 � · · · � πr

so that (δu+1, γu+1, µu+1) = ((δu, δ′u), γ′u, µ′u). But the inequality (A.1.3) holds for all k ≤ j ≤ i− 1, so
that by applying Ψ on (δu+1, γu+1, µu+1), the secondary part s(δu+1) = πi +πi+1 + i− k will recursively
cross by Step 1 the parts πj − 1. The iteration of Step 1 stops before the part πi+2 since

πi+2 ≺ πj+1 = β(πi + πi+1)
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and we split by Step 2 the secondary part πi + πi+1 into πi and πi+1. We then retrieve the sequence
(δu, γu, µu).

To conclude, we observe that if Φ(λ) ∈ E has S secondary parts, then the last sequence in the pro-
cess Φ is (δS+1, γS+1, µS+1) with µS+1 = ∅, δS+1 the partition Φ(λ) up to the Sth secondary part and
γS+1 the tail to the right of this last secondary part. But this triplet is equal to the triplet (δv, γv, µv) of
Proposition 3.3.4 for v = 1. We then recursively obtain the result of Proposition 3.3.6 in the decreasing
order according to u.

A.1.11 Proof of Proposition 3.4.6

Let us take any i ∈ I = {i1 < · · · < is}, let us consider j = min(i, p + 2s + 1] ∩ J. Since in the process of
Ψ, the primary parts never cross, and the secondary parts can only move forward before splitting, the
part νj will not be affected by Ψ operating on any secondary part to its right.

• Suppose that Brν(i) = j. By definition (3.4.4), this means that

νi′+1 6� νj +
j− i′

2
− 1

for all i′ ∈ [i, j) ∩ I, so that, by the crossing condition of Step 2 of Ψ, νj +
j−i′

2 − 1 will recursively
be the first primary part that crosses all the secondary parts νi′ + νi′+1 up to νi + νi+1. Thus, for
i = iu

s(δs+1−u) = νiu + νiu+1, g(γs+1−u) = νj +
j− iu

2
− 1 ·

• Suppose that Brν(i) < j. Let us set Brν(i) = i′1 and let i′1 < · · · < i′t < j be all the fixed points by
Brν in [i, j). By Lemma 3.4.5, have that

Brν([i, i′1]) = {i′1} , Brν((i′s−1, i′s]) = {i′s} and for (i′t, j) 6= ∅ , Brν((i′t, j)) = {j} ·

We then have during the process of Ψ that νj crosses all the secondary parts up to νi′t+2 + νi′t+3, but
does not cross νi′t

+ νi′t+1. Thus, νi′t
+ νi′t+1 directly splits into νi′t

and νi′t+1, and by (3.4.5) and the
crossing condition of Step 1 , νi′t

crosses all the secondary parts up to νi′t−1
+ νi′t−1+1, which is not

crossed.
The process then continues and we reach νi′1

+ νi′1+1 which directly splits into νi′1
and νi′1+1. If i = i1,

we have the first statement of Proposition 3.4.6. Otherwise, νi′1
crosses all the secondary parts up

to νi + νi+1. We then obtain for for i = iu

s(δs+1−u) = νiu + νiu+1, g(γs+1−u) = νi′1
+

i′1 − iu
2
− 1 ·

In any case, if i = Brν(i), then νi + νi+1 directly splits, otherwise, we have that for i = iu

g(γs+1−u) = νBrν(iu) +
Brν(iu)− iu

2
− 1 ,

and the part νiu + νiu+1 first crosses the primary part g(γs+1−u).

A.1.12 Proof of Proposition 3.4.7

Let us take ν = (ν1, · · · , νp+2s), and I = {i1 < · · · < is}. Note that the triplet (δ1, γ1, µ1) is such that
µ1 = ∅, δ1 is the partition ν up to νis + νis+1 and γ1 is the tail to the right of this part. We then have that
γ1, µ1 ∈ (E ∩ O)×O and νis + νis+1 = s(δ1)� g(γ1).

• If we have that Brν(iu) > iu, by Proposition 3.4.6, we necessarily have that

g(γs+1−u) = νBrν(iu) +
Brν(iu)− iu

2
− 1 ·



176 Appendix A. Proofs of technical lemmas and propositions

But with the condition (2), we have by (2.2.12) and (3.1.7) that

νBrν(iu) +
Brν(iu)− iu

2
6� νiu + νiu+1 ⇐⇒ νiu + νiu+1 � νBrν(iu) +

Brν(iu)− iu

2
− 1 ·

If γs+1−u ∈ E ∩O ⊂ E1, we then obtain that the partition s(δs+1−u), γs+1−u belongs to E2, so that,
by Lemma 3.1.6 and (3.1.7) of Lemma 3.1.4, all the crossings in Step 1 of Ψ are reversible by Step
2 of Φ. We set

γs+1−u = π1 � · · · � πr

and if νiu + νiu+1 = s(δs+1−u) crosses all the primary parts up to πj, we then have by (3.1.8) of
Lemma 3.1.4

δs+2−u, γs+2−u = δs+1−u \ νiu + νiu+1 , π1 + 1� · · · � πj + 1� α(νiu + νiu+1 − j)

µs+2−u = β(νiu + νiu+1 − j) � πj+1 � · · · � πr, µs+1−u ·

Furthermore, always by condition (2), we have that

s(δs+1−u \ νiu + νiu+1) = ν−(iu)� νBrν(iu) +
Brν(iu)− iu

2
= π1 + 1

so that δs+2−u, γs+2−u ∈ E and we obtain that γs+2−u ∈ E ∩O and s(δs+2−u)� g(γs+2−u).
Moreover, if µs+1−u ∈ O and j < r, we then have that (πr, g(µs+1−u)) is the troublesome pair
coming from the splitting of νiu+1 + νiu+1+1 and satisfies πr � g(µs+1−u), so that µs+2−u ∈ O.
If µs+1−u ∈ O and j = r, this means that the splitting of νiu + νiu+1 occurs in between those of
νiu+1 + νiu+1+1 and the lower halves are still well-ordered in terms of�, so that µs+2−u ∈ O. In any
case, if µs+1−u ∈ O (with the previous assumption that γs+1−u ∈ E ∩O), then µs+2−u ∈ O.

• If we have that Brν(iu) = iu, then by Proposition 3.4.6, the splitting occurs directly and we have

νiu+1 � g(γs+1−u) ·

Then we have that

δs+2−u, γs+2−u = δs+1−u \ νiu + νiu+1 , νiu

µs+2−u = νiu+1, γs+1−u, µs+1−u ·

so that, if γs+1−u and µs+1−u are in O, since s(γs+1−u) � g(µs+1−u), we then have that µs+2−u is
also in O. Note that s(δs+1−u \ νiu + νiu+1) = ν−(iu).

– If ν−(iu) . νiu + νiu+1, then we obtain that

ν−(iu)− νiu = ν−(iu)− (νiu + νiu+1) + νiu+1

≥ 2 (by (2.2.11) and the fact that νiu+1 ≥ 1) ,

so that, by (2.2.9) and (2.2.11), ν−(is)� νiu .

– In the case that ν−(is) 6 . νiu + νiu+1, this means by (2.2.12) that we have the case of a pair
of secondary parts with colors in SPo, and which are consecutive for �. Then the pair
(ν−(is), νiu + νiu+1) has the form (kcd, kab) or ((k + 1)ad, kbc) for some primary colors a < b <
c < d. We check the different cases according to the parity of k :

(2k)cd � kb , (2k + 1)cd � (k + 1)a (2k + 1)ad � kc (2k + 2)ad � (k + 1)b ·

We then conclude that ν−(is)� νiu .

In any case, we always have that νiu is well-ordered with the part to its left in terms of�, so that
δs+2−u, γs+2−u ∈ E , and then γs+2−u ∈ E ∩O and s(δs+2−u)� g(γs+2−u).

Note that the process Ψ is reversible by Φ since the crossings are reversible andso is the splitting. We
then obtain Proposition 3.4.7 recursively on u in decreasing order.
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A.1.13 Proof of Proposition 3.5.5

Let us take a shortcut ζ = ζ1 + ζ2 � · · · � ζ2s+1 + ζ2s+2, and an allowed pattern η = η1 + η2 � · · · �
η2t−1 + η2t � η2t+1 such that Brη(1) = 2t + 1. Without loss of generality, by adding a constant k to the
part ν2i−1 + ν2i, we can suppose that ζ2s+1 + ζ2s+2 � η1 + η2. If we consider the sequence

ν(0) = ζ1 + ζ2 � · · · � ζ2s+1 + ζ2s+2 � η1 + η2 � · · · � η2t−1 + η2t � η2t+1 ,

by adding a large constant k to the parts of the sequence ν(0), we can say η2t+1 is the bridge in ν of all

i ∈ 2{0, . . . , s + t}+ 1 ·

In fact, by Remark 2.1, we have that the lower halves grow according to k/2, so that for some k large
enough, η2t+1 + k− 1 will be 1-distant-different from all the lower halves in the sequence ν in terms of
�. We finally consider the sequences of the form

ν(u) = ζ1 + ζ2 + su� · · · � ζ2s+1 + ζ2s+2 + su� ζ1 + ζ2 + s(u− 1)� · · · � ζ2s+1 + ζ2s+2 + s(u− 1)�
· · · � ζ1 + ζ2 + s� · · · � ζ2s+1 + ζ2s+2 + s� ζ1 + ζ2 � · · · � ζ2s+1 + ζ2s+2 �
η1 + η2 � · · · � η2t−1 + η2t � η2t+1 ·

The sequence ν is well defined, since ζ is a shorcut, we then have by (2.2.11) and (2.2.12) that

ζ2s+1 + ζ2s+2 � ζ1 + ζ2 + 1− s =⇒ ζ2s+1 + ζ2s+2 � ζ1 + ζ2 + 1− s
=⇒ ζ2s+1 + ζ2s+2 . ζ1 + ζ2 − s
=⇒ ζ2s+1 + ζ2s+2 + s� ζ1 + ζ2 ,

so that ζ2s+1 + ζ2s+2 + su′ � ζ1 + ζ2 + s(u′ − 1) for all u′ ≥ 1. We also have that η2t+1 is the bridge of
all the indices of the secondary parts in ν(u). In fact, we have by (3.1.4) that

β(ζ2s+1 + ζ2s+2 + s) � s + β(ζ2s+1 + ζ2s+2) � s + t + η2t+1 ≺ s + t + 1 + η2t+1 ,

and we obtain in the same way, that for all i ∈ {0, . . . , s− 1}

β(ζ2i+1 + ζ2i+2 + s) ≺ s− i + s + t + 1 + η2t+1 ,

so that η2t+1 is the bridge of all the indices (in the corresponding set I) of the parts in ν(1). Using (3.1.4)
recursively on u, we proved that η2t+1 is indeed the bridge of all indices of the secondary parts in the
sequence ν(u).

To conclude, we see that there are (u + 1)(s + 1) + t secondary parts in ν(u) (the head included)
between ζ1 + ζ2 + su and η2t+1, and we then have

η2t+1 + (u + 1)(s + 1) + t− (ζ1 + ζ2 + su) = η2t+1 − (ζ1 + ζ2) + t + u + s + 1 ·

There then exists some u0 such that,

η2t+1 + (u0 + 1)(s + 1) + t � (ζ1 + ζ2 + su0) ,

so that condition (2) in Theorem 3.4.2 is not true. The sequence ν(u0) is then a forbidden pattern, and
this concludes the proof.

A.1.14 Proof of Proposition 3.7.2

Let us take ν = (ν1, · · · , νp+2s), with I = {i1 < · · · < is} and J = {j1 < · · · < jp}.

We observe that, in Proposition 3.3.4, the sequence (δv, γv, µv) becomes the sequence (δv+1, γv+1, µv+1)
after applying Step 1 once to the secondary part s(δv), and some iterations of Step 2 by crossing the
secondary part with some primary parts of γv. This means that once we obtain the sequence µv, it is no
longer affected by the process Ψ.

• Since we never cross two primary parts in the process, once we have the splitting s(γv), g(µv),
their relative position in the remainder of the process Ψ is unchanged. We then obtain that the
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upper and the lower halves’ positions satisfy θis−v+2 < θis−v+2+1.

• The passage from the secondary part s(δv) to its splitting to become s(γv+1), g(µv+1) implies that
the position of the lower part increases during the crossings, and then is fixed after the splitting.
We thus obtain that θis+1−v+1 is the position of the g(µv+1). With the fact that the sequence g(µv) is
the strict tail of g(µv+1), we reach the inequality θis−v+2+1 > θis+1−v+1 ≥ is+1−v + 1. This gives the
first inequality of (3.7.7).

• If the splitting of s(δv) occurs before g(γv), it means that g(γv) belongs to µv+1, and the po-
sition of the corresponding upper half is fixed in the rest of the process. We then have that
θis−v+2 > θis+1−v+1 · Otherwise, the splitting of s(δv) occurs between g(γv) and g(µv), and the
relative position of the corresponding upper halves will not change until the end of the process.
We thus have that θis+1−v+1 > θis+1−v > θis−v+2 , and this leads (recursively on v) to the proof of
(3.7.5).

• Recall that we never cross two primary parts in the process, and this naturally leads to θjv < θjv+1 ,
for jv < jv+1 and we have (3.7.6). Moreover, the primary parts can only move backward, since
they can only cross some secondary parts to their left. We then obtain the second inequality of
(3.7.7) θjv ≤ jv.
.

• Since the crossing only occurs between the secondary and primary parts, if the secondary part cor-
responding to i does not cross in the primary part corresponding to j, then we have that θi+1 < θj ,
and if they crossed, then both the upper and the lower halves move together, and in the remainder
of the process, their relative positions stay unchanged, so that θj < θi, and we obtain (3.7.8).

A.1.15 Proof of Proposition 3.7.3

We saw in the previous proof that, since the positions of the lower halves are increasing, for any iu ∈ I,
the crossings can occur with primary parts coming from some indices J or in I. We then look for x ∈ J ∪ I
such that x > iu and θx < θiu . Let us then set {x1, . . . , xv} = {x ∈ J ∪ I : x > iu, , θx < θiu} such that

θx1 < · · · < θxv ·

Note that if {x ∈ J ∪ I : x > iu, , θx < θiu} = ∅, then the splitting occurs directly and

Brν(iu) = iu = max
x∈I
{x ≥ iu, θx ≤ θiu} ·

Recall that if {x ∈ J ∪ I : x > iu, , θx < θiu} 6= ∅, we then have

θxv < θiu < θiu+1 and x1, . . . , xv > iu ·

• If {x1, . . . , xv} ∩ J 6= ∅, then we necessarily have that x1 ∈ J. In fact, suppose that x1 ∈ I and
x1 < x ∈ {x1, . . . , xv} ∩ J. Since x1 > iu, by (3.7.5), we have θiu+1 < θx1+1 and then

θx1 < θx < θiu < θiu+1 < θx1+1 ,

and this contradicts (3.7.8). Furthermore, by (3.7.6), we have that

x1 = min{x1, . . . , xv} ∩ J = min
x∈J
{x > iu, θx < θiu} ·

• Otherwise, we have {x1, . . . , xv} ∩ J = ∅. In that case, {x1, . . . , xv} ⊂ I. We then have that
x1 > · · · > xv. In fact, for any x < x′ ∈ {x1, . . . , xv}, by (3.7.5), we have

θiu+1 < θx+1 < θx′+1 ,

and if we suppose that θx < θx′ , we then obtain the inequality

θx < θx′ < θiu < θiu+1 < θx+1 < θx′+1 ,
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and this contradicts (3.7.5). Furthermore, this leads to the following relation

x1 = max{x1, . . . , xv} = max
x∈I
{x ≥ iu, θx ≤ θiu} ·

In any case, by Proposition 3.4.6, we have that x1 = Brν(i). In fact, x1 is the index of the first crossed
part.
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A.2 Beyond Siladić’s theorem

A.2.1 Proof of Lemma 4.3.5

We prove it recursively on successive applications of Λ. The energy transfer Λ conserves the State of
the partition, so that the sequence of states is fixed. On the other hand, the particles gain or lose exactly
the minimal energy needed for the transfer, and by definition, this is exactly what ∆ evaluates. As an
example, if we do the transformation Λ, at position k, on a pair of particles in P × S , we obtain

initial positions j i + 1 i + 2
positions before Λ k k + 1 k + 2

states before Λ ck ck+1 ck+2
potentials before Λ l′k l′k+1 l′k+2

positions after Λ k + 2 k k + 1
states after Λ ck+2 ck ck+1

potentials after Λ ∆(k + 2, k) + l′k ∆(k, k + 1) + l′k+1 ∆(k + 1, k + 2) + l′k+2

·

Here we recall that l′k+1 − l′k+2 = ∆(k + 1, k + 2). The same calculation occurs when we consider the
application of Λ on a pair in S × P .

A.2.2 Proof of Lemma 4.3.6

We first prove that φ is non-increasing according to J, and then that φ is non-decreasing according to I.

• For any j < j′ ∈ J and i ∈ I, we have by Chasles’ relation and (4.3.6) that

φ(j, i)− φ(j′, i) = lj − lj′ − ∆(j, j′)− ∆(i + 1− β(j, i), i + 1− β(j′, i))

≥ α(j, j′)− ∆(i + 1− β(j, i), i + 1− β(j′, i)) ·

But Chasles’ relation and (4.3.3) give that

i + 1− β(j′, i)− (i + 1− β(j, i)) = β(j, j′) ≥ 0 ,

so that by (4.3.3) again, we obtain that φ(j, i)− φ(j′, i) ≥ α(j, j′)− β(j, j′). Since j, j′ ∈ J, we have
that

α(j, j′) = |(j, j′] ∩ J| = 1 + |(j, j′) ∩ J| = |[j, j′) ∩ J| = β(j, j′) ·

Therefore, we always have for any j < j′ ∈ J and i ∈ I that φ(j, i)− φ(j′, i) ≥ 0.

• For any j ∈ J and i < i′ ∈ I, we have by Chasles’ relation and (4.3.6)

φ(j, i′)− φ(j, i) = 2(li+1 − li′+1)− ∆(i + 1, i′ + 1) + ∆(i + 1− β(j, i), i + 1)

+ ∆(i′ + 1, i′ + 1− β(j, i′))

= 2(li+1 − li′+1 − ∆(i + 1, i′ + 1))

+ ∆(i + 1− β(j, i), i′ + 1− β(j, i′))

≥ 2α(i + 1, i′ + 1) + ∆(i + 1− β(j, i), i′ + 1− β(j, i′))

Since we have by (4.3.3) that

i′ + 1− β(j, i′)− (i + 1− β(j, i)) = i′ − i− β(i, i′)

= |[i, i′) ∩ (I t (I + 1))|
≥ 0 ,

we then obtain that φ(j, i′)− φ(j, i) ≥ 0.

A.2.3 Proof of Lemma 4.3.7

Since the functions η and ∆ satisfy Chasles’ relation, in order to show (4.3.14), it suffices to prove that for
all k ∈ {1, . . . , s− 1},

l′k − l′k+1 ≥ β(k, k + 1) + ∆(k, k + 1) ·
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• If k ∈ I, then k + 1 ∈ I + 1 and

l′k − l′k+1 = 2∆(k, k + 1)

≥ ∆(k, k + 1)
= β(k, k + 1) + ∆(k, k + 1) ·

• If k ∈ I + 1 and k + 1 ∈ I, then by (2.2.25), (lk, ck−1, ck)� (lk+2, ck+1, ck+2) is equivalent to

l′k − l′k+1 ≥ 2∆(k, k + 1)

≥ η(k, k + 1) + ∆(k, k + 1) ·

• If k ∈ I + 1 and k + 1 ∈ J, then by (2.2.24), (lk, ck−1, ck)� (lk+1, ck+1) is equivalent to

l′k − l′k+1 ≥ 1 + ∆(k, k + 1)

= η(k, k + 1) + ∆(k, k + 1) ·

• If k ∈ J and k + 1 ∈ I, then by (2.2.23), (lk, ck)� (lk+2, ck+1, ck+2) is equivalent to

l′k − l′k+1 ≥ ∆(k, k + 1)

= η(k, k + 1) + ∆(k, k + 1) ·

• If k, k + 1 ∈ J, then by (2.2.22), (lk, ck)� (lk+1, ck+1) is equivalent to

l′k − l′k+1 ≥ 1 + ∆(k, k + 1)

= η(k, k + 1) + ∆(k, k + 1) ·

To show (4.3.15), we only need to prove the relation for two consecutive i, i′ ∈ I t I + 1. This is obvious
for i ∈ I, since the following index is i + 1 ∈ I + 1, and li − li+1 = ∆(i, i + 1). Now let us take i ∈ I + 1.
The next i′ (if it exists) must necessarily be in I, and by (4.3.14), we obtain by the definition of η and
(4.3.3) that

2(li − li′) = l′i − l′i′
≥ η(i, i′) + ∆(i, i′)

= i′ − i− 1 + ∆(i, i′)

≥ 2∆(i, i′)− 1

=⇒ li − li′ ≥ ∆(i, i′)− 1
2

=⇒ li − li′ ≥ ∆(i, i′) ·

A.2.4 Proof of Proposition 4.1.3

Let us set p = (k, c) and s = (k′, c′, c′′). We then obtain that s′ = (k′ + ε(c′, c′′), c, c′) and p′ = (k −
ε(c, c′)− ε(c′, c′′), c′′). We also observe that µ(s′) = γ(s). We then have the following equivalences:

p 6�ε s⇐⇒ k− (2k′ + ε(c′, c′′)) < ε(c, c′) + ε(c′, c′′) by (2.2.23)

⇐⇒ [2(k′ + ε(c′, c′′)) + ε(c, c′)]− (k− ε(c, c′)− ε(c′, c′′)) > ε(c, c′) + ε(c′, c′′) ,

⇐⇒ s′ �ε p′ by (2.2.24) ·

p 6�ε γ(s)⇐⇒ k− (k′ + ε(c′, c′′)) < ε(c, c′) by (2.2.19)

⇐⇒ k− k′ ≤ 1 + ε(c, c′) + ε(c′, c′′) ,

⇐⇒ (k′ + ε(c′, c′′))− (k− ε(c, c′)− ε(c′, c′′)) ≥ 1 + ε(c′, c′′)

⇐⇒ µ(s′)�ε p′ by (2.2.22) ·
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A.2.5 Proof of Proposition 4.3.2

Let σ be the final position.

• Let us suppose that there exists (j, i) ∈ J × I such that σ(j) < σ(i) and φ(j, i) < 0. By Lemma 4.3.6
we have that φ(j′, i′) < 0 for all j < j′ ∈ J, i′ < i ∈ I. Also since σ is increasing on J and I, and
σ(J) + 1 \ σ(J) ⊂ σ(I), we necessarily have some j < j′ ∈ J, i′ < i ∈ I such that σ(j′) + 1 = σ(i′).
We then obtain by Lemma 4.3.5 the following difference of potentials:

D = λ′σ(j′) − (λ′σ(j′)+1 + λ′σ(j′)+2)− ∆(σ(j′), σ(j′) + 2)

= lj′ + ∆(σ(j′), j′)− [2(li′+1 + ∆(σ(i′ + 1), i′ + 1)) + ∆(σ(i′), σ(i′ + 1))]

− ∆(σ(j′), σ(i′ + 1))

= lj′ − 2li′+1 − ∆(j′, i′ + 1)− ∆(σ(i′), i′ + 1) ·

We now compute σ(i′). Since σ is increasing on I t (I + 1) and on J, we have that

σ(i′)− 1 = σ(j′)

= |[1, j′] ∩ J|+ |[1, i′) ∩ (I t (I + 1))|
= 1 + β(j′) + i′ − 1− β(i′)

= i′ − β(j, i′) ·

Finally, we obtain by definition that D = φ(j′, i′) < 0. Since the potential difference is negative, by
(2.2.23), we have that λ′

σ(j′) 6�ε λ′
σ(j′)+1 + λ′P(j′)+2 and σ is no longer the final position.

• Let us now suppose that there exists (j, i) ∈ J × I such that σ(j) > σ(i) and φ(j, i) ≥ 0. By Lemma
4.3.6, we have that φ(j′, i′) ≥ 0 for all j > j′ ∈ J, i′ > i ∈ I. Also since σ is increasing on J and
I, and σ(J) − 1 \ σ(J) ⊂ σ(I) + 1, we necessarily have some j > j′ ∈ J, i′ > i ∈ I such that
σ(j′)− 1 = σ(i′) + 1. We then obtain by Lemma 4.3.5 the following difference of potentials:

D = (λ′σ(j′)−2 + λ′σ(j′)−1)− λ′σ(j′) − ∆(σ(j′)− 2, σ(j′))

= [2(li′+1 + ∆(σ(i′ + 1), i′ + 1)) + ∆(σ(i′), σ(i′ + 1))]− lj′ − ∆(σ(j′), j′)

− ∆(σ(i′), σ(j′))

= 2li′+1 − lj′ − ∆(i′ + 1, j′)− ∆(i′ + 1, σ(i′ + 1)) ·

We now conpute σ(i′ + 1) Since σ is increasing on I t (I + 1) and on J,

σ(i′ + 1) + 1 = σ(j′)

= |[1, j′] ∩ J|+ |[1, i′ + 1] ∩ (I t (I + 1))|
= 1 + |[1, j′) ∩ J|+ 2 + |[1, i′) ∩ (I t (I + 1))|
= 2 + β(j′) + i′ − β(i′)

= 2 + i′ − β(j, i′) ·

Finally, we obtain by definition that D = −φ(j′, i′) ≤ 0. Since the potential difference is non-
positive, by (2.2.24), we have that λ′

σ(j′)−2 + λ′
σ(j′)−1 6�ε λ′

σ(j′) and σ is no longer the final position.

To conclude, for σ being the last position, the first part of the reasoning gives that σ(j) < σ(i) =⇒
φ(j, i) ≥ 0 and the second part gives that σ(j) < σ(i)⇐= φ(j, i) ≥ 0, so that we obtain the equivalence

σ(j) < σ(i)⇐⇒ φ(j, i) ≥ 0 ·

One can see in the previous reasoning that for any (j, i) ∈ J × I, whatever the choice of Step 2, once
they meet for some position σ′ (particles have consecutive positions), we then have that the correspond-
ing difference D between the potential of the particle to the left and the potential of the particle to the
right does not depend on σ′:

• if σ′(j) + 1 = σ′(i), then D = φ(j, i),

• if σ′(j)− 1 = σ′(i + 1), then D = −φ(j, i).
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By (2.2.24) and (2.2.23), this means that once the particles coming from i and j cross by Λ in Step 2, they
cannot cross back. Also, by the fact that the position function σ′ is increasing on J and I t (I + 1), the
crossings only occur, once, for j < i such that φ(j, i) < 0 or j > i such that φ(j, i) ≤ 0, and this gives
(4.3.11).

A.2.6 Proof of Proposition 4.3.3

By (4.1.3) of Proposition 4.1.3, we obtain, by crossing two particles with different degrees which are not
well-related in terms of�ε, that the resulting particles become well-related in terms of�ε. Step 2 then
consists in ordering consecutive particles with different degrees, as the process stops as soon as this is
the case.

Let us show that two consecutive primary particles are well related in terms of �ε. Since σ is in-
creasing on J, we then have, by Chasles’ relation, that for any j < j′ ∈ J

(lj + ∆(σ(j), j))− (lj′ + ∆(σ(j′), j′)) = lj − lj′ − ∆(j, j′) + ∆(σ(j), σ(j′)) , ·

In particular, if σ(j′) = σ(j) + 1, we then obtain by (4.3.6) and the defintion of α that

(lj + ∆(σ(j), j))− (lj′ + ∆(σ(j′), j′)) ≥ α(j, j′) + ∆(σ(j), σ(j′))

= |(j, j′] ∩ J|+ ε(cσ(j), cσ(j′))

≥ 1 + ε(cσ(j), cσ(j′)) ·

This means, by (2.2.22), that two consecutive primary particles are always well-ordered in terms of�ε

in the final result.

Finally, with the same reasoning as before, since σ is increasing on I t (I + 1), we have for i < i′ ∈ I
such that σ(i) + 2 = σ(i′) that

(li+1 + ∆(σ(i + 1), i))− (li′ + ∆(σ(i′), i′)) ≥ α(i + 1, i′) + ∆(σ(i + 1), σ(i′))

= |(i + 1, i′] ∩ J|+ ε(cσ(j), cσ(j′))

≥ ε(cσ(j), cσ(j′)) ,

so that by (2.2.19), we have λ′
σ(i+1) �ε λ′

σ(i′). We then obtain, by (2.2.25), that two consecutive secondary
particles are always well-ordered in terms of�ε in the final result.

A.2.7 Proof of Proposition 4.3.4

It suffices to show that all primary particles stay in the interval corresponding to ρ±. By using (4.3.3),
(4.3.6), and Lemma 4.3.5, we obtain for any k ∈ {1, . . . , s} that

lk + ∆(σ(k), k) ≤ l1 − α(1, k)− ∆(1, σ(k)) ≤ l1

and
lk + ∆(σ(k), k) ≥ ls + α(k, s) + ∆(σ(k), s) ≥ ls ·

Therefore, the potentials of the primary particles in the final partition stay in [ls, l1]. If λk ∈ O
ρ±
ε for all

k ∈ {1, . . . , s}, then λ′
σ(k) ∈ O

ρ±
ε and then λ′

σ(j) ∈ O
ρ±
ε and λ′

σ(i) + λ′
σ(i+1) ∈ E

ρ±
ε for all (j, i) ∈ J × I.

A.2.8 Proof of Proposition 4.3.8

By using Lemma 4.3.7, one can easily show that ψ is decreasing according to J (using (4.3.14)) and non-
decreasing according to I (using (4.3.15)). Let σ be the final position Step 1 of Ψ.

• Let us suppose that there exists (j, i) ∈ J × I such that σ(j) < σ(i) but ψ(j, i) < 0. Since σ is
increasing on J and I, and σ(J) + 1 \ σ(J) ⊂ σ(I), there exist (j′, i′) ∈ J × I such that j < j′, i′ < i
and σ(j′) + 1 = σ(i′). We also have that

ψ(j′, i′) ≤ ψ(j′, i) ≤ ψ(j, i) < 0 ·
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By evaluating the potential difference at σ(j′), we obtain that

D = ν′′σ(j′) − ν′′σ(j′)+1 − ∆(σ(j′), σ(j′) + 1)

= (lj′ + ∆(σ(j′), j′))− (li′ + ∆(σ(i′), i′))− ∆(σ(j′), σ(i′))

= lj′ − li′ − ∆(j′, i′)

= ψ(j′, i′) < 0 ·

This means by (2.2.19) that ν′′
σ(j′) 6�ε ν′′

σ(j′)+1. Since γ(ν′′
σ(i′) + ν′′

σ(i′+1)) = ν′′
σ(j′)+1, we can apply Λ,

so that σ is no longer the final position.

• Let us now assume that there exists (j, i) ∈ J × I such that σ(j) > σ(i) but ψ(j, i) ≥ 0. Since σ is
increasing on J and I t (I + 1), and σ(J)− 1 \ σ(J) ⊂ σ(I + 1), there exist (j′, i′) ∈ J × I such that
j > j′, i′ > i and σ(j′)− 1 = σ(i′ + 1) = σ(i′) + 1. We also have that

ψ(j′, i′) ≥ ψ(j′, i) ≥ ψ(j, i) ≥ 0 ·

By evaluating the potential difference at σ(j′), we obtain

D = ν′′σ(j′)−1 − ν′′σ(j′) − ∆(σ(j′)− 1, σ(j′))

= (li′+1 + ∆(σ(i′ + 1), i′ + 1))− (lj′ + ∆(σ(j′), j′))− ∆(σ(i′ + 1), σ(j′))

= li′+1 − lj′ − ∆(i′ + 1, j′)

= li′ − lj′ − ∆(i′, j′) ≤ 0 ·

This means by (2.2.22) that ν′′
σ(j′)−1 6�ε ν′′

σ(j′). Since µ(ν′′
σ(i′) + ν′′

σ(i′+1)) = ν′′
σ(j′)−1, we can apply Λ,

so that σ is no longer the final position.

To conclude, we observe that the first part gives that σ(j) < σ(i) =⇒ ψ(j, i) ≥ 0 and the second part
σ(j) < σ(i)⇐= ψ(j, i) ≥ 0, so that we obtain the first result in Proposition 4.3.8.

We obtain (4.3.18) with the same reasoning as in the proof of Proposition 4.3.8, by observing that the
difference of potential when two particles meet does not depend on the choice in which we apply Λ,
and once particles cross by Λ, they cannot cross back.

A.2.9 Proof of Proposition 4.3.9

Since for all k, k′ ∈ {1, . . . , s}, we obtain by Lemma 4.3.5 that

ν′′σ(k) − ν′′σ(k′) − ∆(σ(k), σ(k′)) = lk − lk′ − ∆(k, k′) ·

Let us now consider any k, k′ such that σ(k) + 1 = σ(k′).

• If (k, k′) ∈ J2, we have then by (4.3.14) that

ν′′σ(k) − ν′′σ(k′) ≥ η(k, k′)

= |(k, k′] ∩ J|
≥ 1 ,

so that by (2.2.22), ν′′
σ(k) �ε ν′′

σ(k′).

• If (k, k′) ∈ J × I, then since Step 1 ended, we necessarily have

ν′′σ(k) �ε ν′′σ(k′) ·

• If (k, k′) ∈ I × I + 1, then we have
ν′′σ(k) − ν′′σ(k′) = 0

so that by (2.2.19), ν′′
σ(k) �ε ν′′

σ(k′).
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• If (k, k′) ∈ I + 1× J, then since Step 1 ended, we necessarily have

ν′′σ(k) �ε ν′′σ(k′) ·

• If (k, k′) ∈ I + 1× I, we then have by (4.3.15) that

ν′′σ(k) − ν′′σ(k′) ≥ 0

so that by (2.2.19), ν′′
σ(k) �ε ν′′

σ(k′).

We then obtain that ν′′ = (ν′′1 , . . . , ν′′s ) is well-ordered by �ε so that it belongs to Oε.

A.2.10 Proof of Proposition 4.3.10

For ρ ∈ {0, 1}, it suffices to show that ν′′
σ(k) ≥ ρ in the case ρ+ and ν′′

σ(k) ≤ ρ in the case ρ−.

• If ν ∈ E ρ+
ε , then, by Lemma 4.3.7, this implies that l′s ≥ ρ. For the last j ∈ J, it is easy to see by

(4.3.14) that

ν′′σ(j) = l′j + ∆(σ(j), j)

≥ l′s + η(j, s) + ∆(σ(j), s) ≥ ρ ·

For the last i + 1 ∈ I + 1, we have by (4.3.14) that

2ν′′σ(i+1) = 2(li+1 + ∆(σ(i + 1), i + 1))

≥ l′s + η(i + 1, s) + ∆(i + 1, s) + 2∆(σ(i + 1), i + 1)

but we have by definition and (4.3.3) that η(i + 1, s) = s− i− 1 ≥ ∆(i + 1, s), so that

2ν′′σ(i+1) ≥ l′s + 2∆(σ(i + 1), s)

≥ l′s

=⇒ ν′′σ(i+1) ≥
1
2

ρ ·

Since ρ ∈ {0, 1} and ν′′
σ(i+1) ∈ Z, we necessarily have that ν′′

σ(i+1) ≥ ρ. Then for any k ∈ {1, . . . , s},
ν′′

σ(k) ≥ ρ.

• For ν ∈ Eρ−
ε , we have the following.

– If 1 ∈ I, since σ is increasing on I t I + 1, we obtain by (4.3.15) that for all i ∈ I t (I + 1),

ν′′σ(i) = li + ∆(σ(i), i)

≤ l1 − ∆(1, σ(i))
≤ l1 ≤ ρ ·

For the first j ∈ J, we have by (4.3.14) that

ν′′σ(j) = lj + ∆(σ(j), j)

≤ 2l1 − η(1, j)− ∆(1, σ(j))
≤ 2l1 − η(1, j)
≤ 2ρ− 1 ·

Since ρ ∈ {0, 1}, we then have that ν′′
σ(k) ≤ ρ for all k ∈ {1, . . . , s}.

– If 1 ∈ J, we can easily see as before that by (4.3.14), ν′′
σ(j) ≤ ρ for all j ∈ J. Now let us consider

the first i ∈ I. We have by (4.3.14) that

2ν′′σ(i) = 2(li + ∆(σ(i), i))
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≤ 2(li + ∆(1, i))
≤ l1 − η(1, i) + ∆(1, i)
= l1 − i + 2 + ∆(1, i) ·

By using (4.3.3), we obtain that

2ν′′σ(i) ≤ ρ + 1

=⇒ ν′′σ(i) ≤
ρ + 1

2
,

so that, since ρ ∈ {0, 1} and ν′′
σ(i) ∈ Z, we then always have ν′′

σ(i) ≤ ρ.
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A.3 Beyond the Durfee square

A.3.1 Proof of Lemma 6.1.24

This immediately comes from Remark 6.1.17, Remark 6.1.19, and the fact that we have by (2.2.48) and
(2.2.52)

ε(c, b(c)) + ε(b(c), a(c′)) + ε(a(c′), c′)− ε(c, c′) = ε(c, b(c)) + ε(b(c), a(c′))− ε(c, a(c′))

+ ε(b(c), a(c′)) + ε(a(c′), c′)− ε(b(c), c′) ·

A.3.2 Proof of Lemma 6.1.26

We proceed via backward induction on j.

• If j = s + t, λ( fs+t) is the last part of the minimal partition and therefore has size 1. Equation
(6.1.1) is correct, as s + t ∈ N t T0 t S1.

• Now assume that (6.1.1) holds for f j+1, and prove it for f j. Let k and ` be such that f j = akbk and
f j+1 = a`b`. We always have k 6= `.

1. For now, let us assume that nj+1 > 0, i.e. that f j+1 was actually inserted in the color sequence.

– If j ∈ N or j is a left secondary insertion, then the subsequence between f j and f j+1 in
S(n1, . . . , ns+t) is f j, akb`, f j+1 or f j, a`b`, f j+1. In the first case, we have

λ( f j) = ∆(akbk, akb`) + ∆(akb`, a`b`) + λ( f j+1)

= 1 + λ( f j+1),

In the second case, we have also

λ( f j) = ∆(akbk, a`b`) + ∆(a`b`, a`b`) + λ( f j+1)

= 1 + λ( f j+1),

By the induction hypothesis, we have

λ( f j) = 1 + # ({j + 1, . . . , s + t} ∩ (N t T0 t S1))

= # ({j, . . . , s + t} ∩ (N t T0 t S1)) ,

because j ∈ N t T0 t S1.
– If j is a right secondary insertion, then f j appears directly before f j+1 in S(n1, . . . , ns+t).

Thus we have

λ( f j) = ∆( f j, f j+1) + λ( f j+1)

= 1 + λ( f j+1),

and we can deduce (6.1.1) in the exact same way as before.

2. Now we treat the case where f j+1 was not inserted in the color sequence. By Proposition
6.1.25, if j+ 1 ∈ N tT0, it does not change anything to the other parts in the minimal partition
, so λ( f j) stays the same as in case (1).
If j + 1 ∈ T1 and bj+1 was not inserted, then by Proposition 6.1.25, the part λ( f j) decreases
by one compared to the previous case. But in this case, # ({j, . . . , s + t} ∩ (N t T0 t S1)) also
decreases by one compared to case (1), so Equation (6.1.1) is still correct.

A.3.3 Proof of Lemma 6.2.4

When u = v = 0, this is trivially true. Otherwise, we have by definition:

gu,v(q−1; 2− x1, . . . , 2− xv) = ∑
θ1,...,θv∈{0,1}:
θ1+···+θv=u

q−(uv+(u
2))

v

∏
k=1

q−(2−xk−1)∑k−1
i=1 θi
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= q−u(2v+u−1) ∑
θ1,...,θv∈{0,1}:
θ1+···+θv=u

q(uv+(u
2))

v

∏
k=1

q(xk−1)∑k−1
i=1 θi

= q−u(2v+u−1)gu,v(q; x1, . . . , xv).

A.3.4 Proof of Lemma 6.2.7

Let us consider a partition into parts at most s + m, generated by 1
(q;q)s+m

.

x− y = u+ s

x

y

0

m′ − u

s+m

m−m′s+m′

FIGURE A.1: Durfee-like decomposition

Draw its Ferrers diagram on the plane as shown in Figure A.1, and draw the line of equation x− y =
u + s. This line intersects the boundary of the Ferrers board in a point with coordinates (s + m′, m′ −
u) for some integer m′ ∈ {u, . . . , m}. (we take the convention that the x-axis always belongs to the
boundary of the Ferrers board). It defines three zones in the Ferrers diagram:

• a rectangle of size (m′−u)× (s+m′) on the bottom-left of the intersection, generated by q(m
′−u)(s+m′),

• a partition into parts at most s + m′ on top on the rectangle, generated by 1
(q;q)s+m′

,

• a partition with at most m′ − u parts, each of size at most m−m′, generated by [m−u
m′−u]q.

Summing over all possible values of m′ gives the desired result.

A.3.5 Proof of Lemma 6.3.1

First, writing S1 =
t⊔

u=1
Su

1 , we have

Σ1 =
t

∑
u=1

∑
j∈Su

1

(P(j) + # (Jj; s + tK∩ (N t T0 t S1))) .

Now, noticing that for j ∈ Su
1 , P(j) = j− u, we can write

Σ1 =
t

∑
u=1

∑
j∈Su

1

(j2u−1 − u + j− j2u−1 + # (Jj; s + tK∩ (N t T0 t S1))) . (A.3.1)

We first note that

j2u−1 − u = 1− u + j2u−1 − 1
= 1− u + #(J1; j2u−1 − 1K∩N ) + #(J1; j2u−1 − 1K∩ (T0 t T1)) because J1; s + tK = N t T0 t T1
= 1− u + #(J1; j2u−1 − 1K∩N ) + 2u− 2 by definition of j2u−1
= #(J1; j2u−1 − 1K∩N ) + u− 1.
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We also rewrite j− j2u−1 as

j− j2u−1 = #(Jj2u−1; j− 1K∩ T u
0 ) + #(Jj2u−1; j− 1K∩ Su

1 ) + #(Jj2u−1; j− 1K∩ Su
1 ) + #(Jj2u−1; j− 1K∩N ).

Finally, we have

#(Jj; s + tK∩ (N t T0 t S1)) = #(Jj; s + tK∩N ) + #(Jj; j2uK∩ (T u
0 t Su

1 )) + #(Jj2u + 1; s + tK∩ (T0 t S1))

= #(Jj; s + tK∩N ) + #(Jj; j2uK∩ (T u
0 t Su

1 )) +
t

∑
v=u+1

(|T v
0 |+ |Sv

1 |) .

Combining the three observations above, (A.3.1) becomes

Σ1 =
t

∑
u=1

∑
j∈Su

1

(
|N |+ u− 1 +

t

∑
v=u

(|T v
0 |+ |Sv

1 |) + #(Jj2u−1; j− 1K∩ Su
1 )

)
.

Noticing that |N |+ u− 1 + ∑t
v=u

(
|T v

0 |+ |Sv
1 |
)

does not depend on j, and that #(Jj2u−1; j− 1K ∩ Su
1 ) =

#{j′ < j : j′ ∈ Su
1 } yields the desired formula.

A.3.6 Proof of Lemma 6.3.2

By Proposition 6.1.27 and Lemma 6.3.1, we have

HS,S1(q) = ∑
n1,...,ns+t :

n1+···+ns+t=m,
{j∈T1 :nj>0}=S1

q|minε(S)|+Σ1+∑j∈S1
(nj−1)#(Jj;s+tK∩(NtT0tS1))+∑j∈N∪T0

nj#(Jj;s+tK∩(NtT0tS1)).

Thus by the changes of variables

n′j =

{
nj if j ∈ N t T0

nj − 1 if j ∈ S1
,

and noticing that |minε(S)| and Σ1 do not depend on the nj’s, we obtain

HS,S1(q) = q|minε(S)|+Σ1 ∑
(n′j)j∈NtT0tS1

:

∑j n′j=m−|S1|

q∑j∈NtT0tS1
n′j#(Jj;s+tK∩(NtT0tS1)) (A.3.2)

Moreover, we can interpret the sum above as the generating function for partitions into exactly m− |S1|
parts, each part being at most |N |+ |T0|+ |S1|. Indeed, for all j ∈ N t T0 t S1, n′j can be interpreted as
the number of parts of size # (Jj; s + tK∩ (N t T0 t S1)) (see Figure A.2 below).

|N |+ |T0|+ |S1|

m− |S1|

n′
1

n′
2

n′
j

#{j, . . . , s+ t} ∩ (N t T0 t S1)

FIGURE A.2: Decomposition of the Ferrers board.
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The generating function for such partitions is given by qm−|S1|[m−1+|N |+|T0|
m−|S1|

]
q
, which yields the de-

sired formula (6.3.2) for HS,S1(q).

A.3.7 Proof of Lemma 6.3.3

Partitions whose Ferrers diagram fits inside a a× b box, generated by [a+b
a ]q, are in bijection with walks

on the plane going from (0, 0) to (b, a), having b right steps and a up steps. The partition can be seen on
top of the path, as shown in Figure A.3.

x

y

(b, a)
a

b

9=number of right steps below

FIGURE A.3: A partition as a path.

If A ⊆ J1; a + bK, |A| = a is the set of up steps, then for each position j ∈ A, the part of the partition
corresponding to this up step has its size equal to the number of right steps that have been done before,
i.e. #{j′ < j : j′ ∈ J1; a + bK \ A}.

A.3.8 Proof of Lemma 6.3.5

The left-hand side is the generating function for partitions fitting inside a m× (`1 + · · ·+ `t) box, such
that the largest part is equal to m. Take the Ferrers board of such a partition, and draw it is the plane as
shown on Figure A.4 (where the partition is above the path).

x

y

xt = m
0

`1

`2

`t

x1 x2 xt−1

y1

y2

yt−1

yt

FIGURE A.4: Decomposition of the Ferrers board.

For all i ∈ {1, . . . , t}, let xi be the size of the ∑t
k=i+1 `k + 1-th part (with xi = 0 if there are less than

`1 + · · ·+ `t − yi + 1 parts).
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For all i ∈ {1, . . . , t}, let yi := ∑i
k=1 `k. For fixed 0 ≤ x1 ≤ · · · ≤ xt = m, these partitions are

generated by
t

∏
r=1

q`r xr−1 × qxr−xr−1

[
xr − xr−1 + `r − 1

xr − xr−1

]
q
,

where q`r xr−1 generates the rectangle between the y-axis, the lines y = yr and y = yr−1, and the line
x = xr−1, and the second term generates partitions fitting inside a (xr − xr−1)× `r box, such that the
largest part is equal to xr − xr−1. The above is equal to

qm
t

∏
r=1

q`r xr−1

[
xr − xr−1 + `r − 1

xr − xr−1

]
q
,

and summing over all possible values for x1, . . . , xt−1 gives the desired result.

A.3.9 Proof of Lemma 6.3.7

Let us define G0(q; m) = χ(m = 0), and for v ≥ 1,

Gv(q; x1, . . . , xv; m) :=

∑
0=m0≤m1≤···≤mv=m

∑
k1,...,kv :

ku∈J0;2−xuK

v

∏
u=1

qku(u−2+ku+xu)+(ku+xu)mu−1

[
2− xu

ku

]
q

[
mu −mu−1 + xu − 1

mu −mu−1 − ku

]
q
,

So that the function in Lemma 6.3.7 is Gt(q; |T 1
0 |, . . . , |T t

0 |; mt).
We show by induction on v that

Gv(q; x1, . . . , xv; m) =
v

∑
u=0

gu,v(q; x1, . . . , xv)

[
m + v− 1

m− u

]
q
. (A.3.3)

Recall from Andrews, 1984b, p. 37, (3.3.10) that[
a + b

c

]
q
= ∑

a′≥0

[
a
a′

]
q

[
b

c− a′

]
q
qa′(b−c+a′). (A.3.4)

By (A.3.4) with a = 2− x1, b = m + x1 − 1, and c = m, we have

G1(q; x1; m) =

[
m + 1

m

]
q

=

[
m
m

]
q
+ q
[

m
m− 1

]
q

= g0,1(q; x1)

[
m
m

]
q
+ g1,1(q; x1)

[
m

m− 1

]
q
.

So (A.3.3) is true for v = 1. Now assume that it is true for v− 1 ≥ 1 and prove it for v. We have

Gv(q; x1, . . . , xv; m) =

∑
0=m0≤m1≤···≤mv=m

v

∏
u=1

(
2−xu

∑
ku=0

qku(u−2+ku+xu)+(ku+xu)mu−1

[
2− xu

ku

]
q

[
mu −mu−1 + xu − 1

mu −mu−1 − ku

]
q

)

=
m

∑
mv−1=0

(
∑

0=m0≤m1≤···≤mv−1

v−1

∏
u=1

(
2−xu

∑
ku=0

qku(u−2+ku+xu)+(ku+xu)mu−1

[
2− xu

ku

]
q

[
mu −mu−1 + xu − 1

mu −mu−1 − ku

]
q

))

×
2−xv

∑
kv=0

qkv(v−2+kv+xv)+(kv+xv)mv−1

[
2− xv

kv

]
q

[
m−mv−1 + xv − 1

m−mv−1 − kv

]
q

=
m

∑
mv−1=0

Gv−1(q; x1, . . . , xv−1; mv−1)
2−xv

∑
kv=0

qkv(v−2+kv+xv)+(kv+xv)mv−1

[
2− xv

kv

]
q

[
m−mv−1 + xv − 1

m−mv−1 − kv

]
q
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=
m

∑
mv−1=0

v−1

∑
u=0

gu,v−1(q; x1, . . . , xv−1)

[
mv−1 + v− 2

mv−1 − u

]
q

×
2−xv

∑
kv=0

qkv(v−2+kv+xv)+(kv+xv)mv−1

[
2− xv

kv

]
q

[
m−mv−1 + xv − 1

m−mv−1 − kv

]
q
,

where we used the induction hypothesis in the last equality. Rearranging the order of summation leads
to

Gv(q; x1, . . . , xv; m) =
v−1

∑
u=0

quxv gu,v−1(q; x1, . . . , xv−1)
2−xv

∑
kv=0

qkv(v−2+u+kv+xv)

[
2− xv

kv

]
q

×
m

∑
mv−1=0

q(kv+xv)(mv−1−u)
[

mv−1 + v− 2
mv−1 − u

]
q

[
m−mv−1 + xv − 1

m−mv−1 − kv

]
q
.

Using Lemma 6.3.5 with t = 2, m = m− u− kv, `1 = v− 1 + u, and `2 = kv + xv, and the change of
variable x1 = mv−1 − u, this yields:

Gv(q; x1, . . . , xv; m) =
v−1

∑
u=0

quxv gu,v−1(q; x1, . . . , xv−1)
2−xv

∑
kv=0

qkv(v−2+u+kv+xv)

[
2− xv

kv

]
q

×
[

m + v + xv − 2
m− u− kv

]
q
.

Using (A.3.4) again with a = 2− xv, b = m + v + xv − 2, c = m− u, and a′ = kv, we obtain

Gv(q; x1, . . . , xv; m) =
v−1

∑
u=0

quxv gu,v−1(q; x1, . . . , xv−1)

[
m + v
m− u

]
q
.

By the q-analogue of Pascal’s triangle, this becomes

Gv(q; x1, . . . , xv; m)

=
v−1

∑
u=0

quxv gu,v−1(q; x1, . . . , xv−1)

[
m + v− 1

m− u

]
q
+

v−1

∑
u=0

quxv+u+vgu,v−1(q; x1, . . . , xv−1)

[
m + v− 1
m− u− 1

]
q

=
v−1

∑
u=0

(
quxv gu,v−1(q; x1, . . . , xv−1) + q(u−1)xv+u+v−1gu−1,v−1(q; x1, . . . , xv−1)

) [m + v− 1
m− u

]
q

(A.3.5)

Recall that

gu,v(q; x1, . . . , xv) = ∑
ε1,...,εv∈{0,1}:
ε1+···+εv=u

quv+(u
2)

v

∏
k=1

q(xk−1)∑k−1
i=1 εi .

So, separating the case where εv = 0 from the case where εv = 1, we have

gu,v(q; x1, . . . , xv) = ∑
ε1,...,εv−1∈{0,1}:
ε1+···+εv−1=u

quv+(u
2)

(
v−1

∏
k=1

q(xk−1)∑k−1
i=1 ∑k−1

i=1 εi

)
q(xv−1)u

+ ∑
ε1,...,εv−1∈{0,1}:

ε1+···+εv−1=u−1

quv+(u
2)

(
v−1

∏
k=1

q(xk−1)∑k−1
i=1 ∑k−1

i=1 εi

)
q(xv−1)(u−1).

After simplification, this is exactly (A.3.5).

A.3.10 Proof of Lemma 6.4.1

The first equality follows directly from the definition of the si’s.
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Let us now prove the second equality. We have

n−1

∑
i=1

((i + 1)si − isi+1)
2

2i(i + 1)
=

n−1

∑
i=1

(
i + 1

2i
s2

i − sisi+1 +
i

2(i + 1)
s2

i+1

)

= −
n−1

∑
i=1

sisi+1 + s2
1 +

n−1

∑
i=2

(
i + 1

2i
s2

i +
i− 1

2i
s2

i

)

=
n−1

∑
i=1

si(si − si+1),

where the second equality followed from the change of variable i→ i− 1 in the last sum.

A.3.11 Proof of Proposition 6.2.3

We first prove that the relations in Definition 2.2.37 are satisfied by ε′. We have the following.

1. for any c, c′ ∈ Cfree t {c∞},
ε′(c, c) = 2− (ε1 + ε2)(c, c) = 0

and for c 6= c′

ε′(c, c′) = 2− (ε1 + ε2)(c, c′) = 2− 1 = 1 .

Then, relation (2.2.48) is satisfied by ε′.

2. For any c ∈ Cbound,

ε′(a(c), c) + ε′(c, b(c)) = 4− (ε1 + ε2)(a(c), c)− (ε1 + ε2)(c, b(c))
= 4− (1 + ε(a(c), c))− (1 + ε(c, b(c)))
= 2− (ε(a(c), c) + ε(c, b(c)))
= 1

and relation (2.2.49) is satisfied. For any c′ ∈ (Cfree t {c∞}) \ {a(c)},

ε′(c′, c) = 2− (ε1 + ε2)(c′, c) = 2− ε(c′, c)

By (2.2.50), we obtain

ε(c′, c) ∈ {ε(a(c), c), ε(a(c), c) + 1} ⇐⇒ ε′(c′, c) ∈ {2− ε(a(c), c), 1− ε(a(c), c)}

and since ε′(a(c), c) = 1− ε(a(c), c) =, we then have that ε′ satisfies relation (2.2.50). By the same
reasoning, we show that ε′ satisfies relation (2.2.51).

3. For any c, c′ ∈ Cbound with b(c) = a(c′), we have

ε′(c, c′) = 2− (ε1 + ε2)(c, c′)

= 2− ε(c, c′)

= 2− (ε(c, a(c′)) + ε(b(c), c′)) by (2.2.52)

= (1− (ε(c, b(c))) + (1− ε(a(c′), c′))

= ε′(c, b(c)) + ε(a(c′), c′) .

For any c, c′ ∈ Cbound with b(c) 6= a(c′), we have

ε′(c, c′) = 2− (ε1 + ε2)(c, c′)

= 2− ε(c, c′)

= 3− (ε(c, a(c′)) + ε(b(c), c′)) by (2.2.52)

= (2− (ε(c, a(c′))) + (2− ε(b(c), c′))− 1

= ε′(c, b(c)) + ε(a(c′), c′)− 1 .

In both case, relation (2.2.52) is satisfied by ε′.
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We now consider the left insertion of a(c′) in a secondary pair (c, c′) with a bound color c′. Without loss
of generality, since for a bound color c, the type of the insertion of a(c′) in the pair (b(c), c′) is the same
as in the pair (c, c′), we can assume that c is a free color (then different from a(c′)). The type of insertion
is then given by the value of ε′(c, a(c′)) + ε′(a(c′), c′)− ε′(c, c′). We then have

ε′(c, a(c′)) + ε′(a(c′), c′)− ε′(c, c′) = 1 + (1− ε(a(c′), c′))− (2− ε(c, c′))

= 1− (1 + ε(a(c′), c′)− ε(c, c′))

= 1− (ε(c, a(c′)) + ε(a(c′), c′)− ε(c, c′)) .

The type of insertion is then exchanged, as a type 0 with ε becomes a type 1 with ε′ and reversely, a type
0 with ε becomes a type 0 with ε. We use the same reasoning for the right insertion and we obtain the
same reversibility of the types.

A.3.12 Proof of Proposition 6.2.5

Let C = c1, . . . , cs+m be a color sequence whose reduction is S. The weight of the corresponding minimal
partition in P c∞

ε1+ε2
is

|minε1+ε2(C)| =
s+m

∑
i=1

i(ε1 + ε2)(ci, ci+1) = (s + m)(s + m + 1)− |minε′(C)|, (A.3.6)

where the second equality follows from the definition of ε′. On the other hand, by Proposition 6.2.3 and
(A.3.6), we have

|minε(S)| = |minε1+ε2(S)| = s(s + 1)− |minε′(S)|. (A.3.7)

Given that, by Proposition 6.2.3, ε and ε′ have exactly the same insertion properties up to exchanging
the type 0 and 1 insertions, Proposition 6.1.29 immediately gives us that

∑
Ccolor sequence of length s+m

such that red(C)=S

q|min∆′′ (C)| = q|minε′ (S)|+m
t

∑
u=0

qu(s−t)gu,t(q; |T 1
1 |, . . . , |T t

1 |)
[

s + m− 1
m− u

]
q
.

Combining this with (A.3.6), we get that the generating function for minimal partitions in P c∞
ε1+ε2

is

G : = ∑
Ccolor sequence
of length s+m

such that red(C)=S

q|minε1+ε2 (C)|

= q(s+m)(s+m+1)−|minε′ (S)|−m
t

∑
u=0

q−u(s−t)gu,t(q−1; |T 1
1 |, . . . , |T t

1 |)
[

s + m− 1
m− u

]
q−1

.

By Lemma 6.2.4 and the fact that for all k ∈ {1, . . . t}, |T k
1 | = 2− |T k

0 |, the above becomes

G = q(s+m)(s+m+1)−|min∆′′ (S)|−m
t

∑
u=0

q−u(s+t+u−1)gu,t(q; |T 1
0 |, . . . , |T t

0 |)
[

s + m− 1
m− u

]
q−1

.

Now using the fact that [
s + m− 1

m− u

]
q−1

= q−(s+u−1)(m−u)
[

s + m− 1
m− u

]
q
,

we obtain

G = q(s+m)(s+m+1)−|minε′ (S)|−ms
t

∑
u=0

q−u(t+m)gu,t(q; |T 1
0 |, . . . , |T t

0 |)
[

s + m− 1
m− u

]
q

= q|minε(S)|+m(s+m+1)
t

∑
u=0

q−u(t+m)gu,t(q; |T 1
0 |, . . . , |T t

0 |)
[

s + m− 1
m− u

]
q
,

where we used (A.3.7) in the last equality. This completes the proof.
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A.3.13 Proof of Proposition 6.3.4

By Lemma 6.3.2, we have:

GS,m(q) = ∑
k1,...,kt :
ku≤|T u

1 |

∑
S1 :

∀u,Su
1⊆T

u
1

and |Su
1 |=ku

HS,S1(q) = ∑
k1,...,kt :
ku≤|T u

1 |

∑
S1 :

∀u,Su
1⊆T

u
1

and |Su
1 |=ku

q|minε(S)|+Σ1+m−|S1|
[

m− 1 + |N |+ |T0|
m− |S1|

]
q
.

By Lemma 6.3.1, this becomes

GS,m(q) = ∑
k1,...,kt :
ku≤|T u

1 |

q|minε(S)|+∑t
u=1 ku(|N |+u−1+∑t

v=u(|T v
0 |+kv))qm−∑t

u=1 ku

[
m− 1 + |N |+ |T0|

m−∑t
u=1 ku

]
q

× ∑
S1 :

∀u,Su
1⊆T

u
1

and |Su
1 |=ku

t

∏
u=1

q∑j∈Su
1

#{j′<j:j′∈Su
1 }.

Exchanging the final sum and product, and then using Lemma 6.3.3 for each u ∈ {1, . . . , t} with a = ku
and b = |T u

1 | − ku gives the desired formula.

A.3.14 Proof of Proposition 6.3.6

Let us start by applying Lemma 6.3.5 with t = t + 1, m = m − ∑t
u=1 ku, `u = ku + |T u

0 | for all u ∈
{1, . . . , t}, and `t+1 = |N |. We have

X := qm−∑t
u=1 ku

[
m + |T0|+ |N | − 1

m−∑t
u=1 ku

]
q

= qm−∑t
u=1 ku ∑

0=x0≤x1≤···≤xt+1=m−∑t
u=1 ku

(
t

∏
u=1

q(ku+|T u
0 |)xu−1

[
xu − xu−1 + ku + |T u

0 | − 1
xu − xu−1

]
q

)

× q|N |xt

[
m−∑t

u=1 ku − xt + |N | − 1
m−∑t

u=1 ku − xt

]
q
.

By the changes of variables xu = mu −∑u
v=1 kv, we obtain

X = qm−∑t
u=1 ku ∑

0=m0≤m1≤···≤mt+1=m

(
t

∏
u=1

q(ku+|T u
0 |)(mu−1−∑u−1

v=1 kv)

[
mu −mu−1 + |T u

0 | − 1
mu −mu−1 − ku

]
q

)

× q|N |(mt−∑t
v=1 kv)

[
m−mt + |N | − 1

m−mt

]
q

= qm−∑t
u=1 ku(1+|N |)−∑t

u=1(ku+|T u
0 |)∑u−1

v=1 kv

× ∑
0=m0≤m1≤···≤mt≤m

(
t

∏
u=1

q(ku+|T u
0 |)mu−1

[
mu −mu−1 + |T u

0 | − 1
mu −mu−1 − ku

]
q

)
q|N |mt

[
m−mt + |N | − 1

m−mt

]
q
.

We deduce the final formula by using that

t

∑
u=1

(ku + |T u
0 |)

u−1

∑
v=1

kv =
t

∑
v=1

kv

t

∑
u=v+1

(ku + |T u
0 |).
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A.4 Perfect crystal and multi-grounded partitions

A.4.1 Proof of Lemma 8.3.1

We have the following formula for any positive integer m,

mt−1

∑
k=0

(k + 1)H(gk+1 ⊗ gk) =
m(mt + 1)

2

t−1

∑
k=0

H(gk+1 ⊗ gk) +
mt−1

∑
k=0

(k + 1)HΛ(gk+1 ⊗ gk) by (2.3.1)

=
m(mt + 1)

2

t−1

∑
k=0

H(gk+1 ⊗ gk)

+
m−1

∑
l=0

[
t−1

∑
k=0

(k + 1)HΛ(gk+1 ⊗ gk)

]
+ lt

[
t−1

∑
k=0

HΛ(gk+1 ⊗ gk)

]

=
m(mt + 1)

2

t−1

∑
k=0

H(gk+1 ⊗ gk) + m
t−1

∑
k=0

(k + 1)HΛ(gk+1 ⊗ gk) by (8.3.3) ·

(A.4.1)

Therefore, but computing the weight wt(p) given by (8.1.11), we obtain

wt(p) = Λ +
∞

∑
k=0

(wt(pk)−wt(gk))−
(

∞

∑
k=0

(k + 1)
(

H(pk+1 ⊗ pk)− H(gk+1 ⊗ gk)
)) δ

d0

= Λ +
mt−1

∑
k=0

(wt(pk)−wt(gk))−
(

mt−1

∑
k=0

(k + 1)
(

H(pk+1 ⊗ pk)− H(gk+1 ⊗ gk)
)) δ

d0

= Λ +
mt−1

∑
k=0

wt(pk)−
δ

d0

mt−1

∑
k=0

(k + 1)HΛ(pk+1 ⊗ pk)

+
mδ

d0

t−1

∑
k=0

(k + 1)HΛ(gk+1 ⊗ gk) by (8.3.1), (2.3.1)

A.4.2 Proof of Proposition 8.2.2

It is easy to see that φ(p) belongs to Pm
cg , since by (8.2.2) we have πk m πk+1 for k ∈ {1, . . . , s− 1}, and

ps−1 6= g implies that πs−1 6= 0cg . Note that the ground state path · · · ⊗ g⊗⊗g⊗ g is associated to (0cg).
Let us now give the inverse bijection. Start with π ∈ (π0, . . . , πs−1, 0cg) ∈ Pm

cg , different from (0cg),
with colour sequence cp′0

· · · cp′s−1
cg. Recall that πs = 0cg . We set φ−1(π) = (pk)k≥0, where pk = g for all

k ≥ s and pk = p′k for all k ∈ {1, . . . , s− 1}.

• We first show that ps−1 6= g. Assume for the purpose of contradiction that ps−1 = g. By (8.2.2), we
know that πs−1 m 0cg if and only if

πs−1 − 0cg = H(ps ⊗ ps−1) = H(g⊗ g) = 0,

i.e. if and only if πs−1 = 0cg . This contradicts the fact that πs−1 6= 0cg .

• By (8.2.2), we also have, for all k ∈ {1, . . . , s− 1}, πk − πk+1 = H(pk+1 ⊗ pk). Therefore

πk = πk − 0cg =
s−1

∑
l=k

πl − πl+1 =
s−1

∑
l=k

H(pl+1 ⊗ pl).

With what precedes, we have φ(φ−1(π)) = π and φ−1(φ(p)) = p. We obtain (8.2.3) by Corollary 8.2.1
and by observing that

πk =
s−1

∑
l=k

H(pl+1 ⊗ pl) =
∞

∑
l=k

H(pl+1 ⊗ pl),

since H(pl+1 ⊗ pl) = H(g⊗ g) = 0 for all l ≥ s.
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A.4.3 Proof of Proposition 8.2.3

We set Φ(0cg) = ((0cg), (0cg)). Let us now consider any π = (π0, . . . , πs−1, 0cg) ∈ P�cg , different from
(0cg), with colour sequence cp′0

· · · cp′s−1
cg, and build Φ(π) = (µ, ν). Recall that πs−1 6= πs = 0cg . Let us

set p = (pk)k≥0, with pk = g for all k ≥ s and pk = p′k for all k ∈ {1, . . . , s− 1}, and set

r = max{k ∈ {0, . . . , s} : pk−1 6= g}.

Since pk = g for all k ≥ r, with the convention cg = 1, we obtain that C(π) = cp0 · · · cps−1 = cp0 · · · cpr−1 .
Note that r = 0 if and only if all the parts of π have colour cg. We set µ = (µ0, . . . , µr−1, 0cg) = φ(p). By
Proposition 8.2.2, for all k ∈ {0, . . . , r− 1}, the part µk is coloured by cpk and has size

r−1

∑
l=k

H(pl+1 ⊗ pl).

Let us now build ν = (ν0, . . . , νt−1, 0cg) ∈ Pcg , where c(νk) = cg and νk > 0 for all k ∈ {0, · · · , t− 1}. We
distinguish two different cases.

• If r < s, then we set t = s and ν = (ν0, . . . , νs−1, 0cg), where{
νk = πk − µk for k ∈ {0, . . . , r− 1},
νk = πk for k ∈ {r, . . . , s− 1}.

By (8.2.4), the sequence (νk)
r−1
k=0 is non-increasing. Moreover the fact that H(g⊗ g) = 0 and πs−1 6=

0cg implies that νs−1 > 0, and (νk)
s−1
k=r is a non-increasing sequence of positive integers. Finally, let

us check that νr−1 ≥ νr. We have

νr−1 − νr = πr−1 − πr − µr−1

≥ H(pr ⊗ pr−1)− H(pr ⊗ pr−1) by (8.2.4)
≥ 0.

Thus (νk)
s−1
k=0 is indeed a non-increasing sequence of positive integers.

• By definition, r ≤ s, so the only other possible case is r = s. As before, (πk − µk)
s
k=0 is a non-

increasing sequence of non-negative integers, now with πs − µs = 0− 0 = 0. We then set

t = min{k ∈ {0, . . . , s} : πk = µk},

and νk = πk − µk for all k ∈ {0, . . . , t− 1}.

Observe that for Φ(π) = (µ, ν), with π = (π0, . . . , πs−1, 0cg), µ = (µ0, . . . , µr−1, 0cg) and ν =

(ν0, . . . , νt−1, 0cg), we always have s = max{r, t}, and by adding s −min{r, t} parts 0cg at the end of
the shorter partition, we have πk = µk + νk and c(πk) = c(µk) for all k ∈ {0, . . . , s− 1}.

The map Φ−1 from Pm
cg ×Pcg to P�cg simply consists in adding the parts of µ = (µ0, . . . , µr−1, 0cg) ∈

Pm
cg to those of ν = (ν0, · · · , νt−1, 0cg) ∈ Pcg to obtain a grounded partition π ∈ P�cg in the following

way:

• if t ≤ r, then πk has size µk + νk and colour c(µk), where we set νk = 0 for all k ∈ {t, · · · , r− 1},
and we obtain the partition

π = (π0, · · · , πr−1, 0cg),

• if t > r, the first r parts are defined as in the case t ≤ r, and the remaining parts are πk = νk for all
k ∈ {r, . . . , t− 1} with colour cg, and we obtain the partition

π = (π0, · · · , πt−1, 0cg).

A.4.4 Proof of Proposition 8.3.2

Here, we use the same reasoning as in the proof of Proposition 8.2.2. It is easy to check that π belongs
to tPm

cg0 ···cgt−1
. In fact, π has (m + 1)t parts, πk m πk+1 for all k ∈ {0, mt − 2}, and by observing that
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u(0) = − 1
t ∑t−1

l=0(k + 1)DHΛ(gk+1 ⊗ gk) we obtain that

πmt−1 = −1
t

t−1

∑
l=0

(k + 1)DHΛ(gk+1 ⊗ gk) + DHΛ(pmt ⊗ pmt−1) ,

and then πmt−1 m u(0)
cg0

. Also, since (p(m−1)t, . . . , pmt−1) 6= (g0, . . . , gt−1), we necessarily have that

(π(m−1)t, · · · , πmt−1) 6= (u(0)
cg0

, . . . , u(t−1)
cgt−1

) in terms of colored integers.

Let us now give the inverse bijection. Start with π ∈ (π0, . . . , πmt−1, u(0)
cg0

, . . . , u(t−1)
cgt−1

) in tPm
cg0 ···cgt−1

,

with m > 0 and color sequence cp′0
· · · cp′mt−1

cg0 · · · cgt−1 . We set φ−1(π) = (pk)k≥0, where pm′t+i = gi for
all m′ ≥ m and i ∈ {0, . . . , t− 1}, and pk = p′k for all k ∈ {0, . . . , mt− 1}.

• We first show that (pmt−m, . . . , pmt−1) 6= (g0, . . . , gt−1). Assume for the purpose of contradiction
that (pmt−m, . . . , pmt−1) = (g0, . . . , gt−1). We then obtain by (2.3.2) that

π(m−1)t+k = −
1
t

t−1

∑
l=0

(l + 1)DHΛ(gl+1 ⊗ gl) +
t−1

∑
l=k

DHΛ(gl+1 ⊗ gl) = u(k)
cgk
·

This contracdicts the fact that (π(m−1)t, · · · , πmt−1) 6= (u(0)
cg0

, . . . , u(t−1)
cgt−1

) in terms of colored inte-
gers.

• By (2.3.2), we also have, for all k ∈ {0, . . . , mt− 1}, πk − πk+1 = DHΛ(pk+1 ⊗ pk). Therefore

πk = πk − ucg0
=

mt−1

∑
l=k

πl − πl+1 =
mt−1

∑
l=k

DHΛ(pl+1 ⊗ pl).

With what precedes, we have φ(φ−1(π)) = π and φ−1(φ(p)) = p. We obtain (8.3.7) by Lemma 8.3.1.

A.4.5 Proof of Proposition 8.3.3

The main trick here consists in considering a classical partition as a partition with always a number of
parts divisible by t. It suffices to add the minimal number of parts equal to 0 at the end the partition to
have a total number of parts divisible by t. Then, a partition π ∈d P different from ∅ can be uniquely
written in a non-increasing sequence of non-negative multiples of d with π = (dπ0, · · · , dπst−1), with
π(s−1)t > 0.

We set Φd(u
(0)
cg0

, . . . , u(t−1)
cgt−1

) = ((u(0)
cg0

, . . . , u(t−1)
cgt−1

), ∅). Let us consider any

π = (π0, . . . , πts−1, u(0)
cg0

, . . . , u(t−1)
cgt−1

) in d
tP�cg0 ···cgt−1

, different from (u(0)
cg0

, . . . , u(t−1)
cgt−1

), with color sequence
cp′0
· · · cp′ts−1

cg0 · · · cgt−1 . We now build Φd(π) = (µ, ν). Let us set p = (pk)k≥0, with ps′t+i = gi for all
s′ ≥ s and i ∈ {0, . . . , t− 1}, and pk = p′k for all k ∈ {0, . . . , st− 1}, and set

m = max{k ∈ {0, . . . , s} : (p(k−1)t, . . . , pkt−1) 6= (g0, · · · , gt−1)}.

Since (pkt, . . . , pkt+t−1) = (g0, · · · , gt−1) for all k ≥ m, with the convention cg0 · · · cgt−1 = 1, we obtain
that C(π) = cp0 · · · cpst−1 = cp0 · · · cpmt−1 . Note that m = 0 if and only if p = pΛ0 . We set

µ = (µ0, . . . , µmt−1, u(0)
cg0

, . . . , u(t−1)
cgt−1

) = φ(p).

By Proposition 8.2.2, for all k ∈ {0, . . . , mt− 1}, the part µk is colored by cpk and has size

u(0) +
mt−1

∑
l=k

DHΛ(pl+1 ⊗ pl).

We then have C(π) = C(µ).

Let us now build ν = (ν0, . . . , νrt−1) in dP , where we write ν in a number divisible by t of parts
divisible by d. We distinguish two different cases.
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1. If m < s, then we set r = s and ν = (ν0, . . . , νst−1), where{
νk = πk − µk for k ∈ {0, . . . , mt− 1},
νkt+i = πk − u(i) for k ∈ {m, . . . , s− 1} and i ∈ {0, . . . , t− 1} ·

We then for all k ∈ {0, . . . , mt− 2}

νk − νk+1 = πk − πk+1 − µk + µk+1

= πk − πk+1 − DHΛ(pk+1 ⊗ pk)

∈ dZ≥0

and

νmt−1 − νmt = πmt−1 − πmt − µmt−1 + u(0)

= πk − πk+1 − DHΛ(pmt ⊗ pmt−1)

∈ dZ≥0

We also have for all k ∈ {m, . . . , s− 1} and all i ∈ {0, . . . , t− 1} that

νkt+i − νkt+i+1 = πkt+i − πkt+i+1 − u(i) + u(i+1)

= πkt+i − πkt+i+1 − DHΛ(pkt+i+1 ⊗ pkt+i)

∈ dZ≥0 ,

and , for all k ∈ {m + 1, s− 1}

νkt−1 − νkt = πkt−1 − πkt − u(t−1) + u(0)

= πkt−1 − πkt − DHΛ(pkt ⊗ pkt−1)

∈ dZ≥0 ·

We finally observe that

νst−1 = πst−1 − u(t−1)

= πst−1 − u(0) + u(0) − u(t−1)

= πst−1 − u(0) − DHΛ(pkt ⊗ pkt−1)

∈ dZ≥0 ·

The sequence (νk)
st−1
k=0 is then a non-increasing sequence of multiples of d. Moreover, π(s−1)t >

u(0), otherwise by the inqualities above, we obtain that (π(s−1)t, . . . , πst−1) = (u(0)
cg0

, . . . , u(t−1)
cgt−1

).
We then have that ν(s−1)t = π(s−1)t > 0.

2. By definition, m ≤ s, so the only other possible case is m = s. As before, wa obtain (πk − µk)
mt−1
k=0

is a non-increasing sequence of non-negative mutiple of d. We then set

r = min{k ∈ {0, . . . , s} : πkt = µkt},

and νk = πk − µk for all k ∈ {0, . . . , rt− 1}.

The map Φ−1
d from tPm

cg0 ···cgt−1
×d P to d

tP�cg0 ···cgt−1
simply consists in adding the parts of

µ = (µ0, . . . , µmt−1, u(0)
cg0

, . . . , u(t−1)
cgt−1

) in tPm
cg0 ···cgt−1

to those of ν = (ν0, · · · , νrt−1) ∈ dP to obtain a multi-

grounded partition π in d
tP�cg0 ···cgt−1

in the following way:
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1. if m ≥ r, then πk has size µk + νk and colour c(µk), where we set νk = 0 for all k ∈ {rt, · · · , mt− 1},
and we obtain the partition

π = (π0, · · · , πmt−1, u(0)
cg0

, . . . , u(t−1)
cgt−1

),

2. if m < r, the first mt parts are defined as in the case m ≥ r, and the remaining parts are πkt+i =

νkt+i + u(i) with color cgi for all k ∈ {m, . . . , r − 1} and i ∈ {0, . . . , t − 1}, and we obtain the
partition

π = (π0, · · · , πrt−1, u(0)
cg0

, . . . , u(t−1)
cgt−1

)·

It easy to see that these two processes are recirpocal, the first case of Φd being reciprocal to the second
case of Φ−1

d , as well as the second case of Φd is reciprocal to the first case of Φ−1
d .
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