Feuille 8 : Limites et continuité des fonctions

Exercice 8-1 Soit
$$f(x) = \begin{cases} -2x & \text{si } x \le -1 \\ x^2 + 1 & \text{si } -1 < x \le 0 \\ \sin(x/4) & \text{si } x > 0. \end{cases}$$

- 1. Dessiner le graphe de f.
- 2. Calculer les limites suivantes :

a)
$$\lim_{x \to 1} f(x)$$

b)
$$\lim_{x \to -1+} f(x)$$

c) $\lim_{x \to 0-} f(x)$ d) $\lim_{x \to 0+} f(x)$

f) $\lim_{x \to \pi^+} f(x)$

Est-ce que les limites suivantes existent? Si oui donner leur valeur.

a)
$$\lim_{x \to -1} f(x)$$

b)
$$\lim_{x\to 0} f(x)$$

c)
$$\lim_{x \to \pi} f(x)$$

1)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

2)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$$

3)
$$\lim_{x \to 4} \frac{2x+5}{x-4}$$

4)
$$\lim_{x \to +\infty} \frac{3x^9 - 17}{x^7}$$

5)
$$\lim_{x \to +\infty} \frac{3x^3 - 5x^2 + 7}{8 + 2x - 5x^3}$$

6)
$$\lim_{x \to -\infty} \frac{x^2 + 3}{x^3 + 2}$$

$$7) \quad \lim_{x \to 1} |x - 1|$$

8)
$$\lim_{x \to 1} \frac{1}{|x-1|}$$

9)
$$\lim_{x \to 5} \frac{1}{|x-1|}$$

10)
$$\lim_{x \to 0} \frac{1}{\sqrt{1+x}-1}$$

Exercice 8-2 Calculer les limites suivantes :

1)
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$
 2) $\lim_{x\to 1} \frac{x^3-1}{x^2-1}$
4) $\lim_{x\to +\infty} \frac{3x^9-17}{x^7}$ 5) $\lim_{x\to +\infty} \frac{3x^3-5x^2+7}{8+2x-5x^3}$
7) $\lim_{x\to 1} |x-1|$ 8) $\lim_{x\to 1} \frac{1}{|x-1|}$
10) $\lim_{x\to 0} \frac{1}{\sqrt{1+x}-1}$ 11) $\lim_{x\to 1} \left(\frac{1}{1-x}-\frac{1}{1-x^2}\right)$
13) $\lim_{x\to +\infty} \frac{\sin x}{x}$ 14) $\lim_{x\to 0} x \sin(\frac{1}{x})$
16) $\lim_{x\to 0+} x^x$ 17) $\lim_{x\to 0} \frac{1+2\sin(x)}{1+\sqrt{x}}$

3)
$$\lim_{x \to 4} \frac{2x+5}{x-4}$$
6)
$$\lim_{x \to -\infty} \frac{x^2+3}{x^3+2}$$
9)
$$\lim_{x \to 5} \frac{1}{|x-1|}$$
12)
$$\lim_{x \to \infty} \sqrt{x^2+2x+5} - x$$
15)
$$\lim_{x \to +\infty} \frac{x^2+\sin x}{x^2+\cos x}$$

$$13) \lim_{x \to +\infty} \frac{\sin x}{x}$$

$$14) \lim_{x \to 0} x \sin(\frac{1}{x})$$

15)
$$\lim_{x \to +\infty} \frac{x^2 + \sin x}{x^2 + \cos x}$$

16)
$$\lim_{x \to 0+} x^x$$

17)
$$\lim_{x \to +\infty} \frac{1 + 2\sin(x)}{1 + \sqrt{x}}$$

$$18) \lim_{x \to +\infty} e^{x - \sin x}$$

On considère $E: \mathbb{R} \to \mathbb{R}$ telle que E(x) est la partie entière de $x \in \mathbb{R}$.

19)
$$\lim_{x \to 0} E(x+1)$$

20)
$$\lim_{x \to 0} x E(\frac{1}{x})$$

21)
$$\lim_{x \to +\infty} xE(\frac{1}{x})$$

Exercice 8-3 Rappelons que $\lim_{x\to 0} \frac{\sin x}{x} = 1$ et $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$ et que $\lim_{x\to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$.

Calculer les limites suivantes :

$$1) \lim_{x \to 0} \frac{\sin(2x)}{\sqrt{x}}$$

$$2) \lim_{x \to 0} \frac{x^2 \sin(1/x)}{\sin x}$$

$$3) \lim_{x \to 0} \frac{\tan x}{x}$$

4)
$$\lim_{x \to 1/2} \frac{\cos(\pi x)}{1 - 2x}$$

5)
$$\lim_{x \to 1/2} (2x^2 + x - 1) \tan(\pi x)$$

6)
$$\lim_{x \to 0} \frac{\cos x - 1}{x^2}$$

4)
$$\lim_{x \to 1/2} \frac{\cos(\pi x)}{1 - 2x}$$
7) $\lim_{x \to 0} \frac{\ln(1 + x^2)}{\sin^2 x}$

$$8) \lim_{x \to 0^+} \sqrt{x} \ln^3 x$$

6)
$$\lim_{x \to 0} \frac{\cos x - 1}{x^2}$$
9)
$$\lim_{x \to +\infty} \frac{\exp(\ln^2 x)}{x^n}, \ n \in \mathbb{Z}$$

Exercice 8-4

1) Si
$$\lim_{x\to 2} \frac{f(x)-5}{x-2} = 5$$
, trouver $\lim_{x\to 2} f(x)$.

2) Si
$$\lim_{x\to 0} \frac{f(x)}{x^2} = -2$$
, trouver $\lim_{x\to 0} \frac{f(x)}{x}$.

Exercice 8-5 Étudier la continuité à gauche, la continuité à droite et la continuité des fonctions suivantes en chaque point de leur domaine de définition.

1.
$$f:[0,2] \to \mathbb{R}$$
 définie par $f(x) = \begin{cases} x^2 & \text{si } 0 \le x \le 1\\ 2x - 1 & \text{si } 1 < x \le 2 \end{cases}$

- 2. $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x + \frac{\sqrt{x^2}}{x}$ si $x \neq 0$ et f(0) = 1.
- 3. $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = xE(1/x) si $x \neq 0$ et f(0) = 1, où E dénote la partie entière.

Exercice 8-6

- 1. Déterminer les valeurs de $k \in \mathbb{R}$ pour lesquelles f_k définie par $f_k(x) = \begin{cases} x^2 & \text{si } x \leq 2 \\ k x^2 & \text{si } x > 2 \end{cases}$ est une fonction continue.
- 2. Soit $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$ l'application définie par $f(x) = \frac{1+x^3}{1+x}$. Trouver une application continue $g: \mathbb{R} \to \mathbb{R}$ telle que $g|_{\mathbb{R}\setminus\{-1\}} = f$

Exercice 8-7 Montrer que l'équation $x^3 - 15x + 1 = 0$ a trois solutions dans l'intervalle [-4, 4].

Exercice 8-8 Montrer qu'il existe $x \in [3\pi/4, \pi]$ tel que

$$\tan x + \frac{x}{3} = 0.$$

Exercice 8-9 Montrer que si $f: \mathbb{R} \to \mathbb{R}$ est une fonction continue telle que $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = -\infty$ $+\infty$, alors f est surjective.

Exercise 8-10 Quelles sont les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues dont l'image est contenue dans \mathbb{Z} ? dans \mathbb{Q} ?

Exercice 8-11 Pour tout entier $n \geq 2$, on considère la fonction $f_n: [1, +\infty[\rightarrow \mathbb{R} \text{ donnée par }$

$$f_n(x) = x^n - x - 1$$

- 1. Montrer qu'il existe un unique $x_n > 1$ tel que $f_n(x_n) = 0$.
- 2. Montrer que $f_{n+1}(x_n) > 0$.
- 3. En déduire que la suite $(x_n)_{n\geq 2}$ est décroissante et converge vers une limite l.
- 4. Déterminer l.

Exercice 8-12 Vrai ou faux?

- 1. Si f est continue sur un intervalle fermé borné [a,b] vers \mathbb{R} , alors f([a,b]) est un intervalle fermé borné.
- 2. Si f est continue sur un intervalle ouvert borné a, b vers \mathbb{R} , alors f(a, b) est un intervalle ouvert borné.
- 3. Si f est continue sur un intervalle ouvert borné [a,b[vers \mathbb{R} , alors f([a,b[) est un intervalle ouvert, mais pas forcément borné.
- 4. Si f est continue sur un intervalle ouvert borné a, b vers \mathbb{R} , alors f(a, b) est un intervalle, mais pas forcément ouvert ni borné.

Exercice 8-101 Calculer les limites suivantes :

1)
$$\lim_{x \to +\infty} \sqrt{x+5} - \sqrt{x-3}$$
$$\sin(2x)$$

2)
$$\lim_{x \to +\infty} \sqrt{x^2 + x + 1} - (x + 1)$$

2)
$$\lim_{x \to +\infty} \sqrt{x^2 + x + 1} - (x + 1)$$
 3) $\lim_{x \to +\infty} \sqrt{x} + \sqrt{x} - \sqrt{x}$
5) $\lim_{x \to +\infty} \ln^2 x - \sqrt{x}$ 6) $\lim_{x \to 0} \frac{\ln(\cos(3x))}{\ln(\cos(2x))}$
8) $\lim_{x \to +\infty} \frac{\ln(x+1)}{\ln x}$ 9) $\lim_{x \to +\infty} \frac{x - \sqrt{x}}{\ln x + x}$

4)
$$\lim_{x \to 0} \frac{\sin(2x)}{\sin(3x)}$$

5)
$$\lim_{x \to +\infty} \ln^2 x - \sqrt{x}$$

6)
$$\lim_{x \to 0} \frac{\ln(\cos(3x))}{\ln(\cos(2x))}$$

7)
$$\lim_{x \to 1+} \ln x \ln(\ln x)$$

5)
$$\lim_{x \to +\infty} \ln^2 x - \sqrt{x}$$
8)
$$\lim_{x \to +\infty} \frac{\ln(x+1)}{\ln x}$$

9)
$$\lim_{x \to +\infty} \frac{x - \sqrt{x}}{\ln x + x}$$

<u>Exercice 8-102</u> Soit f une fonction décroissante sur $]0;+\infty[$ telle que : $\lim_{x\to +\infty}f(x)=0.$ Démontrer que, pour tout $x \in \mathbb{R}^+$ on a $f(x) \ge 0$.

2

<u>Exercice 8-103</u> Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique qui admet une limite en $+\infty$. Que peut-on dire de f?

Exercice 8-104

- 1. Soient $n \in \mathbb{Z}$ un entier impair et $a_i \in \mathbb{R}, \forall i \in \{0, 1, 2, \dots, n\}$. Montrer que l'équation $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$ admette une solution réelle.
- 2. Donner un contre-exemple pour le cas n est pair.

Exercice 8-105 Supposons que f est une fonction continue sur [0,1] et que $0 \le f(x) \le 1$ pour chaque $x \in [0,1]$. Montrer qu'il existe un $c \in \mathbb{R}$ tel que f(c) = c. (Indication : si f(0) = 0 ou f(1) = 1 alors on a un tel point c, sinon appliquer le théorème des valeurs intermédiaires à la fonction définie par g(x) = f(x) - x.)

Exercice 8-106 Étudier la continuité de la fonction $f: [-2,2] \to \mathbb{R}$ définie par $f(x) = x^2 \sin(\pi/x)$ si $x \neq 0$ et f(0) = 0, sur le domaine de définition.

Exercice 8-107 Déterminer les valeurs de $m \in \mathbb{R}$ pour lesquelles g_m définie par $g_m(x) = \begin{cases} x - m & \text{si } x \leq 3 \\ 1 - mx & \text{si } x \geq 3 \end{cases}$ est une fonction continue.

Exercice 8-108

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et périodique. Montrer que f est bornée.
- 2. En utilisant le résultat précédent, calculer la limite

$$\lim_{x \to +\infty} \frac{\ln x}{x(\sin^8 x + \cos^{14} x)}$$

Exercice 8-109 Soient $f: \mathbb{R} \to \mathbb{R}$ est bornée et $g: \mathbb{R} \to \mathbb{R}$ continue. Montrer que $g \circ f$ et $f \circ g$ sont bornées.

Exercice 8-110 Soient a et b deux nombres réels tels que a < b et f une application de [a, b] vers [a, b].

1. On suppose que pour tout $(x,y) \in [a,b] \times [a,b]$ on a

$$|f(x) - f(y)| \le |x - y|$$

Montrer que f est continue. En déduire qu'il existe $x \in [a,b]$ tel que f(x) = x.

2. On suppose maintenant que pour tout $(x,y) \in [a,b] \times [a,b]$ avec $x \neq y$ on a

$$|f(x) - f(y)| < |x - y|$$

Montrer qu'il existe un unique $x \in [a, b]$ tel que f(x) = x.

Exercice 8-111 Soit I un intervalle ouvert de \mathbb{R} , f et g deux fonctions définies sur I.

1. Soit $a \in I$. Donner une raison pour laquelle :

$$(\lim_{x \to a} f(x) = f(a)) \Rightarrow (\lim_{x \to a} |f(x)| = |f(a)|)$$

2. En utilisant la question précédente, montrer que si f et g sont continues, alors $\sup(f,g) = \frac{1}{2}(f+g+g+g)$ l'est aussi.