Feuille 4 Fonctions usuelles

I Divers

Exercice 4.1.

- 1. Montrer que $1 + \sin(x) = \left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2$.
- 2. Exprimer cos(4x) et sin(4x) en fonction de cos(x) et de sin(x).
- 3. Exprimer en fonction de tan(x) uniquement les fonctions

$$f_1: x \mapsto f_1(x) = \cos^2(x); \ f_2: x \mapsto f_2(x) = \frac{\sin^4(x) + \cos^4(x)}{\sin^4(x) - \cos^4(x)};$$

$$f_3: x \mapsto f_3(x) = \frac{\sin^3(x) - \cos^3(x)}{\sin(x) - \cos(x)} \text{ et } f_4: x \mapsto f_4(x) = \cos^2(x) - \sin(x)\cos(x)$$

Correction exercice 4.1.

1.

$$\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2 = \cos^2\left(\frac{x}{2}\right) + 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)$$
$$= \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) + \sin\left(2 \times \frac{x}{2}\right) = 1 + \sin(x)$$

2.

$$\cos(4x) = \cos(2 \times 2x) = 2\cos^2(2x) - 1 = 2(2\cos^2(x) - 1)^2 - 1$$
$$= 2(4\cos^4(x) - 4\cos^2(x) + 1) - 1 = 8\cos^4(x) - 8\cos^2(x) + 1$$

Mais ce n'est pas la seule solution.

$$\sin(4x) = \sin(2 \times 2x) = 2\sin(2x)\cos(2x) = 4\sin(x)\cos(x)(\cos^2(x) - \sin^2(x))$$

Mais ce n'est pas la seule solution.

$$f_1(x) = \cos^2(x) = \frac{\cos^2(x)}{1} = \frac{\cos^2(x)}{\cos^2(x) + \sin^2(x)} = \frac{1}{\frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}} = \frac{1}{1 + \tan^2(x)}$$

$$\sin^4(x) + \cos^4(x) = \cos^4(x) \left(\frac{\sin^4(x)}{\cos^2(x)} + 1\right) = \cos^4(x) + 1$$

$$f_2(x) = \frac{\sin^4(x) + \cos^4(x)}{\sin^4(x) - \cos^4(x)} = \frac{\cos^4(x) \left(\frac{\sin^4(x)}{\cos^4(x)} + 1\right)}{\cos^4(x) \left(\frac{\sin^4(x)}{\cos^4(x)} - 1\right)} = \frac{\tan^4(x) + 1}{\tan^4(x) - 1}$$

$$f_3(x) = \frac{\sin^3(x) - \cos^3(x)}{\sin(x) - \cos(x)} = \frac{\cos^3(x) \left(\frac{\sin^3(x)}{\cos^3(x)} - 1\right)}{\cos(x) \left(\frac{\sin(x)}{\cos(x)} - 1\right)} = \cos^2(x) \frac{\tan^3(x) - 1}{\tan(x) - 1}$$

$$= \frac{1}{1 + \tan^2(x)} \frac{\tan^3(x) - 1}{\tan(x) - 1} = \frac{1}{1 + \tan^2(x)} \frac{(\tan(x) - 1)(\tan^2(x) + \tan(x) + 1)}{\tan(x) - 1}$$

$$= \frac{\tan^2(x) + \tan(x) + 1}{1 + \tan^2(x)} = \frac{1 + \tan^2(x) + \tan(x)}{1 + \tan^2(x)} = 1 + \frac{\tan(x)}{1 + \tan^2(x)}$$

Avec la formule $a^3 - 1 = (a - 1)(a^2 + a + 1)$

Autre méthode avec la formule $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

$$f_3(x) = \frac{\sin^3(x) - \cos^3(x)}{\sin(x) - \cos(x)} = \frac{(\sin(x) - \cos(x))(\sin^2(x) + \cos(x)\sin(x) + \cos^2(x))}{\sin(x) - \cos(x)}$$

$$= \sin^2(x) + \cos(x)\sin(x) + \cos^2(x) = \sin^2(x) + \cos^2(x) + \cos(x)\sin(x)$$

$$= 1 + \cos(x)\sin(x) = 1 + \cos^2(x)\frac{\sin(x)}{\cos(x)} = 1 + \frac{1}{1 + \tan^2(x)}\tan(x)$$

$$= 1 + \frac{\tan(x)}{1 + \tan^2(x)}$$

$$f_4(x) = \cos^2(x) - \sin(x)\cos(x) = \cos^2(x)(1 - \tan(x)) = \frac{1 - \tan(x)}{1 + \tan^2(x)}$$

Exercice 4.2.

1. Calculer

$$\operatorname{ch}\left(\frac{1}{2}\ln(3)\right)$$
 et $\operatorname{sh}\left(\frac{1}{2}\ln(3)\right)$

2. A l'aide de la formule ch(a + b) = ch(a) ch(b) + sh(a) sh(b), déterminer les solutions de l'équation :

$$2\operatorname{ch}(x) + \operatorname{sh}(x) = \sqrt{3}\operatorname{ch}(5x)$$

Correction exercice 4.2.

$$\operatorname{ch}\left(\frac{1}{2}\ln(3)\right) = \frac{e^{\frac{1}{2}\ln(3)} + e^{-\frac{1}{2}\ln(3)}}{2} = \frac{e^{\ln(\sqrt{3})} + e^{-\ln(\sqrt{3})}}{2} = \frac{\sqrt{3} + \frac{1}{\sqrt{3}}}{2} = \frac{3+1}{2\sqrt{3}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

$$\operatorname{sh}\left(\frac{1}{2}\ln(3)\right) = \frac{e^{\frac{1}{2}\ln(3)} - e^{-\frac{1}{2}\ln(3)}}{2} = \frac{e^{\ln(\sqrt{3})} - e^{-\ln(\sqrt{3})}}{2} = \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{2} = \frac{3-1}{2\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$
2.

$$2 \operatorname{ch}(x) + \operatorname{sh}(x) = \sqrt{3} \operatorname{ch}(5x) \Leftrightarrow \frac{2\sqrt{3}}{3} \operatorname{ch}(x) + \frac{\sqrt{3}}{3} \operatorname{sh}(x) = \frac{\sqrt{3}}{3} \times \sqrt{3} \operatorname{ch}(5x)$$

$$\Leftrightarrow \operatorname{ch}\left(\frac{1}{2}\ln(3)\right) \operatorname{ch}(x) + \operatorname{sh}\left(\frac{1}{2}\ln(3)\right) \operatorname{sh}(x) = \operatorname{ch}(5x) \Leftrightarrow \operatorname{ch}\left(\frac{1}{2}\ln(3) + x\right)$$

$$= \operatorname{ch}(5x) \Leftrightarrow \begin{cases} \frac{1}{2}\ln(3) + x = 5x \\ \frac{1}{2}\ln(3) + x = -5x \end{cases} \Leftrightarrow \begin{cases} 4x = \frac{1}{2}\ln(3) \\ 6x = -\frac{1}{2}\ln(3) \end{cases}$$

$$S = \begin{cases} \frac{1}{8}\ln(3), -\frac{1}{12}\ln(3) \end{cases}$$

Exercice 4.3. u et v étant deux réels, établir les formules suivantes :

$$ch^{2}(u) + sh^{2}(v) = sh^{2}(u) + ch^{2}(v) = ch(u + v) ch(u - v)$$

$$ch^{2}(u) - ch^{2}(v) = sh^{2}(u) - sh^{2}(v) = sh(u + v) sh(u - v)$$

Correction exercice 4.3. Pour tous u et v deux réels.

$$\operatorname{ch}^{2}(u) + \operatorname{sh}^{2}(v) = \left(\frac{e^{u} + e^{-u}}{2}\right)^{2} + \left(\frac{e^{v} - e^{-v}}{2}\right)^{2} = \frac{e^{2u} + 2 + e^{-2u} + e^{2v} - 2 + e^{-2v}}{4}$$

$$= \frac{e^{2u} + e^{-2u} + e^{2v} + e^{-2v}}{4}$$

$$\operatorname{sh}^{2}(u) + \operatorname{ch}^{2}(v) = \left(\frac{e^{u} - e^{-u}}{2}\right)^{2} + \left(\frac{e^{v} + e^{-v}}{2}\right)^{2} = \frac{e^{2u} - 2 + e^{-2u} + e^{2v} + 2 + e^{-2v}}{4}$$

$$= \frac{e^{2u} + e^{-2u} + e^{2v} + e^{-2v}}{4}$$

$$\operatorname{ch}(u + v) \operatorname{ch}(u - v) = \frac{e^{u + v} + e^{-u - v}}{2} \times \frac{e^{u - v} - e^{-u + v}}{2}$$

$$= \frac{e^{u + v + u - v} - e^{u + v - u + v} + e^{-u - v + u - v} - e^{-u - v - u + v}}{4}$$

$$= \frac{e^{2u} + e^{-2u} + e^{2v} + e^{-2v}}{4}$$

on a bien

$$\operatorname{ch}^{2}(u) + \operatorname{sh}^{2}(v) = \operatorname{sh}^{2}(u) + \operatorname{ch}^{2}(v) = \operatorname{ch}(u+v)\operatorname{ch}(u-v)$$

$$\operatorname{ch}^{2}(u) - \operatorname{ch}^{2}(v) = \left(\frac{e^{u} + e^{-u}}{2}\right)^{2} - \left(\frac{e^{v} + e^{-v}}{2}\right)^{2} = \frac{e^{2u} + 2 + e^{-2u} - (e^{2v} + 2 + e^{-2v})}{4}$$

$$= \frac{e^{2u} + e^{-2u} - e^{2v} - e^{-2v}}{4}$$

$$\operatorname{sh}^{2}(u) - \operatorname{sh}^{2}(v) = \left(\frac{e^{u} - e^{-u}}{2}\right)^{2} - \left(\frac{e^{v} - e^{-v}}{2}\right)^{2} = \frac{e^{2u} - 2 + e^{-2u} - (e^{2v} - 2 + e^{-2v})}{4}$$

$$= \frac{e^{2u} + e^{-2u} - e^{2v} - e^{-2v}}{4}$$

$$sh(u+v) sh(u-v) = \frac{e^{u+v} - e^{-u-v}}{2} \times \frac{e^{u-v} + e^{-u+v}}{2}$$

$$= \frac{e^{u+v+u-v} + e^{u+v-u+v} - e^{-u-v+u-v} - e^{-u-v-u+v}}{4}$$

$$= \frac{e^{2u} + e^{-2u} - e^{2v} - e^{-2v}}{4}$$

on a bien

$$ch^{2}(u) - ch^{2}(v) = sh^{2}(u) - sh^{2}(v) = sh(u + v) sh(u - v)$$

Exercice 4.4. Montrer que pour tous x et y réels distincts :

$$e^{\frac{x+y}{2}} < \frac{e^x + e^y}{2}$$

Correction exercice 4.4. Pour tous x et y réels distincts

$$\frac{e^{x} + e^{y}}{2} - e^{\frac{x+y}{2}} = \frac{e^{x} - 2e^{\frac{x+y}{2}} + e^{y}}{2} = \frac{\left(e^{\frac{x}{2}}\right)^{2} - 2e^{\frac{x}{2}}e^{\frac{y}{2}} + \left(e^{\frac{y}{2}}\right)^{2}}{2} = \frac{\left(e^{\frac{x}{2}} - e^{\frac{y}{2}}\right)^{2}}{2} > 0$$
car $x \neq y$
on a bien

$$e^{\frac{x+y}{2}} < \frac{e^x + e^y}{2}$$

Exercice 4.5. Calculer, lorsque c'est possible, la dérivée des fonctions f_i définies de la manière suivante :

$$f_1(x) = \ln|\cos(x)|; \ f_2(x) = \ln\left(\frac{1+x}{1-x}\right); \ f_3(x) = \cos^2(3x);$$

 $f_4(x) = e^{2x+1}, f_5(x) = \tan(x^2), f_6(x) = \sqrt{1-x^2}$

Correction exercice 4.5.

$$f_1'(x) = -\frac{\sin(x)}{\cos(x)} = -\tan(x)$$

$$f_2(x) = \ln|1 + x| - \ln|1 - x| \Rightarrow f_2'(x) = \frac{1}{1 + x} - \frac{-1}{1 - x} = \frac{1}{1 + x} + \frac{1}{1 - x}$$

$$= \frac{1 - x + 1 + x}{(1 + x)(1 - x)} = \frac{2}{1 - x^2}$$

$$f_3(x) = 2\cos(3x) \times (-3\sin(3x)) = -6\cos(3x)\sin(3x)$$

$$f_4'(x) = 2e^{2x + 1}$$

$$f_5'(x) = (1 + \tan^2(x^2))2x = \frac{2x}{\cos^2(x^2)}$$

$$f_6'(x) = \frac{-2x}{2\sqrt{1 - x^2}} = -\frac{x}{\sqrt{1 - x^2}}$$

Exercice 4.6. Résoudre dans \mathbb{R}

$$3\operatorname{ch}(x) - \operatorname{sh}(x) - 3 = 0$$

Correction exercice 4.6.

On pose $X = e^x$

$$3 \operatorname{ch}(x) - \operatorname{sh}(x) - 3 = 0 \Leftrightarrow 3 \frac{X + \frac{1}{X}}{2} - \frac{X - \frac{1}{X}}{2} - 3 = 0 \Leftrightarrow 3(X^2 + 1) - (X^2 - 1) - 6X$$

$$= 0 \Leftrightarrow 2X^2 - 6X + 4 = 0 \Leftrightarrow X^2 - 3X + 2 = 0 \Leftrightarrow X = 1 \text{ ou } X = 2 \Leftrightarrow X = 0 \text{ ou } x = \ln(2)$$

Exercice 4.7. Discuter en fonction de la valeur du réel x de l'existence de la valeur éventuelle de la limite de x^n quand n tend vers $+\infty$.

Correction exercice 4.7.

Si x < -1 alors x^n n'a pas de limite mais $\lim_{n \to +\infty} |x|^n = +\infty$

Si x = -1 alors $x^n = (-1)^n$ n'a pas de limite.

Si $|x| < 1 \Leftrightarrow -1 < x < 1$ alors $\lim_{n \to +\infty} x^n = 0$

Si x = 1 alors $x^n = 1$ donc $\lim_{n \to +\infty} x^n = 1$

Si x > 1 alors $\lim_{n \to +\infty} x^n = +\infty$

<u>Exercice 4.8.</u> Calculer les limites suivantes :

$$\lim_{x \to +\infty} e^{-x} (\operatorname{ch}^{3}(x) - \operatorname{sh}^{3}(x))$$
$$\lim_{x \to +\infty} (x - \ln(\operatorname{ch}(x)))$$

Correction exercice 4.8.

$$e^{-x}(\cosh^{3}(x) - \sinh^{3}(x)) = e^{-x} \left(\left(\frac{e^{x} + e^{-x}}{2} \right)^{3} - \left(\frac{e^{x} - e^{-x}}{2} \right)^{3} \right)$$

$$= \frac{e^{-x}}{8} \left(e^{3x} + 3e^{x} + 3e^{-x} + e^{-3x} - (e^{3x} - 3e^{x} + 3e^{-x} - e^{-3x}) \right)$$

$$= \frac{e^{-x}}{8} (6e^{x} + 2e^{-3x}) = \frac{3}{4} + \frac{1}{4}e^{-4x}$$

Donc

$$\lim_{x \to +\infty} e^{-x} (\cosh^3(x)) - \sinh^3(x)) = \frac{3}{4}$$

$$x - \ln(\cosh(x)) = x - \ln\left(\frac{e^x + e^{-x}}{2}\right) = x - \ln\left(e^x \frac{1 + e^{-2x}}{2}\right)$$

$$= x - \ln(e^x) - \ln\left(\frac{1 + e^{-2x}}{2}\right) = -\ln\left(\frac{1 + e^{-2x}}{2}\right)$$

$$\lim_{x \to +\infty} \frac{1 + e^{-2x}}{2} = \frac{1}{2}$$

Donc

$$\lim_{x \to +\infty} (x - \ln(\operatorname{ch}(x))) = -\ln\left(\frac{1}{2}\right) = \ln(2)$$

Exercice 4.9. Résoudre dans \mathbb{R}

$$3\operatorname{ch}(x) - \operatorname{sh}(x) - 3 = 0$$

Correction exercice 4.9.

On pose $X = e^x$

$$3 \operatorname{ch}(x) - \operatorname{sh}(x) - 3 = 0 \Leftrightarrow 3 \frac{X + \frac{1}{X}}{2} - \frac{X - \frac{1}{X}}{2} - 3 = 0 \Leftrightarrow 3(X^2 + 1) - (X^2 - 1) - 6X$$

$$= 0 \Leftrightarrow 2X^2 - 6X + 4 = 0 \Leftrightarrow X^2 - 3X + 2 = 0 \Leftrightarrow X = 1 \text{ ou } X = 2 \Leftrightarrow X$$

$$= 0 \text{ ou } x = \ln(2)$$

Exercice 4.10.

Soit sh : $\mathbb{R} \to \mathbb{R}$.

- 1. Montrer que sh est une bijection continue et soit sh⁻¹ sa bijection réciproque.
- 2. Calculer (sh⁻¹)' à l'aide de la formule du cours.
- 3. Déterminer explicitement $sh^{-1}(x)$ et retrouver le résultat du 2.

Correction exercice 4.10.

1. $sh(x) = \frac{e^x - e^{-x}}{2}$ donc sh est définie, continue et dérivable sur \mathbb{R} sh'(x) = ch(x) > 0 donc sh est strictement croissante $\lim_{x \to -\infty} sh(x) = -\infty \quad \text{et} \quad \lim_{x \to +\infty} sh(x) = +\infty$

Donc sh: $\mathbb{R} \to \mathbb{R}$ est une bijection continue.

2. On rappelle que

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
$$\operatorname{sh}'(x) = \operatorname{ch}(x)$$

Par conséquent

$$(\mathrm{sh}^{-1})'(x) = \frac{1}{\mathrm{ch}(sh^{-1}(x))}$$

Comme pour tout $\alpha \in \mathbb{R}$

$$ch^2(\alpha) - sh^2(\alpha) = 1 \Leftrightarrow ch^2(\alpha) = sh^2(\alpha) + 1$$

Et que $ch(\alpha) > 0$, on $ch(\alpha) = \sqrt{sh^2(\alpha) + 1}$, d'où

$$ch(sh^{-1}(x)) = \sqrt{sh^2(sh^{-1}(x)) + 1} = \sqrt{x^2 + 1}$$

Et enfin

$$(\mathrm{sh}^{-1})'(x) = \frac{1}{\sqrt{x^2 + 1}}$$

$$\begin{cases} y = \operatorname{sh}(x) \\ x, y \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} y = \frac{e^x - e^{-x}}{2} \\ x, y \in \mathbb{R} \end{cases}$$

On pose $X = e^x$ et donc $e^{-x} = \frac{1}{X}$

$$\begin{cases} y = \operatorname{sh}(x) \\ x, y \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} y = \frac{X - \frac{1}{X}}{2} \\ x, y \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} y = \frac{X^2 - 1}{2X} \\ x, y \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} 2yX = X^2 - 1 \\ x, y \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} X^2 - 2yX - 1 = 0 \\ x, y \in \mathbb{R} \end{cases}$$

Il s'agit d'une équation du second degré dont le discriminant vaut $\Delta = 4y^2 + 4 = 4(y^2 + 1) > 0$ Et dont les racines sont

$$X_1 = \frac{2y - 2\sqrt{y^2 + 1}}{2} = y - \sqrt{y^2 + 1} < 0$$
 et $X_2 = \frac{2y + 2\sqrt{y^2 + 1}}{2} = y + \sqrt{y^2 + 1} > 0$

Comme $X = e^x > 0$ la seule solution possible est :

$$X = e^{x} = y + \sqrt{y^{2} + 1}$$

$$\begin{cases} y = \operatorname{sh}(x) \\ x, y \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} e^{x} = y + \sqrt{y^{2} + 1} \\ x, y \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x = \ln\left(y + \sqrt{y^{2} + 1}\right) \\ x, y \in \mathbb{R} \end{cases}$$

D'où on déduit que

$$\forall y \in \mathbb{R}, \operatorname{sh}^{-1}(y) = \ln\left(y + \sqrt{y^2 + 1}\right)$$

Ce qui s'écrit encore

$$\forall x \in \mathbb{R}, \operatorname{sh}^{-1}(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$$

Et enfin

$$(\mathrm{sh}^{-1})'(x) = \frac{1 + \frac{2x}{2\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{\frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}$$

Concavité, convexité, points d'inflexion

Exercice 4.11.

Soient $f(x) = x^3 - 3x^2 + 6x$

- 1. Déterminer l'intersection du graphe avec l'axe des abscisses.
- 2. Déterminer les points où le graphe admet une tangente horizontale.
- 3. Montrer que f admet un point d'inflexion. Préciser la concavité de la courbe selon les valeurs de x.

Correction exercice 4.11.

1. On cherche les valeurs de x qui vérifient f(x) = 0

$$f(x) = 0 \Leftrightarrow x(x^2 - 3x + 6) = 0 \Leftrightarrow \begin{cases} x = 0 \\ \text{ou} \\ x^2 - 3x + 6 = 0 \end{cases} \Leftrightarrow x = 0$$

Car l'équation du second degré $x^2 - 3x + 6$ a un discriminant négatif et donc n'a pas de racine réelle. Il n'y a que le point (0,0) comme intersection entre le graphe et l'axe des abscisses.

- 2. $f'(x) = 3x^2 6x + 6$, et on cherche les valeurs de x qui annulent f'(x), le discriminant est négatif donc la dérivée n'est jamais nulle, il n'y a donc pas de point avec une tangente horizontale.
- 3. f''(x) = 6(x 1), la dérivée seconde s'annule en x = 1 et change de signe, il y a donc un point d'inflexion en (1, f(1)). Si x < 1 alors f''(x) < 0 la courbe est donc concave et si x > 1 alors f''(x) > 0 la courbe est convexe.

Exercice 4.12.

Soient
$$f(x) = x^3 - 6x^2 + 11x - 6$$

- 1. Déterminer les points où le graphe admet une tangente horizontale.
- 2. Montrer que f admet un point d'inflexion. Préciser la concavité de la courbe selon les valeurs de x.

Correction exercice 4.12.

1. $f'(x) = 3x^2 - 12x + 11$, et on cherche les valeurs de x qui annulent f'(x), le discriminant est

$$\Delta = 12^2 - 4 \times 3 \times 11 = 144 - 132 = 12$$

$$f'(x) = 0 \Leftrightarrow x = \frac{12 - 2\sqrt{3}}{2} = 6 - \sqrt{3} \text{ ou } x = \frac{12 + 2\sqrt{3}}{2} = 6 + \sqrt{3}$$

Il y a deux points d'intersection avec l'axe des abscisses $(6 - \sqrt{3}, f(6 - \sqrt{3}))$ et $(6 + \sqrt{3}, f(6 + \sqrt{3}))$

2. f''(x) = 6(x - 2), la dérivée seconde s'annule en x = 2 et change de signe, il y a donc un point d'inflexion en (2, f(2)). Si x < 2 alors f''(x) < 0 la courbe est donc concave et si x > 2 alors f''(x) > 0 la courbe est convexe.

Etudes de fonctions complètes

Exercice 4.13. On définit la fonction $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$ par :

$$f(x) = \frac{x^2 + 3x + 3}{x + 1}$$

- 1. Etudier les variations de f.
- 2. Calculer les limites de f au bord de l'ensemble de définition.
- 3. Calculer les limites en $-\infty$ et $+\infty$ de l'expression

$$f(x) - (x + 2)$$

En déduire que la droite d'équation y = x + 2 est asymptote au graphe de f.

- 4. Déterminer la position du graphe par rapport à l'asymptote d'équation y = x + 2.
- 5. Tracer le graphe de f.

Correction exercice 4.13.

1. $\forall x \in \mathbb{R} \setminus \{-1\}$

$$f'(x) = \frac{(2x+3)(x+1) - (x^2 + 3x + 3)}{(x+1)^2} = \frac{2x^2 + 2x + 3x + 3 - x^2 - 3x - 3}{(x+1)^2} = \frac{x^2 + 2x}{(x+1)^2}$$
$$= \frac{x(x+2)}{(x+1)^2}$$

			` /						
x	-∞		-2		-1		0		+∞
x		_		_		_	0	+	
x + 2		_	0	+		+		+	
f'(x)		+	0	_		_	0	+	

Donc f est croissante sur $]-\infty, -2[$, f est décroissante sur]-2, -1[, f est décroissante sur]-1,0[et f est croissante sur $]0, +\infty[$.

2.

$$\lim_{x \to -1} (x^2 + 3x + 3) = 1$$

Donc

$$\lim_{x \to -1^{-}} f(x) = -\infty \quad \text{et} \quad \lim_{x \to -1^{+}} f(x) = +\infty$$

Et d'autre part

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{x} = -\infty \quad et \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{x} = +\infty$$

3. $\forall x \in \mathbb{R} \setminus \{-1\}$

$$f(x) - (x + 2) = \frac{x^2 + 3x + 3}{x + 1} - (x + 2) = \frac{x^2 + 3x + 3 - (x + 2)(x + 1)}{x + 1} = \frac{x^2 + 3x + 3 - x^2 - x - 2x - 2}{x + 1} = \frac{1}{x + 1}$$
alors

Par conséquent

$$\lim_{x \to \pm \infty} (f(x) - (x+2)) = 0$$

La différence entre le graphe de f et la droite d'équation y = x + 2 tend vers 0 en $-\infty$ et $+\infty$, cela montre que la droite d'équation y = x + 2 est asymptote au graphe de f.

4.

Si x < -1 alors $f(x) - (x + 2) = \frac{1}{x+1} < 0$ donc le graphe est dessous la droite.

Si x > -1 alors $f(x) - (x + 2) = \frac{1}{x+1} > 0$ donc le graphe est dessus la droite.

5.

 x	-∞	-2	-1	0	+∞
f'(x)	+	0 -	-	- 0	+
f(x)		▼ -1		+∞ \	/ +∞
	-∞ /		$\searrow -\infty$	¥ 3.	

$$f(-2) = -1$$
 et $f(0) = 3$

Exercice 4.14.

On note f la fonction définie sur [0,1[par $f(x) = (1-x)\ln(1-x) + x$ et g la fonction définie sur [0,1[par $g(x) = -\frac{\ln(1-x)}{x}$.

- 1. Etudier les variations de f sur [0,1[et en déduire que f est à valeurs positives.
- 2. Etudier les variations de g sur]0,1[.
- 3. Déterminer les limites éventuelles de g(x) pour x tendant vers 0 et pour x tendant vers 1.

Correction exercice 4.14.

1. $0 \le x < 1 \Rightarrow -1 < -x \le 0 \Rightarrow 0 < 1 - x \le 1$

Ce qui montre que f est définie, continue et dérivable sur [0,1[

$$\forall x \in [0,1[,f'(x)=-\ln(1-x)+(1-x)\times\frac{-1}{1-x}+1=-\ln(1-x)$$

Ce qui montre que f'(x) est strictement négative pour 0 < x < 1 et nulle pour x = 0 et donc que f est strictement croissante.

Comme
$$f(0) = (1 - 0) \ln(1 - 0) + 0 = \ln(1) = 0$$
, pour tout $x > 0$ (et $x < 1$, bien sûr)
 $f(x) > f(0) = 0$

2. Pour tout $x \in]0,1[$

$$g'(x) = -\frac{\frac{-1}{1-x} \times x - 1 \times \ln(1-x)}{x^2} = -\frac{-x - (1-x)\ln(1-x)}{(1-x)x^2} = \frac{x + (1-x)\ln(1-x)}{(1-x)x^2}$$
$$= \frac{f(x)}{(1-x)x^2}$$

Le dénominateur est strictement positif et f(x) aussi donc pour tout x > 0 et x < 1, g'(x) > 0 sur l'intervalle]0,1[donc g est strictement croissante sur cet intervalle.

3. En 1.

$$g(x) = -\frac{\ln(1-x)}{x} \xrightarrow[x \to 1]{} + \infty$$

car $X \ln(X) \to 0$ lorsque $X \to 0$ est une limite indéterminée connue En 0, on rappelle que

$$\lim_{x\to 0} \frac{\ln(1+h)}{h} = 1$$

On pose h = -x, alors

$$\lim_{x \to 0} \frac{\ln(1-x)}{-x} = 1 \Leftrightarrow \lim_{x \to 0} g(x) = 1$$

Exercice 4.15. Soit f la fonction définie sur \mathbb{R} par $f(x) = \left(x + \frac{1}{2}\right)e^{-x^2}$.

- 1. Déterminer les limites éventuelles de f en $-\infty$ et en $+\infty$.
- 2. Etudier les variations de f.
- 3. Tracer sommairement la courbe représentative de f.

Correction exercice 4.15.

1. Si
$$x < 0$$
 on pose $x^2 = X \Leftrightarrow x = -\sqrt{X}$, donc $f(x) = \left(-\sqrt{X} + \frac{1}{2}\right)e^{-X} \xrightarrow[X \to +\infty]{} 0$

$$\lim_{x \to -\infty} f(x) = 0$$
Si $x > 0$ on pose $x^2 = X \Leftrightarrow x = \sqrt{X}$, donc $f(x) = (\sqrt{X} + \frac{1}{2})e^{-X} \xrightarrow[X \to +\infty]{} 0$

$$\lim_{x \to +\infty} f(x) = 0$$

Ceci dit dans ce cas les limites sont presque évidentes.

2.
$$f'(x) = e^{-x^2} + \left(x + \frac{1}{2}\right)(-2x)e^{-x^2} = (-2x^2 - x + 1)e^{-x^2}$$

Le polynôme $-2X^2 - X + 1$ admet $X_1 = -1$ et $X_2 = \frac{1}{2}$ comme racines donc

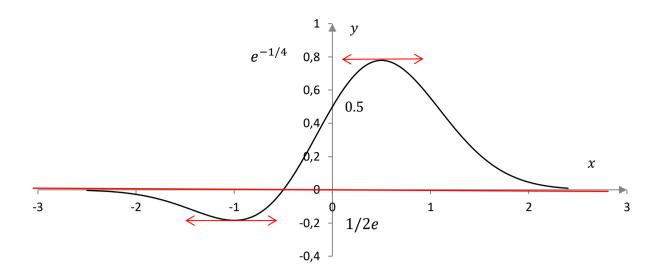
$$-2X^{2} - X + 1 = -2(X+1)\left(X - \frac{1}{2}\right)$$

par conséquent $f'(x) = -2(x+1)(x-\frac{1}{2})e^{-x^2}$

on en déduit le tableau de variation de f

х	-∞	-1		$\frac{1}{2}$		+∞
f'(x)	_	. 0	+	0	_	
f(x)	0	$\frac{-1}{2e}$		$e^{-\frac{1}{4}}$		0

3.
$$\frac{-1}{2a} \approx -0.2$$
 en gros et $e^{-\frac{1}{4}} \approx 0.8$ en gros.



Exercice 4.16. Soit f la fonction définie par

$$f(u) = \frac{4 - 5\operatorname{ch}(u)}{\operatorname{sh}(u)}$$

- 1. Montrer que f est bien définie, continue et dérivable sur \mathbb{R}^* . Est-elle paire, impaire ?
- 2. Déterminer les limites éventuelles de f en $+\infty$ et en 0^+ .
- 3. Etudier les variations de f sur \mathbb{R}^* . On veillera à donner une expression très simple les points où f' s'annule.
- 4. Dresser le tableau de variation de f et tracer son graphe.

Correction exercice 4.16.

1. f est définie, continue et dérivable si et seulement si $sh(u) \neq 0$, donc sur \mathbb{R}^* .

$$f(-u) = \frac{4 - 5 \operatorname{ch}(-u)}{\operatorname{sh}(-u)} = \frac{4 - 5 \operatorname{ch}(u)}{-\operatorname{sh}(u)} = -f(u)$$

de plus l'ensemble de définition est symétrique par rapport à 0 donc f est impaire.

2.

$$\begin{cases} \lim_{u \to 0^{+}} (4 - 5 \operatorname{ch}(u)) = -1 \\ \lim_{u \to 0^{+}} \operatorname{sh}(u) = 0^{+} \end{cases} \Rightarrow \lim_{u \to 0^{+}} f(u) = -\infty$$

Limite en +∞

Première méthode, on pose $X = e^u$

$$f(u) = \frac{4 - 5\frac{e^{u} + e^{-u}}{2}}{\frac{e^{u} - e^{-u}}{2}} = \frac{8 - 5\left(e^{u} + \frac{1}{e^{u}}\right)}{e^{u} - \frac{1}{e^{u}}} = \frac{8 - 5X - \frac{5}{X}}{X - \frac{1}{X}} = \frac{8X - 5X^{2} - 5}{X^{2} - 1} = \frac{-5X^{2} + 8X - 5}{X^{2} - 1}$$
$$\lim_{u \to +\infty} f(u) = \lim_{X \to +\infty} \frac{-5X^{2} + 8X - 5}{X^{2} - 1} = -5$$

Deuxième méthode

$$f(u) = \frac{4}{\sinh(u)} - 5\frac{\cosh(u)}{\sinh(u)} = \frac{4}{\sinh(u)} - 5\frac{1}{\sinh(u)}$$
$$\begin{cases} \lim_{u \to +\infty} \frac{4}{\sinh(u)} = 0\\ \lim_{u \to +\infty} th(u) = 1 \end{cases} \Rightarrow \lim_{u \to +\infty} f(u) = -5$$

3. Pour tout u > 0.

$$f'(u) = \frac{-5 \operatorname{sh}(u) \times \operatorname{sh}(u) - (4 - 5 \operatorname{ch}(u)) \times \operatorname{ch}(u)}{\operatorname{sh}^{2}(u)} = \frac{-5 \operatorname{sh}^{2}(u) - 4 \operatorname{ch}(u) + 5 \operatorname{ch}^{2}(u)}{\operatorname{sh}^{2}(u)}$$
$$= \frac{5(\operatorname{ch}^{2}(u) - \operatorname{sh}^{2}(u)) - 4 \operatorname{ch}(u)}{\operatorname{sh}^{2}(u)} = \frac{5 - 4 \operatorname{ch}(u)}{\operatorname{sh}^{2}(u)}$$

On cherche la ou les valeur(s) de u > 0 qui annule f'(u) et on pose $X = e^u$

$$5 - 4 \operatorname{ch}(u) = 0 \Leftrightarrow 5 - 4 \frac{e^{u} + e^{-u}}{2} = 0 \Leftrightarrow 5 - 2X - \frac{2}{X} = 0 \Leftrightarrow -2X^{2} + 5X - 2 = 0$$

le discriminant vaut : $\Delta = 25 - 4(-2)(-2) = 9$

il y a donc deux solutions

$$X_1 = \frac{-5-3}{-4} = 2$$
 et $X_1 = \frac{-5+3}{-4} = \frac{1}{2}$

On revient en « u »

$$u_1 = \ln(2) > 0$$
 et $u_2 = \ln\left(\frac{1}{2}\right) = -\ln(2) < 0$

ensuite comme $u \mapsto 4 - 5 \operatorname{ch}(u)$ est décroissante sur \mathbb{R}^+

$$0 < u < \ln(2) \Rightarrow 4 - 5 \operatorname{ch}(u) > 4 - 5 \operatorname{ch}(\ln(2)) = 0 \Rightarrow f'(u) > 0$$

$$\ln(2) < u \Rightarrow 4 - 5 \operatorname{ch}(\ln(2)) < 4 - 5 \operatorname{ch}(u) = 0 \Rightarrow f'(u) < 0$$

4.

и	0	ln(2)	+∞
f'(u)		+ 0	_
f(u)		$7f(\ln(2)$) \
	—	∞′	\searrow -5

Avec

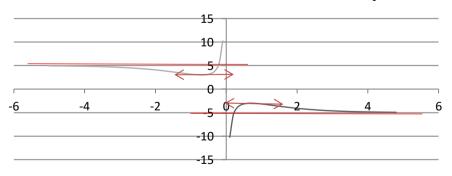
$$f(\ln(2)) = \frac{4 - 5 \operatorname{ch}(\ln(2))}{\operatorname{sh}(\ln(2))}$$

$$\operatorname{ch}(\ln(2)) = \frac{5}{4}$$

$$\operatorname{sh}(\ln(2)) = \frac{e^{\ln(2)} - e^{-\ln(2)}}{2} = \frac{2 - \frac{1}{2}}{2} = \frac{3}{4}$$

par conséquent

$$f(\ln(2)) = \frac{4 - 5 \times \frac{5}{4}}{\frac{3}{4}} = -\frac{9}{3} = -3$$



Exercice 4.17. Soit f la fonction numérique définie par : $f(x) = 2\sin(x) + \sin(2x)$.

- 1. Déterminer l'ensemble de définition de f, sa période et sa parité. En déduire un intervalle d'étude.
- 2. Calculer la dérivée de f et déterminer son signe.
- 3. Dresser le tableau de variation.
- 4. Tracer la courbe représentative de f.

Correction exercice 4.17.

1. f est définie (continue et dérivable) sur \mathbb{R} , 2π périodique et impaire (ce sont des évidences qu'il n'est pas nécessaire de développer), on étudiera f sur l'intervalle $[0,\pi]$, par parité on connaitra les variation de f sur $[0,2\pi]$, puis par périodicité sur \mathbb{R} .

2.

$$f'(x) = 2\cos(x) + 2\cos(2x) = 2(\cos(x) + 2\cos^2(x) - 1) = 2(2\cos^2(x) + \cos(x) - 1)$$

Le polynôme $2X^2 + X - 1$ admet $X_1 = -1$ et $X_2 = \frac{1}{2}$ comme racine donc

$$2X^2 + X - 1 = 2(X + 1)(X - \frac{1}{2})$$
, on en déduit que $f'(x) = 4(\cos(x) + 1)(\cos(x) - \frac{1}{2})$

Dressons un tableau de signe :

x	0		$\frac{\pi}{3}$		π
$\cos(x) + 1$		+		+	0
$\cos(x) + \frac{1}{2}$		+	0	=	
f'(x)		+	0	_	0

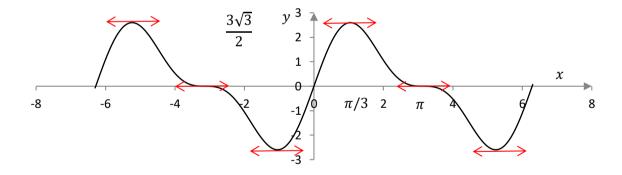
f est croissante sur $\left[0, \frac{\pi}{3}\right]$ et décroissante sur $\left[\frac{\pi}{3}, \pi\right]$.

3. On en déduit le tableau de variation de f.

$$f\left(\frac{\pi}{3}\right) = 2\sin\left(\frac{\pi}{3}\right) + \sin\left(\frac{2\pi}{3}\right) = 2\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2}$$

х	0		$\frac{\pi}{3}$		π
f'(x)		+	0	_	0
f(x)	0 -	*	$\frac{3\sqrt{3}}{2}$	_	0

4.



Exercice 4.18. Soit f la fonction définie par $f(x) = x - \frac{\ln(x)}{x}$.

- 1. Soit g la fonction numérique définie par $g(x) = x^2 1 + \ln(x)$. Dresser le tableau de variations de cette fonction, et en déduire qu'il existe un et un seul réel x_0 tel que $g(x_0) = 0$, déteminer x_0 .
- 2. En déduire les variations de f.
- 3. Déterminer les limites de f aux bornes de son ensemble de définition.
- 4. Déterminer les asymptotes au graphe de f.
- 5. Tracer ce graphe et son asymptote en faisant figurer les tangentes remarquables.

Correction exercice 4.18.

1. g est définie, continue et dérivable sur $]0, +\infty[$.

$$g'(x) = 2x + \frac{1}{x} > 0 \text{ car } x > 0$$

		$\lim_{x\to 0^+}g$	$(x) = -\infty$	et	$\lim_{x\to +\infty}g(x)=+\infty$
x	0	+∞			
g'(x)	+				
g(x)		→ +∞			
	-∞				

On en déduit que g est une bijection de $]0, +\infty[$ sur \mathbb{R} , donc 0 admet un unique antécédent x_0 , comme $x_0 = 1$ convient, c'est le seul.

2. f est définie, continue et dérivable sur $]0, +\infty[$

$$f'(x) = 1 - \frac{\frac{1}{x} \times x - 1 \times \ln(x)}{x^2} = 1 - \frac{1 - \ln(x)}{x^2} = \frac{x^2 - (1 - \ln(x))}{x^2} = \frac{g(x)}{x^2}$$
$$\lim_{x \to 0^+} f(x) = -\infty \quad \text{et} \quad \lim_{x \to +\infty} g(x) = +\infty$$

car

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \frac{\ln(x)}{x} = -\infty$$

n'est pas une forme indéterminée.

$$f(1) = 1 - \frac{\ln(1)}{1} = 1$$

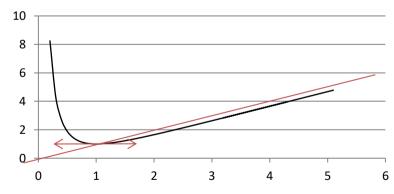
х	0	1	+∞
f'(x)	_	0	+
f(x)	$-\infty$		≯ +∞
		△ 1 ∕	

- 3. Voir 2.
- 4. Comme

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$
$$\lim_{x \to +\infty} (f(x) - x) = 0$$

Ce qui montre que la droite d'équation y = x est asymptote au graphe de f en $+\infty$.

5.



Et même si ce n'est pas clair sur le graphe, il y a un point d'inflexion pour x > 1, point qui annule la dérivée seconde.

Exercice 4.101. Etablir la formule suivante :

$$\tan(x-y) + \tan(y-z) + \tan(z-x) = \tan(x-y)\tan(y-z)\tan(z-x)$$

Où x, y, z sont trois réels pour lesquels les trois tangentes apparaissant dans la formule sont définies. Indication : on pourra appliquer judicieusement la formule donnant $\tan(a + b)$ en fonction de $\tan(a)$ et $\tan(b)$. Correction exercice 4.101.

$$\tan(z - x) = \tan((z - y) + (y - x)) = \frac{\tan(z - y) + \tan(y - x)}{1 - \tan(z - y) \tan(y - x)}$$

$$\Leftrightarrow \tan(z - x) (1 - \tan(z - y) \tan(y - x)) = \tan(z - y) + \tan(y - x)$$

$$\Leftrightarrow \tan(z - x) (1 - (-\tan(-z + y))(-\tan(-y + x))) = -\tan(-z + y) - \tan(-y + x)$$

$$\Leftrightarrow \tan(z - x) (1 - \tan(y - z) \tan(x - y)) = -\tan(y - z) - \tan(x - y)$$

$$\Leftrightarrow \tan(z - x) - \tan(z - x) \tan(y - z) \tan(x - y) = -\tan(y - z) - \tan(x - y)$$

$$\Leftrightarrow \tan(z - x) + \tan(y - z) + \tan(x - y) = \tan(z - x) \tan(y - z) \tan(x - y)$$

Exercice 4.102.

Soit f la fonction définie par :

$$f(x) = \frac{8\operatorname{ch}(x)}{4e^x - 3}$$

- 1. Déterminer l'ensemble de définition de f.
- 2. Calculer les limites de f au bord de l'ensemble de définition.
- 3. Etudier les variations de f.
- 4. Dresser le tableau de variation de f.
- 5. Tracer le graphe de f.

Correction exercice 4.102.

1. f est définie, continue et dérivable si et seulement si $4e^x - 3 \neq 0 \Leftrightarrow e^x \neq \frac{3}{4} \Leftrightarrow x \neq \ln\left(\frac{3}{4}\right)$

$$D_f = \mathbb{R} \setminus \left\{ \ln \left(\frac{3}{4} \right) \right\}$$

2.

En $-\infty$,

$$\lim_{x \to -\infty} (4e^x - 3) = -3$$
$$\lim_{x \to -\infty} \operatorname{ch}(x) = +\infty$$

donc

$$\lim_{x \to -\infty} \frac{8 \operatorname{ch}(x)}{4e^x - 3} = -\infty$$

en +∞

On pose $X = e^x$

$$f(x) = \frac{8 \operatorname{ch}(x)}{4e^x - 3} = \frac{8 \frac{X + \frac{1}{X}}{2}}{4X - 3} = \frac{8(X^2 + 1)}{2X(4X - 3)} = \frac{8X^2 + 8}{8X^2 - 6X}$$
$$\lim_{X \to +\infty} X = +\infty$$

donc

$$\lim_{x \to +\infty} f(x) = \lim_{X \to +\infty} \frac{8X^2 + 8}{8X^2 - 6X} = \lim_{X \to +\infty} \frac{8X^2}{8X^2} = 1$$

$$\lim_{X \to +\infty} X = +\infty$$

En
$$\ln\left(\frac{3}{4}\right)^-$$
, ch $\left(\ln\left(\frac{3}{4}\right)\right) > 1 > 0$

$$\lim_{x \to \ln(\frac{3}{4})^{-}} (4e^{x} - 3) = 0^{-}$$

$$\lim_{x \to \ln(\frac{3}{4})^{-}} \frac{\operatorname{ch}(x)}{4e^{x} - 3} = -\infty$$

En
$$\ln\left(\frac{3}{4}\right)^+$$
, ch $\left(\ln\left(\frac{3}{4}\right)\right) \ge 1 > 0$

$$\lim_{x \to \ln(\frac{3}{4})^{+}} (4e^{x} - 3) = 0^{+}$$

$$\lim_{x \to \ln(3)^{+}} \frac{\operatorname{ch}(x)}{4e^{x} - 3} = +\infty$$

3.

$$f'(x) = 8 \frac{\sinh(x) (4e^x - 3) - 4 \cosh(x) e^x}{(4e^x - 3)^2} = 8 \frac{4e^x (\sinh(x) - \cosh(x)) - 3 \sinh(x)}{(4e^x - 3)^2}$$

On pose $X = e^x$

$$f'(x) = 0 \Leftrightarrow 4e^{x}(\operatorname{sh}(x) - \operatorname{ch}(x)) - 3\operatorname{sh}(x) = 0 \Leftrightarrow 4X\left(\frac{X - \frac{1}{X}}{2} - \frac{X + \frac{1}{X}}{2}\right) - 3\frac{X - \frac{1}{X}}{2} = 0$$
$$\Leftrightarrow 4X\left((X^{2} - 1) - (X^{2} + 1)\right) - 3(X^{2} - 1) = 0 \Leftrightarrow 8X(-2) - 3X^{2} + 3 = 0$$
$$\Leftrightarrow -3X^{2} - 8X + 3 = 0$$

Le discriminant de cette équation est :

$$\Delta = (-8)^2 + 4 \times 3 \times 3 = 64 + 36 = 100$$

les racines sont

$$X_1 = \frac{8 - 10}{-6} = \frac{1}{3}$$

et

$$X_2 = \frac{8+10}{-6} = -3$$

Or
$$X = e^x > 0$$
 donc $f'(x) = 0$ n'a qu'une solution $e^x = \frac{1}{3} \Leftrightarrow x = \ln\left(\frac{1}{3}\right) = -\ln(3)$

Il reste à déterminer le signe de $4e^x(\operatorname{sh}(x) - \operatorname{ch}(x)) - 3\operatorname{sh}(x)$, cette fonction est continue et ne s'annule qu'en $-\ln(3)$, on prend une valeur simple 0, $4e^0(\operatorname{sh}(0) - \operatorname{ch}(0)) - 3\operatorname{sh}(0) = -4 < 0$ Donc pour tout $x < -\ln(3) 4e^x(\operatorname{sh}(x) - \operatorname{ch}(x)) - 3\operatorname{sh}(x) < 0$ et pour tout $x > -\ln(3)$, $4e^x(\operatorname{sh}(x) - \operatorname{ch}(x)) - 3\operatorname{sh}(x) > 0$, il faut quand même faire attention au fait que f n'est pas définie

en $\ln\left(\frac{3}{4}\right)$

Comme $\frac{1}{3} < \frac{3}{4}$ alors $\ln\left(\frac{1}{3}\right) < \ln\left(\frac{3}{4}\right)$, on déduit de tout cela que :

Pour tout $x \in]-\infty$, $\ln\left(\frac{1}{3}\right)[$, f est décroissante.

Pour tout $x \in]\ln(\frac{1}{3}), \ln(\frac{3}{4})[, f \text{ est croissante.}]$

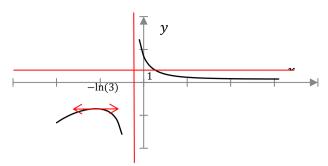
Pour tout $x \in]\ln(\frac{3}{4}), +\infty[, f \text{ est croissante.}]$

4.

х	-∞	$\ln\left(\frac{1}{3}\right)$	ln($\left(\frac{3}{4}\right)$	+∞
f'(x)	+	0	-	=	=
f(x)	-∞	▼ -8 <		+∞	→ 1

car

$$f\left(\ln\left(\frac{1}{3}\right)\right) = \frac{8 \operatorname{ch}\left(\frac{1}{3}\right)}{4e^{\ln\left(\frac{1}{3}\right)} - 3} = 4\frac{e^{\ln\left(\frac{1}{3}\right)} + e^{-\ln\left(\frac{1}{3}\right)}}{\frac{4}{3} - 3} = 4\frac{\frac{1}{3} + 3}{-\frac{5}{3}} = \frac{40}{-5} = -8$$



Exercice 4.103.

Soit f la fonction d'une variable réelle uninie par :

$$f(u) = \frac{3 + 4\operatorname{sh}(u)}{\operatorname{ch}(u)}$$

- 1. Préciser son domaine de définition.
- 2. Préciser ses limites quand u tend vers $+\infty$ et $-\infty$.
- 3. Etudier les variations de f. On veillera à fournir une expression très simple de la valeur u_0 pour laquelle $f'(u_0) = 0$ (l'expression attendue n'utilise pas de fonctions hyperboliques réciproque (Hors programme)).
- 4. Tracer le graphe de f.

Correction exercice 4.103.

- 1. $u \mapsto 3 + 4 \operatorname{sh}(u)$ est définie sur \mathbb{R} . $\operatorname{ch}(u) \neq 0$ pour tout $u \in \mathbb{R}$ et che st définit sur \mathbb{R} donc f est définie sur R.
- Première méthode

$$f(u) = \frac{3 + 4 \operatorname{sh}(u)}{\operatorname{ch}(u)} = \frac{3}{\operatorname{ch}(u)} + 4 \operatorname{th}(u)$$

 $\lim_{u \to +\infty} \operatorname{ch}(u) = +\infty \operatorname{donc} \lim_{u \to +\infty} \frac{3}{\operatorname{ch}(u)} = 0 \text{ et } \lim_{u \to +\infty} \operatorname{th}(u) = 1 \operatorname{donc} \lim_{u \to +\infty} f(u) = 4$ $\lim_{u \to -\infty} \operatorname{ch}(u) = +\infty \operatorname{donc} \lim_{u \to -\infty} \frac{3}{\operatorname{ch}(u)} = 0 \text{ et } \lim_{u \to -\infty} \operatorname{th}(u) = -1 \operatorname{donc} \lim_{u \to +\infty} f(u) = -4$

Deuxième méthode

$$f(u) = \frac{3+4 \operatorname{sh}(u)}{\operatorname{ch}(u)} = \frac{3+4 \frac{e^{u}-e^{-u}}{2}}{\frac{e^{u}+e^{-u}}{2}} = \frac{6+4(e^{u}-e^{-u})}{e^{u}+e^{-u}} = \frac{6e^{u}+4(e^{2u}-1)}{e^{2u}+1}$$

en multipliant le numérateur et le dénominateur par 2, puis par e^u .

On pose $X = e^u$,

$$f(u) = \frac{6X + 4(X^2 - 1)}{X^2 + 1} = \frac{4X^2 + 6X - 4}{X^2 + 1}$$

si $u \to +\infty$ alors $X \to +\infty$

$$\lim_{u \to +\infty} f(u) = \lim_{X \to +\infty} \frac{4X^2 + 6X - 4}{X^2 + 1} = \lim_{X \to +\infty} \frac{4X^2}{X^2} = 4$$

si $u \to -\infty$ alors $X \to 0$

$$\lim_{u \to -\infty} f(u) = \lim_{X \to 0} \frac{4X^2 + 6X - 4}{X^2 + 1} = -4$$

$$f'(u) = \frac{4 \operatorname{ch}(u) \operatorname{ch}(u) - (3 + 4 \operatorname{sh}(u)) \operatorname{sh}(u)}{\operatorname{ch}^{2}(u)} = \frac{4 \operatorname{ch}^{2}(u) - 3 \operatorname{sh}(u) - 4 \operatorname{sh}^{2}(u)}{\operatorname{ch}^{2}(u)}$$
$$= \frac{4(\operatorname{ch}^{2}(u) - \operatorname{sh}^{2}(u)) - 3 \operatorname{sh}(u)}{\operatorname{ch}^{2}(u)} = \frac{4 - 3 \operatorname{sh}(u)}{\operatorname{ch}^{2}(u)}$$

$$\operatorname{sh}(u_0) = \frac{4}{3} \Leftrightarrow \frac{e^{u_0} - e^{-u_0}}{2} = \frac{4}{3}$$

On pose $X_0 = e^{u_0}$

$$\operatorname{sh}(u_0) = \frac{4}{3} \Leftrightarrow \frac{X_0 - \frac{1}{X_0}}{2} = \frac{4}{3} \Leftrightarrow X_0 - \frac{1}{X_0} = \frac{8}{3} \Leftrightarrow X_0^2 - 1 = \frac{8}{3}X_0 \Leftrightarrow X_0^2 - \frac{8}{3}X_0 - 1 = 0$$

le discriminant vaut

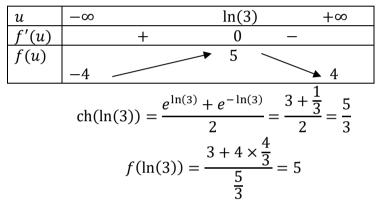
$$\Delta = \frac{64}{9} + 4 = \frac{100}{9} = \left(\frac{10}{3}\right)^2$$

$$X_{0,1} = \frac{\frac{8}{3} - \frac{10}{3}}{2} = -\frac{1}{3} < 0$$

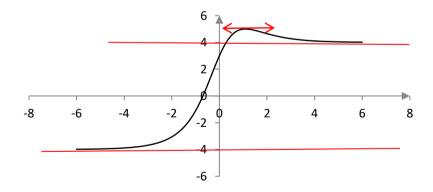
$$X_{0,2} = \frac{\frac{8}{3} + \frac{10}{3}}{2} = 3$$

donc

$$e^{u_0} = 3 \Leftrightarrow u_0 = \ln(3)$$



4. Graphe de v = f(u)



Exercice 4.104. Soit f la fonction définie sur $I = \mathbb{R}$ par :

$$f(x) = \sin^2(x) + \frac{1}{2}\cos(x)$$

- 1. Etudier la parité de f et sa périodicité, en déduire un intervalle d'étude.
- 2. Montrer qu'il existe un unique $x_0 \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$ tel que $\cos(x_0) = \frac{1}{4}$
- 3. Etudier les variations de f sur $[0, \pi]$.
- 4. Dresser le tableau de variation de f et tracer le graphe de f.

Correction exercice 4.104.

1. f est paire et 2π périodique, on étudie f sur $[0,\pi]$

2.
$$f'(x) = 2\cos(x)\sin(x) - \frac{1}{2}\sin(x) = 2\sin(x)\left(\cos(x) - \frac{1}{4}\right)$$
$$\forall x \in [0, \pi], \qquad f'(x) = 0 \Leftrightarrow \begin{cases} \sin(x) = 0\\ \cos(x) = \frac{1}{4} \end{cases}$$

Il y a deux valeurs qui annulent sin(x) dans $[0,\pi]$, ce sont 0 et π .

Pour $x \in [0, \pi]$, la fonction $\cos: [0, \pi] \mapsto [-1, 1]$ étant strictement décroissante, il s'agit d'une bijection, $\frac{1}{4}$ admet un unique antécédent x_0 , sur le signe de $\cos(x) - \frac{1}{4}$ est positif sur $[0, x_0]$ et négatif sur $[x_0, \pi]$.

x	0		x_0		π
sin(x)	0	+		+	0
$\cos(x) - \frac{1}{4}$		+	0	_	
f'(x)	0	+	0	_	0

f est croissante sur $[0, x_0]$

f est décroissante sur $[x_0, \pi]$

$$f(0) = \frac{1}{2}$$

$$f(x_0) = \sin^2(x_0) + \frac{1}{2}\cos(x_0) = 1 - \cos^2(x_0) + \frac{1}{2} \times \frac{1}{4} = 1 - \frac{1}{16} + \frac{1}{8} = \frac{16 - 1 + 2}{16} = \frac{17}{16}$$

$$f(\pi) = -\frac{1}{2}$$

x	0		x_0	π
f'(x)	0	+	0	- 0
f(x)			7 17	
	1		$\sqrt{\frac{1}{16}}$	1
	2			

