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Abstract This article is devoted to the analysis of some nonlinear conservative trans-
port equations, includig the so-called aggregation equation with pointy potential,
and numerical method devoted to its numerical simulation. Such a model describes
the collective motion of individuals submitted to an attractive potential and can be
written as a continuity transport equation with a velocity field computed through a
self-consistent interaction potential. In the strongly attractive setting, Lp solutions
may blow up in finite time, then a theory of existence of weak measure solutions has
been defined. In this approach, we show the existence of Filippov characteristics al-
lowing to define solutions of the aggregation initial value problem as a pushforward
measure. Then numerical analysis of an upwind type scheme is proposed allowing
to recover the dynamics of aggregates beyond the blowup time.

1 Introduction

This paper is devoted to existence and uniqueness, and numerical approximation of
measure valued solutions to the following nonlinear and nonlocal transport equation
in d space dimension,

∂tρ +div
(
(V ∗ρ)ρ

)
= 0, t > 0, x ∈ Rd , (1)
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complemented with the initial condition ρ(0,x) = ρ ini. This equation governs the
dynamics of a density of individuals, ρ at time t > 0, position x ∈ Rd . The inter-
action between individuals is modelled by a given function V : R+ ×Rd 7→ Rd .
One motivation is the so-called aggregation equation where V = ∇xW derives from
an interaction potential W whose gradient ∇xW (x− y) measures the relative force
exerted by a unit mass localized at a point y onto a unit mass located at a point x.

The aggregation equation appears in many applications in physics and population
dynamics. One may cite for instance applications in granular media [3], crowd mo-
tion [13], collective migration of cells by swarming [29, 30, 33], bacterial chemo-
taxis [18, 19, 25]. In many of these examples, the potential W is usually mildly
singular, i.e. W has a weak singularity at the origin. Due to this weak regularity,
finite time blowup of (weak Lp) solutions has been observed for such systems and
has gained the attention of several authors (see e.g. [28, 7, 5, 11]). Finite time con-
centration is sometimes considered as a very simple mathematical way to mimick
aggregation of individuals, as opposed to diffusion.

Since finite time blowup of regular solutions occurs, a natural framework to study
the existence of global in time solutions is to work in the space of probability mea-
sures. Two strategies have been proposed in the litterature. In [11], the aggregation
equation is seen as a gradient flow minimizing the interaction energy in a Wasser-
stein space. In [25, 26, 12], this system is considered as a conservative transport
equation with velocity field ∇xW ∗ ρ . Then a flow Z can be constructed allowing
to define the solution as a pushforward measure by the flow: ρ = Z#ρ ini. See also
[4] for a similar definition. To be able to define such a flow, some assumptions on
the potential are needed that allows for mild singularity of the potential. The usual
assumption consists in considering pointy potentials with singularity at the origin,
such as the Morse potential W (x) = e−|x|, or W (x) =−|x|. In this paper, we extend
this assumption to a more general class of potentials.

Here we list the assumptions that will be used in the paper.

• We assume that there exists a function λ such that

〈V (t,x)−V (t,y),x− y〉 ≤ λ (t)|x− y|2, λ ∈ L1
loc(R+), (2)

where 〈·, ·〉 denotes the Euclidean inner product. We notice for the case of the
aggregation equation, i.e. when V (t,x) = ∇xW (x), this assumption is satisfied
provided the interaction potential W : Rd → R is λ -concave, i.e. x 7→W (x)−
λ

2 |x|
2 is concave for some constant λ ≥ 0.

• For the sake of simplicity of the presentation, we only consider bounded velocity
fields, then we assume that there exists a nonnegative constant v∞ such that for
a.e. t ∈ R+ and x ∈ Rd ,

|V (t,x)| ≤ v∞. (3)

• An interesting issue is raised when V is discontinuous, since, as already men-
tioned, it may imply blowup in finite time of weak Lp (p > 1) solutions. We may
assume that there exists a finite set of discontinuity points. More precisely, there
exists a finite set of points in Rd , denoted ξ1, . . . ,ξL, such that
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V (t,x) =
L

∑
`=1

(
V`(t,x−ξ`)+V`(t,x+ξ`)

)
+Vr(t,x), (4)

where for all `= 1, . . . ,L, we assume

V` ∈ L∞
loc(R+,C(Rd \{0}), V`(t,x) =−V`(t,−x)

and Vr ∈ L∞
loc(R+,W 1,∞(Rd)).

(5)

We notice also that since Vr is Lipschitz-continuous in space, then it satisfies (2)
with a constant λ (t) = ‖DVr(t)‖∞ ∈ L∞

loc(R+). Thus, Vs := V −Vr verifies also
(2), and Vs(t,x) = ∑

L
`=1
(
V`(t,x−ξ`)+V`(t,x+ξ`)

)
is odd.

Thus, to summarize, with respect to the preceding established results in [11, 12],
we avoid three assumptions: we do not assume that V has only 1 singularity, we do
not assume that V is odd, and we do not assume that V is the gradient of a potential.
However, we still restrict to bounded velocity fields (see [4] for an approach in the
radially symmetric case with non bounded velocity fields).

Although extremely accurate numerical schemes have been developed to study
the blowup profile for smooth solutions, see e.g. [23, 24] for the aggregation equa-
tion, very few numerical schemes have been proposed to simulate the behaviour
of solutions beyond blowup time. The so-called sticky particle method was shown
to be convergent in [11] and used to obtain qualitative properties of the solutions
such as the finite time total collapse. However, this method is not that practical to
deal with the behavior of solutions after blowup in dimensions larger than one. In
one dimension, this task has been performed in [25]. Recently, in higher dimensions,
particle methods have been proposed and studied in [14, 9] but only the convergence
for smooth solutions, before the blowup time, has been proved.

Finite volume schemes have been also developped, and the present paper stands
in this frame. Note that the difficulty in this problem is twofold: first, the velocity is
not smooth (and only one-sided Lipschitz-continuous), and second, it is a nonlinear
problem.

In the linear case and when the given velocity field is only one-sided Lipschitz-
continuous:

• in [21], the convergence of dissipative schemes is proven in dimension 1 (weak
convergence in the sense of measures),

• in [16], the convergence of upwind-type or, more generally, some dissipative
schemes, at order 1/2 in Wasserstein distance, has been obtained (in any dimen-
sion).

In the fully nonlinear context, in [27], a finite volume scheme is proposed al-
lowing to simulate the behaviour of the solution to the one dimensional aggregation
equation (1) after blowup, and the authors prove its convergence. A finite volume
method for a large class of PDEs including in particular (1) has been also proposed
in [10] but no convergence result has been given. Finally, a finite volume scheme of
Rusanov (or Lax-Friedrichs) type for general measures as initial data has been pro-
posed and studied in [12]. Numerical simulations of solutions in dimension greater
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than one have been obtained, allowing to observe the behaviour after blowup. Its
weak convergence in the sense of measure is proven. We propose in this paper to
extend this result to the upwind scheme for a more general class of equations, that
is system (1) with an interaction function V satisfying assumptions (2)–(5) only.
This scheme is based on an idea developped in [25] and used later in [27, 12] which
consists in using a careful discretization of the macroscopic velocity such that its
product with the measure solution ρ is well-defined.

The outline of this paper is the following. In the next section, we recall briefly the
theory of existence of solutions to the conservative transport equation with discon-
tinous velocity field. In section 3, we establish the existence and uniqueness result.
Section 4 is devoted to the numerical discretization. We show in particular the con-
vergence of the numerical scheme towards the measure value solution. Finally, we
conclude this paper with some numerical illustration in section 5.

2 Transport equation with discontinuous velocity field

2.1 Notations

All along the paper, we will make use of the following notations. We denote
C0(Rd) the space of continuous functions in Rd that tend to 0 at infinity. We
denote Mb(Rd) the space of Borel measures whose total variation is finite. For
ρ ∈Mb(Rd), we denote by |ρ|(Rd) its total variation. ¿From now on, Mb(Rd) is
always endowed with the weak topology σ(Mb(Rd),C0(Rd)). For T > 0, we note
SM :=C([0,T ];Mb(Rd)−σ(Mb(Rd),C0(Rd))). For ρ a measure in Mb(Rd) and
Z a measurable map, we denote by Z#ρ the pushforward measure of ρ by Z; it
satisfies, for any continuous function φ ,∫

Rd
φ(x)Z#ρ(dx) =

∫
Rd

φ(Z(x))ρ(dx).

We denote by P(Rd) the subset of Mb(Rd) of probability measures. We define the
space of probability measures with finite second order moment by

P2(Rd) =

{
µ ∈P(Rd),

∫
Rd
|x|2µ(dx)< ∞

}
.

Here and in the following, | · |2 stands for the Euclidean norm that derives from the
Euclidean inner product 〈·, ·〉. This space is endowed with the Wasserstein distance
dW defined by (see e.g. [1, 34, 35])

dW (µ,ν) = inf
γ∈Γ (µ,ν)

{∫
Rd×Rd

|y− x|2 γ(dx,dy)
}1/2

(6)
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where Γ (µ,ν) is the set of measures on Rd×Rd with marginals µ and ν . ¿From a
minimization argument, we know that in the definition of dW the infimum is actually
a minimum (see [34, 32]). A map that realizes the minimum in the definition (6) of
dW is called an optimal plan, the set of which is denoted by Γ0(µ,ν). Then for all
γ0 ∈ Γ0(µ,ν), we have

dW (µ,ν)2 =
∫
Rd×Rd

|y− x|2 γ0(dx,dy).

2.2 Weak measure solutions for conservative transport equation

We recall in this section some useful results on weak measure solutions to the con-
servative linear transport equation with given velocity field b,

∂tu+div(bu) = 0; u(t = 0) = u0. (7)

We start by the following definition of characteristics [20]:

Definition 1. Let us assume that b = b(t,x)∈Rd is a vector field defined on [0,T ]×
Rd with T > 0. A Filippov characteristic X(t;s,x) that stems from x ∈ Rd at time s
is a continuous function X(·;s,x) ∈C([0,T ],Rd) such that ∂

∂ t X(t;s,x) exists for a.e.
t ∈ [0,T ] and satisfies

∂

∂ t
X(t;s,x) ∈

{
Convess(b)(t, ·)

}
(X(t;s,x)), a.e. t ∈ [0,T ]; X(s;s,x) = x.

¿From now on, we will use the notation X(t,x) = X(t;0,x).

In this definition Convess(E) denotes the essential convex hull of a set E. We recall
its definition for the sake of completeness, see [20, 2] for more details. We denote by
Conv(E) the classical convex hull of E, i.e., the smallest closed convex set contain-
ing E. Given the vector field b(t, ·) : Rd −→ Rd , the essential convex hull at point x
is defined as

{Convess(b)(t, ·)}(x) =
⋂
r>0

⋂
N∈N0

Conv [b(t,B(x,r)\N)] ,

where N0 is the set of zero Lebesgue measure sets.
At this stage there is no smoothness assumption on b. Existence and uniqueness

of a flow is classically ensured if b is smooth. A possible way to go beyond this,
and use possibly discontinuous velocity fields, is to introduce the so-called one-
sided Lipschitz continuity, see (8) below. The following existence and uniqueness
result of Filippov characteristics ensures that the solution does not depend on the
representative of b that is chosen.

Theorem 1 ([20]). Let T > 0. Let us assume that the vector field b∈L1
loc(R;L∞(Rd))

satisfies the OSL condition, that is for a.e. x and y in Rd , a.e. t ∈ [0,T ],
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〈b(t,x)−b(t,y),x− y〉 ≤ α(t)‖x− y‖2, for α ∈ L1(0,T ). (8)

Then there exists a unique Filippov characteristic X associated to this vector field.

An important consequence of this result is the existence and uniqueness of weak
measure solutions for the conservative linear transport equation. This result has been
proved by Poupaud and Rascle [31, Theorem 3.3]:

Theorem 2 ([31]). Let T > 0. Let b ∈ L1([0,T ],L∞(Rd)) be a vector field satisfying
the OSL condition (8). Then for any u0 ∈Mb(Rd), there exists a unique measure so-
lution u in SM to the conservative transport equation (7) such that u(t) = X(t)#u0,
where X is the unique Filippov characteristic, i.e. for any φ ∈C0(Rd), we have∫

Rd
φ(x)u(t,dx) =

∫
Rd

φ(X(t,x))u0(dx), for t ∈ [0,T ].

In one dimension, such solutions are equivalent to duality solutions defined by
Bouchut and James in [8]. A pioneering numerical investigation of this equation
in one dimension is provided in [21]. A numerical investigation of measure valued
solutions defined in Theorem 2 with a convergence order proof is proposed in [16].

Finally, we recall the following stability result for the Filippov characteristics
which has been established by Bianchini and Gloyer [6, Theorem 1.2]

Theorem 3 ([6]). Let T > 0. Assume that the sequence of vector fields bn converges
weakly to b in L1([0,T ],L1

loc(Rd)). Then the Filippov flow Xn generated by bn con-
verges locally in C([0,T ]×Rd) to the Filippov flow X generated by b.

3 Filippov characteristic flow for the aggregation equation

This section is devoted to the existence of a Filippov flow for the aggregation equa-
tion (1) as it has been stated in [12] in a lightly less large context.

Under assumption (4), we define for ρ ∈C([0,T ],P2(Rd)) the velocity field âρ

by

âρ(t,x) =
L

∑
`=1

∫
Rd

(
V̂`(t,x− y−ξ`)+V̂`(t,x− y+ξ`)

)
ρ(t,dy)

+
∫
Rd

Vr(t,x− y)ρ(t,dy) , (9)

where V̂` is defined for `= 1, . . . ,L by

V̂`(t,x) =
{

V`(t,x), when x 6= 0;
0, otherwise.

¿From now on, we will use the notation
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V̂ (t,x) :=
L

∑
`=1

(
V̂`(t,x−ξ`)+V̂`(t,x+ξ`)

)
+Vr(t,x). (10)

The following theorem states existence and uniqueness of a solution defined by
the Filippov characteristics. Its proof in the case where V (t,x) = ∇xW (x) with W ∈
C1(Rd \{0}) and λ -convex has been obtained in [12, Theorem 2.5 and 2.9]. In the
present article we extend it to the case at hand.

Theorem 4. Let V satisfy assumptions (2)–(5) and let ρ ini be given in P2(Rd).
There exists a unique solution ρ ∈C([0,+∞),P2(Rd)) that satisfies in the sense of
distributions the aggregation equation

∂tρ +div(âρ ρ) = 0, ρ(0, ·) = ρ
ini,

where âρ is defined by (9), and is the pushforward measure ρ := Z#ρ ini where Z is
the unique Filippov characteristic flow associated to the velocity field âρ .

3.1 Sketch of the proof of Theorem 4

The proof of the existence and uniqueness result in Theorem 4 follows the ideas
developped in [12]. For the sake of completeness, we recall the main steps of the
proof and detail below the main changes to extend it to the case at hand.

Step 1: definition of the macroscopic velocity.
A difficulty when we want to deal with measure valued solutions to transport equa-
tion is that the velocity field should be defined carefully to be able to give a sense
to the product in the divergence term in (1) when ρ is a measure. Here we use
the definition (9) for the velocity field. This definition is motivated by Lemma
2 which is stated and proved below. Indeed, from assumptions (4)-(5), we have
V (t,x) = ∑

L
`=1(V`(t,x− ξ`) +V`(t,x + ξ`)) +Vr(t,x), with V` ∈ C1(Rd \ {0}) for

` = 1, . . . ,L. Then, Lemma 2 implies that if we regularize V by a sequence Vn, for
instance by taking the convolution of each V` with mollifiers, and if for all t ≥ 0,
ρn(t) is a sequence of probability measures in P2(Rd) such that ρn ⇀ ρ in the
sense of measures, then Vn ?ρn ⇀ âρ ρ in the sense of measures (see Lemma 2 in
Section 3.2).

Moreover, we have the following one-sided Lipschitz estimate:

Lemma 1. Let ρ ∈ L∞(0,T,Mb(Rd)) be nonnegative. Then under assumptions (2)–
(5), the function (t,x) 7→ âρ(t,x) defined in (9) satisfies the one-sided Lipschitz
(OSL) estimate

〈âρ(t,x)− âρ(t,y),x− y〉 ≤ λ (t)|ρ(t)|(Rd)‖x− y‖2. (11)

Proof. This result is an easy consequence of assumption (2) on V . Indeed, by defi-
nition (9), we have
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âρ(t,x)− âρ(t,y) =
∫
Rd

(
V̂ (t,x− z)−V̂ (t,y− z)

)
ρ(dz),

where V̂ (t,x) = ∑
L
`=1(V̂`(t,x− ξ`)+ V̂`(t,x+ ξ`))+Vr(t,x) is defined in (10). The

conclusion follows directly from assumption (2) and the nonnegativity of ρ .

Step 2: approximation with Dirac masses.
We use the idea of atomization consisting in approximating the solution by a finite
sum of Dirac masses: let us consider that for some integer N > 0,

ρ
ini,N =

N

∑
i=1

miδ (x− x0
i ), x0

i 6= x0
j for i 6= j,

N

∑
i=1

mi = 1,
N

∑
i=1

mi|x0
i |2 <+∞.

Then we look for a solution of the aggregation equation given by

ρ
N(t,x) =

N

∑
i=1

miδ (x− xi(t)).

By definition (9), âρN (t,x) =
N

∑
i=1

miV̂ (t,x− xi(t)), with V̂ defined in (10). ¿From

Lemma 1, âρN satisfies the OSL condition. Applying Theorem 1, it allows to define
uniquely a Filippov characteristic, denoted X̂N , associated to the velocity field âρN .
By construction, from Theorem 2, the Poupaud-Rascle pushforward measure ρPR :=
X̂N

#ρ ini,N is the unique measure valued solution to the conservative linear transport
equation

∂tρ
N
PR +div(âρN ρ

N
PR) = 0, ρ

N
PR(t = 0) = ρ

ini,N .

Moreover, by definition of the pushforward measure,

â
ρN

PR
=
∫
Rd

V̂ (t,x− y)ρN
PR(t,dy) =

∫
Rd

V̂ (t,x− X̂N(t,y))ρ ini,N(dy)

=
N

∑
i=1

miV̂ (t,x− X̂N(t,x0
i )) = âρN (t,x).

Thus ρN
PR = ρN . It gives the existence result for initial data given by a finite sum of

Dirac masses.

Step 3: passing to the limit N→+∞.
Making use of stability results, we may pass to the limit N→+∞ in the above con-
struction. This step is the same as in [12]; for the sake of completeness, we recall the
ideas but omit details. We assume that ρ ini,N ⇀ ρ ini as N→+∞. Then, since the ve-
locity field âρN is uniformly bounded, thanks to (3), we may extract a subsequence
that converges in L∞ weak-?. Using the stability result of Theorem 3, we deduce
that X̂N → X̂ . As a consequence, we get the weak convergence ρN ⇀ ρ := X̂#ρ0.
Finally, we apply the stability result of Lemma 2 to conclude the proof of existence.
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Step 4: uniqueness.
Uniqueness is deduced from the contraction estimate in Wasserstein distance dW in
Proposition 1 below. Indeed, if we take ρ0 = ρ̃0 = ρ ini in the estimate of Proposition
1, then we deduce that ρ = ρ̃ .

3.2 The macroscopic velocity

In the first step above, we have defined a macroscopic velocity for which the product
in the divergence term in (1) has a sense. This definition relies on the following
stability result.

Lemma 2. Let V be a velocity field satisfying V ∈ L∞
loc(R+,C(Rd \ {0})), (2), (3)

and V (−x) =−V (x). Let (Vn)n∈N∗ be a sequence of odd functions in C1(R+×Rd),
uniformly bounded by v∞ and such that for all t ∈ R+,

supx∈Rd\B(0, 1
n )

∣∣Vn(t,x)−V (t,x)
∣∣≤ 1

n
, for all n ∈ N∗. (12)

Let ρ(t) be a probability measure for all t ≥ 0. Let (ρn(t))n be a sequence of prob-
ability measures such that ρn ⇀ ρ weakly as measures as n→ +∞, then for any
T > 0, for every φ ∈C0([0,T ]×Rd) and any ξ ∈ Rd , we have

lim
n→+∞

∫ T

0

∫∫
Rd×Rd

φ(t,x)Vn(t,x− y−ξ )ρn(t,dx)ρn(t,dy)dt

=
∫ T

0

∫∫
Rd×Rd

φ(t,x)V̂ (t,x− y−ξ )ρ(t,dx)ρ(t,dy)dt.

Proof. We first introduce some notations that simplify the computations:

µn(t) := ρn(t)⊗ρn(t, ·−ξ )−ρn(t, ·−ξ )⊗ρn(t),

µ(t) := ρ(t)⊗ρ(t, ·−ξ )−ρ(t, ·−ξ )⊗ρ(t),

Dn :=
{
(x,y) ∈ Rd×Rd ,x 6= y, |x− y|< 1

n

}
.

(13)

We recall that since ρn ⇀ ρ weakly as measures, we have that ρn(t)⊗ρn(t, ·−ξ )⇀
ρ(t)⊗ρ(t, ·−ξ ) and µn ⇀ µ weakly in the sense of measures.

Let us fixed t ∈ R+ and let ε > 0. By definition of µ and Dn in (13) there exists
N ∈ N such that ∀n≥ N,

|µ|(t,Dn)≤ ε. (14)

For such N, we observe that, for all n≥ N, Dn ⊂ DN , and

|µn|(t,Dn)≤ |µn|(t,DN)≤ |µn−µ|(t,DN)+ |µ|(t,DN). (15)
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¿From the weak convergence µn ⇀ µ , we deduce that for n large enough, we have
|µn− µ|(t,DN) ≤ ε . Injecting in (15), and using also (14), we deduce that for N
large enough and ∀n≥ N, we have

|µn|(t,Dn)≤ ε, and |µn−µ|(t,Dn)≤ ε. (16)

For φ ∈C0([0,T ]×Rd), we note

An(t) :=
∫∫

Rd×Rd
Vn(t,x− y−ξ )φ(t,x)ρn(t)⊗ρn(t)(dx,dy)

−
∫∫

Rd×Rd
V̂ (t,x− y−ξ )φ(t,x)ρ(t)⊗ρ(t)(dx,dy).

After a change of variable, we may write

An(t) =
∫∫

Rd×Rd
φ(t,x)

(
Vn(t,x− y)ρn(t,x)ρn(t,y−ξ )

−V̂ (t,x− y)ρ(t,x)ρ(t,y−ξ )
)

dxdy

=
1
2

∫∫
Rd×Rd

[
Vn(t,x− y)

(
φ(t,x)ρn(t,x)ρn(t,y−ξ )

−φ(t,y)ρn(t,y)ρn(t,x−ξ )
)

−V̂ (t,x− y)
(

φ(t,x)ρ(t,x)ρ(t,y−ξ )

−φ(t,y)ρ(t,y)ρ(t,x−ξ )
)]

dxdy,

where we have used the symmetry assumption Vn(−x) = −Vn(x) and V (−x) =
−V (x) for the last equality. We may rewrite

An(t) =
1
2

∫∫
Rd×Rd

(φ(t,x)−φ(t,y))
[(

Vn(t,x− y)−V̂ (t,x− y)
)
ρn(t,x)ρn(t,y−ξ )

+V̂ (t,x− y)
(
ρn(t,x)ρn(t,y−ξ )−ρ(t,x)ρ(t,y−ξ )

)]
dxdy+

1
2

∫∫
Rd×Rd

φ(t,y)
(
(Vn(t,x− y)−V̂ (t,x− y))µn +V̂ (t,x− y)(µn−µ)

)
dxdy

=In + IIn + IIIn + IVn. (17)

We bound each term of the right and side separately.
Let us consider the first term

In :=
∫∫

Rd×Rd
(φ(t,x)−φ(t,y))

(
Vn(t,x− y)−V̂ (t,x− y)

)
ρn(t,x)ρn(t,y−ξ )dxdy.

Using assumption (12) and the bound ‖Vn‖∞ ≤ v∞, the latter integral on Rd ×Rd \
Dn is bounded by a term of order 1

n . We are left with the integral over Dn. Since
φ ∈ C0([0,T ]×Rd), there exists a compact K ⊂ Rd such that for all x ∈ Rd \K,
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|φ(x)| ≤ ε . On the compact K, φ is uniformly continuous, then there exists N ∈ N
such that for all n≥ N and all x,y ∈ Dn∩K, |φ(x)−φ(y)| ≤ ε . Then, we deduce

|In(t)| ≤
2
n
‖φ‖∞ +2v∞ε. (18)

For the second term,

IIn :=
∫∫

Rd×Rd
(φ(t,x)−φ(t,y))V̂ (t,x− y)(

ρn(t,x)ρn(t,y−ξ )−ρ(t,x)ρ(t,y−ξ )
)
dxdy.

We use the fact that the function (x,y) 7→ (φ(t,x)−φ(t,y))V̂ (t,x− y) is continous
and the weak convergence in the sense of measures of ρn to deduce that

lim
n→+∞

IIn(t) = 0. (19)

Considering now the third term,

IIIn :=
∫∫

Rd×Rd
φ(t,y)(Vn(t,x− y)−V̂ (t,x− y))µn(t,x,y)dxdy.

We split the integral between the one on Rd×Rd \Dn and the one on Dn. We get

|IIIn| ≤
2
n
‖φ‖∞ +2v∞‖φ‖∞|µn|(Dn)≤

(2
n
+2v∞ε

)
‖φ‖∞, (20)

where we use (16) for the last inequality.
The fourth term reads

IVn :=
∫∫

Rd×Rd
φ(t,y)V̂ (t,x− y)(µn−µ)(t,x,y)dxdy

=
∫∫

Rd×Rd
φ(t,y)

(
V̂ (t,x− y)−VN(t,x− y)

)
(µn−µ)(t,x,y)dxdy

+
∫∫

Rd×Rd
φ(t,y)VN(t,x− y)(µn−µ)(t,x,y)dxdy,

where N ∈ N will be chosen large enough. The second term of the right hand side
converges to 0 as n goes to +∞ since µn ⇀ µ and (x,y) 7→ φ(t,y)VN(t,x− y) is
continuous. Then it is bounded by ε for n large enough. We bound the first term of
the right hand side as for the term IIIn, we obtain, for n large enough

|IVn| ≤
( 4

N
+2v∞ε

)
‖φ‖∞ + ε. (21)

Finally, injecting (18),(19),(20),(21) into (17), we deduce the a.e. convergence
An(t)→ 0 as n→ +∞. Moreover, we have the uniform bound |An(t)| ≤ 2v∞‖φ‖∞.
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Applying the Lebesgue’s dominated convergence theorem, we deduce that
∫ T

0 An(t)dt
goes to 0 as n→+∞. It concludes the proof.

3.3 Contraction estimate

Proposition 1. Under assumptions (2),(3),(4),(5) on V , let ρ0 and ρ̃0 be given in
P2(Rd). Then, there exists a nonnegative constant C such that the corresponding
solutions ρ = Z#ρ0 and ρ̃ = Z̃#ρ̃0 verify

dW (ρ(t), ρ̃(t))≤ eC(t+
∫ t

0 λ (s)ds)dW (ρ0, ρ̃0).

Proof. Let us consider γ an optimal map with marginals ρ0 and ρ̃0 such that,

dW (ρ0, ρ̃0)2 =
∫∫

Rd×Rd
|x1− x2|2γ(dx1,dx2).

We compute, formally,

d
dt

∫∫
Rd×Rd

|Z(t,x1)− Z̃(t,x2)|2γ(dx1,dx2)

= 2
∫∫

Rd×Rd
〈âρ(t,Z(t,x1))− âρ̃(t, Z̃(t,x2)),Z(t,x1)− Z̃(t,x2)〉γ(dx1,dx2)

= 2
∫∫∫∫

〈V̂ (t,Z(t,x1)−Z(t,y1))−V̂ (t, Z̃(t,x2)− Z̃(t,y2)),

Z(t,x1)− Z̃(t,x2)〉γ(dx1,dx2)γ(dy1,dy2),

where V̂ is defined in (10). ¿From assumption (4), we decompose

d
dt

∫∫
Rd×Rd

|Z(t,x1)− Z̃(t,x2)|2γ(dx1,dx2) = Is + Ir,

with, using the notation Vs = ∑
L
`=1
(
V̂`(·−ξ`)+V̂`(·+ξ`)

)
,

Is = 2
∫∫∫∫

〈Vs(t,Z(t,x1)−Z(t,y1))−Vs(t, Z̃(t,x2)− Z̃(t,y2)),

Z(t,x1)− Z̃(t,x2)〉γ(dx1,dx2)γ(dy1,dy2) ;

Ir = 2
∫∫∫∫

〈Vr(t,Z(t,x1)−Z(t,y1))−Vr(t, Z̃(t,x2)− Z̃(t,y2)),

Z(t,x1)− Z̃(t,x2)〉γ(dx1,dx2)γ(dy1,dy2).

We treat each term separately. Using the symmetry of Vs (exchanging the role of x
and y) we obtain
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Is =
∫∫∫∫

〈Vs(t,Z(t,x1)−Z(t,y1))−Vs(t, Z̃(t,x2)− Z̃(t,y2)),

Z(t,x1)−Z(t,y1)− Z̃(t,x2)+ Z̃(t,y2)〉γ(dx1,dx2)γ(dy1,dy2)

≤ λ (t)
∫∫∫∫

|Z(t,x1)−Z(t,y1)− Z̃(t,x2)+ Z̃(t,y2)|2 γ(dx1,dx2)γ(dy1,dy2),

where we use assumption (2) satisfied by Vs. Expanding the right hand side, we
deduce straightforwardly

Is ≤ 4λ (t)
∫∫

Rd×Rd
|Z(t,x1)− Z̃(t,x2)|2γ(dx1,dx2). (22)

For the term Ir, we deduce from the Lipschitz continuity of Vr that there exists a
nonnegative constant C such that

|Ir| ≤C
∫∫∫∫ ∣∣Z(t,x1)−Z(t,y1)− Z̃(t,x2)+ Z̃(t,y2)

∣∣
|Z(t,x1)− Z̃(t,x2)|γ(dx1,dx2)γ(dy1,dy2),

≤C
∫∫
|Z(t,x1)− Z̃(t,x2)|2 γ(dx1,dx2)+

C
∫∫∫∫

|Z(t,y1)− Z̃(t,y2)||Z(t,x1)− Z̃(t,x2)|γ(dx1,dx2)γ(dy1,dy2),

≤C
∫∫
|Z(t,x1)− Z̃(t,x2)|2 γ(dx1,dx2)+C

(∫∫
|Z(t,x1)− Z̃(t,x2)|γ(dx1,dx2)

)2

.

Using a Cauchy-Schwarz inequality, we deduce

|Ir| ≤ 2C
∫∫

Rd×Rd
|Z(t,x1)− Z̃(t,x2)|2 γ(dx1,dx2). (23)

Combining (22) and (23), we deduce

d
dt

∫∫
Rd×Rd

|Z(t,x1)− Z̃(t,x2)|2γ(dx1,dx2)

≤ (4λ (t)+2C)
∫∫

Rd×Rd
|Z(t,x1)− Z̃(t,x2)|2γ(dx1,dx2).

We conclude by a Gronwall argument and using the fact that

dW (ρ(t), ρ̃(t))2 ≤
∫∫

Rd×Rd
|Z(t,x1)− Z̃(t,x2)|2γ(dx1,dx2).

The above formal computation can be made rigorous by using a regularization of
the potential and passing to the limit in the regularization (we refer the interested
reader to Proposition 3.4 in [12]).
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4 Numerical analysis

4.1 Definition of the scheme

Let us first introduce an upwind type numerical scheme for the discretization of the
aggregation equation. We denote by ∆ t the time step and consider a Cartesian grid
with step ∆xi in the ith direction, i = 1, . . . ,d, and ∆x = maxi ∆xi. We use standard
notations for vectors ei = (0, . . . ,1, . . . ,0), a = (a1, . . . ,ad). We define the multi-
indices

J = (J1, . . . ,Jd) ∈ Zd , xJ = (J1∆x1, . . . ,Jd∆xd).

We denote by CJ = [(J1− 1
2 )∆x1,(J1 +

1
2 )∆x1)× . . . [(Jd− 1

2 )∆xd ,(Jd +
1
2 )∆xd) the

elementary cell.
For a given nonnegative measure ρ ini ∈P2(Rd), we define, for J ∈ Zd ,

ρ
0
J =

∫
CJ

ρ
ini(dx)≥ 0. (24)

Since ρ ini is a probability measure, the total mass of the system is ∑J∈Zd ρ0
J = 1.

We denote by ρn
J an approximation of the value ρ(tn,xJ), for J ∈ Zd . Assuming

that an approximating sequence (ρn
J )J∈Zd is known at time tn, then we compute the

approximation at time tn+1 by the following scheme,

ρ
n+1
J = ρ

n
J −

d

∑
i=1

∆ t
∆xi

(
(ai

n
J)

+
ρ

n
J − (ai

n
J+ei

)−ρ
n
J+ei
− (ai

n
J−ei

)+ρ
n
J−ei

+(ai
n
J)
−

ρ
n
J
)
.

(25)
The notation (a)+ = max{0,a} stands for the positive part of the real number a and
respectively (a)− = max{0,−a} for the negative part. The discrete macroscopic
velocity is computed thanks to the following discretization of equation (9),

ai
n
J = ∑

K∈Zd

ρ
n
K Vi

n
J,K , where Vi

n
J,K :=

∫ tn+1

tn
V̂i(s,xJ− xK)ds, (26)

where V̂i is the ith components of the velocity field V̂ defined in (10).

Example 1. In one dimension, the scheme (25) reads

ρ
n+1
i = ρ

n
i −

∆ t
∆x

(
(an

i )
+

ρ
n
i − (an

i+1)
−

ρ
n
i+1− (an

i−1)
+

ρ
n
i−1 +(an

i )
−

ρ
n
i

)
.

This scheme has the following interpretation. Defining ρn
∆x = ∑i∈Z ρn

i δxi , we con-
struct the approximation at time tn+1 with the two following steps:

• The delta mass ρn
i located at position xi, moves with velocity an

i to the position
xi +an

i ∆ t. Assuming a CFL condition v∞∆ t ≤ ∆x, the point xi +an
i ∆ t belongs to

the interval [xi,xi+1] if an
i ≥ 0, and to the interval [xi−1,xi] if an

i ≤ 0.
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• Then we make a linear interpolation of the mass ρn
i between xi and xi+1 if an

i ≥ 0
and between xi−1 and xi if an

i ≤ 0.

Finally, we emphasize that this scheme is not the standard finite volume upwind
scheme for which the numerical velocity is computed at the interface an

i+1/2. This
is due to the particular structure of the equation for which the product âρ ρ should
be defined properly. If in the discretization we choose the velocity in a different
grid point that the density, it creates a shift in the definition of the product and the
numerical solution does not converge to the solution of Theorem 4. This point has
been already noted in [27, 22] where numerical simulations emphasized the wrong
behaviour of numerical solutions computed with the classical upwind scheme.

4.2 Convergence analysis

In the following theorem, we establish the convergence of scheme (25) towards the
unique solution of Theorem 4. More precisely the statement reads:

Theorem 5. Let ρ ini ∈P2(Rd). Let us assume that V satisfies assumptions (2)–(3)–
(4)–(5). Let T > 0 and ρ = Z#ρ ini be the unique measure solution on [0,T ] to the
interaction equation (1) with initial data ρ ini given by Theorem 4. Let us assume
that the CFL condition holds:

v∞

d

∑
i=1

∆ t
∆xi
≤ 1. (27)

Let us define (ρ0
J )J∈Zd by (24) and define the reconstruction

ρ∆ (t,x) = ∑
J∈Zd

ρ
n
J δxJ (x)1[tn,tn+1)(t), (28)

where the approximation sequence (ρn
J ) is computed thanks to the scheme (25)–(26).

Then we have the weak convergence in the sense of measures ρ∆ ⇀ ρ in Mb([0,T ]×
Rd) as ∆ t and ∆xi go to 0 under the condition (27).

Before going into the proof of this Theorem, we mention that this result extends
to the upwind scheme and to the general system of equation (1) at hand the con-
vergence result stated in [12]. We mention also that an estimate of the order of
convergence in the same spirit as [15, 16] is under progress [17].

We first recall the following well-known properties for the upwind scheme,
whose proof is left to the reader.

Proposition 2. Let us assume that V satisfies assumptions (2)–(3)–(4)–(5) and con-
sider ρ ini ∈P2(R2). Let us assume that the CFL condition (27) holds. We define
(ρ0

J )J∈Zd by (24) and the reconstruction ρ∆ by (28), where the approximation se-
quence (ρn

J ) and (ai
n
J) are computed thanks to the scheme (25)–(26). Then, we have

(i) Positivity: for all J ∈ Zd , n ∈ N, i = 1, . . . ,d, ρn
J ≥ 0, |ai

n
J | ≤ v∞.
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(ii) Mass conservation: for all n ∈ N∗, we have ∑
J∈Zd

ρ
n
J = ∑

J∈Zd

ρ
0
i j = 1.

(iii) Bound on the second moment: there exists a constant C > 0 such that for all
n ∈ N∗, we have

Mn
2 := ∑

J∈Zd

|xJ |2ρ
n
J ≤ eCn∆ t(M0

2 +C
)
.

Proof of Theorem 5
Step 1: weak convergence. Under the CFL condition (27), we deduce from Propo-

sition (2) that the sequence (ρ∆ )∆ is a sequence of nonnegative bounded measures
which satisfies for all t ∈ [0,T ], |ρ∆ (t)|(R2) = 1. Therefore, we can extract a subse-
quence, still denoted (ρ∆ )∆ , converging for the weak topology towards ρ as ∆ t, and
∆xi go to 0, satisfying (27).

Step 2: identification of the limit. We choose ∆ t > 0 and NT ∈ N∗ such that
T = ∆ tNT and condition (27) holds. Let φ ∈D([0,T )×Rd), we multiply (25) by φ

and integrate on [tn, tn+1)×Rd , using a discrete integration by parts, we get

∑
J∈Zd

(ρn+1
J −ρ

n
J )φ

n
J =

d

∑
i=1

∑
J∈Zd

∆ t
∆xi

[
(ai

n
J)

+
ρ

n
J (φ

n
J+ei
−φ

n
J )+(ai

n
J)
−

ρ
n
J (φ

n
J −φ

n
J−ei

)
]
,

with the notation φ n
J =

∫ tn+1

tn φ(t,xJ)dt. ¿From a Taylor formula, we have

φ
n
J+ei

= φ
n
J +∂xiφ

n
J ∆xi +O(∆ t∆x2

i ), φ
n
J−ei

= φ
n
J −∂xiφ

n
J ∆xi +O(∆ t∆x2

i ).

Summing over n and using a discrete integration by parts, we deduce

NT

∑
n=1

∑
J∈Zd

ρ
n
J (φ

n−1
J −φ

n
J )− ∑

J∈Zd

ρ
0
J φ

0
J =

NT

∑
n=0

d

∑
i=1

∑
J∈Zd

∆ tai
n
J ρ

n
J ∂xiφ

n
J +O(∆ t∆x).

Finally, using also a Taylor formula for the first term of the left hand side, we deduce

NT

∑
n=1

∑
J∈Zd

ρ
n
J

∫ tn+1

tn
∂tφ(t,xJ)dt + ∑

J∈Zd

ρ
0
J

φ 0
J

∆ t
+

NT

∑
n=0

d

∑
i=1

∑
J∈Zd

ai
n
J ρ

n
J ∂xiφ

n
J = O(∆x+∆ t).

(29)
Let us define the reconstruction for i = 1, . . . ,d,

ai∆ (t,x) = ∑
J∈Zd

ai
n
J1[tn,tn+1)×CJ

(t,x).

Using also the definition (28), we may rewrite (29) as

∫ T

0

∫
Rd

ρ∆ (t,x)∂tφ(t,x)dtdx+
d

∑
i=1

∫ T

0

∫
Rd

ai∆ (t,x)ρ∆ (t,x)∂xiφ(t,x)dtdx

+
∫
Rd

ρ
0
∆ (x)φ(0,x)dx = O(∆x+∆ t).
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¿From the weak convergence of the sequence (ρ∆ ) (as a consequence of the first
step), we may pass to the limit in the first term. Using also Lemma 2, we can pass
to the limit in the second term. Then we deduce that the limit ρ is a solution in the
sense of distributions of equation (1).

Step 3: conclusion. We have established that we can extract from the sequence
(ρ∆ )∆ a subsequence that converges weakly in the sense of measures towards a so-
lution in the sense of distributions of the conservative transport equation (1). More-
over, we know from Theorem 4 that there exists a unique pushforward measure that
solves equation (1).

We may invoke the superposition principle (see [1, Chapter 8]) to conclude that
the limit ρ is the pushforward measure of Theorem 4. By uniqueness of such a
solution, we deduce also that the whole sequence (ρ∆ )∆ converges to ρ .

5 Numerical simulations

5.1 One dimensional examples

We consider an interval [−2.5,2.5] discretized with a Cartesian grid of size step
∆x = 1

80 . As an initial data, we choose

ρ
ini(x) = e−10(x−1)2

+ e−10(x+1)2
.

Then we implement the numerical scheme presented in section 4 for the function
V (t,x) = ∂xW (x) where W (x) = 1

2 |x|+
1
4 |x− ξ |+ 1

4 |x+ ξ | for ξ = 0.5. The times
dynamics is plotted in Figure 1. For the matter of comparison, we display in Figure 2
the result obtained for the function W (x) = |x|, which corresponds to the case ξ = 0
in the previous example. We observe that in both case blowup in finite time occurs
and that the solution concentrates in a Dirac delta in finite time. The only visible
difference between the two graphs is the time of concentration which is smaller in
the second case than in the first case.

5.2 Two dimensional examples

As an illustration, we propose now a numerical example in two dimensions. The
spacial domain [0,1]× [0,1] is discretized with Nx = 70 nodes in the x-direction and
Ny = 70 nodes in the y-direction and a time step ∆ t = 10−3. We choose as an initial
data:

ρ(t,x) = 1[0.2,0.8]×[0.2,0.8]\[0.3,0.7]×[0.3,0.7].
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Fig. 1 Numerical simulation of equation (1) with V (x) = ∂xW (x) for W (x) = 1
2 |x|+

1
4 |x−0.5|+

1
4 |x+0.5| and initial data compound of the sum of two bump functions.
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Fig. 2 Numerical simulation of equation (1) with V (x) = ∂xW (x) for W (x) = |x| and initial data
compound of the sum of two bump functions.

We consider V (x) = ∇xW (x) with the following interaction potentials: W1(x) =
e−5|x| and W2(x) = −5|x|. For |x| close to 0, we have that ∇xW1 ∼ ∇xW2. Then the
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Fig. 3 Time dynamics of the numerical solution of the aggregation equation (1) with V = ∇xW ,
where W (x) = e−5|x| is a Morse potential. ¿From top left to bottom right, the times considered are
t = 0 (initial data), t = 0.4, t = 0.8, t = 1.2, t = 1.6 and t = 2.

short range interaction is similar between both potential, but the long range interac-
tion is different. The numerical results are displayed in Figure 3 for the potential W1
and in Figure 4 for the potential W2.

We observe as expected the aggregation in finite time of ρ towards a Dirac delta
in the center of the domain. It is also interesting to observe that the time dynamics
during this step of concentration is different between both potentials. In both case
the density ρ keeps a shape similar to the inital square shape which tighten as time
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Fig. 4 Time dynamics of the numerical solution of the aggregation equation (1) with V = ∇xW ,
where W (x) =−5|x| is a Newtonian potential. ¿From top left to bottom right, the times considered
are t = 0 (initial data), t = 0.5, t = 1, t = 1.5, t = 2 and t = 2.5.

increases. However in the case of the Morse potential (Fig 3), we notice a strong
concentration at the corners of the square, whereas in the case of the Newtonian
potential (Fig 4) the density concentration is homogeneous along the edges of the
square with a slight concentration in the middle of the edges.
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