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Abstract. This work is motivated by the numerical simulation of the generation and
break-up of droplets after the impact of a rigid body on a tank filled with a compressible
fluid. This paper splits into two very different parts. The first part deals with the
modeling and the numerical resolution of a spray of liquid droplets in a compressible
medium like air. Phenomena taken into account are the breakup effects due to the velocity
and pressure waves in the compressible ambient fluid. The second part is concerned with
the transport of a rigid body in a compressible liquid, involving reciprocal effects between
the two components. A new one-dimensional algorithm working on a fixed Eulerian mesh
is proposed.

The GENJET (GENeration and breakup of liquid JETs) project has been
proposed by the Centre d’Études de Gramat (CEG) of the Délégation Générale de
l’Armement (DGA). It concerns the general study of the consequences of a violent
impact of a rigid body against a reservoir of fluid. Experiments show that once the
solid has pierced the shell of the reservoir, it provokes a dramatic increase of the
pressure inside the reservoir, whose effect is the ejection of some fluid through the
pierced hole. The generated liquid jet then expands into the ambient air, where
it can interact with some air pressure waves, leading to a fragmentation of the jet
into small droplets. These experiments show that after having pierced the shell,
the projectile behaves as a rigid body. They also show that the liquid inside the
reservoir behaves as a compressible fluid (indeed, the projectile velocity, around
1000 m.s−1, is in the same order of magnitude than the sound speed in the liquid).

The modeling of such a complex flow requires to take into account very different
regimes, from the pure compressible and/or incompressible flow condition to a
droplet regime (such a regime sharing some similarities with kinetic modeling of
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particles). Moreover many scales are needed to correctly describe the complete
experiments, from the large hydrodynamic scale to the small droplet scale. The
study done during CEMRACS 2004 focused on the fluid regime and on the droplet
regime, since some important difficulties are still there for both regimes separately.

• Concerning the breakup of droplets in the air, we have focused on physical
and numerical modeling issues.

• Concerning the fluid regime, an important difficulty at the numerical level is
that we want to get an accurate numerical description of the transport of a
rigid body inside a compressible fluid. Even if the rigid body is of course not
a fluid, the situation shares at the numerical level a lot of similarities with
the coupling an incompressible fluid with a compressible one. Thus this part
of the study concerns more numerical algorithms than the modeling.

The present paper follows this cutout of the study. Section 1 presents the modeling
of the breakup of droplets, whereas section 2 treats the coupling of the rigid body
and the fluid. In both sections, numerical results are reported.

In view of the main goal of the GENJET project, a natural perspective of
the work described below would be the coupling of the models, algorithms and
numerical methods.

1. A kinetic modeling of a breaking up spray with
high Weber numbers

In this section, we aim to model a spray of droplets which evolve in an ambient
fluid (typically the air). That kind of problem was first studied by Williams for
combustion issues [32]. The works of O’Rourke [20] helped to set the modeling of
such situations and their numerical simulation through an industrial code, KIVA
[1].

The main phenomenon that occuring in the spray is the breakup of the droplets.
Any other phenomena, such as collisions or coalescence, will be neglected in this
work, but they are reviewed in [3] for example. Instead of using the TAB model
(see [2]), which is more accurate for droplets with low Weber numbers, we choose
the so-called Reitz wave model [27], [21], [4]. Then this breakup model is taken
into account in a kinetic model [14], [2].

The question of the spray behavior with respect to the breaking up has arised
in the context of the French military industry. One aims to model with an accurate
precision the evolution of a spray of liquid droplets inside the air. In that situation,
the droplets of the spray are assumed to remain incompressible (the mass density
ρd is a constant of the problem) and spherical. We also assume that the forces on
the spray are negligible with respect to the drag force, at least at the beginning of
the computations. After a few seconds, the gravitation may become preponderant.
Note that the aspects of energy transfer will not be tackled in this report.
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t ≥ 0 time
x ∈ Rdx position
v ∈ Rdv droplet velocity
r ∈]0, +∞[ droplet radius
σ surface tension of the droplet
f(t, x, v) spray probability density function (PDF)
Qbup breakup operator
ρd droplet mass density (constant)

m =
4

3
πr3ρd droplet mass

ρg(t, x) fluid density
u(t, x) ∈ Rdv fluid flow velocity
α(t, x) fluid volume fraction
Cd drag coefficient
Re Reynolds number associated to the fluid near a droplet
Red Reynolds number of a droplet
We Weber number associated to the gas near a droplet
Wed Weber number of a droplet
Oh Ohnesorge number
Ta Taylor number

Table 1: Notations

In the subsection 1.1, we derive the equations of the model and check the
properties of conservation of mass and momentum. Then we briefly present the
scheme for the numerical resolution of our problem. Eventually, we show some
numerical results.

The notations used in the first section are presented in table 1.

1.1. Presentation of the model

The spray is described by the probability density function (PDF) f , which depends
on time t, position x, velocity v and radius r. The number of droplets located in
the volume (of the phase space) [x, x + dx]× [v, v + dv]× [r, r + dr] is the quantity
f(t, x, v, r)dxdvdr.

The PDF f satisfies the kinetic equation

∂tf + v · ∇xf + ∇v · (fγ) + ∂r(fχ) = Qbup(f). (1.1)

The acceleration γ of one droplet is given by

γ(t, x, v, r) = − 1

m(r)
D(t, x, v, r)(v − u(t, x)), (1.2)
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where m is the droplet mass, u the fluid velocity and

D =
π

2
r2ρgCd|v − u|.

The coefficient Cd is the drag coefficient, and its value is given in the appendix.
In order to give an explicit form of χ and Qbup, we here need to explain how the

breakups are handled by the Reitz wave model. We here use the classical Reynolds
(Re, Red), Weber (We, Wed), Ohnesorge (Oh) and Taylor (Ta) numbers, whose
values are described below (see [26], for instance). One can use two different
Reynolds numbers: the Reynolds number associated to the fluid near a droplet,
and the Reynolds number of the droplet itself. We have

Re =
rρg |v − u|

µg
, Red =

rρd|v − u|
µd

,

where µg (resp.µd) is the fluid (resp. droplet) viscosity. In the same way, we
consider two different Weber numbers

We =
rρg |v − u|2

σd
, Wed =

rρd|v − u|2
σd

,

where σd is the surface tension of the droplet. Then it is easy to define the
Ohnesorge and Taylor numbers of the droplet

Oh =

√
Wed

Red
, Ta = Oh

√
We.

We refer to [5] for instance, for the definition of the drag coefficient Cd.
A breaking up droplet looses some mass by creating small children droplets,

but does not disappear, as it occurs in most breakup models. Hence, there is no
disappearance of droplets, only production, since only the mother droplet’s radius
changes: we must be able to compute the new radius of the mother droplet (thanks
to χ) and to evaluate the characteristics of the children droplets (number, position,
velocity, radii). The phenomenon taken into account is the main disturbance on the
surface of the droplet, which is most likely to result in breakup. The wavelength
of this disturbance is

Λ =
9.02

(
1 + 0.45

√
Oh
) (

1 + 0.4Ta0.4
)

(
1 + 0.865We5/3

)0.6 r. (1.3)

We also need the growth rate of the wavelength

Ω =
0.34 + 0.385We3/2

(1 + Oh)
(
1 + 1.4Ta0.6

)
√

σ

ρdr
, (1.4)

where σ is the surface tension of the droplet.
We can then provide a characteristic breakup time

τ =
Cτr

ΩΛ
, (1.5)
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where Cτ mainly depends on the characteristic lengths of the spray. We here
propose to choose Cτ = 37.88. Note that (1.3)–(1.5) come from [4], as well as this
value of Cτ . This choice seems to be significant, since the physical setting of [4] is
close to ours.

Eventually, the variation χ of the droplet radius satisfies

χ(t, x, v, r) = −ν(t, x, v, r)(r − R(t, x, v, r)), (1.6)

where R = CRΛ (we here choose CR = 0.61). The breakup frequency ν is given
by

ν = 0 if r ≤ Λ or We ≤ 1

2

√
Re,

ν =
1

τ
in any other cases.

(1.7)

Note that (1.6) cannot be seen as a linear ODE on r: even if R linearly depends
on Λ, the wavelength itself does not linearly depend on r, since in (1.3), the
Ohnesorge, Taylor and Weber numbers also depend on r.

The breakup operator only deals with the small children droplets. We then
propose the following definition of Qbup, where we only keep the dependencies on
the velocity and the radius, for the sake of simplicity,

Qbup(f)(v, r) =

∫

v∗,r∗

∫

S1(v∗)

ν(v∗, r∗)
3r∗

2(r∗ − R∗)

R∗
3

δV∗
(v) δR∗

(r) f(v∗, r∗)
ds

2π
dr∗dv∗,

(1.8)

where V∗ = v∗ + v⊥n, with v⊥ = CV ΛΩ (Cv = 0.5, in our problem) and n is a
random vector of the unit disc S1(v∗) of the linear plane normal to the vector v∗.

1.2. Conservations

In this subsection, we check that the classical properties of conservations of mass
and momentum are satisfied.

Proposition 1.1. The total mass of the spray is constant (in time).

Proof. Let us denote by M(t) the total mass of the spray at time t. We immediately
have

dM

dt
=

4πρd

3

∫

x,v,r

∂tf · r3 drdvdx

=
4πρd

3

[
−
∫

x,v,r

∂r(fχ)r3 drdvdx +

∫

x,v,r

Qbup(f)r3 drdvdx

]
,
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with the disappearance of the conservative terms on x and v. Then, by a standard
computation, and using (1.6) and (1.8), we get

dM

dt
= 4πρd

[
−
∫

x,v,r

f(v, r)ν(v, r)(r − R) r2 drdvdx

+

∫

x,v,r

(∫

v∗,r∗

∫

S1(v∗)

ν(v∗, r∗)
r∗

2(r∗ − R∗)

R∗
3 r3δV∗

(v) δR∗
(r)

f(v∗, r∗)
ds

2π
dr∗dv∗

)
drdvdx

]
.

The integration along S1(v∗) gives 1, and the one on v against the Dirac mass
too. It is then clear that

dM

dt
= 4πρd

[
−
∫

x,v,r

f(v, r)ν(v, r)(r − R) r2 drdvdx

+

∫

x,v∗,r∗

ν(v∗, r∗)
r∗

2(r∗ − R∗)

R∗
3 R∗

3f(v∗, r∗) dr∗dv∗dx

]
,

that ends the proof.

Since the fluid acts on the spray, the total momentum of the spray is not
constant, but we have the following

Proposition 1.2. The time derivative of the total momentum of the spray equals
the mean force of the fluid on the spray.

Proof. Let us denote by I(t) the total momentum of the spray at time t. We
immediately have

dI

dt
=

4

3
πρd

∫

x,v,r

fγr3drdvdx

+4πρd

[
−
∫

x,v,r

f(v, r)ν(v, r)(r − R) r2v drdvdx

+

∫

x,v,r

(∫

v∗,r∗

∫

S1(v∗)

ν(v∗, r∗)
r∗

2(r∗ − R∗)

R∗
3 r3v δV∗

(v) δR∗
(r)

f(v∗, r∗)
ds

2π
dr∗dv∗

)
drdvdx

]
.

The first integral term is exactly the mean force of the fluid on the spray. Let us
denote by J the term inside the brackets and show that it equals 0. By similar
computations, we obtain that

J = −4πρd

∫

x,v,r

f(v, r)ν(v, r)(r − R) r2v drdvdx

+4πρd

∫

x,v∗,r∗

∫

S1(v∗)

ν(v∗, r∗)f(v∗, r∗)r∗
2(v∗ + v⊥n)

ds

2π
dr∗dv∗dx.
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Since ∫

S1(v∗)

n
ds

2π
= 0,

it becomes clear that J = 0 and the proof is ended.

The well-posedness of (1.1) is not investigated in this paper. However, such a
question is studied for other breakup operators, as in [14].

1.3. Numerical tests

We do not here take into account the motion of the droplets. Nevertheless, we
aim to ensure the compatibility of the particle method used here, with any finite
volume method fitted to the surrounding fluid.

1.3.1. Numerical scheme We first start by a description of the numerical scheme
used for solving (1.1). We assume that the particles have three-dimensional veloc-
ities.

The numerical scheme is time-split into two steps: the transport (in velocity)
and the breakup. That means that we successively solve

∂tf + ∂r(fχ) = Qbup(f), (1.9)

and

∂tf + ∇v · (fγ) = 0, (1.10)

during a whole time step. Since we use a particle method, the PDF f is sought to
be under the form

f(t, v, r) = ω

P (t)∑

p=1

δvp(t)(v) δrp(t)(r),

where (vp(t), rp(t)) respectively denote the velocity and the radius of a numerical
particle p at a time t, P (t) is the total number of numerical particles and ω is the
representativity of the particles (constant in this work).

Transport. During the first part of a time step, we follow the movement of the
particles along their characteristics (in terms of velocity, not radius), i.e. we solve

dvp

dt
= − 1

mp
Dp(vp − u).

Then, the time discretization gives:

vn+1
p = vn

p − ∆t

mp
Dn

p (vn+1
p − un),
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where un is the velocity of the fluid at time n∆t. We here use an implicit scheme
for the discretization of

dvp

dt , in order to ensure the numerical stability.

Breakup. The second part of the splitting is the breakup step. This is a linear
process, that is, for each particle p, it happens as follows.

1. If rn
p ≤ CRΛn

p then the particle p remains as it is.

2. If rn
p > CRΛn

p and Wen
p ≤

√
Ren

i

2 then the particle p remains as it is.

3. In the other cases, a breakup occurs with the probability ∆t/νn
p . If a breakup

occurs,

(a) the radius of the particle evolves: rn+1
p =

τn
p rn

p +∆tCRΛn
p

τn
p

(b) the total number of the new particles created by the breakup of a par-
ticle p is computed in order to ensure the mass conservation Np =
3rn

p
2(rn

p −Rn
p )

Rn
p

3 , and with the radius Rn
p = CRΛn

p ,

(c) Np particles p̃ are created with position xn+1
p̃ = xn

p , radius rn+1
p̃ = Rn

p

and velocity vn+1
p̃ = vn

p + CV Λn
pΩn

p~n (~n unit vector normal to vn
p ).

1.3.2. Numerical simulations The simulations that we made do not take into
account the simulation of the surrounding fluid. First, we only compute the
breakup of some droplets which remain motionless. Second, we compute the
breakup and the transport of the droplets.

Breakup. We here aim to study the influence of the velocity of the surrounding
fluid on the breakup phenomenon (number of breakups, number and size of the
created droplets). We have several possibilities for the value of the velocity of the
fluid: either it is a constant (equal to 0) during the whole computation, or there
could be a shock (in our example, |u| increases from 0 to 400m.s−1 at a given
time), or it could follow a linear profile in time. These three cases are described
below.

1. In the first simulation, the fluid is motionless (u ≡ 0). Initially, the radii of
the 100 droplets considered are uniformly distributed between 0.5 and 1 mm
and the velocities are equal to 50m.s−1 in one direction. The computation
lasts for 0.1 s, but actually there is no fragmentation after 0.06 s. The 100
particles become 8000 with a radius around 0.17mm (between 0.1725 and
0.1775mm, the higher radii correspond to the “mother” droplets). We could
see in figure 1 the initial and final distributions of the radii.
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0 2000 4000 6000 8000
number of droplets

0e+00

2e-04

4e-04

6e-04

8e-04

1e-03

t = 0.0 s
t = 0.1  s

0 2000 4000 6000 8000
number of droplets

1,73e-04

1,74e-04

1,75e-04

1,76e-04

1,77e-04

1,78e-04

t = 0.1  s

Figure 1: Radii (m) of the particles with a fixed surrounding fluid.

2. The second simulation consists in including a shock in the fluid: the velocity
of the fluid decreased from 0 to −400m.s−1 at time 0.04 s. For the sake of
the computation, the initial distribution of the radii of the 100 droplets is
chosen to be smaller because of the high number of created droplets at this
relative velocity (around 350m.s−1). So we start with radii around 5 and
10µm. At the end, the radii of the droplets is between 2.54 and 2.62µm.

0 500 1000 1500 2000 2500 3000
number of droplets

2e-06

4e-06

6e-06

8e-06

1e-05

t = 0.0 s
t = 0.1 s

0 500 1000 1500 2000 2500 3000
number of droplets

2,54e-06

2,56e-06

2,58e-06

2,6e-06

2,62e-06

t = 0.1 s

Figure 2: Radii (m) of the particles with a shock in the fluid.

3. In the last simulation, the velocity of the surrounding fluid linearly decreases
from 0 to −400m.s−1 and from t = 0.04 to 0.05 s. We here keep the same
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initial radius distribution than in the previous simulation. There are less
particles created. In figure 3, we note that several values of radii are pointed
out (2.4µm, 2.6µm and 2.8µm approximately). As a matter of fact, the
continuous linear profile of the fluid velocity is discretized into piecewise
constant values with respect to the time steps. To avoid this numerical
artefact, one must refine the time steps.

0 100 200 300 400 500 600 700
number of droplets

2e-06

4e-06

6e-06

8e-06

1e-05

t = 0.0 s
t = 0.1 s

0 100 200 300 400 500 600 700
number of droplets

2,2e-06

2,4e-06

2,6e-06

2,8e-06

3,0e-06 t = 0.1 s

Figure 3: Radii (m) of the particles with a linearly profiled velocity for the fluid.

To conclude this part, we could say that there is a mean radius for the created
droplets which depends on the relative velocity between the droplets and the fluid
(for example, around 10−4 m without shock, and 10−6 m when a shock occurs in
the fluid). The radii seems to correspond to the physical behavior of a spray when
a shock occurs in the air, i.e. the ’atomization’ of the spray, detected during some
experimentations made at the CEG.

Breakup and transport. We made some computations of the phenomena:
breakup and transport of the droplets. For the time step (verifying a CFL condi-
tion) in the transport step, we assume that the size of a cell is around 0.005 mm
(200 cells for 1 meter). In order to take the interaction between these phenomena
into account (because the breakup time is larger than the transport time), the
initial radii are randomly picked between 10 and 20 mm. Of course there is some
breakup in the beginning, but as the velocity of the droplets goes to 0 (the velocity
of the surrounding fluid), there are less and less breakups. On figure 4, we could
see the final distribution of the droplets, and on figure 5, the successive positions
of the droplets at several times.
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0 1000 2000 3000 4000 5000 60000

0,005

0,01

0,015

0,02

t = 0.1 s

Figure 4: Final radii of the droplets during the transport-breakup computation.
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-0,0004
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0
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0 0,2 0,4 0,6 0,8 1
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0
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0,0004
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Figure 5: Positions of the droplets during the transport-breakup computation.
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2. Fluid-structure coupling

The general context of this section is the transport of a rigid body in a compressible
fluid, including the coupling effects.

The compressible fluid under consideration is governed by the Euler system of
partial differential equations, with ideal or stiffened gas pressure law. The goal is
to take into account the coupling effects between the solid and the fluid.

Let us briefly present some of the most used methods for the numerical reso-
lution of fluid-structure coupling.

• One of the most known methods, the Immersed Boundary Method, was
initiated by Peskin in [22] for blood flow in heart computations and then
have had a lot of improvements for other applications: see [23] for a survey,
[19] for another recent development. These applications concern coupling
between an elastic or rigid solid and an incompressible fluid where, for the
numerical stability, the velocity is assumed to be regular enough (otherwise
a CFL-like condition would be very restrictive: see the discussion on the
hyperbolicity and on the numerical stability in the following). This method
thus cannot be envisaged for the present problem.

• Among other existing methods, let us mention the Fat Boundary Method
of Maury, Maury and Ismail: [18] (for the Poisson problem) and [15] (for
incompressible fluid problems), also dedicated to incompressible fluids. A
fictitious domain method is used in [11]. Another method, proposed in [28],
uses a fixed mesh like the fictitious domain, and considers a global mixed
formulation (for the fluid and the solid) where the condition of rigidity of
the solid is imposed on the finite element spaces. The major drawback of
these last three methods for handling compressible fluids is their lack of
conservativity.

• The method of Piperno, Farhat, etc. (see for example [9], [24], [25]) is conser-
vative in mass and momentum. The coupling algorithm there described uses
an Arbitrary Lagrangian Eulerian (ALE) formalism with a moving mesh
(typically a mesh following the solid). A precise analysis of this type of
methods has been done by Piperno. Nevertheless, the aim of the present
CEMRACS project is to do computations on a motionless Cartesian mesh
which is the same for the solid and the fluid. We thus abandon these meth-
ods (note that another ALE method is used in [17] for particle transport in
an incompressible medium).

• A penalisation procedure coupled with a Volume Of Fluid (VOF) algorithm
for the transport of the volume fraction has been developed in [31]. It has
the little drawback of allowing artificial deformation of the solid in spite of
the penalisation and of the non dissipative VOF method. Furthermore, it
seems that the method has not been used for compressible fluids yet. From
another point of view, it has been shown in previous numerical experiments
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that replacing the undeformable solid with a fluid or a very rigid body and to
use a bi-fluid or a fluid-elastodynamic code (which is similar to a penalisation
procedure) was not a good solution when computing strong shocks (this leads
to an over-evaluation of the deceleration of the body in the fluid). Thus we
decide to really consider the solid as undeformable, both in the mathematical
equations and in the final code.

The method we developed is based on an explicit finite volume scheme on a
Eulerian unique mesh. The presence of mixed cells (containing solid and fluid:
this is due to the projection of the moving solid on the fixed mesh) leads to use a
mixture model that takes into account the undeformable behavior of the solid.

This part of the paper is organized as follows: subsection 2.1 gives the mathe-
matical model governing the fluid-solid system, taking into account the compress-
ible behavior of the fluid (ideal or stiffened gas), the undeformability of the solid,
and the coupling effects; subsection 2.2 presents a mathematical way to take into
account the presence of mixed cells that necessarily appear in the numerical stage
(on a fixed grid); we then propose a rapid mathematical analysis of this model, in
subsection 2.3; the numerical scheme is developed in subsection 2.4; subsection 2.5
shows some numerical results in dimension one.

2.1. The system fluid-rigid body

Let us denote by Ω ⊂ R3 the domain of interest. The solid body is assumed to be
a connex region S(t) ⊂ R3 (for any time t ∈ [0, T ]) such that S(t)∩∂Ω = ∅. Thus,
the fluid occupies the region Ω \ S(t). The medium in Ω \ S(t) is supposed to be
governed by the compressible Euler equations (conservations of mass, momentum
and total energy), the region S(t) evolves following a rigid solid displacement law:
it can be decomposed into a translation and a rotation. These two parameters are
computed with the help of the action of the fluid on the solid. The action of the
solid onto the the fluid is taken into account by considering some “wall-condition”
on ∂Ω: friction between the fluid and the solid are neglected (so as the friction
inside the fluid). For the Eulerian fluid, we use the variables ρ1, u1 and e1 for
respectively, the density, the velocity and the total energy. The density of the
solid is constant in time and space. For the solid, we use the variables h, ω for
respectively the center of mass and the angular velocity. If we denote by Q(t) the
matrix of rotation of the rigid body, i.e.

Q̇(t)x = ω(t) ∧ (Q(t)x) , ∀x ∈ R3,

then, we can describe the domain S(t) of the solid at time t by using the domain
S occupied by the solid at the initial time:

S(t) = {Q(t)y + h(t), y ∈ S} .

In the sequel, we denote by n(x, t) the unit normal vector to ∂S(t) at the point x
directed to the interior of the rigid body. We also introduce the mass M of the
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solid and J its inertial matrix. The equations of the solid are obtained by applying
the conservation of linear and angular momentum (Newton’s laws).

With the above notations, the equations modeling the movement of the fluid
and of the rigid body can be written in the following form:





∂tρ1 + div(ρ1u1) = 0, in Ω \ S(t),
∂t(ρ1u1) + div(ρ1u

2
1 + p1) = 0, in Ω \ S(t),

∂t(ρ1e1) + div(ρ1u1e1 + p1u1) = 0, in Ω \ S(t),
u1 · n = h′ · n, on ∂S(t),

Mh′′(t) =

∫

∂S(t)

p1ndσx,

(Jω)′(t) =

∫

∂S(t)

(x − h(t)) ∧ p1ndσx

(2.11)

where dσx is the induced measure on ∂S(t). The first 3 equations are the classical
Euler system for a compressible fluid. The fourth one ensures the continuity of the
normal velocity on the solid boundary; and the last two ones describe the Newton
laws for the solid. In this system, p1 is the pressure inside the fluid and is given
by the model of the fluid. Here, we consider the case of a stiffened gas, whose

law is given by p1 = (γ1 − 1)ρ1

(
e1 − u2

1

2

)
− γ1π1, with γ1 > 1, π1 ≥ 0 (the case

π1 = 0 corresponding to an ideal gas). Let us now introduce classical notations:
ε1 = e1 − u2

1/2, the internal energy, and τ1 = 1/ρ1, the specific volume.
We now simplify this system, assuming slab symmetry (as will be done in the

numerical subsections). We suppose that the domain of the whole system is [0, 1]
and we denote by B(t) = [a(t), b(t)] the domain of the rigid body. We always
assume that 0 < a(t) < b(t) < 1 (with b(t) − a(t) = b(0) − a(0)). Therefore, the
domain of the fluid is

Ω(t) = [0, 1] \ [a(t), b(t)].

The density of the solid is constant and thus the position of the center of mass of

the rigid body is h(t) =
a(t) + b(t)

2
. We also denote by M the mass of the solid.

In Eulerian coordinates, the equations modeling the movement of the system
can be written as follows:

∂t(ρ1) + ∂x(ρ1u1) = 0 x ∈ Ω(t), t ∈ [0, T ], (2.12)

∂t(ρ1u1) + ∂x(ρ1u
2
1 + p1) = 0 x ∈ Ω(t), t ∈ [0, T ], (2.13)

∂t(ρ1e1) + ∂x(ρ1u1e1 + p1u1) = 0 x ∈ Ω(t), t ∈ [0, T ], (2.14)

u1(t) = h′(t) x ∈ {a(t), b(t)}, t ∈ [0, T ], (2.15)

Mh′′(t) = p1(b(t)) − p1(a(t)) t ∈ [0, T ], (2.16)

ρ1(x, 0) = ρ0
1(x), x ∈ Ω(0), (2.17)

u1(x, 0) = u0
1(x), x ∈ Ω(0), (2.18)

e1(x, 0) = e0
1(x), x ∈ Ω(0), (2.19)

h(0) = h0 ∈ R, h′(0) = h1 ∈ R. (2.20)
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2.2. An approximate system involving mixing

The numerical strategy that will be chosen in subsection 2.4 involves a fixed grid.
For this reason, the solid and the fluid may occupy only parts of cells: the mass
fractions of solid and fluid become real numbers in [0, 1] once it is projected on the
grid. This subsection is devoted to the writing of a mathematical model allowing
this artificial mixing. We here introduce the mass fractions c1 of the fluid and c2

of the solid. These quantities are such that c1 + c2 = 1.
For the sake of simplicity, we limit the presentation to the dimension 1 and do

not insist on the treatment of the solid region (where c1 = 1, c2 = 0).
The conservation equations are these of each component mass, global momen-

tum and global energy. Let us denote as ρ the global density. The partial densities
of each component are then c1ρ and c2ρ. The mixing between the two components
being only a numerical artefact, it is possible to determine the specific volume of
the components, τ1 = 1/ρ1 and τ2 = 1/ρ2, and the additivity of volume leads to
the equation c1τ1 + c2τ2 = τ = 1/ρ (cf. [16]). The system then reads





∂t(c1ρ) + ∂x(c1ρu) = 0,
∂tρ + ∂xρu = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρe) + ∂x(ρue + pu) = 0,
c1 + c2 = 1,
c1τ1 + c2τ2 = τ.

(2.21)

where the unknows are c1, c2, ρ, u and e. We propose to compute the pressure
p with p = p1(τ1, ε1), which means that the solid has no influence on the fluid
pressure. Recall that τ2 is a constant and that ε1 is computed with the help of
e = u2/2 + ε1. System (2.21) is thus formally closed.

2.3. Mathematical study

The mathematical study of this system is very difficult and as far as we know,
there is no result available in the literature. For the system fluid-rigid body with
a viscous incompressible fluid modelled by the Navier-Stokes equations, several
papers concerning the existence have been published in the last years (see, for
example, [12], [13], [6], [29] and the references in [30]). In the case of a viscous
compressible fluid, some results of existence can be found in [6] and [10].

This subsection is devoted to the computation of eigenvalues and eigenvectors
of system (2.21) and to the analysis of its hyperbolicity. In order to simplify the
analysis, we propose to use the Lagrangian formulation of (2.21). This formulation
will be used for the derivation of the numerical scheme in subsection 2.4. It relies
on the definition of the convective derivative Dt = ∂t + u∂x. In the regular case,
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standard computations lead to the equivalent system




ρDtc1 = 0,
ρDtτ = ∂xu,
ρDtu = −∂xp,
ρDte = −∂x(pu),

(2.22)

where τ2 is a positive constant. This PDE system is closed via the algebraic rela-
tions c1 + c2 = 1, c1τ1 + c2τ2 = τ = 1/ρ. Assuming the fluid has a strictly concave
entropy S1(τ1, ε1) verifying ρDtS1 = 1/TDtε1 + p/TDtτ1 = 0 where T is the tem-
perature (which is the case for a stiffened gas, see below), we can symmetrize (2.22)
with respect to pressure, writing

Dtp1 =
∂p1

∂τ1
Dtτ1 +

∂p1

∂S1
DtS1 =

∂p1

∂τ1
Dtτ1

where p1 is viewed as a function of τ1 and S1. Now recalling that c1τ1 + c2τ2 = τ
and that τ2 is constant, we get Dtτ = c1Dtτ1, and, finally, ρDtp1 = ω∂xu, where
ω = 1/c1∂p1/∂τ1 < 0 is defined if c1 > 0. In Lagrangian coordinates, putting
∂m = τ∂x, the symmetrized system writes





Dtc1 = 0,
Dtp = ω∂mu,
Dtu = −∂mp,

DtS1 = 0,

where the equation on the total energy has been replaced by the one on the entropy,
and is completed with the algebraic equations c1 + c2 = 1, c1τ1 + c2τ2 = 1/ρ,

p = p1 = (γ1 − 1)ρ1ε1 − γ1π1, ε1 = e − u2
1

2 . This quasi-linear system writes
DtU = A∂mU with

U =




c1

p
u
S1


 , A =




0 0 0 0
0 0 ω 0
0 −1 0 0
0 0 0 0


 .

The eigenvalues of A are 0,
√−ω and −√−ω, with eigenvectors (1, 0, 0, 0)T ,

(0, 0, 0, 1)T , (0,−√−ω, 1, 0)T and (0,
√−ω, 1, 0)T , which form a basis of R4, as-

suming ω 6= 0, which is the case under the assumption c1 ∈]0, 1] and S1 strictly
concave. Hence we have the following

Proposition 2.1. Assuming the existence of a strictly concave entropy, sys-
tem (2.22) is hyperbolic if c1 > 0.

Usually the strict concavity of the entropy holds for τ1 > 0, ε1 > 0, so that the

domain of hyperbolicity of (2.22) is {c1, τ, u, e ∈ R4, c1 > 0, τ > 0, e− u2

2 > 0}.
Note that s =

√−ω appears as the sound speed (in Lagrangian coordinates)
in the medium consisting in the mixing of the compressible fluid and the unde-
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formable solid,

s =
√
−ω =

√
− 1

c1

∂p1

∂τ1
=

√
1

c1

s2
1

τ2
1

=
s1√
c1

τ1

τ

where s1 is the sound speed (in Lagrangian coordinates) in the fluid, given by
s1 =

√
γ1(p1(τ1, ε1) + π1)τ1. Thus the sound speed of the mixing has a singularity

when c1 tends to 0. Let us end this subsection by giving the expression of the
expression of the strictly concave classical entropy for a stiffened gas: S1(τ1, ε1) =
(p1(τ1, ε1) + π1)τ

γ1

1 .

2.4. Numerical algorithm

Here we present the numerical scheme we developed to solve the one dimensional
problem. It is based on the “Lagrange-projection” algorithm analyzed by Després:
[7], [8]; this is an explicit finite volume method. The general procedure consists
in an operator splitting whose first step solves (2.22) (Lagrange stage) and whose
second step solves DtV = 0 (projection, or convection step) where V is the vector
of all the transported unknowns.

In this subsection, we assume a mesh with cells of constant size ∆x is given and,
for every j ∈ Z, n ∈ N, denote by zn

j the approximate value of the quantity z at
j∆x and at time n∆t (in the naive assumption that ∆t remains constant). Without
recalling basic definitions of finite volume schemes, we here briefly discuss how to
compute (zn+1

j )j∈Z from (zn
j )j∈Z, z representing any of the variables in (2.21). In

the following, we skip the time index n (but not n + 1).
The Lagrange step’s role is to solve (2.22). The use of an explicit method and

equation ρDtp1 = ω∂xu of the symmetrized system suggest that a CFL condition
of order

√−ω∆t/∆x ≤ 1 will have to be imposed in order the scheme to be stable.
This is constraintfull because nothing plays against the rarefaction of the fluid
in any cell: a dramatic decrease of the time step is predictable when the solid
occupies almost a whole cell (ω is of order 1/c1). In order to avoid this problem,
we propose a derefinement procedure (that will have to be followed by a refinement
one). The general design of the algorithm is then the following:

• derefinement (zj becomes zj),

• Lagrange step (zj becomes z̃j),

• projection step (z̃j becomes ẑj),

• refinement (ẑj becomes zn+1
j ),

• computation of the new velocity of the solid (with Newton’s laws).
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2.4.1. Derefinement This part of the algorithm takes advantage of the fact that
mixed cells are very localized: in dimension 1, each boundary of the solid intersects
at most one cell. We thus know that any mixed cell is located near a pure fluid
cell. The principle is here to consider the mixed cell with its pure fluid neighbor
as a unique big cell. This allows to recover a volume fraction of fluid c1τ1/τ > 1/2
in the whole computational domain.

larger cell larger cell

derefinement

fluid

solid
fluid

the volume fraction of fluid is very small

volume fraction

1

0

volume fraction

1

0

solid

L

Figure 6: Derefinement

The derefinement algorithm is the following.

• Detect cells where c1τ1/τ < 1/2, let us say cell j.

• For each of these cells, detect the neighbor cell where c1 = 1 (in the other
neighbor, c1 = 0): assume for example it is cell j − 1.

• In the mixed cell j and its neighbor j − 1, replace all conservative quantities
ρ, ρc1, ρu, ρe by their mean values on j and j − 1:





ρj−1 = ρj = (ρj−1 + ρj)/2,
ρj−1c1,j−1 = ρjc1,j = (ρj−1c1,j−1 + ρjc1,j)/2,
ρj−1uj−1 = ρjuj = (ρj−1uj−1 + ρjuj)/2,
ρj−1ej−1 = ρjej = (ρj−1ej−1 + ρjej)/2,

(and new values of τ1, ε1, p1... follow).

• In the other cells, values are unchanged: zk = zk;

The consequence of this trick is that c1τ1/τ > 1/2 in each cell, so that

s =
s1√
c1

τ1

τ

=

√
c1s1

c1
τ1

τ

≤ 2
√

c1s1 ≤ 2s1
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if c1 ∈]0, 1]. Thus the sound speed of the mixing (where c1 > 0) is bounded if the
one of the fluid is.

Remark 2.2. This derefinement produces an artificial spreading (diffusion) of the
solid.

2.4.2. Lagrange step This part of the algorithm, so as the following, is directly
taken from the Lagrange-projection schemes of [7] and [8] (and we here do not
go further in explanations). The Lagrange stage solves (2.21). It relies on the
definition of the cell edge quantities





ρs∗j+1/2 =
√

max(ρjsj
2, ρj+1sj+1

2) min(ρj , ρj+1),

pj+1/2 =
pj + pj+1

2
+

ρs∗j+1/2

2
(uj − uj+1),

uj+1/2 =
pj − pj+1

2ρs∗j+1/2

+
1

2
(uj + uj+1),

with pj = p1(τ1,j , ε1,j) and sj = s1(τ1,j , ε1,j)τj/(
√

c1,jτ1,j) (s is the sound speed
in the global fluid in Lagrangian coordinates).

Remark 2.3. The Lagrangian edge quantities are evaluated on the discrete solu-
tion before the derefinement.

These edge quantities allow to compute all the variables after the Lagrange
step with formulae





c̃1,j − c1,j = 0,

ρj
τ̃j − τj

∆t
− uj+1/2 − uj−1/2

∆x
= 0,

ρj
ũj − uj

∆t
+

pj+1/2 − pj−1/2

∆x
= 0,

ρj
ẽj − ej

∆t
+

pj+1/2uj+1/2 − pj−1/2uj−1/2

∆x
= 0,

(2.23)

with τj = 1/ρj for every cell (for all j).
The contact between fluid and solid are treated as wall conditions with imposed

velocity of the wall (pragmatically, this is a way to obtain edge values pj+1/2,
uj+1/2 at the contact with pure solid that lead to a stable scheme).

2.4.3. Projection step This step of the algorithm can be viewed as a remapping
part. It solves the advection system





∂tc1 + u∂xc1 = 0,
∂tρ + u∂xρ = 0,
∂tu + u∂xu = 0,
∂te + u∂xe = 0.

(2.24)

In the chosen discrete version, the fluxes z̃j+1/2 are computed following the fol-
lowing procedure (as in [16]):
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• First, compute the mass fraction fluxes exactly, which is easy because the
velocity inside the solid is constant in space and in time during the whole time
step: denote it ˜c1,j+1/2 and ˜c2,j+1/2, of course verifying ˜c1,j+1/2 + ˜c2,j+1/2 =
1.

• Second, compute the upwinded fluxes for the fluid specific volume, the fluid
internal energy, the solid specific volume and the velocity:





˜τ1,j+1/2 = τ̃1,j if uj+1/2 ≥ 0,

˜τ1,j+1/2 = τ̃1,j+1 if uj+1/2 < 0,

˜ε1,j+1/2 = ε̃1,j if uj+1/2 ≥ 0,

˜ε1,j+1/2 = ε̃1,j+1 if uj+1/2 < 0,

˜τ2,j+1/2 = τ2,

ũj+1/2 = ũj if uj+1/2 ≥ 0,

ũj+1/2 = ũj+1 if uj+1/2 < 0.

• Third, compute the conservative fluxes with




ρ̃j+1/2 =
1

c̃1,j ˜τ1,j+1/2 + c̃2,j ˜τ2,j+1/2

,

ẽj+1/2 = c̃1,j ˜ε1,j+1/2 +
ũj+1/2

2

2
.





ρ̂j ĉ1,j − ρ̃j c̃1,j

∆t
+ uj−1/2

ρ̃j+1/2 ˜c1,j+1/2 − ρ̃j−1/2 ˜c1,j−1/2

∆x
= 0,

ρ̂j − ρ̃j

∆t
+ uj−1/2

ρ̃j+1/2 − ρ̃j−1/2

∆x
= 0,

ρ̂j ûj − ρ̃j ũj

∆t
+ uj−1/2

ρ̃j+1/2ũj+1/2 − ρ̃j−1/2ũj−1/2

∆x
= 0,

ρ̂j êj − ρ̃j ẽj

∆t
+ uj−1/2

ρ̃j+1/2ẽj+1/2 − ρ̃j−1/2ẽj−1/2

∆x
= 0

2.4.4. Refinement The aim of this part is to recover a constant-by-cell approxi-
mation (on the original little cells of the mesh) and to balance the artificial spread-
ing of the derefinement phase (cf. remark 2.2). It only concerns the cells where
ĉ1,j(1 − ĉ1,j) > 0. Without entering the details (that are tedious), let us just
mention that this last step of the time iterate globally conserves

• volume fraction of fluid and solid,

• mass fraction of fluid and solid,

• total momentum,

• total energy

on the two neighbor cells that are concerned.
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2.4.5. New evaluation of the velocity of the solid The new velocity vn+1 of
the solid is simply computed using Newton’s laws. Let us denote by L the length
of the solid and jl, jr the indices of the mixed cells respectively on the left and on
the right of the solid. The discrete velocity evolution is

vn+1 = v − ∆t

L
τ2(pjr−1/2 − pjl+1/2).

Remark 2.4. The present scheme is by construction conservative in mass and
momentum. Nevertheless, it is not conservative in total energy: this is due to the
fact that the new evaluation of the solid velocity is done via the momentum fluxes

on the mixed cell edges, and the new solid energy, 1/2vn+12
, does not coincide

with the ancient one updated via the energy fluxes on the mixed cell edges. This
phenomenon can be compared with the so-called “wall heating” that occurs in
pure fluid cells, but there, the difference is reported in the internal energy (which
is not taken into account in the solid). The lack of energy conservation is a
general drawback of coupled fluid-solid numerical systems, even in moving meshes
formulation, as reported and studied in [25].
The evolution of total energy in time is reported in graph 13 in subsection 2.5.

2.5. Some numerical results

Let us now present some numerical results for the following simulation: in the
interval [0, 1] limited with wall condition on both sides, a solid of density 20 and
length 0.1 (thus with mass 2) is initially centered on 0.5 and has velocity 100. The
fluid on both sides is an ideal gas with γ1 = 2, π1 = 0 and is initially at rest with
pressure equal to 1 and density equal to 1.

This model problem is very similar to the one studied in [24].
We present three numerical results obtained for t = 0.001, t = 0.0051 (the

solid being at its extremal position on the right) and t = 0.016 (the solid being
at its extremal position on the left), with three different meshes : 100, 300 and
1000 cells. We note a relatively slow convergence for the velocity, particularly at
time t = 0.016. What is remarkable is that although the velocity of the solid
seems far to be converged, the position of the solid is good. The reason is that
the acceleration of the solid at its extremal position is important, so that a small
error in time gives a huge error for the velocity.

Figure 13 shows the evolution of total energy in the whole domain. It seems
to converge to a conserved quantity when refining the mesh, as expected. The
variation of the total energy seems to be an increasing function of the accelaration
of the solid, but a more precise study should be done to allow a precise analysis
of the phenomenon.

We at last present a result obtained in the same general conditions but with
π0 = 100000. Figure 14 (with 200 cells) shows the pressure at time t = 0.0024:
the solid is at his extremal position on the left. Of course, this position is more on
the left than on the preceding figures for time t = 0.0051, this is due to the fact
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that the fluid is now stiffer. The pressure inside the solid is by convention fixed to
1, but this does not affect the computation.
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Figure 7: Density, time t = 0.001.
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Figure 8: Velocity, time t = 0.001.
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Figure 9: Density, time t = 0.0051.
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Figure 10: Velocity, time t = 0.0051.
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Figure 11: Density, time t = 0.016.

-80

-60

-40

-20

 0

 20

 40

 60

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

velocity, 100 mesh points
velocity, 300 mesh points

velocity, 1000 mesh points

Figure 12: Velocity, time t = 0.016.
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Figure 13: Total energy in [0, 1] as a function of time.
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A conclusion of this part could be as follows. We developed an algorithm to
solve the coupled compressible Euler system with the motion of a rigid body. One
important feature of the algorithm is that it only need a unique Cartesian mesh.
For the sake of simplicity, we chose an explicit solving of the problem, which is
known to require a CFL-like condition that prescribes an upper bound for the
time steps ∆t. This upper bound is a function of the length of the fluid cell. In
order not to dramatically reduce the time step due to the existence of cells that are
almost empty of fluid, we developed a derefinement, or projection, procedure. The



Liquid jet generation and breakup 27

rest of the algorithm uses a classical Lagrange-Projection solver (for which some
stability results, via entropy inequalities, are available). Some comparison with
results obtained by ALE methods on moving meshes will be done in an immediate
future to evaluate the error due to this projection on larger cells in the area of
the interface between the fluid and the solid. Finally, dimensional splitting to two
and three dimensional computations have to be done to demonstrate the interest
of this method.
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