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ABSTRACT
This paper concerns the mathematical justification of a macroscopic
Baer–Nunziato PDE bifluid system with a physical relaxation term that is
linked to the two viscosities and the twopressure laws of the two compress-
ible phases of the fluid which may be different. This is achieved using an
homogenization approach in a periodic framework from amesoscopic PDE
description of two immiscible compressible viscous fluids with interfaces
and no mass transfer. Our result extends the work in Bresch D, Hillairet M.
[Note on the derivation of multi-component flow systems. Proc Am Math
Soc. 2015;143:3429–3443] by allowing to consider different pressure laws
for each component introducing an order parameter. This paper is comple-
mentary to the recent work [Bresch D, Burtea C, Lagoutière F. Mathemat-
ical justification of a compressible bi-fluid system with different pressure
laws: a semi-discrete approach andnumerical illustrations. Submitted 2021]
which focuses on a semi-discretized approach and numerical illustrations.
These two papers correspond to the extended versions of the document
arXiv:2012.06497.
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1. Preface

AndroMikelićwas aworld-renowned specialist in homogenization andflows in porousmedia. Andro
was one of the first to invite D. Bresch to Lyon to discuss fluid mechanics and homogenization while
sharing a good time for diners when D. Bresch was fresh out of his PhD thesis: these moments of
sharing counted a lot in his way of seeing science and he never hesitated to interview Andro for his
encyclopedic knowledge in homogenization and porous media. Andro Mikelic was full professor at
ICJ Université Claude Bernard (Lyon) where this work has been done when C. Burtea was post-doc
with F. Lagoutière (also at ICJ) and D. Bresch (CNRS, Univ. Savoie Mont Blanc). For the authors, this
is an honor and a real pleasure to write a paper on homogenization for compressible viscous fluids in
the memory of our friend and colleague Andro.

2. Introduction

In this paper, we propose to present the rigorousmathematical justification, in a one space dimension
domain �, of a single velocity two-phase flow model with two different pressure laws. We consider
1-periodic initial data without loss of generality and denote the domain � = T

1 = (0, 1). This work
follows a methodology proposed in a paper by the first author with M. Hillairet (see [1]) on the

CONTACT Didier Bresch didier.Bresch@univ-smb.fr
This paper is dedicated to the memory of our friend and colleague Andro Mikelić.
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justification of a one velocity Baer–Nunziato type models, with a joint pressure to both phases. We
recall that this classical model for multi-phase flows has been derived in [2]. A generalization to
consider two possible different pressure laws asks for new existence results of solutions à la Hoff
(intermediate regularity) on compressible Navier–Stokes with pressure depending on two quanti-
ties: one satisfying an advective equation and the other a transport equation. It is then necessary to
introduce a homogenization parameter and to justify a two-scale asymptotic towards an underlying
kinetic model. We obtain the two-phase limit model from the characterization of the defect measures
satisfying this kinetic equation under initial hypothesis using a good control of the space deriva-
tive of the velocity even if the other unknowns are only bounded. Note that other possible formal
derivation of multiphase flow models (including two-velocity models) exists for instance derivation
by least action principle (see [3]), averaging approach in the spirit of Shii-Hibiki and Drew Passman
(see [4,5]).

More precisely, we perform homogenization in one space dimension starting with two compress-
ible fluids (each with its own pressure law and constant viscosity) governed by the Navier–Stokes
equations separated by an interface. Assuming continuity of the velocity and continuity of the stress
at the interface, we can write the system as a single system with a pressure depending on an order
parameter function advected by the flow that is used to distinguish the different fluid phases and
depending on the density. This provides a pressure law depending on two quantities. Note that our
method presented here has been extended recently in [6,7] to cover physical situations taken into
account surface tension quantities. We also refer the reader to our recent paper [8] where we tackle
the question of obtaining a bi-fluid PDEs-model from an ODEs mesoscopic description.

By considering that the mixture of these fluids is the limit of situations where the fluids are sepa-
rated by interfaces (multi-fluid approach at themesoscopic scale) but at ε = 1/n scalemore andmore
fine, we obtain a system satisfied by the limit n → +∞, for which we have a formula to calculate the
pressure of themixture, as well as an equation for the volume fraction of each component with a com-
pletely justified relaxation term including the difference of phasic pressures. We focus in this note on
the two-component case but the result generalizes to the multi-component case. These results render
mathematically rigorous the formal computations that can be found for example in [9–12] by avoid-
ing formal closure hypothesis for the relaxation term. In some sense, deriving one-velocitymulti-fluid
systems turns them into a homogenization problem for a mono-fluid equation with oscillating-
concentrated initial data. The derivation of systems with highly oscillating-concentrated density has
been first studied in the one dimension in space case byW. E. [13], D. Serre [14] in parallel with A.A.
Amosov andA.A. Zlotinkov [15] for instance. Recently, P. Plotnikov and I. Sokolowski [16] on the one
hand and D. Bresch and M. Hillairet [1,17] on the other hand have investigated the multi-dimension
in space case. More precisely, the first authors consider compressible Navier–Stokes equations with
constant viscosities with rapidly oscillating boundary data. Working on global weak solution in the
spirit of Leray, using Young measures theory, it is possible to derive kinetic equations (see Lions
et al. [18] for an introduction on kinetic equations) which encode the mixing dynamic. However,
as explained in [1,17,19–21], multifluid systems are interpreted as reduced systems satisfied by par-
ticular Youngmeasure (namely convex combinations of a finite number of Dirac masses) solutions of
the homogenized compressible Navier–Stokes equation. Proving propagation of the number of Dirac
masses in Young measure solutions to this homogenized equation is then the key point to derive the
multi-fluid system with new relaxation terms. This requires to work with solutions with intermediate
regularity (see D. Hoff [22] and B. Desjardins [23] for the definition) namely with initial density in
L∞(�) and initial velocity inH1(�). The macroscopic model is derived by sending the number n to
infinity and computing a limit system. Letting n go to infinity, wemathematically justify the following
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system in the periodic setting:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tα± + u ∂xα± = α+α−

α+μ− + α−μ+
(σ± − σ∓),

∂t(α±ρ±) + ∂x (α±ρ±u) = 0,
∂t (ρu) + ∂x

(
ρu2

) − ∂x(μeff∂xu) + ∂xpeff = 0,
α+ + α− = 1, ρ = α+ρ+ + α−ρ−,

(1)

where

μeff = μ+μ−
α+μ− + α−μ+

, peff = α+p+(ρ+)μ− + α−p−(ρ−)μ+
α+μ− + α−μ+

(2)

with s �→ p+(x) and s �→ p−(x) two given monotone pressure laws that may be different for each
component satisfying

p± ∈ C1([0,+∞)) such that p±(0) = 0 and a±sγ±−1 − b± ≤ p′
±(s) ≤ 1

a±
sγ±−1 + b± (3)

for some constant γ± > 1 and a± > 0, b± ≥ 0 and μ± two positive given constant viscosities that
may be different for each component and where the stress σ+ and σ− are given through the formula:

σ± = −μ±∂xu + p±(ρ±). (4)

This paper is divided into three main parts: (1) statement of the main result, (2) well-posedness of
a bifluid system, (3) derivation of the Baer–Nunziato system (1)–(4) with relaxation term. In some
sense, we rigorously derive a relaxation system of the usual inviscid Baer–Nunziato with the alge-
braic closure equilibrium by taking into account the viscosity effect, the novelty being to take care of
the dependency with respect to two scalar unknowns. To derive (1), we follow the lines introduced
by Bresch and Hillairet [17]: global well-posedness of the initial system and then homogenization
process with characterization of the Young measures family.

Remark 2.1: Note that formally, if μ+ and μ− tend to zero in (1) we get the Kapila inviscid
Baer–Nunziato system with the algebraic closure equilibrium⎧⎪⎪⎨⎪⎪⎩

p+(ρ+) = p−(ρ−),
∂tρ + ∂x (ρu) = 0,
∂t (ρu) + ∂x

(
ρu2

) + ∂xp+(ρ+) = 0,
α+ + α− = 1, ρ = α+ρ+ + α−ρ−.

(5)

See for instance the recent work [24].

This paper is organized into three main parts. In Section 2, we present the statement of the main
result. In Section 3, we investigate a model which is a bifluid system to prove global existence and
uniqueness of solution à la Hoff. Then in Section 4, we explain the link of a mixture system at
mesoscale with the system studied on the second part and then we perform a homogenization pro-
cess following the methods developed by D. Bresch and M. Hillairet to rigorously justify the bifluid
system (1) with a relaxation term link to the two viscosities and the two pressure laws.

3. Statement of themain result

Let us consider two immiscible compressible fluids that are separated by an interface and denote the
quantities with + or − depending on whether we are in the part of fluid + or the part of fluid −. We
introduce a parameter c which takes the value 1 in �+ and 0 in �−. We assume the velocity field to
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be continuous at the interface so that the velocity field in the part+ and the part− are restrictions of
a velocity field u which is defined on the whole space. Denoting � = �+ ∪ �−, we assume that the
color function c is transported by the velocity field of the fluid namely

∂tc + u ∂xc = 0 in � with c (1 − c) = 0 a.e.

Then we assume the following equations with the same velocity u for each component:

∂t(ρ+u) + ∂x(ρ+u2) − μ+∂2x u + ∂xp+(ρ+) = 0, ∂tρ+ + ∂x(ρ+u) = 0 in �+

and

∂t(ρ−u) + ∂x(ρ−u2) − μ+∂2x u + ∂xp−(ρ−) = 0, ∂tρ− + ∂x(ρ−u) = 0 in �−
where ρ+ and ρ− are respectively defined in �+ and �−. The densities ρ+ and ρ− are extended by
0 in � keeping the same notations ρ+ and ρ−. Writing the equations satisfied by cρ+ and (1 − c)ρ−
and assuming continuity of the stress σ± = −μ±∂xu + p±(ρ±) at interfaces, we can write the full
system in the unified equations:

∂t(ρu) + ∂x(ρu2) − ∂x((cμ+ + (1 − c)μ−)∂xu) + ∂x(cp+(ρ) + (1 − c)p−(ρ)) = 0,

with

∂tρ + ∂x(ρu) = 0 in �, ρ = cρ+ + (1 − c)ρ−.

In conclusion, we have the following system:⎧⎨⎩
∂tc + u ∂xc = 0 with c(1 − c) = 0,
∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2) − ∂x((cμ+ + (1 − c)μ−)∂xu) + ∂x(cp+(ρ) + (1 − c)p−(ρ−)) = 0,

(6)

with the initial condition

ρ|t:=0 = ρ0, c|t=0 = c0, u|t=0 = u0. (7)

Note that such a system is included in the one studied in Section 3 choosing

μ(c) = cμ+ + (1 − c)μ−, p(ρ, c) = p+(ρ)c + p−(ρ)(1 − c).

More precisely in Section 4, we prove the existence Theorem 4.1 with intermediate regularity. Using
this existence result, a multi-phase fluid can be represented by solutions (ρ, c, u) with (ρ, c) that
oscillate widely in space. Following the formalism introduced by the first author and M. Hillairet,
we compute a macroscopic system for multiphase fluids by introducing a parameter n encoding the
oscillation scale in the initial data. The scheme we have in mind is to set:

cn0(x) = c0(nx), ρn
0 = c0(nx)ρ+,0(x) + (1 − c0(nx))ρ−,0(x), un0(x) = u0(x) (8)

where c0 is a fixed 1-periodic profile and ρ+,0, ρ−,0 are bounded 1-periodic initial data such that

c0 ∈ {0, 1}, 0 < M−1 < ρ0 < M, ‖u0‖H1(T1) < C < +∞ (9)

Denoting ˙(un) = ∂tun + un∂xun, Theorem 4.1 provides a global existence result of a unique solution
(ρn, cn, un) satisfying uniformly with respect to n the following bounds on [0,T]:

• The Energy defined for t ∈ (0,T)∫ 1

0

ρn(un)2

2
+

∫ 1

0

(
cnH+(ρn) + (1 − cn)H−(ρn)

) +
∫ t

0

∫ 1

0
μ(cn)(∂xun)2
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≤
∫ 1

0

ρ0u20
2

+
∫ 1

0

(
cn0H+(ρn

0 ) + (1 − cn0)H−(ρn
0 )

)
where, denoting ρ a reference density, we have

H±(ρn) = ρn
∫ ρn

ρ

p±(s)/s2 ds.

• The bounds on the density ρn and the values on cn

C (T)−1 ≤ ρn (t, x) ≤ C (T) , cn(t, x) ∈ {0, 1}.

• A first estimate in the spirit of Hoff solutions for t ∈ (0,T)

1
2

∫ 1

0
μ(cn)(∂xun)2 +

∫ t

0

∫ 1

0
ρn ˙(un)2 ≤ C(T).

• A second estimate in the spirit of Hoff solutions for t ∈ (0,T)

1
2

∫ 1

0
κ (t) ρ ˙(un)2 + 1

2

∫ t

0

∫ 1

0
κ (t) μ(cn)

(
∂xu̇n

)2 ≤ C (T)

and some bounds on the velocity∥∥un∥∥L∞((0,1)×T1)
+ ∥∥un∥∥H1((0,1)×T1)

≤ C (T)

and ∥∥∥κ
1
2 (∂tun(t), ∂xun(t))

∥∥∥
L2(0,T;L∞(T1))

≤ C (T)

for all t ∈ [0,T] where κ(t) = min{t, 1}. It remains to let n tend to +∞ to show the convergence to
the bifluid system (1)–(4) under assumptions on the initial data sequence. More precisely we prove
the following theorem.

Theorem 3.1: Let us consider p+ and p− two given monotone pressure laws satisfying (3) and assume
the initial data satisfy (8) and (9). Then there exists a unique global solution (ρn, cn, un)n∈N\{0} of the
compressible Navier–Stokes equations (6) with the initial data (8) satisfying uniformly with respect to n
the bounds given above. Let 
n

0 be defined by

〈
n
0, b〉 =

∫
T1

b(x, ρn
0 (x), cn0(x)) dx

for all b ∈ Cc(T1
x × Rξ × Rη) where the indices precise on which variable x, ξ , η the domains apply.

Assume there exists (α+,0,α−,0, ρ+,0, ρ−,0) ∈ L∞(T1) such that

〈
n
0, b〉 → 〈
0, b〉 =

∫
T1

(
α+,0 b(x, ρ+,0(x), 1) + α−,0b(x, ρ−,0(x), 0)

)
dx

for all b ∈ Cc(T1
x × Rξ × Rη). Then there exists (α+,α−, ρ+, ρ−) ∈ L∞((0,T) × T

1) such that, up to
a subsequence, for all b in C(T1

x × Rξ × Rη)

〈
n, b〉 =
∫

T1
b(x, ρn(t, x), cn(t, x)) dx → 〈
, b〉
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=
∫

T1

(
α+ b(x, ρ+(t, x), 1) + α−,0b(x, ρ−(t, x), 0)

)
dx.

In particular, up to a subsequence,

ρn ⇀ α+ρ+ + α−ρ− weakly star in L∞((0,T) × T
1)

p(ρn, cn) ⇀ α+p+(ρ+) + α−p−(ρ−) weakly star in L∞((0,T) × T
1)

along with

un ⇀ u in H1((0,T) × T
1)

and (α+,α−, ρ+, ρ−, u) satisfy (1)–(4) with the initial conditions

α±|t=0 = α0
±, ρ±|t=0 = ρ0

±, u|t=0 = u0.

The existence result concerning the sequence of solutions will be a direct consequence of
Theorem 4.1 in Section 4. The homogenization procedure will be justified in Section 5.

Remark 3.1: Let us remark that

μeff = 1〈
1
μ

〉 = 1
α+
μ+ + α−

μ−

and

peff = 1〈
1
μ

〉 〈
p
μ

〉
= 1

α+
μ+ + α−

μ−

(
α+p+(ρ+)

μ+
+ α−p−(ρ−)

μ−

)

where 〈f 〉 = ∫ 1
0 f (τ )dτ with α+ the volume fraction of the phase + and α− = 1 − α+ the vol-

ume fraction of the phase −. The first formula is similar to the effective coefficient obtained by F.
Murat and L. Tartar in 1971 for oscillating elliptic equation problem in one space dimension namely
∂x(μ

ε∂xuε) = F′(x)withuε(0) = uε(1) = 0. The second expression is similar to the effective termwe
will get if we study the equation −∂x(μ

ε∂xuε − pε) = F′(x) with F regular with uε(0) = uε(1) = 0
and with two oscillating functions με and pε . Namely we calculate

∂xuε = −F
1
με

+ pε

με

and passing to the limit

∂xu = −F(x)
〈
1
μ

〉
+

〈
p
μ

〉
which gives

∂x

(〈
1
μ

〉
∂xu +

〈
1
μ

〉 〈
p
μ

〉)
= F′(x).

4. Global well posedness of a bifluid system

In this section, we study the following one-dimensional system:⎧⎨⎩
∂tc + u ∂xc = 0,
∂tρ + ∂x (ρu) = 0,
∂t (ρu) + ∂x

(
ρu2

) − ∂x(μ(c)∂xu) + ∂xp = 0,
(10)

where ρ is the density, u the velocity field and c is themass fraction which denotes the relative weight-
ing for each fluid component associated to a generalized pressure p = p(ρ, c) ≥ 0. This unknownwill
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be the order parameter tracking the mixing of the fluid components in the sequel of the paper. We
supplement (10) with periodic initial data (c0, ρ0, u0) on (0, 1) for which⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c0 ∈ L∞(T1) such that 0 ≤ inf c0 ≤ c0(x) a.e. on (0, 1) ;
ρ0 ∈ L∞(T1) such that 0 < inf ρ0 ≤ ρ0(x) a.e. on (0, 1) ;

G (ρ0, c0) ∈ L1(T1) with G(ρ0, c0) = ρ0

∫ ρ0

0
p(s, c0)/s2ds;

u0 ∈ H1 (
T
1) .

(11)

Such a system is considered in [25] with density/mass fraction-dependent viscosities. It is also consid-
ered recently in [26,27] with constant viscosity. Note that the mentioned works concern the existence
of global weak solution à la Leray. As recalled in the introduction, we are more interested in solu-
tions with intermediate regularity namely L∞ bounds on the density/mass fraction and H1 bound
on the velocity field. So, we want to establish/generalize the Cauchy theory of Hoff–Desjardins (see
for instance [22,23]) in the case of the classical compressible Navier–Stokes system with constant
viscosity.

Let us start with the hypothesis on the pressure and the viscosity functions that we consider. We
are interested in pressure functions p ∈ C1([0,∞) × [m,M]) and viscosity functionsμ ∈ C1([m,M])
whereM = sup[0,1] c0 < +∞ andm = inf[0,1] c0 ≥ 0 that verify:

• Hypothesis 1:

p (ρ, c) ≥ 0, μ(c) ≥ μmin > 0 (12)

• Hypothesis 2: for any finite ρ ≥ 0 we have

ρ

∫ ρ

0

p(s, c)
s2

ds < ∞. (13)

• Hypothesis 3: there exists a constant C0 such that:

p (ρ, c) ≤ C0(ρ + G (ρ, c)), (14)

where

G (ρ, c) = ρ

∫ ρ

0

p (s, c)
s2

ds.

• Hypothesis 4:

ρ ∂1p (ρ, c) ∈ L∞
loc ([0,∞) × [0, 1]) . (15)

We are in the position of stating the first result of this paper

Theorem4.1: Consider a function p ∈ C1([0,∞) × [m,M]) andμ ∈ C1([0,M]) verifying the hypoth-
esis (12)–(15). Also, consider (c0, ρ0, u0) as in (11). Then, there exists a unique weak solution (c, ρ, u)
with

c, ρ ∈ C([0,∞); Lpx
(
T
1)), u ∈ L∞ (

[0,∞);H1
x(T

1)
)
, ∂xu ∈ L2

(
[0,∞) × T

1) .
Moreover, for any T> 0, there exists a constant C(T) that depends only on the norms of the initial data
and T such that the following uniform bounds hold true:∫ 1

0

ρu2

2
+

∫ 1

0
G (ρ, c) +

∫ t

0

∫ 1

0
μ(c)(∂xu)2 ≤

∫ 1

0

ρ0u20
2

+
∫ 1

0
G (ρ0, c0) , (16)
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inf
x∈[0,1]

c0(x) ≤ c(t, x) ≤ sup
x∈[0,1]

c0(x), (17)

C (T)−1 ≤ ρ (t, x) ≤ C (T) , (18)

1
2

∫ 1

0
μ(c)(∂xu)2 +

∫ t

0

∫ 1

0
ρu̇2 ≤ C(T), (19)

1
2

∫ 1

0
κ (t) ρu̇2 + 1

2

∫ t

0

∫ 1

0
κ (t) μ(c) (∂xu̇)2 ≤ C (T) , (20)

‖u‖L∞((0,1)×T1) + ‖u‖H1((0,1)×T1) ≤ C (T) , (21)∥∥κ1/2(∂tu(t), ∂xu(t))
∥∥
L2(0,T;L∞(T1))

≤ C (T) (22)

for all t ∈ [0,T] where κ(t) = min{t, 1}.
Local-in-time existence and uniqueness of classical solutions to (10), with a blow-up criterion,

follow from a standard Lagrangian transformation. To extend these solutions into Hoff–Desjardins
solutions, the most important part is to prove that they satisfy uniform estimates related to
Hoff–Desjardins’ regularity. This yields existence ofHoff–Desjardins solutions for smooth initial data.
For initial data with bounded initial density/mass fraction and H1 initial velocity field, a compact-
ness argument then shows that a sequence of solutions for regularized initial data converges to the
expected solutions. In this paper, we skip the proof of the classical solutions to the system with reg-
ular initial data. We focus on the uniform estimates related to Hoff–Desjardins regularity and to the
stability result allowing to relax the regularity of the initial data.

4.1. The proof of Theorem thm4.1

This section is devoted to the proof of the existence result. It is divided into eight parts. From the
first part to the sixth part, we focus on the uniform estimates on classical solutions in the sense
of Hoff–Desjardins’ regularity. In the remaining parts, we prove a stability result allowing to relax
the regularity of the initial data and we also provide a uniqueness result of solutions. Through-
out the section, the functions p ∈ C1([0,∞) × [0,M]) and μ ∈ C1([0,M]) are given and verify
Hypothesis (12)–(15).

4.1.1. A-priori estimates
In this section, we suppose that we are given a positive T> 0 and a triplet (c, ρ, u) regular enough
such that the computations make sense.

Proposition 4.1: Consider (c, ρ, u) a classical solution to the system (10) with initial data (c0, ρ0, u0)
verifying the lower bounds of (11). Then there exists a constant C(T) which depends only on
‖u0‖H1(T), ‖ρ0‖L∞(T), ‖1/ρ0‖L∞(T), and T such that the following uniform bounds hold true:∫ 1

0

ρu2

2
+

∫ 1

0
G (ρ, c) +

∫ t

0

∫ 1

0
μ(c)(∂xu)2 ≤

∫ 1

0

ρ0u20
2

+
∫ 1

0
G (ρ0, c0) , (23)

inf
x∈[0,1]

c0(x) ≤ c(t, x) ≤ sup
x∈[0,1]

c0(x), (24)

C (T)−1 ≤ ρ (t, x) ≤ C (T) , (25)

1
2

∫ 1

0
μ(c)(∂xu)2 +

∫ t

0

∫ 1

0
ρu̇2 ≤ C(T), (26)

1
2

∫ 1

0
κ (t) ρu̇2 + 1

2

∫ t

0

∫ 1

0
κ (t) μ(c) (∂xu̇)2 ≤ C (T) , (27)
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‖u‖L∞((0,1)×T1) + ‖u‖H1((0,1)×T1) ≤ C (T) , (28)∥∥κ1/2(∂tu(t), ∂xu(t))
∥∥
L2(0,T;L∞(T1))

≤ C (T) . (29)

for all t ∈ [0,T] where κ(t) = min{t, 1}.

The objective of the next sections is to prove the above proposition. For conciseness, we introduce
in the following computations the symbol C to denote a universal constant. It may vary from line to
line.

4.1.2. Conservation ofmass and energy estimate (23)
First of all, let us observe that integrating over [0, 1] the equation satisfied by ρ leads to∫ 1

0
ρ (t, x) dx =

∫ 1

0
ρ0 (x) dx.

We denote byM0 the total mass of the fluid:

M0
notation=

∫ 1

0
ρ0(x) =

∫ 1

0
ρ (t, x) dx. (30)

Next, let

H : [0,∞) × [m,M] → R

be a C1-function. Multiplying the first equation of (10) with ∂2H(ρ, c), the second equation of (10)
with ∂1H(ρ, c) and adding up the results we get that

∂tH + u∂xH + ρ∂1H∂xu = 0, (31)

which also writes

∂tH + ∂x(uH) + (ρ∂1H − H)∂xu = 0. (32)

Next, multiplying the second equation of (10) with u2/2, the last equation with u, adding up the
resulting identities and using (32) we are lead to

d
dt

∫ 1

0

(
ρ|u|2
2

+ G (ρ, c)
)

+
∫ 1

0
μ(c)|∂xu|2 = 0, (33)

where

G (ρ, c) = ρ

∫ ρ

0

p (s, c)
s2

ds.

Thus after time integration of (33) we get that

E (t) :=
∫ 1

0

ρ|u|2
2

+
∫ 1

0
G (ρ, c) +

∫ t

0

∫ 1

0
μ(c)|∂xu|2 =

∫ 1

0

ρ0|u0|2
2

+
∫ 1

0
G (ρ0, c0) . (34)

In what follows, we denote

E0
def.=

∫ 1

0

ρ0u20
2

+
∫ 1

0
G (ρ0, c0) (35)

The above computations show the validity of estimate (23).
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4.1.3. The L2(0, T; L2(T1))-control on the velocity
Following the arguments introduced by P.-L. Lions in [28]wemay recover an L2(0,T; L2(T1))-control
on the velocity with the help of the energy inequality (34). For the sake of completeness, let us
reproduce here the arguments leading to such an inequality. First, we write that

u(t, x) − u(t, y) =
∫ x

y
∂xu (t, z) dz,

so that integrating in y yields

u(t, x) −
∫ 1

0
u(t, y)dy =

∫ 1

0

∫ x

y
∂xu (t, z) dzdy.

Let us multiply the above relation with ρ(t, x), integrate it with respect to x and recall the mass
conservation relation (30) to conclude that:

∫ 1

0
ρu(t, x)dx −

∫ 1

0
ρ0(x)dx

∫ 1

0
u(t, x)dx =

∫ 1

0

(
ρ (t, x )

∫ 1

0

∫ x

y
∂xu (t, z) dzdy

)
dx.

From the above relation, we get that

∫ 1

0
u(t, x)dx = 1

M0

∫ 1

0
ρu(t, x)dx + 1

M0

∫ 1

0

(
ρ (t, x )

∫ 1

0

∫ x

y
∂xu (t, z) dzdy

)
dx. (36)

With straightforward arguments to bound the right-hand side of this inequality with (23), we
conclude that for all t ∈ [0,T], it holds true that:

∫ t

0

(∫ 1

0
u(t, x)dx

)2

≤ C
(

t
M0

+ 1
μmin

)
E0.

Of course, as one has that

‖u(t, ·)‖H1(T1) ≤ C
(∣∣∣∣∫ 1

0
u(t, x)dx

∣∣∣∣ + ‖∂xu‖L2(T1)

)

one obtains that

‖u‖2L2(0,T;H1) ≤ C
(

T
M0

+ 1
μmin

)
E0

and using the embedding H1(T) ↪→ L∞(R) we get that

‖u‖L1(0,T;L∞(R)) ≤
√
T ‖u‖L2(0,T;L∞(T)) ≤ C

√
TE0

(
T
M0

+ 1
μmin

) 1
2
. (37)
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4.1.4. The Lagrangian variable
Let us consider the flow generated by u:

Xt(x) = x +
∫ t

0
u (τ ,Xτ (x)) dτ ∀ t ≥ 0 ∀ x ∈ R (38)

and observe that

∂Xt

∂x
(x) = 1 +

∫ t

0
∂xu (τ ,Xτ (x))

∂Xτ

∂x
(x)dτ .

Hence, we get

∂Xt

∂x
(x) = exp

(
−

∫ t

0
∂xu (τ ,Xτ (x)) dτ

)
≥ exp

(
−

∫ t

0
‖∂xu (τ , ·)‖L∞ dτ

)
> 0.

Thus, Xt is a local C1-diffeomorphism for any t ∈ [0,T]. Next, with the help of (37), we write that for
any t ∈ [0,T] we have

|Xt(x) − x| ≤ ‖u‖L1(0,T;L∞(R))

≤ C
√
TE0

(
T
M0

+ 1
μmin

) 1
2
. (39)

Consequently, one has

lim
x→±∞Xt(x) = ±∞ ∀ t ∈ [0,T].

Consequently the application Xt realizes a C1-diffeomorphism on R for arbitrary t ∈ [0,T]. We note
that since u is 1-periodic, we also have

Xt(x + k) = Xt(x) + k, ∀ x ∈ R, ∀ k ∈ Z.

In the next section, we make use of the following variant of the Reynolds transport theorem which
we leave as an exercise to the reader.

Remark 4.1: For [0,T] consider Xt the C1-diffeomorphism from R to R defined by (38) and fix a
point a ∈ R. Then, for any function f for which the integrals appearing below are defined, we have
that

d
dt

∫ Xt(x)

a
f
(
t, y

)
dy =

∫ Xt(x)

a
∂tf

(
t, y

)
dy + f (t,Xt(x)) u(t,Xt(x))

=
∫ Xt(x)

a
∂tf

(
t, y

)
dy + f (t,Xt(x)) u(t,Xt(x)) − f (t, a)u(t, a) + f (t, a)u(t, a)

=
∫ Xt(x)

a

{
∂tf + ∂x(fu)

} (
t, y

)
dy + f (t, a)u(t, a).
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4.1.5. L∞-estimate for the density and concentration
First, let us write that the equation of the concentration function c is equivalent to

c (t,Xt(x)) = c0(x),

which implies that

0 ≤ m = inf
x∈[0,1]

c0(x) ≤ c(t, x) ≤ sup
x∈[0,1]

c0(x) = M < +∞, (40)

and we conclude that (24) is also valid. Next, using the result of Remark 4.1, we write that for all
y ∈ [0, 1]:

d
dt

∫ Xt(x)

y
(ρu)(t, z)dz =

∫ Xt(x)

y

{
∂t(ρu) + ∂x(ρu2)

}
(t, z)dz + ρu2(t, y)

=
∫ Xt(x)

y

{
∂x(μ(c)∂xu) − ∂xp

}
(t, z)dz + ρu2(t, y)

= (
μ(c0(x))∂xu(t,Xt(x)) − p(ρ(t,Xt(x)), c0(x))

)
− (

μ(c(t, y))∂xu(t, y) − p(ρ(t, y), c(t, y))
) + ρu2(t, y).

Integrating with respect to y gives us

d
dt

∫ 1

0

∫ Xt(x)

y
(ρu)(t, z)dzdy = (

μ(c0(x))∂xu(t,Xt(x)) − p(ρ(t,Xt(x)), c0(x))
)

−
∫ 1

0

{(
μ(c(t, y))∂xu(t, y) − p(ρ(t, y), c(t, y))

) + ρu2(t, y)
}
dy

= (
μ(c0(x))∂xu(t,Xt(x)) − p(ρ(t,Xt(x)), c0(x))

)
−

∫ 1

0
μ(c)(t, y)∂xu(t, y) dy +

∫ 1

0

{
p(ρ(t, y), c(t, y)) + ρu2(t, y)

}
dy

Using the hypothesis (12) along with the fact that

d
dt

log ρ(t,Xt(x)) = −∂xu(t,Xt(x))

we infer that

1
μ(c0(x))

d
dt

∫ 1

0

∫ Xt(x)

y
(ρu)(t, z)dzdy + d

dt
log ρ(t,Xt(x))

= − 1
μ(c0(x))

p(ρ(t,Xt(x)), c0(x))

+ 1
μ(c0(x))

∫ 1

0

{
p(ρ(t, y), c(t, y)) + ρu2(t, y) − ∂tμ(c)(t, y)

}
dy.

Note that the last term comes from the term
∫ 1
0 μ(c)(t, y)∂xu(t, y) dy, integrating by parts and using

the equation ∂tμ(c) + u ∂xμ(c) = 0. Thus we have that

ρ(t,Xt(x)) exp

(
1

μ(c0(x))

∫ 1

0

∫ Xt(x)

y
(ρu)(t, z)dzdy − 1

μ(c0(x))

∫ 1

0

∫ x

y
(ρ0u0)(t, z)dzdy

)
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= ρ0(x) exp
(

− 1
μ(c0(x))

∫ t

0
p(ρ(τ ,Xτ (x)), c0(x))

)
· · · exp

(
1

μ(c0(x))

∫ t

0

∫ 1

0

{
p(ρ(τ , y), c(τ , y)) + ρu2(τ , y) − ∂tμ(c)(t, y)

}
dydτ

)
. (41)

Using (12) and (14), we get that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
μ(c0(x))

∫ t

0

∫ 1

0

{
p(ρ(τ , y), c(τ , y)) + ρu2(τ , y) − ∂tμ(c)(t, y)

}
dydτ

≤ (E0 + M0)
(C0 + 2)t

μmin
+ 1

μ(c0(x))

∫ 1

0
μ(c0(y)) dy,

exp
(

− 1
μ(c0(x))

∫ t

0
p(ρ(τ ,Xτ (x)), c0(x))

)
≤ 1.

(42)

Moreover, due to the periodicity of ρu, for any t ≥ 0 we have that (with [·] denoting the integer part)∣∣∣∣∣
∫ 1

0

∫ Xt(x)

y
(ρu)(t, z)dzdy

∣∣∣∣∣ (|[Xt]| + 1) ≤
∫ 1

0
|ρu| (t, z)dz ≤ (|Xt(x)| + 2)

√
2M0E0. (43)

Putting together (42) and (43) gives us

ρ(t,Xt(x))

≤ ρ0(x) exp
(

(|Xt(x)| + 2)
√
2M0E0

μmin
+ (E0 + M0)

(C0 + 2)t
μmin

+
∫ 1

0
μ(c0(y))dy/μ(c0(x))

)
,

and consequently, for x ∈ [0, 1] :

ρ(t, x) ≤ ρ0(X−1
t (x)) exp

(
3
√
2M0E0
μmin

+ (E0 + M0)
C0t
μmin

+
∫ 1

0
μ(c0(y))dy/μ(c0(x))

)
. (44)

Thus, for anyT> 0 we have an upper boundCT for the density ρ. It turns out that wemay use it along
with the identity (41) and estimates (42), (43) to derive a lower bound for ρ. Indeed we observe that∫ t

0

∫ 1

0

{
p(ρ(τ , y), c(τ , y)) + ρu2(τ , y)

}
dydτ ≥ 0

and that

ρ(t, x) ≥ ρ0(X−1
t (x)) exp

(
−3

√
2M0E0
μmin

− t
μmin

sup
[0,CT ]×[m,M]

p(s1, s2) −
∫ 1

0
μ(c)(t, y)dy/μ(c0(x))

)
,

(45)
where CT is an upper bound for ρ(t, x) on [0,T]. Thus we obtain that ρ is bounded and bounded
away from vacuum from the estimates (44) and (45) and using the property on μ. From now on, we
will just use that there exists a constant C(T) such that

C(T)−1 ≤ ρ (t, x) ≤ C(T) (46)

This shows the validity of estimate (25).
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4.1.6. Energy estimates ‘à la Hoff’
L2-estimates of ∂xu. In this section, we aim at deriving higher order estimates for the velocity. We
take inspiration in the techniques introduced by Hoff in [22]. In the following, we will denote

u̇ := ut + u∂xu,

which allows us to rewrite the first equation as

ρu̇ − ∂x(μ(c)∂xu) + ∂xp = 0. (47)

Using the equation satisfied by μ(c), we observe that

−
∫ 1

0
u̇ ∂x(μ(c)∂xu) = −

∫ 1

0
(ut + u∂xu) ∂x(μ(c))∂xu)

= 1
2
d
dt

∫ 1

0
μ(c)(∂xu)2 + 1

2

∫ 1

0
μ(c) (∂xu)3 . (48)

Next, we see that∫ 1

0
u̇∂xp =

∫ 1

0
ut∂xp +

∫ 1

0
u∂xu∂xp = −

∫ 1

0
p∂2xtu +

∫ 1

0
u∂xu∂xp

= − d
dt

∫ 1

0
p∂xu +

∫ 1

0
∂xu∂tp +

∫ 1

0
u∂xu∂xp

= − d
dt

∫ 1

0
p∂xu −

∫ 1

0
ρ∂1p(ρ, c)(∂xu)2, (49)

where we have used the identity (31) with p instead of H. Thus if we multiply Equation (47) with u̇
and we integrate in space, then, taking in consideration the identities (48) and (49), we end up with∫ 1

0
ρu̇2 + 1

2
d
dt

∫ 1

0
μ(c)(∂xu)2 − d

dt

∫ 1

0
p∂xu = −1

2

∫ 1

0
μ(c) (∂xu)3 +

∫ 1

0
ρ∂1p(ρ, c)(∂xu)2,

which gives us after time integration

A1(c, ρ, u) (t) def.= 1
2

∫ 1

0
μ(c)(∂xu)2 +

∫ t

0

∫ 1

0
ρu̇2

= 1
2

∫ 1

0
μ(c0)(∂xu0)2 −

∫ 1

0
p (ρ0, c0) ∂xu0

+
∫ 1

0
p∂xu − 1

2

∫ t

0

∫ 1

0
μ(c) (∂xu)3 +

∫ t

0

∫ 1

0
ρ∂1p(ρ, c)(∂xu)2. (50)

In the computations that follow, we will use the notationA1(t) instead ofA1(c, ρ, u)(t). Let us observe
that for all t ≥ 0, we have that∫ 1

0
p∂xu ≤ 1

μmin

∫ 1

0
p2 + 1

4

∫ 1

0
μ(c)(∂xu)2

≤ 1
μmin

(
sup

[0,CT ]×[m,M]
p (τ , c)

)2

+ 1
4

∫ 1

0
μ(c)(∂xu)2 (51)
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≤ 1
μmin

(
sup

[0,CT ]×[m,M]
p (τ , c)

)2

+ 1
4
A1(t). (52)

Moreover, we have that∫ t

0

∫ 1

0
ρ∂1p(ρ, c)(∂xu)2 ≤ 1

μmin
sup

[0,CT ]×[m,M]
τ∂1p (τ , c) E0. (53)

We write the remaining term as

−1
2

∫ t

0

∫ 1

0
μ(c) (∂xu)3 = 1

2

∫ t

0

∫ 1

0
(∂xu)2

(−μ(c)∂xu + p
) − 1

2

∫ t

0

∫ 1

0
p (∂xu)2

≤ 1
2

∫ t

0

∫ 1

0
(∂xu)2

(−μ(c)∂xu + p
)
. (54)

To treat the remaining term of (54), we reproduce the computations at the beginning of Section 4.1.3
remarking that ∂x(μ(c)∂xu − p) = ρu̇. We obtain that, for any x ∈ [0, 1] :

(
μ(c)∂xu − p

)
(t, x) −

∫ 1

0
(μ(c)(t, y)∂xu(t, y) − p(t, y))dy =

∫ 1

0

∫ x

y
ρu̇(t, z)dzdy,

and using Cauchy’s inequality along with hypothesis (14), there holds:∥∥∥∥(μ(c)∂xu − p(ρ, c)) −
∫ 1

0
(μ(c)∂xu − p(ρ, c))

∥∥∥∥
L∞(T)

≤ M
1
2
0

(∫ 1

0
ρu̇2

) 1
2

. (55)

Consequently, there holds∥∥∥∥μ(c)∂xu − p(ρ, c) −
∫ 1

0
(μ(c)∂xu − p(ρ, c))

∥∥∥∥
L∞(T)

≤ M
1
2
0 A

1
2
1 (t) . (56)

On the other hand, we have (with an obvious meaning for the symbol μmax)∫ t

0

∫ 1

0
|∂xu|2

∣∣∣∣∫ 1

0
(μ(c)∂xu − p(ρ, c))

∣∣∣∣
≤

∫ t

0

(∫ 1

0
|∂xu|2

)2

+
∫ t

0

∣∣∣∣∫ 1

0
μ(c)|∂xu|

∣∣∣∣2 + C0

∫ t

0

∫ 1

0
|∂xu|2

(∫ 1

0
ρ +

∫ 1

0
G(ρ, c)

)
≤

∫ t

0
‖∂xu‖4L2(T)

+
(

μmax + C0(M0 + E0)
μmin

)
E0.

From the last relations, we deduce that for any ε > 0, there holds:

1
2

∫ t

0

∫ 1

0
(∂xu)2

(−μ(x)∂xu + p(ρ, c)
)

≤ 1
2

∫ t

0
‖∂xu‖2L2(T)

∥∥∥∥(μ(c)∂xu − p(ρ, c)) −
∫ 1

0
(μ(c)∂xu − p(ρ, c))

∥∥∥∥
L∞(T)
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+ 1
2

∫ t

0

∫ 1

0
(∂xu)2

∣∣∣∣∫ 1

0
(μ(c)∂xu − p(ρ, c))

∣∣∣∣
≤

(
1
16ε

+ 1
)∫ t

0
‖∂xu‖4L2(T)

+
(

μmax + C0(M0 + E0)
μmin

)
E0 + εM0A1 (t) .

Thus, taking εM0 = 1
4 we see that

1
2

∫ t

0

∫ 1

0
(∂xu)2

(−μ∂xu + p
)

≤
(

μmax + C0(M0 + E0)
μmin

)
E0 +

(
M0

4
+ 1

)∫ t

0
‖∂xu‖4L2(T)

+ 1
4
A1 (t) . (57)

Thus denoting by

C2,T = 1
2

∫ 1

0
μ(∂xu0)2 −

∫ 1

0
p (ρ0, c0) ∂xu0 + 1

μmin

(
sup

[0,CT ]×[m,M]
P (τ , c)

)2

+ 1
μmin

sup
[0,CT ]×[m,M]

τ∂1p (τ , c) E0 +
(

μmax + C0(M0 + E0)
μmin

)
E0

and using the identity (50) along with the estimates (52), (53), (56), (57), we gather that

A1 (t) ≤ 2C2,T + (M0 + 2)
∫ t

0
‖∂xu‖4L2

≤ 2C2,T + (M0 + 2)
μmin

∫ t

0

∥∥∥√μ(c) ∂xu
∥∥∥2
L2(T)

A1 (τ ) dτ .

Owing to Gronwall’s lemma, we then obtain that for all t ∈ [0,T] :

A1 (t) ≤ 2C2,T exp
(

(M0 + 2)
μmin

E0
)

(58)

This shows the validity of estimate (26). Using now (55), we have for all t

‖μ(c)∂xu‖L∞(T) ≤ ‖p‖L∞(T) + ‖μ(c)∂xu − p‖L1(T) +
√
M0

√
A1(t)

≤ √
μmax‖√μ ◦ c ∂xu‖L2(T) + 2‖p‖L∞(T) +

√
M0

√
A1(t).

Integrating in time, and applying (58) this yields:∫ T

0
‖∂xu‖2L∞(T2)

≤ 1
μ2
min

(
μmaxE0 + 2 sup

[0,CT ]×[m,M]
p(s1, s2)2T + 2M0TC2,T exp

(
2(M0 + 2)

μmin
E0

))
. (59)

Higher order estimates with time weights. In this part, we aim at obtaining estimate for the L2-norm of
∂xu̇. This will be useful to recover regularity properties of u. The idea is to apply the operator ∂t + u∂x
to the velocity’s equation:

(∂t + u∂x) (ρu̇) − (∂t + u∂x)∂x(μ(c)∂xu) + (
∂t∂xp + u∂xxp

) = 0

and to test it with min{1, t}u̇. We begin by observing that∫ 1

0
(ρu̇)t u̇ =

∫ 1

0
ρtu̇2 + 1

2

∫ 1

0
ρ
du̇2

dt
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= 1
2
d
dt

∫ 1

0
ρu̇2 + 1

2

∫ 1

0
ρtu̇2.

Observe that ∫ 1

0
u∂x (ρu̇) u̇ = −

∫ 1

0
ρu̇∂x (uu̇) = −

∫ 1

0
∂xuρu̇2 + 1

2

∫ 1

0
(ρu)x u̇

2.

Summing the above two relations yields∫ 1

0
(∂t + u∂x) (ρu̇)u̇ = 1

2
d
dt

∫ 1

0
ρu̇2 −

∫ 1

0
∂xuρu̇2. (60)

Next, we take a look at the second term

−
∫ 1

0
(∂t + u∂x)∂x(μ(c)∂xu)) u̇

= 1
2

∫ 1

0
μ(c)(∂xu̇)2 − 3

2

∫ 1

0
μ(c)(∂xu)2∂xu̇ + 1

2

∫ 1

0
∂xμ(c)|∂xu|2u̇. (61)

Let us observe that∫ 1

0
(∂xpt + u∂2xxp)u̇ = −

∫ 1

0
pt∂xu +

∫ 1

0
u∂2xxpu̇

=
∫ 1

0
u∂xp∂xu̇ +

∫ 1

0
ρ∂1p(ρ, c)∂xu∂xu̇ +

∫ 1

0
u∂2xxpu̇

= −
∫ 1

0
∂xu∂xpu̇ +

∫ 1

0
ρ∂1p(ρ, c)∂xu∂xu̇

=
∫ 1

0
∂xuρu̇2 + 1

2

∫ 1

0
μ(c)∂xu̇ (∂xu)2

− 1
2

∫ 1

0
|∂xu|2u̇∂xμ(c) +

∫ 1

0
ρ∂1p(ρ, c)∂xu∂xu̇. (62)

where we have used the equation of the velocity to replace

−∂xp = ρu̇ − ∂x(μ(c)∂xu).

We sum up the relations (60), (61) and (62) to obtain that

1
2
d
dt

∫ 1

0
ρu̇2 + 1

2

∫ 1

0
μ(c) (∂xu̇)2 = −

∫ 1

0
ρ∂1p(ρ, c)∂xu∂xu̇ +

∫ 1

0
μ(c)∂xu̇ (∂xu)2 .

Multiplying with κ(t) and integrating in time lead to

A2 (c, ρ, u) (t) def.= 1
2

∫ 1

0
κ (t) ρu̇2 + 1

2

∫ t

0

∫ 1

0
κμ(c) (∂xu̇)2

=
∫ min(1,t)

0

∫ 1

0
ρu̇2 −

∫ t

0

∫ 1

0
κρ∂1p(ρ, c)∂xu∂xu̇ +

∫ t

0

∫ 1

0
κμ(c)∂xu̇ (∂xu)2 . (63)
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In the computations that follow, we will use the notation A2(t) instead of A2(c, ρ, u)(t). Obviously
using (58) we have that ∫ min(1,t)

0

∫ 1

0
ρu̇2 ≤ 2C2,T exp

(
(M0 + 2)

μmin
E0

)
, (64)

for all t ∈ [0,T]. Next, using Cauchy’s inequality we have that∫ t

0

∫ 1

0
κρ∂1p(ρ, c)∂xu∂xu̇

≤ sup
[0,CT ]×[m,M]

τ∂1p (τ , c)
(∫ t

0

∫ 1

0

1
μmin

(∂xu)2
) 1

2
(∫ t

0

∫ 1

0
κμ(c)|∂xu̇|2

) 1
2

≤
{

sup
[0,CT ]×[m,M]

τ∂1p (τ , c)

}2
4E0
μ2
min

+ 1
4
A2 (t) . (65)

Finally, using again (58), we arrive at∫ t

0

∫ 1

0
κμ(c)∂xu̇ (∂xu)2 ≤ 1

8

∫ t

0

∫ 1

0
κμ(c)(∂xu̇)2 + 2μmax

∫ t

0

∫ 1

0
(∂xu)4

≤ 1
4
A2(t) + 4μmax

μmin

∫ t

0
‖∂xu‖2L∞(T) sup

(0,T)

1
2

∫ 1

0
μ(c)|∂xu|2

≤ 1
4
A2 (t) + C3,T , (66)

with C3,T depending on initial data and T only. In view of the three estimates established
above, (64), (65) and (66) we gather that

A2 (t) ≤
{

sup
(τ ,c)∈[0,CT ]×[0,1]

τ∂1p (τ , c)

}2
8E0
μ2
min

+ 4C2,T exp
(

(M0 + 2)E0
μ2
min

)
+ 2C3,T . (67)

Thus, estimate (27) holds true. Combining estimate (55) with the bound on A2(t) we get that

κ (t)
1
2
∥∥μ∂xu − p

∥∥
L∞ ≤ M

1
2
0

(∫ 1

0
σρu̇2

) 1
2

+ C0 (M0 + E0)

≤
√
M0A2(t) + C0 (M0 + E0) + σ

√
μmaxA1(t).

In view of the uniform bounds for the density and concentration function, there exists a constant
C(T) such that

κ (t)
1
2 ‖μ∂xu(t)‖L∞ ≤ C (T) , (68)

for any t ∈ [0,T].
Uniform bounds for the time derivative of the solution. In this part, we show how to use the bounds

of A1(c, ρ, u) and A2(c, ρ, u) to get information for the time derivative of the solution. Analyzing the
estimates (34), (58), (67) and (46) we get that∫ 1

0

ρu2

2
+

∫ 1

0
G (ρ, c) +

∫ t

0

∫ 1

0
μ(c)(∂xu)2 + 1

2

∫ 1

0
μ(c)(∂xu)2 +

∫ t

0

∫ 1

0
ρu̇2
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+ 1
2

∫ 1

0
κ (t) ρu̇2 + 1

2

∫ t

0

∫ 1

0
κ (t) μ(c) (∂xu̇)2 ≤ C (T)

for any t ∈ [0,T] and

C (T)−1 ≤ ρ(t, x) ≤ C(T)

for some constant C(T) that depends on the initial data and on T.
Thus we get that

u ∈ L∞
T (L2(T1)) (69)

along with

∂xu ∈ L∞
T (L2(T1)) ∩ L2T(L2(T1)). (70)

Next, let us note that

(∂tu + u∂xu)2 ≥ 1
2
(∂tu)2 − (u∂xu)2

and consequently

1
2

∫ 1

0
(∂tu)2 ≤ C(T)

∫ 1

0
ρu̇2 + 2 ‖u‖L∞

T (L∞(T))

∫ 1

0
(∂xu)2.

By time integration, we obtain that

1
2

∫ t

0

∫ 1

0
(∂tu)2 ≤ C(T)

∫ t

0

∫ 1

0
ρu̇2 + 2

∫ t

0

∫ 1

0
(u∂xu)2

≤ C(T)A1(t) + 2
‖u‖2L∞

T (L∞(T))

μmin
E0.

Thus we obtain that

∂tu ∈ L2T(L2(T1)) (71)

As a consequence of (69), (70) and of (71), we obtain the uniform bound

u ∈ H1 ((0, 1) × T
1) . (72)

Moreover, we also have that

κ(t)
2

∫ 1

0
(∂tu)2 ≤ C(T)

∫ 1

0
κρu̇2 + 2 ‖u‖2L∞

T (L∞(T))

∫ 1

0
κ(∂xu)2

≤ C(T)A2(t) + 2
μmin

‖u‖2L∞
T (L∞(T)) A1(t).

Thus for all t> 0 we have that

∂tu ∈ L∞((t,T); (L2(T1)).

Next, we write that

‖u̇(t, ·)‖2L∞(T) ≤ ‖u̇‖L2(T) ‖∂xu̇‖L2(T) ≤
√
C(T)

∥∥∥ρ
1
2 u̇

∥∥∥
L2(T)

‖∂xu̇‖L2(T)

≤ C(T)

∥∥∥ρ
1
2 u̇

∥∥∥2
L2(T)

+ ‖∂xu̇‖2L2(T)
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thus we get that∫ T

0
κ (t) ‖u̇(t, ·)‖2L∞(T) ≤ C (T)

∫ T

0

∫ 1

0
κ(t)ρu̇2 +

∫ T

0

∫ 1

0
κ(t)(∂xu̇)2

≤ (T + C (T))A2(c, ρ, u)(T) ≤ C (T) .

Using the uniform bounds for u ∈ L∞
T (L2(T1)) and ∂xu ∈ L∞

T (L2(T1)), we get a uniform bound for
u in L∞((0, 1) × T

1). Using the fact that u̇ = ut + u∂xu along with the estimate (68) we get that∫ T

0
κ (t) ‖∂tu(t)‖2L∞(T) dt ≤ C (T) .

Gathering the information of this section yields estimates (28) and (29).

4.1.7. Stability of a sequence of solutions
Using the estimates established in the preceding sections, we are in the position of proving the
following stability result.

Theorem 4.2: Let us consider (cn, ρn, un) a sequence of weak solutions of (10) with the initial data⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cn0 ∈ L∞(T1), 0 ≤ inf
n

inf
x∈T1

cn0 ≤ sup
n

sup
x∈T1

cn0 (x) < ∞
ρn
0 ∈ L∞(T1) such that 0 < inf

n
inf
x∈T1

ρn
0 ≤ sup

n
sup
x∈T1

ρn
0 < ∞

G
(
ρn
0 , c

n
0
) ∈ L1(T1); sup

n

∫ 1

0
G

(
ρn
0 , c

n
0
)

< ∞
un0 ∈ H1 (

T
1) , sup

n

∥∥un0∥∥H1 < ∞

such that ⎧⎨⎩
cn0 → c0 strongly in L2(T1),
ρn
0 → ρ0 strongly in L2(T1),

un0 ⇀ u0 weakly in H1 (
T
1) .

Furthermore, we suppose that there exists a constant M ∈ (0,∞) so that the sequence of solutions
(cn, ρn, un)n satisfies the following uniform bounds:∫ 1

0

ρn(un)2

2
+

∫ 1

0
G

(
ρn, cn

) +
∫ t

0

∫ 1

0
μ(cn)(∂xun)2 ≤

∫ 1

0

ρn
0 (u0)n

2
+

∫ 1

0
G

(
ρn
0 , c

n
0
)
, (73)

0 ≤ inf
n

inf
x∈T1

cn0 (x) ≤ cn(t, x) ≤ sup
n

sup
x∈T1

cn0 (x) < +∞, (74)

M−1 ≤ ρn (t, x) ≤ M, (75)

1
2

∫ 1

0
μ(cn)(∂xun)2 +

∫ t

0

∫ 1

0
ρn(u̇n)2 ≤ M, (76)

1
2

∫ 1

0
κ (t) ρn(u̇n)2 + 1

2

∫ t

0

∫ 1

0
κ (t) μ(c)

(
∂xu̇n

)2 ≤ M, (77)∥∥un∥∥L∞((0,1)×T1)
+ ∥∥un∥∥H1((0,1)×T1)

≤ M, (78)∥∥∥κ
1
2 (∂tun(t), ∂xun(t))

∥∥∥
L2(0,T;L∞(T1))

≤ M, (79)
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for all t ∈ [0,T]where κ(t) = min{t, 1}. Then up to an extraction (cn, ρn, un) tends to a triplet (c, ρ, u)
which is a solution of the system (10) on [0,T] with initial data (c0, ρ0, u0). Moreover (c, ρ, u) verifies
the bounds (23)–(29).

Proof: The proof of this statement is rather classical and as such we give just a few details. Using the
Arzelà–Ascoli theorem, we have that

un → u uniformly on [0,T] × [0, 1] .

Let us consider Xn
t the flow corresponding to un:

Xn
t (x) = x +

∫ t

0
un(τ ,Xn

τ (x))dτ .

Of course, we have that

dXn
t

dx
(x) = exp

(
−

∫ t

0
∂xun(τ ,Xn

τ (x))dτ
)

≥ exp
(
−

√
TM

)
.

We note that∣∣Xn
t (x) − Xm

t (x)
∣∣ ≤

∣∣∣∣∫ t

0
un(τ ,Xn

τ (x))dτ −
∫ t

0
un(τ ,Xm

τ (x))dτ
∣∣∣∣

+
∣∣∣∣∫ t

0
un(τ ,Xm

τ (x))dτ −
∫ t

0
um(τ ,Xm

τ (x))dτ
∣∣∣∣

≤ T
∥∥un − um

∥∥
L∞([0,T]×T1)

+
∫ t

0

∥∥∂xun(τ , ·)
∥∥
L∞(T)

∣∣Xn
τ (x) − Xm

τ (x)
∣∣

which implies that

∣∣Xn
t (x) − Xm

t (x)
∣∣ ≤ T

∥∥un − um
∥∥
L∞([0,T]×T1)

exp
(∫ T

0

∥∥un(τ , ·)∥∥L∞(T)

)
≤ C(M)T

∥∥un − um
∥∥
L∞([0,T]×T

,

for all (t, x) ∈ [0,T] × R. The conclusion is that

Xn
t (x) → X (x) uniformly on [0,T] × [0, 1] .

Next, from the a-priori bounds on ρn, we get the existence of a ρ ∈ L∞((0,T) × T
1) such that

ρn ⇀ ρ in L2((0,T) × T
1) ∩ L∞ (

(0,T) × T
1) .

Mixing the strong convergence of u with the weak convergence of ρn it is not hard to see that

∂tρ + ∂x(ρu) = 0.

Let us observe that this entails{
(ρn)2t + ∂x((ρ

n)2 un) + (ρn)2∂xun = 0,
ρ2
t + ∂x(ρ

2u) + ρ2∂xu = 0

and thus by subtracting the above equation and integrating over (0, 1) we get that

d
dt

∫ 1

0
((ρn)2 − ρ2) ≤

∫ 1

0
ρ2(∂xun − ∂xu) +

∫ 1

0
((ρn)2 − ρ2)∂xun.
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We integrate in time and we find that∫ 1

0
((ρn)2 − ρ2)(t) ≤

∫ 1

0
((ρn

0 )2 − ρ2
0) +

∫ T

0

∫ 1

0
ρ2(∂xun − ∂xu) +

∫ T

0

∫ 1

0
((ρn)2 − ρ2)∂xun

for all t ∈ [0,T].We arbitrarily fix ε > 0 and using the uniform bounds on (∂xun)n ∈ L2((0,T) × T
1)

and the fact that ρ2 ∈ L2((0,T) × T
1), we may find nε such that∫ 1

0
ρ2(∂xun − ∂xu) ≤ ε/T

for all n ≥ nε . Therefore, via Gronwall’s lemma we get that∫ 1

0
((ρn)2 − ρ2)(t) ≤

(∫ 1

0
((ρn

0 )2 − ρ2
0) + ε

)
exp

(∫ T

0

∥∥∂xun
∥∥
L∞

)
≤

(∫ 1

0
((ρn

0 )2 − ρ2
0) + ε

)
exp

(√
TM

)
.

for all n ≥ nε . We perform a time integration in the above relation to obtain that∫ T

0

∫ 1

0
((ρn)2 − ρ2) ≤ T

(∫ 1

0
((ρn

0 )2 − ρ2
0) + ε

)
exp

(√
TM

)
.

After some obvious manipulation, we conclude that

lim
n→∞

∫ T

0

∫ 1

0
(ρn)2 =

∫ T

0

∫ 1

0
ρ2

which combined with the weak convergence of ρn towards ρ in L2((0,T) × T
1) leads to the

conclusion that

ρn → ρ strongly in L2((0,T) × T
1)

and, modulo a subsequence

ρn → ρ

almost everywhere on (0,T) × T
1. Moreover, the same type of argument allows to conclude that

ρn → ρ strongly in L∞
T (L2(T1)).

A similar conclusion holds for the sequence (cn)n: there exists c ∈ L∞((0,T) × T
1) such that up to a

subsequence we have that {
cn ⇀ c weakly in L∞ (

(0,T) × T
1) and

cn → c a.e. on (0,T) × T
1.

The fact that p(ρn, cn) is uniformly bounded in L∞((0,T) × T
1) along with the continuity of p and

the convergence properties of (ρn, cn)n enable us to conclude that

p
(
ρn, cn

) → p (ρ, c) weakly in L∞ (
(0,T) × T

1) .
The expected uniform bounds for (ρ, c, u) yield also from classical pointwise/weak convergence
arguments. �
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4.1.8. Uniqueness of solutions
The aim of this section is to prove the uniqueness part of Theorem 4.1. To accomplish this task, we
work in Lagrangian coordinates. This framework has the advantage of decoupling the hyperbolic part
of the equation from the parabolic part. We are left with a more complicated equation but which, on
short times, is not far from being parabolic. In what remains of this section, we consider two solutions
(ρi, ci, ui) of (10) on (0,T) satisfying estimates claimed in Theorem 4.1. We note that the involved
constant C(T) may be chosen independent of the solution.

The 1D Navier–Stokes system in Lagrangian coordinates. In this part, we derive the Lagrangian
formulation of the system (10). To do so, let us recall that for arbitrary classical solution (ρ, c, u)
to (10) (such as the one chosen above) the flow of u is defined by{

∂X
∂t

(t, x) = u (t,X (t, x)) ,
X (0, x) = x.

(80)

Moreover, as was proved in Section 4.1.4, for each t ∈ (0,T), X(t, ·) is a diffeomorphism from R to
R. We emphasize that for the sake of clarity when dealing with its partial derivatives, in the rest of the
section we will denote the flow of u by X(t, x). As u is 1−periodic, it is easy to see that

X (t, x + 1) = X (t, x) + 1

For any function v : [0,∞) × T
1→ R, we denote by ṽ the function defined as

ṽ (t, x) := v (t,X (t, x))

Then, we also have

ṽ (t, x + 1) := v (t,X (t, x + 1)) = v (t,X (t, x) + 1)

= v (t,X (t, x)) = ṽ (t, x) .

In the following lines, we aim at rewriting system (10) in the variables (c̃, ρ̃, ũ). First of all, as c is
transported by the flow, we have that

∂ c̃
∂t

(t, x) = 0. (81)

Next, we see that

X (t, x) = x +
∫ t

0
u (τ ,X(τ , x)) = x +

∫ t

0
ũ (τ , x) dτ ,

and thus
∂X
∂x

(t, x) = 1 +
∫ t

0
∂xũ (τ , x) dτ .

It follows that

∂xṽ (t, x) = ∂̃xv (t, x)
∂X
∂x

(t, x) (82)

and that

∂̃xv (t, x) = ∂X
∂x

(t, x)−1 ∂xṽ (t, x) = 1
1 + ∫ t

0 ∂xũ (τ , x) dτ
∂xṽ (t, x) . (83)

Let us investigate the equation for ρ. We observe that

0 = ρ̃t (t, x) + ρ̃ (t, x) ∂̃xu(t, x) = ρ̃t(t, x) + ρ̃(t, x)
1

1 + ∫ t
0 ∂xũ (τ , x) dτ

∂xũ (t, x) ,
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which leads to

0 =
(
1 +

∫ t

0
∂xũ (τ , x) dτ

)
ρ̃t + ∂xũ (t, x) ρ̃(t, x)

and we obtain that

d
dt

((
1 +

∫ t

0
∂xũ (τ , x) dτ

)
ρ̃

)
= 0. (84)

Finally, using (83) along with (84), we may rewrite the equation of the velocity as

ρ0 (x) ∂tũ − ∂x

((
∂X
∂x

)−1
μ(c̃) ∂xũ

)
+ ∂xp

(
ρ̃, c̃

) = 0. (85)

Putting together Equations (81), (84) and (85) we deduce that the system (10) can be written in
Lagrangian coordinates as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t c̃ = 0,
d
dt

(
∂X
∂x

(t, x) ρ̃

)
= 0,

ρ0 (x) ∂tũ − ∂x

((
∂X
∂x

)−1
μ(c̃) ∂x ũ

)
+ ∂xp

(
ρ̃, c̃

) = 0,

X (t, x) = x +
∫ t

0
ũ (τ , x) dτ .

(86)

Let us also derive some useful inequalities. Of course, we have that

C(T)−1 ≤ ρ̃(t, x) ≤ C (T) .

Thus one gets that

C(T)

inf ρ0
≥

(
∂X
∂x

(t, x)
)−1

= ρ̃(t, x)
ρ0(x)

≥ C(T)−1

sup ρ0
. (87)

The proof of the uniqueness part of Theorem 4.1. Let us consider two solutions (ci, ρi, ui), i ∈ {1, 2}
generated by the same initial data:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tci + ui∂xci = 0,

∂tρi + ∂x (ρiui) = 0,

∂t (ρiui) + ∂x
(
ρiu2i

) − ∂x(μ(ci)∂xui) + ∂xpi = 0,(
ci|t=0, ρi|t=0, ui|t=0

) = (c0, ρ0, u0) .

(88)

Considering the flows generated by ui

Xi(t, x) = x +
∫ t

0
ui (τ ,Xτ (x)) dτ

and denoting with tilde

ṽi (t, x) = vi (t,Xi (t, x))
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for v ∈ {c, ρ, u} we get that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t c̃i = 0

∂t

(
∂Xi

∂x
ρ̃i

)
= 0,

ρ0∂tũi − μ∂x

((
∂Xi

∂x

)−1

μ(c̃i) ∂xũi

)
+ ∂xp

(
ρ̃i, c̃i

) = 0,

Xi(t, x) = x +
∫ t

0
ũi (τ , x) dτ .

(89)

Remarking that μ(c̃1) = μ(c̃2), we have that

ρ0∂tδũ − ∂(μ(c̃1)∂xδũ) = ∂xδF1 + ∂xδF2, (90)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
δF1 = p

(
K

(∫ t

0
∂xũ1

)
ρ0, c0

)
− p

(
K

(∫ t

0
∂xũ2

)
ρ0, c0

)
,

δF2 = μ(c̃1)L
(∫ t

0
∂xũ1

)
∂xũ1 − μ(c̃1)L

(∫ t

0
∂xũ2

)
∂xũ2.

where

K (s) = 1
1 + s

, L (s) = s
1 + s

.

We multiply (89) with δũ and integrate over T
1. Using Cauchy’s inequality, we obtain that

1
2
d
dt

∫ 1

0
ρ0(δũ)2 + μmin

4

∫ 1

0

(
∂x(δũ)

)2 ≤ 1
μmin

∫ 1

0
(δF1)2 + (δF2)2.

Let us estimate the L2-norm of δF1 and δF2. We begin with by noticing that

K
(∫ t

0
∂xũ1

)
− K

(∫ t

0
∂xũ2

)
=

∫ t
0 ∂xδũ

∂xX1(t, x)∂xX2(t, x)

so that we may write

δF1 (t) = p
(
K

(∫ t

0
∂xũ1

)
ρ0, c0

)
− p

(
K

(∫ t

0
∂xũ2

)
ρ0, c0

)

≤ sup
τ∈[C(T)−1,C(T)]

∂1p(τ , c0)

∣∣∣∫ t
0 ∂xδũ

∣∣∣
∂xX1(t, x)∂xX2(t, x)

.

Using inequality (87), we get that

1
μmin

∫ 1

0
(δF1)2 ≤ t

C(T)

μmin

∫ t

0

∫ 1

0
(∂xδũ)2. (91)

Next, we have that

δF2 = μ(c̃1)L
(∫ t

0
∂xũ1

)
∂xũ1 − μ(c̃1)L

(∫ t

0
∂xũ2

)
∂xũ2
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= μ(c̃1)
(
K

(∫ t

0
∂xũ1

)
− K

(∫ t

0
∂xũ2

))
∂xũ1 + μ(c̃1)L

(∫ t

0
∂xũ2

) (
∂xδũ

)
.

Thus, using again the inequality (87), we get that∫ 1

0
(δF2)2 ≤ μmaxC (T)

(
t
∫ 1

0

∥∥∂xũ1
∥∥2
L∞(T)

∫ t

0
(∂xδũ)2 + μmaxt

∫ 1

0

∥∥∂xũ2
∥∥2
L∞(T)

∫ t

0
(∂xδũ)2

)
.

(92)
Putting together the inequalities (91), (92) and integrating in time, we get that

1
2

∫ 1

0
ρ0(δũ)2 + μmin

8

∫ t

0

∫ 1

0

(
∂x(δũ)

)2 ≤ 0

for any t ∈ [0,T0] with T0 sufficiently small. Thus we get a local uniqueness property. Reiterating this
process gives us the two solutions coincide on their whole domain of definition.

5. Definition of themesoscopic system and derivation of the homogenized
compressible bifluid system

In this section, we justify mathematically the derivation of the Baer–Nunziato model with physical
relaxation term at the macroscopic level from the mesoscopic description that we have proposed in
Section 2.

5.1. Homogenization procedure andmain result

From now on, we consider a sequence of initial data (ρn
0 , c

n
0 , u

n
0) that satisfy:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρn
0 ∈ L∞ (

T
1) with 0 < inf

n,x∈T1
ρn
0 (x) ≤ ρn

0 (x) ≤ sup
n,x∈T1

ρn
0 (x) ≤ M < +∞,

cn0 (1 − cn0) = 0 a.e. on T
1 with cn0 ∈ [0, 1],∫ 1

0

(
cn0p+(ρn

0 ) + (1 − cn0)p−(ρn
0 )

) ≤ M,

un0 ∈ H1 (
T
1) such that

∥∥un0∥∥H1 ≤ M

(93)

with M> 0 independent of n. We note that these assumptions are satisfied in particular for initial
configurations as depicted in (8). The bounds (93) allow us to conclude that there exists (ρ0, c0, u0) ∈
L∞(T1) × L∞(T1) × H1(T1) such that

ρn
0 ⇀ ρ0 in L∞ (

T
1) − w�, cn0 ⇀ c0 in L∞ (

T
1) − w�, un0 ⇀ u0 in H1 (

T
1) .

Furthermore, given n ∈ N
∗ the initial data (ρn

0 , c
n
0 , u

n
0) enters the scope of Theorem 4.1. So, we can

associate to this initial data a solution (ρn, cn, un) to (6).Moreover, this sequence satisfies the following
uniform bounds on any interval [0,T] independent of n:∫ 1

0

ρn(un)2

2
+

∫ 1

0

(
G(ρn, cn)

) + μ

∫ t

0

∫ 1

0
(∂xun)2 ≤ C, (94)

C (T)−1 ≤ ρn (t, x) ≤ C (T) , (95)

μ

2

∫ 1

0
(∂xun)2 +

∫ t

0

∫ 1

0
ρn(u̇n)2 +

∫ t

0

∫ 1

0

∣∣∂x(μ∂xun − pn)
∣∣2 ≤ C(T), (96)
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1
2

∫ 1

0
κ (t) ρn(u̇n)2 + μ

2

∫ t

0

∫ 1

0
κ (t)

(
∂xu̇n

)2 ≤ C (T) , (97)∥∥un∥∥L∞((0,1)×T1)
+ ∥∥un∥∥H1((0,1)×T1)

≤ C (T) , (98)

κ1/2 (t)
∥∥(∂tun(t), ∂xun(t))

∥∥
L∞ ≤ C (T) . (99)

Using the uniform bounds of (94)–(29), we conclude that⎧⎪⎪⎨⎪⎪⎩
ρn ⇀ ρ, p(ρn, cn) ⇀ � in L∞(R+; L∞(T1)) − w�,

un ⇀ u in L2(R+;H1(T1)),

σ n := μ∂xun − p(ρn, cn) ⇀ σ := μ∂xu − � in L2(R+;H1(T1)).

(100)

As explained previously, the density ρn and the parameter cn are expected to oscillate widely in space.
For this reason, it is hopeless to obtain stronger convergence on these sequences than in a weak Lp-
setting. On the other hand, we need to recover some properties of the sequence p(ρn, cn) to compute
a limit system satisfied by (ρ, u, σ). To this end, we associate to the sequence (ρn, cn)n∈N a sequence
of measures on the space T

1
x × Rξ × Rη (here Rξ must be understood as the range of the ρn while

Rη is the range of the cn). Namely, given n ≥ 0 and t ≥ 0, we consider the Young measure 
n on
T
1
x × Rξ × Rη as defined by

〈

n (t) , b

〉
: def .=

∫
T1

b
(
x, ρn (t, x) , cn(t, x)

)
dx, ∀ b ∈ Cc

(
T
1
x×Rξ × Rη

)
(101)

We have the following proposition:

Proposition 5.1: For fixed n ∈ N there holds


n ∈ Cw([0,∞);M+(T1
x×Rξ × Rη)) (102)

with

Supp(
n(t)) ⊂ T
1
x × [C (t)−1 ,C (t)] × [0, 1] 〈
n, 1〉 = 1. ∀ t ≥ 0, (103)

where C(t) is given by (95).

Proof: The second identity (103) being obvious we only discuss (102). First, we note that, by
definition 
n, is continuous in b for the topology of L1(T1

x;C(Rξ × Rη)). Consequently, a stan-
dard density argument entails that we only need to prove that t �→ 〈
n(t), b〉 is continuous when
b ∈ C1

c (T
1
x×Rξ ). For this, we write that

∣∣〈
n (t) , b
〉 − 〈


n (s) , b
〉∣∣ ≤ ‖∂2b‖L∞

∫
T1

∣∣ρn (t, x) − ρn (s, x)
∣∣ dx, ∀ (t, s) ∈ [0,∞)2,

and the fact that ρn ∈ C([0,∞), L1(T1)) allows to conclude. �

Once these Young measures are constructed, the rigorous justification of system (1)–(4) reduces
to the following theorem:
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Theorem5.1: Up to the extraction of a subsequence, we have
n ⇀ 
 in Cw([0,∞);M+(T1
x × Rξ ×

Rη)) where 
 satisfies

∂t
 + ∂x (u
) − 1
μ(η)

∂ξ

(
(σξ + ξp(ξ , η))
±

) − 1
μ(η)

(σ + p (ξ , η))
 = 0 (104)

with (u, σ) as defined in (100). Moreover, if there exists (α+,0,α−,0, ρ+,0, ρ−,0) ∈ L∞(T1) such that

〈
(0), b〉 =
∫

T1
(α+,0(x)b

(
x, ρ+,0(x), 1

) + α−,0(x)b
(
x, ρ−,0(x), 0

)
)dx, ∀ b ∈ C(T1

x × Rξ × Rη)

(105)
then there exists (α+,α−, ρ+, ρ−) ∈ [L∞

loc([0,∞); L∞(T)) ∩ C([0,∞); L1(T))]4 such that, for any t ≥
0 we have

〈
(t), b〉 =
∫

T1
(α+(t, x)b

(
x, ρ+,0(x), 1

) + α−,0(x)b
(
x, ρ−,0(x), 0

)
)dx, ∀ b ∈ C(T1

x × Rξ × Rη).

(106)
Furthermore, (α+,α−, ρ+, ρ−) together with u satisfy (1)–(4).

What remains of this section is devoted to the proof of this Theorem which will give the proof of
the main theorem of the paper.

5.2. Proof of Theorem 5.1

We naturally divide the proof of Theorem 5.1 into two parts. First, we prove that the limiting Young
measures verify the Equation (104) while in a second time we will prove that if at initial time 
 have
the special structure (105), this structure propagates, i.e. (106) for all time t> 0. This property will
go along with the fact that the quantities (α+,α−, ρ+, ρ−) satisfy (1) with u. We work on a truncated
interval [0,T]. Since T is arbitrary, the result holds on [0,∞).

5.2.1. The equation verified by the limitingmeasure
Let us consider b(x, ξ , η) ∈ C1

c (T
1
x × Rξ × Rη)). For all N ≥ 0, we write

ρn,N(t) : def .= ωN ∗ ρn(t)

where ωN is a mollifier depending on the parameter N. For t ∈ [0,T] and p ∈ [1,∞), we have that{
limN→∞

∥∥ρn,N (t) − ρn(t)
∥∥
Lp(T1)

= 0.
limN→∞

∥∥ρn,N − ρn
∥∥
Lp([0,T]×T1)

= 0. (107)

Let us apply ωN to the second transport equation in (6) and write that

∂tρ
n,N + ∂x

(
ρn,Nun

) = rN
(
ρn, un

)
, (108)

where rN(ρn, un) := ∂x((ωN ∗ ρn)un) − ∂x(ωN ∗ (ρnun)) satisfies (see [29, Lemma II.1]):

lim
N→∞

∥∥rN (
ρn, un

)∥∥
L2([0,T]×T1)

= 0 (109)

Similarly, with the first transport equation of (6), we obtain

∂tcN,n + un∂xcN,n = rN(cn, un) − cN,n∂xun + (c∂xu)N,n, (110)

with rN satisfying also (109). We multiply (108) with ∂2b(x, ρn,N , cn,N) and (110) with
∂3b(x, ρn,N , cn,N) and we write that

∂tb(x, ρn,N , cn,N) + ∂x
(
unb(x, ρn,N , cn,N)

) − un∂1b
(
x, ρn,N

± , cn,N
)
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+ (
ρn,N∂2b

(
x, ρn,N , cn,N

) − b
(
x, ρn,N , cn,N

))
∂xun

= rN
(
ρn, un

)
∂2b(x, ρn,N , cn,N) + rN(cn, un)∂3b(x, ρn,N , cn,N)

− [
cN,n∂xun − (c∂xu)N,n] ∂3b(x, ρn,N , cn,N).

Remark 5.1: Let us mention that by ∂tb(x, ρn,N , cn), ∂xb(x, ρn,N , cn) we understand the derivative
with respect to time/space of the function

(t, x) → b(x, ρn,N(t, x), cn(t, x))

while when using numbers ∂kb(t, x, ρn,N), k ∈ {1, 3} represents the derivative of b with respect to its
kth variable computed in (x, ρn,N(t, x), cn(t, x)).

Moreover, in order to take advantage of the compactness properties of the effective flux, see (100),

σ n = μ(cn)∂xun − p(ρn, cn)

we rewrite the above equation as

∂tb(x, ρn,N , cn,N) + ∂x
(
unb(x, ρn,N , cn,N)

) − un∂1b(x, ρn,N , cn,N)

+ 1
μ(cn)

(
ρn,N∂2b(x, ρn,N , cn,N) − b(x, ρn,N , cn,N)

)
σ n

+ 1
μ(cn)

(
ρn,N∂2b(x, ρn,N , cn) − b(x, ρn,N , cn,N)

)
p
(
ρn, cn

)
= rN

(
ρn, un

)
∂2b(x, ρn,N , cn,N) + rN(cn, un)∂3b(x, ρn,N , cn,N)

− [
cN,n∂xun − (c∂xu)N,n] ∂3b(x, ρn,N , cn,N). (111)

Owing to (107), we get that up to the extraction of a subsequence, we have⎧⎪⎪⎨⎪⎪⎩
(ρn,N , cn,N) → (ρn, cn) a.e. [0,T] × T

1,

(ρn,N(T), cn,N(T) → (ρn(T), cn(T)) a.e. T1,

(ρn,N(0), cN,n(0)) → (ρn(0), cn(0)) a.e. T1.

(112)

Hence, by applying dominated convergence argument, we obtain that the left-hand side of (111)
converges inD′((0,T) × T

1) to

∂tb(x, ρn, cn) + ∂x
(
unb(x, ρn, cn)

) − un∂1b(x, ρn, cn)

+ 1
μ(cn)

(
ρn∂2b(x, ρn, cn) − b(x, ρn, cn)

)
σ n

+ 1
μ(cn)

(
ρn∂2b(x, ρn, cn) − b(x, ρn, cn)

)
p
(
ρn, cn

)
As for the right-hand side, we apply (109) together with the regularity ∂xun ∈ L∞

loc((0,T) × T
1) to

yield that

lim
N→∞ ‖cN,n∂xun − (c∂xu)N,n‖L2loc((0,T)×T) = 0.

This entails that

∂tb(x, ρn, cn) + ∂x
(
unb(x, ρn, cn)

) − un∂1b(x, ρn, cn)



4264 D. BRESCH ET AL.

+ 1
μ(cn)

(
ρn∂2b(x, ρn, cn) − b(x, ρn, cn)

)
σ n = 0,

or, using the definition of the sequences of measures 
n, i.e. (101)

∂t

n + ∂x

(
un
n) − ∂ξ

((
ξσ n

μ(η)
+ ξp (ξ , η)

μ(η)

)

n

)
−

(
σ n

μ (η)
+ p (ξ , η)

μ(η)

)

n = 0.

With the first statement, we obtain that, whatever b ∈ C1(T1 × Rξ × Rη), the quantity ∂tb(x, ρn, cn)
is bounded in L∞(0,T;H−1(T1)). By a standard Arzela–Ascoli argument, applying that 
n have
uniformly finite mass, we obtain that 〈
n, b〉 is precompact in C([0,T]). We can then use that 
n

have compact support (uniformly in N) to extract a limit for a denumerable set of b and com-
bine with a density argument to obtain that 
n converge (up to the extraction of a subsequence)
in Cw([0,∞);M+(T1

x × Rξ × Rη)).
We are now in position to pass to the limit n → ∞ in this last equation. For this, we note that ∂tun

is bounded in L2((0,T) × T
1) so that by a classical Ascoli–Arzela argument we have that (up to the

extraction of a subsequence) un converges to u in L2((0,T);C(T1)). Consequently


nun → 
u inD′((0,T) × T
1 × Rξ × Rη).

Concerning the remaining terms, the only difficulty lies in passing to the limit in the product
σ n
N . For this, we note that ∂tρ

n is bounded in L∞((0,T);H−1(T1)) while σ n is bounded in
L2((0,T);H1(T1)). By a classical compensated compactness argument (see also [1, Lemma 10]) we
have then that

lim
n→∞

∫ T

0
ζ(t)

∫ 1

0

1
μ(cn(x))

(
ρn(x), ∂3b(x, ρn(x), cn(x)) − b(x, ρn(x), cn(x))

)
σ n(t, x)dxdt

=
∫ T

0
ζ(t)

∫ 1

0

1
μ(c(x))

(ρ(x), ∂3b(x, ρ(x), c(x)) − b(x, ρ(x), c(x))) σ∞(t, x)dxdt

whatever the test function b ∈ C1(T1
x × Rξ × Rη) and ζ ∈ C∞

c (0,T). We obtain that 
 satis-
fies (104). This concludes the first part of Theorem 5.1.

5.2.2. Characterization of the limitingmeasure
The objective of this section is to prove the second part of Theorem 5.1.We follow the approach from
[17] and construct explicit solutions to the limit system (1). Afterwards, using the uniqueness result
we may identify the limit measure with the particular one we have constructed. At first, we note that
the limiting velocity field has the regularity:

u ∈ C([0,T]; L2(T1)) ∩ L2(0,T;W1,∞(T1)).

Consequently, classical arguments for semilinear hyperbolic problems yield that, given

(α−,0,α+,0, ρ−,0, ρ+,0) ∈ L∞(T1;R4)

such that

0 ≤ min(α−,0,α+,0, ρ−,0, ρ+,0) α−,0 + α+,0 = 1,

there exists a unique solution (α−,α+, ρ−, ρ+) ∈ L∞((0,T) × T
1) ∩ C([0,T]; L1(T1)) to{

∂tα± + u ∂xα± = α+α−
α+μ− + α−μ+

(σ± − σ∓),

∂t(ρ±) + ∂x (ρ±u) = 0,
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where

σ± = −μ±∂xu + p±(ρ±).

We note that the solution is a priori defined only locally. But, by uniqueness, the solution satisfies

0 ≤ min(α−,α+, ρ−, ρ+) α− + α+ = 1.

Furthermore, using the Lagrangian coordinates we see that

0 ≤ ρ± (t,Xt(x)) = ρ±,0 (x) exp
(

−
∫ t

0
∂xu

)
. (113)

And, since we have uniform bounds for ‖∂xu‖L1(0,T;L∞(T1))
we may extend to global ones. At this

point, we define an alternative measure on T
1 × Rξ × Rη by the following formulae:〈


̄ (t) , b
〉
: def .=

∫
T1

α− (t, x) b(x, ρ−(t, x), 0) + α+ (t, x) b(x, ρ+(t, x), 1)dx.

We observe that, for all t ∈ [0,T], the measure 
̄(t) has compact support in T
1
x × Rξ × Rη and that,

given the system satisfied by (α−,α+, ρ−, ρ+), the measure 
̄ verify the following equations:

∂t
̄ + ∂x (u
) − ∂ξ

((
ξσ

μ(η)
+ ξp(ξ , η)

μ(η)

)

̄

)
−

(
σ

μ (η)
+ p (ξ , η)

μ(η)

)

̄ = 0. (114)

Moreover, we have that

lim
t→0

〈
̄ (t) , b〉 =
∫

T1
(α−,0 (x) b(x, ρ−,0(x), 0) + α+,0 (x) b (x, ρ+(x), 1))dx = 〈
(0), b〉.

Let us fix C(T) ≥ 1 such that 
 and 
̄ have both support in T
1 × [0,C(T)] × [0, 1] on [0, 1].

Considering χ a compactly supported smooth function

χ : R →[0, 1] such that χ = 1 on [0,max(C (T) , 1)] (115)

we can write that 
 and 
̄ are both solutions to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂t�̄ + ∂x
(
u �̄

) − ∂ξ

((
ξσ

μ(η)
+ ξp(ξ , η)

μ(η)

)
χ (ξ) χ (η) �̄

)
−

(
σ

μ (η)
+ p (ξ , η)

μ(η)

) (
χ (ξ) − ξχ ′ (ξ)

)
χ (η) �̄ = 0,

〈
�̄|t=0, b

〉 =
∫

T1
(α−,0 (x) b(x, ρ−,0(x), 0) + α+,0 (x) b (x, ρ+(x), 1))dx.

(116)

Let us observe the equation is a transport equation with a velocity field V = (V1,V2,V3) with
V1(t, x, ξ , η) = u(t, x), V2((t, x, ξ , η) = −[(σ (t, x) + p(η, ξ))/μ(η)]ξχ(η)χ(ξ) and V3(t, x, ξ , η) =
0. Such velocity field is in L1(0,T; (L∞(T1))3) and therefore the solution is unique namely 
(t) =

̄(t). This concludes the proof of Theorem 3.
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