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Abstract

We develop a new multidimensional finite volume algo-
rithm for transport equations. This algorithm is both stable
and non-dissipative. It is based on a reconstruction of the
discrete solution inside each cell, at every time step. The
proposed reconstruction, genuinely multidimensional, al-
lows to recover sharp profiles both in the direction of the
transport velocity and in the transverse direction. It is
an extension of the one-dimensional reconstructions an-
alyzed in Lagoutière 2007 and Lagoutière 2007.

1 Introduction

The present study1 concerns reconstruction schemes for
transport equations. We are especially interested in
schemes that are not dissipative, in particular for initial
conditions with discontinuities. This leads to consider
reconstructions that are not smooth, on the contrary to
usual reconstructions. We indeed develop a discontinu-
ous reconstruction scheme which consists in reconstruct-
ing the constant-in-cell datum as a discontinuous (inside
each cell) function.

Typically, the goal is to develop transport schemes
for mass or volume fractions in multi-fluids. These frac-
tions can be discontinuous (at interfaces between compo-
nents) or continuous (in mixing zones). A former algo-
rithm was already developed in Després and Lagoutière
2007. It was based in dimension 1 on thelimited down-
wind scheme(equivalent to the Ultra-bee limiter for ad-
vection with constant velocity) and the multidimensional
algorithms where obtainedvia an alternate direction split-
ting strategy. Results are satisfying, in particular for inter-

1This work was partially supported by CEA/DIF Bruyères-le-Châtel

faces (see results for interface instabilities in dimensions
2 and 3 in the cited reference). The main drawback of
this method is precisely the dimensional splitting, which
prevents the algorithm form being used on non-Cartesian
grids.

We here present a way to generalize the limited
downwind scheme to the case of a general triangular
grid. It is based on the geometrical approach followed
in Lagoutière 2007, Lagoutière 2007, that provided a new
interpretation of the limited downwind algorithm, in terms
of reconstruction scheme.

The paper is organized as follows. Sections 2 and 3
present the mathematical and numerical problems and the
notations. Then, we recall the reconstruction procedure
leading to the limited downwind scheme in dimension 1
(section 4). In section 5, the main subject of the paper is
addressed: the extension to upper dimensions of the pre-
ceding procedure. The presentation deals with dimension
2. Finally, section 6 exhibits numerical results.

For the time-being, the most efficient algorithms for
pure transport rest upon interface reconstruction: see for
example SLIC and Youngs’ method, Noh and Woodward
1976 and Youngs 1984, and the method of Mosso (Mosso
and Cleancy 1995) which is a recent promising enhance-
ment. These methods are essentially limited to Cartesian
grids. We here try to derive a truly multidimensional re-
construction algorithm.
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2 Model problem

The considered model is the linear transport equation with
constant (given) velocity











∂tu(t, x) + div (au) (t, x)

= ∂tu(t, x) + a · ∇xu(t, x) = 0 for t > 0,

u(0, ·) = u0 ∈ L∞(R2),
(1)

where a is a smooth divergence-free velocity field:
diva(t, x) = 0 for every(t, x) ∈ R

+ × R
2.

The main issue for the numerical treatment of this
PDE problem is thenumerical diffusion. This phe-
nomenon, easily understandable in dimension 1, is much
more complex in higher dimension. It shall be decom-
posed in two different types of diffusion. The diffusion of
the first type, which will be calledlongitudinal diffusion,
is the one that occurs in the direction of the velocity. It is
the diffusion which is present in one-dimensional classi-
cal algorithms. The second type diffusion,transverse dif-
fusion, is typically multidimensional and is due to the fact
that the mesh may not be aligned with the velocity. This
distinction between to phenomena could appear arbitrary,
but is in accordance with the numerical tests. It is illus-
trated on FIG. 2 and 3 representing numerical solutions
obtained with the classical upwind scheme on a square
mesh, with, as initial condition, the characteristic function
of a square (FIG. 1). The transport velocity isa = (1, 0)
(aligned with the mesh) for FIG. 2 anda = (1, 1) (diago-
nal, not aligned with the mesh) for FIG. 3 and the bound-
ary condition on[0, 1]2 are periodic. The results are dis-
played for timet = 1 (after one period).
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Figure 1. Initial condition.
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Figure 2. Upwind scheme.a = (1, 0), aligned with the mesh.
Time t = 1. The longitudinal diffusion applies in the
direction of transport. There is no transverse diffu-
sion.
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Figure 3. Upwind scheme.a = (1, 1), not aligned with the
mesh. Timet = 1. The diffusion which applies
orthogonally to the transport direction is brought to
light.

The difference between longitudinal and transverse
diffusions appears clearly in Després and Lagoutière
2001 which was a previous attempt to elaborate non-
dissipative schemes on non-Cartesian grids. Based on
mono-dimensional techniques, the schemes derived from
this work where longitudinally anti-dissipative, but not
transversely.

The new method here described is based on an in-
terpretation of the (anti-dissipative) limited downwind
scheme which was proposed in Lagoutière 2007 (previ-
ous works are Després and Lagoutière 2002 and Després
and Lagoutière 2007). This paper shows that the limited
downwind scheme (in dimension 1) can be understood as
a reconstruction scheme, decomposed in 3 stages at each
time step:

• a reconstruction stage which, starting from a
constant-in-cell datum, constructs a new datum, pre-
senting in each cell one discontinuity that separates
two constant values,

• a transport stage that solves the transport operation
with the new datum,

• a projection stage that computes the mean value of
the transported datum in each cell
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(see section 4 for precision on the reconstruction stage).
The natural extension to the multidimensional trans-

port problem consists in reconstructing the datum in two
steps: in a first step, performing a transverse reconstruc-
tion, and performing a longitudinal reconstruction in a
second step. This is the technique which is proposed in
this work. The following describes precisely these two
operations.

3 General numerical formalism

It is the one of finite volume methods for problem (1).
We consider a mesh ofR2 composed of non-empty open
triangles(Tj)j∈Z

such that
⋃

j∈Z
Tj = R

2 andTi∩Tj = ∅
for everyi, everyj 6= i. For each cellTj (for j ∈ Z), one
denotesK(j) the set of indices of neighboring cells ofTj

(that is to say cells having a common edge withTj),

K(j) =
{

k ∈ Z \ {j} s.t. meas1(Tj ∩ Tk) > ∅
}

where meas1 denotes the Lebesgue measure in dimension
1. Forj ∈ Z and fork ∈ K(j) (Tj andTk have an edge
in common), one denoteslj,k the length of the common
edge,

lj,k = meas1
(

Tj ∩ Tk

)

andnj,k the unit normal vector to the common edge out-
ward toTj . We thus havelj,k = lk,j andnj,k = −nk,j

for everyj ∈ Z and everyk ∈ K(j). We then denote by
K+(j) the set of indices of the downwind neighbors ofTj

and byK−(j) the set of indices of the upwind neighbors
of Tj:

K+(j) = {k ∈ K(j) s.t. (a,nj,k) > 0} ,

K+(j) = {k ∈ K(j) s.t. (a,nj,k) < 0} .

a

nj,k

Tk

Tl

k, l, m ∈ K(j)

k, l ∈ K+(j)

m ∈ K−(j)

Tm

lj,k

Tj

Figure 4. Mesh and notations

Let sj denote the surface of cellTj :

sj = meas2 (Tj)

where meas2 denotes the Lebesgue measure in dimension
2. The general form of the here considered schemes is ob-
tained by choosing a time step∆t > 0 and by integrating
the transport equation of (1) on[n∆t, (n + 1)∆t] × Tj :

un+1
j − un

j

∆t
+

1

sj





∑

K+(j)

lj,k(an
j,k,nj,k)un

j,k+

∑

K−(j)

lj,k(an
j,k,nj,k)un

j,k



 = 0. (2)

In this formula, the quantitiesan
j,k are approximate values

of the given velocitya(t, x) on the edges and theun
j,k are

approximate values of the solution on the edges between
times n∆t and (n + 1)∆t. The upwind scheme is ob-
tained takingun

j,k = un
j for k ∈ K+(j) andun

j,k = un
k

for k ∈ K−(j). We will propose another definition of
these numerical fluxes, intended to provide more precise
numerical results.

4 Discontinuous reconstructions in
dimension 1

In the following, for everya, b ∈ R, 〈a, b〉 denotes the
interval[a, b] if a ≤ b and the interval[b, a] else, that is to
say that we adopt the convention

〈a, b〉 = [min(a, b), max(a, b)]

and one has〈a, b〉 = 〈b, a〉.
We here recall the principle of discontinuous recon-

struction schemes in dimension 1. Details and proofs lie
in Lagoutière 2007 and Lagoutière 2007. We consider a
mesh (onR) with constant space step∆x > 0 whose cells
are the intervalsTj = ((j − 1/2)∆x, (j + 1/2)∆x) for
j ∈ Z. It is shown in Lagoutière 2007 that for the trans-
port equation

∂tu + a∂xu = 0,

the limited downwind scheme out of Després and
Lagoutière 2002 is equivalent to the 3-stages following
scheme. Let

(

un
j

)

j∈ Z
be a discrete datum (associated

with a constant-in-cell function).

1 “Reconstruct” in each cell the discrete datum in a
form with more detail (not constant) following the
algorithm detailed above.

2 Perform the (exact) transport of this reconstructed
datum at velocitya for a time∆t.
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3 “Project” the computed solution to obtain a new
constant-in-cell datum and to be able to iterate these
3 operations.

It now remains to describe the reconstruction opera-
tion, the two others being trivial.

Let
(

un
j

)

j∈ Z
be given. We define the discrete func-

tion u(x) =
∑

j∈Z
un

j χ[(j−1/2)∆x,(j+1/2)∆x)(x). The al-
gorithm is defined by

• if un
j /∈ (un

j−1, u
n
j+1), (that is to say ifun

j is a local
extremum), we do not reconstruct the datum in cell
Tj ,

• if un
j ∈ (un

j−1, u
n
j+1), we define



















un
j,l = un

j−1,

un
j,r = un

j+1,

dn
j =

un
j+1 − un

j

un
j+1 − un

j−1

,

(3)

and the reconstructed datum is defined insideTj by

û(x) = un
j,l

if x ∈ [(j − 1/2)∆x, (j − 1/2 + dn
j )∆x),

û(x) = un
j,r

if x ∈ [(j − 1/2 + dn
j )∆x, (j + 1/2)∆x).

Notice that whenun
j ∈ (un

j−1, u
n
j+1), formula (3) is well-

defined. In particular, the denominator in the definition of
dn

j is not0. More precisely, one always hasdn
j ∈ (0, 1),

so that(j − 1/2 + dn
j )∆x ∈ Tj. Furthermore, another

essential property of this reconstruction is that it is con-
servative:dn

j un
j,l + (1 − dn

j )un
j,r = un

j .
Of course, other values forun

j,l andun
j,r are admis-

sible, but this choice leads to the most anti-dissipative
scheme (under constraints ofL∞ stability and decreas-
ing of the total variation,cf. Lagoutière 2007). At last,
notice that not to reconstruct the datum is equivalent to
takeun

j,l = un
j,r = un

j and gives the Godunov (upwind)
scheme. The discontinuous reconstruction is illustrated on
FIG. 5.

un
j−1

un
j+1

un
j

un
j

l

un
j

r

j − 1 j j + 1

(1 − dn
j )∆xdn

j ∆x

Figure 5. Discontinuous reconstruction.

5 Discontinuous reconstructions in
dimension 2

The two-dimensional extension is not obvious. The gen-
uine two-dimensional nature of the problem, due to the
choice of a non-Cartesian grid, leads to the fact that the
finite volume method (2) cannot be seen as an exact Go-
dunov one (which would be composed of an exact trans-
port step (preceded or not by a reconstruction) followed
by a projection on the mesh) since only edge fluxes are
taken into account, with the exception of node fluxes. In
order to separate the problems of longitudinal and trans-
verse diffusions (see the introduction of this paper), we
propose to perform the reconstruction in 2 steps, each one
being a one-dimensional reconstruction. In order to sim-
plify the presentation, let us assume thata is a time and
space constant. Let

(

un
j

)

j∈Z
be a discrete datum at time

stepn.
The first reconstruction, transverse, boils down to

“cut” some cells in two in the direction of the velocity and
to modify the value of the datum in each of these two sub-
cells. The cellTj has at least one downwind neighbor and
at most two (thanks to the divergence-free hypothesis). If
it has only one downwind neighbor, we do not perform the
transverse reconstruction (we do not cut the cell). Let us
now assume thatTj has two downwind neighbors,Tk and
Tl. It has then one upwind neighbor,Tm. We consider the
intersection point of the two edges relative to the down-
wind neighbors and cutTj along the line passing on this
intersection point and parallel toa. The two induced sub-
cells are denotedTj,k andTj,l: Tj,k hasTk as downwind
neighbor, andTj,l hasTl as downwind neighbor. This cut-
ting is illustrated on FIG. 6.

Tk

Tl

Tm

Tj,k

Tj,l

a

Tj

Figure 6. Transverse reconstruction.

We denotesj,k andsj,l the surfaces of cellsTj,k and
Tj,l. One of course hassj,k + sj,l = sj andsj,k > 0 and
sj,l > 0.
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We now have to assign to each of the sub-cells a value
of the reconstructed solution. The adopted principle is
quite similar to the one in dimension 1, except that the
locus of the discontinuity is determined by the geometri-
cal aspect and not the local values of the datum: it is the
line parallel toa defined just above. The aim is to define
a valueun

j,k in the cellTj,k and a valueun
j,l in the cell

Tj,l by maximizing
∣

∣

∣un
j,l − un

j,k

∣

∣

∣ (to guarantee the anti-

dissipativity) and making certain thatsj,kun
j,k +sj,lu

n
j,l =

sju
n
j (to guarantee the conservativity). On the other side,

following the same rules as in dimension 1, we impose
that the triplet{un

l , un
j,l, u

n
j,k} has the same monotony as

the pair{un
l , un

j } and that the triplet{un
j,l, u

n
j,k, un

k} has
the same monotony as the pair{un

j , un
k}. These con-

straints imply in particular that the datum inTj would not
be reconstructed ifun

j was a local extremum in the trans-
verse direction. The algorithm is

• if un
j /∈ (un

k , un
l ) (if un

j is a local extremum in the
transverse direction), we do not reconstructu in the
cell Tj (that is to say,un

j,l = un
j,k = un

j ),

• if un
j ∈ (un

k , un
l ),

– if (sju
n
j − sj,lu

n
l )/sj,k ∈ [un

j , un
k ], we define

{

un
j,l = un

l ,

un
j,k = (sju

n
j − sj,lu

n
l )/sj,k ;

– if (sju
n
j − sj,kun

k )/sj,l ∈ [un
j , un

j ], we define

{

un
j,l = (sju

n
j − sj,kun

k)/sj,l,

un
j,k = un

k .

Lemma 1. The Courant-Friedrichs-Lewy (CFL) condi-
tion on the time step is not degraded by the transverse
reconstruction.

Proof . The standard condition for the upwind scheme for
the cellTj is

∆t

∑

k∈K+(j) lj,k(a, nj,k)

sj
≤ 1,

i.e., in the particular studied case,

∆t
lj,k(a, nj,k) + lj,l(a, nj,l)

sj
≤ 1. (4)

The CFL condition for sub-cellsTj,k andTj,l are

∆t
lj,k(a, nj,k)

sj,k
≤ 1 and ∆t

lj,l(a, nj,l)

sj,l
≤ 1. (5)

Let us denotelj the length of the segment separatingTj,k

andTj,l:
lj = mes1

(

Tj,k ∩ Tj,l

)

.

One has

sj,k =
lj × lj,k(a, nj,k)

2
and sj,l =

lj × lj,l(a, nj,l)

2
,

and

sj = sj,k + sj,l =
lj × (lj,k(a, nj,k) + lj,l(a, nj,l))

2

The two inequalities of (5) and inequality (4) thus rewrite

2∆t

lj
≤ 1,

they are equivalent.

Remark 1. Once the solution is reconstructed, the trans-
port of it is related to one-dimensional transport sinceTj,l

andTj,k have only one upwind and one downwind neigh-
bor: respectively,Tm, Tl andTm, Tk. WhenTj has only
one downwind neighbor, we do not perform the transverse
reconstruction and can consider the problem as mono-
dimensional, performing (virtually) the cutting but assign-
ing the valueun

j to each sub-cell.

After this transverse reconstruction, the algorithm
is more classical, lying on the fact that the transport is
mono-dimensional, as noticed in remark 1. We thus can
use the algorithm of our own choice. In the following,
we pitch on the limited downwind one. This can also be
understood as a second reconstruction, longitudinal.

6 Numerical results

We present a few results obtained with the algorithm de-
scribed herein. Different velocity fields are used: transla-
tion and rotation fields.
For all the test-cases, the spatial domain is[0, 1]2. The
triangular mesh has been generated by the software
FreeFem++: see FIG. 7.

Figure 7. Example of Freefem++ mesh, used for the numerical
tests (here, 3766 triangles).
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For all the test-cases, the Courant number

maxj∈Z ∆t
P

k∈K+(j) lj,k(a,nj,k)

sj
takes the value0.1.

6.1 Translation field

“translation of a square” Here we consider the veloc-
ity

a(t, x, y) =

(

1

1

)

.

This first test is the translation of the characteristic func-
tion of a square,

u0(x, y) = χ[0.3,0.7]2(x, y).

The boundary conditions are periodic inx andy. Initial
condition and results at timet = 1 (after one revolution)
are reported in FIG. 8 and FIG. 9 reports the result by the
upwind scheme.
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Figure 8. Translation of a square with 5874 cells.
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Figure 9. Translation of a square with 5874 cells, upwind
scheme.

6.2 Rotation field

“Rotation of a square” The velocity field is here

a(t, x, y) =

(

2πy

−2πx

)

and the initial condition is the same as in the preceding
test. The final time ist = 1. Figure 10 presents the result.
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Figure 10. Rotation of a square with 5874 cells.

Zalesak’s test-case The velocity field is the same as in
the preceding test,

a(t, x, y) =

(

2πy

−2πx

)

and the initial condition is taken from the original pa-
per Zalesak 1979:

u0(x, y) = χZ(x, y)

where

Z = C \ R

with

C =
{

(x, y); (x − 0.5)2 + (y − 0.75)2 ≤ 0.0225
}

,

D = {(x, y); |x − 0.5| ≤ 1/40 andy ≤ 17/20} .

Initial condition and result computed with 5874 cells at
time t = 1 lie in FIG. 11. Then, FIG. 12 represents the
same for a mesh made of 23618 cells, and FIG. 13 for a
mesh composed of 94472 cells.
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Figure 11. Zalesak’s test-case with 5874 cells.
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Figure 12. Zalesak’s test-case with 23618 cells.
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Figure 13. Zalesak’s test-case with 94472 cells.

“Deformation of a rectangle” The velocity field is now
not constant in time:

a = sgn(1 − t)

(

3π(y − 0.5)2

−3π(x − 0.5)2

)

,

which means that at timet = 1 the field is reversed. The
initial condition is the characteristic function of a rectan-
gle:

u0(x, y) = χ[0.2,0.7]×[0.45,0.55](x, y).

The exact solution at time 2 coincides with the initial con-
dition.

We observe the initial condition (FIG. 14) and the
results at timet = 1 (FIG. 15) with 5874 cells and fi-
nally the result at timet = 2 with 5874 cells (FIG. 16),
23618 cells (FIG. 17) and 94472 cells (FIG. 18). The re-
sult given by the upwind scheme with 94472 cells is re-
ported on FIG. 19.
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Figure 14. Initial condition with 5874 cells.
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Figure 15. Numerical solution with 5874 cells at timet = 1.
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Figure 16. Numerical solution with 5874 cells at timet = 2.
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Figure 17. Numerical solution with 23618 cells at timet = 2.
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Figure 18. Numerical solution with 94492 cells at timet = 2.
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Figure 19. Numerical solution with 94492 cells at timet = 2
with the upwind scheme.

7 Final comments

We developed a new method for the numerical transport
in dimension 2. The approach is truly multidimensional in
the sense that is does not resume to a mono-dimensional
reconstruction of interfaces. The numerical results show
the anti-dissipative behavior of the algorithm. The re-
sults are nevertheless not perfect. Indeed, the disconti-
nuity lines may be degraded in long time (see FIG. 11, 12,
13).

Next study will concern the extension on general
meshes (non-triangular) and in dimension 3, and the ap-
plication to gas dynamics equations.
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