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Abstract faces (see results for interface instabilities in dimensio

2 and 3 in the cited reference). The main drawback of
We develop a new multidimensional finite volume algo- this method is precisely the dimensional splitting, which
rithm for transport equations. This algorithm is both stabl  prevents the algorithm form being used on non-Cartesian
and non-dissipative. It is based on a reconstruction of thegrids.
discrete solution inside each cell, at every time step. The
proposed reconstruction, genuinely multidimensional, al
lows to recover sharp profiles both in the direction of the

transport velocity and in the transverse direction. It is We here present a way to generalize the limited
an extension of the one-dimensional reconstructions an-dO_WﬂWIn_d scheme to the case (_)f a general triangular
alyzed in Lagoutiere 2007 and Lagoutiére 2007. grid. It is based on the geometrical approach followed

in Lagoutiére 2007, Lagoutiére 2007, that provided a new
] interpretation of the limited downwind algorithm, in terms
1 Introduction of reconstruction scheme.

The present studyconcerns reconstruction schemes for
transport equations. We are especially interested in
schemes that are not dissipative, in particular for initial The paper is organized as follows. Sections 2 and 3
conditions with discontinuities. This leads to consider Presentthe mathematical and numerical problems and the
reconstructions that are not smooth, on the contrary tonotations. Then, we recall the reconstruction procedure
usual reconstructions. We indeed develop a discontinu-leading to the limited downwind scheme in dimension 1
ous reconstruction scheme which consists in reconstruct-(section 4). In section 5, the main subject of the paper is
ing the constant-in-cell datum as a discontinuous (inside addressed: the extension to upper dimensions of the pre-
each cell) function. ceding procedure. The presentation deals with dimension
Typ|ca||y, the goa| is to deve|0p transport schemes 2. Fina”y, section 6 exhibits numerical results.
for mass or volume fractions in multi-fluids. These frac-
tions can be discontinuous (at interfaces between compo-
nents) or continuous (in mixing zones). A former algo-
rithm was already developed in Després and Lagoutiére
2007. It was based in dimension 1 on timited down-
wind schemdequivalent to the Ultra-bee limiter for ad-
vection with constant velocity) and the multidimensional
algorithms where obtaineda an alternate direction split-
ting strategy. Results are satisfying, in particular faein

For the time-being, the most efficient algorithms for
pure transport rest upon interface reconstruction: see for
example SLIC and Youngs’ method, Noh and Woodward
1976 and Youngs 1984, and the method of Mosso (Mosso
and Cleancy 1995) which is a recent promising enhance-
ment. These methods are essentially limited to Cartesian
grids. We here try to derive a truly multidimensional re-
1This work was partially supported by CEA/DIF Bruyéres-leatzl construction algorithm.

101



2 Model problem

The considered model is the linear transport equation with
constant (given) velocity

Opu(t, z) + div (au) (¢, z)
= Owu(t,z) +a - Vyu(t,z) =0
u(0,-) = u® € L>®(R?),

fort > 0,

1)
where a is a smooth divergence-free velocity field:
diva(t,z) = 0 for every(t,z) € Rt x R%

The main issue for the numerical treatment of this
PDE problem is thenumerical diffusion This phe-

nomenon, easily understandable in dimension 1, is much

more complex in higher dimension. It shall be decom-
posed in two different types of diffusion. The diffusion of
the first type, which will be calletbngitudinal diffusion

is the one that occurs in the direction of the velocity. Itis
the diffusion which is present in one-dimensional classi-
cal algorithms. The second type diffusigrgnsverse dif-
fusion is typically multidimensional and is due to the fact
that the mesh may not be aligned with the velocity. This
distinction between to phenomena could appear arbitrary,
but is in accordance with the numerical tests. Itis illus-
trated on FIG. 2 and 3 representing numerical solutions

Figure 2. Upwind schemea = (1,0), aligned with the mesh.
Timet = 1. The longitudinal diffusion applies in the
direction of transport. There is no transverse diffu-
sion.
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Figure 3. Upwind schemea = (1,1), not aligned with the
mesh. Timet = 1. The diffusion which applies
orthogonally to the transport direction is brought to
light.

The difference between longitudinal and transverse
diffusions appears clearly in Després and Lagoutiere

obtained with the classical upwind scheme on a square2p01 which was a previous attempt to elaborate non-

mesh, with, as initial condition, the characteristic fuout

of a square (FIG. 1). The transport velocityais= (1,0)
(aligned with the mesh) for FIG. 2 ared= (1, 1) (diago-
nal, not aligned with the mesh) for FIG. 3 and the bound-
ary condition on[0, 1] are periodic. The results are dis-
played for timet = 1 (after one period).

Figure 1. Initial condition.
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dissipative schemes on non-Cartesian grids. Based on
mono-dimensional techniques, the schemes derived from
this work where longitudinally anti-dissipative, but not
transversely.

The new method here described is based on an in-
terpretation of the (anti-dissipative) limited downwind
scheme which was proposed in Lagoutiere 2007 (previ-
ous works are Després and Lagoutiere 2002 and Després
and Lagoutiére 2007). This paper shows that the limited
downwind scheme (in dimension 1) can be understood as
a reconstruction scheme, decomposed in 3 stages at each
time step:

e a reconstruction stage which, starting from a
constant-in-cell datum, constructs a new datum, pre-
senting in each cell one discontinuity that separates
two constant values,

e a transport stage that solves the transport operation
with the new datum,

e a projection stage that computes the mean value of
the transported datum in each cell



(see section 4 for precision on the reconstruction stage). Let s; denote the surface of céll;:

The natural extension to the multidimensional trans-
port problem consists in reconstructing the datum in two
steps: in a first step, performing a transverse reconstruc
tion, and performing a longitudinal reconstruction in a
second step. This is the technique which is proposed in
this work. The following describes precisely these two
operations.

s; = meas (7))

‘where measdenotes the Lebesgue measure in dimension
2. The general form of the here considered schemes is ob-
tained by choosing a time steft > 0 and by integrating
the transport equation of (1) dnAt¢, (n + 1)At] x T:
3 G i i Al o
eneral numerical formalism At ST L@l p)ul o+
K+(3)
It is the one of finite volume methods for problem (1).
We consider a mesh &2 composed of non-empty open
triangles(7} ), suchthatJ,, T; = R? andT;nT; = 0 > k(@) ufy | =0 (2)
for everyi, everyj # i. For each celll; (for j € Z), one K= (5)
denoted< () the set of indices of neighboring cells Bf

(thatis to say cells having a common edge Wi, In this formula, the quantities’, are approximate values

of the given velocitya(¢, z) on the edges and the', are
K(i) = {keZ\ {i\s.t meas(T; N T0) > 0 a_lpproxmate values of the solution on the edges .between
(1 ={ U o1 NTi) J timesnAt and (n + 1)At. The upwind scheme is ob-

where measdenotes the Lebesgue measure in dimensiontained takingu?, = «} for k € K*(j) andu; = uj

1. Forj € Z and fork € K (j) (T; andTy have an edge for k € K~ (j). We will propose another definition of

in common), one denotds, the length of the common these numerical fluxes, intended to provide more precise
edge, numerical results.

ljx = meas (T; NTj)

andn; ;, the unit normal vector to the common edge out- 4 Discontinuous reconstructions in
ward to7};. We thus havé;; = [} ; andn;; = —nyg ; ; ;

for everyj € Z and everyk € K(j). We then denote by dimension 1
K*(j) the set of indices of the downwind neighbors/of

- ) . In the following, f ,b € R, {a,b) denotes th
and by K~ (j) the set of indices of the upwind neighbors n the 1otowing, for everya,b € {a,b) denotes the

interval[a, b] if « < b and the intervalb, o] else, that is to

of Ty: say that we adopt the convention
K*(j) = {k € K(j) s.t.(a,n;) > 0}, {a,b) = [min(a, b), max(a,b)]
K*(j)={k € K(j)s.t.(a,n;;) <0}. and one hasa, b) = (b, a).

We here recall the principle of discontinuous recon-
struction schemes in dimension 1. Details and proofs lie
in Lagoutiere 2007 and Lagoutiere 2007. We consider a
mesh (oriR) with constant space stelr > 0 whose cells
are the intervalg; = ((j — 1/2)Ax, (j + 1/2)Axz) for
j € Z. Itis shown in Lagoutiere 2007 that for the trans-
port equation

k,l,m € K(j)
k.l e Kt(j)
m € K~ (j)

Ovu + adyu = 0,

the limited downwind scheme out of Després and
Lagoutiere 2002 is equivalent to the 3-stages following
scheme. Let(u}‘)j6 z be a discrete datum (associated

with a constant-in-cell function).

1 “Reconstruct” in each cell the discrete datum in a
form with more detail (not constant) following the
algorithm detailed above.

Figure 4. Mesh and notations 2 Perform the (exact) transport of this reconstructed
datum at velocity: for a time At¢.
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3 “Project” the computed solution to obtain a new
constant-in-cell datum and to be able to iterate these
3 operations.

It now remains to describe the reconstruction opera-
tion, the two others being trivial.
Let (u;?)je 4 be given. We define the discrete func-

tionT(z) = >y Ui X((j—1/2)A,(j+1/2)ax) (). The al-
gorithm is defined by

o if u! ¢ (u}_q,ujy,), (thatis to say ifu} is a I0<_:al
extremum), we do not reconstruct the datum in cell
Tj,

o if u? € (

u?_y,u? ), we define

n _ ,mn
Ujp = Uj—1;

n _.n
Yjr = Uit (3)
u s —u”
47 = j+1 J
7 ,n _ ,mn
Ujpr = Ui

and the reconstructed datum is defined indigey

i(z) = U?,l
if 2 € [(j—1/2)Az, (j — 1/2+ d)Ax),
u(x) = uy,

if z € [(j—1/2+d")Az, (j +1/2)Ax).

Notice that when: € (u}_;,u},,), formula (3) is well-
defined. In particular, the denominator in the definition of
dj is not0. More precisely, one always hd$ € (0, 1),

so that(j — 1/2 + d})Axz € Tj;. Furthermore, another
essential property of this reconstruction is that it is con-
servatived;uy, + (1 —dj )uf, = uj.

Of course, other values far}, anduj, are admis-
sible, but this choice leads to the most anti-dissipative
scheme (under constraints af° stability and decreas-
ing of the total variationgf. Lagoutiere 2007). At last,
notice that not to reconstruct the datum is equivalent to
takeu’;, = v}, = u} and gives the Godunov (upwind)
scheme. The discontinuous reconstruction is illustrated o
FIG. 5.

J—1 I I

T T T

j+1
djAz (1-dj)Ax

Figure 5. Discontinuous reconstruction.
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5 Discontinuous reconstructions in
dimension 2

The two-dimensional extension is not obvious. The gen-
uine two-dimensional nature of the problem, due to the
choice of a non-Cartesian grid, leads to the fact that the
finite volume method (2) cannot be seen as an exact Go-
dunov one (which would be composed of an exact trans-
port step (preceded or not by a reconstruction) followed
by a projection on the mesh) since only edge fluxes are
taken into account, with the exception of node fluxes. In
order to separate the problems of longitudinal and trans-
verse diffusions (see the introduction of this paper), we
propose to perform the reconstruction in 2 steps, each one
being a one-dimensional reconstruction. In order to sim-
plify the presentation, let us assume thas a time and
space constant. Le{u?)jez be a discrete datum at time
stepn. '

The first reconstruction, transverse boils down to
“cut” some cells in two in the direction of the velocity and
to modify the value of the datum in each of these two sub-
cells. The celll’; has at least one downwind neighbor and
at most two (thanks to the divergence-free hypothesis). If
it has only one downwind neighbor, we do not perform the
transverse reconstruction (we do not cut the cell). Let us
now assume that; has two downwind neighborg;, and
T;. It has then one upwind neighbd@t,,. We consider the
intersection point of the two edges relative to the down-
wind neighbors and cuf; along the line passing on this
intersection point and parallel toa The two induced sub-
cells are denoted} ,, andT};: Tj; hasTj as downwind
neighbor, and’;; hasT; as downwind neighbor. This cut-
ting is illustrated on FIG. 6.

Figure 6. Transverse reconstruction.

We denotes; ,, ands;; the surfaces of cell$; ,, and
T;,. One of course has; ;, + s;; = s; ands;; > 0 and
S4,1 > 0.



We now have to assign to each of the sub-cells a valueOne has
of the reconstructed solution. The adopted principle is 1 % Lix(a,ng)
quite similar to the one in dimension 1, except that the .k = ——— 5
locus of the discontinuity is determined by the geometri- and
cal aspect and not the local values of the datum: it is the
line parallel toa defined just above. The aim is to define  s; =5, +s;, =

lj X lj_’l(a, njyl)

and s;; = 5 ,

L x (k@ nyk) + L@, ngi))

a valueu?, in the cellT;, and a valueu?, in the cell _ - _ 2 _ )
T The two inequalities of (5) and inequality (4) thus rewrite
T;. by maX|m|Z|ng’u’? — ?k’ (to guarantee the anti- OAL
dissipativity) and making certain thaf yu’' , + s;u}, = o <1,
J

s;ju’; (to guarantee the conservativity). On the other side,

followmg the same rules as in dimension 1, we impose they are equivalent.

that the triplet{u;’, u?};, v}, } has the same monotony as Remark 1. Once the solution is reconstructed, the trans-

the pair{u;’, uf } and that the t”p|e‘{uj » Uy et has  portofitis related to one-dimensional transport siriEg

the same monotony as the pdiu?,u } These con- andTj i have only one upwind and one downwind neigh-

straints imply in particular that the datumfl?} would not bor: respectively[,,, T; andT,,, Tx. WhenT; has only

be reconstructed it} was a local extremum in the trans-  one downwind neighbor, we do not perform the transverse
verse direction. The algorithm is reconstruction and can consider the problem as mono-
dimensional, performing (virtually) the cutting but assig

o if u” ul,ul) (if w” is a local extremum in the .
j & (up,up) (i ug ing the valueu” to each sub-cell.

transverse direction), we do not reconstridh the

cellT; (thatis to sayu}, = uj, = u}), After this transverse reconstruction, the algorithm
_ ' is more classical, lying on the fact that the transport is
o if ul? € (ul,u}), _di i i i
J kot mono-dimensional, as noticed in remark 1. We thus can
—if (s;u” — s;u)/s;5 € [u”, ul], we define use the algorithm of our own choice. In the following,
T ” ” 7 we pitch on the limited downwind one. This can also be
T a— understood as a second reconstruction, longitudinal.
j )
uiy = (sjuf — sjui’)/sjn; _
, 6 Numerical results
—if (sju} — sjruy)/sji € [u},u]}], we define

We present a few results obtained with the algorithm de-
{ uly = (sjul — sjpug)/si, scribed herein. Different velocity fields are used: transla
tion and rotation fields.
For all the test-cases, the spatial domairOisl]?. The
Lemma 1. The Courant-Friedrichs-Lewy (CFL) condi- triangular mesh has been generated by the software
tion on the time step is not degraded by the transverse FreeFem++: see FIG. 7.
reconstruction.

n _ .n

Proof. The standard condition for the upwind scheme for
the cellT; is

ZkeK+ k(M)

Sj

<1,

i.e. in the particular studied case,

Aplir(@ngx) + laa n;0) <1. (4)
5;

The CFL condition for sub-cells; , and7};; are

AfEr B ) ang Al @) )

83,k 83,

Let us denoté; the length of the segment separatifig,
andT} ;: Figure 7. Example of Freefem++ mesh, used for the numerical

l; = mes (m N ﬁ) . tests (here, 3766 triangles).
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For all the test-cases, the Courant number 6.2 Rotation field
Z“K“”Sl_j’k(a’nj’k) takes the value.1.

maxjez At
“Rotation of a square” The velocity field is here

6.1 Translation field

2
“translation of a square” Here we consider the veloc- a(t,z,y) = ( 2::5 )
ity B

a(t,x,y) = < 1 ) and the initial condition is the same as in the preceding
test. The final time i$ = 1. Figure 10 presents the result.
This first test is the translation of the characteristic func
tion of a square,

UO(I, y) = X[0.3,0.7]2($7 Y)- 0.8
0.6
The boundary conditions are periodicinandy. Initial o

condition and results at time= 1 (after one revolution) 0
are reported in FIG. 8 and FIG. 9 reports the result by the
upwind scheme.

0
0.0_0.0.00

Figure 10. Rotation of a square with 5874 cells.

Zalesak’s test-case The velocity field is the same as in
the preceding test,

21y
a(t,z,y) = ( o )

and the initial condition is taken from the original pa-
per Zalesak 1979:

u’(z,y) = xz(x,y)

Figure 8. Translation of a square with 5874 cells.
where

Z=C\R
with

C = {(z,y); (x — 0.5)* + (y — 0.75)% < 0.0225} ,
D = {(z,y);|x — 0.5 < 1/40 andy < 17/20}.

Initial condition and result computed with 5874 cells at

Figure 9. Translation of a square with 5874 cells, upwind time¢ = 1lie in FIG. 11. Then, FIG. 12 represents the
scheme. same for a mesh made of 23618 cells, and FIG. 13 for a

mesh composed of 94472 cells.
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which means that at time= 1 the field is reversed. The
initial condition is the characteristic function of a recta
gle:

Uo(ffay) = X[0.2,0.7]x[0.45,0.55] (z,y).

The exact solution at time 2 coincides with the initial con-
dition.

We observe the initial condition (FIG. 14) and the
results at time = 1 (FIG. 15) with 5874 cells and fi-
nally the result at tim¢ = 2 with 5874 cells (FIG. 16),
23618 cells (FIG. 17) and 94472 cells (FIG. 18). The re-
sult given by the upwind scheme with 94472 cells is re-
ported on FIG. 19.

Figure 11. Zalesak's test-case with 5874 cells.

Figure 14. Initial condition with 5874 cells.

Figure 12. Zalesak's test-case with 23618 cells.

Figure 15. Numerical solution with 5874 cells at tihe- 1.

00 0.27; o:
Figure 13. Zalesak's test-case with 94472 cells.

“Deformation of arectangle” The velocity field is now
not constant in time:

a=s 3m(y — 0-5)2 Figure 16. Numerical solution with 5874 cells at tihe- 2.
- gr(l - t) 2 ;
—37n(z —0.5)
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Figure 17. Numerical solution with 23618 cells at time: 2.

Figure 18. Numerical solution with 94492 cells at time: 2.

Figure 19. Numerical solution with 94492 cells at time= 2
with the upwind scheme.

7 Final comments

We developed a new method for the numerical transport
in dimension 2. The approach is truly multidimensional in
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the sense that is does not resume to a mono-dimensional

reconstruction of interfaces. The numerical results show
the anti-dissipative behavior of the algorithm. The re-

sults are nevertheless not perfect. Indeed, the disconti-

nuity lines may be degraded in long time (see FIG. 11, 12,
13).
Next study will concern the extension on general

meshes (non-triangular) and in dimension 3, and the ap-

plication to gas dynamics equations.
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