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Abstract

We study a totally conservative algorithm for moving interfaces and
in a two-component compressible fluid. We propose to use the limited
downwind scheme developed in [9] in order to avoid artificial numerical
spreading of interfaces. The numerical treatment of the mixture is shown
to be free of spurious oscillations near the contact discontinuity. Various
numerical simulations show the interest of this approach, for interfaces in
dimension 1, 2 and 3. Simplicity of the coding is an important feature of
the algorithm. An application to dynamic mixing is also shown.

1 Introduction

We address a numerical scheme for handling interfaces in a two-component com-
pressible fluid. In this work, we essentially focus on the numerical algorithm.
We assume that the fluids are immiscible so that they are separated by interfaces
for any time T ≥ 0. In some cases, such as interface instabilities (Richtmyer-
Meshkov or Kelvin-Helmholtz, e.g.), the length of the interface may increase
dramatically in time, but, if no mixing process assumption is done, the fluids
are expected to stay separated, which is not obvious to have on the numerical
stage due to numerical diffusion. Interface tracking or interface reconstruction
algorithms are differents methods whose aim is to keep or recover sharp inter-
faces. Among many algorithms for interface tracking, interface reconstruction
or pseudo-interface reconstruction, let us refer to [12] for interface tracking, [31]
for VoF type methods, [11] for the Ghost Fluids Method, and [24] for the SLIC
algorithm, which is the first algorithm published for this kind of problems. In
the case of a multi-component fluid problem with interfaces, the validity of these
algorithms has been demonstrated since a long time: a recent review about VoF
methods is [6] (see also references therein). Even if VoF type methods have
many advantages, one can feel the need for a more partial-differential-equations
based formulation of interface multi-component fluid problems: an example is
the Level Set method [25]. An alternative to interface tracking or interface recon-
struction is to solve the mass conservation of each component, or, equivalently,
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to follow some concentration equations for the fluid components, considering
equation

∂t(ρc) + div(ρc~u) = 0, (1)

where c is a mass fraction (of one of the two fluids), volume fraction or “color”
function, ρ is the mass density of the global fluid, ~u a velocity. The two fluids
are separated in the case where c takes only the values 0 and 1. To discretize the
concentration equation (1) (cf. [3] for example) is then enough to compute the
transport of each fluid. However this approach has the well-known drawback
of standard Finite Volume numerical schemes: they are dissipative, especially
for discontinuous initial profiles (and so they are known to introduce numerical
dissipation, numerical mixing where an interface is expected). The goal of this
paper is to propose a new algorithm to compute approximate solutions of com-
pressible immiscible multi-fluid models. The method we develop in the following
takes place in the framework of finite volume algorithm, that are known to be
well adapted for compressible fluids. The difficulty is then to find a stable finite
volume algorithm with the ability to detect and compute sharp discontinuities
such as interfaces.

The main idea of this work is to discretize (1) with the limited downwind
scheme (also called the Ultra-Bee scheme when applied to linear advection with
constant velocity in [29]): see [10], [22], [9]. Other references are [4] and [30].
In [9] it is proved that the limited downwind scheme in dimension 1 is, in some
sense, exact for the transport of discontinuous data, which is a non-dissipation
property (cf. theorem 1 below). An x-y-z splitting strategy on Cartesian grids
with the limited downwind scheme appears to be a solution for computations
in dimension 3.

The general design of the algorithm developed relies on a “Lagrange-pro-
jection” or “Lagrange-re-mapping” operator splitting, which consists in solving
first all the partial differential equations of the considered system in Lagrangian
coordinates and then, in a second step, to project the solution on the fixed
Eulerian grid (at each time step). The second part of this procedure, the pro-
jection part, can be viewed as an advection step, and allows to use the limited
downwind scheme. The mass fraction of each component only evolve in the pro-
jection step: that is why the non-dissipativity of the limited downwind scheme
is here recovered for the mass fraction (and thus for interfaces).

The Lagrange step of the algorithm is in the spirit of VoF methods when
applied to multi-material flows with interfaces ([6], [19]), but the projection (or
transport) step is completely different and probably simpler than many other
algorithms. It is clearly the non-dissipation property of the transport algorithm
used in this work that allows to compute sharp interfaces (located in only one
cell in dimension one, with similar resolution in dimensions two and three).
The remainder of the algorithm (i.e. the Lagrange part) is a more classical
one: it can be viewed as a Roe scheme and it will not be extensively studied
here. Note that this particular design, the Lagrange-projection splitting, has
the advantages of allowing to get entropy inequalities rather simply, and to split
non-linear fields (in the Lagrange part) from linear fields (in the transport part),
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so that the anti-dissipative algorithm (limited downwind) for linear advection
equation can be used for the advection of mass fractions.

A list of the mathematical and numerical properties of the algorithm pro-
posed in this work is as follows.

Anti-dissipativity. The limited downwind scheme (17) allows to compute ex-
act solutions of advection equation for initial conditions that are step
functions, provided that the cells are small enough: at least 3 cells per
step of the initial condition (see theorem 1). In dimension 2, the algo-
rithm is exact for the transport of squares, and for patches of squares. In
practice the algorithm is exact at machine accuracy for a lot of interface
problems.

Absence of Oscillations near contact discontinuities. Pressure and veloc-
ity spurious oscillations do not appear at contact discontinuities (see the-
orem 3).

Conservativity in any dimension. The algorithm is conservative for each
mass, for the total mass, for the total impulse and the total energy.

TVD properties. In dimension 1, the algorithm is TVD and L∞-stable for
mass fraction. In dimensions 3 and 2 the algorithm is only L∞-stable for
mass fraction and the TVD property is lost.

The coding is simple We use a directional splitting to get a two-D and three-
D code. Applications to detonation problems is possible with good results
(in preparation), so as to problems with more than two components.

It also possible to prove that the scheme the scheme verifies entropy prop-
erties under a CFL-like condition. It means the numerical value of the physical
entropy of each component increases locally at each time step. In particular
one has Sr

n+1
j ≥ minj(Sr

n
j ) r = 1, 2 and ∀j, n, where Sr

n
j denotes the entropy

of fluid r = 1, 2 in the cell j at time step n. See propositions 1 and 2 in the
appendix, a detailed but quite lengthy proof is in [22].

This paper is organized as follows. In section 2 we present a family of models
for two-component compressible fluids. Section 3 is devoted to the presentation
of the main features of the limited downwind scheme. In section 4 we general-
ize the limited downwind scheme to the two-component fluid models and give
some of its mathematical properties. In section 5 we present various numerical
simulations in order to give an overview of the capabilities of the algorithm; we
give in section 6 a simple example with dynamic mixing.

2 A family of models

We here briefly present the systems of partial differential equations for multi-
fluids that will be considered in the whole paper. The basic model (for the
global fluid, composed of different fluids with possibly different pressure and
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temperature laws) is the Euler system: global mass, global momentum and
total energy conservations. We now have to present the choices done for the
mixture model (that is, inside the global fluid, how each fluid behaves). As
already written, we also take into account the conservation of each component
mass.

For the sake of simplicity, the presentation is restricted to a two-fluid model
(see [22] for the general case) in dimension one. The density of the global fluid
is denoted as ρ, and ρc1 (resp. ρc2) is the partial density of fluid number one
(resp. number two), where c1 (resp. c2) is the mass fraction of fluid 1 (resp. 2).
It means that c1 + c2 = 1. The velocity of the global fluid is denoted as u. We
make the assumption that the velocities of both fluids, u1 and u2, are equal,
that is

u1 = u2 = u. (2)

Let us denote, as usual, e the total energy. The first equations we take are thus





∂tρ + ∂x(ρu) = 0 (total mass conservation),
∂t(ρc1) + ∂x(ρuc1) = 0 (mass conservation of fluid 1),
∂t(ρc2) + ∂x(ρuc2) = 0 (mass conservation of fluid 2),
∂t(ρu) + ∂x(ρu2 + p) = 0 (momentum conservation),
∂t(ρe) + ∂x(ρue + pu) = 0 (total energy conservation),

where p is the pressure in the global fluid and has to be determined by setting
a mixture model, what we briefly do in the following lines. One important
assumption that is now done is that there exists a scale at which the two fluids
are separated. In other words it means that the pressure is not a function of
the apparent densities ρ1 = ρc1 and ρ2 = ρc2, but is a function of the (true)
densities: this consideration is based on the notion of additivity of volumes. We
assume that any elementary volume ∆v is the sum of two sub-volumes ∆v1 and
∆v2, ∆v = ∆v1 + ∆v2, and that only the first (resp. second) fluid is present in
∆v1 (resp. ∆v2). Here we do not make any hypothesis on the shape of these
∆v1 and ∆v2, as in figure 1.

fluid 1, ∆v1 fluid 2, ∆v2 fluid 2, ∆v2
fluid 1, ∆v1

layered mixture bubbly mixture

Figure 1: Some possible microscopic structures of the mixture.
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The total mass in ∆v is ∆m = ρ∆v. Mass fractions c1, c2 and partial
masses ∆m1 and ∆m2 are related through c1 = ∆m1

∆m and c2 = ∆m2

∆m . Since
∆m1 + ∆m2 = ∆m, one has c1 + c2 = 1. The true density of fluid number 1
(resp. 2) is denoted as ρ1 (resp. ρ2). It means that ∆m1 = ρ1∆v1 = c1ρ∆v and
∆m2 = ρ2∆v2 = c2ρ∆v. We deduce that 1

ρ (∆v1 + ∆v2) = ( c1

ρ
1

+ c2

ρ
2

)∆v. Thus

the additivity of volumes is equivalent to 1
ρ = c1

ρ
1

+ c2

ρ
2

. Defining the specific

volume of each fluid τ1,2 = 1
ρ
1,2

this equation reads

τ = c1τ1 + c2τ2, (3)

which is, let us repeat it, the mathematical expression of the additivity of vol-
umes and a consequence of the hypothesis that there exists a scale at which the
fluids are separated.

In the same way, we assume the additivity of internal energies, that is

ε = c1ε1 + c2ε2,

where ε1 and ε2 are the internal energies of each fluid and ε the one for the
global fluid, naturally leading to

e = c1ε1 + c2ε2 +
1

2
u2 (4)

The quantities τ1, τ2, ε1, ε2 allow to compute one pressure for each of the
two component, using some Equations of States (EOS):

p1 = p1(τ1, ε1) and p2 = p2(τ2, ε2). (5)

For simplicity we will consider perfect gas approximations: p1 = (γ1 − 1) ε1

τ1

,
p2 = (γ2 − 1) ε2

τ2

.
It remains to describe a mixing model in order to close the system of PDE,

i.e. to furnish a way to compute the global pressure denoted as p. A large
number of models are possible (leading to good mathematical properties: see
[22] for this study), but we here only present two of them:
1) The “isobar-isothermal” closure

p1 = p2, T1 = T2 (6)

where Cv1T1 = ε1 and Cv2T2 = ε2 for some constants Cv1 > 0 and Cv2 > 0.
2) The “isobar-isoδQ” model

p1 = p2, δQ1 = δQ2, (7)

where, from the fundamental law of thermodynamics, we have δQ1 = T1dS1 =
dε1 + p1dτ1 and δQ2 = T2dS2 = dε2 + p2dτ2. So it is possible to replace
δQ1 = δQ2 by the incremental partial differential equation

Dtε1 + p1Dtτ1 = Dtε2 + p2Dtτ2, (8)
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where Dt denotes material derivative: Dt = ∂t + u∂x in dimension one (for
regular solutions). This system seems to be more complex than the preceding
one. The reason why we use it is that it allows to obtain entropy inequalities
after discretization (see paragraph B in the annex), and to have some very good
numerical results, especially near interfaces and contact discontinuities, where
no spurious oscillations are detected (theorem 3).

The corresponding whole systems are





∂tρ + ∂x(ρu) = 0,
∂t(ρc1) + ∂x(ρuc1) = 0,
∂t(ρc2) + ∂x(ρuc2) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρe) + ∂x(ρue + pu) = 0,
c1τ1 + c2τ2 = τ = 1/ρ,
e = c1ε1 + c2ε2 + 1

2u2

p1 = p2 = p,
isothermal T1 = T2 or iso-δQ Dtε1 + p1Dtτ1 = Dtε2 + p2Dtτ2.

(9)

Among good properties of this models (which are not the subject of this
presentation), let us mention

Lemma 1 These two models are hyperbolic (see [22] for the proof).

These two models are very similar. The isothermal model has the advan-
tage to be fully conservative, while the non conservative iso-δQ model has the
advantage to be independent on the determination of Cv1

and Cv2
because it

does not involve the temperature. The second model in (9) is equivalent to the
non-conservative partial differential equation

∂tε1 + u∂xε1 + p(∂tτ1 + u∂xτ1)
= ∂tε2 + u∂xε2 + p(∂tτ2 + u∂xτ2).

(10)

When fluids 1 and 2 are separated by an interface, (9) is in some sense degener-
ated. It simply means that c1 (resp. c2) takes values only in {0, 1}: thus c1c2 = 0
everywhere. In this case the mixture equations are used for the treatment of
mixed cells at the numerical stage. The numerical treatment of the interface
configuration is responsible for the numerical mixing configuration. Figure 2
gives an example. Nevertheless (9) can also be used in the case of a true mixing
zone, see section 6 for examples in dimension 1.
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Figure 2: Interface and mixed cells

Let us now turn to the description of the algorithm we use to solve (9). We
propose an anti-dissipative algorithm which is easier to understand on a simpli-
fied configuration: the case of pure advection. We thus present this simplified
case in section 3 and the complete general scheme is written and studied in
section 4.

3 The basic scheme for moving mass fractions

Let us assume in (9) that the velocity and the pressure are constant in space
(and thus in time). It then reduces to pure transport. The numerical algorithm
has to degenerate to the numerical solution of ∂tc + u∂xc = 0. We begin by a
presentation of some properties of the transport algorithm in dimension 1, more
details are in [9].

Let us define a space cell size ∆x and a time increment ∆t. The solution
c of the advection equation with initial condition c0 is approximated by the
constant-by-cell function with value cn

j at time step n in the cell j. The finite
volume algorithm reads





cn+1
j − cn

j

∆t
+ u

cn
j+ 1

2

− cn
j− 1

2

∆x
= 0 ∀j ∈ Z, ∀n ∈ N,

c0
j =

1

∆x

∫ (j+1/2)∆x

(j−1/2)∆x

c0(x) dx ∀j.
(11)

The new value of the unknown is cn+1
j . It is a function of cn

j and of the fluxes
(cn

j+ 1

2

). As usual, a CFL condition is assumed: |u|∆t ≤ ∆x. It remains to

choose a formula for the fluxes. Let us describe the main ingredient of our basic
transport scheme: we here recall some features about the limited downwind
scheme.
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It may be useful to describe the motivation for the downwind (instead of the
usual upwind) choice for the fluxes (of course keeping in mind that it is unstable
and then will need to be limited to turn to a stable scheme).

First let us look at the very simple situation where the initial solution c0 is
a Heavyside function: this is the prototype of an interface. We also assume, for
the sake of simplicity, that u > 0.

c0
l = 1, ∀l ≤ j, and c0

l = 0, ∀l > j. (12)

Let us assume that the time step is not the maximal time step. For example
u ∆t

∆x = 1
3 < 1. For the initial condition (12), the exact solution at the first time

step is c0(x − ∆x
3 ). After projection on the grid, it is c1

l = 1
∆x

∫ (l+ 1

2
)∆x

(l− 1

2
)∆x

c0(x −
∆x
3 )dx, that is,

c1
l = 1 l ≤ j, c1

j+1 =
1

3
, c1

l = 0 l > j + 1. (13)

At the second time step, the exact solution is c0(x − 2∆x
3 ) while the projected

exact solution is c2
l = 1

∆x

∫ (l+ 1

2
)∆x

(l− 1

2
)∆x

c0(x − 2∆x
3 )dx that is

c2
l = 1 ∀l ≤ j, c2

j+1 =
2

3
, c2

l = 0 ∀l > j + 1. (14)

After a third time step, the exact solution is c0(x − ∆x). Its projection on the
grid is

c3
l = 1, ∀l ≤ j + 1, and c3

l = 0, ∀l > j + 1, (15)

and is again equal to the exact solution 4. Now we forget that (12), (13), (14)
and (15) are some cell-averages of the exact solution, and consider that these
numerical profiles are given by a finite volume scheme (11). If we try to define
some numerical fluxes such that the scheme (11) applied to the initial condition
(12) (resp. (13) or (14)) gives (13) (resp. (14) or (15)), a solution for the cell
j is c1,2

j− 1

2

= 1 and c1,2

j+ 1

2

= 0. Indeed it implies c1
j+ 1

2

= 0, c1
j = 1

3 , c1
j+1 = 0.

So we arrive at the conclusion that in this situation the “exact numerical flux”,
between cell j and cell j + 1, is equal to the down-winded value of the exact
solution, that is c1,2

j+ 1

2

= c1,2
j+1. Now we raise this simple fact is a general principle

for the choice of the numerical flux. The numerical flux will be chosen as closed
as possible to the down-winded value of the numerical solution. However it is
well-known that the downwind linear scheme (i.e. cj+ 1

2

= cj+1) is unstable.

So we need to incorporate some stability and TVD (which stands for Total
Variation Diminishing) notions in order to get a stable and convergent scheme.
What we emphasize on is that it is possible to add some TVD constraints in
the choice cj+ 1

2

= cj+1 such that: if possible we take cj+ 1

2

= cj+1; otherwise
we take cj+ 1

2

to be the closest as possible value to cj . Following the approach

presented in detail in [9] in dimension 1 and defining mn
j = min(cn

j−1, c
n
j ), Mn

j =
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max(cn
j−1, c

n
j ), we arrive at





mn
j+1 ≤ cj+ 1

2

≤ Mn
j+1, ∀j ∈ Z,

Mn
j + ∆x

u∆t (c
n
j − Mn

j ) ≤ cn
j+ 1

2

≤ mn
j + ∆x

u∆t (c
n
j − mn

j ), ∀j ∈ Z,

|cn
j+1 − cn

j+ 1

2

| is minimum, ∀j ∈ Z.

(16)

This minimization problem reduces to the explicit formula
first: compute some bounds

{
bn
j = max(mn

j+1, M
n
j + ∆x

u∆t(c
n
j − Mn

j )),

Bn
j = min(Mn

j+1, m
n
j + ∆x

u∆t (c
n
j − mn

j )).

then: compute the flux according to

cn
j+ 1

2

=





bn
j if cn

j+1 < bn
j ,

cn
j+1 if bn

j ≤ cn
j+1 ≤ Bn

j ,
Bn

j if Bn
j < cn

j+1.
(17)

Of course, an equivalent algorithm can be obtained in the case u < 0.

3.1 Properties of the scheme

We here just give an overview of the properties of this scheme. More details
may be found in [22] and [9]. First we note that the limited downwind scheme
given in (16) or (17) is equivalent to the Ultra-Bee limiter ([29], [17], [28]), in
the sense that

cn
j+ 1

2

= cn
j + max(0, min((

1

µ
− 1)rn

j ), 1)(cn
j+1 − cn

j ), rn
j =

cn
j − cn

j−1

cn
j+1 − cn

j

, (18)

where µ = u∆t/∆x is the CFL number. The following result (proved in [9] and
[22]) states that the limited downwind scheme is an exact scheme for a “dense”
in L1 set of functions, which are is staircase functions.

Theorem 1 Let us assume that the discrete function (cn
j )j∈Z is a staircase

function. That is there exists α ∈ [0, 1[ such that ∀j ∈ Z, cn
3j+1 = cn

3j and
cn
3j+2 = αcn

3j+1 + (1 − α)cn
3j+3. Then

either 0 ≤ α + µ < 1. Let us set 0 ≤ ᾱ = α + µ − 1 ≤ 1. Then for all j,
cn+1
3j+1 = cn+1

3j = cn
3j and cn+1

3j+2 = (ᾱ)cn+1
3j+1 + (1 − ᾱ)cn+1

3j+3;

or 1 ≤ α + µ < 2 Let us set 0 ≤ ᾱ = α + µ − 1 ≤ 1. Then for all j cn+1
3j+2 =

cn+1
3j+1 = cn

3j+1 and cn+1
3j+3 = (ᾱ)cn+1

3j+2 + (1 − ᾱ)cn+1
3j+4.

This theorem says that if the initial condition is a staircase function, the
numerical solution is still a staircase function at any time step and is the pro-
jection on the grid of the exact solution, at any time. In theorem 1, the convex
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combination coefficient α is the same between each three points step. It is pos-
sible to replace three points step (c3j+1 = c3j , c3j+2 = αc3j+1 + (1 − α)c3j+2),
by four (or more) points steps with non-constant α (c3j+2 = c3j+1 = c3j ,
c3j+3 = α3j+2c3j+2 + (1 − α3j+2)c3j+4).

We now turn to the same problem in dimension 2: ∂tc+u∂xc+v∂yc = 0. We
use a very simple extension of what we have just presented: a dimensional split-
ting (the so-called Alternate Direction method) of the two-dimensional equation
in order to have only to solve one-dimensional numerical problems. The princi-
ple is to solve alternatively the one-dimensional equations ∂tc + u∂xc = 0 and
∂tc+v∂yc = 0. This method of course involves a Cartesian mesh. For each phase
of the transport (x-phase and y-phase), we use the limited downwind scheme.
Recall that µ = u∆t/∆x and let us define ν = v∆t/∆y. The two-dimensional
extension of theorem 1 is given in

Theorem 2 Let us assume that the 2-D discrete function (cn
j,k)j∈Z is a staircase

function in the sense that there exists α ∈ [0, 1[ and β ∈ [0, 1[ such that ∀j ∈ Z

and ∀k ∈ Z,

• cn
3j+1,k = cn

3j,k and cn
3j+2,k = αcn

3j+1,k + (1 − α)cn
3j+3,k ;

• cn
j,3k+1 = cn

j,3k and cn
j,3k+2 = βcn

j,3k+1 + (1 − β)cn
j,3k+3.

Then

either 0 ≤ α + µ < 1 and 0 ≤ β + ν < 1. Let us set 0 ≤ ᾱ = α + µ ≤ 1 and
0 ≤ β̄ = β + ν ≤ 1. Then for all j and all k,

• cn+1
3j+1,k = cn+1

3j,k = cn
3j,k and cn+1

3j+2,k = (ᾱ)cn+1
3j+1,k + (1 − ᾱ)cn+1

3j+3,k ;

• cn+1
j,3k+1 = cn+1

j,3k = cn
j,3k and cn+1

j,3k+2 = (β̄)cn+1
j,3k+1 + (1 − β̄)cn+1

j,3k+3;

or 0 ≤ α + µ < 1 and 1 ≤ β + ν < 2. Let us set 0 ≤ ᾱ = α + µ ≤ 1 and 0 ≤
β̄ = β + ν − 1 ≤ 1. Then for all j and all k,

• cn+1
3j+1,k = cn+1

3j,k = cn
3j,k and cn+1

3j+2,k = (ᾱ)cn+1
3j+1,k + (1 − ᾱ)cn+1

3j+3,k ;

• cn+1
j,3k+2 = cn+1

j,3k+1 = cn
j,3k+1 and cn+1

j,3k+3 = (β̄)cn+1
j,3k+2 + (1 − β̄)cn+1

j,3k+4;

or 1 ≤ α + µ < 2 and 0 ≤ β + ν < 1. Let us set 0 ≤ ᾱ = α + µ − 1 ≤ 1 and
0 ≤ β̄ = β + ν ≤ 1. Then for all j and all k,

• cn+1
3j+2,k = cn+1

3j+1,k = cn
3j+1,k and cn+1

3j+3,k = (ᾱ)cn+1
3j+2,k + (1− ᾱ)cn+1

3j+4,k ;

• cn+1
j,3k+1 = cn+1

j,3k = cn
j,3k and cn+1

j,3k+2 = (β̄)cn+1
j,3k+1 + (1 − β̄)cn+1

j,3k+3;

or 1 ≤ α + µ < 2 and 1 ≤ β + ν < 2. Let us set 0 ≤ ᾱ = α + µ − 1 ≤ 1 and
0 ≤ β̄ = β + ν − 1 ≤ 1. Then for all j and all k,

• cn+1
3j+2,k = cn+1

3j+1,k = cn
3j+1,k and cn+1

3j+3,k = (ᾱ)cn+1
3j+2,k + (1− ᾱ)cn+1

3j+4,k ;

• cn+1
j,3k+2 = cn+1

j,3k+1 = cn
j,3k+1 and cn+1

j,3k+3 = (β̄)cn+1
j,3k+2 + (1 − β̄)cn+1

j,3k+4;
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A proof is given in [22]; note that this is a straightforward consequence of
theorem 1. This result expresses that an initial staircase condition is exactly
numerically advected by the limited downwind scheme with directional split-
ting: the solution remains a staircase function and the values on the stairs are
advected at the right velocity.

The extension to dimension 3 is let to the reader.

3.2 Numerical results in dimension 1 for the advection

case

Let us now present some numerical results in order to give an overview of the
capability of the scheme. These test cases have been computed with periodic
boundary conditions and unit velocity u = 1.

3.2.1 Characteristic function, figure 3

The first result is for a characteristic function in the interval [0, 1]. The initial
condition is c0(x) = 1 if 0.4 ≤ x ≤ 0.6 and c0(x) = 0 otherwise. It illustrates the
theorem (1) of exact advection. We see that this approximate solution is not at
all dissipated (figure 3, CFL number u∆t/∆x is 0.1)). Note that the result with
the limited downwind scheme is exactly the projection of the continuous solution
on the mesh. It is in this sense that we say that the limited downwind scheme
is optimal for this kind of profiles. This behavior is particularly interesting for
interface computations in 2-components fluids. The figure allows comparison
with the classical upwind scheme and the Super-Bee limiter.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

upwind
Super-Bee

limited downwind

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

upwind
Super-Bee

limited downwind

Figure 3: Initial condition and results (limited downwind, Super-Bee limiter,
upwind) for t = 1 (after one period). Log-scaled on the right. The initial
condition (also exact solution) and the limited downwind result are confounded.

3.2.2 Affine mixing zone, figure 4

The initial condition is periodic and such that c0(x) = 1−2x if 0 ≤ x < 1/2 and
c0(x) = 2(x − 1/2) if 1/2 ≤ x < 1. The solution is computed for time t = 100
(after 100 periods) and the Courant number is 0.3. One sees that the upwind
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is highly dissipative, so that the numerical profile is a straight line for large
times. On the contrary the Super-Bee scheme is subjected to the so-called over-
compressivity pathology: the numerical profile is squared for large times. The
important point is that the limited downwind scheme (also named Ultra-Bee
scheme) is so over-compressive that local instantaneous overcompressivity takes
place everywhere just after t = 0. The scheme is highly “oscillating” around
smooth profiles, since this scheme is close to the linear downwind scheme. After
this linearly unstable process, the scheme reaches its non-linear stability (TVD
stability) and becomes exact.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

exact solution
upwind

Super-Bee
limited downwind

 0.01

 0.1

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

exact solution
upwind

Super-Bee
limited downwind

Figure 4: Upwind, Super-Bee (t = 1000), limited downwind: 100 cells. Log-
scaled on the right.

3.3 Numerical results in dimension 2 for the advection

case

Let us now present some numerical results in order to give an overview of the
capability of the scheme. These test cases have been computed with periodic
boundary conditions.

3.3.1 Transport of a square in dimension 2

We present a few numerical results for the advection equation in dimension 2
in figure 5. The spatial domain we here consider is the square [0, 1[×[0, 1[∈ R2,
again with periodic boundary conditions on x = 0, x = 1, y = 0 and y = 1.
We choose as velocity the diagonal vector: u = 1, v = 1. The result reported
in figure 5 for the characteristic function � [0.1,0.5]×[0.3,0.7] is equivalent to that
obtained for one-dimensional advection: we have absolutely no dissipation for
this test case. The numerical solution is equal to the exact solution after one
revolution. Once more it is in accordance with theoretical properties of the
scheme, see theorem 2. This property of exact advection of square characteristic
functions has been proved for all directions ~u = (u, v) ∈ R2.
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t = 3/4 t = 1

Figure 5: Exact transport of a square. The velocity is u = v = 1.

We also consider the same poblem in the rotating case: the velocity field is
non constant in space and given by

u = −2π(y − 0.5), v = 2π(x − 0.5).

Since the solver uses the alternate direction strategy, each x (resp. y) sweep is
simple to code with a unique velocity on each horizontal (resp. vertical) line.
The results are quite good and show almost no disspation. The final shape is
correct.
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Figure 6: Transport of a square. The velocity is u = −2π(y − 0.5) and v =
2π(x − 0.5)

3.3.2 Transport of a circle in dimension 2

The datas are the same as in the previous subsection, except that the initial data
is the characteristic function � D where D = {(x, y) ∈ R2 s.t.

√
(x − 0.25)2 + (y − 0.25)2 ≤

0.2}. The quality of the results is quite good. In particular the numerical tran-
sition from c = 1 to c = 0 is less than 2 cells everywhere at the boundary of the
circle. For some computations, the final size of the circle is possibly closer to an
octogone. This is quite similar with the results of [30], obtained with another
anti-dissipative scheme. These computations give an indication that this very
simple transport algorithm can be efficient also for non constant general velocity
fields.
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Figure 7: Transport of a circle. The velocity is u = v = 1.
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Figure 8: Transport of a circle. The velocity is u = −2π(y − 0.5) and v =
2π(x − 0.5).

3.3.3 Zalesak’s test-case

We at last present result for the Zalesak test-case defined in [31]. Figure 9 shows
the good behavior of the scheme for complex structures.
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Figure 9: Zalesak’s test-case. The velocity is u = −2π(y − 0.5) and v = 2π(x−
0.5).

4 The complete scheme

The complete scheme for the discretization of the two-components compressible
model (9) in dimension one consists in a Lagrange-projection splitting. Dimen-
sional splitting reduces the n-dimensional problem to a series of one-dimensional
problems. Each one-dimensional problem is solved using a Lagrange-projection
of the partial differential equations: see for example [15] or [8]. In dimensions
two and three, the algorithm thus consists in a double splitting: a Lagrange-
projection splitting and a dimensional splitting. The originality of the approach
presented in this work is to use a limited downwind scheme in the re-mapping
(projection) stage of the algorithm instead of the classical upwind projection.
In what follows we write only the one-dimensional algorithm.

We first recall some basic facts about what is a Lagrange-projection split-
ting. As a simple example, let us consider the one-dimensional Euler system of
compressible gas dynamics (with only one component). Is is straightforward to
prove that the system on the left of (19) is, for smooth solutions with ρ 6= 0,
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equivalent to the system on the right:





∂tρ + ∂x(ρu) = 0,
∂tρu + ∂x(ρu2 + p) = 0,
∂tρue + ∂x(ρue + pu) = 0,

⇐⇒





ρDtτ − ∂xu = 0,
ρDtu + ∂xp = 0,
ρDte + ∂xpu = 0,

(19)

where Dt = ∂t + u∂x is the convective derivative, and τ = 1/ρ is the specific
volume. The numerical discretization of the system on the right of (19) is the
Lagrange part of the algorithm. Note that the Lagrange stage is a finite volume
discretization of fluid dynamics in the comobile frame, that is in a reference
frame which moves with the fluid. Then, of course, the re-mapping stage of the
scheme is used to project the moving Lagrangian frame on the fixed Eulerian
frame. The key point of the algorithm proposed here is more in the re-mapping
stage, where the projection of the mass fractions uses a limited downwind pro-
cedure. It is important to notice that, even if neither the Lagrange step nor
the projection one is conservative, the global algorithm is conservative. This is
a very important property to get accurate numerical results for discontinuous
solutions such as shocks and contact discontinuities.

4.1 The Lagrange computation

It corresponds to a finite volume numerical integration of the Lagrangian refor-
mulation of (9) in the moving Lagrangian frame. We get, for the two models
presented in section 2,





ρDtτ − ∂xu = 0,
ρDtc1 = 0,
ρDtc2 = 0,
ρDtu + ∂xp = 0,
ρDte + ∂xpu = 0,
p1 = p2 = p,
T1 = T2,

or





ρDtτ − ∂xu = 0,
ρDtc1 = 0,
ρDtc2 = 0,
ρDtu + ∂xp = 0,
ρDte + ∂xpu = 0,
p1 = p2 = p,
Dtε1 + p1Dtτ1 = Dtε2 + p2Dtτ2.

(20)

For every quantity z, let us denote z̃ the same quantity after the discrete La-
grangian evolution (this will allow to avoid time indices n). The discretization
then reads (forgetting for the moment the mixture part)





ρj
τ̃j − τj

∆t
−

uj+1/2 − uj−1/2

∆x
= 0,

c̃1j − c1j = 0, ,
c̃2j − c2j = 0, ,

ρj
ũj − uj

∆t
+

pj+1/2 − pj−1/2

∆x
= 0,

ρj
ẽj − ej

∆t
+

pj+1/2uj+1/2 − pj−1/2uj−1/2

∆x
= 0,

(21)

with τj = 1/ρj for all cells (that is for all j). The fluxes in this stage are defined
by the following formulae which are very close to some standard Lagrangian
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Roe type fluxes





ρc∗j+1/2 =
√

max(ρjcj
2, ρj+1cj+1

2) min(ρj , ρj+1),

pj+1/2 =
pj + pj+1

2
+

ρc∗j+1/2

2
(uj − uj+1),

uj+1/2 =
1

2ρc∗j+1/2

(pj − pj+1) +
1

2
(uj + uj+1),

(22)

with pj = p(ρj , uj , ej) and cj = c(ρj , uj , ej) (c the sound speed of the global
fluid). This can be understood as a kind of Roe scheme. The details of this
Lagrange part is not the subject of the paper and we refer to [8] for a study
of the entropy and positivity properties of the scheme. We recall the kind of
entropy inequalities obtained in the appendix.

It remains to solve the mixture model. Since (τ̃j , ũj , ẽj) have already been
computed in (21), we first compute ε̃j = ej − 1

2 (ũj)
2, and then the following

isobar-isothermal system composed of four equations:





c1τ̃1j + c2τ̃2j = τ̃j ,
c1ε̃1j + c2ε̃2j = ε̃j ,
p1(τ̃1j , ε̃1j) = p2(τ̃2j , ε̃2j),
T1(τ̃1j , ε̃1j) = T2(τ̃2j , ε̃2j).

(23)

This is a system of four equations with four unknowns: (τ̃1j , τ̃2j , ε̃1j , ε̃2j). It
is possible to prove that this system has a unique solution provided both EOS
are thermodynamically consistent (cf. [22]). For perfect gas pressure laws, it is
simple to get the exact solution (with explicit formulae). Indeed the isothermal
equation simplifies in ε1

cv1

= ε2

cv2

, thus one gets after elimination in the second

equation of the system (23) ε̃1 = eε
c1+c2

cv2

cv1

and ε̃2 = eε
c1

cv1

cv2
+c2

. We have skip the

index j which does not play any role. The isobar prescription gives τ̃1 = (γ1−1) eε1

ep

and τ̃2 = (γ2−1) eε2

ep . After elimination in the first equation of the system (23)

one gets the value of the pressure p̃ = c1(γ1−1) eε1+c2(γ2−1) eε2

eτ . It is then an easy
matter to get τ̃1 and τ̃2.

We now present the discrete isobar-isoδQ model. Let us propose the follow-
ing implicit one.





c1τ̃1j + c2τ̃2j = τ̃j ,
c1ε̃1j + c2ε̃2j = ε̃j ,
p1(τ̃1j , ε̃1j) = p2(τ̃2j , ε̃2j),[
ε1j

]
+ p1(τ̃1j , ε̃1j)

[
τ1j

]
=

[
ε2j

]
+ p2(τ̃2j , ε̃2j)

[
τ2j

]
(24)

where [z] stands for z̃−z. An interesting theoretical stability result (via entropy
inequalities) is stated in the appendix for the implicit system (24). Explicit
discretization, is possible with the advantage of being cheaper from the compu-
tational point of view. However if one assumes perfect gas pressure laws, it is a
simple exercise to get the exact analytical solution of (24). Indeed the procedure
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is very close than for the isobar-isothermal model (23). The last equation of (24)
may be recast as γ1ε̃1−γ2ε̃2 = τ1−τ2+ p̃(τ1−τ2). Using the last equation of the
system (24) one can find an expression of ε̃1 and ε̃2 as an affine expression with

respect to the pressure p̃. Using once more the isobar prescription τ̃1 = (γ1−1) eε1

ep

and τ̃2 = (γ2−1) eε2

ep , one finds out that τ̃1 and τ̃2 are some rational expressions
with respect to the pressure, the denominator and the numerator being first
order polynomials. Using these expressions in the first equation of the system
(24), one can compute the value of the pressure p̃. Once the pressure has been
computed, everything is straightforward.

4.2 The advection part

This part of the scheme, also called projection or re-mapping, is a numerical
resolution of the convective derivative equation DtU = 0 where U is the vector
of all unknowns. It consists in the numerical approximation of ∂tρ + u∂xρ = 0,
∂tc1 + u∂xc1 = 0, ∂tc2 + u∂xc2 = 0, ∂tu + u∂xu = 0, ∂tv + u∂xv = 0 and
∂te+u∂xe = 0, with either the isobar-isothermal closure (p1 = p2 = p, T1 = T2)
or the isobar-isoδQ closure p1 = p2 = p plus ∂tε1 + p∂tτ1 + u∂xε1 + pu∂xτ1 =
∂tε2+p∂tτ2+u∂xε2+pu∂xτ2. The discretization of these two systems will imply
the non-classical limited downwind fluxes, but it is much easier to understand
it via the classical upwind discretization: let us first make the use of these
dissipative fluxes, assuming uj+1/2 > 0 ∀j ∈ Z, and denoting by ẑ the quantity
z after the evolution due to this projection step.

Let us begin with the presentation of the standard upwind discrete ad-
vection equations. It reads





ρ̂j − ρ̃j

∆t
+ uj−1/2

ρ̃j+1/2 − ρ̃j−1/2

∆x
= 0,

ρ̂j ĉ1,j − ρ̃j c̃1,j

∆t
+ uj−1/2

ρ̃j+1/2 ˜c1,j+1/2 − ρ̃j−1/2 ˜c1,j−1/2

∆x
= 0,

ρ̂j ĉ2,j − ρ̃j c̃2,j

∆t
+ uj−1/2

ρ̃j+1/2 ˜c2,j+1/2 − ρ̃j−1/2 ˜c2,j−1/2

∆x
= 0,

ρ̂j ûj − ρ̃j ũj

∆t
+ uj−1/2

ρ̃j+1/2ũj+1/2 − ρ̃j−1/2ũj−1/2

∆x
= 0,

ρ̂j êj − ρ̃j ẽj

∆t
+ uj−1/2

ρ̃j+1/2ẽj+1/2 − ρ̃j−1/2ẽj−1/2

∆x
= 0

where of course ρ̃j = 1/τ̃j and with the upwind fluxes ρ̃j+1/2 = ρ̃j , ˜c1,j+1/2 =

c̃1,j , ˜c2,j+1/2 = c̃2,j , ũj+1/2 = ũj and ẽj+1/2 = ẽj . The discretization of the mix-

ture model will be presented after. First notice that this upwind discretization
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combined with the Lagrange part (21) gives





ρ̂j − ρj

∆t
+

ρ̃j+1/2uj+1/2 − ρ̃j−1/2uj−1/2

∆x
= 0,

ρ̂j ĉ1,j − ρjc1,j

∆t
+

ρ̃j+1/2 ˜c1,j+1/2uj+1/2 − ρ̃j−1/2 ˜c1,j−1/2uj−1/2

∆x
= 0,

ρ̂j ĉ2,j − ρjc2,j

∆t
+

ρ̃j+1/2 ˜c2,j+1/2uj+1/2 − ρ̃j−1/2 ˜c2,j−1/2uj−1/2

∆x
= 0,

ρ̂j ûj − ρjuj

∆t
+

ρ̃j+1/2ũj+1/2uj+1/2 + pj+1/2...

∆x
... − ρ̃j−1/2ũj−1/2uj−1/2 − pj−1/2

∆x
= 0,

ρ̂j êj − ρjej

∆t
+

ρ̃j+1/2ẽj+1/2uj+1/2 + pj+1/2uj+1/2....

∆x
... − ρ̃j−1/2ẽj−1/2 − pj−1/2uj−1/2

∆x
= 0

(25)

which shows that the global algorithm is consistent with Euler equations and
conservative for all the natural conservative variables, even for the mass of each
component. Thus

Lemma 2 The upwind scheme (25) is conservative for the mass of each com-
ponent, for the total impulse and for the total energy.

Let us then present the limited downwind extension of the upwind sche-
me (25). The observation is that (25) is obviously very dissipative, as any
upwind scheme. In order to reduce the numerical dissipation we compute some
limited downwind fluxes for ρ, c1, c2, u and e. The rule to construct all the
required fluxes is the following : all thermodynamic variables such as ρ, e are
upwinded, but the mass fractions c1, c2 are downwinded using an extension of the
limited downwind scheme given in section 3. Since conservativity of the global
scheme is a feature we want to preserve, we formulate these limited downwind
fluxes in the conservative form of the global scheme (25).

Let us present the fluxes for the thermodynamic variables. In a second step
we will give the anti-dissipative fluxes for mass fractions. As just explained,
the expression of the fluxes for the global thermodynamic variables (ρ, u, v,
e) requires the knowledge of the fluxes ˜c1j+1/2 and ˜c2j+1/2. It also requires

the fluxes of thermodynamic quantities of each component: ˜τ1,j+1/2, ˜τ2,j+1/2,

˜ε1,j+1/2, ˜ε2,j+1/2. We simply take for these thermodynamic variables an upwind

discretization:

• if uj+1/2 ≥ 0:

˜τ1,j+1/2 = τ̃1,j , ˜τ2,j+1/2 = τ̃2,j , ˜ε1,j+1/2 = ε̃1,j and ˜ε2,j+1/2 = ε̃2,j .

• if uj+1/2 < 0:

˜τ1,j+1/2 = τ̃1,j+1, ˜τ2,j+1/2 = τ̃2,j+1, ˜ε1,j+1/2 = ε̃1,j+1 and ˜ε2,j+1/2 =

ε̃2,j+1.
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We now can define fluxes for the global thermodynamic variables as follows:

f̃j+1/2 = ˜c1,j+1/2
˜f1,j+1/2 + ˜c2,j+1/2

˜f2,j+1/2, for f = τ or ε. The flux for the

velocity variable is also upwinded. This gives explicitly (26-27)

if uj+1/2 ≥ 0





ρ̃j+1/2 =
1

τ̃j+1/2

=
1

˜c1,j+1/2τ̃1,j + ˜c2,j+1/2τ̃2,j

,

ũj+1/2 = ũj ,

ẽj+1/2 = ˜c1,j+1/2ε̃1,j + ˜c2,j+1/2ε̃2,j +
1

2
ũj

2;

(26)

if uj+1/2 < 0





ρ̃j+1/2 =
1

τ̃j+1/2

=
1

˜c1,j+1/2τ̃1,j+1 + ˜c2,j+1/2τ̃2,j+1

,

ũj+1/2 = ũj+1,

ẽj+1/2 = ˜c1,j+1/2ε̃1,j+1 + ˜c2,j+1/2ε̃2,j+1 +
1

2
ũj+1

2
.

(27)

Equations (26) and (27) can be easily understood: since the exact solution
verifies very similar relations, this is why we force them at the numerical level.
We now give the numerical closures for the isobar-isothermal and for the isobar-
isoδQ models.

For the isobar-isothermal model we get ĉ1,j τ̂1,j + ĉ2,j τ̂2,j = τ̂j , ĉ1,j ε̂1,j +

ĉ2,j ε̂2,j = ε̂j , p1(τ̂1,j , ε̂1,j) = p2(τ̂2,j , ε̂2,j) and T1(τ̂1,j , ε̂1,j) = T2(τ̂2,j , ε̂2,j). As
in the Lagrange part, it can be shown that this system of four equations with
four unknowns (τ̂1,j , τ̂2,j , ε̂1,j , ε̂2,j) has a solution under natural thermodynamic

hypothesis (strict concavity of the physical entropies Si(εi, τi), see [22]). In the
case of 2 ideal gas, it is easy to get the explicit analytical expression of the
solution.

For the isobar-isoδQ model we get the discrete system (28), where [f ] =

f̂ − f̃ . The right-hand side term in last equation above in an approximation of
∆t(ρu∂x(ε2 − ε1) + ρup∂x(τ2 − τ1)). This last equation is therefore consistent
with ρ∂t(ε1 − ε2) + ρp∂t(τ1 − τ2) + ρu∂x(ε1 − ε2) + ρup∂x(τ1 − τ2) = 0. Once
more, it can be shown that in the case of two perfect gas, this system can
be solved explicitly. We have already written it, the isobar-isoδQ model has
the advantage of being numerically entropy-consistent through the consistent
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discretization (28): see proposition 2.





ĉ1,j τ̂1,j + ĉ2,j τ̂2,j = τ̂j ,

ĉ1,j ε̂1,j + ĉ2,j ε̂2,j = ε̂j ,

p1(ε̂1,j , τ̂1,j) = p2(ε̂2,j , τ̂2,j) = p̂j ,

ρ̂j([ε1,j ] + p̂j [τ1,j ] − [ε2,j ] − p̂j [τ2,j ])

= λ(uj+1/2ρ̃j+1/2(
˜c1,j+1/2

ĉ1,j

((ε̃1,j − ˜ε1,j+1/2) + p̂j(τ̃1,j − ˜τ1,j+1/2))

−
˜c2,j+1/2

ĉ2,j

((ε̃2,j − ˜ε2,j+1/2) + p̂j(τ̃2,j − ˜τ2,j+1/2)))

− uj−1/2ρ̃j−1/2(
˜c1,j−1/2

ĉ1,j

((ε̃1,j − ˜ε1,j−1/2) + p̂j(τ̃1,j − ˜τ1,j−1/2))

−
˜c2,j−1/2

ĉ2,j

((ε̃2,j − ˜ε2,j−1/2) + p̂j(τ̃2,j − ˜τ2,j−1/2))))

(28)
where λ stands for ∆t/∆x. All the algorithm for the projection part relies on
the definition of the fluxes for mass fractions, and it is time now to describe
these fluxes. We need some fluxes ˜c1,j+1/2 and ˜c2,j+1/2 for the numerical mass
conservation equations

{
ρ̂j ĉ1,j = ρjc1,j − λ(uj+1/2ρ̃j+1/2 ˜c1,j+1/2 − uj−1/2ρ̃j−1/2 ˜c1,j−1/2),

ρ̂j ĉ2,j = ρjc2,j − λ(uj+1/2ρ̃j+1/2 ˜c2,j+1/2 − uj−1/2ρ̃j−1/2 ˜c2,j−1/2),

with 



ρ̂j = ρj − λ(uj+1/2ρ̃j+1/2 − uj−1/2ρ̃j−1/2),

ρ̃j+1/2 =
1

˜c1,j+1/2τ̃1,j + ˜c2,j+1/2τ̃2,j

if uj+1/2 ≥ 0,

ρ̃j+1/2 =
1

˜c1,j+1/2τ̃1,j+1 + ˜c2,j+1/2τ̃2,j+1

if uj+1/2 < 0.

(29)

The choice we do is to use limited downwind fluxes as presented in section 3 for
the advection equation. This leads once more to an L∞-stable, TVD and non-
dissipative scheme. Of course the definition of the fluxes is here more complex
than in the pure advection case, in particular because the equation is here given
for ρc1 and ρc2 and not c1 and c2. It turns out that it is not possible to do
the complete description in these pages. Let us just insist on the fact that the
principle is to take the most downwind possible value for ˜c1,j+1/2 and ˜c2,j+1/2

under the constraint that c1 and c2 both are L∞ locally decreasing and TVD.
A straightforward property is

Lemma 3 The limited downwind scheme (defined by (25) where each flux f̃j+1

is replaced by f̃j+ 1

2

) is conservative for the mass of each component, for the total
impulse and for the total energy.
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A more complete presentation of this scheme together with some analysis of
its properties can be found in [22], and a concise description of the algorithm is
reported here in A. The following section is devoted to an important stability
result which proves that the algorithm is free of spurious oscillations near contact
discontinuities.

4.3 Control of spurious oscillations near contact disconti-

nuities

It has been stressed in many places ([5] for example) that spurious oscillations
may dramatically occur near contact discontinuities for multicomponent discrete
algorithms. Many different methods have been derived to avoid these spurious
oscillations: see [2], [26], [23], [11], [20], [21]. Up to our knowledge, such non-
oscillatory schemes are not exactly conservative for each mass component, total
momentum and total energy (they are at most quasi-conservative).

In this section we prove the scheme that is proposed in this work for the
discretization of the isobar-isoδQ model is free of these spurious oscillations
when dealing with two ideal gases. More precisely we prove that if a mixture of
two different fluids (with different γ) is at rest from the mechanical point of view
(that is the velocity and the pressure are constant), the scheme preserves this
property. A complete presentation of this scheme together with some analysis of
its properties can be found in [22], and a concise description of the algorithm is
reported here in A. The following section is devoted to oscillations near contact
discontinuities.

Theorem 3 Consider the Lagrange-projection scheme for the model with the
the isobar-isoδQ closure (21, 22, 24, 28) with two ideal gases which pressure
laws are p1 = (γ1 − 1)ε1/τ1, p2 = (γ2 − 1)ε2/τ2. Assume the mixture is at
mechanical rest at the beginning of the time step, uj = u and pj = p ∀j. Then
the mixture is still at mechanical rest at the end of the time step, ûj = u and
p̂j = p ∀j.

Proof Note that, from (21, 22), ũj = u, and that from (25), ũj = u, ∀j ∈ Z.
Thus, the difficulty is to prove that the pressure remains constant in space and
in time.

We have to prove that pressure remains constant after the Lagrange step
and also after the projection step. In each case the method of the proof is to
show separately that there exists a discrete solution of the nonlinear discrete
equations that preserves the pressure and then to prove that the discrete solution
of the nonlinear discrete equations is unique.
Lagrange stage
After the Lagrange step, (τ̃1,j , τ̃2,j , ε̃1,j , ε̃2,j) = (τ1,j , τ2,j , ε1,j , ε2,j) is clearly a
solution and since the solution is unique (see the discussion about how to solve
(24) for perfect gas laws), then we deduce that nothing changes in the Lagrange
step: we trivially have p̃1,j = p̃2,j = p̃j = p.
Projection stage
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This stage is more complex and reveals the interest of the isobar-isoδQ model
with discretization (28). Let us assume that u > 0. One can prove that





ρ̂j [ε1,j ] = −λuρ̃j−1/2

˜c1,j−1/2

ĉ1,j

(ε̃1,j − ε̃1,j−1),

ρ̂j [ε2,j ] = −λuρ̃j−1/2

˜c2,j−1/2

ĉ2,j

(ε̃2,j − ε̃2,j−1),

ρ̂j [τ1,j ] = −λuρ̃j−1/2

˜c1,j−1/2

ĉ1,j

(τ̃1,j − τ̃1,j−1),

ρ̂j [τ2,j ] = −λuρ̃j−1/2

˜c2,j−1/2

ĉ2,j

(τ̃2,j − τ̃2,j−1)

(30)

is the solution of the discrete isobar-isoδQ system. Indeed, let us prove that
(30) implies (28). Using the assumption u > 0, (30) implies that





ĉ1,j τ̂1,j + ĉ2,j τ̂2,j = τ̂j ,

ĉ1,j ε̂1,j + ĉ2,j ε̂2,j = ε̂j ,

p1(ε̂1,j , τ̂1,j) = p2(ε̂2,j , τ̂2,j) = p̂j ,

ρ̂j([ε1,j ] + p̂j [τ1,j ] − [ε2,j ] − p̂j [τ2,j ])

= λ(−uρ̃j−1/2(
˜c1,j−1/2

ĉ1,j

((ε̃1,j − ε̃1,j−1) + p̂j(τ̃1,j − τ̃1,j−1))

−
˜c2,j−1/2

ĉ2,j

((ε̃2,j − ε̃2,j−1) + p̂j(τ̃2,j − τ̃2,j−1)))).

(31)

The last equation of (31) is a direct consequence of (30). Then, using the first
two equations of (30), we get

ρ̂j(ĉ1,j ε̂1,j + ĉ2,j ε̂2,j) = ρ̂j(ĉ1,j ε̃1,j + ĉ2,j ε̃2,j)

− λuρ̃j−1/2( ˜c1,j−1/2(ε̃1,j − ε̃1,j−1) + ˜c2,j−1/2(ε̃2,j − ε̃2,j−1)).

Then replacing ρ̂j ĉ1,j and ρ̂j ĉ2,j in the right-hand side by the expressions given

by equations (25), we obtain after little simplifications,

ρ̂j(ĉ1,j ε̂1,j + ĉ2,j ε̂2,j) = ρ̃j ε̃j − λu(ρ̃j+1/2ε̃j+1/2 − ρ̃j−1/2ε̃j−1/2).

Thus,

ρ̂j(ĉ1,j ε̂1,j + ĉ2,j ε̂2,j) = ρ̃j(ε̃j +
u2

2
) − ρ̃j

u2

2

− λu(ρ̃j+1/2(ε̃j+1/2 +
u2

2
) + pu− ρ̃j−1/2(ε̃j−1/2 +

u2

2
) − pu)

+ λu(ρ̃j+1/2 − ρ̃j−1/2)
u2

2
,
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where the right-hand side is equal to

ρ̃j ẽj − λu(ρ̃j+1/2 ẽj+1/2 + pu − ρ̃j−1/2ẽj−1/2 − pu) − ρ̂j
u2

2
.

Recall that we have already proved that ûj = u. We then have

ρ̂j(ĉ1,j ε̂1,j + ĉ2,j ε̂2,j) = ρ̂j êj − ρ̂j
u2

2
= ρ̂j ε̂j .

Similarly we show that ĉ1,j τ̂1,j + ĉ2,j τ̂2,j = τ̂j . Thus (30) is the solution of (28).

Let us finally show that (30) implies that mechanical rest is preserved. It
remains only to check that p1(ε̂1,j , τ̂1,j) = p2(ε̂2,j , τ̂2,j) = p̂j = p. For this, let
us define

βj = λu
ρ̃j−1/2 ˜c1,j−1/2

ρ̂j ĉ1,j

.

We see from (30) that ε̂1,j = (1 − βj)ε̃1,j + βj ε̃1,j−1 and τ̂1,j = (1 − βj)τ̃1,j +

βj τ̃1,j−1. Consequently p1(ε̂1,j , τ̂1,j) = (γ1−1)
cε1,j

cτ1,j

= (γ1−1)
(1−βj) gε1,j

+βj ε̃1,j−1

(1−βj)gτ1,j
+βj τ̃1,j−1

.

Now, recalling that (γ1 − 1)ε̃1,j/τ̃1,j = p ∀j ∈ Z, we get

p1(ε̂1,j , τ̂1,j) = (γ1 − 1)
(1 − βj)

p
γ1−1 τ̃1,j + βj

p
γ1−1 τ̃1,j−1

(1 − βj)τ̃1,j + βj τ̃1,j−1

= p.

The same computation gives also p2(ε̂2,j , τ̂2,j) = p. Thus the pressure is the
same is all cells and is equal to the pressure at the beginning of the time step.
One has the same property for the velocity.

Remark 1 Here is a remark about the singularity in formula (28). Indeed,
note that the case ĉ1j = 0 (resp. ĉ2j = 0) is singular: the last formula in (28) is
then meaningless. Actually, it is not a problem since the cell then is a pure cell
with only one component and there is no need to compute τ1, ε1 (resp. τ2, ε2).
One can also check that the right hand side of (28) takes reasonable values even
for ĉ1j small (resp. ĉ2j small). Let us give a simple example using (31) which
corresponds to u > 0. Assume for instance that c1,j = 0 and ĉ1,j 6= 0 is small :

in this case one has ρ̂j ĉ1,j = λuρ̃j− 1

2

. Then
λuρ̃

j− 1

2

bc1,j
= ρ̂j and is non singular

near ĉ1,j ≈ 0, provided the density is non zero. All numerical experiments have
shown that (28) is non singular and very robust.

A direct consequence of theorems 1, 2 and 3 is

Theorem 4 Consider, in dimension 1, 2 or 3 the Lagrange-projection scheme
for the isobar-isoδQ model (21, 22, 24, 28) in each direction, for two ideal gases
which pressure laws are given by p1 = (γ1−1)ε1/τ1, p2 = (γ2−1)ε2/τ2. Assume
the mixture is at mechanical rest at the beginning of the time step, uj = u and
pj = p ∀j and that the mass fraction c1 is a staircase function in the sense of
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theorem 1 or 2 (or its natural extension in dimension 3). Then the mixture is
still at mechanical rest at the end of the time step with ûj = u and p̂j = p ∀,
and the mass fraction is still a staircase function.

5 Numerical results

This section is devoted to the presentation of some numerical results in dimen-
sions one, two and three. The scheme used for these solutions is the one that is
described before for the isobar-isoδQ model (21, 22, 24, 28) for two ideal gases.
The 2- and 3-D codes are obtained with a directional splitting strategy that
consists in solving alternately one-dimensional problems along directions x and
y (and z in 3-D the test).

The 3-D system corresponding to (9) is




∂tρ + div(ρ~u) = 0,
∂t(ρc1) + div(ρ~uc1) = 0,
∂t(ρc2) + div(ρ~uc2) = 0,
∂t(ρ~u) + div(ρ~u ⊗ ~u + pI) = 0,
∂t(ρe) + div(ρ~ue + p~u) = 0,
c1τ1 + c2τ2 = τ = 1/ρ,
e = c1ε1 + c2ε2 + 1

2 |u|
2

p1 = p2 = p,
isothermal T1 = T2 or iso-δQ Dtε1 + p1Dtτ1 = Dtε2 + p2Dtτ2

where Dt = ∂t + ~u · ~∇ and I is the identity matrix in dimension 3.
To assess the stability and consistency of the scheme, we first present the

result of the computations of two different Riemann problems in dimension 1.
Then we study hydrodynamic instabilities, the first one is the Kelvin-Helmholtz
instability in dimension 2, the second one the Richtmyer-Meshkov instability
in dimension 3. We will present in section 6 a result with dynamic mixing in
dimension one.

5.1 Riemann problems in dimension 1

We first compute the solution of the standard Sod shock tube problem with two
fluids having the same ideal pressure law, which is equivalent to a mono-fluid
problem. The results are given in figure 12.

0 ≤ x < 0.5 c1L = 1 ρL = 1 pL = 1 uL = 0 γL = γ1 = 1.4
0.5 ≤ x < 1 c1R = 0 ρR = 0.125 pR = 0.1 uR = 0 γR = γ2 = 1.4

Table 1: Sod shock tube parameters

The parameters of the multimaterial Sod shock tube test case are nearly the
same, except that the γ parameters of the gas laws are different. The results
are given in figure 13.
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0 ≤ x < 0.5 c1L = 1. ρL = 1. pL = 1. uL = 0 γL = γ1 = 1.4
0.5 ≤ x < 1 c1R = 0. ρR = 0.125 pR = 0.1 uR = 0 γR = γ2 = 2

Table 2: Multimaterial Sod shock tube parameters

First we give a few results computed with the isop-isoT model for both cases
(monomaterial and multimaterial). Figure 10 reports results for the velocity. We
notice well-known fact that the velocity is not constant at the contact disconti-
nuity. Moreover the isop-isoT model needs a law to compute the temperature,
that is to say, for ideal gases, coefficients cv1 and cv2 such that T1 = ε1/cv1

and T1 = ε2/cv2 . These quantities are sometime quite difficult to know for
“real-life” applications. This is a good reason to prefer the isop-isoδQ model.
Another reason is given by figure 11, where the internal energy ε is reported for
the monomaterial and the multimaterial Sod test cases with different coefficients
cv1 and cv2 and the limited downwind projection algorithm.

A pike at the contact discontinuity is present in both cases, but it is much
smaller with the isop-isoδQ. The reason is the artificial continuity of tempera-
ture that is forced by the isop-isoT model.

These are the reasons why the following two- and three-dimensional compu-
tations are done with the isop-isoδQ model.
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Figure 10: On the left: Sod shock tube computed with the isop-isoT model. On
the right: multimaterial Sod shock tube computed with the isop-isoT model.
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Figure 11: Sod shock tube with γ1 = γ2 = 1.4 on the left and γ1 = 1.4, γ2 = 2
on the right, and cv1 = 1 and cv2 = 4 on both. A huge pike is visible (with the
isop-isoT model). The height of the pike is a function of the ratio cv1

cv2

. This
pike is orders of magnitude greater than the similar discrepancy on the solutions
computed with the isop-isoδQ model.
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Figure 12: Sod shock tube. On the left (right) the numerical solution with 100
(500) cells for density, mass fraction, velocity and pressure. We have used the
isop-isoδQ model.
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Figure 13: Multimaterial Sod shock tube: γL = 1.4, γR = 2. On the left (right)
the solution with 100 (500) cells for density, mass fraction, velocity and pressure.
We have used the isop-isoδQ model. One can notice that the pressure and the
velocity are constant in the area of the contact discontinuity.
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5.2 A Kelvin-Helmholtz instability in dimension 2

The Kelvin-Helmholtz instability is a shear layer hydrodynamic instability.

ρ0 = 1

p0 = 1

ρ0 = 1

p0 = 1

(y)

(x)

u0 = 0.25

u0 = −0.25

initial interface

c0
1

= 1

c0
2

= 0

c0
1

= 0

c0
2

= 1

0 1

0

0.5
-0.5

0.5

Here the equation of the initial interface between the 2 fluids is y = f(x) =
0, 025 sin(2πx). The gas is the same on both parts of the interface with the
same pressure law γ1 = γ2 = 5

3 . This interface is a contact discontinuity where
the tangential part of the velocity is discontinuous. On the boundaries x = 0
and x = 1, we impose periodic conditions (simulating an infinite sinusoid) and
some wall-condition on y = 0 and y = 1. On the left is the result obtained
with a classical upwind discretization of the projection stage. On the right is
the result obtained limited downwind re-mapping stage. For t > 0 the interface
winds and becomes a kind of spiral.

Figure 14: Kelvin-Helmholtz instability, 10,000 cells.

The results have been computed with 100× 100 cells (figure 14), 500× 500
cells (figure 15), and, finally, with 1000× 1000 cells (figure 16), for time t = 8.
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We can compare solutions computed with the classical upwind scheme and the
limited downwind scheme (both used for the projection of mass fractions). We
observe that the scheme with limited downwind fluxes for the mass fractions
does not introduce any spreading of the interface. This allows to follow with
an increased accuracy the interfacial instability. The presence of steps along
the interface is a small drawback in this case: indeed, the results show that the
length of each step seems to converge towards 0 when refining. These results
are qualitatively comparable to those obtained with front tracking methods.

Figure 15: Kelvin-Helmholtz instability, 250,000 cells.

Figure 16: Kelvin-Helmholtz instability, 1,000,000 cells.
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5.3 A Richtmyer-Meshkov instability in dimension 3

This instability appears when a shock impinges an interface between 2 com-
ponents, coming from the light fluid and going into the heavy fluid. We here
choose initial conditions of the test-case proposed by [13] (this is the so called
“Stony Brook” test case). The interface equation is

f(x, y) = 0.005 cos(2π
√

x2 + y2/0, 036) + 0.12.

The gas is the same on both parts of the interface with the same pressure law
γ1 = γ2 = 5

3 . The computational domain is (x, y, z) ∈ [0, 0.018] × [0, 0.018] ×
[0, 0.06] with wall-conditions on x = 0, x = 0.018, y = 0, y = 0.018 and
“neutral” condition on z = 0 and z = 0.06. Initial values are (the velocity
components being denoted as u, v, w)

z > f(x, y) c1 = 1 ρ = 2.95 p = 50000 u = v = 0 w = −453,
0.09 < z < f(x, y) c1 = 0 ρ = 1.87 p = 50000 u = v = 0 w = −453,
z < 0.09 c1 = 0 ρ = 6.01 p = 753000 u = v = 0 w = 55.5.

The equations in dimension 3 are straightforward from the system written in
dimension 2. Since the discontinuity at z = 0.09 is a pure shock, the solution is
such that a pure shock arrives on the interface. After this, a typical “mushroom”
instability is observed: this is the Richtmyer-Meshkov instability. Let us observe
on figures 17 and 18 the mass fraction c1 at t = 0.00105, computed with the
scheme proposed in this work. The sharpness of the interface is almost perfect
with the limited downwind projection, and the difference with the classical
scheme is remarkable. The value of c1 is showed on x = 0 and y = 0: in order to
show the anti-dissipativity of the presented scheme, we represent on figure 17,
the regions where 0 ≤ c1 ≤ 0.1 (black), 0.1 ≤ c1 ≤ 0.9 (grey) and 0.9 ≤ c1 ≤ 1
(white). The top of the figure shows the result of the upwind remapping stage,
the mass fraction is spread over a large domain; this is not the case with the
limited downwind scheme (bottom of the figure). Figure 18 shows the same
result but with mass fraction truncated at c1 = 0.5: 0 ≤ c1 ≤ 0.5 (black),
0.5 ≤ c1 ≤ 1 (white). The result with the limited downwind scheme is almost
the same than in figure 17, showing that the mass fraction takes values 0 and 1
exepted in very few cells along the interface. Moreover, the isosurface c1 = 0.5
shows a lot more details than with the upwind projection stage.
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Figure 17: Richtmyer-Meshkov instability with the upwind scheme (top) and
limited downwind scheme (bottom) in the remapping stage, 65× 65× 216 cells.

Figure 18: Richtmyer-Meshkov instability with the upwind scheme (top) and
limited downwind scheme (bottom) in the remapping stage, 65× 65× 216 cells.
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6 Dynamic mixing in dimension 1

This section is devoted to present a very simple extension of the model and
the algorithm to dynamic mixing. Dynamic mixing is here understood as
any situation where the underlying physics tends to replace the interface with
a diffuse interface. The mechanism responsible for this phenomena may be
transition to turbulence. The model is (32)





∂tρ + ∂x(ρu) = 0,
∂t(ρc1) + ∂x(ρuc1) = ∂x(K∂xc1),
∂t(ρc2) + ∂x(ρuc2) = ∂x(K∂xc2),
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρe) + ∂x(ρue + pu) = 0,
p1 = p2 = p,
T1 = T2.

(32)

For plasma computations, the T1 = T2 model is convenient. We add a Fick
diffusion right-hand side in (9) in order to model the transition from an in-
terface at t = 0 to a mixing zone with compact support. In contrary to the
results of section 5, there is no mixing zone at t = 0, but there is one for
some time T > 0, which is characteristic of dynamic mixing. The model (32)
that we study is an extension of the isobar-isothermal one-dimensional model
where the diffusion coefficient is a non linear functional with respect to the
mass fraction K = a(c1c2)

m (a > 0 and m > 0). Numerical results for a sim-
ple experiment are given in figures 21 to 23. The initial condition is given in
figure 19. The numerical results were obtained with a splitting strategy: first
we solve the homogeneous hyperbolic left-hand side of system (32) with the
Lagrange-projection anti-dissipative algorithm described in previous sections,
second we solve an implicit discretization of the non linear diffusion equation
with an explicit value of the diffusion coefficient.
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Figure 19: t = 0: the interface (x = 0.5) is ahead of the shock (x = 0.1)
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Figure 20: The interface (x = 0.5) is still ahead of the shock (x ≈ 0.3)
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Figure 21: t = 0.2: the interface (x = 0.5) is just ahead of the shock (x ≈ 0.47)
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Figure 22: t = 0.3: the mixing zone 0.51 ≤ x ≤ 0.61 has been dynamically
created by the shock
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Figure 23: t = 0.4: the shock is now away from the mixing zone

Let us comment briefly the results: a = 0.1, m = 2, CFL = 0.6. At t = 0,
figure 19, the interface is at x = 0.5. We use different pressure laws on both
side of the interface γ1 = 1.4 and γ2 = 2. Then a shock comes on the interface.
As long as the shock does not interact with the interface, the numerical value of
the diffusion is K = a(c1c2)

m = 0 in the neighborhood of the interface, thus the
diffusion operator does not play any role in the simulation: indeed until figure
20, we see that the problem reduces to a pure hydrodynamic computation. But
in figure 21 the shock is on the interface. Now due to the fact that the velocity
is non-zero after the shock, both mass fractions c1 and c2 are transported on the
mesh. So these mass fractions take intermediate values in at least one cell. In
these cells one has c1c2 > 0 so the coefficient in the diffusion operator is positive:
it leads to non linear diffusion effect which is, in this simulation, the cause of
the dynamic mixing. This is illustrated in figures 22 and 23. This scenario is
typical of a dynamical mixing. One sees no staircase profile in figures 22 and
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23 : the reason is that we solve at each time step a diffusion operator which is
non degenerate inside the dynamic mixing zone. The Muscl limiter coupled with
the limited downwind flux introduced in previous section is probably useless in
this case. The limited downwind flux is enough.

This kind of numerical results are heavily dependent on some mathematical
properties of the non-linear degenerate diffusion operator which is on the right-
hand side of (32). It is indeed the fact that the same Cauchy problem for some
given non linear degenerate diffusion heat equation has two different solutions
which render possible this kind of modeling of dynamic mixing.

A Non-dissipative algorithm for the mass frac-

tions

The method for deriving the present scheme is rigorously the same as the one
reported in [9] for linear advection equation and for Euler equation. The princi-
ple is to write some stability (L∞ and TVD) constraints on the mass fractions
c1 and c2 and to deduce from it some sufficient conditions on each mass fraction
flux. Avoiding explaining the algorithm in detail (which is done in [22]), let us
just briefly describe it, first concentrating on the computation of fluxes for c1.

Let us define the following quantities Mj+1/2 = max(c1,j , c1,j+1), mj+1/2 =
min(c1,j , c1,j+1). Then





s̃j+1/2 = λuj+1/2 + ρj(M̃j−1/2 − c̃1,j)(τ̃1,j − τ̃2,j),

t̃j+1/2 = ρj(c̃1,j − M̃j−1/2)τ̃2,j + M̃j−1/2λuj+1/2,

ṽj+1/2 = λuj+1/2 + ρj(m̃j−1/2 − c̃1,j)(τ̃1,j − τ̃2,j),

w̃j+1/2 = ρj(c̃1,j − m̃j−1/2)τ̃2,j + m̃j−1/2λuj+1/2,

In order the scheme (25) to be stable for mass fractions, it is sufficient to have

˜c1,j+1/2s̃j+1/2 ≥ t̃j+1/2, ˜c1,j+1/2ṽj+1/2 ≤ w̃j+1/2, m̃j+1/2 ≤ ˜c1,j+1/2 ≤ M̃j+1/2.

Thus explicit form of the fluxes c1j+1/2 and c2j+1/2 depends on the signs of

s̃j+1/2 and ṽj+1/2. First remark that because of their definition, these two
numbers cannot be simultaneously negative.

• If s̃j+1/2 > 0 and ṽj+1/2 > 0, define γ̃j+1/2 = max(t̃j+1/2/s̃j+1/2, m̃j+1/2)

and Γ̃j+1/2 = min(w̃j+1/2/ṽj+1/2, M̃j+1/2).

• if s̃j+1/2 > 0 and ṽj+1/2 < 0, we define γ̃j+1/2 = max(t̃j+1/2/s̃j+1/2,

w̃j+1/2/ṽj+1/2, m̃j+1/2) and Γ̃j+1/2 = M̃j+1/2.

• if s̃j+1/2 < 0, ṽj+1/2 > 0 and we define γ̃j+1/2 = m̃j+1/2 and Γ̃j+1/2 =

min(t̃j+1/2/s̃j+1/2, w̃j+1/2/ṽj+1/2, M̃j+1/2).
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• if s̃j+1/2 = 0 (resp. ṽj+1/2 = 0), we define γ̃j+1/2 = m̃j+1/2 and Γ̃j+1/2 =

M̃j+1/2.

Then the limited downwind flux is defined as

˜c1,j+1/2 = γ̃j+1/2 if c̃1,j+1 ≤ γ̃j+1/2,

˜c1,j+1/2 = c̃1,j+1 if γ̃j+1/2 ≤ c̃1,j+1 ≤ Γ̃j+1/2,

˜c1,j+1/2 = Γ̃j+1/2 if Γ̃j+1/2 ≤ c̃1,j+1.

Then, the fluxes for c2 can be either computed with the same formulae or
(it is shown in [22] that it is equivalent) by c2,j+1/2 = 1 − c1,j+1/2.

B Entropy properties

For the sake of completness of this presentation we state some general stability
properties of the scheme that can be proved but only with the isobar-isoδQ
model. One has two numerical entropy inequalities for the scheme used for the
isobar-isoδQ model: one for the Lagrange part and one for the projection part.
We refer to [7] for a complete and quite lengthy proof of these results.

Proposition 1 Entropy property in the Lagrange part Let us consider
the Lagrangian scheme (21-24). Let S1(ε1, τ1) and S2(ε2, τ2) be concave en-
tropies for fluids 1 and 2. Then there exist c ∈ R such that under the CFL
condition c∆t/∆x ≤ 1,

S1(ε̃1,j , τ̃1,j) ≥ S1(ε1,j , τ1,j) and S2(ε̃2,j , τ̃2,j) ≥ S2(ε2,j , τ2,j) ∀j ∈ Z. (33)

The number c is an approximate value of the maximum of the (mixture) sound
speed in all the cells. Inequality (33) simply explains that the scheme is entropy
consistent in the Lagrange part. The following proposition 2 now states an
entropy result for the scheme independent on the mass fraction fluxes ˜c1,j+1/2,

˜c2,j+1/2.

Proposition 2 Entropy property in the re-mapping part Assume that
some very natural conditions are verified: positivity of temperatures, mass frac-
tions, densities. The positivity of temperature is simply T1(ε̂1,j , τ̂1,j) > 0 and

T2(ε̂2,j , τ̂2,j) > 0. We refer to [22] for the precise statement of all other posi-
tive inequalities. Then we obtain entropy inequalities for each entropy in the
re-mapping part of the algorithm, in the sense that for every j ∈ Z (r = 1, 2)

Sr(ε̂r,j , τ̂r,j) ≥ min
(
Sr(ε̃r,j , τ̃r,j), Sr(ε̃r,j−1, τ̃r,j−1), Sr(ε̃r,j+1, τ̃r,j+1)

)
.

This proves that the entropy in each cell after the projection part is greater than
the entropy before. A more precise statement of this property is in [22]. A very
remarkable feature of these inequalities is that there are true whatever the fluxes
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of the mass fractions are, the only requirement being that all other fluxes are
compatible with the fluxes of the mass fractions (26-27). So it explains that the
thermodynamic stability of the scheme is independent on the scheme used for
the mass fractions and justify the use of a highly anti-dissipative down-winded
scheme for the mass fractions in conjunction with an up-winded scheme for all
thermodynamic variables.
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