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Abstract

We propose a new numerical approach to compute nonclassical solutions to hyperbolic
conservation laws. The class of finite difference schemes presented here is fully conservative
and keep nonclassical shock waves as sharp interfaces, contrary to standard finite difference
schemes. The main challenge is to achieve, at the discretization level, a consistency property
with respect to a prescribed kinetic relation. The latter is required for the selection of phys-
ically meaningful nonclassical shocks. Our method is based on a reconstruction technique
performed in each computational cell that may contain a nonclassical shock. To validate this
approach, we establish several consistency and stability properties, and we perform careful
numerical experiments. The convergence of the algorithm toward the physically meaningful
solutions selected by a kinetic relation is demonstrated numerically for several test cases,
including concave-convex as well as convex-concave flux-functions.

1 Introduction

State of the art

We are interested here in the challenging issue of numerically computing nonclassical solutions
(containing undercompressive shocks) to nonlinear hyperbolic conservation laws. Nonclassical
solutions have the distinctive feature of being dynamically driven by small-scale effects such
as diffusion, dispersion, and other high-order phenomena. Their selection requires an additional
jump relation, called a kinetic relation, and introduced in the context of phase transition dynamics
[28, 29, 30, 31, 1, 2, 11, 20, 13, 14, 26, 27], and investigated by LeFloch and collaborators in the
context of general hyperbolic systems of conservation laws (see [21] for a review).

From pioneering work by Hayes and LeFloch [13, 14] it is now recognized that standard finite
difference schemes do not converge to nonclassical solutions selected by the prescribed kinetic
function. In fact, kinetic functions can be associated not only with continuous models, but with
the finite difference schemes themselves. Achieving a good agreement between the continuous
and the numerical kinetic functions has been found to be very challenging.
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In the present paper, we will show how to enforce the validity of the kinetic relation at the
numerical level, and we design a fully conservative scheme which combines the advantages of
standard finite differences and Glimm-type (see below) approaches.

Nonclassical shocks and other phase transitions are naturally present in many models of
continuum physics, especially in the modeling of real fluids governed by complex equations of
state. This is the case, for instance, of models describing the dynamics of liquid-vapor phase
transitions in compressible fluids, or of solid-solid phase transformations in materials such as
memory alloys. For numerical work in this direction we refer to [15, 16, 8, 24, 25].

Setting for this paper

We restrict here attention to scalar conservation laws

∂tu + ∂xf(u) = 0, u(x, t) ∈ R, (x, t) ∈ R × R+,
u(x, 0) = u0(x), (1)

and postpone the discussion of systems of conservation laws to the follow-up paper [4]. The
above equation must be supplemented with an entropy inequality of the form

∂tU(u) + ∂xF (u) ≤ 0. (2)

Here, t denotes the time variable, x the (one-dimensional) space variable, f : R → R the flux
function, and (U,F ) is any strictly convex mathematical entropy pair. That is, U : R → R is
strictly convex and F : R → R is given by F ′ = U ′f ′. Equations (1) and (2) are imposed in the
distributional sense.

We rely here on the theory of nonclassical solutions based on kinetic relations, established in
[21]. The flux f is assumed to be nonconvex, which is the source of mathematical and numerical
difficulties. From the mathematical standpoint, a single entropy inequality like (2) does not
suffice to select a unique solution. This can be seen already at the level of the Riemann problem,
corresponding to (1)-(2) when u0 has the piecewise constant form

u0(x) =
{

ul, x < 0,
ur, x > 0, (3)

ul and ur being constant states. The Riemann problem admits (up to) a one-parameter family
of solutions (see Chapter 2 in [21]). However, these solutions contain discontinuities violating the
standard Lax shock inequalities, which are referred to as nonclassical. They are essential from
the physical standpoint, and should be retained. This non-uniqueness can be fixed however,
provided an additional algebraic condition, the so-called kinetic relation, is imposed on each
nonclassical shock. Consider a shock connecting a left-hand state u− to a right-hand state u+

and propagating with the speed σ given by the usual Rankine-Hugoniot relation, that is,

u(x, t) =
{

u−, x < σt,
u+, x > σt,

σ = σ(u−, u+) =
f(u+) − f(u−)

u+ − u−
. (4)

The kinetic relation takes the form

u+ = ϕ!(u−) for all nonclassical shocks, (5)

where ϕ! is the so-called kinetic function. Equivalently, denoting by ϕ−! the inverse of the kinetic
function it may be preferable to write u− = ϕ−!(u+). The kinetic relation implies that the right-
hand (respectively left-hand) state is no longer free (as in a classical shock wave) but depends
explicitly on the left-hand (respectively right-hand) state.
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Objectives in this paper

At the numerical level, several strategies exist in the literature in order to take into account the
kinetic relation (5). We can distinguish between diffuse interface methods and sharp interface
methods.

In the first approach, one assumes that the kinetic relation is derived from an augmented
continuous model and, in order to take into account the internal structure of nonclassical dis-
continuities, one attempts to resolve the effects dues to (small) diffusive and dispersive terms
that generate them. It is then possible to construct conservative schemes that mimic at the
numerical level the effect of the regularized models. Due to the great sensitivity of nonclassi-
cal solutions with respect to small scales and numerical diffusion, it turns out that numerical
results are satisfactory for shocks with moderate amplitude, but discrepancies between the ex-
act and the numerical kinetic function arise with shocks with large amplitudes and in long-time
computations. For this circle of ideas we refer the reader to [13, 14], and the follow-up papers
[22, 7, 8].

In the second approach, small scale features are not explicitly taken into account. Instead,
the kinetic relation is included, in a way or another, in the design of the numerical scheme. This
is the case of the random choice and front tracking schemes. It should be mentioned here that
the Glimm scheme and front tracking schemes do converge to exact solutions even in presence of
nonconclassical shocks; see [20, 21, 23] for the theoretical aspects and Chalons and LeFloch [9]
for a numerical study of the Glimm scheme. These schemes require the explicit knowledge of the
underlying nonclassical Riemann solver, which may be expensive numerically, and this motivated
the introduction of the so-called transport-equilibrium scheme by Chalons [5, 6].

In [16], Hou, LeFloch, and Zhong proposed a class of converging schemes for the computation
of propagating solid-solid phase boundaries. More recently, Merckle and Rohde [25] developed
a ghost-fluid type algorithm for a model of dynamics of phase transition. These schemes pro-
vide satisfactory numerical results, as nonclassical discontinuities are sharply and accurately
computed. Although the convergence of the methods was demonstrated numerically, their main
drawback in practice is similar to the Glimm-type schemes and the property of strict conservation
of the conservative variable u fails.

Building on these previous works, our objective in this paper is to design a fully conservative,
finite difference scheme for the approximation of nonclassical solutions to the hyperbolic conser-
vation law (1). Our basic strategy relies on the discontinuous reconstruction technique proposed
recently in Lagoutière [18, 19] which has been found to be particularly efficient to computing
classical solutions of (1) with moderate numerical diffusion.

In our approach below, the kinetic function ϕ! is included explicitly in the algorithm, in
such a way that nonclassical shocks are computed (essentially) exactly while classical shocks
suffer moderate numerical diffusion. To validate our strategy we perform various numerical
experiments and, in particular, draw the kinetic function associated with our scheme. As the
mesh is refined, we observe that the approximate kinetic function converges toward the analytic
kinetic function. The scheme also enjoys several fundamental stability properties of consistency
with the conservative form of the equation and (like the Glimm scheme) with single nonclassical
discontinuities.
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2 Nonclassical Riemann solver with kinetics

Assumption on the flux-function

We describe here the nonclassical Riemann solver introduced and investigated in LeFloch [21].
Note in passing that this solver was later extended in [23] to include also a nucleation criterion.

Consider the problem (1)-(2)-(5) for a given Riemann initial data (3). Throughout this
paper we assume that the flux f is either concave-convex or convex-concave, that is, satisfies the
conditions (for all u &= 0)

uf ′′(u) > 0, f ′′′(0) &= 0, lim|u|→+∞ f ′(u) = +∞, (6)

or
uf ′′(u) < 0, f ′′′(0) &= 0, lim|u|→+∞ f ′(u) = −∞, (7)

respectively. The functions f(u) = u3 + u and f(u) = −u3 − u are prototypes of particular
interest, used later in this paper for the validation of the proposed numerical strategy.

Let ϕ" : R → R be the unique function defined by ϕ"(0) = 0 and for all u &= 0, ϕ"(u) &= u
is such that the line passing through the points (u, f(u)) and (ϕ"(u), f(ϕ"(u))) is tangent to the
graph of f at point (ϕ"(u), f(ϕ"(u))):

f ′(ϕ"(u)) =
f(u) − f(ϕ"(u))

u − ϕ"(u)
.

This function is smooth, monotone decreasing and onto thanks to (6) or (7). We denote by
ϕ−" : R → R its inverse function.

Concave-convex flux functions

Let us assume that f obeys (6) and let ϕ! : R → R be a kinetic function, that is (by definition)
a monotone decreasing and Lipschitz continuous mapping such that

ϕ!
0(u) < ϕ!(u) ≤ ϕ"(u), u > 0,

ϕ"(u) ≤ ϕ!(u) < ϕ!
0(u), u < 0.

(8)

From ϕ!, we define the function ϕ# : R → R such that the line passing through the points
(u, f(u)) and (ϕ!(u), f(ϕ!(u))) with u &= 0 also cuts the graph of the flux function f at point
(ϕ#(u), f(ϕ#(u))) with ϕ#(u) &= u and ϕ#(u) &= ϕ!(u):

f(u) − f(ϕ!(u))
u − ϕ!(u)

=
f(u) − f(ϕ#(u))

u − ϕ#(u)
.

The nonclassical Riemann solver associated with (1)-(2)-(3)-(5) is given as follows.
When ul > 0:

(1) If ur ≥ ul, the solution is a rarefaction wave connecting ul to ur.
(2) If ur ∈ [ϕ#(ul), ul), the solution is a classical shock wave connecting ul to ur.
(3) If ur ∈ (ϕ!(ul), ϕ#(ul)), the solution contains a nonclassical shock connecting ul to ϕ!(ul),

followed by a classical shock connecting ϕ!(ul) to ur.
(4) If ur ≤ ϕ!(ul), the solution contains a nonclassical shock connecting ul to ϕ!(ul), followed

by a rarefaction connecting ϕ!(ul) to ur.
When ul ≤ 0:
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(1) If ur ≤ ul, the solution is a rarefaction wave connecting ul to ur.
(2) If ur ∈ [ul, ϕ#(ul)), the solution is a classical shock wave connecting ul to ur.
(3) If ur ∈ (ϕ#(ul), ϕ!(ul)), the solution contains a nonclassical shock connecting ul to ϕ!(ul),

followed by a classical shock connecting ϕ!(ul) to ur.
(4) If ur ≥ ϕ!(ul), the solution contains a nonclassical shock connecting ul to ϕ!(ul), followed

by a rarefaction connecting ϕ!(ul) to ur.

Convex-concave flux functions

We next assume that f satisfies the condition (7). Let ϕ! : R → R be a kinetic function, that is,
a monotone decreasing and Lipschitz continuous map such that

ϕ!
0(u) < ϕ!(u) ≤ ϕ−"(u), u < 0,

ϕ−"(u) ≤ ϕ!(u) < ϕ!
0(u), u > 0.

(9)

We then define ρ(u, v) ∈ R if v &= u and v &= ϕ"(u) by

f(ρ(u, v)) − f(u)
ρ(u, v) − u

=
f(v) − f(u)

v − u

with ρ(u, v) &= u and ρ(u, v) &= v, and extend the function ρ by continuity otherwise. Note that
ϕ#(u) = ρ(u,ϕ!(u)) where ϕ# is defined as in the case of a concave-convex flux function. The
nonclassical Riemann solver associated with (1)-(2)-(3)-(5) is given as follows.
When ul > 0:

(1) If ur ≥ ul, the solution is a classical shock connecting ul to ur.
(2) If ur ∈ [0, ul), the solution is a rarefaction wave connecting ul to ur.
(3) If ur ∈ (ϕ!(ul), 0), the solution contains a rarefaction wave connecting ul to ϕ−!(ur),

followed by a nonclassical shock connecting ϕ−!(ur) to ur.
(4) If ur ≤ ϕ!(ul), the solution contains:

(i) a classical shock connecting ul to ϕ−!(ur), followed by a nonclassical shock connecting
ϕ−!(ur) to ur, if ul > ρ(ϕ−!(ur), ur).

(ii) a classical shock connecting ul to ur, if ul ≤ ρ(ϕ−!(ur), ur).
When ul ≤ 0:

(1) If ur ≤ ul, the solution is a classical shock connecting ul to ur.
(2) If ur ∈ (ul, 0], the solution is a rarefaction wave connecting ul to ur.
(3) If ur ∈ (0, ϕ!(ul)), the solution contains a rarefaction wave connecting ul to ϕ−!(ur),

followed by a non classical shock connecting ϕ−!(ur) to ur.
(4) If ur ≥ ϕ!(ul), the solution contains:

(i) a classical shock connecting ul to ϕ−!(ur), followed by a nonclassical shock connecting
ϕ−!(ur) to ur, if ul < ρ(ϕ−!(ur), ur).

(ii) a classical shock connecting ul to ur, if ul ≥ ρ(ϕ−!(ur), ur).
Observe that the convex-concave case can in principle be deduced from the concave-convex

case, by replacing f by −f and x by −x. Nevertheless, it is useful to keep the above two
descriptions in mind, since there is a dramatic difference between the Riemann solvers: the
nonclassical shock always connects ul to ϕ!(ul) in the concave-convex case, and ϕ−!(ur) to ur in
the convex-concave case. The numerical method we are going to describe must take this feature
into account, and as we will explain it is necessary to take into account both ϕ! and ϕ−! in the
design of the scheme.
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3 Motivations and difficulties

Notation

Our aim is to design a scheme for the numerical approximation of the nonclassical solutions to
(1)-(2)-(5). To this end, we consider the general class of finite volume methods. Introducing
constant space and time lengths ∆x and ∆t for the space and time discretization, we can set
xj+1/2 = j∆x, j ∈ Z, and tn = n∆t, n ∈ N. The discretization consists, at each time tn, of a
piecewise constant function x )→ uν(x, tn) which should be an approximation of the exact solution
u(x, tn) on the cell Cj = [xj−1/2;xj+1/2):

uν(x, tn) = un
j , x ∈ Cj, j ∈ Z, n ∈ N.

Here, ν refers to the ratio ∆t/∆x. The initial data at the time t = 0 is denoted by u0 and we
define the sequence (u0

j )j∈Z:

u0
j =

1
∆x

∫ xj+1/2

xj−1/2

u0(x)dx, j ∈ Z. (10)

The starting point in the conception of our algorithm is a few conventional interpretation of
the constant values un

j , j ∈ Z. As suggested by the proposed initialization (10), un
j is usually,

and rightly, seen as an approximate value of the average on cell Cj of the exact solution at time
tn. Integrating equation (1) over the slab Cj × [tn, tn+1] and using Green’s formula, it is thus
natural to define (un+1

j )j from (un
j )j and a conservative scheme of the following form

un+1
j = un

j − ∆t

∆x
(fn

j+1/2 − fn
j−1/2), j ∈ Z, (11)

where fn
j+1/2 represents an approximate value of the flux that passes through the interface xj+1/2

between the times tn and tn+1.
Here, we shall also consider un

j as a given information, on cell Cj and at time tn, on the structure
of the exact Riemann solution associated with inital states ul = un

j−1 and ur = un
j+1 which will

develop at the next times t > tn. At this stage, one easily realize that if this information is
precise (i.e. close to what will really happen), then we should be be in a good position to define
accurately the numerical fluxes fn

j+1/2 and then predict the approximate values of the solution
at time tn+1.

Linear advection equation

As a first illustration, let us consider the linear advection with constant velocity a > 0, that
is, the scalar conservation law with flux f(u) = au. In this case, the weak solution to the
initial-value problem for (1) is unique, and is given explicitly as u(t, x) = u0(x − at). Hence,
neither the entropy condition (2) nor the kinetic condition (5) are necessary. The basic scheme
for approximating this solution is the so-called upwind scheme and corresponds to the choice
fn

j+1/2 = aun
j for all j ∈ Z. Recall that the CFL condition a∆t/∆x ≤ α for a given α ≤ 1

is mandatory for the stability of the procedure. Figure 1 (left-hand) shows the corresponding
numerical solution at time t = 0.25 for a = 1, α = 0.5 and ul = 1, ur = 0 in (3). The mesh
contains 100 points per unit. We observe that the numerical solution presents a good agreement
with the exact one but contains numerical diffusion. We propose the following interpretation. In
some sense, the value un

j that we consider as an information on the Riemann solution associated
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Figure 1: Linear advection - upwind scheme (left-hand) and reconstruction scheme (right-hand).

with initial states ul = un
j−1 and ur = un

j+1 is sufficient to correctly approach this solution when
defining fn

j+1/2 = aun
j , but not enough to avoid the numerical diffusion. Note that the latter

is expected but not hoped. In the present situation, the fact is that we actually know what
will happen in the future, namely a propagation of the Riemann initial states (ul = un

j−1 and
ur = un

j+1) with speed a. In particular, no value different from un
j−1 and un

j+1 is created so that
information given by un

j is clearly not optimal. In the process of calculation of the numerical flux
fn

j+1/2, we are thus tempted to add more information in the cell Cj when replacing, as soon as
possible, the constant state un

j with a discontinuity separating un
j−1 on the left and un

j+1 on the
right, and located at point xj ∈ Cj. In the forthcoming developments, the left and right states
of this reconstructed discontinuity will be noted un

j,l and un
j,r, respectively. Hence, we have here

un
j,l = un

j−1, un
j,r = un

j+1. (12)

See Figure 2 below. We claim that this provides better information for calculating fn
j+1/2 than

the original one. Such a reconstruction is due to conserve u in order to be relevant, which defines
xj by the following constraint

(xj − xj−1/2)un
j,l + (xj+1/2 − xj)un

j,r = (xj+1/2 − xj−1/2)un
j

which equivalently recast as

xj = xj−1/2 +
un

j,r − un
j

un
j,r − un

j,l

∆x. (13)

Then, the reconstruction is possible provided we have 0 ≤ dn
j ≤ 1, with

dn
j =

un
j,r − un

j

un
j,r − un

j,l

. (14)
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Figure 2: An example of discontinuous reconstruction with conservation property (the linear
case).

Now, let us introduce ∆tj+1/2 the time needed by the reconstructed discontinuity to reach the
interface xj+1/2 (recall that a > 0). We clearly have

∆tj+1/2 =
1 − dn

j

a
∆x.

In this case, the flux that passes through xj+1/2 between times tn and tn+1 = tn + ∆t equals
f(un

j,r) until tn +∆tj+1/2, and f(un
j,l) after (if ∆tj+1/2 < ∆t). Therefore, we propose to set now

∆tfn
j+1/2 = min(∆tj+1/2,∆t)f(un

j,r) + max(∆t −∆tj+1/2, 0)f(un
j,l).

On Figure 1 (right-hand), we have plotted the numerical solution given by this new numerical
flux, leading to the so-called reconstruction scheme. The parameters of the simulation are the
same than those of Figure 1 (left-hand). We see that the more precise informations we have
brought on each cell Cj for calculating the numerical fluxes make the scheme less diffusive than
the original one. This strategy was proposed (and is discussed in further details) in [18, 19] (see
also [10, 17]). In particular, it is shown therein that the numerical solution presented in Figure 1
(right-hand) is exact in the sense that un

j equals the average of the exact solution on Cj, that is

un
j =

1
∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx, j ∈ Z, n ∈ N. (15)

The corresponding numerical discontinuity separating ul and ur in then diffused on one cell at
most.

Godunov scheme with a nonclassical Riemann solver

As a second illustration, let us go back to the problem (1)-(2)-(5) with a general concave-convex
(or convex-concave) flux function f with however, for the sake of clarity,

f ′(u) ≥ 0, u ∈ R. (16)

Here, we focus ourselves on a particular Riemann initial data (3) such that ur = ϕ!(ul). In
other words, the kinetic criterion is imposed on the initial discontinuity. The exact solution
then corresponds to the propagation of this discontinuity with speed σ(ul, ur) > 0 given by
Rankine-Hugoniot relation:

σ(ul, ur) =
f(ur) − f(ul)

ur − ul
. (17)

Figure 3 (left-hand) represents the numerical solution given by the upwind scheme fn
j+1/2 = f(un

j )
at time t = 0.1, for f(u) = u3 +u and ul = 1. The kinetic function is taken to be ϕ!(u) = −0.75u
so that ur = −0.75.
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Figure 3: Propagating nonclassical shock - upwind scheme (left-hand) and reconstruction scheme
(right-hand).

We observe a strong disagreement between the numerical solution and the exact one. Indeed,
the former is made of a (classical) shock followed by a rarefaction wave while the latter is a single
(nonclassical) shock from ul to ur. It is then clear that the usual upwind scheme (as many others
actually) is not adapted for the computation of nonclassical solutions. The next result states
that the upwind scheme always converges towards the classical solution of (1)-(2). This scheme
is then adapted for the computation of classical solutions only.

Property. Assume that u0 ∈ L∞(R) and f is a smooth function satisfying (16). Then, under
the CFL condition

∆t

∆x
max
u∈A

|f ′(u)| ≤ 1,

with A := [minx u0(x),maxx u0(x)] the upwind conservative scheme (11) with fn
j+1/2 = f(un

j )
converges towards the unique classical solution of (1)-(2).

To establish this property, we only need to observe that, under the assumption (16) (prop-
agation is only in one direction), the upwind scheme is equivalent to the standard Godunov
scheme associated with the classical Riemann solver of (1)-(2) Then, standard compactness and
consistency arguments apply and allow us to conclude that the scheme converges towards the
unique classical solution.

Obviously, the above property also holds if f is assumed to be decreasing if we define fn
j+1/2 =

f(un
j+1).

4 A conservative scheme for nonclassical entropy solutions

Preliminaries

In view of the discussion in the previous section and in order to better evaluate the numerical
fluxes fn

j+1/2, let us obtain some information beyond un
j on cell Cj . In the present instance of

an isolated propagating discontinuity, it is expected that the Riemann solution associated with
initial states un

j−1 and un
j+1 simply propagates the initial discontinuity. This is actually true if
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un
j−1 = ul and un

j+1 = ϕ!(ul), or more generally if un
j+1 = ϕ!(un

j−1). So that here again, we
propose to replace the constant state un

j with a discontinuity separating un
j,l and un

j,r and located
at point xj given by (13), as soon as possible i.e. when 0 ≤ dn

j ≤ 1. We take

un
j,l = ϕ−!(un

j+1) and un
j,r = ϕ!(un

j−1). (18)

Note that this reconstruction is equivalent to (12) provided that un
j−1 = ul and un

j+1 = ϕ!(ul),
or more generally un

j+1 = ϕ!(un
j−1). Then, under the assumption (16), we again naturally set

∆tfn
j+1/2 = min(∆tj+1/2,∆t)f(un

j,r) + max(∆t −∆tj+1/2, 0)f(un
j,l)

with now
∆tj+1/2 =

1 − dn
j

σ(un
j,l, u

n
j,r)

∆x. (19)

Figure 3 (right-hand) highlights the benefit of such a reconstruction. The numerical solution
now fully agrees with the exact one and is moreover free of numerical diffusion (the profile is
composed of a single point). We will show below that it is exact in this case, in the sense that
(15) is still valid as in the linear case.

The scheme

On the basis of the above motivations and illustrations, we follow the description of our algorithm
by considering the general situation. Assuming as given a sequence (un

j )j∈Z at time tn, it is thus
a question of defining its evolution towards the next time level tn+1. More precisely, and in the
context of a finite volume conservative scheme, we have to define the numerical fluxes (fn

j+1/2)j∈Z
coming in (11). For that, we still assume

either f ′(u) ≥ 0 for all u, or f ′(u) ≤ 0 for all u, (20)

so that propagation is in one direction only. According to the previous section, information in
cell Cj is understood as an element of the inner structure of the Riemann problem associated
with initial states un

j−1 and un
j+1. This one will be used to compute either fn

j+1/2 (if f ′(u) ≥ 0)
or fn

j−1/2 (if f ′(u) ≤ 0).
In Section 2, it is stated that the Riemann problem associated with initial states un

j−1 and un
j+1

may contain a nonclassical shock between un
j−1 and ϕ!(un

j−1) if the function is concave-convex
(and between ϕ−!(un

j+1) and un
j+1 if the function is convex-concave).

Recall that these nonclassical waves are difficult to capture numerically and require special
attention. (We have shown in the previous section that as many others, the upwind scheme does
not suit.) Instead of considering un

j as a sufficiently accurate information for the structure of
the Riemann solution associated with the initial states un

j−1 and un
j+1, we propose to replace

it (whenever possible) with a discontinuity separating un
j,l = ϕ−!(un

j+1) on the left and un
j,r =

ϕ!(un
j−1) on the right, and located at point xj ∈ Cj. In other words, we propose to introduce in

the cell Cj the right (respectively left) state ϕ!(un
j−1) (respectively ϕ−!(un

j+1)) of the nonclassical
discontinuity which is expected to be present in the Riemann solution associated with un

j−1
and un

j+1 (depending on if f obeys (6) or (7)). As in the previous section, one requires the
reconstructed discontinuity to satisfy the conservation property (13) and to be located inside
Cj, that is 0 ≤ dn

j ≤ 1 with dn
j given in (14). See Figure 4 for an illustration. Here, we let

un
j,l = un

j,r = un
j if dn

j given in (14) does not belong to [0, 1].

10



un
j,l

un
j,r

j − 1 j j + 1

(1 − dn
j )∆xdn

j ∆x

Figure 4: A general discontinuous reconstruction with conservation property (the general case).

Then, we naturally set for all j ∈ Z:
(i) if f is non-decreasing

∆tfn
j+1/2 =

{
min(∆tj+1/2,∆t)f(un

j,r) + max(∆t −∆tj+1/2, 0)f(un
j,l), 0 ≤ dn

j ≤ 1,
∆tf(un

j ), otherwise, (21)

with

∆tj+1/2 =
1 − dn

j

σ(un
j,l, u

n
j,r)

∆x. (22)

(ii) if f is non-increasing:

∆tfn
j−1/2 =

{
min(∆tj−1/2,∆t)f(un

j,l) + max(∆t −∆tj−1/2, 0)f(un
j,r), 0 ≤ dn

j ≤ 1,
∆tf(un

j ), otherwise, (23)

with
∆tj−1/2 =

dn
j

−σ(un
j,l, u

n
j,r)

∆x. (24)

Note that contrary to the linear advection (see the first illustration in the previous section), the
local time step ∆tj+1/2 (respectively ∆tj−1/2) given by (22) (respectively (24)) is now only a
prediction of the time needed by the reconstructed discontinuity to reach the interface xj+1/2

(respectively xj−1/2). The prediction step is however exact in the case of an isolated nonclassical
discontinuity (see the second illustration in the previous section) and more generally as soon as
un

j−1 and un
j+1 verify un

j+1 = ϕ!(un
j−1).

Observe that the proposed scheme belongs to the class of five-point schemes, since un+1
j

depends on un
j−2, un

j−1, un
j , un

j+1 and un
j+2.

Stability and consistency properties

We now state and prove important properties enjoyed by our algorithm.
We assume that the flux f satisfies the monotonicity condition (20) and either the concave-

convex or concave-convex conditions (6) or (7) respectively. Then, under the CFL restriction

∆t

∆x
max

u
|f ′(u)| ≤ 1, (25)

where the maximum is taken over all the u under consideration, the conservative scheme (11)
with fn

j+1/2 defined for all j ∈ Z by (21)-(23) is consistent with (1)-(2)-(5) in the following sense.

11



Property 1 (Flux consistency.) Assume that u := un
j−1 = un

j = un
j+1, then fn

j+1/2 = f(u) if
f ′ ≥ 0 and fn

j−1/2 = f(u) if f ′ ≤ 0.

Property 2 (Classical solutions.) Assume that un
j−2, un

j−1, un
j , un

j+1 and un
j+2 belong to the

same region of convexity of f . Then the definition un+1
j given by the conservative scheme (11)-

(21)-(23) coincides with the one given by the usual upwind conservative scheme. Then it obeys
all the usual stability properties provided by this scheme. In particular, the strategy is convergent
if the whole discrete solution belongs to the same region of convexity of f .

Property 3 (Isolated nonclassical shock waves.) Let ul and ur be two initial states such
that ur = ϕ!(ul). Assume that u0

j = ul if j ≤ 0 and u0
j = ur if j ≥ 1. Then the conservative

scheme (11)-(21)-(23) provides an exact numerical solution on each cell Cj in the sense that

un
j =

1
∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx, j ∈ Z, n ∈ N, (26)

where u denotes the exact Riemann solution of (1)-(2)-(3)-(5) given by u(x, t) = ul if x <
σ(ul, ur)t and u(x, t) = ur otherwise, and is convergent towards u. In particular, the numerical
discontinuity is diffused on one cell at most.

The following comments are in order. Property (i) shows that the proposed numerical flux
function is consistent in the classical sense of finite volume methods. Properties (ii) and (iii)
provide us with crucial stability/accuracy properties. They show that the method is actually
convergent if the solution remains in the same region of convexity of f (see (ii)) or, more im-
portantly, the solution consists in an isolated nonclassical discontinuity satisfying the prescribed
kinetic relation (see (iii)). We emphasize that all of the conservative schemes proposed so far in
the literature violate the latter property.

Proof of Property 1. (i) If u := un
j−1 = un

j = un
j+1 then

dn
j =

ϕ!(u) − u

ϕ!(u) − ϕ−!(u)
.

The property 0 ≤ dn
j ≤ 1 means min(ϕ−!(u), ϕ!(u)) ≤ u ≤ max(ϕ−!(u), ϕ!(u)) and cannot hold,

since u and ϕ!(u) do not have the same sign for all u. Then, we obtain fn
j+1/2 = f(u) if f ′ ≥ 0

and fn
j−1/2 = f(u) if f ′ ≤ 0 by (21)-(23).

Proof of Property 2. Assume without restriction that f ′ ≥ 0 and recall that 0 ≤ dn
j−1 ≤ 1 and

0 ≤ dn
j ≤ 1 respectively means that min(ϕ−!(un

j ), ϕ!(un
j−2)) ≤ un

j−1 ≤ max(ϕ−!(un
j ), ϕ!(un

j−2))
and min(ϕ−!(un

j+1), ϕ!(un
j−1)) ≤ un

j ≤ max(ϕ−!(un
j+1), ϕ!(un

j−1)). These inequalities are not valid
since by definition u and ϕ!(u) do not belong to the same region of convexity of f . By (21)-(23),
the numerical fluxes fn

j±1/2 coincides with the usual upwind fluxes and the conclusion follows.

Proof of Property 3. First, note that there is no relevant reconstruction in the first iteration.
Indeed, the property 0 ≤ dn

j ≤ 1 reads as follows if j < 0 or j > 1,

0 ≤ dn
j ≤ 1 if and only if

{
min(ϕ−!(ul), ϕ!(ul)) ≤ ul ≤ max(ϕ−!(ul), ϕ!(ul)), j < 0,
min(ϕ−!(ur), ϕ!(ur)) ≤ ur ≤ max(ϕ−!(ur), ϕ!(ur)), j > 1,
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which again cannot hold (see (i) below), while if j = 0 or j = 1, the relation ur = ϕ!(ul) and
definition (14) give 





dn
j =

ur − ul

ur − ul
= 1, j = 0,

dn
j =

ur − ur

ur − ul
= 0, j = 1,

so that the reconstructions exist but are trivial: ul = ϕ−!(ur) (respectively ur = ϕ!(ul)) takes
the whole cell associated with j = 0 (respectively j = 1).
Assume now without restriction that f is non-decreasing and let ∆t be such that (25) holds. After
one time step ∆t, the exact solution given by u(x,∆t) = ul if x < σ(ul, ur)∆t and u(x,∆t) = ur

otherwise is such that

1
∆x

∫ xj+1/2

xj−1/2

u(x,∆t)dx =






ul, j ≤ 0,
ur − σ(ul, ur) ∆t

∆x(ur − ul), j = 1,
ur, j > 1.

(27)

But recall that σ(ul, ur) is given by (17) so that we have

1
∆x

∫ xj+1/2

xj−1/2

u(x,∆t)dx =






ul − ∆t
∆x(f(ul) − f(ul)), j ≤ 0,

ur − ∆t
∆x(f(ur) − f(ul)), j = 1,

ur − ∆t
∆x(f(ur) − f(ur)), j > 1,

(28)

that is
u1

j =
1
∆x

∫ xj+1/2

xj−1/2

u(x,∆t)dx, j ∈ Z. (29)

The identity (26) is then proved for the first iterate.
What happens now in the next time iteration ? At this stage, it is first clear (see the previous
discussion just below) that only cell C1 is going to be dealt with a reconstruction. Now, the main
point of the proof lies in the fact that the reconstructed discontinuity in this cell actually joins
the expected states ϕ−!(u1

2) = ϕ−!(ur) = ul and ϕ!(u1
0) = ϕ!(ul) = ur and is located exactly at

point x = σ(ul, ur)∆t by the conservation property (29). In other words, we have reconstructed
the exact solution at time t = ∆t. To derive the required identity (26) for the second iterate, it
is sufficient to recall that by Green’s formula the conservative scheme (11) with fn

j+1/2 defined
for all j ∈ Z by (21)-(23) is equivalent for n = 2 to average the evolution of this exact solution
up to time t2 = 2∆t. And the process is going on in a similar way for the next time iterations,
which proves the result.

5 Numerical experiments

We mostly consider here the flux f(u) := u3 + u, thus f is concave-convex in the sense given in
the second section. For the entropy-entropy flux pair (U,F ) required in (2), we use

U(u) := u2, F (u) :=
3
2
u4 + u2.

Easy calculations lead to explicit formulas for ϕ" and ϕ−":

ϕ" = −u

2
, ϕ−" = −2u, ϕ!

0(u) = −u.

13



Moreover, we have here ϕ#(u) = −u − ϕ!(u).

The choice of the kinetic function ϕ! must be in agreement with relations (8) with ϕ" and ϕ!
0

just calculated. Here, we will choose the kinetic function

ϕ!(u) = −βu, β ∈ [0.5, 1) ,

which, as observed in Bedjaoui and LeFloch [3], can be realized by an augmented model based
on nonlinear diffusion and dispersion terms. In the following, we will take β = 0.75.

Test A. Let us check Property 3 numerically, which is concerned with the exact capture of
isolated nonclassical shocks. Thus, consider the following nonclassical shock as a Riemann initial
condition

u0(x) =
{

4, x < 0,
ϕ!(4) = −3, x > 0,

The numerical solution shown in Figure 5 is exact everywhere but in the single cell containing the
nonclassical shock. (We sometimes use a piecewise constant representation in the figure, in order
for the interpretation of the numerical solutions to be easier.) However, as expected, the value
in this cell coincides with the average of the corresponding exact solution (see (26)), and allows
(after reconstruction) to recover the exact location of the discontinuity (using the conservation
property of scheme). This property explains why the numerical solution stays sharp when the
time evolves.
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initial data t=0.00
exact solution at t=0.01
exact solution at t=0.02
exact solution at t=0.03

numerical solution at t=0.01
numerical solution at t=0.02
numerical solution at t=0.03

Figure 5: Test A - Nonclassical shock – 30 points

Test B. In our second test we consider the Riemann problem with initial data

u0(x) =
{

4, x < 0,
−5, x > 0,

whose solution is a nonclassical shock followed by a rarefaction wave. The two left-hand curves
in Figure 6 are performed with ∆x = 0.01 and ∆x = 0.002, respectively. The nonclassical shock,
as previously, is localized in a single computational cell.
The right-hand figure represents the logarithm of the L1-error (between the exact and the numer-
ical solution) versus the logarithm of ∆x. The numerical order of convergence is about 0.8374.
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Figure 6: Test B - Nonclassical shock and rarefaction – L1 convergence (log(EL1) versus log(∆x))

Test C (Figure 7). Now, we choose another Riemann initial condition which develops a
nonclassical shock followed by a classical shock:

u0(x) =
{

4, x < 0,
−2, x > 0.

We can make the same observation as previously, concerning the nonclassical shock; it is sharply
captured and arises in a small spatial domain. However, note here that the classical shock does
contain some numerical diffusion: in fact, our scheme is exactly the upwinding scheme if the
values of the solution remains in a given convexity region for the flux f .
Once again, the plot with the L1-error shows the numerical convergence with order about 0.9999.
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Figure 7: Test C - Nonclassical and classical shocks – L1 convergence (log(EL1) versus log(∆x))

Test D (Figure 8). We now take an initial data composed of two nonclassical shocks that
interact:

u0(x) =






4 = ϕ−!(−3), x < 0.1
−3, 0.1 < x < 0.2
2.25 = ϕ!(−3), x > 0.2.
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The computation is performed with ∆x = 0.05 and plotted at four successive times t = 0, 0.0010, 0.0017,
and 0.0020. We observe that the two nonclassical shocks cancel each other at the interaction,
and generate a single classical shock, in accordance with the general theory in [21].
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numerical at t=0.010
numerical at t=0.017
numerical at t=0.020

Figure 8: Test D - Interaction of two nonclassical shocks

Test E (Figure 9). Next, we consider the periodic initial condition

u0(x) = sin
( x

2π

)
,

with periodic boundary conditions u(−0.5, t) = u(0.5, t). The exact solution is not known explic-
itly, so we compare our numerical solution with the solution generated by Glimm’s random choice
scheme [12] in which we have replaced the classical solver by the nonclassical solver described in
Section 2. We use here van der Corput’s random sequence (an), defined by

an =
m∑

k=0

ik2−(k+1),

where n =
∑m

k=0 ik2k, ik ∈ {0, 1}, denotes the binary expansion of the integer n. Figure 9
represents the solutions at the times t = 0, 0.25 and 0.5 for our scheme with ∆x = 0.01 and with
∆x = 0.0001, and for the Glimm scheme with ∆x = 0.0001 (to serve as a reference). The two
methods strongly agree. Roughly speaking, the increasing parts of u0 evolve as rarefactions, while
the decreasing parts are compressed and develop in a classical shock and, then, when left- and
right-hand states at the shocks change sign, nonclassical shocks (which do satisfy the expected
kinetic relation) and new faster classical shocks on the right-hand side arise.

Test F (Figure 10). To illustrate the behavior of convex-concave flux functions, we finally
compute two Riemann solutions with opposite flux f(u) = −u3 − u (so f ′ < 0 and the solutions
move from right to left) and the same kinetic function ϕ!(u) = −0.75 u: the first one (left-hand
figure) corresponds to the initial data

u0(x) =
{

−4, x < 0,
4, x > 0,

and develops a rarefaction wave and a nonclassical shock; the second one (right-hand figure)
corresponds to the initial data

u0(x) =
{

−2, x < 0,
4, x > 0,
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Figure 9: Test E - Periodic initial data - reconstruction scheme and Glimm scheme

and the corresponding solution is a classical shock followed by a nonclassical shock.
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Figure 10: Test E - Two examples in the convex-concave case

Test F. We now study how the kinetic relation uR = ϕ!(uL) is computed. On Figure 11 (right-
hand figure), we plot points whose horizontal coordinates (respectively vertical coordinates)
correspond to the left-hand (resp. right-hand) traces around the reconstructed cell. The initial
data allows us to cover a large range of value:

u0(x) =






0, x < 0.5,
1 + 20(x + 0.45), 0.5 < x < 0.45,

−0.75, x > −0.45.

The left-hand figure represents the solution at different times with ∆x = 0.0002.

We clearly observe the convergence of the numerical kinetic relation towards the prescribed
one. This a strong test to validate the proposed method.

Test G. In the course of designing the scheme proposed in the previous section we tried
several variants. We report here one such scheme that is very similar to the proposed scheme,
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Figure 11: Test F - Numerical kinetic relation

but which does not converge to exact nonclassical solutions. This is due to the fact that small
oscillations are generated in the scheme which are in competition with the dissipation mechanisms
described by the prescribed kinetic function.

The variant is designed for the concave-convex flux f(u) = u3 + u. The only difference with
the scheme developed above is that it performs the reconstruction in Cj with un

j,l = un
j−1 (instead

of ϕ−!(un
j+1) and uj,r = ϕ!(un

j−1). This is equivalent in the case of a pure nonclassical shock
(Test B) but different in the general case.
Figure 12 presents the solution obtained for the same initial value as in Test E. Oscillations are
generated because the reconstruction is not constrained enough in this version of the scheme.
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u(0.05,x) - 50 000 mailles

Figure 12: Another version of the scheme

6 Concluding remarks

In this paper we have introduced a new numerical strategy for computing nonclassical solutions
to nonlinear hyperbolic conservation laws. The method is based on a reconstruction technique
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performed in each computational cell which may exhibit a nonclassical shock. Importantly, the
whole algorithm is conservative and propagates any admissible nonclassical discontinuity exactly.
The convergence of the proposed method was demonstrated numerically for several test-cases.
This new approach brings a new perspective on the numerical approximation of nonclassical
shocks and kinetic functions. The efficiency of the method is clearly demonstrated in the present
paper, and we refer to the follow-up paper [4] for various extensions and applications. Among
the questions of interest we can mention the total variation bounds and the hyperbolic systems
of conservation laws, the application to real materials undergoing phase transitions, as well as
the extension to higher-order schemes.
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