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Abstract: This work is devoted to the study of a relaxation limit of the so-called aggregation equation1

with a pointy potential in one dimensional space. The aggregation equation is by now widely used to2

model the dynamics of a density of individuals attracting each other through a potential. When this3

potential is pointy, solutions are known to blow up in final time. For this reason, measure-valued4

solutions have been defined. In this paper, we investigate an approximation of such measure-valued5

solutions thanks to a relaxation limit in the spirit of Jin and Xin. We study the convergence of this6

approximation and give a rigorous estimate of the speed of convergence in one dimension with the7

Newtonian potential. We also investigate the numerical discretization of this relaxation limit by8

uniformly accurate schemes.9

Keywords: Aggregation equation; Relaxation limit; Scalar conservation law; Finite volume scheme.10

1. Introduction11

The so-called aggregation equation has been widely used to model the dynamics of a population
of individuals in interaction. Let W : R→ R, sufficiently smooth, be the interaction potential governing
the population. Then, in one dimension in space, the dynamics of the density of individuals, denoted
by ρ, is governed by the following equation, for t > 0 and x ∈ R,

∂tρ + ∂x(a[ρ]ρ) = 0, with a[ρ] = −W ′ ∗ ρ. (1)

Such equations appear in many applications in population dynamics: For instance to describe the12

collective migration of cells by swarming, the motion of bacteria by chemotaxis, the crowd motion, the13

flocking of birds, or fishes school see e.g. [1–7]. From a mathematical point of view, these equations14

have been widely studied. When the potential W is not smooth enough, it is known that weak solutions15

may blow up in finite time [8,9]. Thus, the existence of weak (measure) solutions has been investigated16

in e.g. [10,11].17

Submitted to Axioms, pages 1 – 21 www.mdpi.com/journal/axioms

http://www.mdpi.com
https://orcid.org/0000-0002-5683-8633
http://www.mdpi.com/journal/axioms


Version May 24, 2021 submitted to Axioms 2 of 21

In this paper, we consider a relaxation limit in the spirit of Jin-Xin [12] of the aggregation equation
in one space dimension on R. It is now well-established that such modifications allow to regularize
the solutions. For a given c > ‖a‖∞, we introduce the system

∂tρ + ∂xσ = 0, (2a)

∂tσ + c2∂xρ =
1
ε
(a[ρ]ρ− σ) (2b)

a[ρ] = −W ′ ∗ ρ (2c)

This system is complemented with initial data ρ0 and σ0 := a[ρ0]ρ0. It is clear, at least formally, that18

when ε → 0 the solution ρ of system (2) converges to the one of the aggregation equation (1) (and19

actually it is true only if c > ‖a‖∞). We mention that the aggregation equation may also be derived20

thanks to a hydrodynamical limit of kinetic equations [6,7,13].21

The aim of this work is to study the convergence as ε→ 0 of the relaxation system (2) towards the
aggregation equation. More precisely, we establish a precise estimate of the speed of convergence, and
we also illustrate with some numerical simulations. These estimates are obtained only in the case of
the Newtonian potential in one dimension W(x) = 1

2 |x|. Indeed, in this particular case we may link
the aggregation equation to a scalar conservation law [14,15]. The same link holds for the relaxation
system (2): denoting

u(t, x) =
1
2
−
∫ x

−∞
ρ(t, dy), v(t, x) =

1
2
−
∫ x

−∞
σ(t, dy),

where the notation
∫

ρ(t, dy) stands for the integral with respect to the probability measure ρ(t), then
we verify easily that

u = −W ′ ∗ ρ, ρ = −∂xu,

so that a[ρ] = u. Then, integrating (2), we deduce that (u, v) is a solution to

∂tu + ∂xv = 0 (3a)

∂tv + c2∂xu =
1
ε

(1
2

u2 − v
)

, (3b)

which is complemented with initial data u0 = 1
2 −

∫ x
−∞ ρ0(dy), and v0 = 1

2 −
∫ x
−∞ σ0(dy). Clearly, as

ε → 0, we expect that the solution of the above system converges to the solution of the following
Burgers equation

∂tu +
1
2

∂xu2 = 0.

Introducing the quantities a = v− cu and b = v + cu, (3) is equivalent to the diagonalized system

∂ta− c∂xa =
1
ε

(1
2

( b− a
2c

)2
− a + b

2

)
(4a)

∂tb + c∂xb =
1
ε

(1
2

( b− a
2c

)2
− a + b

2

)
. (4b)

We will adapt the techniques developed in [16] to obtain convergence estimates for our system.22

In order to illustrate this convergence result, numerical discretizations of the relaxation system (2)23

are investigated. The schemes we propose are such that they are uniform with respect to ε, that is they24

satisfy the so-called asymptotic preserving (AP) property [17]. Therefore, such schemes in the limit25

ε → 0 must be consistent with the aggregation equation. Numerical simulations of solutions of the26

aggregation equation for pointy potentials have been studied by several authors see e.g. [11,13,18–22].27

In particular, some authors pay attention to recover the correct behavior of the numerical solutions28
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after the blow-up time. To do so, particular attention must be paid to the definition of the product29

a[ρ]ρ when ρ is a measure.30

In this article, we propose two discretizations of the relaxation system which satisfy the AP31

property. In a first approach, we propose a simple splitting algorithm where we split the transport32

part and the right hand side in system (2). It results in a numerical scheme which is very simple33

to implement and for which we verify easily the AP property. The second approach relies on a34

well-balanced discretization in the spirit of [20,23]. This scheme is more expensive to implement than35

the first scheme, but its numerical solution has less diffusion, as it is illustrated by our numerical36

results.37

The outline of the paper is the following. In section 2, after recalling some useful notations, we38

prove our main result: an estimation of the speed of convergence in the Wasserstein W1 distance39

with respect to ε of the solutions of the relaxation system (2) towards the solution of the aggregation40

equation (1) in the case W(x) = 1
2 |x|. The numerical discretization is investigated in section 3. Two41

numerical schemes verifying the AP property are proposed. The first scheme is based on a splitting42

algorithm, whereas the second scheme relies on a well-balanced discretization. Numerical results and43

comparisons are provided in section 4.44

2. Convergence result45

2.1. Notations46

Before stating and proving our main results, we first recall some useful notations and results.
Since we are dealing with conservation laws (in which the total mass is conserved), we will work in
some space of probability measures, namely the Wasserstein space of order p ≥ 1, which is the space
of probability measures with finite order p moment:

Pp(RN) =

{
µ nonnegative Borel measure, µ(RN) = 1,

∫
|x|pµ(dx) < ∞

}
.

This space is endowed with the Wasserstein distance defined by (see e.g. [24,25])

Wp(µ, ν) = inf
γ∈Γ(µ,ν)

{∫
|y− x|p γ(dx, dy)

}1/p
, (5)

where Γ(µ, ν) is the set of measures on RN ×RN with marginals µ and ν, i.e.

Γ(µ, ν) =

{
γ ∈ Pp(RN×RN); ∀ ξ ∈ C0(RN),

∫
R2N

ξ(y0)γ(dy0, dy1) =
∫
RN

ξ(y0)µ(dy0),∫
R2N

ξ(y1)γ(dy0, dy1) =
∫
RN

ξ(y1)ν(dy1)

}
,

with C0(RN) the set of continuous functions on RN that vanish at infinity. From a simple minimization47

argument, we know that in the definition of Wp the infimum is actually a minimum. A map that48

realizes the minimum in the definition (5) of Wp is called an optimal transport plan, the set of which is49

denoted by Γ0(µ, ν).50

In the one-dimensional framework, we may simplify these definitions. Indeed any probability
measure µ on the real line R can be described in term of its cumulative distribution function Fµ(x) =
µ((−∞, x)) which is a right-continuous and nondecreasing function with Fµ(−∞) = 0 and Fµ(+∞) =

1. Then we can define the generalized inverse F−1
µ of Fµ (or monotone rearrangement of µ) by
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F−1
µ (z) := inf{x ∈ R/Fµ(x) > z}, it is a right-continuous and nondecreasing function as well, defined

on [0, 1]. We have for every nonnegative Borel map ξ,

∫
R

ξ(x)µ(dx) =
∫ 1

0
ξ(F−1

µ (z)) dz.

In particular, µ ∈ Pp(R) if and only if F−1
µ ∈ Lp(0, 1). Moreover, in the one-dimensional setting, there

exists a unique optimal transport plan realizing the minimum in (5). More precisely, if µ and ν belong
to Pp(R), with monotone rearrangements F−1

µ and F−1
ν , then Γ0(µ, ν) = {(F−1

µ , F−1
ν )#L(0,1)} where

L(0,1) is the restriction of the Lebesgue measure on (0, 1). Thus we have the explicit expression of the
Wasserstein distance (see [24,26,27])

Wp(µ, ν) =

(∫ 1

0
|F−1

µ (z)− F−1
ν (z)|p dz

)1/p

, (6)

and the map µ 7→ F−1
µ is an isometry between Pp(R) and the convex subset of (essentially)51

nondecreasing functions of Lp(0, 1).52

2.2. Convergence estimates53

Let us first consider the limit ε→ 0 for the system (3). Compactness methods have been used in54

[28] to get L1
loc convergence in space. However, in order to pass to the aggregation equation, one may55

want global L1 convergence, which we prove in the following theorem, along the lines of Katsoulakis56

and Tzavaras [16]:57

Theorem 1. Let u0 ∈ L∞ ∩ BV(R), c > ‖u0‖L∞ and set v0 =
u2

0
2 . There exists a constant C > 0 such that,

for any ε > 0, denoting by (uε, vε) the solution to (3) with initial data (u0, v0), the following estimate holds:

∀T > 0, ‖u(T)− uε(T)‖L1 ≤ CTV(u0)(
√

εT + ε),

where u is the entropy solution to the Burgers equation with initial datum u0.58

Proof. Denote (aε, bε) the solution to (4), and G(a, b) = 1
2

(
b−a
2c

)2
− a+b

2 .59

So as to obtain entropy inequalities on (aε, bε), we need monotonicity properties on G. One can60

check that G(aε, bε) is decreasing with respect to aε and bε if the so-called subcharacteristic condition61

|uε| < c holds. Up to a slight modification of the nonlinear term f (uε) = (uε)2

2 in (3), which does not62

affect the value of (aε, bε):63

f (u) :=


−‖u0‖u−

‖u0‖2

2
, if u ≤ −‖u0‖,

u2

2
, if − ‖u0‖ ≤ u ≤ ‖u0‖,

‖u0‖u−
‖u0‖2

2
, if ‖u0‖ ≤ u,

the choice c > ‖u0‖L∞ ensures that the subcharacteristic condition and the bound ‖uε(t)‖L∞ ≤ ‖u0‖L∞64

hold for all time.65

Now, obtaining entropy inequalities on (aε, bε) consists in making a comparison with constant66

state solutions to (4). Namely, letting m = ‖u0‖L∞

(
‖u0‖L∞

2 − c
)

, M = ‖u0‖L∞

(
‖u0‖L∞

2 + c
)

and67

h(a) = a + 2c2 − 2c
√

c2 + 2a, we have G(k, h(k)) = 0 for all k ∈ [m, M], and therefore (k, h(k)) is a68

solution to (4). Thus the following system holds:69
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∂t(aε − k)− c∂x(aε − k) =
1
ε

(
G(aε, bε)− G(k, h(k))

)
, (7a)

∂t(bε − h(k)) + c∂x(bε − h(k)) =
1
ε

(
G(aε, bε)− G(k, h(k))

)
. (7b)

Multiplying (7a) by sgn(aε − k), (7b) by sgn(bε − h(k)) and summing yields:

∂t

(
|aε − k|+ |bε − h(k)|

)
− c∂x

(
|aε − k| − |bε − h(k)|

)
=

1
ε

(
sgn(aε − k) + sgn(bε − h(k))

)
×(

G(aε, bε)− G(k, h(k))
)

.

Hence, using the monotonicity of G we get the following entropy inequalities on (aε, bε):

∂t

(
|aε − k|+ |bε − h(k)|

)
− c∂x

(
|aε − k| − |bε − h(k)|

)
≤ 0. (8)

We now turn to proving entropy inequalities on uε. Straightforward computations yield the existence
of a constant C > 0 such that, for all a, b ∈ [m, M], one has |h(a)− b| ≤ C|G(a, b)|. We therefore work
on the variable wε := h(aε)−aε

2c in the first place. Let κ ∈
[
− ‖u0‖L∞ , ‖u0‖L∞

]
, and k ∈ [m, M] such that

κ = h(k)−k
2c . We have:

|wε − κ| = 1
2c

(
|h(aε)− h(k)|+ |aε − k|

)
=

1
2c

(
|aε − k|+ |bε − h(k)|+ rε

1

)
, (9)

where rε
1 = |h(aε)− h(k)| − |bε − h(k)| verifies |rε

1| ≤ |h(aε)− bε| ≤ C|G(aε, bε)|. Thus, we are left to
control |G(aε, bε)|. To do so, we formally differentiate this quantity and use (4):

∂t|G(aε, bε)| =
(

∂taε∂aG(aε, bε) + ∂tbε∂bG(aε, bε)
)

sgn(G(aε, bε)),

=
1
ε

(
∂aG(aε, bε) + ∂bG(aε, bε)

)
|G(aε, bε)| − c sgn(G(aε, bε))

(
∂xaε∂aG(aε, bε) + ∂xbε∂bG(aε, bε)

)
,

≤ 1
ε

sup
[m,M]2

(
∂aG + ∂bG

)
|G(aε, bε)|+ c sup

[m,M]2

(
|∂aG|+ |∂bG|

)(
|∂xaε|+ |∂xbε|

)
.

Integrating in space gives:

d
dt
‖G(aε, bε)‖L1 ≤ −

A
ε
‖G(aε, bε)‖L1 + B

(
TV(a0) + TV(b0)

)
,

where A = − sup[m,M]2(∂aG + ∂bG) and B = c sup[m,M]2(|∂aG|+ |∂bG|) are positive constants which
do not depend on ε nor on time. A Gronwall lemma then gives:

‖G(aε(t), bε(t))‖L1 ≤ C
(

TV(a0) + TV(b0)
)

ε, (10)

where we still denote C = B/A a constant independent of time and of ε.70

Besides, since, G(a, h(a)) = 0, one has 1
2

(
h(a)−a

2c

)2
= 1

2 (h(a) + a) and therefore:

sgn(wε − κ)

(
(wε)2

2
− κ2

2

)
=

1
2

sgn
(

h(aε)− h(k)− (aε − k)
)(

h(aε) + aε − (h(k) + k)
)

,

=
1
2

(
|h(aε)− h(k)| − |aε − k|

)
,

=
1
2

(
|b− h(k)| − |aε − k|+ rε

2

)
, (11)
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with |rε
2| ≤ C|G(aε, bε)|. Differentiating (9) in time and (11) in space, and using (8) thus yields:

∂t|wε − κ|+ ∂x sgn(wε − κ)

(
(wε)2

2
− κ2

2

)
≤ 1

2c

(
∂trε

1 + c∂xrε
2

)
. (12)

Then, we estimate ‖u(t)− wε(t)‖L1 using Kuznetsov’s doubling of variables technique (see e.g. [29]
for scalar conservation laws with viscosity and [30] for a more general formalism) in order to combine
(12) with Kruzkov inequalities on the entropy solution u, that read:

∂t|u− κ|+ ∂x sgn(u− κ) ( f (u)− f (κ)) ≤ 0. (13)

Writing respectively (13) at point (s, x) for κ = wε(t, y) and (12) at point (t, y) for κ = u(s, x), we get:

∂s|u(s, x)− wε(t, y)|+ ∂x sgn(u(s, x)− wε(t, y))
(

u(s, x)2

2
− (wε(t, y))2

2

)
≤ 0, (14a)

∂t|wε(t, y)− u(s, x)|+ ∂y sgn(wε(t, y)− u(s, x))
(
(wε(t, y))2

2
− u(s, x)2

2

)
≤ 1

2c

(
∂trε

1(t, y) + c∂yrε
2(t, y)

)
.

(14b)

Now, let ωα(t) = 1
α ω
( t

α

)
and Ωβ(x) = 1

β Ω
(

x
β

)
be two mollyfing kernels. Setting g(s, t, x, y) =

ωα(s− t)Ωβ(x− y) and testing (14a) and (14b) against g(·, t, ·, y)1[0,T] and g(s, ·, x, ·)1[0,T] respectively,
and integrating over [0, T]×R, we get on the one hand:∫∫∫∫

∂sg(s, t, x, y)|u(s, x)− wε(t, y)| ds dx dt dy

+
∫∫∫∫

∂xg(s, t, x, y) sgn(u(s, x)− wε(t, y))
(

u(s, x)2

2
− (wε(t, y))2

2

)
ds dx dt dy

−
∫∫∫

g(T, t, x, y)|u(T, x)− wε(t, y)| dx dt dy +
∫∫∫

g(0, t, x, y)|u(0, x)− wε(t, y)| dx dt dy ≥ 0,

(15)

and on the other hand:∫∫∫∫
∂tg(s, t, x, y)|wε(t, y)− u(s, x)| ds dx dt dy

+
∫∫∫∫

∂yg(s, t, x, y) sgn(wε(t, y)− u(s, x))
(
(wε(t, y))2

2
− u(s, x)2

2

)
ds dx dt dy

−
∫∫∫

g(s, T, x, y)|wε(T, y)− u(s, x)| ds dxd dy +
∫∫∫

g(s, 0, x, y)|wε(0, y)− u(s, x)| ds dx dy

≥ 1
2c

( ∫∫∫∫
∂tg(s, t, x, y)rε

1(t, y) ds dx dt dy + c
∫∫∫∫

∂yg(s, t, x, y)rε
2(t, y) ds dx dt dy

−
∫∫∫

g(s, T, x, y)rε
1(T, y) ds dx dy +

∫∫∫
g(s, 0, x, y)rε

1(0, y) ds dx dy
)
=: RHS. (16)

Now, since | · | is even, and ∂sg = −∂tg and ∂xg = −∂yg, we deduce by adding (15) and (16):

−
∫∫∫

g(T, t, x, y)|u(T, x)− wε(t, y)| dx dt dy +
∫∫∫

g(0, t, x, y)|u(0, x)− wε(t, y)| dx dt dy

−
∫∫∫

g(s, T, x, y)|u(s, x)− wε(T, y)| ds dx dy +
∫∫∫

g(s, 0, x, y)|u(s, x)− wε(0, y)| ds dx dy ≥ RHS.

(17)



Version May 24, 2021 submitted to Axioms 7 of 21

Then, we write:

‖u(T)− wε(T)‖L1 =
∫∫∫

ωα(T − t)Ωβ(x− y)|u(T, y)− wε(T, y)| dx dt dy

+
∫∫∫

ωα(s− T)Ωβ(x− y)|u(T, y)− wε(T, y)| ds dx dy,

=: I1 + I2. (18)

A triangle inequality gives for I1:

I1 ≤
∫∫∫

ωα(T − t)Ωβ(x− y)|u(T, y)− u(T, x)| dx dt dy

+
∫∫∫

ωα(T − t)Ωβ(x− y)|u(T, x)− wε(t, y)| dx dt dy

+
∫∫∫

ωα(T − t)Ωβ(x− y)|wε(t, y)− wε(T, y)| dx dt dy

=: T1 + T2 + T3.

with T1 ≤ Cβ · TV(u0), the second term T2 appearing in (17) and for the last one we write:

T3 ≤
∫
R

Ωβ(x− y)
∫ T

0
ωα(T − t)

∫
R
|wε(t, y)− wε(T, y)| dy dt dx,

and then we use the fact that wε is uniformely Lipschitz in L1(R) with respect to ε. Indeed, one has
∂twε = ∂taε(h′(aε)−1)

2c with h′(aε) − 1 being uniformely bounded with respect to ε as aε stays in the
compact set [m, M] for all time. In addition, estimating ‖∂taε(t)‖L1 can be done reusing (4) and (10):

‖∂taε(t)‖L1 ≤ c‖∂xaε(t)‖L1 +
1
ε
‖G(aε(t), bε(t))‖L1 ≤ C (TV(a0) + TV(b0)) .

with C > 0 still independent of time and of ε. Hence ‖∂twε(t)‖L1 ≤ C (TV(a0) + TV(b0)) and
T3 ≤ αC (TV(a0) + TV(b0)). All in all, we get for I1:

I1 ≤
∫∫∫

ωα(T − t)Ωβ(x− y)|u(T, x)− wε(t, y)| dx dt dy + Cβ · TV(u0) + αC (TV(a0) + TV(b0)) .

And, similarly, for I2:

I2 ≤
∫∫∫

ωα(s− T)Ωβ(x− y)|u(s, x)− wε(T, y)| ds dx dy + C(α + β)TV(u0).

Back to (18), we obtain:

‖u(T)− wε(T)‖L1 ≤
∫∫∫

ωα(t)Ωβ(x− y)|u(0, x)− wε(t, y)| dx dt dy (19)

+
∫∫∫

ωα(s)Ωβ(x− y)|u(s, x)− wε(0, y)| ds dx dy− RHS (20)

+ αC (TV(a0) + TV(b0)) + C(α + β)TV(u0). (21)

But using a triangle inequality, one can show that:∫∫∫
ωα(t)Ωβ(x− y)|u0(x)− wε(t, y)| dx dt dy ≤ Cβ · TV(u0) + αC (TV(a0) + TV(b0)) ,

and similarly: ∫∫∫
ωα(s)Ωβ(x− y)|u(s, x)− wε(0, y)| ds dx dy ≤ C(α + β)TV(u0).
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We then bound from above the term RHS using inequality ‖rε
i (t)‖L1 ≤ C (TV(a0) + TV(b0)) ε for

i = 1, 2:∣∣∣∣RHS
∣∣∣∣ = 1

2c

∣∣∣∣ 1α
∫∫∫∫

ω′
(

s− t
α

)
Ωβ(x− y)rε

1(t, y) ds dx dt dy +
c
β

∫∫∫∫
ωα(s− t)Ω′(x− y)rε

2(t, y) ds

dx dt dy−
∫∫∫

ωα(s− T)Ωβ(x− y)rε
1(T, y) ds dx dy +

∫∫∫
ωα(s)Ωβ(x− y)rε

1(0, y) ds dx dy
∣∣∣∣,

≤ C
(

T
α
+

T
β
+ 1
)
· (TV(a0) + TV(b0)) ε.

Finally, we get:

‖u(T)−wε(T)‖L1 ≤ C
(

T
α
+

T
β
+ 1
)
(TV(a0) + TV(b0)) ε+C(α+ β)TV(u0)+ αC (TV(a0) + TV(b0)) ,

which, after optimizing the values of α and β and noticing that TV(a0), TV(b0) ≤ C · TV(u0), gives:

‖u(T)− wε(T)‖L1 ≤ CTV(u0)(
√

εT + ε),

and this inequality, along with |h(a)− b| ≤ C|G(a, b)| and (10) gives in turn the result.71

Denoting ρ = −∂xu, the convergence of uε(t) towards u(t) in L1(R) ensures that ρ(t) is a72

probability measure. Indeed, since for all ε > 0, ρε = −∂xuε is a nonnegative distribution, so is ρ.73

The Riesz-Markov theorem then ensures that ρ can be represented by a nonnegative Borel measure.74

Besides, for a.e. t ≥ 0, uε(t) is a nonincreasing function taking values in [0, 1] and hence converges75

to a certain limit when x goes to +∞. The same holds true for the limit function u(t). But, since76

uε(t)− u(t) ∈ L1(R), then uε(t, x)− u(t, x) must vanish as x goes to +∞. Therefore the total mass of77

ρ(t) is 1.78

Then, passing to the relaxation system (2) for the aggregation equation (1) can be done by using79

(6) with p = 1. As a consequence, Theorem 1 translates as follows for the aggregation:80

Theorem 2. Let ρ0 ∈ P2(R), c > 1/2 and set σ0 = a[ρ0]ρ0. There exists a constant C > 0 such that, for any
ε > 0, denoting (ρε, σε) the solution to (2) with initial data (ρ0, σ0), one has :

∀T > 0, W1(ρ(T), ρε(T)) ≤ C(
√

εT + ε),

where ρ ∈ C([0,+∞),P2(R)) is the unique solution (1) with initial datum ρ0.81

3. Numerical discretization82

From now on, we denote ∆t the time step and we introduce a Cartesian mesh of size ∆x. We83

denote tn = n∆t for n ∈ N and xj = j∆x for j ∈ Z. In this section, we extend our framework and84

consider the aggregation equation (1) with arbitrary pointy potentials W, which satisfy the following85

conditions:86

(i) W is even and W(0) = 0,87

(ii) W ∈ C1(R \ {0}),88

(iii) W is λ-convex, i.e. there exists λ ∈ R such that W(x)− λ |x|
2

2 is convex,89

(iv) W is a∞-lipschitz continuous for some a∞ ≥ 0.90

In this framework, the convergence of ρε towards ρ for a slightly different problem has also been91

studied in [7]. Adapting the argument, the convergence still holds provided the subcharacteristic92

condition c > a∞ is verified. However, for such general potentials, the authors were not able to obtain93

the estimates of the speed of convergence as stated in Theorem 2.94
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In this section, we propose some numerical schemes able to capture the limit ε → 0, that is95

satisfying the so-called asymptotic preserving (AP) property. We consider two approaches, the first96

one based on a splitting algorithm, the second one based on a well-balanced discretisation.97

3.1. A splitting algorithm98

A first simple approach to discretize system (2) is to use a splitting method. Such a method is99

known to be convergent and easy to implement but introduces numerical diffusion.100

Notice that the system (2) rewrites, with µ = σ− cρ, ν = σ + cρ, as:

∂tµ− c∂xµ =
1
ε

(
a
[ν− µ

2c

](ν− µ

2c

)
− µ + ν

2

)
(22a)

∂tν + c∂xν =
1
ε

(
a
[ν− µ

2c

](ν− µ

2c

)
− µ + ν

2

)
. (22b)

The idea of the method is to solve in a first step on (tn, tn + ∆t) the system

∂tµ =
1
ε

(
a
[ν− µ

2c

](ν− µ

2c

)
− µ + ν

2

)
∂tν =

1
ε

(
a
[ν− µ

2c

](ν− µ

2c

)
− µ + ν

2

)
,

with initial data (µ(tn), ν(tn)) = (µn, νn). We obtain µ
n+ 1

2
j = µ(tn + ∆t, xj) and ν

n+ 1
2

j = ν(tn + ∆t, xj).
Notice that this system may be solved explicitely. Indeed, by adding and subtracting the two equations,
we deduce after an integration

ν
n+ 1

2
j − µ

n+ 1
2

j = νn
j − µn

j (23a)

µ
n+ 1

2
j + ν

n+ 1
2

j = (µn
j + νn

j )e
−∆t/ε + a

[νn − µn

2c

](νn − µn

2c

)
(1− e−∆t/ε). (23b)

Then, in a second step, we discretize by a classical finite volume upwind scheme the system

∂tµ− c∂xµ = 0, ∂tν + c∂xν = 0.

That is

µn+1
j = µ

n+ 1
2

j + c
∆t
∆x

(µ
n+ 1

2
j+1 − µ

n+ 1
2

j ), (24a)

νn+1
j = ν

n+ 1
2

j − c
∆t
∆x

(ν
n+ 1

2
j − ν

n+ 1
2

j−1 ). (24b)

Coming back to the variables ρ and σ, we obtain

ν
n+ 1

2
j = cρn

j + σn
j e−∆x/ε + an

j ρn
j (1− e−∆t/ε),

µ
n+ 1

2
j = −cρn

j + σn
j e−∆x/ε + an

j ρn
j (1− e−∆t/ε),

with an
j = −∑

k 6=j
W ′(xj − xk)ρ

n
k . Then, the splitting algorithm reads

ρn+1
j = ρn

j −
1
2

∆t
∆x

(µ
n+ 1

2
j+1 + ν

n+ 1
2

j − µ
n+ 1

2
j − ν

n+ 1
2

j−1 )

= ρn
j −

1
2

∆t
∆x

(
(σn

j+1 − σn
j−1)e

−∆t/ε + (1− e−∆t/ε)(an
j+1ρn

j+1 − an
j−1ρn

j−1)− c(ρn
j+1 − 2ρn

j + ρn
j−1)

)
,

(25)
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and

σn+1
j = σ

n+ 1
2

j +
c
2

∆t
∆x

(σn
j+1 − 2σn

j + σn
j−1)e

−∆t/ε

+
c
2

∆t
∆x

(
(an

j+1ρn
j+1 − 2an

j ρn
j + an

j−1ρn
j−1)(1− e−∆t/ε)− c(ρn

j+1 − ρn
j−1)

)
= σn

j e−∆t/ε + an
j ρn

j (1− e−∆t/ε) +
c
2

∆t
∆x

(σn
j+1 − 2σn

j + σn
j−1)e

−∆t/ε (26)

+
c
2

∆t
∆x

(
(an

j+1ρn
j+1 − 2an

j ρn
j + an

j−1ρn
j−1)(1− e−∆t/ε)− c(ρn

j+1 − ρn
j−1)

)
.

Lemma 1. For any ε > 0, if both the CFL condition c∆t
∆x ≤ 1 and the subcharacteristic condition c ≥ a∞ hold,

then the splitting scheme (23)–(24) is L1-stable:

∀n ∈ N, ∑
j∈Z

(
|µn+1

j |+ |νn+1
j |

)
≤ ∑

j∈Z

(
|µn

j |+ |νn
j |
)

.

Proof. We have:

µ
n+ 1

2
j =

1
2

(
e−∆t/ε

(
1 +

an
j

c

)
+ 1−

an
j

c

)
µn

j −
1− e−∆t/ε

2

(
1−

an
j

c

)
νn

j ,

ν
n+ 1

2
j = −1− e−∆t/ε

2

(
1 +

an
j

c

)
µn

j +
1
2

(
e−∆t/ε

(
1−

an
j

c

)
+ 1 +

an
j

c

)
νn

j .

Under the condition c ≥ a∞, in the expression of µ
n+ 1

2
j , the coefficient in front of µn

j is nonnegative and

the one in front of νn
j is nonpositive. Similarly, in ν

n+ 1
2

j , the coefficient of µn
j is nonpositive and the one

in front of νn
j is nonnegative. Taking the absolute value and adding up therefore yields:

∣∣∣µn+ 1
2

j

∣∣∣+ ∣∣∣νn+ 1
2

j

∣∣∣ ≤ ∣∣∣µn
j

∣∣∣+ ∣∣∣νn
j

∣∣∣.
It remains to remark that, provided the CFL condition c∆t

∆x ≤ 1 is verified, (24) gives:

∑
j∈Z

(
|µn+1

j |+ |νn+1
j |

)
≤
(

1− c∆t
∆x

)
∑
j∈Z

(∣∣∣µn+ 1
2

j

∣∣∣+ ∣∣∣νn+ 1
2

j

∣∣∣)+
c∆t
∆x ∑

j∈Z

∣∣∣µn+ 1
2

j+1

∣∣∣+ c∆t
∆x ∑

j∈Z

∣∣∣νn+ 1
2

j−1

∣∣∣,
≤
(

1− c∆t
∆x

)
∑
j∈Z

(
|µn

j |+ |νn
j |
)
+

c∆t
∆x ∑

j∈Z

∣∣∣µn+ 1
2

j

∣∣∣+ c∆t
∆x ∑

j∈Z

∣∣∣νn+ 1
2

j

∣∣∣,
≤ ∑

j∈Z

(
|µn

j |+ |νn
j |
)

.

101

Note that similar schemes have also been studied in [31] and proved convergent at rate
√

∆x.102

Let us now verify the AP property. When ε→ 0, we verify that the equation on ρ (25) converges
to the following Rusanov discretization of (1) (see [21] for numerical simulations using the Rusanov
scheme):

ρn+1
j = ρn

j −
1
2

∆t
∆x

(
an

j+1ρn
j+1 − an

j−1ρn
j−1

)
+

c∆t
2∆x

(ρn
j+1 − 2ρn

j + ρn
j−1), (27a)

an
j = −∑

k 6=j
W ′(xj − xk)ρ

n
k . (27b)
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This limiting scheme provides a consistant discretization of (1). Indeed, similar scheme has been103

extensively studied in [11] using compactness arguments and the following convergence result has104

been proved:105

Lemma 2. Assume ρ0 ∈ P2(R) and that the stability conditions c ∆t
∆x ≤ 1 and c ≥ a∞ are satisfied. Let T > 0

and suppose we initialize the scheme (27) with ρ0
j =

1
∆x

ρ0(Cj) where Cj = [xj− 1
2
, xj+ 1

2
). Then, denoting ρ∆x

the reconstruction given by the scheme (27), that is:

ρ∆x(t) = ∑
n∈N

∑
j∈Z

ρn
j 1[tn ,tn+1)(t)δxj ,

then ρ∆x converges weakly in the sense of measures on [0, T]×R towards the solution ρ of equation (1) as ∆x106

goes to 0.107

It has been also proved in [32] that the scheme (27) converges at rate
√

∆x.108

3.2. Well-balanced discretization109

Although the splitting method provides a simple way to obtain a discretization which is uniform110

with respect to the parameter ε, the resulting scheme has strong numerical diffusion and may not have111

good large time behaviour. Then, well-balanced schemes have been introduced. A scheme is said to be112

well-balanced when it conserves equilibria. The method proposed in this section comes from [20].113

Let us assume that for some n ∈ N the approximation (µn
j , νn

j )j∈Z of (µ(tn, xj), ν(tn, xj))j∈Z
solution of (22) is known. We construct an approximation at time tn+1 using a finite volume upwind
discretization of (22), with the discretization of the source terms Hn

µ,j, Hn
ν,j to be prescribed right

afterwards:

µn+1
j = µn

j + c
∆t
∆x

(µn
j+1 − µn

j ) +
∆t
ε

Hn
µ,j (28a)

νn+1
j = νn

j − c
∆t
∆x

(νn
j − νn

j−1) +
∆t
ε

Hn
ν,j. (28b)

In order to preserve equilibria, we set :

Hn
µ,j =

1
∆x

∫ xj

xj−1

H(µ, ν) dx, H(µ, ν) = a
[ν− µ

2c

](ν− µ

2c

)
− µ + ν

2
, (29)

where (µ, ν) solve the stationary system with incoming boundary conditions, on (xj−1, xj):

− c∂xµ =
1
ε

H(µ, ν) (30a)

c∂xν =
1
ε

H(µ, ν) (30b)

µ(xj) = µn
j , ν(xj−1) = νn

j−1. (30c)

And, in the same fashion, Hn
ν,j =

1
∆x
∫ xj+1

xj
H(µ̃, ν̃) dx, where (µ̃, ν̃) is the solution of the stationary

system on (xj, xj+1):

− c∂xµ̃ =
1
ε

H(µ̃, ν̃) (31a)

c∂xµ̃ =
1
ε

H(µ̃, ν̃) (31b)

µ̃(xj+1) = µn
j+1, ν̃(xj) = νn

j , (31c)
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Reporting equations (30b) and (31a) into the discretization of the source term, we get Hn
ν,j =

cε
∆x (ν(xj)−

νj−1) and Hn
µ,j = −

cε
∆x (µ

n
j − µ̃(xj)). Hence, one may rewrite the scheme (28) as:

µn+1
j = µn

j + c
∆t
∆x

(µ̃(xj)− µn
j ) (32a)

νn+1
j = νn

j − c
∆t
∆x

(νn
j − ν(xj)). (32b)

Remark that the stationary system

− c∂xµ =
1
ε

H(µ, ν), c∂xν =
1
ε

H(µ, ν), (33)

is equivalent to

∂xσ = 0, c2∂xρ =
1
ε
(a[ρ]ρ− σ) . (34)

Therefore, denoting σj+ 1
2
=

µ̃ + ν̃

2
and σj− 1

2
=

µ + ν

2
, which are constant respectively on (xj, xj+1) and

(xj−1, xj), one has:
µ̃(xj) = 2σj+ 1

2
− νn

j , ν(xj) = 2σj− 1
2
− µn

j . (35)

Thus, it turns out that the scheme can be rewritten only in terms of the discretized unknowns and of
σj± 1

2
:

µn+1
j = µn

j − c
∆t
∆x

(µn
j + νn

j ) +
2c∆t
∆x

σj+ 1
2
, (36a)

νn+1
j = νn

j − c
∆t
∆x

(µn
j + νn

j ) +
2c∆t
∆x

σj− 1
2
. (36b)

Or equivalently:

ρn+1
j = ρn

j −
∆t
∆x

(σj+ 1
2
− σj− 1

2
), (37a)

σn+1
j = σn

j − c
∆t
∆x

(2σn
j − σj+ 1

2
− σj− 1

2
). (37b)

However, solving the stationary systems (30) and (31) involves the resolution of a nonlinear and114

nonlocal ODE. Instead, we propose an approximation in the spirit of [20].115

We replace the nonlinear term in (30a)–(30b) by an
j− 1

2
· ν−µ

2c , where an
j− 1

2
stands for a fixed and116

consistent discretization of a
[

ν−µ
2c

]
on the interval (xj−1, xj), to be specified afterwards. Similarly,117

we will replace the nonlinear term in (31a)–(31b) by an
j+ 1

2
· ν̃−µ̃

2c with an
j+ 1

2
defined accordingly. In the118

following, we detail the construction for the problem (30a)–(30b) on (xj−1, xj).119

Obviously, the definition of an
j− 1

2
should be taken with care [11,20]. In [32], the authors showed120

that, when discretizing the product a[ρ]ρ, if a[ρ] and ρ were not evaluated at the same point, then the121

resulting scheme produces the wrong dynamics. To take this into account, we will split ρ into one122

contribution coming from the left and one contribution coming from the right, i.e. we set ρ = ρL + ρR123

and σ = σL + σR where ρL(∆x) = 0 and ρR(0) = 0. This implies that ρ(∆x) = ρR(∆x) and ρ(0) =124

ρL(0).125

More precisely, we solve the two following boundary value problem, on (0, ∆x),

εc2 d
dx

ρL = an
j− 1

2 ,LρL − σL, ρL(∆x) = 0, (38a)

εc2 d
dx

ρR = an
j− 1

2 ,RρR − σR, ρR(0) = 0, (38b)
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We may solve explicitely these linear systems and, since ρL(0) = ρ(0) and ρR(∆x) = ρ(∆x), obtain the
relations

σL = ρ(0)κn
j− 1

2 ,L, σR = ρ(∆x)κn
j− 1

2 ,R. (39)

with

κn
j− 1

2 ,L =
an

j− 1
2 ,L

1− exp(−an
j− 1

2 ,L
∆x/(εc2))

, κn
j− 1

2 ,R =
an

j− 1
2 ,R

1− exp(an
j− 1

2 ,R
∆x/(εc2))

. (40)

Notice that we have

κn
j− 1

2 ,L → (an
j− 1

2 ,L)+, κn
j− 1

2 ,R → −(an
j− 1

2 ,R)−, when ε→ 0, (41)

where we denote a+ = max(0, a) ≥ 0 and a− = max(0,−a) ≥ 0 the positive and negative negative
part of a. Using the boundary conditions in (30), we have:

ρ(0) =
νn

j−1 − µ(0)

2c
, ρ(∆x) =

ν(∆x)− µn
j

2c
. (42)

with (39) and the fact that σ = σL + σR is constant on [0, ∆x], we get the following 2× 2 system on the
unknowns µ(0), ν(∆x):

µn
j + ν(∆x) = µ(0) + νn

j−1, (43a)

µn
j + ν(∆x) =

νn
j−1 − µ(0)

2c
κn

j− 1
2 ,L +

ν(∆x)− µn
j

2c
κn

j− 1
2 ,R (43b)

Solving this system yields:

µ(0) = −νn
j−1

c− κn
j− 1

2 ,R
− κn

j− 1
2 ,L

c− κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

− µn
j

κn
j− 1

2 ,R

c− κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

, (44a)

ν(∆x) = νn
j−1

κn
j− 1

2 ,L

c− κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

− µn
j

c + κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

c− κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

. (44b)

From which we deduce with (42)

ρn
j− 1

2 ,L := ρ(0) =
1
c

 (c− κn
j− 1

2 ,R
)νn

j−1 + κn
j− 1

2 ,R
µn

j

c + κn
j− 1

2 ,L
− κj− 1

2 ,R

 (45a)

ρn
j− 1

2 ,R := ρ(∆x) =
1
c

κn
j− 1

2 ,L
νn

j−1 − (c + κn
j− 1

2 ,L
)µn

j

c + κn
j− 1

2 ,L
− κj− 1

2 ,R

 (45b)

and with (39)

σj− 1
2

:= σL + σR = ρn
j− 1

2 ,Lκn
j− 1

2 ,L + ρn
j− 1

2 ,Rκn
j− 1

2 ,R =
νn

j−1κn
j− 1

2 ,L
− µn

j κn
j− 1

2 ,R

c− κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

, (46)
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(the above quantities are well-defined since κn
j− 1

2 ,L
≥ 0 and κn

j− 1
2 ,R
≤ 0). Injecting into (37), it gives the

following scheme

µn+1
j =

(
1− c∆t

∆x

)
µn

j −
c∆t
∆x

c− κn
j+ 1

2 ,R
− κn

j+ 1
2 ,L

c− κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

νn
j −

2c∆t
∆x

κn
j+ 1

2 ,R

c− κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

µn
j+1, (47a)

νn+1
j =

(
1− c∆t

∆x

)
νn

j −
c∆t
∆x

c + κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

c− κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

µn
j +

2c∆t
∆x

κn
j− 1

2 ,L

c− κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

νn
j−1, (47b)

where the coefficients κn
j− 1

2 ,L/R
are defined in (40). Equivalently for the variable (ρ, σ) the scheme reads

ρn+1
j = ρn

j −
∆t
∆x

νn
j κn

j+ 1
2 ,L
− µn

j+1κn
j+ 1

2 ,R

c− κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

−
νn

j−1κn
j− 1

2 ,L
− µn

j κn
j− 1

2 ,R

c− κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

 (48a)

σn+1
j = σn

j − c
∆t
∆x

2σn
j −

νn
j κn

j+ 1
2 ,L
− µn

j+1κn
j+ 1

2 ,R

c− κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

−
νn

j−1κn
j− 1

2 ,L
− µn

j κn
j− 1

2 ,R

c− κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

 , (48b)

where we recall that µn
j = σn

j − cρn
j and νn

j = σn
j + cρn

j .126

It remains to define the velocities an
j− 1

2 ,L/R
used in (38) and in (40). We take

an
j− 1

2 ,L/R = −∑
k 6=j

W ′(xj − xk)ρ
n
k− 1

2 ,L/R.

However, this discretization implies the resolution of a nonlinear problem, since the quantities ρn
k− 1

2 ,L/R
127

depends nonlinearly on an
j− 1

2 ,L/R
.128

Then, we implement a fixed point method initialized with an,(0)
j− 1

2 ,L
:= an

j−1 and an,(0)
j− 1

2 ,R
:= an

j .129

Solving, on each cell (xj−1, xj), the system of ODEs (38) with these values for the velocities gives two130

sequences (ρ(1)
j− 1

2 ,L
)j∈Z and (ρ

(1)
j− 1

2 ,R
)j∈Z. Then, we assign the next value of the velocity to an,(1)

j− 1
2 ,L/R

:=131

−∑
k 6=j

W ′(xj − xk)ρ
(1)
k− 1

2 ,L/R
, which allows us to compute new values for the left and right densities132

(ρ
(2)
j− 1

2 ,L
)j∈Z and (ρ

(2)
j− 1

2 ,R
)j∈Z through (38). We iterate until W2(ρ

(i)
L , ρ

(i+1)
L ) and W2(ρ

(i)
R , ρ

(i+1)
R ) pass133

below a certain threshold. Notice that the velocities an,(i)
j− 1

2 ,L/R
always remain bounded by a∞. In134

practice, only a few iterations are needed.135

The resulting scheme is consistent for any ε > 0 and stable under standard stability conditions, as136

show the following lemmas.137

Lemma 3 (L1 stability). Under the CFL condition c∆t
∆x ≤ 1 and the subcharacteristic condition c ≥ a∞, there

holds that the sequence (µn
j , νn

j )j,n defined by the scheme (47) verifies the following L1 stability property:

∀n ∈ N, ∑
j∈Z

(
|µn+1

j |+ |νn+1
j |

)
≤ ∑

j∈Z

(
|µn

j |+ |νn
j |
)

.

Proof. In each combination of (47), the first coefficient is nonnegative under the CFL condition c∆t
∆x ≤ 1,

and so is the last one since κn
j± 1

2 ,L
≥ 0 and κn

j± 1
2 ,R
≤ 0. Moreover, under the subcharacteristic condition
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c ≥ a∞, it holds that −c ≤ κj± 1
2 ,R + κj± 1

2 ,R ≤ c so the remaining coefficient is nonpositive. Thus,
applying the triangle inequality and reindexing the sums appropriately,

∑
j∈Z

(
|µn+1

j |+ |νn+1
j |

)
≤ ∑

j∈Z

(
1− c∆t

∆x

)
|µn

j |+ ∑
j∈Z

c∆t
∆x

c− κn
j+ 1

2 ,R
− κn

j+ 1
2 ,L

c− κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

|νn
j |

− ∑
j∈Z

2c∆t
∆x

κn
j+ 1

2 ,R

c− κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

|µn
j+1|+ ∑

j∈Z

(
1− c∆t

∆x

)
|νn

j |

+ ∑
j∈Z

c∆t
∆x

c + κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

c− κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

|µn
j+1|+

2c∆t
∆x

κn
j+ 1

2 ,L

c− κn
j+ 1

2 ,R
+ κn

j+ 1
2 ,L

|νn
j |,

≤
(

1− c∆t
∆x

)
∑
j∈Z

(
|µn

j |+ |νn
j |
)
+

c∆t
∆x ∑

j∈Z
|µn

j+1|+
c∆t
∆x ∑

j∈Z
|νn

j |,

≤ ∑
j∈Z

(
|µn

j |+ |νn
j |
)

.

It concludes the proof.138

Lemma 4 (Consistency for smooth solutions). Assume that, for all j ∈ Z, we have an
j− 1

2 ,L/R
=139

−∑
k 6=j

W ′(xj − xk)ρk− 1
2 ,L/R. Then, for any ε > 0, the scheme (37) is consistent with (2) provided that the140

solutions are smooth enough.141

Proof. For j ∈ Z, one has, using Taylor expansions as ∆x → 0,

κn
j− 1

2 ,L

c− κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

=
1
2
− 1

4εc2

(
c−

an
j− 1

2 ,L
+ an

j− 1
2 ,R

2

)
∆x + O(∆x2),

κn
j− 1

2 ,R

c− κn
j− 1

2 ,R
+ κn

j− 1
2 ,L

= −1
2
+

1
4εc2

(
c +

an
j− 1

2 ,L
+ an

j− 1
2 ,R

2

)
∆x + O(∆x2).

Thus,

σj− 1
2
=

σn
j−1 + σn

j

2
+ c

ρn
j−1 − ρn

j

2
− 1

4εc2

((
c−

an
j− 1

2 ,L
+ an

j− 1
2 ,R

2

)
(σn

j−1 + cρn
j−1)

+

(
c +

an
j− 1

2 ,L
+ an

j− 1
2 ,R

2

)
(σn

j − cρn
j )

)
∆x + O(∆x2).

In particular, σj− 1
2

is clearly consistent with σ(tn, xj− 1
2
) as long as the solution (ρ, σ) is smooth enough

to perform standard consistency analysis for finite differences. This shows that (37a) is consistent with
∂tρ + ∂xσ = 0. As for the consistency of (37b) with ∂tσ + c2∂xρ = 1

ε (a[ρ]ρ− σ), we write:

σj+ 1
2
+ σj− 1

2
− 2σn

j =
σn

j+1 − 2σn
j + σn

j−1

2
+ c

ρn
j−1 − ρn

j+1

2
− ∆x

4εc2

[
c(σn

j−1 + 2σn
j + σn

j+1)

+
an

j− 1
2 ,L

+ an
j− 1

2 ,R

2
(σn

j − σn
j−1) +

an
j+ 1

2 ,L
+ an

j+ 1
2 ,R

2
(σn

j+1 − σn
j ) + c2(ρn

j−1 − ρn
j+1)

− c

( an
j− 1

2 ,L
+ an

j− 1
2 ,R

2
ρn

j−1 +
an

j− 1
2 ,L

+ an
j− 1

2 ,R
+ an

j+ 1
2 ,L

+ an
j+ 1

2 ,R

2
ρn

j +
an

j+ 1
2 ,L

+ an
j+ 1

2 ,R

2
ρn

j+1

)]
+ O(∆x2).
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Using Taylor expansions, we have, for smooth solutions σ(tn, xj+1)− 2σ(tn, xj)+ σ(tn, xj−1) = O(∆x2),
ρ(tn, xj−1)− ρ(tn, xj+1) = O(∆x), σ(tn, xj)− σ(tn, xj−1) = O(∆x) and σ(tn, xj+1)− σ(tn, xj) = O(∆x).
Along with the bound |an

j± 1
2 ,L/R

| ≤ a∞, this implies:

σj+ 1
2
+ σj− 1

2
− 2σn

j = c
ρn

j−1 − ρn
j+1

2
− 1

4εc2

[
c(σn

j−1 + 2σn
j + σn

j+1)− c

( an
j− 1

2 ,L
+ an

j− 1
2 ,R

2
ρn

j−1

+
an

j− 1
2 ,L

+ an
j− 1

2 ,R
+ an

j+ 1
2 ,L

+ an
j+ 1

2 ,R

2
ρn

j +
an

j+ 1
2 ,L

+ an
j+ 1

2 ,R

2
ρn

j+1

)]
∆x + O(∆x2).

Clearly, c
ρn

j−1−ρn
j+1

2 and c(σn
j−1 + 2σn

j + σn
j+1) are consistent with accuracy O(∆x2) and O(∆x)

respectively with −c∂xρ(tn, xj) and 4cσ(tn, xj). For the remaining terms, let us recall that, with the
notations of (42):

ρj− 1
2 ,L =

νn
j−1 − µ(0)

2c
=

νn
j−1 − σj− 1

2

c
, ρj− 1

2 ,R =
ν(∆x)− µn

j

2c
=

σj− 1
2
− µj

c
.

Hence ρj− 1
2 ,L + ρj− 1

2 ,R =
νn

j−1 − µn
j

c
=

σn
j−1 − σn

j

c
+ ρn

j−1 + ρn
j . Since σ(tn, xj−1)− σ(tn, xj) = O(∆x),

and assuming that:
an

j− 1
2 ,L/R = −∑

k 6=j
W ′(xj − xk)ρk− 1

2 ,L/R

we deduce that an
j− 1

2 ,L
+ an

j− 1
2 ,R

is consistent with a[ρ(tn)](xj−1) + a[ρ(tn)](xj) with accuracy O(∆x).142

It follows that σj+ 1
2
+ σj− 1

2
− 2σn

j is consistent with −∂xρ(tn, xj)− 1
ε

(
σ(tn, xj)− a[ρ(tn)](xj)ρ(tn, xj)

)
,143

again with accuracy O(∆x), and this concludes the proof.144

The stability conditions in Lemma 3 are independent on ε, we recover in the limit ε→ 0, using
(41), the scheme of [20]:

ρn+1
j = ρn

j −
∆t
∆x

νn
j (an

j+ 1
2 ,L

)+ + µn
j+1(an

j+ 1
2 ,R

)−

c + (an
j+ 1

2 ,R
)− + (an

j+ 1
2 ,L

)+
−

νn
j−1(an

j− 1
2 ,L

)+ + µn
j (an

j− 1
2 ,R

)−

c + (an
j− 1

2 ,R
)− + (an

j− 1
2 ,L

)+

 (49a)

σn+1
j = σn

j − c
∆t
∆x

2σn
j −

νn
j (an

j+ 1
2 ,L

)+ + µn
j+1(an

j+ 1
2 ,R

)−

c + (an
j+ 1

2 ,R
)− + (an

j+ 1
2 ,L

)+
−

νn
j−1(an

j− 1
2 ,L

)+ + µn
j (an

j− 1
2 ,R

)−

c + (an
j− 1

2 ,R
)− + (an

j− 1
2 ,L

)+

 , (49b)

which is stable under the conditions c∆t
∆x ≤ 1 and c ≥ a∞. Notice that with the notation in (46), equation

(49a) may be rewritten

ρn+1
j = ρn

j −
∆t
∆x

(
ρn

j+ 1
2 ,L(an

j+ 1
2 ,L)+ − ρn

j+ 1
2 ,R(an

j+ 1
2 ,R)− − ρn

j− 1
2 ,L(an

j− 1
2 ,L)

+ + ρn
j− 1

2 ,R(an
j− 1

2 ,R)−
)

.

4. Numerical experiments145

We present some numerical illustrations for the two schemes described in the previous section. In146

addition to the potential W(x) = |x|
2 , we also consider the smooth potential W(x) = x2

2 .147

Numerical tests are conducted on the domain [−1, 1] with the inital data ρ0 = 1
2 δ−0.5 +

1
2 δ0.5,

σ0 = a[ρ0]ρ0 and both schemes are initialized with

ρ0
j =

1
∆x

ρ0(Cj), σ0
j =

1
∆x

σ0(Cj).
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Figure 1 shows that both schemes recover the correct dynamics in the limit ε → 0: for the potential148

W(x) = |x|
2 , one can compute the exact velocity of both Dirac masses for the aggregation equation (1)149

and see that they should be located respectively in x = −0.2 and x = 0.2 in final time T = 1.2.150

This test is set up with ε = 10−7, on a cartesian mesh of [−1, 1] with 1500 cells, c = 1 and the CFL151

c
∆t
∆x

= 0.9. Both schemes (27) and (49) display the correct velocity for the Dirac masses, but one can152

notice that the Rusanov scheme (27) shows more numerical diffusion. Note that both schemes being153

written in conservation form, they preserve the total mass of ρ, which is also verified numerically.154

Figure 1. Dynamics of two Dirac masses for the potential W(x) = |x|
2 in time T = 1.2.

We then investigate the order of convergence when ∆x goes to 0 with ε fixed, in Wasserstein155

distance W1 (the numerical results are the same for W2).156

After performing tests for several values of ε, it appears that the convergence rate does not depend157

on the size of ε. Therefore, as an example, we propose simulations in final time T = 0.5, with the same158

intial data and stability parameters as above, and with ε = 2× 10−6 for Figure 2 and with ε = 10−2 for159

Figure 3.160

For a fixed value of ε, both schemes seem to converge with order 1/2 with respect to ∆x for the161

smooth potential W(x) = x2

2 (see Figure 2) whereas they seem of order 1 for the potential W(x) = |x|
2162

(see Figure 3). This can be explained as both schemes possess some numerical diffusion which is163

somehow counterbalanced by the aggregation phenomenon in the case of a pointy potential, as already164

observed in [21]. Due to the link with the Burgers equation, this superconvergence phenomenon is165

directly linked to the results of Després [33] which should be rigorously extended to our case (the mere166

extension to the upwind scheme of [11] for the aggregation is not straightforward).167
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Figure 2. Order of convergence of the splitting scheme and the well-balanced scheme for the smooth
potential W(x) = x2

2 .

Figure 3. Order of convergence of the splitting scheme and the well-balanced scheme for the pointy
potential W(x) = |x|

2 .

Finally, we also verify the well-balanced property of the scheme (48) by computing the W1 distance
between the approximated solution at time T = 0.5 and the stationary solution of (2) given by:

ρ(t, x) = ρ0(x) :=
1

8εc2

(
1− tanh2

( x
4εc2

))
.
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The test is conducted with ε = 2× 10−4, with the exact boundary conditions given by the above168

formula, and for several values of ∆x. As we show in Figure 4, the scheme (48) preserves well the169

above equilibrium for any ∆x (although we have replaced the resolution of the systems (30) and170

(31) with linear systems, see (38)), while, for the splitting scheme, we recover the linear convergence171

towards ρ0 which is, in this case, the exact solution.172

Figure 4. Distance to the equilibrium for the splitting scheme and the well-balanced scheme and for
the pointy potential W(x) = |x|

2 .
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