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Abstract

We study two toy models obtained after a slight modification of the nonlinearity of the usual
doubly parabolic Keller–Segel system. For these toy models, both consisting of a system of two
parabolic equations, we establish that for data which are, in a suitable sense, smaller than the
diffusion parameter τ in the equation for the chemoattractant, we obtain global solutions, and for
some data larger than τ , a finite time blowup. In this way, we check that our size condition for
the global existence is sharp for large τ , up to a logarithmic factor.

1 Introduction and main results

This paper is concerned with parabolic systems (TM) and (TM’) below, depending on a diffusion
parameter τ > 0: 

ut = ∆u− u∆ϕ,

τϕt = ∆ϕ+ u,

u(0) = u0, ϕ(0) = ϕ0,

x ∈ Rd, t > 0, (TM)

and 
ut = ∆u+ (∆ϕ)2,

τϕt = ∆ϕ+ u,

u(0) = u0, ϕ(0) = ϕ0,

x ∈ Rd, t > 0, (TM’)

The above systems degenerate into the quadratic nonlinear heat equation (NLH) when τ = 0 and a
compatibility condition, ∆ϕ0 = −u0, is put on ϕ0:{

ut = ∆u+ u2,

u(0) = u0,
x ∈ Rd, t > 0. (NLH)
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These model systems are introduced in order to show the influence of the parameter τ in the second
equation (a linear nonhomogeneous heat equation) on the size of admissible initial data leading to
global-in-time solutions, and to finite time blowup, respectively. Our main motivation is to analyze
those issues for the Keller–Segel system (PP), continuing the analysis started in [5]. Here (PP)
denotes the doubly parabolic Keller–Segel system describing chemotaxis, given by

ut = ∆u−∇ · (u∇ϕ),

τϕt = ∆ϕ+ u,

u(0) = u0, ϕ(0) = ϕ0,

x ∈ Rd, t > 0, (PP)

where τ > 0, and (PE) is the parabolic-elliptic Keller–Segel system with τ = 0
ut = ∆u−∇ · (u∇ϕ),

∆ϕ+ u = 0,

u(0) = u0,

x ∈ Rd, t > 0. (PE)

The existence of solutions for (PP) has been studied in the recent work [5]. The issue of blowup is
largely open for (PP), except for [18, 19] where the radially symmetric problem is considered in a ball
and in [20] in the whole space. Note that some concentration phenomena for (PP) have been shown
in [8]. There, a supplementary information on L1 solutions is derived from entropy functionals and
other specific properties of those drift-diffusion systems.

Note that (TM) and (TM’) have the same structure of steady states as (NLH), so they are related
in a way similar to that as (PP) relates to (PE). However, (NLH) has a number of specific properties
(such as variational structure, energy functional) that are not immediately extended to systems like
(TM) and (TM’).

All the considered systems feature cross-diffusion terms which make their analysis delicate. This
justifies, in a sense, the application of Besov spaces in their analysis, cf. [10, 13] for well- and
ill-posedness issues.

The analysis of the toy models (TM) and (TM’) shed some light on the optimal spaces where it is
reasonable to address the existence problem for (PP). Indeed, we prove in Sec. 2.2 existence for (TM)
in the framework of Besov-type spaces, very close to optimal spaces with respect to the admissible
initial data leading to local-in-time solutions. Next, in Sec 3.1, a couple of such existence and
regularity results is shown for (TM), and for (TM’) in Sec. 3.2, in the framework of pseudomeasures,
similarly to the presentation in [5, Sec. 2]. Section 4 is devoted to proofs of blowup, for (TM) in Sec.
4.1 and for (TM’) in Sec. 4.2. The proofs are based on the idea going back to [14] (and used for (PE)
in [3]) where the Fourier transform of solutions is analyzed: we prove that it tends to infinity in an
appropriate sense in finite time, so that the solution itself necessarily becomes non-smooth. Thus,
the technique used in the proof of Theorem 4.1 differs much from the usual approaches to nonlinear
parabolic equations (see e.g. [15, Ch. 17]). A more traditional approach involving moments of
solutions is presented in Sec. 5 for the model (TM’) considered in bounded domains.

Besides formal similarities of (TM), (TM’) with (NLH) and (PE) when τ = 0, or with (PP)
when τ > 0, there are rigorous results on singular perturbation limits τ ↘ 0 for small solutions of
Keller–Segel systems for which blowup does not occur. Indeed, solutions with ϕ0 = (−∆)−1u0 are
recovered for τ = 0, in the sense of suitable convergences in [16, 4, 13, 11] where various functional
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settings are proposed. Similar results hold also for the toy models but our main interest here is rather
the behaviour for large τ than for τ close to 0.

Note however, that a natural conjecture that blowup phenomena should be continuous with re-
spect to the parameter τ → 0 has not been, unfortunately, up to now rigorously proved, neither for
(TM)→(NLH) nor (PP)→(PE).

In the global-in-time existence results below the initial data u0 does not have to be positive.
We make the assumption ϕ0 = 0 which simplifies the presentation but it is not essential.

Our analysis illustrate that existence and well-posedness results for both toy models have nearly
optimal character if one considers (both the regularity and) the size of the initial data. This in turn
sheds new light on these issues for the classical parabolic-parabolic Keller–Segel system, as discussed
in [5].

Notation

In this paper we adopt the following notation and conventions. The expression A . B, where A and
B may depend on several parameters, means that there exists a constant c > 0, depending only on
the space dimension, such that A ≤ cB. When both A . B and B . A we will write A ≈ B.

For a function f ∈ L1(Rd), the definition of the Fourier transform that we use is f̂(ξ) =∫
f(x) exp(−iξ ·x) dx. This definition is extended to S ′(Rn), the space of tempered distributions, in

the usual way. The space of general distributions is denoted D ′(Rd).
In this paper we will deal with mild solutions. These are solutions of the integral formulation of

(PP). The exact meaning of the integral must be understood in the specific functional setting.

2 Besov spaces

In this section, we study the local and the global solvability of (TM) in Besov-type spaces. The
singularity of ∆ϕ is somehow too strong to directly perform the bilinear estimates arising from the
the nonlinear term u∆ϕ in the usual way. For this reason, we will study (TM) as a perturbation of
the original model (PP). Accordingly, the nonlinear term in will be decomposed as

u∆ϕ = ∇ · (u∇ϕ)−∇u · ∇ϕ. (2.1)

The first term in the right-hand is nothing but the nonlinearity of (PP). In our previous paper [5],
the solutions to (PP) were constructed in a ball of the space

Ep :=
{
u ∈ L∞(0,∞;Lp(Rd)), |||u|||p := ess sup t1−d/(2p)‖u(t)‖p <∞

}
. (2.2)

But the presence of the second term requires to have additional information on ‖∇u(t)‖p. For this
reason, we will need to work in the subset of the space Ep given by

Fp :=
{
u ∈ L∞(0,∞;W 1,p(Rd)) : [[u]]p := |||u|||p + |||u|||1,p <∞

}
, (2.3)
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where we define
|||u|||1,p := ess supt>0 t

3/2−d/(2p)‖∇u(t)‖p.

The purpose of this section is to establish the following:

Theorem 2.1. Let d ≥ 3. For 2d/3 < p < d and 2/d − 1/p < 1/q < 1/d, there exist Cq,d, C
′
q,d > 0

such that if we denote
γ := 1/2− d/2(1/p− 1/q) (2.4)

(when p→ d, we have q → d, which forces γ → 1/2), and

‖u0‖Ḃ−(2−d/p)
p,∞

< Cq,dτ
γ , (2.5)

then there exists a global mild solution u ∈ Fp to (TM), such that

[[u]]p < C ′q,d‖u0‖Ḃ−(2−d/p)
p,∞

. (2.6)

Such a solution is uniquely defined by condition (2.6). Moreover, u(t)− et∆u0 ∈ BC(0,∞;Ld/2).

We will reduce the proof of this theorem to a few lemmas, established in the following subsections.
For larger initial data the size condition (2.5) may not apply. In this case, local-in-time solutions can
be proved to exist, under stronger regularity conditions on the initial data.

Remark 2.2. As mentioned in the introduction, our main interest is for τ � 1. Notice that the
exponent in (2.4) is such that γ < 1/2. Thus, according to Theorem 2.1, the size of the admissible
data for the global existence would be worse than O(

√
τ), as τ → +∞. This is not completely

satisfactory, in view of next blowup result (Theorem 4.1 below): the latter will make evidence of a
class of initial data of size O(τ), whose solutions blow up in finite time. Thus, there is a substantial
gap between our two results on global existence and on finite time blowup.

Such a gap is due to a technical limitation, related to the use of Besov spaces. Assuming that the
initial data belong to slightly less rough spaces, we can almost completeley close this gap, up to a
logarithmic factor in τ . This will motivate the analysis of (TM) in a different functional setting. See
Section 3.

2.1 Review of known estimates in Ep
In this short subsection we briefly recall without proof some results obtained in [5] in order to study
the original system (PP).

We recall the classical Lp-Lq inequalities for the heat semigroup (see e.g. [17, Ch. 15, (1.15)] or
[9]), valid for 1 ≤ p ≤ q ≤ ∞ :

‖et∆f‖q ≤ C(d, p, q)t−d(1/p−1/q)/2‖f‖p,
‖∇et∆f‖q ≤ C(d, p, q)t−1/2−d(1/p−1/q)/2‖f‖p.

(2.7)

Following [5], let us introduce the (respectively, linear and bilinear) operators L and B given by:

Lz(t) := τ−1

∫ t

0
∇eτ

−1(t−s)∆z(s) ds, (2.8)

B(u, z)(t) := −
∫ t

0
∇e(t−s)∆ · (u(s)Lz(s)) ds. (2.9)
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Below, all constants are implicitly assumed to depend on d. They are also implicitly assumed to
depend on p and q in the lemmas.

Lemma 2.3. If 0 ≤ 1/q ≤ 1/p < 1/q + 1/d and 0 < 1/p, then for t > 0

‖Lz(t)‖q ≤ Cτ−1/2+d/2(1/p−1/q)t−1/2+d/2q|||z|||p.

Lemma 2.4. If 1/d < 1/p+ 1/q ≤ 1, 0 ≤ 1/q < 1/d and the conditions of Lemma 2.3 hold, then we
have

|||B(u, z)|||p ≤ Cτ
−1/2+d/2(1/p−1/q)|||u|||p|||z|||p.

In order to apply both lemmas, we should check the compatibility of the conditions of the expo-
nents p and q. The two lemmas, combined, require that:

|1/p− 1/d| < 1/q ≤ min{1/p, 1− 1/p}; 1/q < 1/d and 0 < 1/p, with d > 1.

This requires choosing p so that 1/d < 2/p < min{1 + 1/d, 4/d}. In other words, in order to find a
suitable q to use the lemmas above, a necessary and sufficient assumption is:

d ≥ 2; max{d/2, 2d/(d+ 1)} < p < 2d.

The last lemma in [5] that we will need is the following:

Lemma 2.5. If d ≥ 2 and 2d/3 < p ≤ d and u ∈ Ep, we have:

‖B(u, u)(t)‖d/2 ≤ Cτ−3/2+d/p|||u|||2p.

2.2 New estimates in Fp
Here we complete the results of the previous subsection with some additional estimates that we need
to solve (TM). We will assume that d ≥ 3. Otherwise, we cannot find admissible parameters for
the technical lemmas which we are using. In the same way as we did when studying the classical
Keller–Segel model in [5, Sec. 3], all constants are implicitly assumed to depend on d, as well as on
p and q in the lemmas.

The second term in the right-hand side of (2.1) motivates the introduction of a second bilinear
operator. We define

B̃(u, z)(t) :=

∫ t

0
e(t−s)∆(∇u(s) · Lz(s)) ds. (2.10)

We will proceed similarly to the proofs in [5] of the results in the previous subsection, where we have
already estimated |||B(u, z)|||p. Here we need to study the quantities |||B(u, z)(t)|||1,p+ |||B̃(u, z)(t)|||1,p
and |||B̃(u, z)(t)|||p. This will be achieved, respectively in Lemma 2.7 and Lemma 2.8 below.

Both of these lemmas require a preliminary linear estimates for |||L∇v(t)|||q′ .

Lemma 2.6. Under the assumptions

0 ≤ 1/q′ ≤ 1/p < 1/q′ + 1/d; p < d,

we have |||L∇v(t)|||q′ ≤ Cτ−1/2+d/2(1/p−1/q′)t−1+d/2q′ |||v|||1,p.
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Proof. Using (2.7) we get:

|||L∇v(t)|||q′ ≤ Cτ
−1

∫ t

0
[τ−1(t− s)]−1/2−d/2(1/p−1/q′)‖∇v(s)‖p ds

≤ Cτ−1/2+d/2(1/p−1/q′)|||v|||1,p
∫ t

0
(t− s)−1/2−d/2(1/p−1/q′)s−3/2+d/2p ds

≤ Cτ−1/2+d/2(1/p−1/q′)t−1+d/2q′ |||v|||1,p.

Lemma 2.7. If q′ satisfies the assumptions of Lemma 2.6 (and a fortiori those of Lemma 2.3 with
q′ playing the role of q), and moreover

2/d < 1/p+ 1/q′ ≤ 1; 0 ≤ 1/q′ < 1/d,

then
‖∇B(u, z)(t)‖p + ‖∇B̃(u, z)(t)‖p ≤ Cτ−1/2+d/2(1/p−1/q′)t−3/2+d/2p[[u]]p[[z]]p.

Proof. Since we have

∇B(u, z) = B(∇u, z) +B(u,∇z) and ∇B̃(u, z) = −B(∇u, z),

it suffices to estimate ‖B(∇u, z)‖p + ‖B(u,∇z)‖p.
First, we use (2.7) and Hölder’s inequality and then, respectively, Lemma 2.3 and Lemma 2.6), ending
by the change of variables s̃ = t/s:

‖B(∇u, z)‖p ≤ C
∫ t

0
(t− s)−1/2−d/2q′‖∇u(s)‖p‖Lz(s)‖q′ ds

≤ Cτ−1/2+d/2(1/p−1/q′)

∫ t

0
(t− s)−1/2−d/2q′s−3/2+d/2ps−1/2+d/2q′ ds · |||u|||1,p|||z|||p

≤ Cτ−1/2+d/2(1/p−1/q′)t−3/2+d/2p|||u|||1,p|||z|||p.

Then, similarly, we get:

‖B(u,∇z)‖p ≤ C
∫ t

0
(t− s)−1/2−d/2q′‖u(s)‖p‖L∇z(s)‖q′ ds

≤ Cτ−1/2+d/2(1/p−1/q′)

∫ t

0
(t− s)−1/2−d/2q′s−1+d/2ps−1+d/2q′ ds · |||u|||p|||z|||1,p

≤ Cτ−1/2+d/2(1/p−1/q′)t−3/2+d/2p|||u|||p|||z|||1,p.

Lemma 2.8. With the same assumptions as in Lemma 2.3 for q′′ playing the role of q, and if
moreover

2/d < 1/p+ 1/q′′ ≤ 1; 0 ≤ 1/q′′ < 2/d,

we have
‖B̃(u, z)(t)‖p ≤ Cτ−1/2+d/2(1/p−1/q′′)t−1+d/2p[[u]]p[[z]]p.
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Proof. Using (2.7), Hölder’s inequality and then Lemma 2.3 we get

‖B̃(u, z)(t)‖p ≤ C
∫ t

0
(t− s)−d/2q′′‖∇u(s)‖p‖Lz(s)‖q′′ ds

≤ Cτ−1/2+d/2(1/p−1/q′′)

∫ t

0
(t− s)−d/2q′′s−3/2+d/2ps−1/2+d/2q′′ ds|||u|||1,p|||z|||p

≤ Cτ−1/2+d/2(1/p−1/q′′)t−1+d/2p|||u|||1,p|||z|||p.

To find an admissible p < d, so that q from Lemma 2.4, q′ from Lemma 2.7 and q′′ from Lemma 2.8
exist, a sufficient condition is

max{1/p− 1/d, 2/d− 1/p} < 1/q, 1/q′, 1/q′′ < min{1/d, 1− 1/p}. (2.11)

(The conditions on q and q′′ are in fact less restrictive than those needed for q′). This is possible for
d ≥ 3 and d/2 < p < d.

Our last lemma will be useful to see that the fluctuation of the solution, i.e. the difference
u− e·∆u0, not only belongs to the space Fp where u will be constructed, but also to L∞(0,∞;Ld/2).

Lemma 2.9. Let d ≥ 3 and d/2 < p < d. There exists a constant Cτ > 0 such that

‖B̃(u, u)‖d/2 ≤ Cτ [[u]]2p. (2.12)

Proof. Here and below we assume that d/2 < p < d, and r, q = q′ = q′′ given by

1/r = 3/(2d) + 1/(2p); 1/p+ 1/q = 1/r.

Therefore
2/d− 1/p < 1/q = 3/(2d)− 1/(2p) < 1/d ≤ 1− 1/p,

and moreover
1/q > 1/p− 1/d,

so the assumptions (2.11) are satisfied. In the four inequalities below, we use respectively (2.7),

Hölder’s inequality, Lemma 2.3 and the change of variables s̃ = t/s:

‖B̃(u, u)(t)‖d/2 ≤ C
∫ t

0
(t− s)−d/2(1/r−2/d)‖∇u(s)Lu(s)‖r ds

≤ C
∫ t

0
(t− s)1/4−d/(4p)‖∇u(s)‖p‖Lu(s)‖q ds

≤ Cτ
∫ t

0
(t− s)1/4−d/(4p)s−5/4+d/(4p) ds · [[u]]2p

≤ Cτ [[u]]2p.
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Proof of Theorem 2.1. To prove the first theorem, we observe that if u0 ∈ Ḃ
−(2−d/p)
p,∞ , then ∇u0 ∈

Ḃ
−2(3/2−d/2p)
p,∞ , and the Besov norm of ∇u0 is equivalent to that of u0. Applying twice [1, Theorem

2.34], first to u0, next to ∇u0, we deduce that e·∆u0 ∈ Fp and

‖e·∆u0‖Fp . ‖u0‖Ḃ−(2−d/p)
p,∞

.

The usual fixed point lemma (see, e.g., [12, Theorem 13.2] or [2, Lemma 1.1.1]) applies in a ball of
Fp, thanks to the bilinear estimate

[[B(u, v)]]p + [[B̃(u, v)]]p ≤ Cτ
−1/2+(d/2)(1/p−1/q)[[u]]p[[v]]p,

that follows combining Lemmas 2.6, 2.7 and 2.8 with q = q′ = q′′. The solution u is thus constructed
in a ball of Fp.

The fluctuation u−e·∆u0 also belongs to BC(0,∞;Ld/2). Indeed, for t > 0, we have the estimate,

‖u(t)− et∆u0‖d/2 ≤ ‖B(u, u)(t)‖d/2 + ‖B̃(u, u)(t)‖d/2 ≤ Cτ [[u]]2p,

that follows combining Lemma 2.5 and Lemma 2.9. The continuity with respect to t is standard and
we skip it here (see [5]).

Remark 2.10. For more regular, but possibly large, initial data, local-in-time existence of solutions to
(TM) can be proved in several ways. For example, if d ≥ 3, u0 ∈ Ld/2(Rd) and p is as in Theorem 2.1,

then there exists T > 0 such that a solution u ∈ F̃p,T does exist. Here, Fp,T is defined in the same

way as Fp, with the time interval (0, T ) replacing (0,∞). The space F̃p,T is the subspace of Fp,T of
functions v satisfying the additional condition

lim
t→0+

(
t1−d/(2p)‖v(t)‖p + t3/2−d/(2p)‖∇v(t)‖p

)
= 0.

A simple approximation argument (using the density of Lp in Ld/2 and the Ld/2-Lp estimates for the

heat hernel and its gradient) proves that if u0 ∈ Ld/2(Rd), then et∆u0 ∈ F̃p,T . Thus, the size condition
on the data needed to apply the usual fixed point theorem can be ensured just taking T > 0 small
enough (with a nontrivial dependence on u0 and not just |u0|d/2, due to the approximation procedure).

The solution that we obtain is easily proved to be in BC(0, T ;Ld/2) and to be unique in F̃p,T .

Remark 2.11. An analogous analysis of (TM’) is not possible since the bilinear term has a more
singular stricture when using Besov spaces. This is one of the reasons why we need to introduce
pseudomeasures.

3 Pseudomeasures

In this section we will study both toy models (TM) and (TM’) in pseudomeasure spaces. We begin by
recalling some definitions and statements of results from [5]. The functional setting is more restrictive
than in the previous section, but the size conditions will be less stringent when τ � 1 and the proofs
will be shorter. Indeed, when working in pseudomeasure spaces, it is no longer necessary to treat the
nonlinearity of the toy models as a perturbation to that of (PP).
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Let a ∈ R. We introduce the pseudomeasure space

PMa = {f ∈ S ′(Rd) : ‖f‖PMa = ess supξ∈Rd |ξ|a|f̂(ξ)| <∞}, (3.1)

where f̂ denotes the Fourier transform of the tempered distribution f .

We will construct our solutions in the space

Ya = {u ∈ L∞loc(0,∞; S ′(Rd)) : ‖u‖Ya = ess supt>0, ξ∈Rd t
1+(a−d)/2|ξ|a|û(ξ, t)| <∞}. (3.2)

When a = d− 2, the space Yd−2, agrees with the space

X = L∞(0,∞;PMd−2),

already used in [6, Theorem 2.1] to establish a global existence result for the parabolic-elliptic Keller–
Segel system (PE) for d ≥ 4 and small initial data in PMd−2. When a 6= d − 2, our space Ya is
slightly larger than the space

Ya := Ya ∩ X
considered in [6, Section 4] (d ≥ 3) or in [16] (d = 2).

We start recalling a result of [5] for the classical parabolic-parabolic Keller–Segel system:

Theorem 3.1. Let d ≥ 2, τ > 0 and u0 ∈ PMd−2(Rd). There exists κd > 0, depending only on d,
such that if

‖u0‖PMd−2 < κd max
{

1,
33 τ

(e ln τ)3

}
(3.3)

then (PP) possesses a global mild solution u ∈ X . More precisely:

- If ‖u0‖PMd−2 < κd then u ∈ X ∩ Yd− 4
3
, and this solution is unique in the ball {u : ‖u‖Y

d− 4
3

<

2κd}.

- If τ ≥ e3, then under the weaker condition ‖u0‖PMd−2 < 33κd τ/(e ln τ)3 we have u ∈ X ∩
Yd−4/ ln τ , and u is the unique solution in the ball {u : ‖u‖Yd−4/ ln τ

< 2κd3
3 τ/(e ln τ)3}.

The analog of Theorem 3.1 for our two toy models is the following result:

Theorem 3.2. For d ≥ 3 the assertion of Theorem 3.1 holds for both systems (TM) and (TM’).

The proof of Theorem 3.2 is conceptually the same as that of Theorem 3.1, but different technical
restrictions appear on the parameters that are involved in the estimates. For reader’s convenience we
briefly outline the proof of Theorem 3.2. This will allow us to illustrate why the case d = 2 should
be excluded for the toy model.

Lemma 3.3. Let 0 < α, β < d such that α+ β > d. Then

|x|−α ∗ |x|−β = C(α, β, d)|x|−(α+β)+d,

with

C(α, β, d) = πd/2
Γ(d−α2 )Γ(d−β2 )Γ(α+β−d

2 )

Γ(α2 )Γ(β2 )Γ(d− α+β
2 )

. (3.4)
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Proof. See [6, Lemma 2.1].

Another Lemma used in [5] (refining [16, Lemma 3.2]), is the following:

Lemma 3.4. Let s > 0, A > 0, δ > 0, 0 ≤ b ≤ 1 and δ∗ = min{δ, 1}. Then∫ s

0
e−(s−σ)Aσ−1+δ ds ≤ 4δ−1

∗ A−bsδ−b.

3.1 Pseudomeasures for the system (TM)

Taking the Fourier transform in (TM) we get

û(ξ, t) = e−t|ξ|
2
û0(ξ)−

∫ t

0
e−(t−s)|ξ|2 û∆ϕ(ξ, s) ds

= e−t|ξ|
2
û0(ξ) + (2π)−d

∫ t

0

∫
Rd

e−(t−s)|ξ|2 û(ξ − η, s)|η|2ϕ̂(η, s) dη ds.

(3.5)

Notice that

ϕ̂(η, s) = τ−1

∫ s

0
e−τ

−1(s−σ)|η|2 û(η, σ) dσ.

Therefore,

û(ξ, t) = e−t|ξ|
2
û0(ξ)

+ (2π)−d
∫ t

0

∫ s

0

∫
Rd

|η|2

τ
e−(t−s)|ξ|2e−

1
τ

(s−σ)|η|2 û(ξ − η, s)û(η, σ) dη dσ ds.
(3.6)

By definition, by a solution to (TM) on (0, T ), with T > 0, we mean any function u on (0,∞)
with values in S ′(Rd) such that for a.e. 0 < t < T , û(t, ·) is locally integrable in Rd and for a.e.
0 < s < t < T and ξ ∈ Rd the integrand in (3.6) is integrable in (0, t) × (0, s) × Rd, and (3.6) holds
for a.e. (ξ, t) ∈ Rd × (0, T ).

Such solutions can be constructed via the standard fixed point algorithm as the limit u =
limk→∞ uk, where

uk+1 = et∆u0 −
∫ t

0
e(t−s)∆ 1

τ

[
uk(s)∆

∫ s

0
e

1
τ

(s−σ)∆uk(σ) dσ

]
ds,

for k = 1, 2, . . . , in an appropriate function space. We already gave an instance of such a construction
for (PP), using pseudomeasure spaces in [5, Sec. 2].

Proof of Theorem 3.2. The case of (TM). We can write the problem (TM) in the integral form

u(t) = et∆u0 +B′(u, u)(t),

where B′ is the bilinear operator

B̂′(u, v)(ξ, t) = (2π)−d
∫ t

0

∫ s

0

∫
Rd

|η|2

τ
e−(t−s)|ξ|2e−

1
τ

(s−σ)|η|2 û(ξ − η, s)v̂(η, σ) dη dσ ds. (3.7)
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Proceeding as in [5], assuming for simplicity that ‖u‖Ya = ‖v‖Ya = 1 and applying Lemma 3.4,
Lemma 3.3 and then again Lemma 3.4 with γ = −b+ 1 + (d− a)/2 playing the role of b we get the
estimate:

|B̂′(u, v)|(ξ, t) ≤ (2π)−dτ−1

∫ t

0

∫ s

0

∫
Rd

e−(t−s)|ξ|2e−
1
τ

(s−σ)|η|2s−1+(d−a)/2σ−1+(d−a)/2|ξ − η|−a|η|−a+2 dη dσ ds

≤ 8τ b−1

(2π)d(d− a)∗

∫ t

0

∫
Rd

e−(t−s)|ξ|2s−1+d−a−b|ξ − η|−a|η|−a+2−2b dη ds

≤ 8τ b−1C(a, a− 2 + 2b, d)

(2π)d(d− a)∗

∫ t

0
e−(t−s)|ξ|2s−1+d−a−b|ξ|−2a+2−2b+d ds

≤ K ′τ b−1|ξ|−at−1−(a−d)/2,

where,

K ′ = K ′(a, b, d) =
32C(a, a− 2 + 2b, d)

(2π)d(d− a)∗(d− a− b)∗
. (3.8)

However, the conditions for the validity of this estimate are not the same as for the analogous estimate
established for (PP) in [5], because we needed to make a different choice for the parameters. Namely,
we need here a < d and 0 ≤ b ≤ 1 in the first application of Lemma 3.4. We need also 0 < a < d,
0 < a + 2b − 2 < d and 2a + 2b − 2 > d for the application of Lemma 3.3. And we finally need
d− a− b > 0 and 0 ≤ γ ≤ 1, with γ = −b+ 1 + (d− a)/2, for the second application of Lemma 3.4.
All these conditions are not compatible when d = 2. When d ≥ 3 they reduce to:

d = 3: 3− 2b ≤ a, 5
2 − b < a < 3− b, 0 < b ≤ 1 (3.9)

and
d ≥ 4: d− 2b ≤ a < d− b, a 6= 2, 0 < b ≤ 1. (3.10)

For d = 3 and 3
2 < a < 3, or for d ≥ 4, d− 2 ≤ a < d and a 6= 2, one can always find b satisfying such

conditions. Hence the bilinear operator B′ : Ya × Ya → Ya is continuous when a is in such ranges.
In this range, B′ is continuous also as an operator B′ : Ya × Ya → X . Indeed, to see this we just
need to change the choice of the parameter γ, and to take γ = d− a− b: we should now replace the
previous condition 0 ≤ −b + 1 + (d − a)/2 ≤ 1 with the new condition 0 ≤ d − a − b ≤ 1. But this
new condition is satisfied given (3.10).

Now, for any 0 < b ≤ 1, we can always choose, for example, a = d − 4
3b in a such way that the

required conditions on a hold. Moreover, K ′(d− 4
3b, b, d) ≈ b−3 as b↘ 0 and K ′(d− 4

3b, b, d) remains
bounded as 0 < b ≤ 1 with b bounded away from zero. So, the following esimate holds:

‖B′(u, v)‖Y
d− 4

3 b
≤ 1

4κ′d
b−3τ b−1‖u‖Y

d− 4
3 b
‖v‖Y

d− 4
3 b

(0 < b ≤ 1), (3.11)

for some constant κ′d > 0 only depending on d ≥ 3. For the system (TM), the remainder of the proof
is now carried just like in Theorem 3.1.

Remark 3.5. We do not know if the above result for (TM) holds for d = 2.
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3.2 Pseudomeasures for the system (TM’)

The goal of this subsection is to establish the proof, for the system (TM’), of Theorem 3.2.

Proof of Theorem 3.2. The case of (TM’). The bilinear operator associated with (TM’) is

B′′(u, v)(t) =

∫ t

0
e(t−s)∆(∆ϕ)(∆ψ)(s) ds with


ϕ(s) =

1

τ

∫ s

0
e(s−σ)τ−1∆u(s) ds,

ψ(s) =
1

τ

∫ s

0
e(s−λ)τ−1∆v(λ) dλ.

(3.12)

It is convenient to rewrite B′′(u, v) in terms of its Fourier transform,

B̂′′(u, v)(ξ, t) =
1

(2π)d

∫ t

0
e−(t−s)|ξ|2(| · |2ϕ̂) ∗ (| · |2ψ̂)(ξ, s) ds,

or, more explicitly,

B̂′′(u, v)(ξ, t) =
τ−2

(2π)d

∫ t

0

∫ s

0

∫ s

0

∫
Rd

e−(t−s)|ξ|2e−(s−σ)|ξ−η|2τ−1
e−(s−λ)|η|2τ−1

× |ξ − η|2|η|2û(ξ − η, σ)v̂(η, λ) dsdλdσ dη.

(3.13)

When u and v both belong to Ya (with ‖u‖Ya = ‖v‖Ya = 1 for simplicity) we can estimate

|B̂′′(u, v)|(ξ, t) ≤ τ−2

(2π)d

∫ t

0

∫ s

0

∫ s

0

∫
Rd

e−(t−s)|ξ|2e−(s−σ)|ξ−η|2τ−1
e−(s−λ)|η|2τ−1

× |ξ − η|2−a|η|2−aσ−1+(d−a)/2λ−1+(d−a)/2 dsdλ dσ dη.

(3.14)

Applying twice Lemma 3.4 with A = |ξ− η|2τ−1 or A = |η|2τ−1, and in both cases δ = (d− a)/2, we
obtain, for any 0 ≤ b ≤ 1,

|B̂′′(u, v)|(ξ, t) ≤ 64 τ−2+2b

(2π)d(d− a)2
∗

∫ t

0

∫
Rd

e−(t−s)|ξ|2 |ξ − η|2−a−2b|η|2−a−2bsd−a−2b dsdη. (3.15)

Applying now Lemma 3.3 with α = β = a+ 2b− 2 we get

|B̂′′(u, v)|(ξ, t) ≤ 64C(a+ 2b− 2, a+ 2b− 2, d) τ−2+2b

(2π)d(d− a)2
∗

|ξ|4−2a−4b+d

∫ t

0
e−(t−s)|ξ|2s−1+(1+d−a−2b) ds.

The last step is the application of Lemma 3.4 with A = |ξ|2 and δ = 1 + d− a− 2b. We find, for any
0 ≤ γ ≤ 1,

|B̂′′(u, v)|(ξ, t) ≤ K ′′(a, b, d) τ−2+2b |ξ|4−2a−4b+d−2γt1+d−a−2b−γ , (3.16)

where

K ′′(a, b, d) =
256C(a+ 2b− 2, a+ 2b− 2, d)

(2π)d(d− a)2
∗(1 + d− a− 2b)∗

. (3.17)
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We want B′′(u, v) to belong to Ya: this requires 4− 2a− 4b+ d− 2γ = −a and 1 + d− a− 2b− γ =
−1 + (d− a)/2. Both equalities are satisfied when

γ = 2 +
d

2
− a

2
− 2b.

Let us collect all the conditions that we need on a and b for the applicability of the previous lemmas:
we needed 0 ≤ b ≤ 1, d−a > 0 for the first application of Lemma 3.4, 0 < a+2b−2 < d, 2a+4b−4 > d
for the application of Lemma 3.3, 1 + d − a − 2b > 0 for the second application of Lemma 3.4 and
finally 0 ≤ 4 + d − a − 4b ≤ 2 (the latter condition correspond to the restriction 0 ≤ γ ≤ 1). Thus,
we can collect all these conditions in the following system

1
2 < b ≤ 1,
d
2 − 2b+ 2 < a < d+ 1− 2b,

2 + d− 4b ≤ a < d.

(3.18)

Conditions (3.18) are not compatible for d = 1, 2. For d = 3 and 3
2 < a < 3, or otherwise for d ≥ 4

and d− 2 ≤ a < d, a 6= 2, we can always find b satisfying the system. Therefore, we deduce that

B′′ : Ya × Ya → Ya is continuous

for either {
d = 3
3
2 < a < 3

or

{
d ≥ 4

d− 2 ≤ a < d, a 6= 2.

For each 1
2 < b ≤ 1, a suitable choice for a which is compatible with system (3.18) is, e.g.,

a = d+ 4
3 −

8
3b (d ≥ 3)

(for d ≥ 4 we could also choose, e.g., a = d+ 3
2 − 3b). We have

K ′′(d+ 4
3 −

8
3b, b, d) =

28−dC(d− 2
3 −

2b
3 , d−

2
3 −

2b
3 , d)

πd(8
3b−

4
3)2
∗ (2

3b−
1
3)∗

.

Therefore we get

K ′′(d+ 4
3 −

8
3b, b, d) ≈ 1

(2b− 1)3
, as b↘ 1

2

and that K ′′(d + 4
3 −

8
3b, b, d) remains bounded for b in any interval of the form [1

2 + ε, 1], with

0 < ε ≤ 1
2 .

Let us set β = 2b− 1, so that 0 < β ≤ 1. Then, for d ≥ 3, we can find a constant κ′′d, depending
only on d such that

‖B′′(u, v)‖Y
d− 4

3β
≤ 1

4κ′′d

τ−1+β

β3
‖u‖Y

d− 4
3β
‖v‖Y

d− 4
3β
, (3.19)

for any 0 < β ≤ 1. We can also prove that, still for 0 < β ≤ 1, the operator

B′′ : Yd− 4
3
β × Yd− 4

3
β → X
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is continuous. Indeed, for this, we just need to choose a different value for γ, namely

γ = 1 + d− a− 2b.

This leads us to put the new condition 0 ≤ 1 + d − a − 2b ≤ 1. But this new condition is already
ensured by system (3.18).

At this stage, one sees that the existence (and the uniqueness in a ball) of a solution to (TM’)
can be established in the same space as in Theorem 3.1 and under the same size condition (3.3).

4 Finite time blowup for both toy models: an iterative method
involving the Fourier transform

In this section we establish the finite time blowup for solutions to both toy models, assuming that
the initial data are large. For the blowup we will discuss to what extent the size conditions found in
the previous section are sharp in the limit τ →∞.

The first method leads to finite time blowup for (TM), for a class of initial data such that
‖u0‖PMd−2 & τ , for τ large enough. Therefore, the gap between the global existence and the blowup
for such models is only logarithmic in τ .

The second method, a more “traditional” eigenfunction or moment one, will be presented in
the next section for the system (TM’) considered in bounded domains with the Dirichlet boundary
conditions. It seems that other classical approaches to blowup questions in nonlinear parabolic
equations (such as the energy method, convexity method, Fujita method), see [15, Ch. 17] do not
work for those systems because of the structure differences compared to the case of a single equation,
and in particular, because of different diffusivities in the both equations.

4.1 The model (TM)

Let us recall that for, u0 ∈ Ld/2, d ≥ 3, there exists a local-in-time solution to (TM), unique in the
class precised in Remark 2.10. The following theorem gives a sufficient condition on u0, for such a
solution, to blowup in finite time.

Our approach is closely related to that in [3, Theorem 3.1] which was inspired by the blowup
result in [14] for the so called “cheap” Navier–Stokes equations, producing lower bound estimates
for the Fourier transform. The key idea is that the structure of the integral on the right hand side
of (3.6) implies that, if û0(ξ) ≥ 0, then the positivity of the Fourier transform will be preserved by
the sequence of approximate solutions uk, and so by the limit u of such sequence as k →∞ when the
latter does exist in an appropriate sense.

Consider w0 ∈ L2(Rd) defined by
ŵ0(ξ) = 1IB0(ξ),

where 1IE denotes the indicator function of a measurable set E, and B0 is the ball with center
3
4(1, 0 . . . , 0) and radius 1

4 . Thus, the support of ŵ0 is contained in the annulus E0 = {1
2 ≤ | · | ≤ 1}.

Notice that w0 is a complex valued function, but there exist of course real valued functions
u0 ∈ L2(Rd), and even in S (Rd) such that û0 ≥ ŵ0: for example, one can consider a function
proportional to a well-chosen Gaussian.
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Theorem 4.1. Let d ≥ 3, τ > 0, A > 0, and u0 ∈ S (Rd), such that

û0(ξ) ≥ Aŵ0(ξ).

Let t∗ be the maximal lifetime of the (unique) solution to (TM). There exists a constant κd > 0 (only
dependent on d) such that if

A > κd e1/τ τ, (4.1)

then t∗ < 1.

Notice that the right-hand side in (4.1) behaves like τ as τ � 1. Thus, the best possible size
condition to be put on the initial data, in order to obtain the global existence for (TM), would be of
the form

‖u0‖ . τ,

no matter the choice of the norm, and irrespectively of the functional setting where one constructs
the solution.

Remark 4.2. In fact, our argument proves more than this. Indeed, we will actually prove the following
assertion that is stronger than Theorem 4.1. Let τ > 0, A > 0, t∗ ≥ 1 and

û0(ξ) ≥ Aŵ0(ξ).

If u ∈ C((0, T ), L∞(Rd)) is a mild solution to (TM) on (0, T ) such that û ≥ 0, and if A is such that

(3t∗ − 1 + e−4t∗)A > κd et
∗/τ et

∗
τ, (4.2)

then we must have 0 < T ≤ t∗. In particular, under condition (4.2) the L∞(Rd)-norm of u(t) must
blow up in a finite time.

Proof of Remark 4.2. By contradiction, assume T > t∗ and let u ∈ C((0, T ), L∞(Rd)) be a solution
to (TM) with û ≥ 0. Let us define, for k = 1, 2, . . . , the dyadic ball

Bk = Bk−1 +Bk−1

and the dyadic annulus

Ek =
{
ξ ∈ Rd : 2k−1 ≤ |ξ| ≤ 2k

}
.

Let, for any integer k ≥ 1, wk = w2k
0 , in a such way that wk = w2

k−1. Then

ŵk = (2π)−dŵk−1 ∗ ŵk−1,

and therefore,
supp ŵk ⊂ Bk ⊂ Ek.

Lemma 4.3. Under the assumption of Theorem 4.1, for all k = 0, 1, 2, . . ., and t ∈ [0, T ], we have

û(ξ, t) ≥ βke−2kt1I{tk≤t<t∗}(t)ŵk(ξ), (4.3)

where (βk) and (tk) are two sequences defined below in (4.5) and (4.6).
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Proof. For k = 0, the conclusion immediately follows from (3.7). Indeed, the first term gives us

û(ξ, t) ≥ Ae−t|ξ|
2
ŵ0(ξ),

provided we choose β0 = A and t0 = 0.

Let k ≥ 1. Assume that the inequality of the lemma holds with k − 1 instead of k. Then, for all
tk ≤ t < t∗, considering only the bilinear part in (3.7), we get

û(ξ, t) ≥ (2π)−d
t∫

tk−1

s∫
tk−1

∫
Rd

|η|2

τ
e−(t−s)|ξ|2e−

1
τ

(s−σ)|η|2β2
k−1e−2k−1se−2k−1σ

× ŵk−1(ξ − η)ŵk−1(η) dη dσ ds

≥ (2π)−d
t∫

tk−1

∫
Rd

(s− tk−1)
22k−4

τ
e−(t−s)|ξ|2e−

1
τ

(t∗−tk−1)22k−2
β2
k−1e−2ks

× ŵk−1(ξ − η)ŵk−1(η) dη ds.

Thus, we can bound û(ξ, t) from below as follows

û(ξ, t) ≥
t∫

tk−1

(s− tk−1)
22k−4

τ
e−(t−s)22ke−

1
τ

(t∗−tk−1)22k−2
β2
k−1e−2ksŵk(ξ) ds

≥
( t∫
tk−1

(s− tk−1)e−(t−s)22k ds

)
22k−4

τ
e−

1
τ

(t∗−tk−1)22k−2
β2
k−1e−2ktŵk(ξ).

Integrating by parts then we get, always for tk ≤ t < t∗,

û(ξ, t) ≥
(
t− tk−1

22k
− 1− e−(t−tk−1)22k

24k

)
22k−4

τ
e−

1
τ

(t∗−tk−1)22k−2
β2
k−1e−2ktŵk(ξ)

≥
(

(tk − tk−1)− 1− e−(t∗−tk−1)22k

22k

)
2−4

τ
e−

1
τ

(t∗−tk−1)22k−2
β2
k−1e−2ktŵk(ξ).

We would like to establish the two bounds from below

(tk − tk−1) ≥ 3t∗2−2k and e−
1
τ

(t∗−tk−1)22k−2 ≥ e−δ, for all k ≥ 1, (4.4)

for a suitable positive constant δ to be chosen later. This would imply that, for tk ≤ t < t∗,

û(ξ, t) ≥ (3t∗ − 1 + e−4δτ )2−2k−4τ−1e−δβ2
k−1e−2k tŵk(ξ).

This last inequality is interesting only if the right hand side is positive. This requires

3t∗ − 1 + e−4δτ > 0.
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To ensure the validity of the first bound of (4.4) (and the condition t0 = 0), a natural choice is

tk = t∗
(

1− 1
4k

)
, (4.5)

so that tk ↗ t∗. The second bound of (4.4) can be rewritten as (t∗ − tk)22k ≤ δτ ;

we can ensure its validity for all k ∈ N as soon as δ is such that

t∗ ≤ δτ.

The above conditions 3t∗ − 1 + e−4δτ > 0 and δτ ≥ t∗ motivate us to restrict ourselves to t∗ ≥ 1.

We choose (βk) in such a way that

β0 = A, βk = (3t∗ − 1 + e−4δτ )2−2k−4τ−1e−δβ2
k−1, k = 1, 2, . . . .

This choice leads to inequality (4.3). The assertion of the lemma follows by induction.

In order to compute βk, we introduce M , such that

2M = (3t∗ − 1 + e−4δτ )e−δ 2−4τ−1.

Notice that we have βk = 2M−2kβ2
k−1 for k ≥ 1. Recalling that β0 = A, we deduce that

βk =
(
A 2M−4

)2k

24−M+2k, k = 0, 1, . . . . (4.6)

The Fourier inversion formula and the positivity of û imply that

‖u(t)‖∞ ≥ |u(0, t)| = (2π)−d‖û(t)‖1.

Moreover, by Lemma 4.3, for all k ∈ N,

‖û(tk)‖1 ≥ βke−2ktk‖ŵk‖1 ≥ βke−2kt∗‖ŵk‖1.

By the fact that ŵk ≥ 0 for all k ≥ 0, Fubini’s theorem and the formula for the volume of the unit

ball ωd = πd/2

Γ(1+d/2) , we have

‖ŵk‖1 = (2π)−d‖ŵk−1‖21 = . . . = ((2π)−d)2k−1‖ŵ0‖2
k

1

= (2π)d(Kd)
2k ,

with

Kd =
1

8dπd/2 Γ(1 + d/2)
.

We conclude that when
A2M−4e−t

∗
Kd > 1,

then we have ‖u(tk)‖L∞ →∞ for k →∞. But tk → t∗ and so

lim sup
t→t∗

‖u(t)‖∞ =∞.
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This is in contradiction with the assumption that u ∈ C((0, T ), L∞(Rd)) with T > t∗.

The size condition on A above can be rewritten in an equivalent form as

(3t∗ − 1 + e−4δτ )A > κde
δ τ et

∗

where κd > 0 is an explicit constant depending only on d. But δ ≤ t∗/τ and so a sufficient blowup
condition is

(3t∗ − 1 + e−4t∗)A > κde
t∗(1+1/τ) τ.

4.2 The model (TM’)

Similarly to the subsection above, we want to prove explosion in finite time for large initial data.
This time, we obtain a lower bound of the type τ2 so there is a much larger discrepancy with respect
to the upper estimates of the form τ(log τ)−3 sufficient for the global existence in Sec. 3. Similar
lower bounds appear in Proposition 5.1 for the problem in bounded domains.

To simplify notation, we assume from the beginning that τ ≥ 1/2, and we look for initial data
which would ensure explosion at time t∗ = 1. As previously, our goal is to prove by induction that
for some A(τ) > 0, there is a sequence βk →∞ such that for tk = 1− 4−k, provided

û0(ξ) ≥ Aŵ0(ξ),

we have
û(ξ, t) ≥ βke−2kt1I{tk≤t<t∗}(t)ŵk(ξ), (4.7)

with the wk defined as above, which implies as previously ‖u(tk)‖∞ →∞.
We begin by using the Fourier representation (3.13).

u(t) = et∆u0 +B′′(u, u)(t)

with

̂B′′(u, u)(ξ, t) =
τ−2

(2π)d

∫ t

0

∫ s

0

∫ s

0

∫
Rd

e−(t−s)|ξ|2e−(s−σ)|ξ−η|2τ−1
e−(s−λ)|η|2τ−1

× |ξ − η|2|η|2û(ξ − η, σ)û(η, λ) dsdσ dλ dη.

Again, we proceed by induction and assuming that (4.7) holds with k − 1 instead of k, we deduce
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that for tk ≤ t < t∗,

û(ξ, t) =(2π)−dτ−2

∫ t

0

∫ s

0

∫ s

0

∫
Rd

e−(t−s)|ξ|2e−(s−σ)|ξ−η|2τ−1
e−(s−λ)|η|2τ−1

× |ξ − η|2|η|2û(ξ − η, σ)û(η, λ) dsdσ dλ dη

≥(2π)−dτ−2

∫ t

tk−1

∫ s

tk−1

∫ s

tk−1

∫
Rd

e−(t−s)|ξ|2e−(s−σ)|ξ−η|2τ−1 |ξ − η|2û(ξ − η, σ)

× e−(s−λ)|η|2τ−1 |η|2û(η, λ) dsdσ dλ dη

≥(2π)−dτ−2

∫ t

tk−1

∫ s

tk−1

∫ s

tk−1

∫
Rd

e−(t−s)|ξ|2e−22k−2(s−σ)/τ22k−4βk−1ŵk−1(ξ − η)e−2k−1t

× e−22k−2(s−λ)/τ22k−4βk−1ŵk−1(η)e−2k−1t dη dσ dλ ds

≥24k−8τ−2e−22k−1(1−tk−1)/τ

∫ t

tk−1

(s− tk−1)2e(s−t)22kds× β2
k−1e

−2ktŵk(ξ)

≥24k−8τ−2e−22k(1+1/2τ)(1−tk−1)

∫ t

tk−1

(s− tk−1)2ds× β2
k−1e

−2ktŵk(ξ)

≥24k−8

3
× τ−2e−22k(1+1/2τ)(1−tk−1)(t− tk−1)3β2

k−1e
−2ktŵk(ξ)

≥24k−8

3
× τ−2e−22k+1(1−tk−1)(tk − tk−1)3β2

k−1e
−2ktŵk(ξ).

In the last inequality, we used that τ ≥ 2. Now, with the same tk as in (4.5) (we recall that here
t∗ = 1), we get for some K > 0 and for tk ≤ t < t∗:

û(ξ, t) ≥ (Kτ2)−12−2ke−2ktβ2
k−1ŵk(ξ).

So if we define
β0 := A; βk := (Kτ2)−12−2kβ2

k−1,

we have proved that

û(ξ, t) ≥ βke−2kt1I{tk≤t<t∗}(t)ŵk(ξ).

As previously, we obtain that

βk =
(
A/16Kτ2

)2k

16Kτ222k,

which implies as above that we have blow up provided

A ≥ 16CdKτ
2,

with Cd > 0 only depending on the dimension.

5 Blowup for the toy model (TM’) in bounded domains

The toy model (TM’) features cross-diffusion terms which makes its existence and regularity of
solutions delicate as we have already seen. Compared to the standard example of the square nonlinear
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heat equation (NLH), the nonlinearity in (TM’) is weaker that that in (NLH). Indeed, one may
represent

∆ϕ(t) =
1

τ
∆e

t
τ

∆ϕ0 +
1

τ

∫ t

0
∆e

t−s
τ

∆u(s) ds. (5.1)

Now it is clear that −∆ϕ(t) is somewhat smoother and smaller than 1
τ u(t) itself since (5.1) involves

two smoothing (or rather “averaging”) operators with respect to the both variables t and x, namely∫ t
0 . . . ds and ∆et∆. Thus, one expects sufficient conditions for blowup of (TM’) to be stronger with
τ � 0 than those for τ = 0, i.e. for equation (NLH). Note that blowup results for parabolic systems,
in particular for various versions of doubly parabolic systems of chemotaxis, are scarce since there
are no general comparison principles available for parabolic systems, even for linear ones. For some
examples for the Keller–Segel system see, e.g., [18, 19, 20], where supplementary information on
solutions is extracted from entropy functionals and other specific properties of those drift-diffusion
systems.

Here, for simplicity of presentation, let us consider (TM’) in a smooth bounded domain Ω ⊂ Rd,
supplemented with the homogeneous Dirichlet conditions for both u and ϕ

u(x, t) = ϕ(x, t) = 0 for each x ∈ ∂Ω, t ≥ 0. (5.2)

Proposition 5.1. There are no global-in-time classical solutions of system (TM’) with τ ≥ 2 and
suitably large u0 ≥ 0, ϕ0 ≥ 0 (of order τ2, τ , respectively). More precisely, if∫

Ω
ψ(x)u0(x) dx ≥ 3

2
λτ2,

∫
Ω
ψ(x)ϕ0(x) dx ≥ 3

2
τ, (5.3)

where ψ ≥ 0 is the normalized eigenfunction of ∆ with the first eigenvalue λ, then classical solutions
of system (TM’) cannot be defined globally in time.

The proof of that result involves a generalization of the classical construction for nonlinear heat
equations, see e.g. [15, Th. 17.1], namely the moment method invented about 50 years ago by
S. Kaplan. This can be applied to sufficiently regular weak solutions. Indeed, a smooth function
vanishing at the boundary (ψ below) can be used as a test function, and time-continuity in the weak
sense is needed to perform the computations below.

Proof. Let ψ be the first eigenfunction of the Dirichlet Laplacian on the domain Ω

∆ψ + λψ = 0, ψ(x) = 0 for each x ∈ ∂Ω,

which may be chosen so that ψ(x) > 0 for each x ∈ Ω and
∫

Ω ψ(x) dx = 1, here λ > 0 is the first
eigenvalue of the Dirichlet Laplacian. Define the moments

J(t) =

∫
Ω
ψ(x)ϕ(x, t) dx, I(t) =

∫
Ω
ψ(x)u(x, t) dx. (5.4)

Solutions of the system (TM’) satisfy a single, second order in time equation for ϕ

τϕtt = (τ + 1)∆ϕt −∆2ϕ+ (∆ϕ)2. (5.5)
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Suppose that we have a global-in-time solution ϕ of (5.5). It is easy to see that after some
integrations by parts we obtain

τ J̈(t) = −λ(τ + 1)J̇(t)− λ2J(t) +

∫
Ω
ψ(∆ϕ)2

≥ −λ(τ + 1)J̇(t)− λ2J(t) + λ2J(t)2.

(5.6)

Indeed, one has by the Jensen inequality∫
Ω
ψ(∆ϕ)2 ≥

(∫
Ω
ψ|∆ϕ|

)2

≥
(∫

Ω
ψ∆ϕ

)2

=

(∫
Ω

∆ψ ϕ

)2

= λ2J2.

Now, the differential inequality (5.6) reads

J̈(t) + λ

(
1 +

1

τ

)
J̇(t) +

λ2

τ
J(t) ≥ λ2

τ
J(t)2. (5.7)

Taking X(t) = eαtJ(t), i.e. “zooming in” J(t), with α = λ
2

(
1 + 1

τ

)
, we arrive at

Ẍ(t)− λ2

4

(
1− 1

τ

)2

X(t) ≥ λ2

τ
e−αtX(t)2. (5.8)

Clearly, X(t) ≥ 0 but also Ẋ(t) ≥ 0 since sgn Ẋ = sgn
(
J̇ + αJ

)
. Indeed, we have J̇ = −λ

τ J + 1
τ I,

so that

J̇ + αJ =
λ

2

(
1− 1

τ

)
J +

1

τ
I ≥ 0 (5.9)

for all τ ≥ 1. In particular, X(t) > 0 holds if 0 ≤ ϕ 6≡ 0.

Therefore we obtain 2Ẍ(t)Ẋ ≥ 2λ
2

τ e−αtX2Ẋ ≥ 2
3
λ2

τ d(e−αtX(t)3)/dt, so we get that(
Ẋ(t)

)2
−
(
Ẋ(0)

)2
≥ 2

3

λ2

τ

(
e−αtX(t)3 −X(0)3

)
.

Suppose that we can guarantee that (
Ẋ(0)

)2
− 2

3

λ2

τ
X(0)3 ≥ 0. (5.10)

Under this condition we continue with

Ẋ(t)

X(t)3/2
≥
(

2

3

λ2

τ

)1/2

e−
α
2
t,

and after an integration

2

(
1

X(0)1/2
− 1

X(t)1/2

)
≥
(

2

3τ

)1/2

λ
2

α

(
1− e−

α
2
t
)
.
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Rearranging the terms we get

1

X(t)1/2
≤ 1

X(0)1/2
+

(
2

3τ

)1/2 2

1 + 1
τ

(
e−

α
2
t − 1

)
, (5.11)

as long as the solution exists. Now, if τ ≥ 1 and

X(0) = J(0) >
3

2
τ, (5.12)

then we arrive at a contradiction for large times.

From (5.9) and the inequality between the arithmetic and geometric means we obtain(
Ẋ(0)

)2
≥ 4

λ

2

(
1− 1

τ

)
J(0)

1

τ
I(0).

Thus, to get (5.10), it suffices for τ ≥ 2 to have I(0) ≥ 2
3λJ(0)2 since J(0) = X(0). Now, conditions

(5.10) and (5.12), sufficient for a finite time blowup, for τ ≥ 2 follow from

J(0) ≥ 3

2
τ and I(0) ≥ 2

3
λJ(0)2.

Thus, the condition (5.3) in Proposition 5.1 can be satisfied for suitably chosen J(0) and I(0) of order
τ and τ2, respectively.

Summarizing, with sufficiently large ϕ0 (ϕ0 & τ) and suitably large u0 (u0 & τ2) blowup of
solutions occurs at a finite time.

Remark 5.2. An immediate generalization of the proof of Proposition 5.1 to the case of the whole
space Rd seems not possible since the relation −∆ψ ≥ λψ for some λ > 0 cannot be valid for a function
0 6= ψ ≥ 0 where, for instance, ψ has either compact support or decays fast enough as x→∞, and is
sufficiently smooth to integrate ∆2 by parts four times. The above inequality fails near the boundary
of the support of ψ.
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states. 2nd ed., 2019, Birkhäuser/Springer, Cham, xvi+725; ISBN: 978-3-030-18220-5.
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