
SHARP ESTIMATES FOR TURBULENCE IN
WHITE-FORCED GENERALISED BURGERS

EQUATION.

ALEXANDRE BORITCHEV

Centre de Mathematiques Laurent Schwartz,
Ecole Polytechnique, Route de Saclay

91128 Palaiseau Cedex, France.
E-mail: alexandre.boritchev@gmail.com
Telephone number: (+33) 1 69 33 49 19

Fax number: (+33) 1 69 33 49 49

Abstract. We consider the nonhomogeneous generalised Burgers
equation

∂u

∂t
+ f ′(u)

∂u

∂x
− ν ∂

2u

∂x2
= η, t ≥ 0, x ∈ S1.

Here f is strongly convex and satisfies a growth condition, ν is
small and positive, while η is a random forcing term, smooth in
space and white in time.

For any solution u of this equation we consider the regime cor-
responding to t ≥ T1, where T1 depends only on f and on the
distribution of η. We obtain sharp upper and lower bounds for
Sobolev norms of u averaged in time and in ensemble. These re-
sults yield sharp upper and lower bounds for natural analogues of
quantities characterising the hydrodynamical turbulence. All our
bounds do not depend on the initial condition or on t for t ≥ T1,
and hold uniformly in ν.

Estimates similar to some of our results have been obtained by
Aurell, Frisch, Lutsko and Vergassola on a physical level of rigour;
we use an argument from their article.
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Introduction

The generalised one-dimensional space-periodic Burgers equation

∂u

∂t
+ f ′(u)

∂u

∂x
− ν ∂

2u

∂x2
= 0, ν > 0, x ∈ S1 = R/Z (1)

is a popular model for the Navier-Stokes equation, since both of them
have similar nonlinearities and dissipative terms (the classical Burgers
equation [9] corresponds to f(u) = u2/2). For ν � 1 and f strongly
convex, i.e. satisfying:

f ′′(x) ≥ σ > 0, x ∈ R, (2)

solutions of (1) display turbulent-like behaviour, called ”Burgulence”
[4, 5]. In this paper, we are interested in qualitative and quantitative
properties of the Burgulence.

The mean value in space is a conserved quantity for solutions to (1).
Indeed, since u is 1-periodic in space, we have:

d

dt

∫
S1

u(t, x)dx = −
∫
S1

f ′(u(t, x))ux(t, x)dx+ ν

∫
S1

uxx(t, x)dx = 0.

To simplify presentation, we restrict ourselves to solutions with zero
mean value in space: ∫

S1

u(t, x)dx = 0, ∀t ≥ 0. (3)
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In [6], Biryuk considered (1) with f satisfying (2). He studied solu-
tions u for small values of ν and obtained the following estimates for
norms in L2 of their m-th spatial derivatives:

‖u(t)‖2m ≤ Cν−(2m−1),
1

T

∫ T

0

‖u(t)‖2m ≥ cν−(2m−1),m ≥ 1, ν ≤ ν0. (4)

Note that the exponents for ν in lower and upper bounds are the same.
For fixed m, the constants ν0, C, c and T depend on the deterministic
initial condition u0. This dependence cannot be removed. Indeed, (1)
is dissipative for the L2 norm of u, so no non-trivial lower estimate can
hold if we take 0 as the initial condition. Moreover, as t → +∞, the
solution of the deterministic Burgers equation tends to 0 uniformly in
u0, so we have no hope of getting a non-trivial lower estimate which
would hold uniformly in time. In a recent preprint [8], we formulate
the dependence of the estimates (4) on u0 in a simpler way.

To get results which are independent of the initial data and hold
uniformly for large enough t, a natural idea is to introduce a random
force and to estimate ensemble-averaged characteristics of solutions. In
the article [7], we have considered the case when 0 in the right-hand
side of (1) is replaced by a random spatially smooth force, ”kicked” in
time. In this article we consider the equation

∂u

∂t
+ f ′(u)

∂u

∂x
− ν ∂

2u

∂x2
= ηω, (5)

where ηω is a random force, white in time and smooth in space. This
force corresponds to a scaled limit of ”kicked” forces with more and
more frequent kicks. All forces that we consider have zero mean value
in space.

Study of Sobolev norms of solutions for nonlinear PDEs with small
viscosity (with or without random forcing) in order to get estimates
for small-scale quantities such as the spectrum is motivated by the
problem of turbulence. This research was initiated by Kuksin, who
obtained lower and upper estimates of these norms by negative powers
of the viscosity for a large class of equations (see [26, 27] and references
in [27]), and continued by Biryuk [6] for the Burgers equation. We use
some methods and ideas from those works. Note that for the Burgers
equation considered in [6, 7, 8] and in the current paper, estimates
on Sobolev norms are asymptotically sharp in the sense that viscosity
enters lower and upper bounds at the same negative power. Such esti-
mates are not available for the more complicated equations considered
in [26, 27].

In this work, after introducing the notation and setup in Section 1,
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we formulate the main results in Section 2. In Section 3, we begin by
estimating from above the moments of max ∂u/∂x for solutions u(t, x)
of (5) for t ≥ 1. Using these bounds, we obtain estimates of the same
type as in [6, 7], valid for time t ≥ T1 = T0 + 2. Here, T0 is a constant,
independent of the initial condition and of ν. Actually, for t ≥ T1, we
are in a quasi-stationary regime: all estimates hold uniformly in t, ν
and in the initial condition u0.

In Section 4 we study implications of our results in terms of the the-
ory of Burgulence. Namely, we give sharp upper and lower bounds for
the dissipation length scale, increments, flatness and spectral asymp-
totics for the flow u(t, x) for t ≥ T1. These bounds hold uniformly in
ν ≤ ν0, where ν0 is a positive constant which is independent of u0.

The results of Section 4 rigorously justify the physical predictions for
space increments of solutions u(t, x) and for their spectral asymptotics
[3, 10, 16, 22, 24]. Our proof of Theorem 4.9 in this section uses an
argument from [3]. Note that predictions for spectral asymptotics have
been known since the 1950s: in [24], the author refers to some earlier
results by Burgers and Tatsumi.

The rigorous proof of the asymptotics predicted by a physical argu-
ment, even for such a relatively simple model as the stochastic Burgers
equation, is important since for the 3D or 2D incompressible Navier-
Stokes equation there is no exact theory of this type, corresponding to
the heuristic theories due to Kolmogorov and Kraichnan. Note that
since we study the generalised equation (5) and not only the equation
with the classical nonlinearity uux, we cannot use the Cole-Hopf trans-
formation [11, 20].

In Section 5, we prove that the stochastic Burgers equation admits
a unique stationary measure µ, and we estimate the speed of conver-
gence to µ as t → +∞. It follows that the estimates in Sections 3-4
still hold if we replace averaging in time and probability with averaging
with respect to µ.

We are concerned with solutions for (5) with small but positive ν.
For a detailed study of the limiting dynamics with ν = 0, see [17].
Additional properties for the limit corresponding to t → +∞ in both
cases ν = 0 and ν > 0 have been established in [19, 21].

The results of Sections 4-5 also hold in the case of a ”kicked” force,
for which we have estimates analogous to those in Section 3 [7]. We
would also like to note that similar estimates hold in the case of the
multidimensional potential randomly forced Burgers equation (see [5]
for the physical predictions). Those estimates will be the subject of a
future publication.
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1. Notation and setup

Agreement: In the whole paper, all functions that we consider are
real-valued.

1.1. Sobolev spaces. Consider a zero mean value integrable function
v on S1. For p ∈ [1,∞], we denote its Lp norm by |v|p. The L2 norm

is denoted by |v|, and 〈·, ·〉 stands for the L2 scalar product. From
now on Lp, p ∈ [1,∞], denotes the space of zero mean value functions
in Lp(S

1). Similarly, C∞ is the space of C∞-smooth zero mean value
functions on S1.

For a nonnegative integer m and p ∈ [1,∞], Wm,p stands for the
Sobolev space of zero mean value functions v on S1 with finite homo-
geneous norm

|v|m,p =

∣∣∣∣dmvdxm

∣∣∣∣
p

.

In particular, W 0,p = Lp for p ∈ [1,∞]. For p = 2, we denote Wm,2 by
Hm and abbreviate the corresponding norm as ‖v‖m.

Note that since the length of S1 is 1, we have

|v|1 ≤ |v|∞ ≤ |v|1,1 ≤ |v|1,∞ ≤ · · · ≤ |v|m,1 ≤ |v|m,∞ ≤ . . .

We recall a version of the classical Gagliardo-Nirenberg inequality (see
[15, Appendix]):

Lemma 1.1. For a smooth zero mean value function v on S1,

|v|β,r ≤ C |v|θm,p |v|
1−θ
q ,

where m > β ≥ 0, and r is defined by

1

r
= β − θ

(
m− 1

p

)
+ (1− θ)1

q
,

under the assumption θ = β/m if p = 1 or p = ∞, and β/m ≤ θ < 1
otherwise. The constant C depends on m, p, q, β, θ.

For any s ≥ 0, Hs stands for the Sobolev space of zero mean value
functions v on S1 with finite norm

‖v‖s = (2π)s
(∑
k∈Z

|k|2s|v̂k|2
)1/2

, (6)

where v̂k are the complex Fourier coefficients of v(x). For an integer
s = m, this norm coincides with the previously defined Hm norm. For
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s ∈ (0, 1), ‖v‖s is equivalent to the norm

‖v‖
′

s =

(∫
S1

(∫ 1

0

|v(x+ `)− v(x)|2

`2s+1
d`
)
dx

)1/2

(7)

(see [1, 31]).
Subindices t and x, which can be repeated, denote partial differenti-

ation with respect to the corresponding variables. We denote by v(m)

the m-th derivative of v in the variable x. For shortness, the function
v(t, ·) is denoted by v(t).

1.2. Random setting. We provide each space Wm,p with the Borel
σ-algebra. Then we consider an L2-valued Wiener process

w(t) = wω(t), ω ∈ Ω, t ≥ 0,

defined on a complete probability space (Ω, F , P), and the corre-
sponding filtration {Ft, t ≥ 0}. We assume that for each m and each
t ≥ 0, w(t) ∈ Hm, almost surely. That is, for ζ, χ ∈ L2,

E(〈w(s), ζ〉 〈w(t), χ〉) = min(s, t) 〈Qζ, χ〉 ,
where Q is a symmetric operator which defines a continuous mapping
Q : L2 → Hm for every m. Thus, w(t) ∈ C∞ for every t, almost surely.
From now on, we redefine the Wiener process so that this property
holds for all ω ∈ Ω. We will denote w(t)(x) by w(t, x). For m ≥ 0, we
denote by Im the quantity

Im = TrHm(Q) = E ‖w(1)‖2m .
For more details on Wiener processes in Hilbert spaces, see [12, Chapter
4] and [29].

For instance, we can consider the ”diagonal” Wiener process:

w(t) =
√

2
∑
k≤−1

bkwk(t) cos(2πkx) +
√

2
∑
k≥1

bkwk(t) sin(2πkx),

where wk(t), k 6= 0, are standard independent Wiener processes and
for every m ≥ 0,

Im =
∑
k≥1

b2k(2πk)2m <∞.

From now on, the term dw(s) denotes the stochastic differential corre-
sponding to the Wiener process w(s) in the space L2.

Now fix m ≥ 0. By Fernique’s Theorem [29, Theorem 3.3.1], there
exist λm, Cm > 0 such that

E exp
(
λm ‖w(T )‖2m /T

)
≤ Cm, T ≥ 0. (8)
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Therefore by Doob’s maximal inequality for infinite-dimensional sub-
martingales [12, Theorem 3.8. (ii)] we have

E sup
t∈[0,T ]

‖w(t)‖pm ≤
( p

p− 1

)p
E ‖w(T )‖pm < +∞, (9)

for any T > 0 and p ∈ (1,∞). Moreover, applying Doob’s maximal
inequality to exp(α ‖w(T )‖m) and maximising in α, we prove the exis-
tence of C ′m > 0 such that

P( sup
t∈[0,T ]

‖w(t)‖m ≥ λ) ≤ exp(−λ2/2C ′mT ), T, λ > 0. (10)

Note that analogues of (9-10) still hold, uniformly in τ , if we replace
supt∈[0,T ] ‖w(t)‖m by supt∈[τ,T+τ ] ‖w(t)− w(τ)‖m .

1.3. Preliminaries. We begin by considering the free Burgers-type
parabolic equation (1). Here, t ≥ 0, x ∈ S1 = R/Z and the viscos-
ity coefficient satisfies ν ∈ (0, 1]. The function f is C∞-smooth and
strongly convex, i.e. it satisfies (2). We also assume that its derivatives
satisfy:

∀m ≥ 0, ∃h ≥ 0, Cm > 0 : |f (m)(x)| ≤ Cm(1 + |x|)h, x ∈ R, (11)

where h = h(m) is a function such that 1 ≤ h(1) < 2 (the lower bound
on h(1) follows from (2)). The usual Burgers equation corresponds to
f(x) = x2/2.

The white-forced generalised Burgers equation is (5) with ηω =
∂wω/∂t, where wω(t), t ≥ 0, is the Wiener process defined above.

Definition 1.2. We say that an H1-valued process u(t, x) = uω(t, x)
is a solution of the equation

∂uω

∂t
+ f ′(uω)

∂uω

∂x
− ν ∂

2uω

∂x2
= ηω (12)

for t ≥ T if:
(i) For every t ≥ T , ω 7→ uω(t, ·) is Ft-measurable.
(ii) For every ω and for t ≥ T , t 7→ uω(t, ·) is continuous in H1 and

satisfies

uω(t) =uω(T )−
∫ t

T

(
νLuω(s) +

1

2
B(uω)(s)

)
ds

+ wω(t)− wω(T ), (13)

where

B(u) = 2f ′(u)ux; L = −∂xx.
For shortness, solutions for t ≥ 0 will be referred to as solutions.
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When studying solutions of (12), we always assume that the initial
condition uT = u(T, ·) is FT -measurable and (except in Section 5) that
T = 0 and the initial condition is C∞-smooth. For a given uT , (12)
has a unique solution, i.e. any two solutions coincide for every ω. For
shortness, this solution will be denoted by u. This is proved using a
straightforward modification of the arguments in [13, Chapter 14].

Since the forcing and the initial condition are smooth in space, the
mapping t 7→ u(t) is time-continuous in Hm for every m, and t 7→
u(t) − w(t) has a space derivative in C∞ for all t. In this paper, we
always assume that uT satisfies (3). Consequently, since the mean value
of w(t) vanishes identically, u(t) also satisfies (3) for all times.

Solutions of (12) make a time-continuous Markov process in H1. For
details, we refer to [28], where a white force is introduced in a similar
setting.

Now consider, for a solution u(t, x) of (12), the functionalGm(u(t)) =
‖u(t)‖2m and apply Itô’s formula [12, Theorem 4.17] to (13):

‖u(t)‖2m = ‖uT‖2m −
∫ t

T

(
2ν ‖u(s)‖2m+1 + 〈Lmu(s), B(u)(s)〉

)
ds

+ (t− T )Im + 2

∫ T

t

〈Lmu(s), dw(s)〉 (14)

(we recall that Im = Tr(Qm).) Consequently,

d

dt
E ‖u(t)‖2m = −2νE ‖u(t)‖2m+1 − E 〈Lmu(t), B(u)(t)〉+ Im. (15)

As 〈u, B(u)〉 = 0, for m = 0 this relation becomes

d

dt
E |u(t)|2 = I0 − 2νE ‖u(t)‖21 . (16)

1.4. Agreements. From now on, all constants denoted by C with sub-
or superindexes are positive and nonrandom. Unless otherwise stated,
they depend only on f and on the distribution of the Wiener process
w. Moreover, all quantities in the paper implicitly depend on those two
parameters. By C(a1, . . . , ak) we denote constants which also depend

on parameters a1, . . . , ak. By X
a1,...,ak

. Y we mean that

X ≤ C(a1, . . . , ak)Y.

The notation X
a1,...,ak∼ Y stands for

Y
a1,...,ak

. X
a1,...,ak

. Y.

In particular, X . Y and X ∼ Y mean that X ≤ CY and C−1Y ≤
X ≤ CY , respectively. All constants are independent of the viscosity
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ν and of the initial value u0.
We denote by u = u(t, x) a solution of (12) with an initial condition

u0. For simplicity, in Sections 3-4, we assume that u0 is determin-
istic. However, we can easily generalise all results to the case of an
F0-measurable random initial condition independent of w(t), t ≥ 0.
Indeed, for any measurable functional Φ(u(·)) we have

EΦ(u(·)) =

∫
E
(

Φ(u(·))|u(0) = u0

)
µ(du0),

where µ(u0) is the law of u0, and all estimates in Sections 3-4 hold
uniformly in u0.

Moreover, for τ ≥ 0 and u0 independent of w(t) − w(τ), t ≥ τ , the
Markov property yields:

EΦ(u(·)) =

∫
E
(

Φ(u(τ + ·))|u(τ) = u0

)
µ(du0).

Consequently, all estimates which hold for time t or a time interval
[t, t+T ] for solutions u(t) to (12) actually hold for time t+ τ or a time
interval [t+ τ, t+ τ + T ] for u(t) which solves (12) for t ≥ τ , uniformly
in τ ≥ 0.

We use the notation g− = max(−g, 0) and g+ = max(g, 0).
For T2 > T1 ≥ 0 and a Sobolev space Wm,p, we denote by

C(T1, T2;W
m,p) the space of continuous functions v from [T1, T2] to

Wm,p equipped with the norm sups∈[T1,T2] |v(s)|m,p.

1.5. Setting and notation in Section 4. For an observable A, i.e.
a real-valued functional on a Sobolev space Hm, which we evaluate
on the solutions uω(s), we denote by {A} the average of A(uω(s)) in
ensemble and in time over [t, t+ T0]:

{A} =
1

T0

∫ t+T0

t

EA(uω(s))ds, t ≥ T1 = T0 + 2.

The constant T0 is the same as in Theorem 3.16.
In this section, we assume that ν ≤ ν0, where ν0 is a positive con-

stant. Next, we define the intervals

J1 = (0, C1ν]; J2 = (C1ν, C2]; J3 = (C2, 1]. (17)

In other words, J1 = {` : 0 < ` . ν}, J2 = {` : ν . ` . 1},
J3 = {` : ` ∼ 1}. For the values of ν0, C1 and C2, see (52).

In terms of the Kolmogorov 1941 theory [18], the interval J1 corre-
sponds to the dissipation range, i.e. for the Fourier modes k such that
|k|−1 � C1ν, {|ûk|2} decreases super-algebraically in k. The interval J2
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corresponds to the inertial range, where layer-averaged quantities such
as the energy spectrum E(k) defined by:

E(k) =

{∑
|n|∈[M−1k,Mk] |ûn|2∑
|n|∈[M−1k,Mk] 1

}
(18)

behave as a negative degree of k. Here M ≥ 1 is a large enough
constant (cf. the proof of Theorem 4.14). The boundary C1ν between
these two ranges is the dissipation length scale. Finally, the interval
J3 corresponds to the energy range, i.e. the sum Σ{|ûk|2} is mostly
supported by the Fourier modes corresponding to |k|−1 ∈ J3. Actually
the positive constants C1 and C2 can take any value, provided

C1 ≤
1

4
K−2; 5K2 ≤ C1

C2

<
1

ν0
. (19)

Here, K is a positive constant, chosen in (51). Note that the intervals
defined by (17) are non-empty and do not intersect each other for all
values of ν ∈ (0, ν0], under the assumption (19).

By Theorem 3.16 we have {|u|2} ∼ 1 and (after integration by parts)
{|ûn|2} ≤ {|u|21,1}/(2πn)2 ∼ 1/n2. We recall that we denote by ûn the
complex Fourier coefficients of u. Thus, the ratio

Σ|n|−1∈J3|ûn|2

Σn∈Z|ûn|2

tends to 1 as C2 tends to 0, uniformly in ν. Since there exist couples
(C1, C2) satisfying (19) such that C2 is as small as desired, we may for
instance assume that∑

|n|<C−1
2

{|ûn|2} ≥ 99

100

∑
n∈Z

{|ûn|2}.

For p, α ≥ 0, we consider the quantity

Sp,α(`) =
{(∫

S1

|u(x+ `)− u(x)|pdx
)α}

.

The quantity Sp,1(`) is denoted by Sp(`): it corresponds to the structure
function of p-th order, while the flatness F (`), given by

F (`) = S4(`)/S
2
2(`), (20)

measures spatial intermittency (see [18]).
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2. Main results

In Section 3, we prove sharp upper and lower estimates for a large
class of Sobolev norms of u. A key result is proved in Theorem 3.1.
Namely, there we obtain that for k ≥ 1,

E
(

max
s∈[t,t+1]

max
x∈S1

ux(s, x)
)k k

. 1, t ≥ 1. (21)

The main estimates are those in the first part of Theorem 3.16. There
we prove that form ∈ {0, 1} and p ∈ [1,∞] or form ≥ 2 and p ∈ (1,∞],( 1

T

∫ t+T

t

E |u(s)|αm,p
)1/α m,p,α∼ ν−γ, α > 0, t ≥ T0 + 2, T ≥ T0, (22)

where γ = max(0,m− 1/p), and T0 is a constant.
In Section 4 we assume that ν ∈ (0, ν0], where ν0 ∈ (0, 1] is a con-

stant. Then, we obtain sharp estimates for analogues of quantities
characterising hydrodynamical turbulence. Although we only prove
results for quantities averaged over a time period of length T0, those
results can be immediately extended to quantities averaged over time
periods of length T ≥ T0.

As the first application of estimates (21-22), in Section 4 we obtain
sharp estimates for the quantities Sp,α, α ≥ 0. Namely, by Theo-
rem 4.10, for ` ∈ J1:

Sp,α(`)
p,α∼

{
`αp, 0 ≤ p ≤ 1.

`αpν−α(p−1), p ≥ 1,

and on the other hand for ` ∈ J2:

Sp,α(`)
p,α∼
{
`αp, 0 ≤ p ≤ 1.

`α, p ≥ 1.

Consequently, for ` ∈ J2 the flatness function F (`) = S4(`)/S
2
2(`) satis-

fies F (`) ∼ `−1. Thus, solutions u are highly intermittent in the inertial
range (see [18]).

On the other hand, we obtain estimates for the spectral asymptotics
of Burgulence. Namely, for all m ≥ 1 and k ∈ Z, k 6= 0 we have:

{|ûk|2}
m

. (kν)−2mν,

and by Theorem 4.14 and Remark 4.15 for k such that k−1 ∈ J2 we
have: {(∑

|n|∈[M−1k,Mk] |ûn|2∑
|n|∈[M−1k,Mk] 1

)α}
α∼ k−2α, α > 0,



12 ALEXANDRE BORITCHEV

for large enough values of M > 1. In particular, in the inertial range
the energy spectrum satisfies E(k) ∼ k−2.

Finally, in Section 5, we prove that (12) admits a unique stationary
measure µ. Consequently, all upper and lower estimates listed above
still hold if we redefine the brackets as averaging with respect to µ, i.e.

{f(u)} =

∫
f(u)µ(du).

Moreover, as t → +∞, the rate of convergence to µ in the Lipschitz-
dual distance for Borel probability measures on L1 is at least of the
form Ct−1/13, where C does not depend on the initial condition or on
the viscosity ν.

3. Estimates for Sobolev norms

3.1. Upper estimates. The following theorem is proved using a sto-
chastic version of the Kruzhkov maximum principle (cf. [25]).

Theorem 3.1. Denote by Xt the random variable

Xt = max
s∈[t,t+1]

max
x∈S1

ux(s, x).

For every k ≥ 1, we have

E Xk
t

k

. 1, t ≥ 1.

Proof. We take t = 1, denoting Xt by X: the general case follows
by the argument exposed in Subsection 1.4.

Consider the equation (12) on the time interval [0, 2]. Putting v =
u− w and differentiating once in space, we get

∂vx
∂t

+ f ′′(u)(vx + wx)
2 + f ′(u)(vx + wx)x = ν(vx + wx)xx. (23)

Consider ṽ(t, x) = tvx(t, x) and multiply (23) by t2. For t > 0, ṽ
satisfies

tṽt − ṽ + f ′′(u)(ṽ + twx)
2 + tf ′(u)ṽx + t2f ′(u)wxx

= νtṽxx + νt2wxxx. (24)

Now observe that if the zero mean function ṽ does not vanish identically
on the domain S = [0, 2]× S1, then it attains its positive maximum N
on S at a point (t1, x1) such that t1 > 0. At (t1, x1) we have ṽt ≥ 0,
ṽx = 0, and ṽxx ≤ 0. By (24), at (t1, x1) we have the inequality

f ′′(u)(ṽ + twx)
2 ≤ ṽ − t2f ′(u)wxx + νt2wxxx. (25)
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Denote by A the random variable

A = max
t∈[0,2]

|w(t)|3,∞.

Since for every t, tv(t) is the zero space average primitive of ṽ(t) on
S1, we get

max
t∈[0,2], x∈S1

|tu| ≤ max
t∈[0,2], x∈S1

(|tv|+ |tw|)

≤ N + 2 max
t∈[0,2]

|w(t)|∞ ≤ N + 2A.

Now denote by δ the quantity

δ = 2− h(1). (26)

(cf. (11)). Since δ > 0, we obtain that

max
t∈[0,2], x∈S1

|t2f ′(u)wxx| ≤ A max
t∈[0,2], x∈S1

tδ|t2−δf ′(u)|

≤ A max
t∈[0,2], x∈S1

tδ(|tu|+ t)2−δ

≤ CA(N + 2A+ 2)2−δ.

From now on, we assume that N ≥ 2A. Since ν ∈ (0, 1] and f ′′ ≥ σ,
the relation (25) yields

σ(N − 2A)2 ≤ N + CA(N + 2A+ 2)2−δ + 4A.

Thus we have proved that if N ≥ 2A, then N ≤ C(A+ 1)1/δ. Since by
(9), all moments of A are finite, all moments of N are also finite. By
definition of ṽ and S, the same is true for X. This proves the theorem’s
assertion. �

Remark 3.2. Actually, using (10), we can prove that there exist β, β′ >
0 such that

E exp(βX2δ
t ) ≤ E exp

(
β′(max

t∈[0,2]
|w(t)|3,∞ + 1)2

)
. 1, t ≥ 1.

Corollary 3.3. For k ≥ 1,

E max
s∈[t,t+1]

|u(s)|k1,1
k

. 1, t ≥ 1.

Proof. The space average of ux(s) vanishes identically. Therefore∫
S1

|ux(s)| = 2

∫
S1

(ux(s))
+ ≤ 2 max

x∈S1
ux(s, x). �

Corollary 3.4. For k ≥ 1,

E max
s∈[t,t+1]

|u(s)|kp
k

. 1, p ∈ [1,∞], t ≥ 1.
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Now we recall a standard estimate of the nonlinearity 〈Lmu,B(u)〉
(see Subsection 1.3 for the definitions of L and B).

Lemma 3.5. For every m ≥ 1 there exist Cm > 0 and a natural number
n′ = n′(m) such that for w ∈ C∞,

Nm(w) = |〈Lmw,B(w)〉| ≤ Cm(1 + |w|∞)n
′ ‖w‖m ‖w‖m+1 . (27)

Proof. Fix m ≥ 1. Denote |w|∞ by N . Let C ′ denote various
expressions of the form Cm(1 +N)n(m). We have

Nm(w) = 2
∣∣〈w(2m), (f(w))(1)

〉∣∣ = 2
∣∣〈w(m+1), (f(w))(m)

〉∣∣
≤C(m)

m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

∫
S1

∣∣w(m+1)w(a1) . . . w(ak)f (k)(w)
∣∣

≤C(m) max
x∈[−N,N ]

max(f ′(x), . . . f (m)(x))

×
m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

∫
S1

|w(a1) . . . w(ak)w(m+1)|.

Using first (11), then Hölder’s inequality, and finally Lemma 1.1, we
get

Nm(w) ≤C(m)(1 +N)max(h(1),...,h(m))

×
m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

∫
S1

|w(a1) . . . w(ak)w(m+1)|

≤C ′
m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

( ∣∣w(a1)
∣∣
2m/a1

. . .
∣∣w(ak)

∣∣
2m/ak

‖w‖m+1

)

≤C ′ ‖w‖m+1

m∑
k=1

∑
1≤a1≤···≤ak≤m
a1+···+ak=m

(
(‖w‖a1/mm |w|(m−a1)/m∞ )× . . .

· · · × (‖w‖ak/mm |w|(m−ak)/m∞ )
)

≤C ′(1 +N)m−1 ‖w‖m ‖w‖m+1 = C ′ ‖w‖m ‖w‖m+1 . �

Lemma 3.6. For m ≥ 1,

E ‖u(t)‖2m
m

. ν−(2m−1), t ≥ 2.

Proof. Fix m ≥ 1. We will use the notation

x(s) = E ‖u(s)‖2m ; y(s) = E ‖u(s)‖2m+1 .
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As previously, it suffices to consider the case t = 2. We claim that for
s ∈ [1, 2] we have the implication

x(s) ≥ C ′ν−(2m−1) =⇒
d

ds
x(s) ≤ −(2m− 1)(x(s))2m/(2m−1), (28)

where C ′ ≥ 1 is a fixed number, chosen later. Below, all constants
denoted by C are positive and do not depend on C ′, and we denote by
Z the quantity

Z = C ′ν−(2m−1).

Indeed, assume that x(s) ≥ Z. By (15) and Lemma 3.5, we have

d

ds
x(s) ≤− 2νy(s) + CE

(
(1 + |u(s)|∞)n

′ ‖u(s)‖m ‖u(s)‖m+1

)
+ Im,

with n′ = n′(m). Since by Lemma 1.1 applied to ux, we get

‖u(s)‖m ≤ C ‖u(s)‖(2m−1)/(2m+1)
m+1 |u(s)|2/(2m+1)

1,1 , (29)

we obtain that

d

ds
x(s) ≤− 2νy(s) + CE

(
(1 + |u(s)|1,1)

n′+2/(2m+1)

× ‖u(s)‖4m/(2m+1)
m+1

)
+ Im.

Thus by Hölder’s inequality and Corollary 3.3 we get

d

ds
x(s) ≤

(
− 2ν(y(s))1/(2m+1) + C

)
(y(s))2m/(2m+1) + Im.

On the other hand, (29), Hölder’s inequality and Corollary 3.3 yield

x(s) ≤ C(y(s))(2m−1)/(2m+1)(E|u(s)|21,1)2/(2m+1)

≤C(y(s))(2m−1)/(2m+1),

and thus

(y(s))1/(2m+1) ≥ C(x(s))1/(2m−1).

Consequently, since x(s) ≥ C ′ν−(2m−1), for C ′ large enough we have

d

ds
x(s) ≤

(
−CC ′1/(2m−1) + C

)
(x(s))2m/(2m−1) + Im.

Thus we can choose C ′ in such a way that (28) holds.
Now we claim that

x(2) ≤ Z. (30)

Indeed, if x(s) ≤ Z for some s ∈ [1, 2], then the assertion (28) ensures
that x(s) remains below this threshold up to s = 2: thus we have
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proved (30).
Now, assume that x(s) > Z for all s ∈ [1, 2]. Denote

x̃(s) = (x(s))−1/(2m−1), s ∈ [1, 2] .

Using the implication (28) we get dx̃(s)/ds ≥ 1. Therefore x̃(2) ≥ 1.
As ν ≤ 1 and C ′ ≥ 1, we get x(2) ≤ Z. Thus in both cases the
inequality (30) holds. This proves the lemma’s assertion. �

Corollary 3.7. For m ≥ 1,

E ‖u(t)‖km
m,k

. ν−k(2m−1)/2, k ≥ 1, t ≥ 2.

Proof. The cases k = 1, 2 follow immediately from Lemma 3.6.
For k ≥ 3, we consider only the case when k is odd, since the general

case follows by Hölder’s inequality. Setting N = ((2m−1)k+1)/2 and
applying Lemma 1.1, we get

‖u(t)‖km
m,k

. ‖u(t)‖N |u(t)|k−11,1 .

Therefore, by Hölder’s inequality, Lemma 3.6 and Corollary 3.3 we get

E ‖u(t)‖km
m,k

. (E ‖u(t)‖2N)1/2(E |u(t)|2k−21,1 )1/2

m,k

. ν−(N−1/2) = ν−k(2m−1)/2. �

Lemma 3.8. For m ≥ 1,

E max
s∈[t,t+1]

‖u(s)‖2m
m

. ν−(2m−1), t ≥ 2.

Proof. We begin by fixing m ≥ 1. As previously, we can take
t = 2. In this proof, the random variables Θi, i ∈ [1, 5] are positive
and have finite moments. All constants denoted by C are positive and
only depend on m. We denote w(t) − w(2) by w̃(t), and u(t) − w̃(t)
by ũ(t). By (9), it follows that it suffices to prove the result with u
replaced by ũ.
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By (13), for s ≥ 2 we have

‖ũ(s)‖2m = ‖ũ(2)‖2m −
∫ s

2

〈Lmũ(s′), 2νLu(s′) +B(u(s′))〉ds′

= ‖ũ(2)‖2m −
∫ s

2

〈Lmu(s′), 2νLu(s′) +B(u(s′))〉ds′

+

∫ s

2

〈Lmw̃(s′), 2νLu(s′) +B(u(s′))〉ds′

= ‖ũ(2)‖2m −
∫ s

2

(
2ν ‖u(s′)‖2m+1 + 〈Lmu(s′), B(u(s′))〉

)
ds′ (31)

+

∫ s

2

(
2ν〈Lm+1w̃(s′), u(s′)〉 − 2〈Lmw̃′(s′), f(u(s′))〉

)
ds′. (32)

Let

Θ1 = 1 + max
s′∈[2,3]

|u(s′)|1,1 + max
s′∈[2,3], x∈S1

|f(u(s′, x))|;

Θ2 = 1 + max
s′∈[2,3]

|w̃(s′)|2m+2,1 ; Θ3 = ν(2m−1) ‖ũ(2)‖2m . (33)

Using Corollary 3.3, Corollary 3.4 and (11), we obtain that the random
variable Θ1 has all moments finite. Finiteness of moments for Θ2 follows
from (9). Finally, finiteness of moments for Θ3 follows from Lemma 3.6,
since we have u(2) = ũ(2). Now denote by A1(s) and A2(s) the right-
hand sides of (31) and (32), respectively. As in the proof of Lemma 3.6,
by Lemma 3.5 and Lemma 1.1 we get that for s ∈ [2, 3], we have
respectively

|〈Lmu(s), B(u(s))〉| ≤ C(1 + |u(s)|∞)n
′(m) ‖u(s)‖m ‖u(s)‖m+1

≤ C(1 + |u(s)|1,1)n
′(m)|u(s)|2/(2m+1)

1,1 ‖u(s)‖4m/(2m+1)
m+1

≤ CΘ
n′(m)+2/(2m+1)
1 ‖u(s)‖4m/(2m+1)

m+1 , (34)

and

‖u(s)‖2m+1 ≥ C|u(s)|−4/(2m−1)1,1 ‖u(s)‖(4m+2)/(2m−1)
m . (35)

Now we claim that there exists a positive random variable of the form

Θ4 = CΘ
a(m)
1

such that

‖u(s)‖2m ≥ Θ4ν
−(2m−1) =⇒ dA1(s)

ds
≤ 0. (36)

Indeed, by (35), if ‖u(s)‖2m ≥ Θ4ν
−(2m−1), then we have

‖u(s)‖2m+1 ≥ CΘ
−4/(2m−1)
1 Θ

(2m+1)/(2m−1)
4 ν−(2m+1),
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and therefore by (34) we get:

dA1(s)

ds
= −2ν ‖u(s)‖2m+1 − 〈L

mu(s), B(u(s))〉

≤ ‖u(s)‖4m/(2m+1)
m+1 (−2ν ‖u(s)‖2/(2m+1)

m+1 + CΘ
n′(m)+2/(2m+1)
1 )ν−2m

≤ ‖u(s)‖4m/(2m+1)
m+1 (−CΘ

−4/(4m2−1)
1 Θ

1/(2m−1)
4 + CΘ

n′(m)+2/(2m+1)
1 )ν−2m.

Moreover, if we define the random variable Θ5 by

Θ5 = (
√

Θ4 + Θ2)
2,

then we have

‖ũ(s)‖2m ≥ Θ5ν
−(2m−1) =⇒ ‖u(s)‖2m ≥ Θ4ν

−(2m−1). (37)

Indeed:

‖u(s)‖2m = ‖ũ(s) + w̃(s)‖2m

≥
(√
‖ũ(s)‖2m − ‖w̃(s)‖m

)2
.

Now consider the stopping time τ defined by

τ = {inf s ∈ [2, 3] : ‖ũ(s)‖2m ≥ Θ5ν
−(2m−1)}.

By convention, τ = 3 if the set in question is empty. Relations (36-37)
yield that

max
s∈[2,3]

‖ũ(s)‖2m ≤ ‖ũ(τ)‖2m + max
s∈[τ,3]

A2(s)

≤ max(Θ3,Θ5)ν
−(2m−1) +

∫
s′∈[2,3]

∣∣∣dA2(s
′)

ds′

∣∣∣ds′. (38)

To prove the lemma’s assertion, it remains to observe that we have:∫ 3

2

∣∣∣dA2(s
′)

ds′

∣∣∣ds′ ≤∫ 3

2

(
2ν |w̃(s′)|2m+2,1 |u(s′)|∞

+2 |w̃(s′)|2m+1,1 max
x∈S1
|f(u(s′, x))|

)
ds′

≤CΘ1Θ2. �

Repeating the proof of Corollary 3.7 we get that for m ≥ 1,

E max
s∈[t,t+1]

‖u(s)‖km
m,k

. ν−k(2m−1)/2, k ≥ 1, t ≥ 2. (39)

Denote γ = max(0,m− 1/p).
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Theorem 3.9. For m ∈ {0, 1} and p ∈ [1,∞], or for m ≥ 2 and
p ∈ (1,∞],(

E max
s∈[t,t+1]

|u(s)|αm,p
)1/α m,p,α

. ν−γ, α > 0, t ≥ 2.

Proof. We consider only the case when α is an integer: the general
case follows by Hölder’s inequality.

For m ≥ 1 and p ∈ [2,∞], we interpolate |u(s)|m,p between ‖u(s)‖m
and ‖u(s)‖m+1. By Lemma 1.1 we have

|u(s)|αm,p
p

. (‖u(s)‖αm)1−θ(‖u(s)‖αm+1)
θ, θ =

1

2
− 1

p
.

Then we use (39) and Hölder’s inequality to complete the proof.
We use the same method to prove the case m = 1, p ∈ [1, 2], com-

bining the inequality (39) and Corollary 3.3. We also proceed similarly
for m ≥ 2, p ∈ (1, 2), combining Corollary 3.3 and an estimate for
‖u‖αM,p for a large value of M and some p ≥ 2.

Finally, the case m = 0 follows from Corollary 3.4. �

Unfortunately, the proof of Theorem 3.9 cannot be adapted to the
case m ≥ 2 and p = 1. Indeed, Lemma 1.1 only allows us to estimate
a Wm,1 norm from above by other Wm,1 norms: we can only get that

|w|m,1
m,n,k

. |w|(m−k)/(n−k)n,1 |w|(n−m)/(n−k)
k,1 , 0 ≤ k < m < n,

and thus the upper estimates obtained above cannot be used. However,
|u|m,1 ≤ |u|m,1+β for any β > 0. Consequently, the theorem’s statement

holds for m ≥ 2 and p = 1, with γ replaced by γ+λ, and
m,p,α

. replaced

by
m,p,α,λ

. , for any λ > 0.

3.2. Lower estimates. For a solution u(t) of (12), the first quantity

that we estimate from below is the expected value of 1
T

∫ t+T
t
‖u(s)‖21,

where t ≥ 1 and T > 0 is sufficiently large.

Lemma 3.10. There exists a constant T0 > 0 such that we have( 1

T

∫ t+T

t

E ‖u(s)‖21
)1/2
& ν−1/2, t ≥ 1, T ≥ T0.

Proof. For T > 0, by (16) we get

E |u(t+ T )|2 ≥ E(|u(t+ T )|2 − |u(t)|2) = TI0 − 2ν

∫ t+T

t

E ‖u(s)‖21.
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On the other hand, by Corollary 3.4 there exists a constant C ′ > 0
such that E |u(t+ T )|2 ≤ C ′. Consequently, for T ≥ T0 := (C ′+ 1)/I0,

1

T

∫ t+T

t

E ‖u(s)‖21 ≥
TI0 − C ′

2T
ν−1 ≥ I0

2(C ′ + 1)
ν−1,

which proves the lemma’s assertion. �

This time-averaged lower bound of theH1 norm yields similar bounds
of Hm norms for m ≥ 2.

Lemma 3.11. For m ≥ 1,( 1

T

∫ t+T

t

E ‖u(s)‖2m
)1/2 m

& ν−(m−1/2), t ≥ 1, T ≥ T0.

Proof. Since the casem = 1 has been treated in the previous lemma,
we may assume that m ≥ 2. By Lemma 1.1, we have

‖u‖21 . ‖u‖2/(2m−1)m |u(s)|21,1)
(4m−4)/(2m−1).

Therefore by Hölder’s inequality and Corollary 3.3 we get

(E ‖u(s)‖21)
2m−1

m

. (E ‖u(s)‖2m)(E |u(s)|21,1)
2m−2

m

. E ‖u(s)‖2m . (40)

Integrating (40) in time, we get

1

T

∫ t+T

t

E ‖u(s)‖2m
m

&
1

T

∫ t+T

t

(E ‖u(s)‖21)
2m−1

m

&
( 1

T

∫ t+T

t

E ‖u(s)‖21
)2m−1

.

Now the lemma’s assertion follows from Lemma 3.10. �
The following two results generalise Lemma 3.11. We recall that

γ = max(0,m− 1/p).

Lemma 3.12. For m = 0 and p =∞, or for m ≥ 1 and p ∈ [1,∞],( 1

T

∫ t+T

t

E |u(s)|2m,p
)1/2 m,p

& ν−γ, t ≥ 2, T ≥ T0.

Proof. In the case m = 1, p ≥ 2, it suffices to apply Hölder’s
inequality in place of Lemma 1.1 in the proof of an analogue for
Lemma 3.11.

In the case m ≥ 2, the proof is exactly the same as for Lemma 3.11
for p ∈ (1,∞). In the cases p = 1,∞, Lemma 1.1 does not allow us to
estimate |u(s)|2m,p from below using |u(s)|21,1 and ‖u(s)‖21. However, for

p =∞ we can proceed similarly, using |u(s)|2∞ and |u(s)|21,∞, since for



TURBULENCE IN WHITE-FORCED GENERALISED BURGERS EQUATION. 21

these quantities we already have estimates from above (Corollary 3.4)
and from below, respectively. On the other hand, for p = 1 it suffices
to observe that |u(s)|m,1 ≥ |u(s)|m−1,∞.

Now consider the case m = 1, p ∈ [1, 2). By Hölder’s inequality we
have

1

T

∫ t+T

t

E |u(s)|21,p ≥
( 1

T

∫ t+T

t

E ‖u(s)‖21
)2/p

×
( 1

T

∫ t+T

t

E |u(s)|21,∞
)(p−2)/p

.

Using Lemma 3.10 and Theorem 3.9, we get the lemma’s assertion.
We proceed similarly for the case m = 0, p = ∞. Indeed, by

Lemma 1.1 we have |u(s)|1,∞ ≤ C |u(s)|1/2∞ |u(s)|1/22,∞. Thus, the lemma’s
assertion follows from Hölder’s inequality, the case m = 1, p =∞ and
Theorem 3.9 (case m = 2, p =∞). �

Lemma 3.13. For m = 0 and p =∞, or for m ≥ 1 and p ∈ [1,∞],( 1

T

∫ t+T

t

E |u(s)|αm,p
)1/α m,p,α

& ν−γ, α > 0, t ≥ 2, T ≥ T0.

Proof. As previously, we may assume that p > 1. The case α ≥ 2
follows immediately from Lemma 3.12 and Hölder’s inequality. The
case α < 2 follows from Hölder’s inequality, the case α = 2 and Theo-
rem 3.9 (case α = 3), since we have

1

T

∫ t+T

t

E |u(s)|αm,p ≥
( 1

T

∫ t+T

t

E |u(s)|2m,p
)3−α

×
( 1

T

∫ t+T

t

E |u(s)|3m,p
)α−2

. �

Now we prove that for every p ∈ [1,∞), in a certain sense, E|u|p is
large if and only if E|u|∞ is large.

Lemma 3.14. For t ≥ 1, denote by A the quantity E|u(t)|2∞. Then
there exists a constant C ′ > 0 such that for p ∈ [1,∞] we have

g̃(A) := min
(3A

8
,

3A2

16C ′

)
≤ E|u(t)|2p ≤ A.

Proof. We may take p = 1. Denote by l the quantity

l = min(
√
A/2C ′, 1),

where C ′ is the upper bound for E X2
t in the statement of Theorem 3.1.

Consider the random point x = xt where |u(t, ·)| reaches its maximum.
If this point is not unique, let x be the leftmost such point on S1
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considered as [0, 1). Let I be the interval [x, x + l] if u(t, x) < 0, and
the interval [x− l, x] if u(t, x) ≥ 0, respectively. We have

E|u(t)|21 ≥ E

(∫
I

|u(t, y)|dy

)2

≥ E

(
l

(
|u(t)|∞ −

lmaxx∈S1 ux(t)

2

))2

≥ l2

(
3

4
E|u(t)|2∞ −

3l2

4
E
(

(max
x∈S1

ux(t))
2
))

.

By definition of A, C ′ and l, we get

E|u(t)|21 ≥ l2

(
3A

4
− 3l2C ′

4

)
≥ 3l2A

8
= g̃(A). �

Finally we prove the following uniform lower estimate.

Lemma 3.15. We have

E|u(t)|2p & 1, t ≥ T0 + 2, p ∈ [1,∞].

Proof. We can take p = 2. Indeed, the case p ∈ (2,∞] follows
immediately from the case p = 2. On the other hand, the case
p ∈ [1, 2) follows from Hölder’s inequality, the case p = 2 and the upper
estimate for E|u(t)|2∞ in Theorem 3.9, in the same way as in the proof
of Lemma 3.13.

Let C ′ denote various positive constants. From Lemma 3.12 (case
m = 0 and p = ∞), it follows that for some t̃ in [2, T0 + 2] we have
E|u(t̃)|2∞ ≥ C ′. Then by Lemma 3.14 we get E|u(t̃)|2 ≥ C ′. Thus it
suffices to prove that

E|u(t)|2 ≤ κ =⇒ d

dt
E|u(t)|2 ≥ 0, t ≥ 2,

where κ is a fixed positive number, chosen later.
If E|u(t)|2 ≤ κ, then by Lemma 3.14, E|u(t)|2∞ ≤ g̃−1(κ). On the

other hand, by Hölder’s inequality and Lemma 1.1, we have

E ‖u(t)‖21 ≤ (E|u(t)|21,∞)1/2(E|u(t)|21,1)1/2

≤ C ′(E|u(t)|2∞)1/4(E|u(t)|22,∞)1/4(E|u(t)|21,1)1/2.
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Therefore, by Theorem 3.9, E ‖u(t)‖21 ≤ C ′(g̃−1(κ))1/4ν−1, and thus by
(16), we get:

d

dt
E|u(t)|2 ≥ I0 − 2C ′(g̃−1(κ))1/4.

Since g̃−1(κ) −→
κ→0

0, choosing κ small enough so that

2C ′(g̃−1(κ))1/4 ≤ I0

proves the lemma’s assertion. �

Since |u(t)|1,1 ≥ |u(t)|∞, an analogue of Lemma 3.15 also holds for
|u(t)|1,1.

3.3. Main theorem. The following theorem sums up the main results
of Section 3, with the exception of Theorem 3.1. We recall that γ =
max(0,m− 1/p).

Theorem 3.16. For m ∈ {0, 1} and p ∈ [1,∞], or for m ≥ 2 and
p ∈ (1,∞], we have( 1

T

∫ t+T

t

E |u(s)|αm,p
)1/α m,p,α∼ ν−γ, α > 0, t ≥ T1 = T0 + 2,

T ≥ T0. (41)

Moreover, the upper estimates hold with time-averaging replaced by
maximising over [t, t+ 1] for t ≥ 2, i.e.(

E max
s∈[t,t+1]

|u(s)|αm,p
)1/α m,p,α

. ν−γ, α > 0, t ≥ 2. (42)

On the other hand, the lower estimates hold for all m ≥ 0 and p ∈
[1,∞]. The asymptotics (41) hold without time-averaging if m and p
are such that γ(m, p) = 0. Namely, in this case,(

E |u(t)|αm,p
)1/α m,p,α∼ 1, α > 0, t ≥ T1. (43)

Proof. The upper estimates for all cases, as well as the lower esti-
mates in (41) for all cases and in (43) for the case α = 2, follow from
the lemmas and theorems above. For α > 2, the lower estimates in
(43) follow immediately from the lower estimates for α = 2. For α < 2,
these estimates are obtained from Hölder’s inequality, the lower esti-
mates for α = 2 and the upper estimates for α = 3 in the same way as
in the proof of Lemma 3.13.

This theorem yields, for integers m ≥ 1, the relation

{‖u‖2m}
m∼ ν−(2m−1). (44)
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By a standard interpolation argument (see (6)) the upper bound in
(44) also holds for non-integer indices s > 1. Actually, the same is true
for the lower bound, since for any integer n > s we have

{‖u‖2s} ≥ {‖u‖2n}n−s+1{‖u‖2n+1}−(n−s)
s

& ν−(2s−1).

In all results in this section as well as in Section 4, the quantities
estimated for a fixed trajectory of the noise, such as

max
s∈[t,t+1], x∈S1

uωx

or maxima in time of Sobolev norms, can be replaced by their suprema
over all smooth initial conditions (taken before considering the expected
value). For instance, the quantity

E max
s∈[t,t+1]

|uω(s)|αm,p

can be replaced by

E sup
u0∈C∞

max
s∈[t,t+1]

|uω(s)|αm,p.

For the lower estimates, this is obvious. For the upper ones, this fol-
lows form the following pathwise version of Theorem 3.9, and analogous
pathwise versions of Theorem 3.1 and of the upper estimates in Sec-
tion 4. To prove these statements, it suffices to recast the original
proofs in a pathwise setting (i.e., to work for a fixed ω instead of using
the expected values).

Theorem 3.17. For m ∈ {0, 1} and p ∈ [1,∞], or for m ≥ 2 and
p ∈ (1,∞], there exist constants β(m, p),m′(m, p) > 0 such that we
have:

max
s∈[t,t+1]

|uω(s)|m,p
m,p

. (1 + max
s∈[t−1,t+1]

‖wω(s)‖m′)βν−γ,

t ≥ 2, ω ∈ Ω. (45)

On the other hand, in the results of this section and of Section 4 the
expected values (and not the quantities themselves) can be replaced
by their infima over all smooth initial conditions. For instance, the
quantity

E max
s∈[t,t+1]

|u(s)|m,p

can be replaced by

inf
u0∈C∞

E max
s∈[t,t+1]

|u(s)|m,p.
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4. Estimates for small-scale quantities

In this section, we estimate small-scale quantities which characterise
Burgulence in physical space (increments, flatness) as well as in Fourier
space (energy spectrum). We fix t satisfying t ≥ T1. Its precise value
is not important, since all estimates in Section 3 hold uniformly in t
provided that t ≥ T1 and the same is true for all estimates in this
section. For the notation used here, see Subsection 1.5.

4.1. Results in physical space. We begin by proving upper esti-
mates for the functions Sp,α(`). In the proofs of the two following
lemmas, constants denoted by C depend only on p, α.

Lemma 4.1. For α ≥ 0 and ` ∈ [0, 1],

Sp,α(`)
p,α

.

{
`αp, 0 ≤ p ≤ 1.

`αpν−α(p−1), p ≥ 1.

Proof. We begin by considering the case p ≥ 1. We have

Sp,α(`) =
{(∫

S1

|u(x+ `)− u(x)|pdx
)α}

≤
{(

max
x
|u(x+ `)− u(x)|p−1

∫
S1

|u(x+ `)− u(x)|dx
)α}

.

By Hölder’s inequality we get

Sp,α(`) ≤
{(∫

S1

|u(x+ `)− u(x)|dx
)αp}1/p

×
{

max
x
|u(x+ `)− u(x)|αp

}(p−1)/p
.

Since the space average of u(x+ `)− u(x) vanishes, we obtain that

Sp,α(`) ≤
{(

2

∫
S1

(u(x+ `)− u(x))+dx
)αp}1/p

×
{

max
x
|u(x+ `)− u(x)|αp

}(p−1)/p

≤C`α
{

max
x
|u(x+ `)− u(x)|αp

}(p−1)/p
, (46)

where the second inequality follows from Theorem 3.1. Finally, by
Theorem 3.16 we get

Sp,α(`) ≤ C`α
{

(`|u|1,∞)αp
}(p−1)/p

≤ C`αpν−α(p−1).

The case p < 1 follows immediately from the case p = 1 since now
Sp,α(`) ≤ S1,αp(`), by Hölder’s inequality. �
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For ` ∈ J2 ∪ J3, we have a better upper bound if p ≥ 1.

Lemma 4.2. For α ≥ 0 and ` ∈ J2 ∪ J3,

Sp,α(`)
p,α

.

{
`αp, 0 ≤ p ≤ 1.

`α, p ≥ 1.

Proof. The calculations are almost the same as in the previous
lemma. The only difference is that we use another upper bound for the
right-hand side of (46). Namely, we have

Sp,α(`) ≤ C`α
{

max
x
|u(x+ `)− u(x)|αp

}(p−1)/p

≤ C`α
{

(2|u|∞)αp
}(p−1)/p

≤ C`α,

where the third inequality follows from Theorem 3.16. �

To prove lower estimates for Sp,α(`), we need a lemma. Loosely
speaking, this lemma states that with a probability which is not too
small, during a period of time which is not too small, several Sobolev
norms are of the same order as their expected values. Note that in
the following definition, (47-48) contain lower and upper estimates,
while (49) only contains an upper estimate. The inequality |u(s)|∞ ≤
maxux(s) in (47) always holds, since u(s) has zero mean value and the
length of S1 is 1.

Definition 4.3. For a given solution u(s) = uω(s) and K > 1, we
denote by LK the set of all (s, ω) ∈ [t, t+ T0]× Ω such that

K−1 ≤ |u(s)|∞ ≤ maxux(s) ≤ K (47)

K−1ν−1 ≤ |u(s)|1,∞ ≤ Kν−1 (48)

|u(s)|2,∞ ≤ Kν−2. (49)

Lemma 4.4. There exist constants C̃,K1 > 0 such that for all K ≥ K1,
ρ(LK) ≥ C̃. Here, ρ denotes the product measure of the Lebesgue
measure and P on [t, t+ T0]× Ω.

Proof. We denote by AK , BK and DK the set of (s, ω) satisfying

”The upper estimates in (47-49) hold for a given value of K”,

”The lower estimates in (47-48) hold for a given value of K”

and

”The lower estimate in (48) holds for a given value of K”,
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respectively.
Note that for K ≤ K ′, LK ⊂ LK′ , and similarly for AK , BK and

DK .
By Lemma 1.1 we get |u|∞ ≥ C ′|u|−12,∞|u|21,∞ for some constant

C ′ > 0. Thus, for K̃ ≥ max(C ′, 1)K3, we have AK ∩ DK ⊂ BK̃ , and
therefore:

AK ∩DK ⊂ AK̃ ∩BK̃ = LK̃ .

Consequently:

ρ(LK̃) ≥ ρ(AK) + ρ(DK)− T0.
By Theorem 3.1, Theorem 3.16 and Chebyshev’s inequality, the mea-
sure of the set AK̃ tends to T0 as K̃ tends to +∞. So to prove the
lemma’s assertion, it remains to show that there exists C > 0 such that
for K large enough we have ρ(DK) ≥ C. Using the upper estimate for
{|u|21,∞} in Theorem 3.16, we get

{|u|1,∞1(|u|1,∞ ≥ Kν−1)} ≤ CK−1ν−1.

Here, 1(A) denotes the indicator function of an event A. On the other
hand, we clearly have

{|u|1,∞1(|u|1,∞ ≤ K−1ν−1)} ≤ K−1ν−1.

Now, for K0 > 0, consider the function

gK0 = |u|1,∞1(K−10 ν−1 ≤ |u|1,∞ ≤ K0ν
−1).

The lower estimate for {|u|1,∞} in Theorem 3.16 and the relations above
yield

{gK0} ≥ (C − CK−10 −K−10 )ν−1 ≥ C0ν
−1

for some constant C0, uniformly for large enough values of K0. Since
gK0 ≤ K0ν

−1, we get

ρ(gK0 ≥ C0ν
−1/2) ≥ C0K

−1
0 T0/2.

Since gK0 ≤ |u|1,∞, we obtain that

ρ(|u|1,∞ ≥ C0ν
−1/2) ≥ C0K

−1
0 T0/2,

which implies the existence of C ′′, K ′′ > 0 such that ρ(DK′′) ≥ C ′′ for
K ≥ K ′′. �

Definition 4.5. For a given solution u(s) = uω(s) and K > 1, we
denote by OK the set of all (s, ω) ∈ [t, t+T0]×Ω such that the conditions
(47), (49) and

K−1ν−1 ≤ −minux ≤ Kν−1 (50)

hold.



28 ALEXANDRE BORITCHEV

Corollary 4.6. If K ≥ K1 and ν < K−21 , then ρ(OK) ≥ C̃. Here,
C̃,K1 are the same as in the statement of Lemma 4.4.

Proof. For K = K1 and ν < K−21 , the estimates (47-48) tell us that
for (s, ω) ∈ LK ,

maxux(s) ≤ K1 < K−11 ν−1 ≤ |ux(s)|∞.

Thus, in this case we have OK = LK , and therefore

ρ(OK) = ρ(LK) ≥ C̃0.

Finally, we observe that since increasing K while keeping ν constant
increases the measure of OK , the corollary’s statement still holds for
K ≥ K1 and ν < K−21 . �

Now we fix

K = K1, (51)

and choose

ν0 =
1

6
K−2; C1 =

1

4
K−2; C2 =

1

20
K−4. (52)

In particular, we have 0 < C1ν0 < C2 < 1: thus the intervals Ji are
non-empty and non-intersecting for all ν ∈ (0, ν0].

Lemma 4.7. For α ≥ 0 and ` ∈ J1,

Sp,α(`)
p,α

&

{
`αp, 0 ≤ p ≤ 1.

`αpν−α(p−1), p ≥ 1.

Proof. By Corollary 4.6, it suffices to prove that the inequalities
hold uniformly for (s, ω) ∈ OK with Sp,α(`) replaced by(∫

S1

|u(x+ `)− u(x)|pdx
)α
.

For α 6= 1, this fact follows from the case α = 1. Indeed, if for (s, ω) ∈
OK , we have∫

S1

|u(x+ `)− u(x)|pdx
p

& `p (resp. `pν−(p−1)),

then we also have(∫
S1

|u(x+ `)− u(x)|pdx
)α p,α

& `αp (resp. `αpν−α(p−1)).

Till the end of the proof we assume that

(s, ω) ∈ OK .
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Case p ≥ 1, α = 1. Denote by z the leftmost point on S1 (consid-
ered as [0, 1)) such that u′(z) ≤ −K−1ν−1. Since |u|2,∞ ≤ Kν−2, we
have

u′(y) ≤ −1

2
K−1ν−1, y ∈ [z − 1

2
K−2ν, z +

1

2
K−2ν]. (53)

Since ` ≤ C1ν = 1
4
K−2ν, by Hölder’s inequality we get∫

S1

|u(x+ `)− u(x)|pdx ≥
∫ z+ 1

4
K−2ν

z− 1
4
K−2ν

|u(x+ `)− u(x)|pdx

≥ (K−2ν/2)1−p
(∫ z+ 1

4
K−2ν

z− 1
4
K−2ν

|u(x+ `)− u(x)|dx
)p

= C(p)ν1−p
(∫ z+ 1

4
K−2ν

z− 1
4
K−2ν

(∫ x+`

x

−u′(y)dy
)
dx
)p

≥ C(p)ν1−p
(∫ z+ 1

4
K−2ν

z− 1
4
K−2ν

1

2
`K−1ν−1 dx

)p
= C(p)ν1−p`p.

Case p < 1, α = 1. By Hölder’s inequality we get∫
S1

|u(x+ `)− u(x)|pdx ≥
∫
S1

(
(u(x+ `)− u(x))+

)p
dx

≥
(∫

S1

(
(u(x+ `)− u(x))+

)2
dx
)p−1(∫

S1

(u(x+ `)− u(x))+dx
)2−p

.

Using the upper estimate in (47) we get∫
S1

|u(x+ `)− u(x)|pdx

≥
(∫

S1

`2K2dx
)p−1(∫

S1

(u(x+ `)− u(x))+dx
)2−p

.

Finally, since
∫
S1 (u(·+ `)− u(·)) = 0, we obtain that∫

S1

|u(x+ `)− u(x)|pdx ≥ C(p)`2(p−1)
(1

2

∫
S1

|u(x+ `)− u(x)|dx
)2−p

≥ C(p)`p.

The last inequality follows from the case p = 1, α = 1. �

Remark 4.8. To prove this lemma, we do not need Corollary 4.6.
Indeed, in its proof we could have considered z such that |u′(z)| ≥
K−1ν−1: Lemma 4.4 guarantees its existence.
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The proof of the following lemma uses an argument from [3], which
can be made rigorous if we restrict ourselves to the set OK .

Lemma 4.9. For α ≥ 0 and ` ∈ J2,

Sp,α(`)
p,α

&

{
`αp, 0 ≤ p ≤ 1.

`α, p ≥ 1.

Proof. For the same reason as in the previous proof, it suffices
to prove that as long as (s, ω) belongs to OK , the inequalities hold
uniformly for α = 1 and for Sp,α(`) replaced by∫

S1

|u(x+ `)− u(x)|pdx.

Once again, till the end of the proof we assume that (s, ω) ∈ OK .
Case p ≥ 1, α = 1. Defining z in the same way as previously, we

have: ∫
S1

|u(x+ `)− u(x)|pdx ≥∫ z

z− 1
2
`

∣∣∣ ∫ x+`

x

u′−(y)dy −
∫ x+`

x

u′+(y)dy
∣∣∣pdx.

We have ` ≥ C1ν = 1
4
K−2ν. Thus, by (53), for x ∈ [z − 1

2
`, z] we get∫ x+`

x

u′−(y)dy ≥
∫ z+ 1

8
K−2ν

z

u′−(y)dy ≥ 1

16
K−3.

.

On the other hand, since ` ≤ C2, using the upper estimate in (47) we
get ∫ x+`

x

u′+(y)dy ≤ C2K ≤
1

20
K−3.

Thus,∫
S1

|u(x+ `)− u(x)|pdx ≥ 1

2
`

(( 1

16
− 1

20

)
K−3

)p

≥ C(p)`. �

Case p < 1, α = 1. The result follows from the case p = 1, α = 1
in exactly the same way as in the previous lemma.

Summing up the results above we obtain the following theorem.

Theorem 4.10. For α ≥ 0 and ` ∈ J1,

Sp,α(`)
p,α∼

{
`αp, 0 ≤ p ≤ 1.

`αpν−α(p−1), p ≥ 1.
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On the other hand, for α ≥ 0 and ` ∈ J2,

Sp,α(`)
p,α∼
{
`αp, 0 ≤ p ≤ 1.

`α, p ≥ 1.

The following result follows immediately from the definition (20).

Corollary 4.11. For ` ∈ J2, the flatness satisfies F (`) ∼ `−1.

4.2. Results in Fourier space. By (44), for m ≥ 1 we have

{|ûk|2} ≤ (2πk)−2m{‖u‖2m}
m∼ (kν)−2mν.

Thus, for |k| � ν−1, {|ûk|2} decreases super-algebraically.

Now we want to estimate the Hs norms of u for s ∈ (0, 1).

Lemma 4.12. We have

{‖u‖21/2} ∼ | log ν|.

Proof. By (7) we have

‖u‖1/2 ∼

(∫
S1

(∫ 1

0

|u(x+ `)− u(x)|2

`2
d`
)
dx

)1/2

.

Consequently, by Fubini’s theorem,

{‖u‖21/2} ∼
∫ 1

0

1

`2

{∫
S1

|u(x+ `)− u(x)|2dx
}
d`

=

∫ 1

0

S2(`)

`2
d` =

∫
J1

S2(`)

`2
d`+

∫
J2

S2(`)

`2
d`+

∫
J3

S2(`)

`2
d`.

By Theorem 4.10 we get∫
J1

S2(`)

`2
d` ∼

∫ C1ν

0

`2ν−1

`2
d` ∼ 1

and ∫
J2

S2(`)

`2
d` ∼

∫ C2

C1ν

`

`2
d` ∼ | log ν|,

respectively. Finally, by Lemma 4.2 we get∫
J3

S2(`)

`2
d` ≤ CC−22 ≤ C.

Thus,
{‖u‖21/2} ∼ | log ν|. �

The proof of the following result follows the same lines.
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Lemma 4.13. For s ∈ (0, 1/2),

{‖u‖2s}
s∼ 1.

On the other hand, for s ∈ (1/2, 1),

{‖u‖2s}
s∼ ν−(2s−1).

The results above and the relation (44) tell us that {|ûk|2} decreases
very fast for |k| & ν−1, and that for s ≥ 0 the sums

∑
|k|2s{|ûk|2} have

exactly the same behaviour as the partial sums
∑
|k|≤ν−1 |k|2s|k|−2 in

the limit ν → 0+. Therefore we can conjecture that for |k| . ν−1, we
have {|ûk|2} ∼ |k|−2.

A result of this type actually holds (after layer-averaging), as long
as |k| is not too small. To prove it, we use a version of the Wiener-
Khinchin theorem, stating that for any function v ∈ L2 one has

|v(·+ y)− v(·)|2 = 4
∑
n∈Z

sin2(πny)|v̂n|2. (54)

Theorem 4.14. If M in the definition (18) of E(k) is large enough,
then for every k such that k−1 ∈ J2, we have E(k) ∼ k−2.

Proof. We recall that by definition,

E(k) =

{∑
|n|∈[M−1k,Mk] |ûn|2∑
|n|∈[M−1k,Mk] 1

}
.

Therefore proving the assertion of the theorem is the same as proving
that ∑

|n|∈[M−1k,Mk]

n2{|ûn|2} ∼ k. (55)

The upper estimate is an immediate corollary of the upper estimate for
|u|1,1 in Theorem 3.16 and holds without averaging over n such that
|n| ∈ [M−1k,Mk]. Indeed, integrating by parts we get

{|ûn|2} ≤ (2πn)−2{|ux|21} ≤ Cn−2,

which proves the upper bound. Also, this inequality implies that∑
|n|<M−1k

n2{|ûn|2} ≤ CM−1k (56)

and ∑
|n|>Mk

{|ûn|2} ≤ CM−1k−1. (57)
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To prove the lower bound we note that∑
|n|≤Mk

n2{|ûn|2} ≥ k2

π2

∑
|n|≤Mk

sin2(πnk−1){|ûn|2}

≥ k2

π2

(∑
n∈Z

sin2(πnk−1){|ûn|2} −
∑
|n|>Mk

{|ûn|2}
)
.

Using (54) and (57) we get∑
|n|≤Mk

n2{|ûn|2} ≥ k2

4π2

(
{|u(·+ k−1)− u(·)|2} − CM−1k−1

)
≥ k2

4π2
(S2(k

−1)− CM−1k−1).

Finally, using Theorem 4.10 we obtain that∑
|n|≤Mk

n2{|ûn|2} ≥ (C − CM−1)k.

Now we use (56) and we choose M ≥ 1 large enough to obtain (55).
�

Remark 4.15. We actually have{(∑
|n|∈[M−1k,Mk] |ûn|2∑
|n|∈[M−1k,Mk] 1

)α}
α∼ k−2α, α > 0.

The upper bound is proved in the same way as above, and then the
lower bound follows from Hölder’s inequality and the lower bound in
Theorem 4.14.

5. Stationary measure and related issues

5.1. A contraction property.

Contraction properties for solutions of scalar conservation laws have
been known to hold since the works of Oleinik and Kruzhkov (cf. [14]
and references therein). In the space-periodic setting, we have the
following contraction property in L1.

Theorem 5.1. Consider two solutions u, u of (12), corresponding to
the same realisation of the random force but different initial conditions
u0, u0 in C∞. For all t ≥ s ≥ 0, we have

|u(t)− u(t)|1 ≤ |u(s)− u(s)|1.
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Proof. We only consider the case s = 0: the general case is proved
in exactly the same way. Consider the function v = u− u and define

Φ(t, x) =
f(u(t, x))− f(u(t, x))

u(t, x)− u(t, x)
.

Since f is C∞-smooth and u, u are continuous in time and C∞-smooth
in space, by Hadamard’s lemma Φ is continuous in time and C∞-
smooth in space. The function v is a weak solution of the equation

vt + (Φv)x = νvxx, v(0) = v0 = u0 − u0, 0 ≤ t ≤ T. (58)

Moreover, since ut−wt and ut−wt are C∞-smooth in space, the same
is true for vt. Consequently, v is the classical solution of (58). Now we
consider the dual parabolic problem

ht + Φhx = −νhxx, h(T, x) = hT (x), 0 ≤ t ≤ T. (59)

For a C∞-smooth final condition hT , this problem has a unique classical
solution h, C1-smooth in time and C∞-smooth in space [2]. Integrating
by parts in time and in space, we get

〈v(T ), hT 〉 − 〈v0, h(0)〉 =

∫ T

0

〈vt(t), h(t)〉+ 〈v(t), ht(t)〉 dt

=

∫ T

0

〈−(Φ(t)v(t))x + νvxx(t), h(t)〉 dt

+

∫ T

0

〈v(t),−Φ(t)hx(t)− νhxx(t)〉 dt = 0. (60)

Now we choose a sequence of C∞-smooth functions hnT , n ≥ 0, which
approximate sgn(v(T )) pointwise and satisfy |hnT | ≤ 1. We consider
the solution hn to the problem (59) for hT = hnT . By the maximum
principle [30], we have |hn(t, x)| ≤ 1 for all t ∈ [0, T ], x ∈ S1. Now we
pass to the limit as n→∞. By (60), we get:

|v(T )|1 = lim
n→∞

〈v(T ), hnT 〉 = lim
n→∞

〈v0, hn(0)〉 ≤ |v0|1. �

5.2. Setting and definitions. Since C∞ is dense in L1, Theorem 5.1
allows us to extend the stochastic flow corresponding to (12) to the
space L1. Indeed, consider any F0-measurable u0 ∈ L1 and approxi-
mate it in L1 by a sequence of smooth functions u0n, n ≥ 1. Let uωn(t)
be the solutions to the equation (12) with the corresponding initial
data. By Theorem 5.1, for each ω the sequence {uωn(t)} is fundamental
in the space C(0, T ;L1). Its limit uω(t) does not depend on the se-
quence u0n. We will call this limit the L1-solution of (12) correspond-
ing to the initial condition u0. It is straightforward that Theorem 5.1
remains valid for L1-solutions.
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By construction, for every ω, t 7→ uω(t, ·) is continuous in L1, and
solutions to (12) are L1-solutions.

Conversely, for any T > 0, L1-solutions are solutions to (12) for
t ≥ T . It suffices to prove this in the case of a deterministic initial
condition u0. We will use the following elementary lemma.

Lemma 5.2. Let X be a Banach space, and let xn ∈ X be a sequence
converging to x. Assume that f : X → R∪{+∞} is a Borel functional
such that fk : X → R, k ≥ 1, is a sequence of bounded continuous
functions converging to f pointwise, and

fk(xn) ≤ C, k, n ≥ 1.

Then f(x) ≤ C.

Proof. It suffices first to let n→∞, and then to let k →∞. �

Now take T2 > T1 > 0 and consider ω ∈ Ω, an initial condition
u0 ∈ L1, and the corresponding smooth approximations u0n, n ≥ 1, as
above. Let u and un, n ≥ 1, be the corresponding L1-solution (resp.,
solutions) to (12). Let X be the space C(T1, T2;L1) and consider the
functions fk = f ◦πk with πk the Galerkin projections on the subspace
spanned by x 7→ eilx, |l| ≤ k, and f the Borel functional

v 7→ max
s∈[T1,T2]

‖v(s)‖2m .

We check that f and the fk verify the assumptions of Lemma 5.2. By
Lemma 5.1, we have uωn → uω in X. On the other hand, by a time-
rescaled version of Lemma 3.17, we know that there exist constants
β(m),m′(m) such that we have:

fk(u
ω
n) ≤ f(uωn)

m,T1,T2

. (1 + max
s∈[t−1,t+1]

‖wω(s)‖m′)2βν−(2m−1), k, n ≥ 1.

Now Lemma 5.2 yields

f(uω)
m,T1,T2

. (1 + max
s∈[t−1,t+1]

‖wω(s)‖m′)2βν−(2m−1).

This proves that for every ω, the L1-solutions uω(t) are C∞-smooth
for t > 0. Moreover, for every m ≥ 0 and T2 > T1 > 0, the upper
estimates in Hm for those solutions are uniform with respect to u0 and
with respect to t ∈ [T1, T2]. By interpolation, we can prove that the
L1-solutions are limits of the corresponding approximations in every
Sobolev space Hm, m ≥ 0. This has two important implications:

• For any T > 0, we can pass to the limit n→∞ in the relation
(13). This proves that the L1-solutions u(t) are solutions to
(12) for t ≥ T .
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• We can extend the results of Sections 3-4 to L1-solutions.

As in the case of smooth solutions, the L1-solutions of (12) form a
continuous Markov process in the space L1. So they define a Markov
semigroup S∗t , acting on Borel measures on L1. Till the end of this
section the L1-solutions to (12) will be referred to as solutions.

A stationary measure is a Borel probability measure on L1 invariant
by S∗t for every t. A stationary solution of (12) is a random process v
defined for (t, ω) ∈ [0,+∞)× Ω, valued in L1, which solves (12), such
that the distribution of v(t, ·) does not depend on t. Such a distribution
is automatically a stationary measure.

Now we consider the question of existence and uniqueness of a sta-
tionary measure, which implies existence and uniqueness (in the sense
of distributions) of a stationary solution. This fact has been proved
in a slightly different setting: see [21] and references therein; see also
[17] for the proof in the case ν = 0. Moreover, we obtain a bound for
the rate of convergence to the stationary measure in an appropriate
distance. This bound does not depend on the viscosity or on the initial
condition.

Definition 5.3. Fix p ∈ [1,∞). For a continuous real-valued function
g on Lp, we define its Lipschitz norm as

|g|L(p) := sup
Lp

|g|+ |g|Lip,

where |g|Lip is the Lipschitz constant of g. The set of continous func-
tions with finite Lipschitz norm will be denoted by L(p) = L(Lp). We
will abbreviate L(1) as L.

Definition 5.4. For two Borel probability measures µ1, µ2 on Lp, we
denote by ‖µ1 − µ2‖∗L(p) the Lipschitz-dual distance:

‖µ1 − µ2‖∗L(p) := sup
g∈L(p), |g|L(p)≤1

∣∣∣ ∫
S1

g(v)µ1(dv)−
∫
S1

g(v)µ2(dv)
∣∣∣.

Existence of a stationary measure for (12) can be proved using the
Bogolyubov-Krylov argument (see [28]). Let us give a sketch of the
proof.

Let u(s) be a solution of (12). For s ≥ 1, E|u(s)|1,1 is uniformly
bounded. Since by Helly’s selection principle [23], W 1,1 is compactly
embedded in L1, the family of measures µt defined by:

µt :=
1

t

∫ 1+t

1

S∗sµu0 ds, t ≥ 1,

where µu0 denotes the measure on L1 induced by an initial condition
u0, is tight in L1 for any initial condition u0. Thus, we can extract a
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subsequence µtn , converging weakly to a limit µ. It is not hard to check
that µ is a stationary measure for (12) in L1.

The main result of this section is the following theorem, proved in
Subsection 5.3.

Theorem 5.5. There exists a positive constant C ′ such that we have

‖S∗t µ1 − S∗t µ2‖∗L ≤ C ′t−1/13, t ≥ 1, (61)

for any probability measures µ1, µ2 on L1.

Corollary 5.6. For every p ∈ (1,∞), there exists a positive constant
C ′(p) such that we have

‖S∗t µ1 − S∗t µ2‖∗L(p) ≤ C ′t−1/13p, t ≥ 1, (62)

for any probability measures µ1, µ2 on Lp.

Corollary 5.6 is proved similarly to Theorem 5.5, observing that by
Hölder’s inequality, for any pair of solutions u, u of (12) and p ∈ [1,∞)
we have

|u− u|p . (|u− u|1)1/p(|u− u|∞)(p−1)/p.

Note that all estimates in the previous sections still hold for a stationary
solution, since they hold uniformly for any initial condition in L1 for
large times, and a stationary solution has time-independent statistical
properties. It follows that those estimates still hold when averaging
in time and in ensemble (denoted by {·}) is replaced by averaging
solely in ensemble, i.e. by integrating with respect to µ. In particular,
Theorem 3.16, Theorem 4.10 and Theorem 4.14 imply, respectively, the
following results.

Theorem 5.7. For m ∈ {0, 1} and p ∈ [1,∞], or for m ≥ 2 and
p ∈ (1,∞], (∫

|u|αm,p µ(du)
)1/α m,p,α∼ ν−γ, α > 0.

Theorem 5.8. For α ≥ 0 and ` ∈ J1,∫ (∫
S1

|u(x+ `)− u(x)|pdx
)α
µ(du)

p,α∼

{
`αp, 0 ≤ p ≤ 1.

`αpν−α(p−1), p ≥ 1.

On the other hand, for α ≥ 0 and ` ∈ J2,∫ (∫
S1

|u(x+ `)− u(x)|pdx
)α
µ(du)

p,α∼
{
`αp, 0 ≤ p ≤ 1.

`α, p ≥ 1.
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Theorem 5.9. For k such that k−1 ∈ J2, we have:∫ ∑
|n|∈[M−1k,Mk] |ûn|2∑
|n|∈[M−1k,Mk] 1

µ(du) ∼ k−2.

5.3. Proof of Theorem 5.5. To begin with, we need an auxiliary
lemma. The main idea of the proof is similar to that of Theorem 3.1:
namely, if the white noise is small during a certain time, then the
solution itself becomes small. The technique is also similar: we apply
the maximum principle to a well-chosen function. We only give the
proof for an initial condition in C∞: the general case follows as above
by considering smooth approximations.

Lemma 5.10. There exists a constant C̃ ≥ 2 such that if τ ≥ C̃ and
if for some t ≥ 0 and ω ∈ Ω, the trajectory of the Wiener process wω

satisfies
K = max

s∈[t,t+τ ]
|wω(s)− wω(t)|3,∞ ≤ τ−2,

then the corresponding solution uω(t, x) to (12) satisfies

max
x∈S1

ux(t+ τ, x) ≤ τ−1/2. (63)

In this subsection, from now on we denote by C ′ various positive
constants, independent of C̃.

Proof. Assume the converse. We abbreviate w(s) − w(t) as w̃(s)
and we use the notation

ṽ(s, x) = (s− t)(ux(s, x)− w̃x(s, x)); N = max
s∈[t,t+τ ], x∈S1

ṽ(s, x). (64)

Since we assumed that (63) does not hold, we have

N > τ(τ−1/2 −K) > τ 1/2/2. (65)

Now consider a point (t1, x1) at which the maximum N is achieved. In
the same way as in the proof of Theorem 3.1, we show that at (t1, x1)
we have

f ′′(u)(ṽ + (t1 − t)w̃x)2 ≤ ṽ − (t1 − t)2f ′(u)w̃xx + ν(t1 − t)2w̃xxx. (66)

On the other hand, by (11) (as in the proof of Theorem 3.1, we use the
notation δ = 2− h(1)) we get

(t1 − t)2f ′(u(t1, x1)) ≤ C ′(t1 − t)2
(

1 + |u(t1, x1)|
)2−δ

≤ C ′(t1 − t)δ
(

(t1 − t) + (t1 − t)|u(t1, x1)|
)2−δ

≤ C ′τ δ
(
τ 2−δ + (N + τK)2−δ

)
,
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since (t1−t)u is the zero space average primitive of ṽ+(t1−t)w̃x. Thus
we get

σ(N − τK)2 ≤ N + C ′Kτ δ(τ 2−δ + (N + τK)2−δ) +Kτ 2.

By assumption, we have τ ≥ C̃ and K ≤ τ−2, and by (65) we have
N > τ 1/2/2. Therefore we have, on the one hand,

σ(N − τK)2 ≥ C ′N2,

and on the other hand,

N + C ′Kτ δ(τ 2−δ + (N + τK)2−δ) +Kτ 2 ≤ C ′N2−δ.

Thus, N δ ≤ C ′, and for C̃ large enough we have a contradiction with
the fact that N > τ 1/2. �

To prove the following theorem, we use the coupling method [28,
Chapter 3]. The situation is actually simpler than for the stochastic
2D Navier Stokes equation, which is the main subject of [28]. Indeed, in
our setting the ”damping time” needed to make the distance between
two solutions small does not depend on the initial conditions, and by
Theorem 5.1 the flow of (12) is L1-contracting.

Proof of Theorem 5.5. We can take (µ1, µ2) = (δu0 , δu0); the
general case follows by Fubini’s theorem. Indeed, we have

‖S∗t µ1 − S∗t µ2‖∗L = sup
g∈L, |g|L≤1

∣∣∣ ∫ g(v)S∗t µ1(dv)−
∫
g(v)S∗t µ2(dv)

∣∣∣
≤ sup

g∈L, |g|L≤1

∫ ∣∣∣ ∫ g(v)S∗t δu0(dv)−
∫
g(v)S∗t δu0(dv)

∣∣∣µ1(du0)µ2(du0)

≤ sup
u0∈Supp µ1, u0∈Supp µ2

‖S∗t δu0 − S∗t δu0‖∗L.

Now we denote by u(t), u(t) the solutions of (12) corresponding respec-
tively to the initial conditions u0, u0. By the definition of the Lipschitz-
dual distance, we have

‖S∗t δu0 − S∗t δu0‖∗L = sup
g∈L, ‖g‖L≤1

∣∣∣E g(u(t))− E g(u(t))
∣∣∣

≤ E sup
g∈L, ‖g‖L≤1

∣∣∣g(u(t))− g(u(t))
∣∣∣

≤ E
(

min(2, |u(t)− u(t)|1)
)
. (67)

To prove the theorem’s statement, it suffices to obtain the inequality

P
(
|u(n13)− u(n13)|1 >

2

n

)
≤ C̃ ′

n
(68)
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for large enough integers n. Indeed, this inequality yields that for large
enough t we have

E
(

min(2, |u(t13)− u(t13)|1)
)

≤ E
(

min(2, |u(btc13)− u(btc13)|1)
)

≤ 2

btc
P
(
|u(btc13)− u(btc13)|1 ≤

2

btc

)
+ 2P

(
|u(btc13)− u(btc13)|1 >

2

btc

)
≤ 2 + 2C̃ ′

btc
≤ C ′

t
,

Here, btc denotes the integer part of t, and the first inequality follows
from Theorem 5.1.

By Theorem 5.1, for every n ≥ 1 we have

P
(
|u(n13)− u(n13)|1 >

2

n

)
= P

(
∀k ∈ [1, n11] : |u(kn2)− u(kn2)|1 >

2

n

)
.

Thus,

P
(
|u(n13)− u(n13)|1 >

2

n

)
≤ P

(
∀k ∈ [1, n11] : |u(kn2)|1 >

1

n
or |u(kn2)|1 >

1

n

)
≤ P

(
∀k ∈ [1, n11] : max

x∈S1
ux(kn

2) >
1

n
or max

x∈S1
ux(kn

2) >
1

n

)
.

The second inequality holds since the functions u(t, ·) and u(t, ·) have
zero mean value. From Lemma 5.10, it follows that for n ≥ C̃1/2 we
can only have maxx∈S1 ux(kn

2) > 1
n

or maxx∈S1 ux(kn
2) > 1

n
if

max
t∈[(k−1)n2,kn2]

|w(t)− w((k − 1)n2)|3,∞ >
1

n4
,

and therefore we get:

P
(
|u(n13)− u(n13)|1 >

2

n

)
≤ P

(
∀k ∈ [1, n11] : max

t∈[(k−1)n2,kn2]
|w(t)− w((k − 1)n2)|3,∞ >

1

n4

)
.
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Since the increments of w on the time intervals [(k − 1)n2, kn2] are
independent, we get that for n ≥ C̃1/2:

P
(
|u(n13)− u(n13)|1 >

2

n

)
≤

∏
1≤k≤n11

P
(

max
t∈[(k−1)n2,kn2]

|w(t)− w((k − 1)n2)|3,∞ >
1

n4

)
,

and then by the inequality (10) we get:

P
(
|u(n13)− u(n13)|1 >

2

n

)
≤

(
exp

(
− n−8

2C ′n2

))n11

≤ e−C
′n ≤ C ′

n
. �
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