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Résumé: Nous étudions quelques propriétés nouvelles liées aux développements limités et a la
transformée de Hankel. Nous les démontrons en utilisant l’approche combinatoire de la réversion
des séries et des fractions continues.

1 Introduction

Le but de cet article est de décrire quelques interactions entre combinatoire et algébre. Plus
précisément, nous étudions certains liens entre la réversion des séries (formelles) et les matrices
de Hankel. Les deux sujets sont classiques : la plupart des fonctions importantes, par exemple
exp, sin ou tan, possédent en effet des fonctions inverses (log, arcsin, arctan dans notre cas) et
un théoréme célébre de Lagrange relie le développement en série d’'une fonction analytique au
développement en série de sa fonction inverse (pour la composition). Du coté de la combinatoire,
inverser des séries génératrices est une technique standard, par exemple pour la résolution de
problémes d’énumération, voir [8]. La formule de Lagrange-Biirmann est également utile dans
I’étude de certains aspects des formes modulaires, voir [15]. Les matrices de Hankel apparaissent
naturellement lorsqu’on considére les moments d'une mesure de probabilité convenable sur R
et sont étroitement reliées aux polyndmes orthogonaux et a certaines fractions continues. Un
traitement combinatoire de ces matrices a été donné par exemple par Flajolet dans [5] ou par
Viennot dans [19] et [20]. Les références [11] et [18] contiennent également quelques informations
historiques.

Notre article est organisé comme suit.

Pour la commodité du lecteur, nous rappelons le théoréme de Lagrange (concernant la réver-
sion des séries) et une preuve classique au début du chapitre 2. Dans le reste du chapitre,
nous énoncons notre résultat principal, un lien entre le théoréme de Lagrange et une suite de
développements limités.

Le chapitre 3 relie la suite associée aux développements limités & la “transformée inverse”.

Le chapitre 4 contient deux exemples illustrant les résultats énoncés.

Le chapitre 5, indépendant du reste, décrit une déformation continue naturelle qui permet
d’interpoler entre 'inversion % et la réversion (zf){~" d’une série formelle f = 1 + zC[[z]].

Nous discutons ensuite quelques jolies propriétés de la matrice de Hankel associée & la suite
obtenue par des développements limités, au chapitre 6.

Le chapitre 7 rappelle une interprétation combinatoire classique qui fait le lien entre les ma-
trices de Hankel et divers objets combinatoires (chemins, mots de Lukasiewicz). Ces ingrédients
sont ensuite utilisés pour prouver une partie de nos résultats. Ce chapitre contient également
des preuves succinctes de résultats classiques (& I’exception de la Proposition 2 qui est peut-étre



moins connue) ainsi qu’une digression décrivant une action du groupe diédral infini sur les mots
de Lukasiewicz.

Le chapitre final contient des résultats concernant les déterminants de matrices de Hankel
ainsi que les preuves des résultats non démontrés antérieurement.

Dans la suite, nous travaillerons toujours sur un corps de caractéristique zéro.

2 Le théoréme d’inversion de Lagrange

L’ensemble des séries formelles du type p(z) = > o2 ; apx™ telles que oy # 0 (pour un corps de
base fixé une fois pour toutes) constitue un groupe pour la composition. L'inverse ¢(z) d’une telle
série p(x) est uniquement défini par ’équation ¢ o p(z) = x, et d’ailleurs aussi par p o ¢(x) = z.
Le passage de p & ¢, qui est ce que nous appelons ici la réversion des séries, est 'objet d’un
théoréme célebre de Lagrange, qui semble avoir son origine historique dans 'article [13].

Pour la commodité du lecteur, nous indiquons d’abord au théoréme 1 une démonstration
du théoréme de Lagrange sans doute assez proche de l'original, en suivant le joli article de
Henrici [11]. Par ailleurs, le chapitre 7 contient une autre démonstration classique, basée sur la
combinatoire des mots de Lukasiewicz. Il existe de nombreuses autres présentations, dont [2],
pages 158-161, [8], pages 15-18, [9], pages 129-133, [16], pages 145-149, [18], pages 38-39, [21],
pages 128-136.

L’ensemble des séries formelles du type s(z) = > 2 spa” telles que so # 0 constitue un
autre groupe pour la multiplication. Le passage de s(x) & 1/s(z) est ce que nous appelons ici
linversion des séries, et nous y revenons aux chapitres 3 et 5. Il faut néanmoins prendre garde
au fait que de nombreux auteurs utilisent le terme “inversion” dans le contexte du théoréme de
Lagrange.

Soit g(x) = >, >y Tnx™ une série de Laurent formelle & une indéterminée, ot N € Z et
ot les coefficients ~, sont dans le corps de base ; on pose 7, = 0 pour n < N. Pour tout
n € Z, nous écrivons [z"](g(z)) le n-iéme coefficient v, de g(x). Le théoréme de Lagrange, ou de
Lagrange-Biirmann, établit une relation entre les coefficients a,, = [z"](¢(x)) et les coefficients

[27 1] <(ﬁ)n) pour ¢(x) la réversion d'une série p(z) = > > | apz™ avec oy # 0.

Théoréme 1. Soient p(x) = > 2 | anx™ une série formelle sans terme constant telle que a; # 0,
et q(x) la série du méme type telle que qo p(x) = poq(x) = x. Alors

nfa"] (¢"(@)) = k"] <<;%)n>

pour tous n, k € 7.

Démonstration, d’aprés [11]. Considérons une série de Laurent formelle g(z) et la série de
Laurent '
goglz) = Yy,
i>N

Nous obtenons d’abord

gogop(z) = g(z) = > vp'()

j>N



en composant avec p(z) a la source, puis, pour n € Z arbitraire,

(¥ o) B = 3 @

j=N

en multipliant par p/(x)/p" ! (z).
Nous allons appliquer deux régles de calcul trés simples pour le calcul des résidus. La premiére
concerne les dérivées : [z~ 1](h/ (x)) = 0 pour toute série de Laurent formelle h(z) ; en particulier,

e ) = b ()~ o

de j—n

pour j # n. La seconde concerne les dérivées logarithmiques : [z7!] (IZ((;))) = 1 pour toute série

de puissance de la forme h(z) = Y222, §;27 avec 61 # 0.
En égalant les résidus des deux termes de (*), nous trouvons donc

(+#) o] (o002 ) = 7 () =

Comme le résidu de la série de Laurent %(g/p*")’ (x) = ni; Sa) — gpfﬂ?l(%) est nul, nous avons
aussi
/
* % ok nlz" (go q(z)) = ny, = [z* <g(ﬂ:)>
(3 %) [z"] (g0 q(x)) = nyn = [277] (@)

En particulier, lorsque g(x) = 2%, nous avons

=1 () -~ ()

et le théoréme résulte de ce cas de ’égalite (***). O
Remarques. (i) Plus généralement, la formule (***) fournit le n-iéme terme de la série de
Laurent g o ¢(z) pour tout n # 0, et la formule (**) pour n = 0 s’écrit

2%(goq(z)) = [z] (g@)p’(m)) |

(ii) Si les coefficients sont complexes et si le rayon de convergence de la série p(z) est stricte-
ment positif, alors il en est de méme de celui de ¢(z).

(iii) D’un point de vue numérique, la série de von Neumann (J — H)<*1> =J+Ho(J+
Ho(J+...)) permet de calculer efficacement la réciproque (J — H){~! d’une perturbation H
d’ordre > 1 de l'identité J en un nombre quelconque de variables. Cette formule est 1’analogue
compositionelle de la régle de Horner: 1+ H(1+ H(1+...)) =Y. ) H" qui converge vers —

-H
pour H petit.

Exemples. Le théoréme 1 ne s’applique bien au calcul des coefficients de ¢ que s’il est facile de
n
déterminer les coefficients de <ﬁ) .

(i) Si p(z) = 175, alors i) = 1+ z et le théoréme 1 implique [2"](¢(x)) = 1 pour tout

pz
n > 1, en accord avec les égalités ¢(z) = %= = > ", z". (Notons que les deux séries p(z) et

1-z
q(z) convergent dans le disque unité.)



oo "

(ii) Si p(x) = ze™", on obtient sans peine g(x) = > >~ Tlm" (Notons que, dans ce cas, le
n! (n+1)ntl-
. i—1 .

De maniére analogue, p(z) = ze~*" donne ¢(z) = > 720 %mzjﬂ. (Le rayon de con-
vergence de p(z) est de nouveau infini tandis que la série de ¢(z) converge absolument pour
|z| < 1/v/2e.)

(iv) Comme déja mentionné, la formule d’inversion de Lagrange-Biirmann n’est que rarement
utile pour la réversion d’une série formelle. Des méthodes différentes sont généralement beaucoup
plus simples. Un tel exemple est la fonction p(x?) = (sinz)? ; voir la page 130 de [21]. Nous ne

savons pas utiliser la formule de Lagrange pour prouver que la réversion de p(z) est donnée par

la fonction hypergéométrique ¢(z) = Z;’il 22 *1%. Un calcul facile montre cependant que

J
q(z) est une solution (formelle) de I’équation différentielle

rayon de convergence de p(z) est infini et celui de ¢ est e~ = lim,, .,

1
(xQ—x)y"+(m—§)y'+—:O.

2

En dérivant ¢(sin?(,/z)) = 2 par rapport & z et en posant x = sin? \/z, nous trouvons

,, . arcsing/x
¢(e)= z(1l—x)

et ensuite

1

¢"(z) = m (1 —(1—2x)

arcsiny/x )

z(1—x)

Ceci montre que g(x) est également solution de 1’équation différentielle ci-dessus. Un développe-
ment & 'ordre deux des deux séries permet de conclure.

Les deux théorémes qui suivent fournissent d’autres paires du type (p(z),q(z)). L’aspect
peut—étre original de notre exposition consiste a faire jouer un réle important aux polynémes P;
(et plus bas aux polynémes @);), que nous voyons comme des développements limités des séries
correspondantes. Si s(z) = Z;'io sjz’ est une série entiére et k un entier positif, nous notons

|s(z) |k = s+ s12 4 - + sp_12" ! son développement limité & ordre k — 1.
Considérons une série formelle s(x) = Z;”;O sjx’ telle que sg # 0. Définissons successivement

e les polyndmes

Pi(x) =59, Py(x)= 58 + sos1z,  Ps(x) = 88 + (5851 + s08150)x + (8382 + 505%)3:2, ..

définis récursivement par Py(x) = |Pr_1(x)s(z) ],

e les constantes Q,(0) = [x"~!]P,(x), n > 1, obtenues en considérant les coefficients de plus
haut degrés dans les polynomes P (z), Py(z), ..., oi P,(x) est considéré comme étant de
degré n — 1,

e la série génératrice
o
Q(t) = ZQn(O)tn
n=1

des nombres @,,(0).



Théoréme 2. La série formelle q(t) associée comme ci—dessus a s(z) = 3 22, sjz? vérifie
q(t) = ts(q(t)).
En posant p(xz) = z/s(z)), on retrouve deux séries p(z), ¢(x) telles que

q(t) ts(q(t)) _
s(a(t) — s(a(t)

Avec ces nouvelles notations, le théoréme 1 s’écrit comme suit.

p(q(t)) =

Théoréme 3. Si q(t) = ts(q(t)), alors

k+1 Z tn " kfl] (S(.%')n)
n=k+1
pour tout k € {0,1,2, ...} et, en particulier

=3 Sl (s,

n=1

3

Nous offrons au chapitre 7 une autre preuve des théorémes 2 et 3 (bien que ce dernier ne
soit rien d’autre qu'une reformulation du théoréme 1). Cette preuve, de nature combinatoire,
n’est pas nouvelle. Elle consiste & interpréter les mots de Y.ukasiewicz comme des arbres plans
enracinés.

3 La transformée inverse

Le but de ce chapitre est de décrire quelques aspects du groupe multiplicatif constitué des séries
formelles du type > .2 ;spa™ avec so # 0. Rappelons qu’une telle série définit une suite de
polynomes P;(z) = sq, ..., Pu(x) = [Px—1(x)s(x)]k, ..., ot Px(z) est le développement limité
a lordre k — 1 de la série formelle P;_;(x)s(z). Introduisons maintenant les polynémes miroir
Qn(x) = 2" 'P,(1/z) et désignons par q(t) = > o0 ; Q,(0)t" la série génératrice associée & la
suite des évaluations Q1(0), @2(0), ....

Le résultat suivant exprime la série génératrice compléte Q(z) = > 2 | Q,(z)t" en fonction
de ¢(t):

Théoréme 4. On a

q(t)
Z Qn(@)t" = 1= zq(t)

Ce théoréme sera démontré au chapitre 7. La preuve consiste & identifier les monoémes con-
tribuant aux coefficients de ¢(t) avec les mots de Lukasiewicz.

Nous décrivons maintenant une interprétation en termes de “transformée inverse continue”
de cette égalité. Cette interprétation suggére une jolie propriété des transformées de Hankel
(décalées) de la série Q1(x), Q2(x), ... qui sera énoncée au chapitre 6 et qui constitue le résultat
principal dans cet article.



Soit a(t) = ag+ ait + ast® + azt® + ast* + - - - une série génératrice. Introduisons 'application
Ia(t)] = a(t)/(1 + ta(t)) appellée la transformée inverse puisque (1 + ta(t))(1 — tI[a(t)]) = 1.
Par itération, on obtient I*[a(t)] = a(t)/(1 + ata(t)) ce qui permet d’interpoler les itérées

(e 9]

de la transformée inverse. Le k—iéme terme I (z) de la suite
Io(z) = ag, I1(z) = ay — @iz, Ir(x) = ag — 2apa1x + ajz?,

est alors un polynome de degré k en .
Posons a(t) = ﬂ = 13°° , Qn(0)t". Le théoréme 4 s’énonce aussi sous la forme

[a@] _ 1 qlt
! [T}_Zl—i-xq ZQ"

Autrement dit, on a t I*[t~1Q(0)] = Q(~=).

Remarque.  On aurait tout aussi bien pu définir la transformée de Hankel de a(t) par la
formule Ia(t)] = a(t)/(1 — ta(t)) = —I[—al(t)].

Remarque. Un phénomeéne similaire d’interpolation continue se produit également pour
la composition itérée f°¥ = fo fo---o f d’une série formelle f(t) = t + >, ait! dont le
développement & l’ordre 1 est I'identité; ceci se généralise d’ailleurs facilement & un d—uplet de
séries formelles F(t1, ...,tq) = (fi(t1, ... ta), .., fa(t1, ..., tq)). Il existe alors une suite

Cl( ) =1, Co(x) = asw, C3(x) = (a3(x — 1) + a3)x,
Cy(z) = (((2z — 3)a3 + basasz)(z — 1) + 2a4)x/2, ...

avec Cp(z) un polynome de degré < n — 1 en x tel que fo%(t) = > 32, Cj(x)t!
Pour le démontrer on peut considérer la différence finie

Cn(k+ 1) — C,(k) = coefficient de t" dans Z a; Z Cj(k)t
=2 j=1

qui est un polynoéme de degré au plus n — 2 en k (par récurrence sur n). On peut également le
déduire en utilisant un isomorphisme de monoide entre le monoide des séries formelles sans terme
constant (avec la composition des séries comme produit) et un groupe de matrices triangulaires
supérieures. Un tel isomorphisme peut étre donné par

a1 012 Q13 ai4

> " 0 aso a3 asy
Zan.%' 0 0 as33 Q34

ou Y 7%y a2 = (30, anx™)" ; voir par exemple le théoréme 1.7a dans [10].



4 Exemples

Revenons aux exemples (i) et (ii) du chapitre 2.

Exemple trivial. Considérons la série formelle s définie par le polyndéme 1 + x. On vérifie
facilement que P,(z) = Qn(z) = (1+2)" et q(t) = 3,0, t" = 5. Les théorémes 1, 2 et 3 se
réduisent alors & des identités triviales et au théoréme binomial, & savoir

t o t/(1—1) t/(1—1t)

—tta) 1-at/0—0 1T+t/0-1 '

et
k+1 o0
t S k+1 m tn+1 .
1—t n k +1
n=k+1
La transformée inverse de ¢(t)/t est donnée par I <@) = % =1 et nous avons
q(t) 1/(1—1) .- 1 _ 1y
il A - #H1 — — - -
( t > T+at/(1—t) 1-t(1—2) =2 (t1-2) 7 2 Qn
n=1 n=1
en accord avec les résultats du chapitre 3.
L’exemple de ’exponentielle. Pour la série s(z) =e” =3 77 (&7 "~ définissant ’exponentielle,
nous avons N ‘
1 . (nx)?
e =1 S5

En effet, cette formule donne bien P; = 1 et le calcul

IZ] o(n 7) u(k Il
= ﬁ(n(n—i—l) —nk(n 4+ 1)k 1)

n k
- n+1(n+1_k)%

du coefficient z¥,0 < k < n dans P,(z)e® la montre par récurrence. Nous obtenons ainsi

'71

Z” Mo

et
(o] o
" 1 (nt)"
n—2 _ -
ZQn "= T T
n=1 n=1

en accord avec le théoréme 3. Le théoréme 4 implique les égalités

n—1
(k + 1)(n — k)nn—Z—k — ]C E <n — k>mm—1—k‘(n _ m)n—m—l
n—m
m=k

pour tous les entiers n, k tels que n > k > 1. Pour finir, mentionnons la jolie évaluation

R = Qu) = 300 ) ZJ, Z -
7=0



5 Interpolation entre inversion et réversion d’une série formelle

L’anneau C[[z]] des séries formelles est un anneau commutatif local dont 'idéal maximal m =
xC[[z]] est ’ensemble des séries formelles sans terme constant. Notons

U=C[z]] \m=C*"+m

le groupe multiplicatif formé des éléments inversibles de C|[[z]] et SU = 1+m C U le sous-groupe
des séries formelles de coefficient constant 1. Notons

D—m\m? = {3 ol € Cllal]jos # 0}

Jj=1

le groupe non-commutatif des séries formelles pour la composition. On a D = a2l en tant
qu’ensemble et SD = zSU = = + m? peut étre interprété comme le sous-groupe des “difféomor-
phismes locaux formels tangents & ’'identité en 0.

Le but de ce chapitre est de décrire une déformation naturelle continue (qui est holomorphe
pour des séries holomorphes) entre le groupe multiplicatif commutatif SU et le groupe non-
commutatif SD (identifié¢ & SU via la bijection ensembliste A — zA de SU sur SD).

L’action naturelle &+ A = Aoa de o € D sur un élément A € C[[z]] agit par automorphismes
sur U et SU et on peut donc former le produit semi-direct Z = U x D qui est un groupe pour la
loi de composition

(4, 2)(B, ) = (C,7) = (A(Beoa), foa)

oit C' = A(B o a) est le produit de la série A avec la série B o o. L’élément inverse (A4, a)~! de

(A, «) est donné par
1
-1 (D
(4, a) <A ool >

ou la réversion (ou série réciproque) =1 de a € D est définie par I'identité coa!™ = o~ Voa =
z. On a les homomorphismes A — (A, x) et (A, «) — « (avec section oo — (1, «)) provenant
de la suite exacte scindée évidente

0—U —>T=UxD—D—1.

Notons SZ = SU x SD le noyau Ker(¢)) de 'homomorphisme de groupes ¢ : Z — C* x C*
définie par ¢(A, a) = (A(0),a/(0)).
Remarque. (i) Le groupe 7 peut se généraliser facilement en considérant le produit semi-direct
U x D ou U est un groupe de germes de fonctions inversibles au voisinage d’un point P € X
avec X un espace topologique et oli D est un groupe de germes d’homéomorphismes avec point
fixe X. En particulier, on peut, au moins formellement, remplacer le groupe multiplicatif ¢ par
le groupe multiplicatif des séries de Laurent non-nulles.

(ii) Le noyau SZ = Ker(y)) = SU x SD est contractile pour une topologie raisonnable sur
C[[z]] (obtenu par exemple en considérant la convergence coefficient par coefficient). On a donc
m1(Z) = m (C* x C*) = Z? pour le groupe fondamental 71(Z) et on peut considérer I’extension
centrale

0—72 7T —T—1



définissant le revetement universel Z de Z, obtenu en relevant I'extrémité des chemins continus
issus du neutre (1,z) € Z ou, de maniére équivalente, en considérant des relévements réels des
arguments de A(0),a’(0) € C* pour (A,a) € Z.

(iii) Le groupe abstrait Z est isomorphe & un “sous-groupe de Lie” dans les matrices trian-
gulaires inférieures infinies, voir [1].

Pour la description de l'interpolation entre le groupe multiplicatif ¢/ et le groupe non-
commutatif D il faut soit se restreindre au sous-groupe SZ = SU x 8D = Ker(¢)) qu’on pourrait
appeller le groupe d’interpolation spécial soit travailler dans un groupe intermédiaire entre 7 et
son revétement universel Z. Nous allons décrire en détail le premier cas. Le deuxiéme cas est
traité briévement dans [1].

Pour 7 € C, introduisons le sous-ensemble

SG(r) = {(A,zAT) | A€ SU =1+ 2Cl[z]]} € ST

ol 'on choisit 'unique détermination “continue” du logarithme des séries formelles de maniére &
avoir A7 = e71984 ¢ Sy = 1 + 2C[[x]] pour A € SU.

Proposition 1. (i) L’ensemble SG(T) est un sous-groupe pour tout T € C.
(ii) Le groupe SG(0) est isomorphe au groupe commutatif SU.
(#ii) Pour 7 # 0 les groupes SG(7) sont tous isomorphes au groupe non-commutatif SD.

Un isomorphisme est donné par oo — <(%)1/T ) a) € SG(1) pour a € SD.

Corollaire 1. Pour 7 € [0,1], Uapplication

A S
Ao (zAT)(-D

est une déformation continue reliant [’inverse multiplz’catif% de A € SU a la série réciproque

TG = (zA)Y de (zA) € SD.
Idée de la preuve de la proposition 1 L’assertion (ii) est évidente.
Un petit calcul montre que 'application (A, «) — (A (%))‘,a) est un automorphisme de

SZ. En considérant A = 771, on démontre facilement ’assertion (iii) .
L’assertion (i) est maintenant triviale. O

Remarque. Une deuxiéme bijection naturelle entre I/ et D est donnée par o € D —— o/ € U.

L’application
1

Ao (fo AT) v

T

(provenant de I'automorphisme (A, a) — (A(e/)*, @) de ST) permet d’interpoler entre % et la

série réciproque
(-1 1
([ =] )
0 0Ao (fO A)

de [, A € SD associée & cette deuxiéme bijection, voir [1].



6 La transformée de Hankel

Ce chapitre contient notre résultat principal, suggéré par le théoréme 4 du chapitre 3.

La n—iéme matrice de Hankel H(n) d’une suite s = (sq, s1, S2, ... ) est la matrice symétrique
dont les coefficients h;;, 0 < 4,57 < n ne dépendent que de la somme ¢ + j des indices et
sont donnés par h; j; = s;+;. La matrice H(n) dépend donc seulement de sg, 51, ..., s2,—2. La
transformée de Hankel de s est alors définie comme étant la suite

det(H (1)) = so, det(H(2)) = sgs2 — 57, det(H(3)), ...

des déterminants des matrices de Hankel d’ordre 1,2,3, ... associées & s.

Une formule de Hadamard (voir |7], page 30, voir aussi [14]) implique que deux suites a
et b = I(a) dont les séries génératrices sont reliées par la transformation inverse > ° ; b,t"
O gant™) /(1 +t>°07 jant™), ont méme transformée de Hankel. Comme les polynomes I, (x
interpolent les itérées de la transformée inverse, la transformée de Hankel de la suite I*(a)
(Io(x), I1i(z), I2(x), ...) ne dépend pas de z.

Pour un entier £ > 0, définissons la k—iéme transformée de Hankel de s = (sq, s1, ... ) comme
la suite (dg,, = det(Hk(n)))n:l,z... = (Sk» SkSkt2 — Spa1s ---) 00 Hi(n) = (Sitj4k)o<ij<n €st la
matrice de Hankel de taille n X n associée a la suite décalée si, Sg+1, Sky2, - - - -

~—

Théoréme 5. (i) La suite

<de‘0 ((Ii+j+k($))0§i7j<n))n:1 vs

de la k—iéme transformée de Hankel de I*(a) = (Io(x), I1(z), ...) ne contient que des polyndémes
de degré < k en x.
(ii) Le déterminant
det((Qi+i+;(%))o<ij<n)

pour Q1, Qa, ... associés a s(x) = so + 512 + 522> + ... comme dans le chapitre 3 ne dépend
pas de s1.

Remarque. L’identité de condensation de Dodgson (cf. [12]) montre que les déterminants dy, ,,
vérifient 1’égalité

dj—1m41 et 11 = A1, dis1n — di
ot I'on a posé di o = 1 pour tout k. Cette identité est parfois utile pour calculer récursivement

la transformée de Hankel (doy),_,, & partir de dy 1 = sp.

7 Mots de Lukasiewicz et réversion des séries (Lagrange)

Ce chapitre est dévolu & I’étude des mots de Lukasiewicz. Les propriétés de ces mots sont ensuite
exploitées pour démontrer les théorémes 2, 3 et 4.
Nous commencons par démontrer le théoréme 4 qui équivaut & 'identité

2437 Qul@)™ = g(t)*+ .
n=1
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Soit -
s(z) =so+ Z s
j=1

une série formelle dont les coefficients sg, s1, So,... sont des lettres qui ne commutent qu’avec la
variable z. Comme au début, nous associons & s(z) la suite des polynémes

Pi(z) = s, Po(2) = s3 + sos1x, P3(x) = s5 + (s851 + 505150)7 + (282 + s0s7)2?, . ..
définie de facon récursive par Py (z) = | Py_1(x)s(z)]r. Notons [z¥]P,(z) le coefficient de 2* du
polynéme P,(z). On a une bijection entre les monémes de [z*]P,(z) et les chemins sur N x N
de (0,0) a (n, k) ne traversant pas la diagonale y = z et qui n’utilisent que des pas (1,0), (0,1)
orientés vers le nord ou vers l'est. En effet, associons & s;, 54,5, . . . 5;,, le chemin

i1 % (0,1) + (1,0) + iz x (0,1) 4 (1,0) 415 x (0,1) + (1,0) + - + iy x (0,1) + (1,0)

(on a toujours i; = 0). En particulier, le nombre de tels mondmes contribuant au coefficient
[z~ P,(z) de plus haut degré est donné par le nombre de Catalan C,_; = (2(7?__11))%. Posons
Qn(z) = 2" 1P,(1/z) ot P,(r) est obtenu en lisant & I’envers les mondémes contribuant aux

coefficients 20, 2!, ..., 2"~ ! de P,(z) :
Q1(x) =s09, Q2(x) = s%x + 5180, Q3(z) = s%x2 -+ (slsg + sps180)x + 3238 + 5250, ...
Munissons la lettre s; du poids w(s;) =i — 1 et posons
W(S4, SigSig - - - Sip, ) = W(siy) +w(Siy) + w(siz) + -+ +w(ss,)

pour un mot S;, Si,Sis - - . Si,, de longueur n. Représentons un mot s;, ...s;, apparaissant dans

Qn(x) par le chemin de sommets

n

n
(0,0), (1,85, — 1), (2,84 + 8iy —2), ..., (n,—m + Zz]) = (n,w(siy .- 8i,))
j=1
obtenu en concaténant les pas (1,w(s;)) = (1,7 — 1) associés & s;,, Siy, - - -, Si,-
* —o—o

Le chemin associé au mot sps150505350 (dans Pg(z)) et & son miroir s9s3s0s05150 (dans Qg(x)).

Les mots qui apparaissent dans Q,,(0) = [2°]Q,(x) sont les mots de Fukasiewicz (voir [3]).
Leur série génératrice est donnée par ¢(t) = > o2, Qn(0)t". Remarquons que les mots de
Lukasiewicz de @Q,,+1(0) sont en bijection avec les parenthésages de longueur 2n comportant
n parenthéses ouvrantes et fermantes. Pour le voir on commence par supprimer la derniére lettre
so d’un mot de Lukasiewicz et on remplace ensuite une lettre s, par le mot de longueur k + 1
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consistant en k parenthéses ouvrantes “((... ((” suivi d’une parenthése fermante “)”. Pour le mot
de Lukasiewicz s95051525250S0S0 on obtient ainsi

Lemme 1. Le coefficient [2*]Q,(x) de Q,(x) est la somme de tous les mots s;,s;,...s;, de

longueur n et de poids w (s, SiySiy - - 8i,) = iy i —n = —(k+1) tels que w(si, si, iy - .- Si),) >

—k pour tout h < n.

Preuve. Le coefficient [2*]P,(x) est constitué de tous les mots s;, ...s;,, > -1t =k, qui
vérifient les inégalités zz-:l ij <l—1pourl=1,...,n.
Le miroir s;, ... s;, de poids w(si, ...s;;) = 7_(ij —1) = —(n—k) d'un tel mot contribue

au coefficient [z"~17*]Q,,(x). Nous avons

n

n—h
w(Sin---Sz‘nH,h):—h%— Z ij:—h+k—2ij.
j=n+1-—h j=1

En utilisant la majoration Z;‘:—f i; < n — h — 1 rencontrée ci-dessus, nous avons pour h < n
w(sin"'sin+1—h) 2 _h+k_ (n_ 1_h) > _(n_k) D

Preuve du théoréme 4. Soit s;, ...s;, un mot de longueur n et de poids w(s;, ...$;,) =
> j—1i; —n = —(k+1) contribuant au coefficient [2%]Qy () de Q. Un tel mot s’écrit de maniére
unique sous la forme s;, ...s;, = lo...l; ou les mots Iy, ..., [; sont des mots de Lukasiewicz
en sg, $1, S2, ... (voir la remarque ci-dessous pour un exemple). En effet, soit a > 1 le plus
petit indice tel que w(s;, ...s;,) = —1. Le mot Iy = s;, ...s;, satisfait alors les conditions du
lemme 1 avec k = 0. C’est donc un mot de Lukasiewicz. De plus, c’est le seul sous-mot initial
de s;, ...s;, qui soit de Lukasiewicz car un sous-mot initial de la forme s;, ...s;, avec b < a est
de poids w(s;, ...s;,) > 0. D’autre part, un tel mot avec b > a ne peut étre a la fois de poids
—1 et vérifier les conditions du lemme 1.

Sik =0, le lemme 1 implique que a = n. Pour k¥ > 0, on a a < n et le complément s;, ., ... s;,
est un mot de poids —k vérifiant de nouveau les conditions du lemme 1. Par récurrence sur k, on
aalors s;, ., ...8;, =1l1...lpavecly, ..., l; des mots de Lukasiewicz. Ceci montre que ’ensemble
des mots formant le coefficient [2*]Q,, () est I’ensemble des mots de longueur n en sg, 51, ...
obtenus en concaténant (k1) mots de Fukasiewicz. On a donc I’égalité [2¥]Q,,(z) = [t"]q(t) .
O

Remarque. La factorisation s;, ...s;, = lp...l; d’'un mot de poids —(k + 1) satisfaisant
les conditions du lemme 1 en (k + 1) mots de Lukasiewicz est bien visible sur la représenta-
tion graphique introduite ci-dessus. Ainsi, pour le mot sy$380S08180 contribuant au coefficient
2P~ (043+0+0+140) — 4 de Qg (), on obtient Iy = sq et I; = s350505150-
Preuve du théoréme 2. Soit s;, 5,5, . ..s;, un mot de Lukasiewicz. Si n = 1, alors le mot est
égal & sg. Sin > 2, alors iy > 1 et 54,8, ...5;, est un mondme de [z 1]Q,,_1(z). 1l se factorise
donc en iy facteurs de Lukasiewicz.

Ceci suggére de considérer la bijection suivante entre les mots de Y.ukasiewicz et les arbres
plans enracinés: Au mot de Lukasiewicz s; 5;,5;;...5;, on fait correspondre l’arbre plan de

n
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n sommets muni d’une racine de degré ;. Les ¢; fils de la racine correspondent récursivement
aux ¢; facteurs de Lukasiewicz du mot s;,si,...s;,. Cette bijection se traduit par l'identité
q(t) = ts(q(t)) pour les séries génératrices. O

Le mot sgsgs15250505350, rendu cyclique.

Preuve du théoréme 3. Le coefficient [z"*~1]s(x)™ compte tous les mots s;,5;,...5;, de
longueur n qui sont de poids w(s;, i, ... 8,) = > i_1i; —n=(n—k—1)—n=—(k+1). Ainsi
le mot s9s0515250505350 apparaissant dans [2%]s(x)® est de longueur 8 et de poids —2 et illustre
le cas particulier n = 8 et K = 1. Associons & un tel mot la suite n—périodique (bi-infinie) de
lettres ...s;_,8i_18inSi;Siy - - SipSiny1Sinis -+ aV€C S; ., = s;, pour tout h € Z. Regardons la
représentation graphique, c’est-a-dire la suite infinie de points

SRR (_27 _w(siflsio)% (_17 _w(sio))v (07 0)7 (17 w(sil))7 (27 w(sil Si2))7 )
(n,w(sisiy ... 8i,)) = (n,—(k+ 1)), (n+ L w(sisiy...8,,,))=0+1,—(k+1)+w(s;)),
(n+2,w(Si; Sig - - - Sinyn)) = (N +2,—(k + 1) + w(s4;,54,)), - -

La suite des produits scalaires de ces points avec le vecteur (k+1,n) est périodique et la longueur
de la période est un diviseur de n. Supposons que la valeur minimale de ces produits scalaires est
prise sur le point (h,w(s;, si, ...si,)) avec h € {1,2, ..., n}. Par ailleurs, h est unique (modulo
n) si k = 0. De toute fagon, le mot s;,,,Si, ., - .- Si,Si Siy - - - Si, apparait dans [2]Q,(z). On
appelle ce mot un réarrangement cyclique de s;, s;, . .. s;,. D’aprés la démonstration du théoréme
1, ce réarrangement cyclique a une factorisation canonique en k4 1 mots de f.ukasiewicz. Parmi
les n réarrangements cycliques possibles de s;,S;, ... s;, il y en a donc exactement (k + 1) qui
apparaissent dans [v*]Q,(z) : les (k+ 1) réarrangements cycliques des facteurs de Lukasiewicz de
Sips1Sings - - - SinSii Siy - - - Siy - En effet, si Pon choisit un réarrangement cyclique dont la premiere
lettre n’est pas la premiére lettre d'un facteur de Fukasiewicz, alors 'inégalité nécessaire pour
I’appartenance a [2¥]Q, () n’est pas satisfaite pour le mot qui va jusqu’a la derniére lettre du
facteur précédent.

Ainsi, pour notre exemple s9s0515250505350 représenté par la figure ci-dessus, les facteurs de
Fukasiewicz du mot cyclique bi-infini sont délimités par les intersections du graphe représentant
ce mot avec la droite 4y = —6 — x, représentée en pointillé. Ses deux facteurs de Lukasiewicz sont
donc s1s250So et s3spsgsg. Parmi les huit réarrangement circulaire du mot sgsgsis250505350, il
n’y a donc que $152505053505050 €t $350505051525050 qui apparaissent dans [21]Qg(z).
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Dans le cas général, on obtient ainsi une bijection

mots en
S0y Sy + - de
longueur n et de
poids —(k + 1)

(K ,mot) — (0, luk),

produits de (kK + 1) mots
{1,...,n} x < de Lukasiewicz de longueur
totale n en sgp, s1,...

{1, ..., k+1} x

ot luk est le réarrangement cyclique de mot qui appartient a [2*]Q,,(x) et qui fait apparaitre la
premiére lettre de mot dans le k’-iéme facteur de Lukasiewicz de luk (n’ correspond a la nouvelle
place de la premiére lettre de mot). Cette bijection implique 1’égalité

(k+1) 2" s(@)" =n ") O

Remarque. Dans le contexte d’une variable ¢ ne commutant pas avec les variables s;, il
faudrait introduire la variable ¢ devant chaque lettre, i.e.

q(t) = tso+ tsitso + tso(tsg)® + (ts1)’tsg +
t83(t80)3 + thtSl(t80)2 + tsotsgtsitsg + tSltSQ(t80)2 + (t81)3t50 + -

La derniére lettre d’un mot de Lukasiewicz s;, s;,8i5 - - . S, est toujours la lettre s (i.e. i, = 0).
Comme w(s1) = 0, le mot en les lettres sg, s2, s3, ... obtenu par suppression de toutes les lettres
s1 dans un mot de Lukasiewicz est encore un mot de Lukasiewicz. Appelons-le mot réduit de
Lukasiewicz et notons gs,—o(t) la série génératrice des mots réduits de Lukasiewicz. Nous avons
alors le résultat suivant, utile au chapitre 8.

Proposition 2. On a l’égalité entre séries génératrices q(t) = qs,—o((1 —ts1)™1 t).

Preuve. Un mot de Lukasiewicz | = s;, 5,545 - .. S5, qui ne contient pas la lettre s1, est le mot
réduit de Lukasiewicz pour tous les mots de Lukasiewicz de la forme s’flsilslf2 Sig s]f?’ Sig - - - s’f“ Sin
avec ki, ko, k3, ..., k, €{0,1,2, ... }.

Le mot réduit [ intervient avec une contribution de ¢s;,ts;,¢s;, . . . ts;, dans la série génératrice
ds,=0(t) des mots réduits. L’ensemble de tous les mots de Lukasiewicz dont [ est le mot réduit
contribue donc avec (1 —tsq) " ts;, (1 —ts1) tts;, ... (1 —ts1) ts;, ala série génératrice ¢(t) de
tous les mots de Lukasiewicz. O

7.1 Digression: Arbres binaires réguliers, arbres plans enracinés et mots de
Lukasiewicz

Un arbre binaire régulier est un arbre plan enraciné (modulo la relation d’équivalence évidente)
dont tous les sommets ont zéro ou deux enfants. Notons B, 'ensemble des arbres binaires
réguliers avec n + 1 feuilles (et 2n + 1 sommets, 2n arétes) et 7,, 'ensemble des arbres plans
enracinés ayant n + 1 sommets (et n arétes). Les deux ensembles B, 7,, ont méme cardinalité,
donnée par le n—iéme nombre de Catalan (*")/(n+1) (cf. eg. I'Exercice 6.19 d,e dans [18]). Une
bijection entre ces deux ensembles finis peut étre décrite comme suit: Un arbre binaire régulier
B € B,, posséde exactement n arétes gauches (orientées NO) et n arétes droites (orientées NE).
En contractant toutes les arétes gauches (respectivement droites) de B on obtient un arbre
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planaire enraciné Cr,(B) (respectivement Cr(B)) dans 7,, et on vérifie facilement que les deux
applications Cr,Cgr : B, — 7, sont bijectives.

C_. (B) B Cr (B)

Les deux arbres Cr(B),Cr(B) associés a un arbre binaire B.

Désignons par X ’arbre “miroir” obtenu en réflechissant un arbre X € B, ou X € 7, par
rapport & une droite verticale. On montre facilement 'identité Cr(B) = Cp(B). En conjugant
Iinvolution 7 +— T sur 7,, par les bijections Cg, Cr, on obtient ainsi deux involutions tz(B) =
Cr'(Cr(B)) = C; (Cr(B)) et v (B) = C; 1 (CL(B)) = Cz*(CL(B)) sur B,. Une construction
analgoue, a savoir ir = Cr(CR'(T)) et i, = C(C;*(T)) définit deux involutions ig, iy, sur
7, 1l serait intéressant de comprendre les orbites dans B,, (respectivement 7,,) sous ’action du
groupe diédral de générateurs tp, 1, (respectivement ig,ir). En particulier, les points fixes de (g
(ou les points fixes de 1) sont en bijection avec les arbres “symétriques” de 7,, qui satisfont 7' = T
(au nombre de (Ln7}2 J)) tandis que les points fixes de ir (ou les points fixes de i) correspondent
bijectivement aux arbres symétriques binaires de 5,,. Le nombre d’arbres symétriques binaires
réguliers est donné par le nombre de Catalan (QHT) /(m+1) pour n = 2m + 1 impair. Pour n > 0
pair de tels arbres n’existent pas.

Pour terminer cette digression, mentionnons encore le fait (déja rencontré dans la preuve du
théoréme 2) que la suite i1, ..., i,4+1 des valences des n+ 1 sommets rencontrés pour la premiére
fois lorsqu’on contourne un arbre 7' € 7, en partant de sa racine définit bijectivement un mot
de Lukasiewicz s;, . de longueur n + 1.

.. Sin+1

8 Déterminants de Hankel

Le but de ce chapitre est la preuve du théoréme 5. Pour cela, nous introduisons les mots de
Motzkin et rappelons quelques-unes de leurs propriétés. Des études plus complétes sont contenues
par exemple dans [5] et [19], voir aussi [20].

Un chemin de Motzkin de longueur n est un chemin dans le premier quadrant =,y > 0 qui
relie l'origine (0,0) au point (n,0) en utilisant n pas de la forme (1,—1), (1,0) ou (1,1).
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Un chemin de Motzkin de longueur 21 et ses 6 facteurs premiers.

Notons I'(n) I’ensemble des chemins de Motzkin de longueur n. Chaque v € I'(n) est affecté
d’un poids w(y) défini comme le produit des poids des différents arcs qui le constituent : un
palier ((z,h), (i+1,h)) situé a la hauteur h est affecté du poids p(h); une descente ((i,h+1), (i +
1,h)) de la hauteur h+1 & la hauteur h est affecté du poids ¢(h); enfin, chaque montée ((i, h), (i+
1, h+1)) est affecté du poids 1. Le poids w(7y) est ainsi un mondéme en les variables (commutatives)
p(0), p(1), p(2), ...et q(0), q(1), ¢(2), ... et on peut former la série génératrice

c(u) = 1T+357u" > ermw()
1+ p(0)u + (p(0)* + ¢(0))u” + (p(0)* + 2p(0)(0) + p(1)q(0))u® + - --

des chemins de Motzkin. Le chemin de Motzkin de longueur 21 représenté ci-dessus contribue
ainsi avec

p(0) 11 ¢(1 )p(l) 1 p(2) 1¢(2) q(1) q(0) 1 ¢(0) p(0) p(0) 11 ¢(1) 1 ¢(1) q(0)
= p(0)°*p(1)p(2)q(0)q(1)*q(2)

au coefficient [u?!]c(u).

Un chemin de Motzkin est premier s’il n'intersecte la droite horizontale discréte Z x {0}
qu’en ses extrémités (0,0) et (n,0). Il est clair que tout chemin de Motzkin premier est soit un
palier & la hauteur 0 (valué p(0)), soit commence avec une montée de la hauteur 0 & la hauteur 1,
continue avec un chemin de Motzkin (éventuellement vide) allant de la hauteur 1 & la hauteur 1
et se termine avec une descente de la hauteur 1 & la hauteur 0 (valuée ¢(0)). De plus, tout chemin
de Motzkin non vide se factorise de maniére unique en produit de chemins de Motzkin premiers
(il suffit de considérer les sommets situés a la hauteur 0). En itérant, on obtient immédiatement
le théoréme suivant (voir [5]).

Théoréme 6. Soit

c(u) :1+chu —1+Zu Z (7)

n=l y€el'(n)
la fonction génératrice des chemins de Motzkin. Alors
1
c(u) =
q(0)u?
1—p(0)u — 2
q(Du
1—p(2)u— g

On appelle le développement du théoréme précédent fraction continue de Jacobi, ou encore
J-fraction. 11 permet d’exprimer les coefficients ¢,, d'une série formelle a ’aide de chemins (de
Motzkin). En fait, on a la généralisation suivante. Soit

d(u) = do+ Y dou = do — dy cu)
= 1—p(0)u —
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et soit D = (diyj)o<ij<oo la matrice de Hankel (infinie) associée & la suite do, di, da, ... de
série génératrice d(u). Appelons un mineur de D un déterminant de Hankel. Un tel mineur sera
noté D(%g%ig:), en désignant par 0 < g < a1 < - < ap et 0 < By < 1 < -+ < B les
indices respectifs des lignes et colonnes du mineur extrait. Le coefficient m; ; de la sous-matrice
associée a D(%g%ig:) est donc donné par m; j = dq,yp; pour 0 < i,j < k. Regardons, pour
0 < i <k, les points A; = (—y,0) et B; = (;,0). La somme des valuations (relativement aux
variables p(0), p(1), p(2),... et ¢(0), ¢(1), ¢(2), ...) des chemins de Motzkin allant de A; & B;
est Ca,4;, le terme (i,7) du déterminant C(%g%ig:), ot C' = (¢i4j)o<i j<oo €St la matrice de
Hankel associée a la série génératrice ¢(u). On peut donc énoncer le théoréme suivant (voir [19],

chapitres IV et V, [20] ou [6]).

Théoréme 7. On a

Qp, &1, ..., O k+1 g, &1, ..., O
D = d;7C
<B0? ﬁla >ﬁk> 0 <B05 ﬁla >ﬁk>
= 4t > (=)™ w()wn) - wl),
(05705 V15 5 Vi)

ot la sommation est étendue aux paires formées par une permutation o € Sigy1 et une confi-
guration (Yo, Y1, ---, V) de k + 1 chemins de Motzkin sans sommets communs avec y; reliant
Ai @ By pour tout 0 <i < k.

Remarque. Dans le théoréme précédent, deux chemins de Motzkin 7; et v; peuvent s’inter-
secter en des points de la forme Z2 + (1, 1) (de tels points ne sont pas considérés comme étant
des sommets).

Preuve. En omettant la condition “sans sommets communs”, on voit que la somme est C (%g’ gi g:)
) 3y

par définition du déterminant. Cependant, si deux chemins ~; # ~; ont un sommet commun,
alors on peut continuer, & partir du premier sommet commun rencontré, le premier chemin sur le
second et le second sur le premier. Il est évident que les contributions de ces deux configurations
s’annulent. O

Le théoréme précédent permet de calculer le déterminant de certaines matrices. On dénombre
pour cela des chemins de Motzkin convenablement pondérés.

Théoréme 8. On a

g, 1, ..., & g, A1,y ..., @
degp(O)D< 0 L k> = degp(O)C< 0 ! k) < (Qk—k)+(ﬁk—k)

/307/317"'7ﬁk ﬁ07/317"'7ﬁk
et
0 ap+Bs—2k D(ao, Aly oeny Oék) _ korl 0 a+8k—2k C(Oéo, A1y vy @k>
[p( ) ] /307/317"'7/8]6 0 [p( ) ] ﬁ07ﬁ17---7ﬁk
_ dkHB(aO’ (23 RRCI akl)
0 60’ ﬁl, ey ﬁk—l
avec B = (bitj)o<ij<oo €t
) on 9(0)
bo + Z bou" = q(l)u2
n=1 1—p(l)u —
q(2)u?
1—p(2)u—
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En particulier,

0.1, ... k o
D(o 1, ... k) = di1q(0)*q(1)" 1 q(2)" 2 - q(k — 2)%q(k - 1)

ne dépend pas de p(0), p(1), p(2), ...

Prejuve. Pour que le degré deg,) D(%g%ig:) = deg,(g) C(%g%ig:) en la variable p(0)
devienne maximal, il faut (et il suffit) que les configurations (7o, 71, ..., &) satisfassent aux
conditions suivantes : Le chemin vy relie Ay & By et reste toujours a la hauteur 0 (ceci donne une
contribution de p(0)%720). Le chemin +; commencant & A; = (—a;,0), i € {1,2, ..., k}, reste &
la hauteur 0 jusqu'a (—«;—1 — 1,0) et monte & (—ca;_1,1) ensuite (ceci donne une contribution
de p(0)®i~*i-1~1) Similairement, le chemin qui se termine & B; = (3;,0), i € {1,2, ..., k}, de-
scend de (5;—1,1) vers (8;—1+1,0) et reste ensuite jusqu’a B; a la hauteur 0 (ceci donne une contri-
bution de ¢(0)p(0)*~F%-1=1) Ce qui n’a pas encore été considéré n’est rien d’autre qu’une confi-
guration de k chemins de Motzkin (translatés par le vecteur (0,1)) deux & deux disjoints qui re-
lient les sommets (—ag,1), (—a1,1), ..., (—ag_1,1) aux sommets (5o, 1), (B1,1), ..., (Bk—1,1).
]

Preuve de l’assertion (i) du théoréme 5. Soit a(u) = ag+aju+asu® +azud +agu* +--- une

série génératrice. Comme les termes de la suite (det ((Il-+j+k(x))0<,~7j<n)) dépendent
- n=1,2,3,...

polynomialement de z et des coefficients ag, a1, ..., il suffit d’étudier le cas générique ag # 0.
Considérons la transformée inverse continue I*[a(u)] = a(u)/(1 + zua(u)). On a alors

ap ao
€T — —
Ila(u)] = — T+ aguz " . ” ;
a(u) 1-— <% — CLOIE) u — <u—2 — ao_u — a(u)uQ) u
et on remarque que
1 2 2 —_9 3
al agp apaz — ay agpas apaiaz + ay
— - = 5 = : + 3 uU—+...
u?  apu  alu)u ag ag

n’a pas de pole en 0. On cherche & calculer le degré en x de D( K kg_ll 2:_11_1) ou D est comme

ci-dessus. Le théoréme 8 montre que ce degréest < (n—1)—(n—1)+k+n—-1—(n—-1)=k
ce qui prouve 'assertion (i) du théoréme 5. O
Remarque. Soit A, la matrice de Hankel associée a la série I*[a(u)]. Le théoréme 8 montre
Pegaliteé

I:xak+5k72k]Ax <OZO’ al, ceey O[k;) _ ag+1(_a0)ak+ﬁk2k2<0[0, al, ey O[k_l)
BO?ﬁla"'aﬁk B(]aﬁla"'aﬁk—l

ou A est la matrice de Hankel associée a la série - — % - a(zg’ug. L’identité

0,1, ..., k\ 0,1,..., k
Al‘(o,l, I<:> B Ax:°<0,1, I<:>

est d’ailleurs une illustration de la derniére partie du théoréme 8.
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Preuve de l’assertion (ii) du théoréme 5. En appliquant D’assertion (i) du théoréme 5
a lidentité I7[25°°°, Q,(0)t"] = 137 | Qu(—2)t", nous pouvons supposer z = 0. On a
maintenant le développement

Gs;=0(u) = sou+ sdsou’ + 5853u4 + (8354 + 25353 u” 4 - -
u
= 50 5
0

| — p(0)u — q(0)u i
) q(2)u’

—p(2)u -

avec p(0) = 0, q(0) = sos2, p(1) = 2222, ¢(1) = sps2 + Si’? - ﬁ, ... La proposition 2 du

chapitre 7 implique donc

( ) u

u) = —

9 4s1=0 1—s1u
et nous avons

' <1 B 51u> ) 801 — (s1+p(0)u — 9(0)u”
1-— (81 —|—p(1))u -

1-— (31 +p(2))u — a(2)u?

L’assertion (ii) découle maintenant de la derniére partie du théoréme 8. g

Remarque. L’identité

o0
t \"_ 3 ko ktion ket
1—tx n—1
k=n—1
montre qu’on a
1 t k k—n 4k
a = an T t
(1 —at) (1 —xt) % <n> "
pour a(t) = Y °  ant™. La suite formée des coefficients by, = Zﬁ:o (5) anx* " est la transformée
binomiale (de paramétre z) de la suite a = (ag, a1, ...). Il découle de la preuve ci-dessus que

deux suites reliées par une transformation binomiale possédent la méme transformée de Hankel.

Les auteurs remercient Pierre de la Harpe et Frédéric Chapoton pour des remarques et dis-
cussions intéressantes ainsi que le Fonds National Suisse de la Rechercher Scientifique pour un
un soutien financier.

BIBLIOGRAPHIE
[1] R. Bacher, Sur le groupe d’interpolation, arXiv : math.CO/0609736.

19



[2] Bromwich, An introduction to the theory of infinite series (Second edition revised with the
assistance of T. M. Macrobert), St Martin’s Press; Macmillan (1959).

[3] R. Cori, Words and Trees, Chapitre 11 dans le livre [14].

[4] A. Dvoretzky et Th. Motzkin, A problem on arrangements, Duke Math. J., 14 (1947),
305-313.

[5] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math., 32 (1980), 125-
161.

[6] S. Fomin, A. Zelevinsky, Total positivity: Tests and parametrizations, Math. Intell. 22, No.
1 (2000), 23-33.

[7] J. Gilewicz, Approzimants de Padé, Lecture Notes in Mathematics, 667, Springer (1978).
[8] I.P. Goulden, J.M. Jackson, Combinatorial enumeration, John Wiley Sons Ltd (1983).
[9] E. Goursat, Cours d’Analyse, Tome II, 7-iéme éd, Gauthiers-Villars (1949).

[10] P. Henrici, Applied and computational complex analysis, Volume I. Wiley Classics Library.
New York etc: John Wiley Sons Ltd (1988).

[11] P. Henrici, Die Lagrange-Biirmannsche Formel bei formalen Potenzreihen, Jahresber.
Deutsch. Math.-Verein. 86 no. 4 (1984), 115-134.

[12] C. Krattenthaler, Advanced determinant calculus, Sém. Loth. de Comb. 42 (1999), Article
B42q.

[13] Lagrange: Nouvelle méthode pour résoudre des équations littérales par le moyen des séries,
Meém. Acad. Roy. Belles-Lettres de Berlin XXIV (1770) dans Oeuvres de Lagrange, tome
ITT, Gauthiers-Villars (1869), 5-73.

[14] M. Lothaire, Combinatorics on Words, Encyclopedia of Math. and its Applications, 17
(1983).

[15] C. L. Mallows, A. M. Odlyzko, N. J. A. Sloane, Upper bounds for modular forms, lattices,
and codes. J. Algebra 36 (1975), no. 1, 68-76.

[16] G. Polya, G. Szegd, Problems and theorems in analysis I, Springer (1972).

[17] G. N. Raney, Functional composition patterns and power series reversion, Trans. Amer.

Math. Soc., 94 (1960), 441-451.
[18] R. P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press (1999).

[19] G. Viennot, Une théorie combinatoire des polynémes orthogonauz générauz, Notes de con-
férences données a I’Université du Québec a Montréal, 1983.

[20] G. Viennot, A combinatorial theory for general orthogonal polynomials with extensions and
applications. Orthogonal polynomials and applications, (Bar-le-Duc, 1984), Lecture Notes in
Mathematics, 1171, Springer (1985), 139-157.

20



[21] E. T. Whittaker, G. N. Watson, A course of modern analysis (4-th edition), Cambrige
University Press (1978).

Roland Bacher

INSTITUT FOURIER

UMR 5582

BP 74

38402 St MARTIN D’'HERES Cedex (France)
e-mail: Roland.Bacher@ujf-grenoble.fr

Bodo Lass

INSTITUT DESARGUES

UMR 5028

21, Av. Claude Bernard

69622 VILLEURBANNE Cedex (France)
e-mail: lass@math.univ-lyonl.fr

21



