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The independence polynomial of a graph G is the polynomial
∑

I x|I|,
summed over all independent subsets I ⊆ V (G). We show that if G
is clawfree, then there exists a Mehler formula for its independence
polynomial. This was proved for matching polynomials in Lass
(2004) [19] and extends the combinatorial proof of the Mehler
formula found by Foata (1978) [9]. It implies immediately that
all the roots of the independence polynomial of a clawfree graph
are real, answering a question posed by Hamidoune (1990) [14]
and Stanley (1998) [28] and solved by Chudnovsky and Seymour
(2007) [6]. We also prove a Mehler formula for the multivariate
matching polynomial, extending results of Lass (2004) [19].

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let V be a finite set of vertices, n = |V |, and let G = (V , E) be a simple graph, i.e. E , the set of
edges, is a subset of

(V
2

)
, the family of all 2-element subsets of V .

An r-matching in G is a set of r edges of G , no two of which have a vertex in common. Clearly,
r � �n/2�. Let mr(G) be the number of r-matchings in G , with the convention that m0(G) := 1. The
matching polynomial of G is (see [11] or [10, Chapter 1])

MG(x) :=
�n/2�∑
r=0

(−1)rmr(G)xn−2r . (1.1)
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These polynomials were introduced by Heilmann and Lieb [15], who, motivated by statistical physics,
mainly studied their roots. They obtained many estimations on the locations of those roots and pro-
vided several different proofs for their main theorem that all roots of MG(x) are real. Another proof
of this theorem was obtained by Godsil, which he reproduced in his book [10] together with all the
classical proofs. However, all those proofs rely on a recursive approach (via the deletion of a vertex)
towards the matching polynomial. One of the purposes of our paper [19] was to give a short proof
that avoids this traditional deletion technique.

If G = (V ,
(V

2

)
), i.e. E = (V

2

)
, then G is called a complete graph and denoted by G = Kn , where

n = |V |. Its matching polynomial MKn (x) is the classical Hermite polynomial. For those Hermite poly-
nomials the famous Mehler formula affirms that

1 +
∞∑

n=1

MKn (x)MKn (y) · zn/n!

= 1√
1 − z2

· exp

[(
x + y

2

)2

· z

1 + z
−

(
x − y

2

)2

· z

1 − z

]
. (1.2)

Foata [9] had the idea to prove this formula in a combinatorial way. He showed the very surpris-
ing result that the Mehler formula, from a combinatorial point of view, reflects nothing more than
the easy and classical fact that the union of two matchings of a complete graph forms several cy-
cles and paths. This was the beginning of the combinatorial studies of orthogonal polynomials. In
our paper [19] we generalized the combinatorial proof found by Foata [9] to matching polynomials.
Therefore, it seems natural to call our generalization a Mehler formula for matching polynomials. We
showed that it immediately implies that

∣∣MG(x)
∣∣2 �

[
(�m x)2]n + 2|E| · [(�m x)2]n−1

(1.3)

for every x ∈ C, i.e. that all the roots of MG(x) are real. Moreover, this fact holds for a common
generalization of the matching polynomial and the rook polynomial, see [21,22].

An independent set in a finite simple graph G = (V , E) is a set of pairwise non-adjacent vertices. Let
ir(G) be the number of independent sets with r vertices, in particular i1(G) = |V | and i0(G) = 1. If α
is the maximum number of independent points of G , then its independence polynomial is the polynomial

IG(x) :=
α∑

r=0

ir(G) · xr =
∑

I

x|I|, (1.4)

where the sum is over all independent subsets I ⊆ V (see for instance [1–4,8,12,13,16,20,23–25] for
work on these polynomials). A claw is the graph with vertex set {A, B, C, D} and three edges AB , AC ,
AD , and its independence polynomial is

1 + 4x + 3x2 + x3. (1.5)

Since this polynomial does not have three real roots, it cannot be affirmed that all the roots of any
independence polynomial IG(x) are real. A graph G , however, is said to be clawfree if no induced
subgraph of it is a claw. It was conjectured by Hamidoune [14] and Stanley [28] and proved by
Chudnovsky and Seymour [6] that all the roots of IG(x) are real (and of course negative) if G is
clawfree.

Given a graph G , its line graph L(G) is the graph whose vertex set is the set of edges of G , and
two vertices are adjacent if they share an end in G . If G is simple, then L(G) is also simple. Moreover,
the matchings in G are in bijection with the independent sets in L(G), i.e. the sets of pairwise non-
adjacent vertices. Not every simple graph, however, is the line graph of another simple graph G: if we
take an edge of G sharing an end with three other edges, then two of them must share the same end
with it, i.e. those two do not form a matching. Therefore line graphs are always clawfree. Moreover,
the matching polynomial of G and the independence polynomial of its line graph L(G) are related by
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the following identity:

MG(x) = xn · I L(G)

(−1/x2), (1.6)

which proves that all roots of MG(x) are real if and only if all roots of I L(G)(x) are real and negative.
Since Chudnovsky and Seymour [6] showed that all roots of IG(x) are real and negative as soon

as G is clawfree, it is natural to conjecture that a Mehler formula might hold for the independence
polynomial of any clawfree graph. This conjecture is indeed true: it is the purpose of the first section
of this article to prove such a formula, which implies immediately that

∣∣IG
(
x2)∣∣2 � iα(G) · [4(	e x)2]α,

∣∣IG
(−x2)∣∣2 � iα(G) · [4(�m x)2]α (1.7)

for every x ∈ C. It follows that all the roots of IG(x) are real and negative, if G is clawfree.
If w is a real-valued function on the vertex set of the graph G , then the weighted independence

polynomial is

IG,w(x) :=
∑

I

∏
v∈I

[
x · w(v)

]
, (1.8)

where the sum is over all independent subsets I ⊆ V (if I is empty, then the product is 1 by defini-
tion). Engström [7] showed that if w is nonnegative and G is clawfree, then all the roots of IG,w(x)
are real (and of course negative). His proof is in three steps, first for integer weights, then rational
and finally for real weights. More precisely, if w(v) is a positive integer for every vertex, then it is
a classical operation of substitution to replace each v ∈ V by a clique (complete graph) of size w(v)

and to join vertices of different cliques if and only if the original vertices of G were joined. It is easy
to see that this new graph G(w) is still clawfree and that IG(w)(x) = IG,w(x). Last but not least, En-
gström [7] had to give some approximation arguments to complete his proof. We will show at the
end of the first section by means of an example that our Mehler formula approach works perfectly
in this weighted case as well. We could have started directly with the weighted generalization, but
preferred not to do so, because we think it is easier to understand the arguments for the first time
on the most important special case.

When talking about independence polynomials with positive vertex weights, one must also talk
about matching polynomials with positive edge weights, and this is what we did already in the last
section of [19]. However, for matching polynomials it is not only possible to introduce positive edge
weights, but one can also introduce additional complex vertex weights and still get nice results, notably
the Heilmann–Lieb theorem [15]. We will show in our last section that even a Mehler formula holds
in this most general context and that it implies this and other classical theorems. In particular, the
most radical specialization gives the Mehler formula for Hermite polynomials, explaining finally the
name of this article.

Of course, one can obtain the univariate polynomials from the multivariate ones by suitable spe-
cializations. But the multivariate polynomials are, despite being more general, in many ways simpler
objects to work with: for instance, they are multiaffine (i.e. of degree 1 in each variable separately);
and a multiaffine polynomial in many variables is in some respects easier to work with than a gen-
eral polynomial in one variable (e.g. it may permit simple proofs by induction on the number of
variables). For this and other reasons, the multivariate extension of a single variable result is some-
times much easier to prove than its single-variable specialization; and much additional insight can
often be gained by studying the multivariate polynomial, even if one is ultimately interested in the
univariate specialization. This “multivariate ideology” has borne great fruit in the study of the Tutte
polynomial [17]. Some early examples of what can be gained by the multivariate approach to the
independence polynomial can be found in [26,27]: notably the connection to the Lovász local lemma
and a simple inductive proof for a zero-free polydisc. Another example concerns the two simple proofs
found by [5] of the multivariate Heilmann–Lieb theorem [15]. The first proof is by induction on the
number of vertices and is based on a recursion relation associated to deletion of a vertex; it is a
slight simplification/improvement of the inductive proof given by Heilmann–Lieb (in that proof the
deletion was limited to certain special vertices). The second proof is very different and is based on
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the fact that the “multiaffine part” operator preserves the half-plane property. In short, the multivari-
ate result is the natural Heilmann–Lieb theorem, and has two very simple and elegant proofs. The
univariate result that is most often quoted as “the” Heilmann–Lieb theorem is a mere corollary. (The
situation here is quite analogous to that concerning the Lee–Yang theorem for ferromagnetic Ising
models. There, too, the univariate corollary is frequently quoted, but it is the multivariate result that
is fundamental. Indeed, the proof of the Lee–Yang theorem imagined in [5] is very closely analogous
to their second proof of the Heilmann–Lieb theorem.)

However, we think that the combinatorics underlying those results can be hidden behind the many
variables. It was Foata’s idea [9] that the classical Mehler formula for Hermite polynomials has a very
simple combinatorial explanation: the union of two matchings of a graph forms several cycles and
paths. It is the aim of this article to show that the same idea allows to obtain more general results,
in one or many variables. It seems natural to us to call those generalizations also Mehler formulae. In
the last section of this article we will see how everything specializes to the classical Mehler formula
for Hermite polynomials.

2. Mehler formulae for independence polynomials of clawfree graphs

Finding a Mehler formula for the independence polynomial of a clawfree graph G means that we
have to be able to interpret combinatorially the product IG(x)IG(y). In other words, if the variable x is
assigned to each vertex of one independent set of G of cardinality r and if the variable y is assigned
to each vertex of another independent set of G of cardinality s, then we must identify a combinatorial
object to which the product xr · ys is assigned. A natural choice is certainly the subgraph PCC of G
induced by the union of our two independent sets (PCC shall suggest “path-cycle-configuration”) to-
gether with a labeling of its vertices as x, y or xy. The vertices labeled x or xy form an independent
set of vertices of PCC, as do the vertices labeled y or xy; in particular, the vertices labeled xy must
be isolated vertices of PCC. Any edge of PCC must join a vertex labeled x with a vertex labeled y: PCC
is a bipartite graph. Moreover, the degree of each vertex of PCC is at most two since G is clawfree and PCC
is an induced subgraph. Therefore PCC is an induced subgraph of G that is a disjoint union of some
isolated vertices IV(PCC) labeled xy, some even cycles EC(PCC) (of length at least 4) labeled alter-
nately with x and y, some even paths EP(PCC) (with at least two vertices) labeled alternately with x
and y, and, last but not least, some odd paths OP(PCC) (with at least one vertex) labeled alternately
with x and y. We want to consider PCC not only as an induced subgraph, but as an induced subgraph
of G with marked isolated vertices in order to be able to distinguish isolated vertices from odd paths of
length 1. Therefore IV(PCC) and OP(PCC) are well-defined. The same PCC appears several times in the
product IG(x)IG(y). Indeed, IV(PCC) is fixed once PCC is fixed, but the variables x and y can still be
exchanged on each path and cycle of PCC. Therefore PCC must be counted with the weight∏

IV(PCC)

[xy]
∏

EC(PCC)

[
2 · x|EC(PCC)|/2 y|EC(PCC)|/2] ∏

EP(PCC)

[
2 · x|EP(PCC)|/2 y|EP(PCC)|/2]

·
∏

OP(PCC)

[
x(|OP(PCC)|+1)/2 y(|OP(PCC)|−1)/2 + x(|OP(PCC)|−1)/2 y(|OP(PCC)|+1)/2], (2.1)

where |EC(PCC)|, |EP(PCC)| and |OP(PCC)| denote the number of vertices of the respective cycle or
path. Note that products over empty sets are always 1 by definition. In particular, PCC can be the
empty graph (a pointless concept): its weight is 1. We have proved our main theorem, a Mehler
formula for the independence polynomial of any clawfree graph G .

Theorem 1. We have

IG(x)IG(y) =
∑
PCC

( ∏
IV(PCC)

[xy]
∏

EC(PCC)

[
2 · (xy)|EC(PCC)|/2] ∏

EP(PCC)

[
2 · (xy)|EP(PCC)|/2]

·
∏

OP(PCC)

[
(x + y) · (xy)(|OP(PCC)|−1)/2]). � (2.2)
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The formula becomes easier if we replace x and y by x2 and y2, respectively. Moreover, we can
express IG(x2)IG(y2) with the help of the elementary symmetric polynomials

e1 := x + y, e2 := xy (2.3)

by putting P G(e1, e2) := IG(x2)IG(y2). The identity x2 + y2 = e2
1 − 2e2 implies

P G(e1, e2) =
∑
PCC

( ∏
IV(PCC)

[
e2

2

] ∏
EC(PCC)

[
2e|EC(PCC)|

2

] ∏
EP(PCC)

[
2e|EP(PCC)|

2

]

·
∏

OP(PCC)

[
e2

1e|OP(PCC)|−1
2 − 2e|OP(PCC)|

2

])
(2.4)

=
∑
OPC

[ ∏
OP(OPC)

e2
1e|OP(OPC)|−1

2

]
· P G\[OPC∪Γ (OPC)](0, e2), (2.5)

where the last sum is over all odd-path-configurations, i.e. over all induced subgraphs of G that are
formed by a disjoint union of some odd paths. Indeed, if we develop the last product of (2.4) by dis-
tributivity, OPC corresponds to the odd paths for which we have chosen the term e2

1e|OP(PCC)|−1
2 . This

must be multiplied by P H (0, e2) (we have replaced e1 by 0 in order to forbid any further appearances
of the term e2

1e|OP(PCC)|−1
2 ), where H = G\[OPC ∪ Γ (OPC)] is the subgraph of G induced by all vertices

of G\OPC which are not adjacent to any vertex of OPC. We remove Γ (OPC) (vertices adjacent to at
least one vertex of OPC) because PCC is an induced subgraph. Note that P H (0, e2) = 1 if H is the
empty graph.

Lemma 1. For any graph G, we have

P G(0, e2) = IG
(
(i

√
xy )2)IG

(
(−i

√
xy )2) = IG(−e2)

2. (2.6)

Proof. If we want to replace e1 by 0 (leaving e2 unchanged), then we have to replace x and y by
i
√

xy and −i
√

xy, respectively. �
If we apply our lemma to our induced subgraphs H we get the following theorem.

Theorem 2. We have

IG
(
x2)IG

(
y2) =

∑
OPC

[ ∏
OP(OPC)

e2
1e|OP(OPC)|−1

2

]
· IG\[OPC∪Γ (OPC)](−e2)

2, (2.7)

where e1 = x + y and e2 = xy. �
Corollary 1. Let G be a clawfree graph with iα(G) maximal independent sets. Then

∣∣IG
(
x2)∣∣2 � iα(G) · [4(	e x)2]α,

∣∣IG
(−x2)∣∣2 � iα(G) · [4(�m x)2]α (2.8)

for every x ∈ C. In particular, all the roots of IG(x) are real and negative.

Proof. If we replace y by x, then e2
1 = 4(	e x)2 � 0 and e2 = |x|2 � 0. Therefore, every term of the

sum

∣∣IG
(
x2)∣∣2 = IG

(
x2)IG

(
x2) =

∑
OPC

[ ∏
OP(OPC)

e2
1e|OP(OPC)|−1

2

]
· IG\[OPC∪Γ (OPC)](−e2)

2 (2.9)

is nonnegative. In particular, each of the iα(G) maximal independent sets of G is an odd-path-
configuration with α paths of length 1 and contributes to the sum [e2

1e0
2]α = [4(	e x)2]α , because
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I H (−e2)
2 = P H (0, e2) = 1 if H is the empty graph. This proves the first inequality. The second one

follows immediately if we replace x by i · x.
Finally, if z is a complex number that is neither a real negative number nor zero, then there exists

x ∈ C such that z = x2 and 	e x > 0. Therefore,

∣∣IG(z)
∣∣2 = ∣∣IG

(
x2)∣∣2 � iα(G) · [4(	e x)2]α > 0. (2.10)

In other words, IG(z) can be zero only if z is a real negative number, because IG(0) = 1. �
Let us finally consider an example, namely the graph with vertex set {A, B, C} and two edges AB

and AC . Moreover, we want to attach the weights a, b and c to its vertices A, B and C , respectively.
As explained in the introduction, if a, b and c are positive integers, this corresponds to replacing the
vertices A, B and C by cliques (complete graphs) of sizes a, b and c, respectively, where all vertices
of the clique of size a are joined with the vertices of the cliques of sizes b and c, but there are no
edges between the cliques of sizes b and c. In general, however, a, b and c can be arbitrary positive
(or even nonnegative) real numbers (if a number is 0, it corresponds to the fact that the vertex is
deleted). The weighted independence polynomial of this graph is

IG,w(x) = 1 + x · a + x · b + x · c + x2 · bc. (2.11)

An easy multiplication gives the following formula:

IG,w(x)IG,w(y) = 1 + (x + y) · a + (x + y) · b + (x + y) · c + 2xy · ab + 2xy · ac

+ (x + y)2 · bc + (x + y)xy · abc + xy · a2 + xy · b2 + xy · c2

+ xy(x + y) · b2c + xy(x + y) · c2b + (xy)2 · b2c2. (2.12)

Here a corresponds to an odd path of length 1, ab corresponds to an even path of length 2, bc cor-
responds to two odd paths of length 1, abc corresponds to an odd path of length 3, a2 corresponds
to an isolated vertex, b2c corresponds to an isolated vertex and an odd path of length 1 and b2c2

corresponds to two isolated vertices. Altogether, this reflects exactly our first theorem. To go on, we
put e1 = x + y and e2 = xy and obtain

IG,w
(
x2)IG,w

(
y2) = 1 − 2e2 · a − 2e2 · b − 2e2 · c + 2e2

2 · ab + 2e2
2 · ac

+ 4e2
2 · bc − 2e3

2 · abc + e2
2 · a2 + e2

2 · b2 + e2
2 · c2

− 2e3
2 · b2c − 2e3

2 · c2b + e4
2 · b2c2

+ e2
1 · b · [1 − 2e2 · c + e2

2 · c2] + e2
1 · c · [1 − 2e2 · b + e2

2 · b2]
+ e2

1 · a + e2
1e2

2 · abc + e4
1 · bc (2.13)

= [
1 − e2 · a − e2 · b − e2 · c + e2

2 · bc
]2

+ e2
1 · b · [1 − e2 · c]2 + e2

1 · c · [1 − e2 · b]2

+ e2
1 · a + e2

1e2
2 · abc + e4

1 · bc. (2.14)

Here bc corresponds to two odd paths of length 1, abc corresponds to an odd path of length 3,
a corresponds to an odd path of length 1 and b corresponds to an odd path of length 1 which must
be multiplied by the square of the weighted independence polynomial of C evaluated at −e2. Last
but not least, 1 − e2 · a − e2 · b − e2 · c + e2

2 · bc is the weighted independence polynomial of the whole
graph evaluated at −e2. Altogether, this reflects our second theorem.

As we see, it causes no problem to introduce nonnegative real multiplicative weights for every
vertex (see [7]): they just make the notations slightly more complicated, but the proofs and theorems
remain the same.
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3. Mehler formulae for multivariate matching polynomials

To state and derive our extension of the Mehler formula for matching polynomials [19] to allow
not only nonnegative real edge weights but also complex vertex weights, we need an adequate alge-
braic tool, the algebra of generating functions for set functions. We introduce them in the following
subsection without supposing any knowledge of algebra at all. When we use some classical expres-
sions such as A-algebra or projective limit (see [18] for definitions), it is only for the convenience of
readers knowing them. Everything can also be understood easily without knowing them, because we
define all our objects in our concrete setting explicitly.

Finally, we study the applications to multivariate matching polynomials of this algebraic formalism,
which was already very useful in [19–22].

3.1. Algebraic preliminaries

Let V be a finite set, and let A be a commutative ring with identity element. Let F (2V , A) be the
A-algebra of functions f : 2V → A, equipped with the multiplication

( f g)(W ) =
∑

W1�W2=W

f (W1)g(W2) (3.1)

(where � denotes disjoint union) and the obvious pointwise addition and scalar multiplication.
Next let A[V ] be the A-algebra of multiaffine (= square-free) polynomials

F (ν) =
∑

W ⊆V

aW νW (3.2)

in indeterminates ν = (νv)v∈V , where we use the shorthand notation

νW =
∏

v∈W

νv , ν∅ := 1. (3.3)

This algebra is equipped with the usual multiplication of polynomials followed by extraction of the
multiaffine part (i.e. discarding all monomials that are not of the form νW for some W ⊆ V ), that is( ∑

W ⊆V

aW νW
)

·
( ∑

W ⊆V

bW νW
)

=
∑

W ⊆V

∑
W1�W2=W

aW1 bW2ν
W , (3.4)

together with the usual addition and scalar multiplication. Note that A[V ] is isomorphic in an obvious
way to the quotient algebra A[{νv}]/〈{ν2

v }〉.

Remark. In a more combinatorial way (see [19–22]), we could have defined the multiplication of
monomials for all W1, W2 ⊆ V by

νW1 · νW2 := νW1+W2 , where (3.5)

W1 + W2 :=
{

W1 ∪ W2, if W1 ∩ W2 = ∅,

†, if W1 ∩ W2 �= ∅, where
(3.6)

† + W := †, † + † := †, and ν† := 0. (3.7)

Here † corresponds to multisets that are systematically discarded.

Finally, the map f �→ F f that associates to each f ∈ F (2V , A) its generating polynomial F f ∈ A[V ],
i.e.

F f (ν) =
∑

W ⊆V

f (W )νW , (3.8)
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is manifestly an algebra isomorphism of F (2V , A) onto A[V ]. Many applications of A[V ] in different
parts of enumerative graph theory can be found in [19–22]. See [5, Section 4.7], for further results on
the “multiaffine part” operator, and see [5, Remark 4 after Theorem 10.1], for a simple proof of the
multivariate Heilmann–Lieb theorem for matching polynomials that is based on it.

For |V | = ∞ let (2V )fin be the partially ordered set of finite subsets of V . We have the canonical
projections pW1,W2 : A[W1] → A[W2] (W1, W2 ∈ (2V )fin, W1 ⊇ W2) and define

A[V ] := lim←− A[W ], W ∈ (
2V )

fin (3.9)

with the help of the projective limit. This means nothing else than working with generating functions
of the form

F (ν) =
∑

W ∈(2V )fin

aW νW . (3.10)

Now for any V (finite or infinite), we consider the particular element

V :=
∑
v∈V

ν{v} =
∑
v∈V

νv (3.11)

in A[V ]: it is the generating function for the indicator function of the subsets of V of cardinality 1.
Then, in the product V k in the algebra A[V ], each set of cardinality k occurs k! times, so that V k/k! is
the generating function for the indicator function of the subsets of V of cardinality k. If now g : N → A
is an A-valued function on the natural numbers, the identity

∞∑
k=0

g(k) · V k/k! =
∑

W ∈(2V )fin

g
(|W |)νW (3.12)

provides an embedding of the algebra A![[V ]] of generating functions of exponential type (usually the
variable is called x instead of V ) into our algebra A[V ] if and only if |V | = ∞. Indeed, if k > |V |, then
V k/k! = 0. If |V | = ∞, the image of this embedding is the subalgebra of A[V ] consisting of gener-
ating functions F f of set functions f where the value depends only on the cardinality of the set,
i.e. f (W ) = g(|W |) for every W ∈ (2V )fin. This embedding is at the origin of (almost?) all the ap-
plications of A![[V ]] in combinatorics, but it requires the existence of an infinite combinatorial model
depending just on cardinalities. Consequently, A[V ] provides more flexibility and closeness to combi-
natorics; it is also ideally suited for computer calculations.

Remark. The ring Z![[V ]] is not Noetherian, but it contains the important functions exp(V ) and
log(1 + V ).

Example 1. If char A = 2, then we have

(1 + V)−1 =
∞∑

k=0

(−1)kk! · V k/k! (3.13)

≡ 1 + V and (3.14)

log(1 + V) =
∞∑

k=1

(−1)k−1(k − 1)! · V k/k! (3.15)

≡ V + V 2/2 (3.16)

in the ring A![[V ]]. These identities are at the origin of lots of results of parity in combinatorics,
see [22].
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For all t ∈ A we put (tν)W := t|W |νW , W ∈ (2V )fin, and therefore

F f (tν) =
∑

W ∈(2V )fin

f (W )t|W |νW , (3.17)

where f : (2V )fin → A is an arbitrary set function. It is evident that this definition is compatible
with the addition and the multiplication. Most important are the special cases t = −1 and t = 0:
F f (0) = F f (0 · ν) = f (∅).

If F f (0) = 0, then F f (ν)k/k! is defined for any ring A, because a partition into k nonempty subsets
can be ordered in k! different ways. Thus we have an operation of A![[V ]] on A[V ] via the substitution
G(F f (ν)) defined for any G ∈ A![[V ]].

Finally, define for any f , g : (2V )fin → A the function f ∗ g : (2V )fin → A by

( f ∗ g)(W ) := f (W ) · g(W ) (3.18)

for each W ∈ (2V )fin and define the Hadamard product to be

F f (ν) ∗ F g(ν) := F f ∗g(ν). (3.19)

3.2. Application to matching polynomials

From now on every edge {u, v} ∈ E of our finite graph G = (V , E) will get a weight w{u,v} ∈ A (we
can assume that the two-element subsets of V which are not edges get the weight zero). Moreover,
every vertex v ∈ V will get a weight xv ∈ A. As always, A is a commutative ring with identity ele-
ment. This weighted graph will be denoted by Gx,w = (V x, E w). Now E w will be identified with the
generating function of the set function which attributes the value 0 to all subsets of V with the only
exception of the edges of Gx,w , which get their own weights. Moreover, Vx will be identified with the
generating function of the set function which attributes the value 0 to all subsets of V with the only
exception of the vertices of Gx,w (subsets of cardinality 1), which get their own weights. Of course,
we have the following identities:

Vx =
∑
v∈V

xv · ν{v}, E w =
∑

{u,v}∈E

w{u,v} · ν{u,v}. (3.20)

We define the (multivariate weighted) matching polynomial of Gx,w by

MG(x, w) :=
∑

matchings M

( ∏
{u,v}∈M

(−w{u,v})
)( ∏

v∈V \(⋃ M)

xv

)
. (3.21)

We see that every matching is counted with respect to its weight: the product of minus the weights
of its edges multiplied by the product of the weights of the vertices which are not covered by the
matching. The classical matching polynomial (1.1) is obtained if all variables xv equal x whereas all
variables w{u,v} equal 0 or 1. For every induced subgraph of Gx,w , and in particular for Gx,w itself,
the (weighted) matching polynomial can be calculated with the help of its generating function.

Lemma 2. We have

1 +
∑

∅⊂W ⊆V

MG[W ](x, w) · νW = exp[Vx − E w ]. � (3.22)

A Hamiltonian cycle of Gx,w is a cyclic order of V and its weight is the product of the weights
of its n = |V | edges corresponding to two consecutive vertices in the cyclic order. In particular, if
the edge corresponding to two consecutive vertices in the cyclic order does not belong to the graph
(equivalently, has weight zero), then the weight of that “Hamiltonian cycle” is equal to zero. Let
cyc(Gx,w) be the sum of the weights of all Hamiltonian cycles of Gx,w , with the convention that
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cyc(G w) = 1 if n = 1. We assume that the weight of each edge in the complete graph Kn is equal
to 1, so that cyc(Kn) = (n − 1)!.

A Hamiltonian path of Gx,w is a linear order of V and its weight is the product of the weights of
its n − 1 edges corresponding to two consecutive vertices in the linear order. Let linu,v(Gx,w) be the
sum of the weights of all Hamiltonian paths of Gx,w from u to v (u is the first vertex of the linear
order whereas v is its last one). We use the convention that linu,u(Gx,w) = 1 if n = 1. Moreover, we
define

lin(Gx,w) :=
∑

u,v∈V

linu,v(Gx,w), (3.23)

i.e. lin(Gx,w) is the sum of the weights of all Hamiltonian paths of Gx,w . Clearly, lin(Kn) = n!.
Let us define for every u, v ∈ V

cycw(ν) :=
∑

∅⊂W ⊆V

cyc
(
Gx,w [W ]) · νW ,

linu,v,w(ν) :=
∑

{u,v}⊆W ⊆V

linu,v
(
Gx,w [W ]) · νW , (3.24)

linw(ν) :=
∑

∅⊂W ⊆V

lin
(
Gx,w [W ]) · νW =

∑
u,v∈V

linu,v,w(ν). (3.25)

Considering the infinite graph K∞ yields
∞∑

n=1

cyc(Kn) · V n/n! = − log(1 − V),

∞∑
n=1

lin(Kn) · V n/n! = V
1 − V

. (3.26)

Usually (in undirected graphs) one does not distinguish between the two different directions of Hamil-
tonian cycles or paths. In this sense cycw(ν) and linw(ν) count them “twice”.

Now we can prove our generalization of the Mehler formula.

Theorem 3. Let xv and yv be two families of vertex weights. Using the Hadamard product ∗ we have:

exp[Vx − E w ] ∗ exp[V y − E w ]
= exp

[
1

2
· cycw(ν) + 1

2
· cycw(−ν)

]
· exp

∑
u,v∈V

[
− xu − yu

2
· xv − yv

2
· linu,v,w(ν)

− xu + yu

2
· xv + yv

2
· linu,v,w(−ν)

]
. (3.27)

Proof. A pair of matchings of G to be considered on the left-hand side of (3.27) (one with
weights x, w and the other with weights y, w) provides a partition of V into even cycles (to be
counted “twice”, because the matchings can be interchanged), even (according to the number of ver-
tices) paths between u and v (to be counted with the factor −xu xv or −yu yv , because the number of
edges of the paths is odd) and odd paths (to be counted with the factor xu yv or yuxv ). These cycles
and paths become Hamiltonian cycles and paths for the corresponding induced subgraphs. Thus the
left-hand side of (3.27) is equal to

exp

[
cycw(ν) + cycw(−ν)

4
· 2

]

· exp

[ ∑
u,v∈V

linu,v,w(ν) + linu,v,w(−ν)

4
· (−xu xv − yu yv)

]

· exp

[ ∑
u,v∈V

linu,v,w(ν) − linu,v,w(−ν)

4
· (xu yv + yuxv)

]
. (3.28)
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Indeed, if we divide linu,v,w(ν) − linu,v,w(−ν) by 2, then we count odd paths from u to v once.
However, if u and v are different, then linu,v,w(ν) = linv,u,w(ν) and we have to divide by 4 before
multiplying with xu yv + yu xv . If u = v , then we have to divide by 2 only before multiplying with
xu yu (there are no matchings to be interchanged), but this is of course equivalent to dividing by 4
and multiplying with xu yu + yuxu . So in every case the preceding expression is correct for the left-
hand side of (3.27), and it is evident that it is also equal to its right-hand side. �

Specializing (3.27) to K∞ and xv = x, yv = y for all v ∈ V and using (3.26) yields the classical
Mehler formula, because Hermite polynomials can be defined as matching polynomials of complete
graphs.

Corollary 2 (Mehler). We have

1 +
∞∑

n=1

MKn(x)MKn (y) · V n/n!

= 1√
1 − V 2

· exp

[(
x + y

2

)2

· V
1 + V

−
(

x − y

2

)2

· V
1 − V

]
. � (3.29)

Now specialize to A = C. Replacing the variables yv for every v ∈ V in the previous theorem by
the complex conjugate numbers xv yields the following theorem.

Theorem 4. Let xv be a family of complex vertex weights. We have

exp[Vx − E w ] ∗ exp[Vx − E w ]
= exp

[
1

2
· cycw(ν) + 1

2
· cycw(−ν)

]
· exp

∑
u,v∈V

[
(�m xu) · (�m xv) · linu,v,w(ν)

− (	e xu) · (	e xv) · linu,v,w(−ν)
]
. � (3.30)

If we replace in (3.30) xv and xv both by 	e xv for every v ∈ V , then �m xv becomes 0 whereas
	e xv remains unchanged. Therefore we get the identity:

exp[V	e x − E w ] ∗ exp[V	e x − E w ] = exp

[
1

2
· cycw(ν) + 1

2
· cycw(−ν)

]

· exp
∑

u,v∈V

[−(	e xu) · (	e xv) · linu,v,w(−ν)
]
. (3.31)

Now we can use our last identity (3.31) in order to simplify the right-hand side of (3.30). This proves
the following theorem.

Theorem 5. Let xv be a family of complex vertex weights. We have

exp[Vx − E w ] ∗ exp[Vx − E w ] = (
exp[V	e x − E w ] ∗ exp[V	e x − E w ])

· exp

[ ∑
u,v∈V

(�m xu) · (�m xv) · linu,v,w(ν)

]
. � (3.32)

Corollary 3. Let MG(x, w) be the weighted matching polynomial with complex vertex weights xv and non-
negative real edge weights w{u,v} . If �m xv > 0 for every v ∈ V or if �m xv < 0 for every v ∈ V , then we get
the inequality

∣∣MG(x, w)
∣∣2 �

( ∏
v∈V

(�m xv)2
)(

1 +
∑

{u,v}∈E

2 · w{u,v}
(�m xu)(�m xv)

)
. (3.33)
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Proof. Extracting the coefficient of νV in the generating-function identity (3.32) we obtain

∣∣MG(x, w)
∣∣2 =

∞∑
k=0

1

k!
∑

W0�W1�···�Wk=V

MG[W0](	e x, w)2

·
k∏

i=1

∑
u,v∈W i

(�m xu)(�m xv)linu,v
(
Gx,w [W i]

)
, (3.34)

where 1/k! comes from the exponential function and reflects the fact that there are k! possibilities
to permute the necessarily nonempty sets W1, . . . , Wk (W0 can be empty). (Indeed, lin on the empty
set is 0, whereas every matching polynomial on the empty set is 1.)

Under the given hypotheses on x and w , all the contributions on the right-hand side of (3.34)
are nonnegative, so a lower bound can be obtained by taking some of them. Here we keep only the
terms where W0 = ∅ and consider the two cases in which V is partitioned either into n = |V | paths of
length 1, or n −2 paths of length 1 and one path of length 2. In the first case, we get the contribution∏

v∈V

(�m xv)2 (3.35)

whereas in the second case, we get the contribution∑
{u,v}∈E

(�m xu)(�m xv)(2w{u,v})
∏

t∈V \{u,v}
(�m xt)

2. (3.36)

The sum of those expressions is equal to the right-hand side of (3.33). This finishes the proof of this
corollary. �
Corollary 4. (See [15].) Let MG(x, w) be the weighted matching polynomial with complex vertex weights xv
and nonnegative real edge weights w{u,v} . If �m xv > 0 for every v ∈ V or if �m xv < 0 for every v ∈ V , then
|MG(x, w)|2 > 0, i.e. the weighted matching polynomial cannot be zero in that case. �
Remark. The complex vertex variables of the weighted matching polynomial could be hidden in the
edge variables but could also be recovered from them by multiplying and dividing edge weights
alternatingly along odd cycles. Therefore it does not seem possible to obtain a beautiful generalization
of the complex vertex variables for clawfree graphs.
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