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Abstract

Triesch [25] conjectured that Hall’s classical theorem on matchings in bipartite graphs is
a special case of a phenomenon of monotonicity for the number of matchings in such graphs.
We prove this conjecture for all graphs with sufficiently many edges by deriving an explicit
monotonic formula counting matchings in bipartite graphs.

This formula follows from a general duality theory which we develop for counting match-
ings. Moreover, we make use of generating functions for set functions as introduced in [20],
and we show how they are useful for counting matchings in bipartite graphs in many different
ways.

1 Introduction

The bipartite graphs studied in this paper are described as triples

G = (X,Y ;E), E ⊆ X × Y, (1.1)

where X and Y are the two vertex sets, and E is the edge set. It is always assumed that X,
called the first vertex set, is finite and |X| = n. The second vertex set Y is also finite, but
variable. As the edge set E is a subset of X ×Y , all the graphs are simple : they have no loops,
and no multiple edges. For each nonempty subset X ′ of X define the set of neighbours of X ′ by

ΓG(X
′) := {y ∈ Y | ∃ x ∈ X ′ such that (x, y) ∈ E}. (1.2)

Thus, ΓG(X
′) is the set of all vertices y ∈ Y which are related to at least one vertex in X ′ by

an edge of G. Also, let
d+G(X

′) := |ΓG(X
′)|. (1.3)

As will be seen, the integral-valued function d+G : 2X \ ∅ → Z, further called set function,
determines G up to a permutation of the vertices of Y .

An injective mapping i : X ′ → Y such that (x, i(x)) ∈ E for every x ∈ X ′ is called a matching
of X ′ into Y and the pairs (x, i(x)) (x ∈ X ′) are the edges of the matching. Let m−

G(X
′) be
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the number of such injective mappings (or matchings). The mapping m−
G : 2X \ ∅ → Z is then

another set function. We show that it also determines G up to a permutation of the vertices
of Y , and we prove an easy formula allowing to calculate the set function m−

G with the help of
the set function d+G. Moreover, d+G can be calculated with the help of m−

G.
Hall’s classical theorem on matchings in bipartite graphs asserts that G has a matching of X

into Y if and only if d+G(X
′) ≥ |X ′| for all ∅ ⊂ X ′ ⊆ X. The existence of a matching trivially

implies d+G(X
′) ≥ |X ′| for all ∅ ⊂ X ′ ⊆ X. Therefore, the interesting part of Hall’s theorem

can be formulated as follows :

If d+G(X
′) ≥ |X ′| ∀ ∅ ⊂ X ′ ⊆ X, then m−

G(X) ≥ 1. (1.4)

Let Y ′ be a set disjoint from X and Y with |Y ′| = |X| = n, and let b : X → Y ′ be a bijection.
Next, define the bipartite graph G′ = (X,Y ′;E′) by letting E′ be the family of all pairs (x, b(x))
with x ∈ X, so that G′ has just n independent edges. This implies d+G′(X ′) = |X ′| for all
∅ ⊂ X ′ ⊆ X and m−

G′(X) = 1. We can then reformulate the interesting part of Hall’s theorem
as follows:

If d+G(X
′) ≥ d+G′(X

′) ∀ ∅ ⊂ X ′ ⊆ X, then m−
G(X) ≥ m−

G′(X). (1.5)

This inspired Triesch [25] to conjecture that for arbitrary mutually disjoint finite vertex sets X,
Y , Y ′ and for arbitrary bipartite graphs G = (X,Y ;E), G′ = (X,Y ′;E′) sharing the vertex
set X the following implication holds:

If d+G(X
′) ≥ d+G′(X

′) ∀ ∅ ⊂ X ′ ⊆ X, then m−
G(X) ≥ m−

G′(X). (1.6)

One purpose of this paper is to prove this conjecture for all graphs with sufficiently many
edges by deriving an explicit monotonic formula counting matchings in bipartite graphs. If n = 1
and X = {1}, then it is evident that

m−
G({1}) = d+G({1}), (1.7)

and this identity implies the conjectured monotonicity immediately. If n = 2 and X = {1, 2},
then we prove the formula

m−
G({1, 2}) =

(

d+G({1})− 1
) (

d+G({2})− 1
)

+
(

d+G({1, 2})− 1
)

(1.8)

implying the monotonicity easily. For n = 3 and X = {1, 2, 3}, we get

m−
G({1, 2, 3}) =

(

d+G({1})− 2
) (

d+G({2})− 2
) (

d+G({3})− 2
)

+
(

d+G({1, 2})− 2
) (

d+G({3})− 2
)

+
(

d+G({1, 3})− 2
) (

d+G({2})− 2
)

+
(

d+G({2, 3})− 2
) (

d+G({1})− 2
)

+2
(

d+G({1, 2, 3})− 2
)

, (1.9)
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and for n = 4 and X = {1, 2, 3, 4}, our formula reads

m−
G({1, 2, 3, 4}) =

(

d+G({1})− 3
) (

d+G({2})− 3
) (

d+G({3})− 3
) (

d+G({4})− 3
)

+
(

d+G({1, 2})− 3
) (

d+G({3})− 3
) (

d+G({4})− 3
)

+
(

d+G({1, 3})− 3
) (

d+G({2})− 3
) (

d+G({4})− 3
)

+
(

d+G({1, 4})− 3
) (

d+G({2})− 3
) (

d+G({3})− 3
)

+
(

d+G({2, 3})− 3
) (

d+G({1})− 3
) (

d+G({4})− 3
)

+
(

d+G({2, 4})− 3
) (

d+G({1})− 3
) (

d+G({3})− 3
)

+
(

d+G({3, 4})− 3
) (

d+G({1})− 3
) (

d+G({2})− 3
)

+
(

d+G({1, 2})− 3
) (

d+G({3, 4})− 3
)

+
(

d+G({1, 3})− 3
) (

d+G({2, 4})− 3
)

+
(

d+G({1, 4})− 3
) (

d+G({2, 3})− 3
)

+2
(

d+G({1, 2, 3})− 3
) (

d+G({4})− 3
)

+2
(

d+G({1, 2, 4})− 3
) (

d+G({3})− 3
)

+2
(

d+G({1, 3, 4})− 3
) (

d+G({2})− 3
)

+2
(

d+G({2, 3, 4})− 3
) (

d+G({1})− 3
)

+6
(

d+G({1, 2, 3, 4})− 3
)

. (1.10)

For general X = {1, 2, 3, . . . , n}, we prove the following new formula.

Theorem 1. We have

m−
G(X) =

n
∑

k=1

∑

B1⊎···⊎Bk=X

k
∏

i=1

(|Bi| − 1)!
(

d+G(Bi)− n+ 1
)

, (1.11)

where the sum is over all partitions of X into k nonempty blocks B1,. . . ,Bk (⊎ denotes disjoint
union).

This theorem implies immediately that m−
G(X) depends monotonically on the numbers

d+G(X
′), ∅ ⊂ X ′ ⊆ X, if d+G(X

′) ≥ n− 1 for every ∅ ⊂ X ′ ⊆ X. For usual graphs, this condition
is satisfied as soon as the degree d+G(x) is at least n− 1 for every vertex x ∈ X. In other words,
if G = (X,Y ;E) and G′ = (X,Y ′;E′) are bipartite graphs such that d+G′(x) ≥ n − 1 for every
x ∈ X and d+G(X

′) ≥ d+G′(X ′) for all ∅ ⊂ X ′ ⊆ X, then our formula implies m−
G(X) ≥ m−

G′(X).
Therefore, it proves the conjecture imagined by Triesch as soon as d+G′(x) ≥ n − 1 for every
x ∈ X. On the other hand, this conjecture follows from Hall’s theorem if d+G′(x) ≤ 1 for ev-
ery x ∈ X. But of course, some cases of the conjecture remain open between those extreme
situations where G′ has few or many edges.

For every ∅ ⊂ X ′ ⊆ X, we have introduced d+G(X
′) as the number of vertices y ∈ Y which

are related to at least one vertex in X ′ by an edge of G. In an analogous way, we define d−G(X
′)

as the number of vertices y ∈ Y which are related to every vertex in X ′ by an edge of G,
and we prove that the integral-valued set function d−G : 2X \ ∅ → Z also determines G up to a
permutation of the vertices of Y . More precisely, we prove the formulae

d−G(X
′) =

∑

X′′⊆X′

(−1)|X
′′|−1d+G(X

′′), (1.12)

d+G(X
′) =

∑

X′′⊆X′

(−1)|X
′′|−1d−G(X

′′), (1.13)
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by studying linear transformations between the set functions d−G, d
+
G and another set function xG.

These considerations of linear algebra for set functions will be explained in Section 2.
In order to go beyond those results, however, linear algebra is not sufficient, and we need

the algebra of set functions. A comprehensive introduction to this algebraic tool explaining,
in particular, the basic product theorem can be found in the preceding article [20] (for other
applications of set functions, see [16, 17, 18, 19]). In Section 3, we make use of this product
theorem as well as of the linear algebra explained in Section 2, in order to count matchings in
bipartite graphs. In particular, we prove the following formulae :

m−
G(X) =

n
∑

k=1

(−1)n−k
∑

B1⊎···⊎Bk=X

k
∏

i=1

(|Bi| − 1)!d−G(Bi), (1.14)

d−G(X) =
n
∑

k=1

(−1)n−k (k − 1)!

(n− 1)!

∑

B1⊎···⊎Bk=X

k
∏

i=1

m−
G(Bi). (1.15)

We still introduce one more set function m+
G and we show how the algebra of set functions allows

us to prove easily lots of relations between all those set functions.
Identity (1.11) of the preceding theorem, however, cannot be proved in this way, because the

“local” factors
(

d+G(Bi)− n+ 1
)

contain the “global” parameter n = |X|. Therefore, Section 4
is devoted to a general “global” duality theory for the enumeration of matchings in bipartite
graphs, which follows from a still more general duality theory for the enumeration of functions.
We have explained this theory in the preceding article [20]. With the help of this “global”
duality, we finally get a short and surprising proof of our formula (1.11).

In Section 5, devoted to Rook Theory (see [5]), we show that by means of the duality theory
several results related to [19] can be proved, which generalize works by Chung and Graham [7],
Chow and Gessel [6], Joni, Rota and Zeilberger [15], as well as several articles on Laguerre
polynomials by Askey, Gasper, Ismail, Koornwinder, Even, Gillis, Foata, Zeilberger, Godsil,
Jackson, de Sainte-Catherine and Viennot [2, 3, 4, 8, 10, 11, 12, 14, 23, 26].

2 Bipartite Graphs as Set Functions

Let X be a fixed finite set of vertices, n = |X|. We are interested in bipartite graphs G =
(X,Y ;E), E ⊆ X × Y , where the second finite vertex set Y is considered to be variable.

Let X ′ be an arbitrary nonempty subset of X, ∅ ⊂ X ′ ⊆ X. Let xG(X
′) denote the number

of vertices y ∈ Y for which (x, y) ∈ E if and only if x ∈ X ′, that is, the number of y ∈ Y for
which ΓG(y) = X ′, where ΓG(y) is the set of neighbours of y. In other words, xG(X

′) counts the
number of vertices of Y which are joint by an edge of G to every vertex of X ′ and to no vertex
of X \X ′. The following lemma is evident.

Lemma 1. The bipartite graph G = (X,Y ;E) is determined up to isomorphism by the set
function xG : 2X \∅ → Z. Here, xG determines a usual bipartite graph if and only if xG(X

′) ≥ 0
for all ∅ ⊂ X ′ ⊆ X.

Moreover, let d−G(X
′), ∅ ⊂ X ′ ⊆ X, denote the number of vertices of Y which are joint by

an edge of G to every vertex of X ′ and possibly to some vertices of X \X ′ :

d−G : 2X \ ∅ → Z, d−G(X
′) =

∑

X′⊆X′′

xG(X
′′) ∀ ∅ ⊂ X ′ ⊆ X. (2.1)
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The set function d+G already mentioned in the introduction and the set function xG are related
as follows :

d+G : 2X \ ∅ → Z, d+G(X
′) =

∑

X′∩X′′ 6=∅

xG(X
′′) = |ΓG(X

′)| ∀ ∅ ⊂ X ′ ⊆ X. (2.2)

We can consider xG, d
−
G and d+G as vectors with 2|X| − 1 = 2n − 1 components, and we want

to study the linear transformations between them. Let [X ′ ⊆ X ′′] denote a square matrix with
2n−1 rows and 2n−1 columns indexed by the nonempty subsets of X. More precisely, if a row is
indexed by X ′ and a column is indexed by X ′′, then the coefficient corresponding to this row and
column equals 1 if X ′ ⊆ X ′′ and 0 otherwise. Similarly, for the matrix [X ′ ⊆ X ′′](−1)|X

′′\X′|, the
coefficient corresponding to a row indexed by X ′ and a column indexed by X ′′ equals (−1)|X

′′\X′|

if X ′ ⊆ X ′′ and 0 otherwise. The coefficients of the matrix [X ′ ∩ X ′′ 6= ∅] are all 0 or 1. The
coefficient corresponding to a row indexed by X ′ and a column indexed by X ′′ is 1 if and only
if X ′ and X ′′ have a nonempty intersection. The matrices −[X ′ ∪ X ′′ = X](−1)|X

′∩X′′| and
−[X ′ ⊇ X ′′](−1)|X

′′| are defined in the same way. They allow us to formulate the following
theorem.

Theorem 2. The linear transformations between the vectors xG, d
−
G and d+G are described by

the matrices already introduced. More precisely, we have for all ∅ ⊂ X ′ ⊆ X :

d−G(X
′) = [X ′ ⊆ X ′′] · xG(X

′′), (2.3)

xG(X
′) = [X ′ ⊆ X ′′](−1)|X

′′\X′| · d−G(X
′′), (2.4)

d+G(X
′) = [X ′ ∩X ′′ 6= ∅] · xG(X

′′), (2.5)

xG(X
′) = −[X ′ ∪X ′′ = X](−1)|X

′∩X′′| · d+G(X
′′), (2.6)

d−G(X
′) = −[X ′ ⊇ X ′′](−1)|X

′′| · d+G(X
′′), (2.7)

d+G(X
′) = −[X ′ ⊇ X ′′](−1)|X

′′| · d−G(X
′′). (2.8)

Proof. First of all, equations (2.3) and (2.5) are immediately equivalent to our definitions of the
vectors d−G and d+G. In order to prove (2.4), we have to show that the matrices [X ′ ⊆ X ′′] and
[X ′ ⊆ X ′′](−1)|X

′′\X′| are inverse of each other. This is a direct consequence of the inclusion-
exclusion principle :

[X ′ ⊆ X∗] · [X∗ ⊆ X ′′](−1)|X
′′\X∗| = [X ′ = X ′′], (2.9)

where [X ′ = X ′′] is the identity matrix; in order to find a coefficient of a product of two matrices,
one has to calculate a scalar product, which corresponds to a sum over X∗ for fixed X ′ and X ′′

in the preceding equation. In the same way, we can calculate :

−[X ′ ∩X∗ 6= ∅] · [X∗ ∪X ′′ = X](−1)|X
∗∩X′′| =

+[X ′ ∩X∗ = ∅] · [X∗ ∪X ′′ = X](−1)|X
∗∩X′′| = [X ′ = X ′′], (2.10)

which proves our formula (2.6). The matrix −[X ′ ⊇ X ′′](−1)|X
′′| is inverse of itself :

[X ′ ⊇ X∗] · [X∗ ⊇ X ′′](−1)|X
∗|+|X′′| = [X ′ = X ′′], (2.11)
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which shows the equivalence of (2.7) and (2.8). Therefore, it remains to deduce (2.7) :

d−G(X
′) = [X ′ ⊆ X∗] · xG(X

∗)

= −[X ′ ⊆ X∗] · [X∗ ∪X ′′ = X](−1)|X
∗∩X′′| · d+G(X

′′)

= −[X ′ ⊇ X ′′](−1)|X
′′| · d+G(X

′′). (2.12)

Example. For n = 3 and X = {1, 2, 3}, we use shorthand notations of type d−13 = d−G({1, 3}).
Then our formulae read as follows.

d−1 = x1 + x12 + x13 + x123, (2.13)

d−12 = x12 + x123, (2.14)

d−123 = x123; (2.15)

x1 = d−1 − d−12 − d−13 + d−123, (2.16)

x12 = d−12 − d−123, (2.17)

x123 = d−123; (2.18)

d+1 = x1 + x12 + x13 + x123, (2.19)

d+12 = x1 + x2 + x12 + x13 + x23 + x123, (2.20)

d+123 = x1 + x2 + x3 + x12 + x13 + x23 + x123; (2.21)

x1 = −d+23 + d+123 (2.22)

x12 = −d+3 + d+13 + d+23 − d+123 (2.23)

x123 = d+1 + d+2 + d+3 − d+12 − d+13 − d+23 + d+123; (2.24)

d−1 = d+1 , (2.25)

d−12 = d+1 + d+2 − d+12, (2.26)

d−123 = d+1 + d+2 + d+3 − d+12 − d+13 − d+23 + d+123; (2.27)

d+1 = d−1 , (2.28)

d+12 = d−1 + d−2 − d−12, (2.29)

d+123 = d−1 + d−2 + d−3 − d−12 − d−13 − d−23 + d−123. (2.30)

The following corollaries are immediate consequences of the preceding theorem.

Corollary 1. The bipartite graph G = (X,Y ;E) is determined up to a permutation of the
vertices of Y by the set function d−G : 2X \ ∅ → Z. Here d−G determines a bipartite graph if and

6



only if

xG(X
′) =

∑

X′⊆X′′

(−1)|X
′′\X′| · d−G(X

′′) ≥ 0 ∀ ∅ ⊂ X ′ ⊆ X. (2.31)

Corollary 2. The bipartite graph G = (X,Y ;E) is determined up to a permutation of the
vertices of Y by the set function d+G : 2X \ ∅ → Z. Here d+G determines a bipartite graph if and
only if

xG(X
′) =

∑

X′∪X′′=X

−(−1)|X
′∩X′′| · d+G(X

′′) ≥ 0 ∀ ∅ ⊂ X ′ ⊆ X. (2.32)

Corollary 3. For

D−
G(χ) :=

∑

∅⊂X′⊆X

d−G(X
′) · χX′

and D+
G(χ) :=

∑

∅⊂X′⊆X

d+G(X
′) · χX′

(2.33)

we have

D+
G(χ) = −D−

G(−χ) · exp(X ) and D−
G(χ) = −D+

G(−χ) · exp(X ). (2.34)

3 Matchings in Bipartite Graphs

Now our purpose is to calculate the set function m−
G : 2X \ ∅ → Z defined in the introduction.

To this end, we define

M−
G (χ) :=

∑

∅⊂X′⊆X

m−
G(X

′) · χX′

. (3.1)

The product theorem of [20] implies the following lemma.

Lemma 2. Let
X ′ =

∑

x∈X′

χ{x}. (3.2)

Then

1 +M−
G (χ) =

∏

∅⊂X′⊆X

(1 + X ′)xG(X′) (3.3)

=
∏

∅⊂X′⊆X

|X′|
∑

k=0

xG(X
′)k ·

X ′k

k!
, (3.4)

where xG(X
′)k = xG(X

′)(xG(X
′)− 1)(xG(X

′)− 2) · · · (xG(X
′)− k + 1) by definition.

Proof. For every ∅ ⊂ X ′ ⊆ X we have

(1 + X ′)xG(X′) =

|X′|
∑

k=0

(

xG(X
′)

k

)

X ′k =

|X′|
∑

k=0

xG(X
′)k ·

X ′k

k!
. (3.5)
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We next calculate the logarithm of the product displayed in (3.3) :

log
(

1 +M−
G (χ)

)

=
∑

∅⊂X′⊆X

xG(X
′) · log

(

1 + X ′
)

=
∑

∅⊂X′⊆X

(−1)|X
′|−1(|X ′| − 1)! · d−G(X

′) · χX′

. (3.6)

We can now define
D−

G!(χ) :=
∑

∅⊂X′⊆X

(|X ′| − 1)! · d−G(X
′) · χX′

(3.7)

and immediately get the following theorem.

Theorem 3. We have the identities :

1 +M−
G (χ) = exp

(

−D−
G!(−χ)

)

, (3.8)

log
(

1 +M−
G (χ)

)

= −D−
G!(−χ), (3.9)

∂xM−
G (χ) = −

(

1 +M−
G (χ)

)

· ∂xD−
G!(−χ) ∀x ∈ X, (3.10)

∂M−
G (χ) = −

(

1 +M−
G (χ)

)

· ∂D−
G!(−χ). (3.11)

Corollary 4. We have

m−
G(X) =

n
∑

k=1

(−1)n−k
∑

B1⊎···⊎Bk=X

k
∏

i=1

(|Bi| − 1)!d−G(Bi), (3.12)

d−G(X) =
n
∑

k=1

(−1)n−k (k − 1)!

(n− 1)!

∑

B1⊎···⊎Bk=X

k
∏

i=1

m−
G(Bi). (3.13)

In particular, the bipartite graph G = (X,Y ;E) is determined up to a permutation of the vertices
of Y by the set function m−

G : 2X \ ∅ → Z.

Example. For n = 3 and X = {1, 2, 3}, we use shorthand notations of type m−
13 = m−

G({1, 3}).
Then our formulae read as follows.

m−
1 = d−1 , (3.14)

m−
12 = d−1 d

−
2 − d−12, (3.15)

m−
123 = d−1 d

−
2 d

−
3 − d−12d

−
3 − d−13d

−
2 − d−23d

−
1 + 2d−123; (3.16)

d−1 = m−
1 , (3.17)

d−12 = m−
1 m

−
2 −m−

12, (3.18)

d−123 = m−
1 m

−
2 m

−
3 − 1

2m
−
12m

−
3 − 1

2m
−
13m

−
2 − 1

2m
−
23m

−
1 + 1

2m
−
123. (3.19)

Remark. With our method of set functions, it is possible to study most questions for matchings
in bipartite graphs also for permanents of matrices. It seems that the only result known along
those lines (without using set functions) is the analogue of formula (3.12); see [21].
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Our preceding formula (3.12) implies, in particular, that m−
G(X) is a polynomial in the

variables d−G(X
′), ∅ ⊂ X ′ ⊆ X. Moreover, m−

G(X) is also a polynomial in the variables d+G(X
′),

∅ ⊂ X ′ ⊆ X, as well as in the variables xG(X
′), ∅ ⊂ X ′ ⊆ X. This can be seen easily if

we replace the variables d−G(X
′) using formulae (2.7) or (2.3). In particular, everything is well

defined for negative integers xG(X
′), ∅ ⊂ X ′ ⊆ X (more generally, xG(X

′) ∈ A for an arbitrary
commutative ring A with 1 is sufficient). We can give the following traditional combinatorial
interpretation for this situation.

We can considerX as a set of persons and to every subsetX ′ ⊆ X associate a job for which all
the persons of the subset X ′ are qualified, and nobody else (the qualification of a person x ∈ X
for a job y ∈ Y is indicated by an edge (x, y) ∈ E in our bipartite graph G = (X,Y ;E)).
This job has the usual capacity xG(X

′), which means that at most xG(X
′) persons can work

there. More precisely, if k persons want to work there, then this is possible in xG(X
′)k =

xG(X
′)(xG(X

′)−1)(xG(X
′)−2) · · · (xG(X

′)−k+1) different ways, that is, every person taking
the job reduces its capacity by 1. In this way, m−

G(X) counts the number of possibilities to find
jobs for everybody, as reflected by our formula (3.4) of the preceding lemma.

This combinatorial interpretation motivates us to study the following slight modification.
We continue to consider X as a set of persons and with every subset X ′ ⊆ X to associate a
job for which all the persons from X ′ are qualified, and nobody else. But we give this job the
alternative capacity xG(X

′), which means that if k persons want to work there, then this is

possible in xG(X
′)k = xG(X

′)(xG(X
′)+ 1)(xG(X

′)+ 2) · · · (xG(X
′)+ k− 1) different ways, that

is, every person taking the job increases its capacity by 1. (This is completely analogous to the
problem of choosing k elements among xG(X

′) ones : if repetitions are not allowed, then the

number of different ways is xG(X
′)k/k! ; if they are allowed, then we have xG(X

′)k/k! different
choices.) If we work with those alternative capacities, then we denote the number of possibilities
to find jobs for everybody by m+

G(X). If X ′ ⊆ X, then the number of ways to find a job (with
alternative capacities) for every person x ∈ X ′ (for which this person is qualified) is m+

G(X
′).

This defines a new set function m+
G : 2X \ ∅ → Z we want to study :

M+
G (χ) :=

∑

∅⊂X′⊆X

m+
G(X

′) · χX′

. (3.20)

Our preceding discussion proves an analogue of our preceding lemma.

Lemma 3. We have

1 +M+
G (χ) =

∏

∅⊂X′⊆X

|X′|
∑

k=0

xG(X
′)k ·

X ′k

k!
(3.21)

=
∏

∅⊂X′⊆X

(1−X ′)−xG(X′), (3.22)

where xG(X
′)k = xG(X

′)(xG(X
′) + 1)(xG(X

′) + 2) · · · (xG(X
′) + k − 1) by definition.

Proof. For every ∅ ⊂ X ′ ⊆ X we have

|X′|
∑

k=0

xG(X
′)k ·

X ′k

k!
=

|X′|
∑

k=0

(−1)k
(

−xG(X
′)
)k
·
X ′k

k!
=

|X′|
∑

k=0

(

−xG(X
′)

k

)

(−X ′)k = (1−X ′)−xG(X′).

(3.23)
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Identities (3.4) and (3.22) show that by choosing negative integers for xG(X
′), ∅ ⊂ X ′ ⊆ X,

we get (−1)nm+
G(X) with n = |X| instead of m−

G(X). This proves the following theorem.

Theorem 4. We have
1 +M+

G (χ) =
(

1 +M−
G (−χ)

)−1
. (3.24)

Corollary 5. We have

m+
G(X) =

n
∑

k=1

(−1)n−kk!
∑

B1⊎···⊎Bk=X

k
∏

i=1

m−
G(Bi), (3.25)

m−
G(X) =

n
∑

k=1

(−1)n−kk!
∑

B1⊎···⊎Bk=X

k
∏

i=1

m+
G(Bi). (3.26)

In particular, the bipartite graph G = (X,Y ;E) is determined up to isomorphism by the set
function m+

G : 2X \ ∅ → Z. Moreover, the identity
(

1 +M+
G (−χ)

) (

1 +M−
G (χ)

)

= 1 means

(−1)|X|m+
G(X) +m−

G(X) +
∑

∅⊂X′⊂X

(−1)|X
′|m+

G(X
′) ·m−

G(X \X ′) = 0. (3.27)

The two preceding theorems imply the following results.

Theorem 5. We have the identities :

1 +M+
G (χ) = exp

(

D−
G!(χ)

)

, (3.28)

log
(

1 +M+
G (χ)

)

= D−
G!(χ), (3.29)

∂xM+
G (χ) =

(

1 +M+
G (χ)

)

· ∂xD−
G!(χ) ∀x ∈ X, (3.30)

∂M+
G (χ) =

(

1 +M+
G (χ)

)

· ∂D−
G!(χ). (3.31)

Corollary 6. We have

m+
G(X) =

n
∑

k=1

∑

B1⊎···⊎Bk=X

k
∏

i=1

(|Bi| − 1)!d−G(Bi), (3.32)

d−G(X) =
n
∑

k=1

(−1)k−1 (k − 1)!

(n− 1)!

∑

B1⊎···⊎Bk=X

k
∏

i=1

m+
G(Bi). (3.33)

Therefore, m+
G(X) depends monotonically on the numbers d−G(X

′), ∅ ⊂ X ′ ⊆ X, if d−G(X
′) ≥ 0

for every ∅ ⊂ X ′ ⊆ X, i.e. in particular if xG(X
′) ≥ 0 for every ∅ ⊂ X ′ ⊆ X, which are the

defining inequalities for bipartite graphs.
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Remark. It is possible to interpret formula (3.32) in such a way, that we sum over all permu-
tations of X the number of functions from X to Y which respect the edges E of our bipartite
graph and which are constant on the cycles of the permutations. This provides a link to Pólya’s
Counting Theory.

Example. For n = 3 and X = {1, 2, 3}, we use shorthand notations of type m+
13 = m+

G({1, 3}).
Then our formulae read as follows.

m+
1 = d−1 , (3.34)

m+
12 = d−1 d

−
2 + d−12, (3.35)

m+
123 = d−1 d

−
2 d

−
3 + d−12d

−
3 + d−13d

−
2 + d−23d

−
1 + 2d−123; (3.36)

d−1 = m+
1 , (3.37)

d−12 = −m+
1 m

+
2 +m+

12, (3.38)

d−123 = m+
1 m

+
2 m

+
3 − 1

2m
+
12m

+
3 − 1

2m
+
13m

+
2 − 1

2m
+
23m

+
1 + 1

2m
+
123. (3.39)

The end of this section is not necessary for understanding the rest of the article : it is written
only for readers interested in exponential generating functions. If we want to work with them
instead of working with set functions, we must use an infinite set X. Moreover, everything must
depend just on the cardinalities of the finite subsets of X and not on those subsets themselves.
For our bipartite graph G = (X,Y ;E), this means that every vertex of Y is either joint to all
vertices of X or to just one vertex of X : if a vertex y ∈ Y is joint to x ∈ X and to X ′ with
∅ ⊂ X ′ ⊂ X \ {x}, then, by permuting the elements of X \ {x}, we see that there must be
infinitely many vertices y ∈ Y each of which is joint to x and to a subset X ′′ of X \ {x} in
bijection with X ′. Therefore, x would get an infinite degree, which makes it impossible to count
matchings.

In other words, we can suppose that there is one y ∈ Y of capacity a joint to every x ∈ X,
and for every vertex x ∈ X, there is a vertex in Y of capacity i joint only to x. Let us
denote this infinite bipartite graph by G(a, i). It is evident that 1 + M−

G(1,0)(χ) = 1 + X and

1 +M−
G(0,1)(χ) = exp(X ). Therefore the product theorem implies the following proposition.

Proposition 1. We have

1 +M−
G(a,i)(χ) = (1 + X )a exp(i · X ), (3.40)

1 +M+
G(a,i)(χ) = 1 +M−

G(−a,−i)(−χ) = (1−X )−a exp(i · X ). (3.41)

Example. Let Gn(2) be the number of connected 2-regular bipartite multigraphs (i.e. multiple
edges are allowed)G = ({1, 2, . . . , n}, {1, 2, . . . , n};E) with fixed marked vertices, thenG1(2) = 1
and Gn(2) = n!(n − 1)!/2 for n > 1 : if we choose every second edge of such a cycle, then we
get an arbitrary first permutation, and a second permutation which is cyclic with respect to the
first one.
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Let Hn(2) be the number of arbitrary 2-regular bipartite multigraphs G = (X,Y ;E) with
fixed marked vertex sets of cardinality n. By permuting the vertices of Y , we get

Hn(2)

n!
=

∑

B1⊎···⊎Bk=X

k
∏

i=1

G|Bi|(2)

|Bi|!
= m+

G(1/2,1/2)(X). (3.42)

Therefore our preceding proposition implies (see Stanley’s book [24], 3.15.1.d) :

∞
∑

n=0

Hn(2)
X n

(n!)2
= (1−X )−1/2 exp(X/2). (3.43)

4 Duality for Matchings in Bipartite Graphs

Let us come back to our study of bipartite graphs G = (X,Y ;E) with the help of set functions.
Until now, we have never used xG(∅), that is the number of vertices y ∈ Y which are joint to no
x ∈ X at all. If we want to construct the bipartite complement of G, however, or just a partial
complement CX′(G) with ∅ ⊂ X ′ ⊆ X, then xG(∅) will become indispensable. In fact, for every
∅ ⊆ X ′′ ⊆ X, we have the identity

xC
X′ (G)(X

′′) = xG(X
′△X ′′), and in particular xG(X

′′) = xG(X \X ′′). (4.1)

Therefore it is convenient to choose xG(∅) in a useful way, namely in such a way that we get
normality in the sense of the duality theory of [20].

Proposition 2. The set of injective functions from X to Y , that is the set of functions with
usual capacities xG(X

′), ∅ ⊆ X ′ ⊆ X is normal if and only if

∑

∅⊆X′⊆X

xG(X
′) = |X| − 1. (4.2)

Proof. Since the edges of our bipartite graph have no importance at all for the question of
normality (see [20]), it is sufficient to consider the situation with a single job of capacity

∑

∅⊆X′⊆X

xG(X
′). (4.3)

If everybody except one person has already chosen this job, then the last person has





∑

∅⊆X′⊆X

xG(X
′)



− (|X| − 1) (4.4)

choices to take this job, and the situation is called normal if and only if the last number is equal
to 0.

The same kind of argument proves the analogous result for alternative capacities.
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Proposition 3. The set of functions from X to Y with alternative capacities xG(X
′), ∅ ⊆ X ′ ⊆

X is normal if and only if
∑

∅⊆X′⊆X

xG(X
′) = 1− |X|. (4.5)

These propositions, together with the duality theory of [20], imply the following theorems.

Theorem 6. (Duality Theorem for Usual Matchings in Bipartite Graphs) If xG(∅) is chosen in
such a way that

∑

∅⊆X′⊆X

xG(X
′) = |X| − 1, (4.6)

then

m−
Cx(G)(X) = −m−

G(X) ∀x ∈ X, (4.7)

m−
C

X′ (G)(X) = (−1)|X
′|m−

G(X) ∀X ′ ⊆ X, (4.8)

m−
G
(X) = (−1)|X|m−

G(X). (4.9)

Theorem 7. (Duality Theorem for Alternative Matchings in Bipartite Graphs) If xG(∅) is
chosen in such a way that

∑

∅⊆X′⊆X

xG(X
′) = 1− |X|, (4.10)

then

m+
Cx(G)(X) = −m+

G(X) ∀x ∈ X, (4.11)

m+
C

X′ (G)(X) = (−1)|X
′|m+

G(X) ∀X ′ ⊆ X, (4.12)

m+
G
(X) = (−1)|X|m+

G(X). (4.13)

It is evident that for every ∅ ⊂ X ′ ⊆ X we have

d−G(X
′) + d+

G
(X ′) = d−

G
(X ′) + d+G(X

′) =
∑

∅⊆X′′⊆X

xG(X
′′). (4.14)

This identity allows us to prove the following two corollaries easily.

Corollary 7. We have

m+
G(X) =

n
∑

k=1

(−1)n−k
∑

B1⊎···⊎Bk=X

k
∏

i=1

(|Bi| − 1)!
(

d+G(Bi) + n− 1
)

. (4.15)
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Proof. If we are in a normal situation, then the preceding duality theorem for alternative match-
ings in bipartite graphs and our formula (3.32) imply

m+
G(X) = (−1)|X|m+

G
(X)

= (−1)|X|
|X|
∑

k=1

∑

B1⊎···⊎Bk=X

k
∏

i=1

(|Bi| − 1)!d−
G
(Bi)

=

|X|
∑

k=1

(−1)|X|
∑

B1⊎···⊎Bk=X

k
∏

i=1

(|Bi| − 1)!
(

1− |X| − d+G(Bi)
)

. (4.16)

In the same way, we obtain the formula already mentioned in the introduction.

Corollary 8. We have

m−
G(X) =

n
∑

k=1

∑

B1⊎···⊎Bk=X

k
∏

i=1

(|Bi| − 1)!
(

d+G(Bi)− n+ 1
)

. (4.17)

Therefore, m−
G(X) depends monotonically on the numbers d+G(X

′), ∅ ⊂ X ′ ⊆ X, if d+G(X
′) ≥

n − 1 for every ∅ ⊂ X ′ ⊆ X, i.e. in particular if xG(X
′) ≥ 0 for all ∅ ⊂ X ′ ⊆ X and

d+G(x) = d−G(x) = dG(x) ≥ n − 1 for all x ∈ X, where the last condition is satisfied as soon as
xG(X

′) ∈ Z and xG(X
′) > 0 for all ∅ ⊂ X ′ ⊆ X.

Proof. If we are in a normal situation, then the preceding duality theorem for usual matchings
in bipartite graphs and our formula (3.12) imply

m−
G(X) = (−1)|X|m−

G
(X)

= (−1)|X|
|X|
∑

k=1

(−1)|X|−k
∑

B1⊎···⊎Bk=X

k
∏

i=1

(|Bi| − 1)!d−
G
(Bi)

=

|X|
∑

k=1

(−1)k
∑

B1⊎···⊎Bk=X

k
∏

i=1

(|Bi| − 1)!
(

|X| − 1− d+G(Bi)
)

. (4.18)

The conjecture imagined by Triesch [25] does not follow in all cases from the preceding
corollary because it affirms that m−

G(X) depends monotonically on the numbers d+G(X
′), ∅ ⊂

X ′ ⊆ X, as soon as xG(X
′) ∈ Z and xG(X

′) ≥ 0 for all ∅ ⊂ X ′ ⊆ X. If we consider bipartite
graphs as integer points in the cone defined by the inequalities xG(X

′) ≥ 0 for all ∅ ⊂ X ′ ⊆ X,
then we have proved the conjecture for all points which are not on the boundary of the cone.

It is possible to prove the monotonicity directly, if just one component of the vector d+G is
increased by 1. Ideas of this kind can also be used in order to give a more elementary (but less
instructive) proof of our formula (4.17). If we increase d+G(X

′), ∅ ⊂ X ′ ⊆ X, by 1, then all
xG(X

′′), ∅ ⊂ X ′′ ⊆ X, with X ′′ ∪ X ′ = X are modified : they decrease by 1 if |X ′′ ∩ X ′| ≡ 0
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(mod 2) and they increase by 1 if |X ′′ ∩X ′| ≡ 1 (mod 2); see our formula (2.6). In particular,
in order to accomplish this transformation without violating the conditions xG(X

′′) ∈ Z and
xG(X

′′) ≥ 0 for all ∅ ⊂ X ′′ ⊆ X, we need the conditions dG(x) ≥ 2|X
′|−1 for all x ∈ X \X ′ and

dG(x) ≥ 2|X
′|−2 for all x ∈ X ′ if |X ′| > 1.

If we increase only components of d+G of the same parity (the parity of the component d+G(X
′)

is by definition the parity of |X ′|), then the monotonicity follows directly from what has already
been said. If we increase just two arbitrary components, then it can also be shown directly.

The right hand side of (4.17) looks perfect if d+G(X
′) ≥ n − 1 for every ∅ ⊂ X ′ ⊆ X, but

far from perfect if some of the numbers d+G(X
′)− n+ 1 are negative, since a lot of cancellation

occurs. A natural way to avoid it consists in replacing d+G(X
′) − n + 1 by

(

d+G(X
′)− n+ 1

)

+
,

where (x)+ := max(x, 0) denotes the maximum of x and 0 for any real number x. More precisely,
we conjecture that an identity of the following type holds :

m−
G(X) =

n
∑

k=1

∑

B1⊎···⊎Bk=X

k
∏

i=1

f(Bi)
(

d+G(Bi)− n+ 1
)

+
, (4.19)

where f(X ′), ∅ ⊂ X ′ ⊆ X, depends monotonically on the numbers d+G(X
′′), ∅ ⊂ X ′′ ⊆ X ′. In

other words, formula (1.11) can be replaced by a monotonic interpolation with multidimensional
spline functions.

Our conjectured formula would imply, as a corollary, that any bipartite graph G = (X,Y ;E)
with |X| = |Y | = n has at most (n − 1)! perfect matchings (matchings covering every vertex
of G), if for any partition of X into two nonempty blocks X ′ and X ′′ we have d+G(X

′) ≤ n− 1 or
d+G(X

′′) ≤ n−1. This corollary can indeed be proved by induction on n. Moreover, if G really has
those (n−1)! perfect matchings, then either there exists an x ∈ X such that d+G(X \{x}) = n−1
or G is isomorphic to C6, a circle with 6 vertices.

Let us conclude this section with an easy example for exponential generating functions.

Example. Let D(n) be the number of fixed point free permutations of the set {1, 2, . . . , n} = X
(or, equivalently, the number of possibilities to put n letters into n envelopes in such a way, that
no letter will be in the correct envelope). In other words, D(n) is the number of perfect matchings
of the complete bipartite graph Kn,n from which one perfect matching has been removed. This
situation can be normalized with an additional vertex y ∈ Y of weight −1, which is not joined to
any vertex of X, that is xG(∅) = −1. Now our duality theorem for usual matchings in bipartite
graphs proves D(n) = (−1)nm−

G(−1,1)(X), and the last proposition of Section 3 implies

∞
∑

n=0

D(n) ·
X n

n!
= 1 +M−

G(−1,1)(−χ) = (1−X )−1 exp(−X ), (4.20)

one of the most classical results of enumerative combinatorics, which can be found in [1] or [24],
for example.

5 Rook Theory

Let G = (X,Y ;E) be a simple bipartite graph with |X| = n. We denote by G + z the graph
obtained from G by adding to Y one vertex with the usual capacity z which is joined to every
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x ∈ X by an edge. Let Ga be a graph for which xG(∅) has been chosen in such a way that
∑

∅⊆X′⊆X

xG(X
′) = |X|+ a. (5.1)

Then our duality theorem for usual matchings in bipartite graphs implies the following lemma.

Lemma 4. We have
m−

Ga+z
(X) = (−1)|X|m−

Ga−z−a−1(X). (5.2)

We can define the factorial rook polynomial easily by

ρ!(Ga, z) := m−
Ga+z(X) =

n
∑

r=0

p(Ga, r)z
n−r, (5.3)

where zn−r = z(z − 1)(z − 2) · · · (z − n + r + 1) and where p(Ga, r) denotes the number of
r-matchings of Ga, p(Ga, 0) := 1. An r-matching is a set of r independent (i.e., mutually non
adjacent) edges. Traditionally, one considers X and Y as rows and columns of a checkerboard so
that r-matchings become placements of non-attacking rooks; see [5] for an introduction to rook
theory. It is classical (see the book [22] by Riordan, chapter 7.7), that the numbers p(Ga, r)
are determined by the numbers p(Ga, r). No simple relation between them, however, has been
found yet. Inspired by the definition of Chung and Graham’s cover polynomial [7], Chow (and
Gessel) [6] have introduced our factorial rook polynomial, which proved already to be useful in
the work of Foata and Schützenberger [9] on Ferrers relations, because in that case, it factorizes
naturally (see [13] and Stanley’s book [24], theorem 2.4.1). Our preceding lemma implies the
following duality relation for the factorial rook polynomial, which was imagined by Chow (and
Gessel) [6] in the case a = 0.

Proposition 4. We have

ρ!(Ga, z) = (−1)nρ!(Ga,−z − a− 1). (5.4)

The classical rook polynomial can be found, for example, in Godsil’s book [11], chapter 1.3.
We will define it as follows :

ρ(Ga, t) :=

n
∑

r=0

(−1)rp(Ga, r)t
n−r. (5.5)

Let Ga[X
′] be the simple bipartite graph formed by the vertices of X ′ (∅ ⊂ X ′ ⊆ X), the edges

of G incident with them and the second endpoints (in Y ) of those edges. Our main theorem of
Section 3, i.e. identity (3.8), implies the following lemma.

Lemma 5. We have

1 +
∑

∅⊂X′⊆X

ρ(Ga[X
′], t) · χX′

= exp (t · X ) ·
(

1 +M−
Ga

(−χ)
)

(5.6)

= exp
(

t · X −D−
Ga

!(χ)
)

. (5.7)
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It allows us to prove the the last theorem of this article.

Theorem 8. We have
∫ ∞

0
tz+a · e−tρ(Ga, t)dt = (−1)nρ!(Ga,−z − a− 1) · Γ(z + a+ 1) (5.8)

= ρ!(Ga, z) · Γ(z + a+ 1). (5.9)

In particular, if a = −1, then ρ!(G−1, z) ·Γ(z) = (−1)nρ!(G−1,−z) ·Γ(z) is the Mellin transform
of e−tρ(G−1, t).

Proof. The first identity can be proved easily with the algebra of set functions :

∫ ∞

0
tz+ae−t · exp (t · X ) ·

(

1 +M−
Ga

(−χ)
)

· dt

=
(

1 +M−
Ga

(−χ)
)

∫ ∞

0
tz+a exp (−t(1−X )) dt

=
(

1 +M−
Ga

(−χ)
)

∫ ∞

0

(

s

1−X

)z+a

exp (−s)
ds

1−X

=
(

1 +M−
Ga

(−χ)
)

(1−X )−z−a−1
∫ ∞

0
sz+ae−sds

=
(

1 +M−
Ga−z−a−1(−χ)

)

· Γ(z + a+ 1). (5.10)

The second identity is nothing else but the preceding proposition.

The preceding theorem is closely related to results of [19]. Its special case a = z = 0 was
found by Joni, Rota and Zeilberger [15], since ρ!(G0, 0) = m−

G0

(X) counts the number of perfect

matchings of G0. This result makes it possible to interpret combinatorially integrals of products
of generalized Laguerre polynomials; see [2, 3, 4, 8, 10, 11, 12, 14, 23, 26]. Following Godsil [11],
we can define Laguerre polynomials as rook polynomials of complete bipartite graphs Kn,m :=
(X,Y ;X × Y ) with |X| = n and |Y | = m. More precisely, for every a ∈ N we define

Le(a)n (t) := ρ(Kn,n+a, t). (5.11)

Since ρ(Kn,n+a ⊎Km+a,m, t) = ta · Le
(a)
n (t) · Le

(a)
m (t), the identity of Joni, Rota and Zeilberger

implies that

ρ!(Kn,n+a ⊎Km+a,m, 0) =

∫ ∞

0
Le(a)n (t) · Le(a)m (t) · tae−tdt (5.12)

(see [12]). This proves in particular the orthogonality of our polynomials Le
(a)
n (t) with respect to

tae−tdt. Therefore our definition of Laguerre polynomials corresponds to the classical definition.
Our normalization, however, is chosen in such a way that the first coefficient (i.e. the coefficient
of tn) is equal to 1.
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[26] G. Viennot, ”Une théorie combinatoire des polynômes orthogonaux généraux”, Notes de
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