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Abstract We prove that, over any field, the dimension of the indeterminacy locus
of a rational map f : Pn 99K Pn defined by monomials of the same degree d with no
common factors is at least (n−2)/2, provided that the degree of f as a map is not
divisible by d. This implies upper bounds on the multidegree of f and in particular,
when f is birational, on the degree of f−1.

Key words: Monomial transformations, Cremona transformations.
2010 Mathematics Subject Classification (MSC2010): 14E07.

1 Introduction

We denote by Pn the n-dimensional projective space over a fixed field. A monomial
transformation of Pn is a rational map f : Pn 99K Pn whose components f0, . . . , fn
are monomials (of the same positive degree d( f ) and with no common factors) in
the variables x0, . . . ,xn.

Monomial transformations are of course very special among all rational transfor-
mations, but also much easier to study. For this reason, they have recently attracted
some attention. In particular, there is a description of all birational monomial trans-
formations f with d( f ) = 2 in [CS], §2, from which it follows that d( f−1) is then
at most equal to n ([CS], Theorem 2.6). Extensive computer calculations were then
performed by Johnson in [J] and led him to suggest that the largest possible value
for d( f−1) should be (d( f )−1)n−1

d( f )−2 when d( f )≥ 3.
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These values should be compared with the optimal bound d(g−1)≤ d(g)n−1 for
all birational transformations g of Pn. This maximal value for d(g−1) is attained if
and only if the indeterminacy locus of g is finite (see §4), hence one is led to think
that the indeterminacy locus of a monomial map should be rather large. This is what
we prove in Theorem 1: the dimension of the indeterminacy locus of a monomial
map f : Pn 99K Pn is at least (n−2)/2, provided that the degree of f as a map is not
divisible by d( f ).

We show in §4 that this implies a bound on d( f−1) for all birational monomial
transformations f , which is however not as good as the one suggested by Johnson.

2 Monomial transformations

We represent a monomial transformation f : Pn 99K Pn, with components f0, . . . , fn,
by the (n+1)× (n+1) matrix A = (ai j)0≤i, j≤n whose ith row lists the exponents of
fi. With this notation, one has fA ◦ fB = fAB.

The following proposition is elementary ([GSP]; [SV] Lemma 1.2; [J]).

Proposition 1. With the notation above, we have

|det(A)|= d( f )deg( f ).

In particular, f is birational if and only if |det(A)|= d( f ).

Proof. The condition that all monomials f0, . . . , fn have the same degree d := d( f )
means that in each row of A, the sum of the entries is d. Adding all columns to the
0th column, then subtracting the first row from all other rows we obtain

det(A) =

∣∣∣∣∣∣∣
d a01 · · · a0n
...

...
...

d an1 · · · ann

∣∣∣∣∣∣∣= d

∣∣∣∣∣∣∣
1 a01 · · · a0n
...

...
...

1 an1 · · · ann

∣∣∣∣∣∣∣= d det(M),

where M := (mi j)1≤i, j≤n is defined by mi j := ai j − a0 j. If T ' (C∗)n ⊂ Pn is the
torus defined by x0 · · ·xn 6= 0, the map f induces a morphism fT : T → T given by

fT (x1, . . . ,xn) = (xm11
1 · · ·xm1n

n , . . . ,xmn1
1 · · ·xmnn

n ).

The induced map f̂T : T̂ → T̂ between algebraic character groups (where T̂ is the
free abelian group Zn) is given by the transposed matrix MT : Zn → Zn. Perform-
ing elementary operations on M amounts to composing fT with monomial auto-
morphisms, so we can reduce to the case where M is diagonal, in which case it is
obvious that the degree of the morphism fT (which is the same as the degree of f )
is |det(M)|. ut

Corollary 1. With the notation above, f is birational if and only if |det(A)|= d( f ).
Its inverse is then also a monomial transformation.
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Proof. It is clear from the proof above that f is birational if and only if |det(M)|= 1,
i.e., if and only if M ∈GLn(Z) or, equivalently, if and only if fT is an isomorphism,
whose inverse is then given by the matrix M−1. It is therefore a monomial transfor-
mation. ut

3 Indeterminacy locus

In this section, f : Pn 99K Pn is again a monomial transformation. We assume that
its components f0, . . . , fn have no common factors. In terms of the matrix A defined
in §2, this means that each column of A has at least one 0 entry.

The indeterminacy locus B of f is then the subscheme of Pn defined by the equa-
tions f0, . . . , fn. Its blow-up X̂ → X is the graph Γf → Pn of f ([D], §1.4).

For each nonempty subset J ( {0, . . . ,n} such that the (n+ 1)× |J| matrix AJ
constructed from the columns of A corresponding to the elements of J has no zero
rows, we obtain a linear space contained in B by setting x j = 0 for all j ∈ J. Its
codimension in Pn is |J|. Moreover, Bred is the union of all such linear spaces.

Theorem 1. Let f : Pn 99K Pn be a dominant transformation defined by monomials
of degree d with no common factors. If the degree of f is not divisible by d, the
dimension of the indeterminacy locus of f is at least (n−2)/2.

The condition on the degree is necessary, as shown by the morphism (x0, . . . ,xn) 7→
(xd

0 , . . . ,x
d
n) of degree dn (whose indeterminacy locus is empty).

Proof. Since the determinant of the matrix A is nonzero we may assume, upon per-
muting its rows and columns, that we have aii 6= 0 for all i ∈ {0, . . . ,n}.

We then define an oriented graph on the set of vertices {0, . . . ,n} by adding an
oriented edge from i to j whenever ai j 6= 0. We then say that a vertex x is equivalent
to a vertex y if and only if there exists an oriented path from x to y and an oriented
path from y to x. This defines a partition of the set {0, . . . ,n} into equivalence classes
(note that x is equivalent to x since axx 6= 0).

Say that an equivalence class X is greater than or equal to an equivalence class
Y if there is an oriented path from an element of X to an element of Y (there exists
then an oriented path from any element of X to any element of Y ). This defines a
partial order on the set of equivalence classes.

Choose a class X minimal for this order. Entries of A in a row corresponding to an
element of X which are not in a column corresponding to an element of X are then
0 (otherwise, at least one oriented edge should come out of a X to element not in X ,
contradicting the minimality of X). It follows that the determinant of the submatrix
AX of A corresponding to rows and columns of X divides the determinant of A. The
sum of all entries in a row of AX is d hence, by the same reasoning used in the proof
of Proposition 1, the determinant of AX is nonzero, divisible by d.

Because of the condition d - deg( f ) and Proposition 1, the determinant of A is
not divisible by d2. In particular, our partial order has a unique minimal element X .



4 Olivier Debarre and Bodo Lass

Without loss of generality, we may assume 0 ∈ X . Every other vertex then has an
oriented path to 0. In particular, we may define an acyclic function

ϕ : {1, . . . ,n}→ {0,1, . . . ,n}

such that (x, f (x)) is an oriented edge of our graph for all x ∈ {1, . . . ,n} (“acyclic”
means that for all x ∈ {1, . . . ,n}, there exists k > 0 such that f k(x) = 0).

We keep only the n edges of the type (x, f (x)); since ax f (x) 6= 0, they correspond
to n nonzero entries, off the diagonal, in each row 1, . . . ,n. Since our new graph on
{0, . . . ,n} has n edges and no cycles, we may color its vertices in black or white in
such a way that x and f (x) have different colors, for all x ∈ {0, . . . ,n}.

We select the vertices of the color which has been used less often (if both colors
have been used the same number of times, we select the vertices with the same color
as 0). If 0 is not selected, we add it to the selection. We end up with at most (n+2)/2
selected vertices which are all on one of our n edges or the loop at 0.

Consider the submatrix of A formed by the ≤ (n+2)/2 columns corresponding
to the selected vertices. In each row, there is a nonzero entry: in the row 0, because
0 was selected and a00 6= 0; in any other row x because either x was selected and
axx 6= 0, or f (x) was selected and ax f (x) 6= 0. This proves the theorem. ut

Example 1. The bound in the theorem is sharp: for d ≥ 2, one easily checks that the
indeterminacy locus of the birational automorphism ([J], Example 2)

fn,d : (x0, . . . ,xn) 7→ (xd
0 ,x

d−1
0 x1,xd−1

1 x2, . . . ,xd−1
n−1xn) (1)

of Pn has dimension exactly d(n− 2)/2e. But there are many other examples of
birational monomial automorphisms of Pn with indeterminacy locus of dimension
exactly d(n−2)/2e, such as monomial maps defined by matrices

A =



d 0 · · · · · · · · · · · · · · · · · · 0
d−1 1 0 · · · · · · · · · · · · · · · 0

0 d−1 1 0 · · · · · · · · · · · · 0
a30 a31 a32 1 0 · · · · · · · · · 0
0 0 0 d−1 1 0 · · · · · · 0

a50 a51 a52 a53 a54 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

1


where, for each odd i, we choose ai0 6= 0 and ∑

i−1
j=0 ai j = d−1. The (reduced) inde-

terminacy locus is then defined by the equations

x0 = x1x2 = x3x4 = · · ·= 0.

It has dimension n−1−bn/2c= d(n−2)/2e.
Another set of examples is provided by matrices of the form
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1 1 1 d−3 0 · · · · · · · · · · · · 0
0 1 1 d−2 0 · · · · · · · · · · · · 0

d−1 0 1 0 0 · · · · · · · · · · · · 0
a30 a31 0 a33 0 · · · · · · · · · · · · 0
a40 a41 a42 a43 1 0 · · · · · · · · · 0
0 0 0 0 d−1 1 0 · · · · · · 0

a60 a61 a62 a63 a64 a65 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

1


where a30+a31+a33 = d ≥ 3, a31a33 6= 0, and, for each even i, we choose ai0ai2 6= 0
and ∑

i−1
j=0 ai j = d−1.

4 Degrees of a monomial map

Let g : Pn 99K Pn be a rational map. One defines the ith degree di(g) as the degree
of the image by g of a general Pi ⊂ Pn (more precisely, di(g) := Pn−i · f∗Pi). One
has d0(g) = 1, dn(g) = deg(g), and d1(g) is the integer d(g) defined earlier (i.e., the
common degree of the components g0, . . . ,gn of g, provided they have no common
factors). An alternative definition of the di(g) is as follows: if Γg ⊂ Pn×Pn is the
graph of g,

di(g) = Γg · p∗1Pi · p∗2Pn−i. (2)

The sequence d0(g), . . . ,dn(g) is known to be a log-concave sequence: it satisfies

∀i ∈ {1, . . . ,n−1} di(g)2 ≥ di+1(g)di−1(g)

(this is a direct consequence of the Hodge Index Theorem; [D], (1.6)). This implies
di(g)≤ d1(g)i.

Proposition 2. Let f : Pn 99KPn be a dominant map defined by monomials of degree
d with no common factors. Set c := bn/2c+1. If the degree of f is not divisible by
d, we have, for all i ∈ {c, . . . ,n},

di( f )≤ (1−d−c)
i−1
c−1 di.

Proof. The degrees of f can be expressed in terms of the Segre class of its indeter-
minacy locus B. In particular, if B is nonempty and c′ := codim(B), one has ([D],
Proposition 2.3.1)

di( f ) =

{
di for i < c′,
di−degs(B) for i = c′,

(3)
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where degs(B) is the sum of the degrees of the top-dimensional components of B,
counted with their Samuel multiplicity (this is larger than the “usual” multiplicity
([F], Examples 4.3.4 and 4.3.5.(c)); in particular degs(B) is a positive integer). Since
in our case c′ ≤ c = n−d(n−2)/2e (Theorem 1), it follows from log-concavity that
we have

dc( f )< dc.

By log-concavity, this implies that for i≥ c, one has

di( f )≤ dc( f )
i−1
c−1 d1− i−1

c−1 ≤ (dc−1)
i−1
c−1 d

c−i
c−1 = (1−d−c)

i−1
c−1 di.

This proves the proposition. ut

When g is birational, i.e., when dn(g) = 1, it follows from (2) that di(g−1) =
dn−i(g) for all i ∈ {0, . . . ,n}. In particular,

d(g−1) = dn−1(g)≤ d(g)n−1.

By (3), equality occurs exactly when the indeterminacy locus of g is finite.
When f is a monomial birational transformation of Pn, Proposition 2 gives the

stronger bound:

d( f−1)≤ (1−d−c)
n−2
c−1 dn−1 = dn−1− n−2

bn/2c
db(n−3)/2c+O(d−2), (4)

where d := d( f ). However, as mentioned in the introduction, this is not optimal.
When d( f ) = 2, the set of possible values for d( f−1) is {2, . . . ,n} and the maxi-

mal value n is obtained only (up to permutation of the factors) for the birational map
fn,2 of (1) ([CS], Theorem 2.6). In particular, the other degrees of f are then fixed.

Johnson’s calculations. When d := d( f ) > 2, Johnson’s computer calculations in
[J] suggest that the maximal possible value for d( f−1) should be

d( f−1
n,d ) =

(d−1)n−1
d−2

= dn−1− (n−2)dn−2 +O(dn−3)

and that equality should only be attained when (up to permutation of the factors)
f = fn,d . More precisely, Johnson checks that when n = 4 and 3 ≤ d ≤ 5, one has
d( f−1) ≤ d( f−1

n,d )− d + 1 if (up to permutation of the factors) f 6= fn,d . There are
also further gaps in the list of possible values for d( f−1).

Mixed volumes. The degrees di( f ) of a monomial map f can be interpreted in
terms of mixed volumes of polytopes in Rn as follows. Let ∆ ⊂ Rn be the standard
n-dimensional simplex conv(0,e1, . . . ,en). Let f : Pn 99K Pn be a monomial map
with associated matrix A = (ai j)0≤i, j≤n, and let ∆ f ⊂Rn be the simplex which is the
convex hull of the points ai = (ai1, . . . ,ain) ∈Nn, for i ∈ {0, . . . ,n}. Then ([D], §3.5)

di( f ) = MV(∆ , . . . ,∆︸ ︷︷ ︸
n−i times

,∆ f , . . . ,∆ f︸ ︷︷ ︸
i times

).
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The right-hand side of this equality is a mixed volume: if the n-dimensional volume
is normalized so that vol(∆) = 1/n!, this is (n− i)!i! times the coefficient of un−ivi

in the polynomial vol(u∆ +v∆ f ), where u∆ +v∆ f is the Minkowski sum {ux+vy |
x ∈ ∆ ,y ∈ ∆ f }.

Although mixed volumes are notoriously difficult to compute, there are com-
puter programs such as PHCpack (available on Jan Verschelde’s webpage) that can
do that. We should also mention the article [A], which expresses the degrees of a
monomial rational transformation in terms of integrals over an associated Newton
region.
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