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Résumé. On donne une démonstration combinatoire directe de la formule de Harer-Zagier sur les
nombres e4(m) de maniéres d’obtenir une surface de Riemann de genre g par identification
par paires des c6tés d’un 2m-gone. Cette formule est la clé combinatoire nécessaire pour
le calcul de la caractéristique d’Euler de I’espace de modules des courbes de genre g. La
méthode ici développée reprend ’approche combinatoire imaginée par Harer et Zagier
et évite d’utiliser l’'intégration sur un ensemble gaussien de matrices aléatoires. Notre
technique de démonstration repose sur I’énumération des arborescences et des circuits
eulériens. (¢) Académie des Sciences/Elsevier, Paris

A combinatorial proof of the Harer-Zagier formula

Abstract. We give a combinatorial and self-contained proof of the Harer-Zagier formula for the
numbers e4(m) of ways of obtaining a Riemann surface of given genus g by identifying
in pairs the sides of a 2m-gon. This formula was the key combinatorial fact needed
for the calculation of the Euler characteristic of the moduli space of curves of genus g.
The method developed here completes the original combinatorial approach imagined by
Harer and Zagier and avoids using the integration over a Gaussian ensemble of random
matrices. Our derivation is based upon the enumeration of arborescences and Euler
circuits. (¢) Académie des Sciences/Elsevier, Paris

Abridged English Version

Harer and Zagier asked in [4] for a combinatorial proof of the following theorem:

THEOREM (HARER-ZAGIER). — Let ¢4(m) be the number of ways of obtaining an oriented
surface of given genus g by one of the (2m — 1)!! := (2m)!/(2™m!) possible gluings in pairs of the
counterclockwisely oriented sides of a 2m-gon, such that two oppositely oriented arcs become an
unoriented edge. Then we have for every N € N\{0} (m € N\{0} is fized):

lm/2] N N
Z gg(m) - N™T1729 = Z( )-(2m—1)!!-2"—1-(n’f1).
9=0 n=1 n

Proof (sketched). - Every gluing yields a multigraph G = (V, E) with |E| = m edges, some
v:=|V| =m+ 1 — 2g vertices and with a directed Eulerian tour (the 2m-gon after the gluings);
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and

[m/2] [m/2]

Y eg(m) - N™H720 = 3" gy(m)- N?

9=0 g=0
counts the number of colourations of its vertices with the colours 1,2,..., N. However, every
colouration is surjective onto some subset of {1,2,..., N} of cardinality n, and it is sufficient to
prove:

THEOREM. — Let V ={1,2,...,n} be given and let m > n — 1 be fized; b:=n—1, s :=m —b.
Then the number of (really different) directed Eulerian tours on all multigraphs G = (V, E) with
|E| = m (undirected) edges is equal to

% — (2m— 1)1 2" 1. (nTJ.

Proof (sketched). — By the so-called BEST Theorem it is possible for every directed Eulerian
tour to distinguish between b edges forming an arborescence a : V\r — V (r € V') on the one hand
and the other s supplementary edges on the other hand. Therefore, the desired number can be

expressed with the help of the variables x4, ..., z, as follows:
. . 8
om0 Y Y [ wew] - [@ a2 st
il—h...+it,:>l)(—)|—2s r€V a:V\r—-V veV\r
115--95tn 2

= Z 8;118;’; [:L'l—f—...—f—a:n]b-[m1+...+xn]2s/(2ss!)
i1+ in=b+2s

il,...,zn20

_ (b+2s)! Z 1 - (b—|—23)!.<2b—|—23>, ged.

25! 25! b
14 tin=b+2s
i1,000yin>0

Remark. — With the help of one of the combinatorial proofs of the identity

> 2 I zw = [m+ovml

reV a:V\r—=V veV\r

as well as of the BEST Theorem one easily gets the promised combinatorial proof.

1. Introduction

Considérons un 2m-gone convexe (régulier), orientons ses 2m c6tés dans le sens inverse des
aiguilles d’une montre et numérotons les de 1 & 2m suivant cette orientation. Si I’on identifie
(i. e. silon colle) ces 2m arcs (i. e. les 2m cO6tés ainsi orientés) par paires de facon que deux
arétes d’orientations opposées forment une aréte non-orientée, on obtient une surface de Riemann
décomposée en cellules avec une 2-cellule (le 2m-gone), m 1-cellules (les arétes collées) et v sommets.
Chaque identification de deux arcs entraine ’identification de leurs extrémités; a priori, il n’est pas
évident de savoir combien de sommets différents on obtient aprés ces identifications. Le genre g de
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la surface est déterminé par la formule d’Euler: v —m+1=2—- 29 < v+ 29 = m + 1. De plus,
on a les inégalités: g >0 = v<m+1 et v>1 = g<m/2.

Il y a naturellement (2m — 1)!! := (2m)!/(2™m!) identifications possibles. On désigne par ¢4(m)
le nombre d’identifications qui conduisent a une surface orientée de genre g. Alors on a pour tout

N € N\{0} (m € N\{0} étant fixé):
FORMULE DE HARER-ZAGIER

Lm/2] N

Z gg(m) - Nmtl-29 _ Z (‘Z) -(2m — 1) - on—1 . (nTl)

g:O n=1

Harer et Zagier ont commencé leur démonstration par la méme approche combinatoire qui sera
prise ici. Pour aboutir, cependant, ils ont dii utiliser ’intégration sur un ensemble gaussien de
matrices aléatoires. La présente Note se veut une réponse a la suggestion faite dans leur article
([4], page 460): «It would be nice to have a direct (geometrical/combinatorial) proof. »

On fait appel, en effet, & deux théoréemes combinatoires classiques qu’il est utile de reformuler
et de redémontrer dans le présent contexte, a savoir le calcul des arborescences et le théoreme
dit BEST sur les circuits eulériens. Un troisieme théoréme est le chainon essentiel de notre
démonstration. On verra que le dernier paragraphe reprend ’argument combinatoire développé
dans [4].

Signalons que Itzykson et Zuber [5] ont simplifié 'intégration sur les matrices aléatoires a 1’aide
des oscillateurs harmoniques et de la formule de Baker-Campbell-Hausdorff. Si 'on s’appuie, en
revanche, sur les polynémes de couplages (voir [9], VI-34, remarque 21, ou [3], chapitre 1), on peut
résoudre l'intégrale (3.5) de [5] directement, réduisant ainsi cette démonstration de moitié.

Jackson [6] a aussi démontré la formule de Harer-Zagier par un calcul sur les caractéres du groupe
symétrique, méthode qui a été ensuite reprise et simplifiée par Itzykson et Zuber [5] et Zagier [10].

2. Dénombrement des arborescences et des circuits eulériens

Soient n € N\{0} et V = {1,2,...,n} un ensemble fini. Un élément r € V ayant été fixé, on
appelle arborescence de racine r une fonction acyclique a : V\r — V (de maniére équivalente, une
fonction a : V\r — V telle que, pour tout v € V\r, il existe i € {1,...,n — 1} avec a‘(v) = r,
c’est-a-dire en itérant la fonction au plus n — 1 fois on arrive & la racine, voir [2] page 61). Pour
mieux distinguer les arborescences des fonctions quelconques on va écrire a : V\r ~» V dans la
suite. Soient x4, ...,z des variables. Posons a(x) := [],¢y\, Ta(v)- Alors (voir [8], chapitre 5.3):

THEOREME 1 (CAYLEY).

Z Z a(x) = (z1+...+z,)" "

r€V a:V\r~V

Démonstration (Prifer-Foata). — Il est naturel de coder une fonction a : V\r ~» V par la suite de
ses n—1 valeurs prises: a(vy1), a(va), ..., a(v,—1). Pour v on peut prendre v; := min [V \ a(V\r)].
Comme a' := aly\v, est encore une arborescence, on peut appliquer la méme procédure a a'. On
obtient ainsi une bijection entre arborescences a : V\r ~» V et suites de nombres a(v1) € V, ...,
a(vn—1) €V telle que a(x) = Zq(vy) " - - - * Ta(vn_1), €€ qui achéve la démonstration.
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Soit D = (V,A), A:V xV — N, un multigraphe orienté, oi A(u,v) désigne la multiplicité de
Parc (u,v) € VxV. Notons que A est un (multi)ensemble de cardinalité |A| = Z(u,v)GVXV A(u,v).
Posons i(u,v) := u et t(u,v) := v (pour distinguer I'extrémité initiale et terminale de chaque arc)
ainsi que df(v) == Y ouecy Alv,u) et dp(v) := 37,y A(y,v) (pour les demi-degrés).

Un circuit eulérien de D est une bijection ¢ : {1,2,...,|A|} — A telle que t(c(k)) = i(c(k + 1))
pour tout k € {1,2,...,|A| — 1} et t(c(]A|)) = i(c(1)). Ce dernier sommet est appelé racine r du
circuit eulérien c. En outre, pour tout k € {1,2,...,|A|}, arc ¢(k) s’appelle départ du sommet
i(c(k)) et arrivée au sommet ¢(c(k)). Le nombre des arrivées de c A v € V est égal & d3;(v), et df5(v)
est le nombre des départs de v. Naturellement, dj;(v) = d5(v) pour tout v € V est une condition
nécessaire pour 'existence d’un circuit eulérien, condition qu’on supposera satisfaite dans tout ce
qui suit.

Alors, soit ¢ : {1,2,...,|A|} — A un circuit eulérien de racine r € V. Regardons pour tout
v € V\r le plus grand k € {1,2,...,|A|} tel que i(c(k)) = v ainsi que I'arc ¢(k). Ces arcs forment
le graphe d’une fonction a : V\r — V', qui est méme une arborescence, parce qu’on arrive bien a la
racine par itération. Cette arborescence des « derniers départs» de c est appelé arborescence-balas.
Or, chaque circuit eulérien ¢ a une arborescence-balai unique et fournit, pour tout v € V', un ordre
linéaire des autres arcs a € A avec i(a) = v: Pordre des autres départs de c¢. Réciproquement, étant
donnés ces seuls ordres linéaires et I’arborescence-balai, alors on reconstruit ¢ automatiquement.
La bijection ainsi construite implique le théoreme suivant (voir [8], théoréme 5.6.2, ou [1], chapitre
11.3, théoreme 8):

TuEOREME 2 (BEST). — Soit D = (V, A) tel que df(v) = dp(v) pour tout v € V, et soit
r €V fizé. Sie(D,r) désigne le nombre des circuits eulériens de racine r de D et a(D,r) désigne
le nombre des arborescences de racine r de D, alors:

e(D,r) = a(D,7)-df(r)! [] (dh(v) -1
vEV\r

Soit G = (V,E), E:V U (‘2/) — N, un multigraphe non-orienté, ou E(v) désigne le nombre de
boucles autour de v € V et out E({u,v}) désigne le nombre d’arétes entre deux sommets distincts
u et v. On peut considérer £ comme un (multi)ensemble de cardinalité |E| = } .\ E(v) +

Z{u’v}e(\;) E({u,v}), et I'on pose dg(v) = 2 E(v) + X ey, E({u,v}) pour les degrés.

Suivant la suggestion de Berge (voir [1], préface), un circuit eulérien de G = (V, E) est un circuit
eulérien du multigraphe orienté G = (V, E) obtenu & partir de G en remplacant chaque aréte (et
boucle) de G par deux arcs d’orientations opposées, de sorte que |E | = 2|E|. Puisque la condition
dg(v) = dé(v) pour tout v € V est toujours satisfaite, G contient un circuit eulérien si et seulement
si G est connexe (notons que les circuits eulériens de G ne sont pas ses cycles eulériens considérés

par Euler dans le cadre des « ponts de Konigsberg»).

Le nombre minimal d’arétes nécessaires pour que G soit connexe est égal a n —1 (|V| = n), et,
dans ce cas-13, G est connexe si et seulement s’il s’agit d’un arbre, « transformé» en arborescence
a: V\r ~» V en choisissant une racine r € V. D’apres la définition du monéme a(x) de degré
n—1ona a(x) = 3¢ [Loevr 23e®=1 ot le théoreme 2 donne le nombre des circuits eulériens
de racine r de G:

da(r)! ] (da(v)—1)! = Yoo o La alx)

veV\r t1+...+ip=n—1
i1 yenyin >0
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Dans le cas général, c’est-a-dire G = (V, E) connexe et m := |E| > n — 1, chaque circuit eulérien
de racine r de G définit b := n — 1 arétes « de base» par son arborescence-balaia : V\r ~» V d’une
part et s autres arétes supplémentaires d’autre part, b + s = m.

Deux circuits eulériens ne sont pas vraiment différents s’ils s’obtiennent I’'un de ’autre en per-
mutant les deux arcs d’une boucle ou en permutant les arétes ou les boucles multiples (i. e. de
multiplicité > 2).

THEOREME 3. — Soit V = {1,2,...,n} et soit m > n — 1 fizé. Alors le nombre des circuits

eulériens (orientés) vraiment différents sur tous les multigraphes G = (V, E) avec |E| = m arétes
(non-orientés) est égal a

% = (2771—1)!!.2"—1.( m )

n—1
Démonstration. — Codons les arétes de base par a : V\r ~» V et les arétes supplémentaires par
*2Vu (‘2/) — N, |E*| = s. D’apres le théoréme 2, le nombre des circuits eulériens vraiment

différents du graphe obtenu (Parborescence-balai étant choisi d’avance) est égal a

i gin o). TT @/DF (2yy) B Cwr})
D I R | el | By e T

i14...+ip=b+2s vEV : v
i100yin >0 {uv}e(y)

et il suffit de sommer cette expression sur toutes les fonctions E* : V' U (‘2/) — N avec |E*| = s et
sur toutes les arborescences a : V\r ~» V (et sur r € V). Mais la derniére sommation fait ’objet
du théoréme 1 et la premiere sommation donne

(xuxU)E*({u,v})

E*: VU( )—)N vev {u,v}e(‘zf)
|E*|=s

2/2 E*(v)

_ [(x1+...+xn)2/2]s/s!.

Par conséquent, le nombre cherché est égal a

Yoo ok ot [m 2] (2%)

i1+ i, =b+2s
i1yeenyin >0

e M.<2b+25), C.Q.F.D.

25s! - 25! b
21 -|-...-|-zn=b-|-2s
11 yereyin >0

Remarque. — De maniére plus combinatoire, 0;:11 . chf; signifie qu’il faut choisir i, fois z; (dans
un ordre linéaire déterminant les départs du circuit eulérien du sommet 1), i3 fois o, .. ., i, fois z,.
Les choix sont effectués dans un des b+ 2s facteurs possibles, un choix parmi les premiers b facteurs
contribuant au codage de I'arborescence et un choix parmi les derniers 2s facteurs contribuant au
codage des arétes supplémentaires.
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3. Démonstration de la formule de Harer-Zagier

Toute identification des arcs du 2m-gone crée un multigraphe G = (V,E) avec |[V| = v =
m+1—2g et |[E| = m, muni d’un circuit eulérien (le 2m-gone aprés les identifications); et

Lm/2] Lm/2]

Y eg(m) - N™H720 = 37 e (m) - N

9=0 9=0
compte le nombre des colorations quelconques de ses sommets avec les couleurs 1,2,..., N. Cepen-
dant, chaque coloration n’utilise qu'un sous-ensemble de cardinalité n de ’ensemble des couleurs
{1,2,..., N} et crée un circuit eulérien sur un multigraphe avec m arétes sur cet ensemble de som-

mets de cardinalité n. Puisque les circuits eulériens vraiment différents correspondent de maniére
bijective aux identifications des arcs du circuit (via les arétes non-orientées) et aux marquages des
sommets conformes aux identifications des arcs, la formule de Harer-Zagier est une conséquence
directe du théoreme 3.
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