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Soit G=(X,Y;E) un graphe biparti et G=(X,Y;E) le graphe biparti complémentaire. No-
tons p(G,r) le nombre des r-couplages de G. Il est classique que le vecteur [p(G,r)]r=1,2,...
est déterminé par [p(G,r)]r=1,2,.... Nous explicitons ce fait en démontrant des théorémes de
dualité nouveaux, généralisant et globalisant notamment les résultats de Chow, Foata, Ges-
sel, Joni, Rota et Zeilberger. Pour des graphes orientés on obtient ainsi une preuve rapide de
I’identité fondamentale de Berge entre des chemins et des circuits hamiltoniens. Exprimée
dans le langage des fonctions d’ensembles, celle-ci implique immédiatement la conjecture de
Chung et Graham (établie d’abord par Chow et Gessel) ainsi que les théorémes de parité de
Rédei sur les tournois, de Lovasz sur les graphes non-orientés et de Camion et Rao sur les
graphes auto-complémentaires. Finalement, nous étudions les relations entre les fonctions
d’ensembles et les fonctions symétriques. Le théoréme principal de la thése de Chow devient
ainsi une conséquence directe de I’identité de Berge.

Let G=(X,Y;E) be a bipartite graph with bipartite complement G=(X,Y;E). The number
of r-matchings of G is denoted by p(G,r). It is classical that the vector [p(G,r)]r=1,2,...
is determined by [p(G,r)],=1,2,.... We make this statement more explicit by proving new
duality theorems, generalizing and globalizing the results of Chow, Foata, Gessel, Joni, Rota
and Zeilberger, in particular. For oriented graphs this provides a short proof of Berge’s
fundamental identity between Hamiltonian paths and circuits. Expressed in terms of set
functions, the identity immediately implies the Chung-Graham conjecture (first derived by
Chow and Gessel) as well as Rédei’s, Lovdsz’, and Camion’s and Rao’s parity results for
tournaments, non-oriented and self-complementary graphs, respectively. Finally, we study
the relations between set functions and symmetric functions and show that the main theorem

in Chow’s Ph.D. Thesis becomes a direct consequence of Berge’s identity.

1. Introduction

Soient X et Y deux ensembles disjoints de cardinalité n et m, respectivement.
Un graphe biparti G = (X,Y; E) est dit simple si et seulement si ’ensemble de
ses arétes E est un sous-ensemble de X x Y. Pour de tels graphes on définit le
graphe biparti complémentaire par G := (X,Y;E) avec E := (X x Y)\E. On
appelle r-couplage de G un ensemble de r arétes tel que deux quelconques des
arétes du couplage sont non-adjacentes. Notons p(G, r) le nombre des r-couplages
de G et posons p(G,0) := 1. Traditionellement, on interpréte X (resp. Y') comme
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un ensemble de lignes (resp. colonnes) d’un échiquier rectangulaire de sorte qu'un
couplage devient un ensemble de tours non-attaquantes. C’est pourquoi on appelle

min(n,m)

p(va) = Z (_1)rp(G,7.) A

r=0

le polyndome des tours. 1l est classique (voir le livre [28] de Riordan, chapitre 7.7)
que p(G,z) est completement déterminé par p(G,z). Toutefois, aucune relation
simple reliant p(G,z) et p(G,z) n’a été imaginée jusqu'a présent. D’autre part,
inspirés par la définition visionnaire du polynome de recouvrement de Chung et
Graham [12], Chow (et Gessel) [9] ont introduit le polynéme factoriel des tours

comme étant
min(n,m)

PG, z) = Z p(G,r) - 2,

r=0

oit 28 := 2(2—1) - - (2—k+1). Nous I'appellerons, ci-aprés, polynéme de Chow. Il a

déja fait ses preuves dans I'étude des diagrammes de Ferrers (voir [15]), parce qu’il
se factorise naturellement (voir [19] et [31], théoréme 2.4.1). De plus, il satisfait
une relation de dualité tout a fait remarquable

p(G,2) = (=1)™p/(G,m—n—1-2),

imaginée par Chow (et Gessel) [9] dans le cas n = m. Outre cette généralisation,
nous établissons la nouvelle formule
— 1
(G, z) =
PHG,2) I'z+14+n—m

/ z® e %p(G,z) - dz,
) Jo

dont la spécialisation n = m et z = 0 fut trouvée par Joni, Rota et Zeilberger [21],
puisque p!(G, 0) compte le nombre des couplages parfaits de G lorsque n = m. Ce
résultat permet notamment d’interpréter des intégrales de produits de polynomes
de Laguerre généralisés comme nombre de dérangements (voir [3], [4], [5], [14],
116], [18], [20], [29], [34]).

Suivant Godsil ([17], page 157), on peut, en effet, définir les polynémes de La-
guerre comme des polynomes des tours des graphes bipartis complets K, ,, =
(X,Y; X xY) avec | X| = n et |[Y| = m. Autrement dit, pour tout a € N, nous
posons

Legla)(:l:) = p(Knnta,T)-

Comme p(Ky nia ¥ Kmtam,®) =% - Lel® (z) - Le,(ﬁ)(x), I’identité de Joni, Rota
et Zeilberger implique alors

[e.°]
P (Knnta® Kimtam,0) = / Lel®(z) - Le!® (z) - 2% *dx
0
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(voir [18]), ce qui fournit notamment 1’orthogonalité de nos polynomes Lel? (x)
par rapport a e~ *dx. Voila pourquoi notre définition des polynomes de Laguerre
Leﬁ{‘) (z) correspond bien a la définition classique. Notre normalisation, cependant,
est choisie de fagon que le premier coefficient, i. e. le coefficient de ", vaille 1.

Il nous semble également utile d’introduire les polyndmes des tours symétriques
(par rapport & la bipartition) en deux variables

min(n,m)

p(Gz,y) == D (=1)p(G,r) -z Ty™ " = y" " p(G,ay),
r=0
min(n,m)
ﬁ(Gaxay) = Z p(G’,’,)_:L_n—rym—r = (_1)nym—n.p(G, _ajy)a
r=0

si G = (X,Y; E) est biparti avec |X| = n et |Y| = m. Pour ces polynomes,
nous démontrons plusieurs théoremes de dualité qui font intervenir des opérateurs
différentiels. En particulier, nos identités nouvelles

p(G,z,y) = e -p(G,—3, — L) -e™

= @) e PG~ ) e

impliquent

Lef* ™™ () = p(Kpm,@,1) = [67- (= 2)" (= )" -]

— e%. (_%)m [xne—a:]

= phTMm . e . (_%)n [:L,me—x],
ou la toute derniere identité est la formule de Rodrigues pour les polynomes de
Laguerre généralisés. Dans le cas n = m, nous établissons également le théoreme
de dualité suivant pour le polynoéme des tours lui-méme :

p(G,—z) = (-1)" 'eXp[%"D%}p(va),
p(G,z) = (—1)"-exp[— Lz L]p(G, —z).

Nous démontrons tous nos résultats a ’aide des fonctions génératrices pour les
fonctions d’ensembles. Cette méthode algébrique permet, par excellence, d’auto-
matiser 'utilisation de plusieurs méthodes classiques de la combinatoire énuméra-
tive et algébrique, et notamment 'utilisation du principe d’inclusion-exclusion et
de Vinversion de Mobius sur ’ensemble partiellement ordonné des partitions d’un
ensemble. L’algebre des fonctions d’ensembles est introduite dans le paragraphe 2.
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Dans le paragraphe 3, elle est appliquée pour le traitement du polynéme des tours
et de sa parenté. Ceci fournit des démonstrations particulierement courtes et ex-
plicatives et permet méme de prolonger tous nos résultats a I’étude des permanents
des matrices quelconques.

Pour des matrices carrées on obtient ainsi une preuve rapide d’une généralisation
pondérée d’une identité fondamentale de Berge entre les chemins et les circuits
hamiltoniens d’un graphe orienté simple G = (V,E), E C V x V, et ceux de
son complément G = (V, E), E = (V x V)\E. Appelons bi-chemin hamiltonien
une partition de V en deux chemins hamiltoniens non-vides. Si cyc(G) désigne le
nombre de circuits hamiltoniens de G, lin(G) le nombre de chemins hamiltoniens et
bilin(G) le nombre de bi-chemins hamiltoniens, alors Berge a imaginé le théoréme
de dualité suivant :

lin(G) = lin(G) (mod 2), bilin(G) = bilin(G) (mod 2),
lin(G) + bilin(G) = lin(G) + bilin(G) = cyc(G) + cyc(G) (mod 2)

(voir [7] ainsi que [6], chapitre 10, théoréme 1 et exercice 9). La démonstration
de Berge, cependant, contient un résultat nettement plus puissant que nous ap-
pelons identité de Berge. Exprimée dans le langage des fonctions d’ensembles,
cette identité fondamentale prend toute sa force et implique immédiatement tous
les résultats des paragraphes 4 et 5, et notamment la conjecture de Chung et
Graham (établie d’abord par Chow et Gessel), 'identité de Foata et Zeilberger
sur les polynomes de Laguerre, les théoremes de parité de Rédei sur les tournois,
de Lovasz sur les graphes non-orientés et de Camion et Rao sur les graphes auto-
complémentaires. Les démonstrations de ces résultats données par Berge, Camion,
Chow, Foata, Gessel, Lovasz, Moon, Rao, Szele et Zeilberger s’étendent parfois sur
plusieurs pages (voir [8], [10], [16], [27], [33], [24], 5.19-20, [26], p. 21-23).

Dans le paragraphe 6, nous étudions les relations les plus importantes entre les
fonctions d’ensembles et les fonctions symétriques. Nous généralisons plusieurs
théorémes de Stanley [30] et simplifions ses démonstrations. Finalement, nous
montrons que le théoréme principal de la thése de Chow [11] est une conséquence
directe de 'identité de Berge.

2. Outils algébriques

Soit V un ensemble fini et
f:2Vv -4
V CVe f(VYeA

une fonction d’ensembles, ou A est un anneau commutatif (avec 1). Considérons
la fonction génératrice

Fi(v) = Z Fvh Y o= 1,

VICV



E+E=XY

a joindre aux régles de calcul suivantes (V/, V" C V) :

VYT = VVIJFV”, ol
T Viuv"”, si VInvV" =0,
+ =
1, si VINV"#0, ou

T+V =1, t+1 =1, et oI = 0.

L’algebre A[V] de ces fonctions génératrices n’est pas une inconnue. En effet, on

a lisomorphisme
AlV] ~ Alvy,...,v,]/ (03, ... 02),

r n

si V' contient n éléments.

ExXEMPLE 2.1. Le produit fg de deux fonctions d’ensembles f, g est défini, pour
tout V! C V, par

Fo(V) = DY FV")-g(V").

vVi=viwyr

Il en résulte
Fpg(v) = Fy(v) - Fy(v).

Pour |V| = oo, soit F(V) I'ensemble partiellement ordonné des sous-ensembles
finis de V. On a des projections canoniques py: yn : A[V'] — A[V"] (V!,V" €
F(V), V' > V") et on pose

— T ! !
AlV] = I(E1A[V ], VieF(V)
pour travailler avec des fonctions génératrices de la forme

Fi(v) = Y Fv -V

V'eF(V)

V = Zl/{”}

veV

Soit

la fonction indicatrice des sous-ensembles de V' de cardinalité 1 ('usage double
de V pour lensemble et pour un élément de A[V]| ne pourra pas étre a l'origine
de confusions). En multipliant la fonction génératrice V' plusieurs fois par elle-
méme, on voit que V" /n! représente la fonction indicatrice des sous-ensembles de
I’ensemble V de cardinalité n. L’identité

> fm) vl = > f(V) vV, fiNo A4,
n=0

VIEF(V)

5



BODO LASS

fournit un plongement de 1’anneau A![[V]] des fonctions génératrices de type expo-
nentiel dans 'anneau A[V]. Ce plongement est a 1'origine de (presque?) toutes les
applications de A![[V]] en combinatoire, mais il nécessite 'existence d’un modele
combinatoire infini (qui ne fait intervenir que les cardinalités). Par conséquent,
A[V] donne plus de flexibilité et permet un traitement algébrique, qui refléte par-
faitement les opérations classiques de la combinatoire. Outre cela, A[V] est ap-
proprié, par excellence, aux calculs par ordinateur.

REMARQUE 2.1. L’anneau Z![[V]] n’est pas noethérien, mais il contient des fonc-
tions importantes comme exp(V') et log(1+ V).

EXEMPLE 2.2. Si char A= 2, on a

(1+V) ! = i(—l)"n! V™ /n!
eV w

log(1+V) = i(—l)"_l(n—l)!-V"/n!
= :/:-li- V?/2

dans 'anneau A![[V]]. Ces identités sont a l'origine de maints résultats de parité
en combinatoire.

Pour tout ¢ € A posons (t- )V = tV'I. 1,V V' CV, et, par conséquent,
Fe(tv) = Y fv)eV17
oCVICV

Il est évident que cette définition est compatible avec ’addition et la multiplication.
Les cas particuliers les plus importants sont t = —1 et t = 0: F¢(0) = F¢(0-v) =
£(0).

Si Ff(0) = 0, alors Fy(v)™/n! est défini pour n’importe quel anneau A, parce
qu’une partition en n sous-ensembles non-vides peut étre ordonnée de n! manieres
différentes. Voila pourquoi A![[V]] opere sur A[V] par la substitution G(Fy(v))
définie pour tout G € Al[[V]].

Finalement, on utilise les dérivées 9V pour tout v € V définies par

! .
{VV, si veV,

0, sinon.

1
VvV =

La formule de dérivation d’un produit
0"[Fr(v) - Fg(v)] = (0°F¢(v)) - Fy(v) + Fy(v) - (0" F4(v))

6
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est 'analogue algébrique du fait ensembliste le plus fondamental:
veV yv” & veV' ou veV’
La formule
0°[G(Fy(v))] = G'(Fy(v))-0"Ff(v), G € Al[V]],
en découle immédiatement.
REMARQUE 2.2. L’isomorphisme A[V] =~ Alvy,...,v,]/(v?,...,v2) ne fait pas
correspondre 9V a 9/0v;, mais a v;0/0v;. La dérivée partielle 9/0v; n’a point

d’analogue dans A[V].

EXEMPLE 2.3.

a) Etant données f,g:2Y — A, alors I'équivalence suivante n’est rien d’autre que
le principe d’inclusion-exclusion :

Fy(v) = exp[V] - Ff(v) & Fy(v) = exp[-V]- Fy(v).
b) Etant données f,g: 2" — A avec f(0) = g(9) = 0, Péquivalence
L+ F,() = eplFy0)] & Fy() = logll + Fy()]

s’écrit sous la forme

gv'y = > f(B)--f(B) YV'CV &
V'=B1W...wBy
FV = Y DR g(By)--g(By) YVICV

V'=B1W..."By

et n’est rien d’autre que I'inversion de Mobius pour des fonctions multiplicatives
généralisées sur I'ensemble partiellement ordonné des partitions de V (voir [1],
chapitre V.1.C ou [13], chapitre 5.2). Par ailleurs, on peut se servir de 9V pour
obtenir le résultat dérivé

1+ Fy(v)] - 0°Fs(v) = 8"Fy(v),

qui, par suite de la profusion de méthodes inductives ou récursives, est souvent
beaucoup plus connu que le résultat «pur». En outre, ce résultat dérivé a
P’avantage de n’utiliser qu’un seul produit, permettant des calculs par ordinateur
particulierement rapides.
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3. Le polyndome des tours et sa parenté

Soit G = (X, Y; E) un graphe biparti simple et soit G = (X,Y; E) son complé-
ment biparti. Posons V := X WY et définissons X,Y, E, E € A[V] par

= izt y = v B = ve, E := Ve
> v > v, >V 2V

zeX yey eckE ecE

o1 chaque aréte e € E (resp. e € E) est considérée comme un sous-ensemble de V'
de cardinalité deux. La définition du complément biparti implique alors l'identité
suivante, qui est a I’origine de tous les résultats de cet article.

LEMME FONDAMENTAL. Dans l'algébre A[V] = A X WY], on a

E+E = XY. |

Pour ) C X' C X et ) C Y' C Y, notons G[X',Y’] le sous-graphe de G
engendré par X' UY’ (c’est le graphe dont les sommets sont les éléments de
X'UY’ et dont les arétes sont les arétes de G ayant leurs deux extrémités dans
X'"UY'). Alors exp[E]| compte, pour chaque X’ C X et Y/ C Y, le nombre des
couplages parfaits de G[X',Y’]. Voila pourquoi la proposition suivante est une
conséquence immédiate des définitions du polynéme des tours et de sa parenté
(voir 'introduction).

PROPOSITION 3.1. On a

Z Z (GIX"Y )-VX’UY’ = exp[E] - ZZXz YJ A

X'CX Y'CY =0 j=0
= exp|F] - exp[X] - (1+Y)z et

Z Z (G[X",Y"],z) - vX'YY" = exp[—E]- exp[zX]- exp[Y],

X'CX Y'CY

Z Z p(GI X", Y'],z,y) - XY = exp[—F] - exp[zX] - exp[yY],
X'CX Y'CY

Z Z (GIX", Y], z,y) - v Y = exp|E]-exp[zX]-explyY]. 1
X'CX Y'CY

Il est classique que p(G, ) est complétement déterminé par p(G, x), un résultat
que Riordan [28], chapitre 7.7, démontra & ’aide de la proposition suivante.
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PropPOSITION 3.2. Soit G = (X,Y; E) un graphe biparti simple avec |X| =n et

\_Y| =m. Alors on a pour le polynéme des tours du graphe biparti complémentaire
G = (X,Y; E) lidentité

min(n,m)

p(G,z) = Z p(G,7) - p(Kn—rm—r, Z).

r=0

Démonstration. En utilisant I'algebre A[V] = A X8 Y], on a

(o olNe o]

Xt yid
E:mewwy?mfrze@ux+y—xﬂ.
i=0 j=0 -

Par conséquent, l'identité suivante implique bien notre proposition :

exp[rX +Y — E| = exp[zX +Y — XY + E| = exp[E]-exp[zX +Y — XY]. 1

Pour les polynomes des tours symétriques, nous pouvons établir des théoremes
de dualité apparemment nouveaux.

THEOREME 3.1. Pour tout graphe biparti simple G = (X,Y; E), on a

ﬁ(éa m,y) =e . p(Ga %a %) -e™Y,

p(Ga Zz, y) = ™. ﬁ(Ga _%7 _%) e Y.
Démonstration. D’apres le théoreme de Taylor formel on a

fl@+a,y+b) = exp[La+ o] f(z,y)

pour des variables z, y, a, b et une série formelle f. Il s’ensuit

exp[—xy| -exp[%X + LY — E] - exp[zy]

= exp[—ay] - exp[—E] - exp[ LY + £ X] - explay]
= exp[—ay] - exp[—E] - exp[(z + Y)(y + X)]

= explzX +yY + E].

La deuxiéme égalité est démontrée de la méme facon. [

Comme [(£ %)i(my)j]y:1 = (L z-L)igd pour tout 7,j € N, nous obtenons le
corollaire suivant pour le polynéme des tours lui-méme.

9
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COROLLAIRE 3.1. Soit G = (X,Y; E) un graphe biparti simple tel que |X| =
Y| =n. Alors on a pour le polynéme des tours de G = (X,Y; E) les identités

oG —2) = (1" e p(G, Lad)er,
p(G,z) = (-1)" - e"p(G,— Lz )e™.

Au lieu de reproduire des généralisations du corollaire précédent au cas | X| # |Y|
(qui sont moins belles), nous préférons donner une autre forme des théorémes de
dualité faisant intervenir des opérateurs différentiels.

THEOREME 3.2. Pour tout graphe biparti simple G = (X,Y; E), on a

Démonstration. Puisque %% exp[zX +yY — E] = XY - exp[zX + yY — E],
nous avons
exp[zX + yY + E] = exp[XY]-exp[zX +yY — E]
= exp[L %] -explzX +yY — E].
L’opérateur différentiel exp[—%%} est I'inverse de exp[% %]. i
Le corollaire 3.2 se déduit du théoreme 3.2 de la méme fagon que le corollaire 3.1

se déduit du théoreme 3.1.

COROLLAIRE 3.2. Soit G = (X,Y; E) un graphe biparti simple tel que |X| =
Y| =n. Alors on a pour le polynéme des tours de G = (X,Y; E) les identités

p(G,—z) = (-1)"- exp[%x%}p(G, z),
p(@a z) = (-1)"- exp[—%x%}p(G, —x). i

Terminons ce paragraphe avec le théoreme de dualité pour le polynéme de Chow
dont nous avons mentionné les spécialisations classiques dans 'introduction.

THEOREME 3.3. Soit G = (X,Y; E) un graphe biparti simple avec | X| = n et
Y| =m. Alors on a

pl(G,z) = (-1)"p/(G,m —n—1-2)

1

= e - dz.
F(z—|—1+n—m)/0 z"-ep(G,x) - de

10
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Démonstration. La proposition 3.1 permet d’exprimer la premiére identité dans
le langage des fonctions d’ensembles. En fait, pour représenter le facteur (—1)™,
il suffit de multiplier chaque élément de Y (et de F) par —1. Autrement dit, il
faut démontrer

1=0 7=0 2 ‘7' 1=0 7=0 i ‘7'
e e X z — X* 1+ 2z
& ewB Y 5 I(%) = eal-m > v (1)
1=0 j=0 J i=0 j=0 J
X X
§ni -~ z _ “ 1+z
= exp[E]Z f (1+Y)* = exp| E]Z A 1+Y)
=0 1=0
& exp[E + Elexp[X] = exp[X(1+7Y)].
Pour établir 'identité
1 o0
(V"G —n=1-2) = Fre [ € ap(Ge) - do

il suffit de constater que le coefficient de p(G,r) (voir 'introduction) dans le mem-
bre de gauche et dans le membre de droite vaut

CT(z+1+n—71)

(1) (m = n = 1= 2 = (1) (e 4= )T = (1)

1 o0
= ) / e - (=1)"z" " -dz. 1
0

I'(z4+14+n—-m

REMARQUE 3.1. Dans le sens de Gessel et Stanley, il faudrait également étudier
les fonctions génératrices des suites de nombres p!(G, z), z € Z, une étude que
nous ne reproduisons pas ici.

REMARQUE 3.2. Pour plusieurs applications (voir [3], [4], [5] et [16], par exemple),
il est indispensable de prolonger nos résultats aux graphes bipartis pondérés G,, =
(X,Y;E,w),otw: XWY — A (resp. E : X x Y — A) est une fonction attachant
un poids & chaque sommet (resp. aréte) du graphe. Par définition, {z,y} est une
aréte de G, si et seulement si E({x,y}) # 0, de sorte qu'un graphe biparti simple
est un graphe biparti pondéré tel que w(z) = w(y) =1 et E({z,y}) € {0,1} pour
toutre XetyeV.

Le complément pondéré G, = (X,Y; E,w) du graphe G,, = (X,Y;E,w) est
défini par

E({z,y}) + E({z,y}) = w(z)- w(y)

11
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pour tout z € X et y € Y. En posant

X = Y w@) A Y = Y w(y) v

zeX yeyY
B = Y Y B({zy}) v, B = Y Y E({a,y}) v,
zeX yeY 2EX yey

notre lemme fondamental

EF+FE = XY

reste alors valable.

Un r-couplage de G, finalement, est un recouvrement de tous les n sommets
de X et de tous les m sommets de Y par r arétes non-adjacentes, n — r sommets
de X et m — r sommets de Y. Le poids du r-couplage est égal au produit des
poids de ses r arétes, ses n — r sommets de X et ses m — r sommets de Y.

Notons p(Gy,r) la somme des poids de tous les r-couplages de G, p(Gw,0) =
[[eex w(@)] - [[I,ey w(y)]- De cette maniére, la proposition 3.1 ainsi que tous les
autres résultats de ce paragraphe restent effectivement valables pour les graphes
bipartis pondérés. Autrement dit, nous avons établi des théorémes de dualité pour
les permanents des matrices de dimensions n X m.

4. Chemins et circuits hamiltoniens
Supposons dorénavant que |X| = |Y| = n et fixons une bijection entre X et Y.

Ceci nous permet d’identifier le graphe biparti simple G = (X,Y;E), EC X XY,
a un graphe orienté simple G = (V, E) avec |[V|=net ECV x V.

[ ]
graphe biparti : :>$<: \
[ ]

graphe orienté : ¢ L

-

Notons que V n’est plus égal & X WY a partir de ce paragraphe. La définition du
graphe biparti complémentaire fournit une définition naturelle du graphe orienté
complémentaire, & savoir G = (V,E), ou E = (V x V)\E. En particulier, G
contient une boucle autour de v € V si et seulement si G n’a pas de boucle
autour de v. Un r-couplage du graphe biparti, finalement, n’est rien d’autre qu’une
partition de V' en plusieurs circuits hamiltoniens et n —r chemins hamiltoniens du
graphe orienté, de sorte que tous les résultats du paragraphe précédent peuvent
étre interprétés dans le langage des graphes orientés.

Pour tout ) € V' C V', notons G[V'] le sous-graphe du graphe orienté G = (V, E)
qui est engendré par V' (c’est le graphe dont les sommets sont les éléments de V'
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et dont les arcs sont les arcs de G ayant leurs deux extrémités dans V'). Soit
cyc(G[V']) le nombre de circuits hamiltoniens de G[V'] et soit lin(G[V’]) le nom-
bre de chemins hamiltoniens de G[V’], ou un seul sommet v € V est un chemin
hamiltonien de G[{v}] dont v est & la fois le sommet initial et le sommet terminal,
alors qu’une boucle autour de v est bien un circuit hamiltonien de G[{v}]. Les
deux éléments

cyeg(v) = Y. ceye(GV'))-vY,  ling(v) == > ln(GV']))- vV

OCVICV PCVICV

de lalgeébre A[V], |V| = n, sont au centre du reste de cet article. En fait, si 'on
pose n = m et z = 0 dans la premiere identité du théoréme 3.3, alors le membre
de gauche de cette identité est égal au coefficient de v dans exp[cycg(v)], tandis
que le membre de droite est égal au coefficient de vV de la fonction d’ensembles
explcycg(—v)] - [1 + ling(—v)]~. Autrement dit, notre théoréme 3.3 implique la
relation

expleyeg(v)] = expleyeg(—v)] - [1 +ling(—v)] 7,

imaginée par Berge [7] sans utiliser les fonctions d’ensembles. En intervertissant
les roles de G et G, nous obtenons le théoreme suivant, qui est a l'origine de tous
les résultats des paragraphes 4 et 5.

THEOREME 4.1. (Identité de Berge) Soit G = (V, E) un graphe orienté simple.
Alors on a

1+ling(v) = [1+ling(—v)]™" = expleyeg(v) — cyeg(—v)],
log[1 + ling(v)] = —log[l + ling(—v)] = cycg(v) — cycg(—v) et
[1+ling(—v)]-0%ling(v) = —[1+4ling(v)]-0"ling(—v) = 9”[cycg(v) —cycq(—v)]

pour chaque sommet v € V. |

REMARQUE 4.1. Pour des applications futures, il est indispensable de prolonger
nos résultats aux graphes orientés pondérés G;; = (V,E,i,t), ou i,t:V — A
et £:V xV — A sont des fonctions attachant des poids & chaque sommet et
arc, respectivement. Par définition, (u,v) est un arc de G;; si et seulement si
E((u,v)) # 0, de sorte qu’un graphe orienté simple est un graphe orienté pondéré
tel que i(v) = t(v) =1 et E((u,v)) € {0,1} pour tout u,v € V. Le complément

pondéré G = (V, E,i,t) du graphe Gy = (V, E, i,t) est défini par
E((u,v)) + E((u,v)) = i(u) - t(v)

pour tout u,v € V. Finalement, le poids d’un circuit hamiltonien est égal au
produit des poids de ses arcs, tandis que le poids d’un chemin hamiltonien est égal
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au produit des poids de ses arcs multiplié par ¢(u)-i(v) si u (resp. v) est le sommet
initial (resp. terminal) du chemin.

Pour tout § C V' C V, notons cyc(Gi:[V']) (resp. lin(G;[V'])) la somme
des poids de tous les circuits (resp. chemins) hamiltoniens de G;[V']. Avec ces
définitions, notre remarque 3.2 permet de conclure que le théoréme 4.1 reste valable
pour les graphes orientés pondérés. Autrement dit, nous avons établi un théoréme
de dualité pour les matrices carrées de dimension n x n. En fait, la diagonale prin-
cipale d’une matrice carrée fournit une bijection canonique entre I’ensemble des
lignes et I’ensemble des colonnes (voir le début de ce paragraphe). Remarquons
finalement que les autres résultats des paragraphes 4 et 5 peuvent également étre
prolongés au cas pondéré. Nous laissons au lecteur le soin d’expliciter ceci.

Grace a notre exemple 2.2, on peut simplifier le théoreme 4.1 sensiblement en le
considérant modulo 2 :

1+ling(v) = 1+1ling(v) (mod 2),
ling(v) + ling(v)?/2 = ling(v) +ling(v)?/2 = cycg(v) + cycg(v) (mod 2).

Puisque le coefficient de vV dans ling(v)?/2 compte le nombre de bi-chemins
hamiltoniens de G = (V, E) (voir l'introduction), nous avons établi le résultat
principal de l'article [7] de Berge (voir [6], chapitre 10, théoréme 1 et exercice 9).

COROLLAIRE 4.1. (Berge) Pour tout graphe orienté simple G = (V, E), on a

lin(G) = lin(G) (mod 2), bilin(G) = bilin(G) (mod 2),

lin(G) + bilin(G) = lin(G) + bilin(G) = cyc(G) + cyc(G) (mod 2). 1§

Soit G = (V, E) un graphe orienté simple. Chung et Graham [12] (resp. D’ Anto-
na et Munarini [2]) ont introduit et étudié le polynéme C!(G, z, y) (resp. C(G, z, z))
appelé polynéme de recouvrement (resp. polyndme de recouvrement géométrique).
A Taide des fonctions d’ensembles, on peut définir ces polynomes comme suit :

1+ Z CUGV'),z,y) - VY = explz-cycq(v)] - [1 +ling(v)]?,
oCV'CV

1+ Z C(G[V'),z,2)- vV = explz-cycy(v)] - exp|z - ling (v)).
ocv'cy

Il est évident que nos définitions sont équivalentes a celles proposées par Chung et
Graham [12], D’Antona et Munarini [2] et Chow [10]. Chung et Graham ont posé
la question de savoir si C!(G,z,y) est déterminé par C!(G,z,y). Une réponse
affirmative fut trouvée par Chow (et Gessel) [10], qui ont établi une belle rela-
tion entre les deux polynomes, soulignant davantage le caractére visionnaire de
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la définition de Chung et Graham. Nous montrons que la relation imaginée par
Chow (et Gessel) ainsi que notre relation entre C!(G, z,y) et C(G,z, z) sont des
corollaires directs de I'identité de Berge. Les différentes démonstrations de Chow
et Gessel [10] sont toutes plus longues.

THEOREME 4.2. Soit G = (V, E) un graphe orienté simple avec |V| = n. Alors
on a B
C(G,z,y) = (-)"CUG,z,—z —y)

=k /°° - d
- N 7 2. 0(G. 2. —2) - 2%ty . Az
ety fy & CGmT 0

Démonstration. Dans le langage des fonctions d’ensembles, la premiere identité
du corollaire s’exprime comme suit :

exp|z - cycg(v)] - [1 + ling(v)]Y = explz - cycg(—v)] - [1 + ling(—v)]"*7¥

& (expleyeg(v) — cyeg(—v)])* = [1+ling(—v)] "

La seconde identité se vérifie de la fagon suivante :

ﬁ /Ooo e~% - explx - cycq(—v)] - exp[—z - ling(—v)] - 2°T¥~1 - dz
1 o0 . B
= explz - cycq(—v)] - m/o exp(—z[l + hng(—y)]) R S P

1 % t syt dt
= explz - cycq(—v)] - 7/ et | —— ——
¢ T(z+y) Jo 1+ ling(—v) 1+ ling(—v)

1 o0
— explz - cyca(—v)] - [1 + ling(—v)]727Y - 7/ ot gEty—1 . gy
[ c(=1)]-[ c(—v)] Tty s

= explz - cycg(—v)] - [1 +ling(—v)]7*7 Y. |

REMARQUE 4.2. Evidemment, le théoréeme 4.1 est aussi une conséquence immé-
diate du théoreme 4.2. Le théoreme 4.1, cependant, est bien le chainon essentiel
entre ’algebre et la combinatoire.

Pour tout n € N, n > 1, soit K,, le graphe orienté complet avec n sommets.
Evidemment, son complément ne contient aucun arc, et I'on a cyc(K,) = (n — 1)!
et lin(K, ) = n!. Définissons le graphe infini complet K, dans le sens du para-
graphe 2 pour obtenir les identités

cyer_ () = 3 cye(Kn) - VPl = —log(1-V),
n=1
ling_(v) = i lin(K,)-V"/n! = L
> ot 1-V
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Les polynémes de Laguerre généralisés Le,(%a)(z) furent introduits dans lintro-
duction pour o € N. La proposition suivante est facile & établir pour eux (voir
notre relation entre graphes bipartis et graphes orientés). De plus, elle nous servira
de définition des polynémes de Laguerre pour « ¢ N. L’orthogonalité par rapport
a 2% *dz des polynomes Leﬁla)(z) ainsi définis sera une conséquence immédiate
de notre corollaire 4.2.

PROPOSITION 4.1. On a

1+iLe£ﬂ)(z)-V”/n! = (1+V)™@ exp[z'v}

1+V
= exp[(a+1)-cycg_(—v)] -exp[—z-ling_ (—v)].
Autrement dit, Le%a)(z) = (-1)" - C(Kn,a+1,—2). R

Soit K, ¥..."WK,, 'union disjointe des graphes complets K, , ..., K,, de sorte
que l'on a l'identité évidente

Leﬁg)(z) .. -Leffli)(z) = (-)mtte L O(K,, W. WK, ,a+1,—2).

Le théoreme 4.2 implique donc le corollaire suivant.

COROLLAIRE 4.2. On a

Cl(Kp, W... 0 Kn,,a+1,5)

= terarnl, © (HLe(‘” )) -2 de N

Le cas le plus important du corollaire précédent, a savoir 8 = 0, fut imaginé par
Foata et Zeilberger [16, théoreme 1]. Si, de plus, on pose k = 2, alors on obtient
Porthogonalité par rapport & z%e~*dz pour nos polynomes Le® )( ) définis & ’aide
de la proposition 4.1. Ceci montre qu’ils s’agit bien des polynémes de Laguerre
(généralisés) classiques.

REMARQUE 4.3. Dans le sens de la remarque 4.1, choisissons des poids A1, ..., A\g
et définissons le graphe orienté pondéré (K,, W...w K, );; en posant i(v) := Ay
si et seulement si v est un sommet de K,,, alors que tous les autres poids sont
conservés, i. e. t(v) = 1 pour chaque sommet, par exemple. De cette maniere, on a

Leg‘:)(/\lz) .- -Leﬁl‘z)(x\kz) = (=)™t C(Kp, W ... WKy )i, o+ 1, —2)
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et le cas 8 = 0 de l'identité

Cl(Kp,W... 00 Kp, )it,a + 1,5)

k
1 [e.°]
N -z, Lel@) () |
r(a+5+1)/0 ¢ (hl;[l e h"”)) ? ?

n’est rien d’autre que le théoréme 2 de [16], c’est-a-dire le théoréme principal de
cet article de Foata et Zeilberger.

5. Tournois et graphes non-orientés

Un tournoi G = (V,E) est un graphe orienté simple sans boucles et tel que
pour deux sommets distincts u,v € V on ait toujours exactement 'une des re-
lations (u,v) € E ou bien (v,u) € E. Si G = (V,E) est un tournoi, alors
chaque sommet de G contient une boucle et 'on a ling(v) = ling(v) ainsi que
cycg(v) =V + cycg(v). Voila pourquoi le théoreme 4.1 implique le résultat sui-
vant.

THEOREME 5.1. Pour chaque tournoi G = (V, E), on a
1+ling(v) = [1+ling(—v)]™! = exp[V]-expleycs(v) — cycg(—v)] et

log[1 + ling(v)] = —log[l +ling(—v)] = V +cycq(v) — cyca(—v). 1

Grace a notre exemple 2.2, on peut simplifier le théoreme précédent sensiblement
en le considérant modulo 2 :

1+1ling(v) = exp[V] (mod 2), ling(v) + ling(v)?/2 = V' (mod 2).

On n’obtient ainsi rien d’autre que les théoremes classiques de Rédei et de Berge,
formulés dans le langage des fonctions d’ensembles (voir [6], chapitre 10, théoréme 6
et exercice 9). La démonstration du théoréeme de Rédei imaginée par Berge est
plus longue, bien qu’elle simplifie déja considérablement les preuves classiques (voir
[33], [26], p. 21-23).

COROLLAIRE 5.1. (Rédei, Berge) Pour chaque tournoi G = (V, E) tel que |V| > 1,
on a lin(G) = bilin(G) =1 (mod 2). N}

Finalement, soit E W E = (‘2/) une partition de la famille des sous-ensembles de
cardinalité 2 de 1’ensemble V, et soient G = (V, E) et G = (V, E) deux graphes
simples non-orientés qui sont complémentaires. Pour tout § C V' C V, notons
G[V'] 1e sous-graphe de G engendré par V' (c’est le graphe dont les sommets sont
les éléments de V' et dont les arétes sont les arétes de G ayant leurs deux extrémités
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dans V’). Soit hc(G[V']) (resp. hp(G[V'])) le nombre de circuits (resp. chemins)
hamiltoniens de G[V'], ot he(G[V']) := 0 (resp. hp(G[V']) := 0) si |V'| < 3
(resp. |V'| < 2). Posons

HCo(v) =  he(GIV'))-vY', HPg(v) = Y hp(GV'])-v"
ocv'cv ocvICcv

ainsi que E := ) ¢ et E := Y ecEV° de sorte que E + E = V?/2 dans
lalgebre A[V].

Suivant la suggestion de Berge (voir [6], préface), remplacons chaque aréte de G
et de G par deux arcs d’orientations opposées et munissons chaque sommet de G
d’une boucle pour obtenir deux graphes simples orientés qui sont complémentaires.
Tout circuit (resp. chemin) hamiltonien non-orienté conduit & deux circuits (resp.
chemins) hamiltoniens orientés. De plus, une aréte non-orienté (resp. un som-
met) conduit & un circuit (resp. chemin) hamiltonien orienté. Par conséquent, le
théoréme 4.1 fournit le résultat suivant.

THEOREME 5.2. Soient G = (V,E) et G = (V,E) deux graphes simples non-
orientés qui sont complémentaires. Alors on a

-1

14V +2HPg(v) = [1-V +2HPg(—v)]
= exp|[V + E + 2HCg(v) — E — 2HCg(—v)],
log[1+V +2HP&(v)] = —log[l -V +2HPg(—v)]
= V+E—-E+2[HCg(v) — HCs(-v)]. I

Pour obtenir des relations plus simples modulo 2, commencgons par développer
la fonction exponentielle dans le théoréme précédent modulo 4 :

exp[V + E 4+ 2HCz(v) — E — 2HCg(—v)]

= exp[log(l + V) + 2(E + HCz(v) + HCq(v) + V?/3! + V*/41)]

= [1+V][1+2(E+HCgx(v) + HCg(v) + V?/31+ V*/41)] (mod 4).
On en tire le corollaire suivant.

COROLLAIRE 5.2. Pour tout graphe simple non-orienté G = (V, E), on a

HP;(v) + E(1+V) = HPg(v) + E(1+V)
= [HCgz(v) + HCo(v)][1+ V] + V¥/3l+ V*/41 + V®/5! (mod 2). |

Un chemin (resp. circuit) de G = (V, E) (|[V| = n) est dit élémentaire s’il ne
rencontre pas deux fois le méme sommet. Notons hpg (G) (resp. hcg(G)) le nombre
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de chemins (resp. circuits) élémentaires de k sommets, k > 3. En particulier,
hp,, (G) = hp(G) (resp. hc,(G) = he(G)) dénombre les chemins (resp. circuits)
hamiltoniens de G, et 'on a

hpe(G) = > hp(G[V']), he(G) = Y he(GV'),

vre(y) vie(y)

si () désigne 'ensemble des sous-ensembles de V' de cardinalité k. Multiplions
l'identité du corollaire 5.2 par V" /h!, h € N :

h h h "
HP@(V)% +F(1+V)% = HPg(V)%-FE(l-}‘V)%
h h+1
= [HCg(v) + HCg(v)] [% +(h+ 1)(;LVT+1)g]
h+3) VA3 (hgd\ VR (hg5)\ VRS
() arm (D)o (3 )o@

En regardant le coefficient de v¥ nous déduisons le corollaire suivant, puisque
(h+1) et (hf) sont pairs si h est un nombre impair.

COROLLAIRE 5.3. Soient G = (V,E) et G = (V,E) deuzx graphes simples non-
orientés qui sont complémentaires, et soient k et h deux entiers avec k > 5, h > 1
et k+h=n=|V|. Sih est impair, alors on a modulo 2 :

hp,(G) = hp(G) = heg(G) + hep(G),
hp;,1(G) = hpgy1(G) = heg(G) + hek(G) + hegtr (G) + hept1 (G),
be(G) + 1D s (G) = 1py(G) + b 1(G) = hegy1(G) +heksr (G). B

L’identité hp,.,(G) = hp,,,(G) (mod 2) fut imaginée par Lovasz [24, 5.19]
dans le cas particulier k£ + 1 = n.

Un graphe simple non-orienté G = (V, E) est appelé auto-complémentaire si et
seulement si G et G sont isomorphes. Pour de tels graphes, notre corollaire 5.3
fournit le théoréme principal de Particle [27] de Rao, que ce dernier a démontré
sur plusieurs pages.

CoROLLAIRE 5.4. (Rao) Soit G = (V, E) un graphe auto-complémentaire avec
V| = n. Alors hpg(G) est pair pour tout5 <k <n. [}

Le cas le plus important du théoreme précédent, a savoir k = n, fut imaginé par
Camion [8].
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6. Fonctions symétriques et fonctions d’ensembles

Dans l'introduction de sa thése [11], Chow a suggéré une direction prometteuse
pour étendre son étude des fonctions symétriques et saisir ainsi davantage de
probléemes en combinatoire. Il nous semble que les fonctions d’ensembles per-
mettent, par excellence, de réaliser cette idée de Chow.

Soient donc f, g : 2V — A deux fonctions d’ensembles telles que f(f)) = g() = 0.
Nous définissons, pour chaque () C V' C V, la fonction symétrique de Stanley
STy vi(x1,x2,23,...) etla fonction symétrique de Chow CHg v (x1, x2, x3,...) par

1+ Z STy (T, T2,23,...) - Vo= H[l + Fy (@i - V)],
i=1

oCcVv'CV
o0
1+ Z CHyyvi(z1,22,3,...) vV = exp [Z Fy(z; - V)]a
oCVICV i=1

respectivement (voir le début du paragraphe 2). La relation fondamentale entre
la fonction symétrique de Chow et celle de Stanley est donnée par le théoréme
suivant.

THEOREME 6.1. Silog[l + Ff(v)] = Fy(v) ou bien 1+ Fy(v) = exp[Fy(v)], alors
on a pour tout ) C V' CV

STty (x1,22,23,...) = CHyyi(z1,22,23,...).

Démonstration. On a en effet

o0
1+ Y STyvi(er,a,..) vV = exp[zlog[lJrFf(er)”
pCcV'CV i=1

= ]_"‘ Z CHQ,V/($1,$2,...) 'VV’. !
pCVICV

EXEMPLE 6.1. Les fonctions symétriques de Stanley les plus fondamentales (voir
[22], [32, chapitre 7], [25, chapitre 1.2]) sont la fonction symétrique élémentaire
en = A" (z1, 9, x3,...) et la fonction symétrique complete h, = S™(z1, z9, 3, .- .),
neN:

1+V = 1+Ff(l/) = STf,Vr(xl,xg,x;g,...) = |V’|!-6|V/|,
(1—V)_1 = 1+ F¢(v) = STy v (1,22, 23,...) = |V"!'h|VI|.

Les fonctions symétriques les plus simples, cependant, sont bien les sommes des
puissances p, = ¢, (1,22, 23,...) = > ..0q 21'. A l'aide de cette base de 'espace
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des fonctions symétriques, on définit I'involution w par w(p,) := (=1)""!p,. Grace
a ’exemple précédent, le théoreme suivant devient une généralisation directe des
identités classiques w(e,) = hy, et w(hy) = e,.

THEOREME 6.2. Pour des fonctions d’ensembles f,g: 2V — A telles que f(0) =
g(0) =0, on a

l > -1
1+ Z STfV: xl,xz,x;;,...))-uv = H[1+Ff 1/)] ,
oCVICV =1

oo

1+ Z C’Hg v wl,w2,x3,...)) Y exp[—ZFg(—wi I/)}
oCV'CV i=1

Démonstration. Supposons, sans restreindre la généralité, que 1 + Fy(v) =
exp[F,(v)]. 1l s’ensuit :

w (ﬁ [1 + Fy(z; - u)]) = w (exp [i Fo(i - V)])

= exp [w(iFg(xzy))] = exp [—iFg(—xi.u)]
= f[[1+Ff(—mi-V)]_1. |

Dans larticle [23], nous avons introduit, pour chaque graphe simple non-orienté
G = (V, E), la fonction indicatrice des ensembles de sommets indépendants I (v)
ainsi que la fonction d’ensembles Ag(v) (resp. A% (v)) dénombrant les orientations
acycliques (resp. avec une seule source fixée) pour tous les sous-graphes engendrés
de G. Nous avons établi les identités

1 +Ig(—y)]_1 = 14+ Ag(v), —log[l+Ig(—v)] = log[l+ Ag(v)] = A&L(v).

Stanley [30] a introduit et étudié la fonction chromatique X¢g = X¢(z1, 22, 23, . . .),
qui est, par excellence, une fonction symétrique « de Stanley » :

00
1+ Z XG[VI . H[l —I—IG )
pCVICV =1

Le corollaire suivant formule plusieurs théorémes principaux de ’article [30] de
Stanley dans le langage des fonctions d’ensembles.
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COROLLAIRE 6.1. (Stanley) On a

!

1+ Z XG[V’] . I/V =

—

[1 + Ig(z; - V)] = exp [— ZAZ;(—M : V)]7

QCV’gV =1 =1
1+ Z w(Xap) - Vo= H [1 + Ag(z; - 1/)] = exp [Z At (z; - 1/)] i
PpCV'CV i=1 i=1

Selon Stanley [30], une série formelle p = p(z, y) en deux ensembles de variables
z = (x1,x2,23,...) et y = (y1,Y2,Ys3,...) est appelée fonction supersymétrique si
et seulement si p est symétrique par rapport aux variables x; et y; et

p(@,y)], o = 2@ Y],y o

Notons w, l'involution w n’agissant que sur les variables y en supposant que
T1,%2,Z3,...sont des constants. Si p(x) est une fonction symétrique, définissons
la superfication p(z/y) de p par

p(x/y) = wy(p(z,y)),

c’est-a-dire en remplagant les variables x1,xs,... par 1,%2,...,Y1,Y2,... (C’est
une soi-disante addition des deuz alphabets) et en utilisant w, ensuite. Pour les
fonctions symétriques de Stanley et de Chow, notre théoreme 6.2 donne le résultat
suivant.

THEOREME 6.3. Soient f,g: 2"V — A telles que f(0) = g(0) = 0, alors on a

oo

, 14+ Fe(x; - v
1o 3 STt = [T
i=1 ¢

oCVICV
1+ Y CHyvi(afy) v = exp| Y (Fylai-v) = Fy(-yi-v))]. N
PpCV'CV =1

Le théoreme précédent implique immédiatement le corollaire suivant, qui ex-
prime le théoréeme 4.3 de [30] dans le langage des fonctions d’ensembles. La
démonstration proposée par Stanley est la plus longue de tout larticle [30] et
utilise les fonctions de Schur.

COROLLAIRE 6.2. (Stanley) On a

1+ Y Xawn(e/y) vV = ([0 + e v)]) - (TT1+ At -v)])- B
PpCV'CV i=1 i=1
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Etudions finalement la thése de Chow [11] ou bien son article [10]. Il est
utile de noter nos alphabets (z) = (z1,22,...) et (y) = (y1,¥2,...) de sorte
que (—z) = (—x1,—x2,...) et (—y) = (—y1, —Y2,...). L’addition des alpha-
bets (z) + (y) déja introduite peut étre généralisée en considérant des combi-
naisons linéaires quelconques A(z) + u(y), A, u € A, ou il faut faire attention que
—(—z) # (x), puisque (—z) est une multiplication des variables par —1 tandis que
—(z) est une soustraction de lalphabet (z) (voir [22]). Le théoréme suivant est
évident ou bien une définition.

THEOREME 6.4. Soient f,g: 2V — A telles que f(0) = g(0) = 0, alors on a pour
tout \,p € A :

e S st )] = TT[(0 re) (1 P

oCVICV
1+ Z CHgy v [Mz) + p(y)] - VW= exp [Z ()\ - Fg(zv) + p- Fg(yiu))].
oCV'CV 1=1

En particulier,

wy (STrvr [\@) + u(v)]) = STyv [Ma) — u(-y)],
STy [(@)/@)] = STyv (@) = ()],
w(STf,V: [(:L‘)]) = STf,VI [—(—.r)] !

Soient cycg(v), ling(v), cycg(v) et ling(v) quatre fonctions d’ensembles quel-
conques qui satisfont a l'identité de Berge, c’est-a-dire au théoréme 4.1. Nous
définissons, pour chaque () C V' C V, la fonction symétrique de Chow-Stanley

CServi[(2); ()] par
1+ Z CSavn [(a:), (y)] N A exp [Z cyca(zv } H [1 + ling (y;v)
OCVICV i=1 j=1

Maintenant nous sommes en mesure de formuler notre généralisation du théoreme
principal de la thése de Chow [11].

THEOREME 6.5. (Théoréme de dualité pour la fonction de Chow-Stanley)
Pour tous Ac, \j, e, 41 € A, on a

CSg[Ae(x) + pe(y); Mi(e) + pu(y)]
= CSc[Ae(—2) + pe(—y); — (e + N) (—2) — (e + ) (—)]-
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Démonstration. Dans le langage des fonctions d’ensembles, il s’agit de démontrer
Iidentité suivante, que nous établissons a ’aide de I'identité de Berge :

exp [/\c icyca(xiu)] - [ e i cycg(y;v ]

J=1

(ﬁ [1+11nG x;V) D)\l (ﬁ[1+11n0(yj )DM

i=1 j=1

= exp [/\c chcc;(—fvw)] - exp [uc iCYCG(—ij)}'

(LT[t mo-s0]) ™7 ([ 1+ m-s]) ™™

< (eXP [i (cycg(wv) — cycG(—a:iy))} ) A,
(exp [i (cyeg(yv) — CyCG(_yjI/))])MC

(ﬁ[l-l—llng D (ﬁ[l-l—hng )

1=1 7j=1

Q.
1
—

Posons A\, = u; = 1 et \; = p. = 0 pour obtenir le théoréeme principal de la
these de Chow [11] et de l’article [10].

COROLLAIRE 6.3. (Chow) On a

CSz[(z); (y)] = CSe[(—2); —(—z) — (-v)]
= e (@Sel(=r )] .

y—(z,y)

Chow a également trouvé un deuxieme cas particulier du théoreme 6.5, a savoir
Ae=—2, uc=0et \j = p; = 1.

COROLLAIRE 6.4. (Chow) On a

CSz[~2(2); (2) + (9)] = CSe[~2(-2); (~2) — (~y)]
— w,(CSa[~2(~2); (~2) + (¥)])- N
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Tous les autres cas du théoréme 6.5 sont nouveaux. De notre point de vue, cepen-
dant, le théoreme 6.5 et I'identité de Berge sont aussi des corollaires immédiats
des résultats de Chow. Par ailleurs, Chow [10, paragraphe 6] a posé la question
de mieux comprendre le role des inversions qu’il a considérées. Il nous semble,
que l'addition des alphabets répond parfaitement & cette question. Au moins, il
devient évident qu’il s’agit bien d’inversions, un fait que Chow a di démontrer.

Remarquons finalement, que Gessel a aussi imaginé une démonstration de I'iden-
tité

CSz[0; (v)] = wy(CSa[0; (v)]),

qui se trouve dans l'intersection des deux résultats de Chow. Cette preuve de
Gessel reproduite dans [10], cependant, s’étend, elle aussi, sur plus d’une page
tout en utilisant les fonctions de Schur.
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son aide et assistance et notamment de ses explications stimulantes en ce qui con-
cerne l'article [16]. Mes remerciements vont aussi & A. Lascoux, qui m’a recom-
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