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Résumé

Soit G = (X, Y; E) un graphe biparti eG = (X, ¥; E) le graphe biparti complémen-
taire. Notonsp(G,r) le nombre des-couplages deG. Il est classique que le vecteur
[p(G, r)]r=1,2,... est déterminé pdip(G, r)],=1 2, ... Nous explicitons ce fait en démon-
trant des théorémes de dualité nouveaux, généralisant et globalisant notamment les résul-
tats de Chow, Foata, Gessel, Joni, Rota et Zeilberger. Pour des graphes orientés on obtient
ainsi une preuve rapide de l'identité fondamentale de Berge entre des chemins et des cir-
cuits hamiltoniens. Exprimée dans le langage des fonctions d’ensembles, celle-ci implique
immédiatement la conjecture de Chung et Graham (établie d’abord par Chow et Gessel)
ainsi que les théorémes de parité de Rédei sur les tournois, de Lovasz sur les graphes
non-orientés et de Camion et Rao sur les graphes auto-complémentaires. Finalement, nous
étudions les relations entre les fonctions d’ensembles et les fonctions symétriques. Le théo-
reme principal de la thése de Chow devient ainsi une conséquence directe de l'identité de
Berge.
0 2002 Elsevier Science (USA). All rights reserved.

Abstract

Let G = (X,Y; E) be a bipartite graph with bipartite compleme@it= (X, Y; E).

The number ofr-matchings ofG is denoted byp(G, r). It is classical that the vector
[p(é,r)]r:]_’z’_._ is determined by[p(G,r)],=12... We make this statement more
explicit by proving new duality theorems, generalizing and globalizing the results of Chow,
Foata, Gessel, Joni, Rota and Zeilberger, in particular. For oriented graphs this provides
a short proof of Berge's fundamental identity between Hamiltonian paths and circuits.
Expressed in terms of set functions, the identity immediately implies the Chung—Graham
conjecture (first derived by Chow and Gessel) as well as Rédei’s, Lovasz’, and Camion’s
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and Rao’s parity results for tournaments, non-oriented and self-complementary graphs,

respectively. Finally, we study the relations between set functions and symmetric functions

and show that the main theorem in Chow'’s PhD thesis becomes a direct consequence of
Berge’s identity.

0 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

SoientX etY deux ensembles disjoints de cardinatitét m, respectivement.
Un graphe bipartG = (X, Y; E) est dit simple si et seulement si I'ensemble de
ses aréte€ est un sous-ensemble déx Y. Pour de tels graphes on définit
le graphe biparti complémentairpar G := (X,Y; E) avecE := (X x Y)\E.
On appeller-couplagede G un ensemble de arétes tel que deux quelconques
des arétes du couplage sont non-adjacentes. NgpdGsr) le nombre des
r-couplages d&; et posonsp(G, 0) := 1. Traditionellement, on interpret®
(respectivemerit) comme un ensemble de lignes (respectivement colonnes) d’'un
échiquier rectangulaire de sorte qu’un couplage devient un ensemble de tours non-
attaquantes. C’est pourquoi on appelle

min(n,m)
p(G.x):= Y (=1p(G,r)-x"""
r=0
le polynéme des tourdl est classique (voir le livre [28] de Riordan, Chapitre 7.7)
quep (G, x) est complétement déterminé paiG, x). Toutefois, aucune relation
simple reliantp (G, x) et p(G, x) n'a été imaginée jusqu’a présent. D’autre part,
inspirés par la définition visionnaire du polynéme de recouvrement de Chung et
Graham [12], Chow (et Gessel) [9] ont introduit le polynéfaetoriel des tours
comme étant

min(n,m)
PG, )= Y p(G,r)-",
r=0
ouzk:=z(z—1)---(z—k+1). Nous I'appellerons, ci-apré&solynéme de Chow
Il a déja fait ses preuves dans I'étude des diagrammes de Ferrers (voir [15]), parce
gu’il se factorise naturellement (voir [19] et [31, Théoréme 2.4.1]). De plus, il
satisfait une relation de dualité tout a fait remarquable

p!(G.z)=(-D)"pl(G,m —n—1-72),

imaginée par Chow (et Gessel) [9] dans le gasm. Outre cette généralisation,
nous établissons la nouvelle formule
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p!(G.z) = . %p(G,x) - dx,

o0
|
X
F(z+1+n—m)0

dont la spécialisation = m etz = 0 fut trouvée par Joni, Rota et Zeilberger [21],
puisque p!(G,0) compte le nombre des couplages parfaits @elorsque
n = m. Ce résultat permet notamment d’interpréter des intégrales de produits de
polynémes de Laguerre généralisés comme nombre de dérangements (voir [3-5,
14,16,18,20,29,34]).

Suivant Godsil [17, p. 157], on peut, en effet, définir les polynédmes de
Laguerre comme des polynémes des tours des graphes bipartis cokplets:
(X,Y; X xY) avec|X| =n et|Y| =m. Autrement dit, pour tout € N, nous
posons

Le,(f)(x) = p(Knnta, ).
(a)

Commep (K nta ¥ Kmia.m, X) =x- Lel (x) - Le'® (x), lidentité de Joni, Rota
et Zeilberger implique alors

e8]
:O!(Kn,rH-a ) Km+a,m’ 0) = [ Ley(;a)(x) : Ler(y‘:)(x) ~x%e " dx
0

(voir [18]), ce qui fournit notamment I'orthogonalité de nos polynorhes” (x)
par rapport ax“e *dx. Voila pourquoi notre définition des polyndbmes de
LaguerreLe,(,“)(x) correspond bien a la définition classique. Notre normalisation,
cependant, est choisie de facon que le premier coefficient, i.e. le coefficieht de
vaille 1.

Il nous semble également utile d'introduire Ipslyndmes des tours symé-

triques(par rapport a la bipartition) en deux variables
min(n,m)
p(G.x,y)i= Y (=1 p(G.r) - x""y" " =y"" p(G,xy),
r=0
min(n,m)
PG, x,y):= Y pG,r)-x""y" T =(=1)"y"" p(G, —xy),
r=0
si G = (X,Y; E) est biparti avedX| =n et |Y| = m. Pour ces polynémes,
nous démontrons plusieurs théoremes de dualité qui font intervenir des opérateurs
différentiels. En particulier, nos identités nouvelles

d d

P(a,x:y) = exy 15<G,_$’ _a> ‘eixy = (x/y)nim 10(6’ y’x)

_ d d Ly
== (x/y)”_m~exy~p<G,——,—$>-e Y
impliquent
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d\"/ dy
—lev. (2 -] -e¥
p(Kym,x, )= |:eX < dX> < dy) ¢ ])’=1
d " na—X1 _ ,,n—m d ' et
é(—a) [xe ]_x ex<_a> [x ¢ ],

ou la toute derniére identité est la formule de Rodrigues pour les polynémes de
Laguerre généralisés. Dans le @as m, nous établissons également le théoreme
de dualité suivant pour le polyndme des tours lui-méme :

Le,(lmfn) (x)

p(G.—x) = (-1"- exp[%x%]p(ax),

p(G,x) = (—l)"~exp|:—%x%i|p(G,—x).

Nous démontrons tous nos résultats a I'aide des fonctions génératrices pour
les fonctions d’ensembles. Cette méthode algébrique permet, par excellence,
d’automatiser l'utilisation de plusieurs méthodes classiques de la combinatoire
énumeérative et algébrique, et notamment ['utilisation du principe d’inclusion-
exclusion et de l'inversion de M&bius sur I'ensemble partiellement ordonné des
partitions d’un ensemble. L'algébre des fonctions d’ensembles est introduite dans
le Paragraphe 2. Dans le Paragraphe 3, elle est appliquée pour le traitement
du polyndme des tours et de sa parenté. Ceci fournit des démonstrations
particulierement courtes et explicatives et permet méme de prolonger tous nos
résultats a I'étude des permanents des matrices quelconques.

Pour des matrices carrées on obtient ainsi une preuve rapide d’'une générali-
sation pondérée d’'une identité fondamentale de Berge entre les chemins et les
circuits hamiltoniens d’un graphe orienté simgle= (V,E), ECV x V, et
ceux de son complémett= (V, E), E = (V x V)\E. Appelonsbi-chemin ha-
miltonienune partition d&/ en deux chemins hamiltoniens non-vides. Si(Gjc
désigne le nombre de circuits hamiltoniens@eglin(G) le nombre de chemins
hamiltoniens et biligG) le nombre de bi-chemins hamiltoniens, alors Berge a
imaginé le théoréme de dualité suivant :

lin(G) =1in(G) (mod 2, bilin(G) = bilin(G) (mod 2,
lin(G) + bilin(G) =1in(G) + bilin(G) = cyc(G) + cyc(G) (mod 2

(voir [7] ainsi que [6, Chapitre 10, Théoréme 1 et Exercice 9]). La démonstration
de Berge, cependant, contient un résultat nettement plus puissant que nous
appelonsdentité de BergeExprimée dans le langage des fonctions d’ensembles,
cette identité fondamentale prend toute sa force et implique immédiatement tous
les résultats des Paragraphes 4 et 5, et notamment la conjecture de Chung et
Graham (établie d’abord par Chow et Gessel), l'identité de Foata et Zeilberger
sur les polynémes de Laguerre, les théorémes de parité de Rédei sur les tournois,
de Lovéasz sur les graphes non-orientés et de Camion et Rao sur les graphes
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auto-complémentaires. Les démonstrations de ces résultats données par Berge,
Camion, Chow, Foata, Gessel, Lovasz, Moon, Rao, Szele et Zeilberger s’étendent
parfois sur plusieurs pages (voir [8,10,16,27,33], [24, 5.19, 5.20], [26, pp. 21—
23)).

Dans le Paragraphe 6, nous étudions les relations les plus importantes entre les
fonctions d’ensembles et les fonctions symétriques. Nous généralisons plusieurs
théoremes de Stanley [30] et simplifions ses démonstrations. Finalement, nous
montrons que le théoreme principal de la these de Chow [11] est une conséquence
directe de l'identité de Berge.

2. Outilsalgébriques

Soit V un ensemble fini et
fi2¥ A, VCVe f(V)eA
unefonction d’ensemble®u A est unanneau commutatifavec 1). Considérons
la fonction génératrice
Fro)y:= Y fvhY, =1,
V'cv
a joindre aux regles de calcul suivant&s,(V” C V) :

V/_ V” 1)V +V”

ou
// VUV” SiV/ﬂV”:V), N
VitV { sivinvzg, O
t+ V' t+t:=t, et vi:=0.

L'algébreA[V] de ces fonctions génératrices n’est pas une inconnue. En effet, on
a l'isomorphisme

AVI~ Afvy, ..., vl /(0. 02),

si V contientn éléments.

Exemple 2.1. Le produit fg de deux fonctions d’ensemblgsg est défini, pour
toutV' C Vv, par

V= > fV")-g(V").

V/ V//UV///
Il en résulte

Fre(v) =Fr(v) - Fy(v).
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Pour |V| = oo, soit F(V) I'ensemble partiellement ordonné des sous-
ensembles finis d&. On a des projections canoniqueg v : A[V'] - A[V"]
(V,V'e F(V),V' 2 V")etl'on pose

A[V]:=IlmA[V'], V' eF(V)
<«
pour travailler avec des fonctions génératrices de la forme

Froy= Y fV)-v".

V/eF(V)
Soit

V= Z plvd
veV
la fonction indicatrice des sous-ensembles/dde cardinalité 1 ('usage double
de V pour I'ensemble et pour un élément dgV'] ne pourra pas étre a l'origine
de confusions). En multipliant la fonction génératriéeplusieurs fois par elle-
méme, on voit qué/"/n! représente la fonction indicatrice des sous-ensembles
de 'ensemblé/ de cardinalité:. L'identité

Yo fmy-vint= 3" (V)Y fiN— A,

n=0 V'eF (V)

fournit un plongement de I'annead![V] des fonctions génératrices de type
exponentiel dans I'annead[V]. Ce plongement est a I'origine de (presque ?)
toutes les applications dé![V] en combinatoire, mais il nécessite I'existence
d’'un modele combinatoire infini (qui ne fait intervenir que les cardinalités). Par
conséquentA[V] donne plus de flexibilité et permet un traitement algébrique,
qui refléte parfaitement les opérations classiques de la combinatoire. Outre cela,
A[V] est approprié, par excellence, aux calculs par ordinateur.

Remarque 2.1. LanneauZ![V] n'est pas noethérien, mais il contient des
fonctions importantes comme eXp) et log(1+ V).

Exemple2.2. SicharA=2,0na

o0
A+V)t =) "(=D"!- V"l =14V et
n=0

log(1+ V) =Y (D" tn— D! V'/nl=V +V?/2
n=1

dans I'anneawt![V]. Ces identités sont a I'origine de maints résultats de parité
en combinatoire.
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Pour toutr € A posongz - v)V =Vl vY', V' C Vv, et, par conséquent,
Fravy= Y fvhV Y.
PCV/'CV

Il est évident que cette définition est compatible avec I'addition et la multipli-
cation. Les cas particuliers les plus importants soat—1 et =0 : Fr(0) =
Fr(0-v) = f(#).

Si Fr(0) =0, alorsF¢(v)"/n! est défini pour n'importe quel annedy parce
gu’une partition em sous-ensembles non-vides peut étre ordonnéémanieres
différentes. Voila pourquod![V] opére surA[V] par la substitutiorG (Fy(v))
définie pour touG € A!l[V].

Finalement, on utilise les dérivé@$ pour toutv € V définies par

, V/ . ’
avyV :z{v , SlveV’,

o, sinon.
La formule de dérivation d’un produit

3[Frv)- Fg)] = (3"Fr(v)) - Fo(v) + Fr(v) - (3" Fo (1))

est I'analogue algébrique du fait ensembliste le plus fondamental :
veVwV’ & wveV' ou veV’

La formule
3'[G(Fr()]=G'(Fr()-3"Fr(v), G eAl[V],

en découle immédiatement.

Remarque 2.2. LisomorphismeA[V] = A[v1, ..., v,1/{(vZ, ..., v2) ne fait pas

correspondré? a d/dv;, mais av;d/dv;. La dérivée partielléd/dv; n'a point
d'analogue dand[V].

Exemple 2.3. (a) Etantdonnéeg, g:2" — A, alors I'équivalence suivante n’est
rien d’autre que le principe d’inclusion-exclusion :
Fo(v)y=exgV] - Fr(v) & Fr(v)=exg—V]- F,(v).
(b) Etant donnéeg, g: 2" — A avecf (¥) = g(¥) =0, I'équivalence
1+ F)=exgdFr(v)] < Fr)=log[l+ Fy(v)]
s’écrit sous la forme

gVh= > fB)--f(B) YVCV &
V/'=B1W---WBy
fVh =Y D Nk-D!-gBy)-g(B) YV SV

V/'=B14---WBy
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et n'est rien d’autre que I'inversion de Mdébius pour des fonctions multiplicatives
généralisées sur I'ensemble partiellement ordonné des partitiorié (leir

[1, Chapitre V.1.C] ou [13, Chapitre 5.2]). Par ailleurs, on peut se servii’de
pour obtenir le résultat dérivé

[1+ Fo()] -9V Fr(v) = 8" Fy(v),

qui, par suite de la profusion de méthodes inductives ou récursives, est souvent
beaucoup plus connu que le résultat «pur». En outre, ce résultat dérivé a
'avantage de n’utiliser qu’un seul produit, permettant des calculs par ordinateur
particulierement rapides.

3. Lepolynémedestourset sa parenté

Soit G = (X,Y; E) un graphe biparti simple et sof = (X,Y; E) son
complément biparti. Posons:= X WY et définisson<X, Y, E, E € A[V] par

X::ZV{X}, Y::Zv{y}, E::Zve, E::Zve,

xeX yey eck ecE

ol chaque aréte € E (respectivement € E) est considérée comme un sous-
ensemble d& de cardinalité deux. La définition du complément biparti implique
alors l'identité suivante, qui est a I'origine de tous les résultats de cet article.

Lemme fondamental. Dans l'algébreA[V] = A[X W Y], 0on a

E+E=XY.

Pourgc X’ c X et CY' CY, notonsG[X',Y’] le sous-graphe d&
engendré paX’ U Y’ (c’est le graphe dont les sommets sont les éléments de
X' UY’ et dont les arétes sont les arétes@ayant leurs deux extrémités dans
X"UY’). Alors exdE] compte, pour chaqui’ € X etY’ C Y, le nombre des
couplages parfaits d&[X’, Y’]. Voila pourquoi la proposition suivante est une
conséquence immédiate des définitions du polynéme des tours et de sa parenté
(voir I'introduction).

Proposition 3.1. Ona

p!(GIX', Y1, 2) -v¥YY = explE]- L
) v

X'cX Y’QY i= Oj—O
= exgE]-expX]- (1+7Y)* et

> 3 p(GIX . ¥1.x) v = expl—E] - explxX] - expY ],

X'cX y'cy
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>3 p(GIX Y x,y) - vEYY = exp—E]- expx X] - expyY ],

X'cXYcy

> > A(GIX Y x,y) XYY = exd E]- explxX] - explyY .

X'cX y'cy

Il est classique que (G, x) est complétement déterminé parG, x), un
résultat que Riordan [28, Chapitre 7.7], démontra & I'aide de la proposition
suivante.

Proposition 3.2. SoitG = (X, Y; E) un graphe biparti simple avelX| = n et
|Y|=m. Alors on a pour le polyndme des tours du graphe biparti complémentaire
G = (X,Y; E) lidentité

min(n,m)

:O(va): Z p(G,r)- p(Kn—rm—r, X).

r=0
Démonstration. En utilisant I'algébreA[V]=A[XWY],0ona

ZZp(K,,,x) _exp[xX+Y XY].

i=0 j=0

Par conséquent, I'identité suivante implique bien notre proposition :

expxX +Y — E]

expgxX 4+ Y — XY + E]
= expE]-expxX+Y —XY]. O

Pour les polyndmes des tours symétriques, nous pouvons établir des théorémes
de dualité apparemment nouveaux.

Théoreme 3.1. Pour tout graphe biparti simpl& = (X, Y; E),ona

_ d d
> — oy, = H) e
,o(G,x,y) =€ ,0<G, dy’dx) e,

_ d d
G,x,y)=€Y-polG,——,—— |-,
p(G.x,y) p< a dx)
Démonstration. D’'apres le théoréme de Taylor formel on a

fx +a, y+b)—exp|:%a+gb] fx,y)

pour des variables, y, a, b et une série formell¢. Il s’ensuit
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exp—xy]- exp[%X + %Y — Ei| -expxy]

=exp—xy]-exg—E] -exp[EY + iX:| -expxy]
dx dy

=exp—xy]-exd—E]-exp[(x + Y)(y + X)]
= eXF{xX +yY + E]

La deuxiéme égalité est démontrée de la méme facon.
Comme

(Gar) ] - (Grd) <
dx dy y=1 dx dx

pour touti, j € N, nous obtenons le corollaire suivant pour le polyndme des tours
lui-méme.

Corollaire 3.1. Soit G = (X, Y; E) un graphe biparti simple tel quex| =
|Y| =n. Alors on a pour le polyndme des tours@e= (X, Y; E) les identités

p(G.—x) = <—1>"-e—xp<G clx£>ex,

~ n d 7x
p(G,x) = (=1 ~ex,0<G,—d—xd—> .

Au lieu de reproduire des généralisations du corollaire précédent au cas
|X| # |Y| (qui sont moins belles), nous préférons donner une autre forme des
théoremes de dualité faisant intervenir des opérateurs différentiels.

Théoréme 3.2. Pour tout graphe biparti simpl& = (X, Y; E),ona

15((_;7)(’ y) - exp[%di] '/)(G,X, )7),

p(G.x.y) = eXD[—dEdE} -p(G,x,y).

Démonstration. Puisque%d% expxX 4+ yY — E]= XY -expxX + yY — E],
nous avons

expxX 4+ yY + E| = exgXY] - expxX + yY — E]

ex dd expxX +yY — E]
dxd X y .

L'opérateur différentiel ex[p%%%] est lnverse de exgd di o
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Le Corollaire 3.2 se déduit du Théoreme 3.2 de la méme facon que le
Corollaire 3.1 se déduit du Théoréme 3.1.

Corollaire 3.2. Soit G = (X, Y; E) un graphe biparti simple tel quex| =
|Y| =n. Alors on a pour le polyndme des tours@e= (X, Y; E) les identités

_ d d
,O(G —x) = (=" exp[d—xd—]p(G x),

d d
G,x) = (=D"-expl ——x— |p(G, —
p(G.x) = 1" e~ x| G-
Terminons ce paragraphe avec le théoreme de dualité pour le polyndme de
Chow dont nous avons mentionné les spécialisations classiques dans l'introduc-
tion.

Théoréeme 3.3. SoitG = (X, Y; E) un graphe biparti simple aveX| =n et
|Y|=m. Alors on a

p!(G.z) = (=1)"p!(G,m —n—1—2)

F(z+1+11—m)f €T (Gx) .

Démonstration. La Proposition 3.1 permet d’exprimer la premiére identité dans
le langage des fonctions d’ensembles. En fait, pour représenter le faetexit,

il suffit de multiplier chaque élément de(et deE) par—1. Autrement dit, il faut
démontrer

exi{ E] Zz_l_z,—exp[ E]ZZ—( M G—icmn

i=0 j=0 i=0 j=0
& exgE] ZZ—Y’( )—exq E] ZZ 'YJ<Z+Z>
i=0 j=0 i= OJ Ol
e X ,
& exgE]) (L4 Y)" =exg~E] Z 7(1+ y)ite
i=0 i=0

& exgE+E]expgX]=exgX(1+7Y)]
Pour établir I'identité
(D" (G,m —n—1—72)
o0
_ 1
TG+ 14n—m)
0

e . x*p(G,x) - dx,
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il suffit de constater que le coefficient g&G, r) (voir I'introduction) dans le
membre de gauche et dans le membre de droite vaut

=D"(m—n—1-7)2="

_ TE+1+n—
(1) (e 4n =yt = gy LA )

F'z+14+n—m)

1
S TG+14n—m)
0

XY (=D X" dx. O

Remarque 3.1. Dans le sens de Gessel et Stanley, il faudrait également étudier
les fonctions génératrices des suites de nompl€s, z), z € Z, une étude que
nous ne reproduisons pas ici.

Remarque 3.2. Pour plusieurs applications (voir [3-5,16], par exemple), il est
indispensable de prolonger nos résultats aux graphes bipangérésG,, =
(X,Y;E,w), oUw:X WY — A (respectivementE:X x Y — A) est une
fonction attachant un poids a chaque sommet (respectivement aréte) du graphe.
Par définition,{x, y} est une aréte d&,, si et seulement sk ({x, y}) # 0, de
sorte qu’un graphe biparti simple est un graphe biparti pondéré telvgue=
wy)=1letE({x,y})e€{0,1} pourtoutx € X ety e Y.

Le complément pondéi@€,, = (X, Y; E, w) du grapheG,, = (X, Y; E, w) est
défini par

E(fx, y})) + E({x, y}) = w(x) - w(y)
pour toutx € X ety € Y. En posant

X:=) wlx) v, Yi=) wy) v

xeX er
D 3D DL RN A5 3 ('S RS
xeX yeY xeX yeY

notre lemme fondamental
E+E=XY

reste alors valable.

Un r-couplagede G, finalement, est un recouvrement de tousideemmets
de X et de tous le: sommets d& parr arétes non-adjacentes;— r sommets
deX etm —r sommets d¢&. Le poids du--couplage est égal au produit des poids
de ses arétes, ses — r sommets d&X et sesn — r sommets de’.

Notonsp (G, r) la somme des poids de tous lesouplages d& ,,,

p(Gy,0) = [1‘[ w(x)] : [1‘[ w(y)].

xeX yey
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De cette maniére, la Proposition 3.1 ainsi que tous les autres résultats de ce
paragraphe restent effectivement valables pour les graphes bipartis pondérés.
Autrement dit,nous avons établi des théorémes de dualité pour les permanents
des matrices de dimensions< m.

4. Chemins et circuits hamiltoniens

Supposons dorénavant g€ = |Y| = n et fixons une bijection entr¥ etY.
Cecinous permet d’identifier le graphe biparti sim@le- (X,Y; E), EC X x Y,
a un graphe orienté simpte = (V, E) avec|V|=netECV x V.

graphe biparti :

graphe orienté :

T & T o———+—@:

Notons queV n'est plus égal & WY & partir de ce paragraphe. La définition
du graphe biparti complémentaire fournit une définition naturelle du graphe orien-
té complémentaire, a savoF = (V, E), ou E = (V x V)\E. En particulier,

G contient une boucle autour dec V si et seulement s n’a pas de boucle
autour dev. Un r-couplage du graphe biparti, finalement, n’est rien d’autre
gu’une partition deV en plusieurs circuits hamiltoniens et — r chemins
hamiltoniens du graphe orientéle sorte que tous les résultats du paragraphe
précédent peuvent étre interprétés dans le langage des graphes orientés.

Pour toutd c V/ € V, notonsG[V’] le sous-graphe du graphe orienté
G = (V, E) qui est engendré pdr’ (c’est le graphe dont les sommets sont les
éléments d&/’ et dont les arcs sont les arcs @eayant leurs deux extrémités
dansV’). Soit cyd G[V’']) le nombre de circuits hamiltoniens d&q V'] et soit
lin(G[V']) le nombre de chemins hamiltoniens d&¢V’], ou un seul sommet
v € V est un chemin hamiltonien dé&[{v}] dont v est a la fois le sommet
initial et le sommet terminal, alors qu’'une boucle autouwdsst bien un circuit
hamiltonien deG[{v}]. Les deux éléments

cycs (v) = Z cyo(GIV) v,
pcv'cv

ling(v) = Y lin(G[v')-v"
acv'cv

de l'algébreA[V], |V| =n, sont au centre du reste de cet article. En fait, si I'on
posen = m etz = 0 dans la premiére identité du Théoréme 3.3, alors le membre
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de gauche de cette identité est égal au coefficient dgans expeycs (v)], tandis
que le membre de droite est égal au coefficient Hele la fonction d’ensembles
expeycs (—v)1-[1+ ling (—v)1~1. Autrement dit, notre Théoréme 3.3 implique
la relation

: -1
expcycs (v) ] = expcycg (—)] - [1+ling(—v)] 7,
imaginée par Berge [7] sans utiliser les fonctions d’ensembles. En intervertissant

les roles d&G et G, nous obtenons le théoréeme suivant, qui est a l'origine de tous
les résultats des Paragraphes 4 et 5.

Théoreme 4.1 (Identité de Berge).SoitG = (V, E) un graphe orienté simple.
Alors on a

1+ling () =[1+1ing (=] ' = expleycs (v) — cyeg (—v)],
log[1+ling(v)] = —log[1+ ling(—v)] = cycz (v) — cycg(—v) et
[1+ling(—=)]-3"ling(v) = —[1+ling(1)] - 3" linG(—v)
= 0"[cycg(v) — cycg (—v)]
pour chaque sommete V.

Remarque 4.1. Pour des applications futures, il est indispensable de prolonger
nos résultats aux graphes oriengEndérésG;, = (V, E,i,t), oui,r:V — A

et E:V x V — A sont des fonctions attachant des poids a chaque sommet et
arc, respectivement. Par définitio,, v) est un arc de&G;; si et seulement si
E((u,v)) # 0, de sorte qu’un graphe orienté simple est un graphe orienté pondéré
tel quei (v) =t(v) = 1 et E((u, v)) € {0, 1} pour toutu, v € V. Le complément
pondéréG;, = (V, E,i,t) du grapheG;; = (V, E, i, t) est défini par

E((u, v)) + E((u, v)) =i(u)-t(v)

pour toutu,v € V. Finalement, le poids d'un circuit hamiltonien est égal
au produit des poids de ses arcs, tandis que le poids d'un chemin hamilto-
nien est égal au produit des poids de ses arcs multipliézpgr- i(v) si
u (respectivement) est le sommet initial (respectivement terminal) du che-
min.

Pour tout@ c V' € V, notons cy€¢G;,[V']) (respectivement litG;;[V']))
la somme des poids de tous les circuits (respectivement chemins) hamil-
toniens deG;[V’]. Avec ces définitions, notre Remarque 3.2 permet de
conclure que le Théoreme 4.1 reste valable pour les graphes orientés pondé-
rés. Autrement dit, nous avons établi un théoréme de dualité pour les ma-
trices carrées de dimensianx n. En fait, la diagonale principale d’'une ma-
trice carrée fournit une bijection canonique entre I'ensemble des lignes et
'ensemble des colonnes (voir le début de ce paragraphe). Remarquons fi-
nalement que les autres résultats des Paragraphes 4 et 5 peuvent également
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étre prolongés au cas pondéré. Nous laissons au lecteur le soin d’expliciter
ceci.

Grace a notre Exemple 2.2, on peut simplifier le Théoréme 4.1 sensiblement
en le considérant modulo 2 :

1+ling(v)=1+ling(v) (mod 2,
ling(v) +linz(1%/2=ling (V) + ling (v)?/2
=cycz (v) +cycg(v)  (mod 2.

Puisque le coefficient de¥ dans lin; (v)2/2 compte le nombre de bi-chemins
hamiltoniens deG = (V, E) (voir I'introduction), nous avons établi le résultat
principal de larticle [7] de Berge (voir [6, Chapitre 10, Théoréme 1 et
Exercice 9]).

Corollaire4.1 (Berge). Pour tout graphe orienté simplé = (V, E), ona

lin(G) =lin(G) (mod 2, bilin(G) = bilin(G) (mod 2,
lin(G) + bilin(G) =1in(G) + bilin(G) = cyc(G) + cyc(G)  (mod 2.

SoitG = (V, E) un graphe orienté simple. Chung et Graham [12] (respective-
ment D’Antona et Munarini [2]) ont introduit et étudié le polyndm@& G, x, y)
(respectivemen€ (G, x, z)) appelépolyndbme de recouvremefrespectivement
polyndme de recouvrement géométrigdel’aide des fonctions d’ensembles, on
peut définir ces polynémes comme suit :

1+ > CGIV1x.y) v = expx-cyce)] - [1+ling(v)]”,

hcv'cv

1+ Z C(G[V/],x,z)mv/ := expx - cycg(v)] -exgz - ling(v)].

gcv'cv

Il est évident que nos définitions sont équivalentes a celles proposées par Chung
et Graham [12], D’Antona et Munarini [2] et Chow [10]. Chung et Graham ont
posé la question de savoir 6i!/(G, x, y) est déterminé pa€!(G, x, y). Une
réponse affirmative fut trouvée par Chow (et Gessel) [10], qui ont établi une belle
relation entre les deux polyndmes, soulignant davantage le caractére visionnaire
de la définition de Chung et Graham. Nous montrons que la relation imaginée par
Chow (et Gessel) ainsi que notre relation elitéG, x, y) et C(G, x, z) sont des
corollaires directs de l'identité de Berge. Les différentes démonstrations de Chow
et Gessel [10] sont toutes plus longues.

Théoréeme 4.2. SoitG = (V, E) un graphe orienté simple ave®' | = n. Alors
ona
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C!(G.x,y) = (-D"CUG,x,—x —y)
(=" . o dz
=——=— |e*.CG,x,—z7)- 7" =,
MGty (G,x,—2)z p
0

Démonstration. Dans le langage des fonctions d’ensembles, la premiére identité
du corollaire s’exprime comme suit :

exp[x - cycg ()] - [1+ling ()]
= exp[x - cycg(—»)] - [L+ling(—n)]
& (expleycg(v) —cycg (—0)]) " = [1+ling (=] .
La seconde identité se vérifie de la fagon suivante :

I S
F(x—l—y)/e expx - cycg (—v)] - exp[—z - ling(—1)] - z dz
0

= explx - cycg (—v)] -

'x+y)
x f exp(—z[1+ ling(—)]) - 2 dg
0
]-O . ( ¢ >x+y1 dr
xfe!' | — _
1+ling(—v) 1+Iling(—v)
0
vy 1
e . —_— . 1 _— x } [ —
=exp[x - cycg (—v)] - [1+ling(—v)] Ty
x fe“-t"+y‘1~dt
0

=exp[x - cycg (—)] - [L+ling(—v)] 7. ]

Remarque 4.2. Evidemment, le Théoréme 4.1 est aussi une conséquence immé-
diate du Théoréme 4.2. Le Théoréme 4.1, cependant, est bien le chainon essentiel
entre l'algébre et la combinatoire.

Pour toutn e N, n > 1, soitK, le graphe orienté compledvecn sommets.
Evidemment, son complément ne contient aucun arc, et l'on@gyce= (n — 1)!
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et lin(K,,) = n!. Définissons le graphe infini compl&t,, dans le sens du Para-
graphe 2 pour obtenir les identités

cyck., (1) = > _cyd(Ky) - V" /nt=—log(1— V),

n=1

> 1%
ling (v) = ZIin(Kn) V' /nl = i—v
n=1

Les polyndbmes de Laguerre générali&{éé“)(z) furent introduits dans lintro-
duction poura € N. La proposition suivante est facile a établir pour eux (voir
notre relation entre graphes bipartis et graphes orientés). De plus, elle nous servira
de définition des polyndmes de Laguerre peuy N. L'orthogonalité par rapport

az%e *dzdes polynﬁmeﬁe,([")(z) ainsi définis sera une conséquence immédiate
de notre Corollaire 4.2.

Proposition 4.1. On a

00 () n
Le, ' (z)-V o z-V
L) = = asn 1'exp[1+—v}

n=1
= exp(e +1) - cyck_ (—v)]exg—z - link., (—v)].
Autrement ditLe(™ (z) = (=1)" - C(K,, e + 1, —2).
Soit K, W --- & K, I'union disjointe des graphes complets,, ..., K,, de
sorte que I'on a l'identité évidente
Lef () Lel (z) = (1" . C(Kpy W+ W Ky o + 1, —2).

Le Théoreme 4.2 implique donc le corollaire suivant.

Corollaire4.2. On a

C(Kn ¥ WKy, a+1,p)

o0 k
1 .
- . (o) .28 s
T 5 O[e <h| |1Lenh (z)) z z

Le cas le plus important du corollaire précédent, a sa¥eir0, futimaginé par
Foata et Zeilberger [16, Théoréme 1]. Si, de plus, on poese, alors on obtient
I'orthogonalité par rapport a%e~<dz pour nos polyndmeg.e ™ (z) définis a
I'aide de la Proposition 4.1. Ceci montre qu'ils s'agit bien des polynémes de

Laguerre (généralisés) classiques.
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Remarque 4.3. Dans le sens de la Remarque 4.1, choisissons des poids
A1, ..., A et définissons le graphe orienté pondékg, ¥ - - - & K, )i; en posant
i(v) := Xy si et seulement si est un sommet d&,, , alors que tous les autres
poids sont conservés, i.e(v) = 1 pour chaque sommet, par exemple. De cette
maniére, on a
Le{™ (212) -+ Le{™ (A2)
= (=DM C((Kny W W K ir, @ + 1, —2)

et le cas8 = 0 de l'identité

C!((Knl W Knk)il’ o+ 1» :3)

e k
1
= [e*. Le®(uyz) ) -2 .d
r(a+ﬂ+1)[ (ﬂ e"h(’Z)> ©
, _

n'estrien d’autre que le Théoréme 2 de [16], c'est-a-dire le théoréme principal de
cet article de Foata et Zeilberger.

5. Tournoiset graphesnon-orientés

Un tournoi G = (V, E) est un graphe orienté simple sans boucles et tel
que pour deux sommets distinatsv € V on ait toujours exactement l'une des
relations (1, v) € E ou bien(v,u) € E. Si G = (V, E) est un tournoi, alors
chaque sommet dé contient une boucle et I'on a f(v) =ling (v) ainsi que
cyc; (v) =V 4 cycs (v). Voila pourquoi le Théoreme 4.1 implique le résultat sui-
vant.

Théoréme5.1. Pour chaque tournoG = (V, E), on a

1+ling(v) = [1+ling(—)] " =exp V] - expcycs (v) — cyc(—v)]
et

log[1+ling(v)] = —log[1+ ling(—v)] =V + cycs (v) — cycg (—v).

Grace a notre Exemple 2.2, on peut simplifier le théoréme précédent sensible-
ment en le considérant modulo 2 :

1+ling(v)=exdV] (mod 2,
ling(v) +ling(1)?/2=V (mod 2.

On n’obtient ainsi rien d'autre que les théoremes classiques de Rédei et de
Berge, formulés dans le langage des fonctions d’ensembles (voir [6, Chapitre 10,
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Théoreme 6 et Exercice 9]). La démonstration du théoréme de Rédei imaginée par
Berge est plus longue, bien gu’elle simplifie déja considérablement les preuves
classiques (voir [33], [26, pp. 21-23]).

Coroallaire5.1 (Rédei, Berge) Pour chaque tourno; = (V, E) tel que|V| > 1,
on alin(G) = bilin(G) =1 (mod 2.

Finalement, SOIE W E = (‘é) une partition de la famille des sous-ensembles de
cardinalité 2 de 'ensembl¥, et soientG = (V, E) etG = (V, E) deux graphes
simples non-orientés qui sont complémentaires. Pour@autV’ C V, notons
G[V’] le sous-graphe d& engendré pak/’ (c’est le graphe dont les sommets
sont les éléments dg’ et dont les arétes sont les arétesayant leurs deux
extrémités dand’’). Soit hdG[V']) (respectivement h@:[V'])) le nombre de
circuits (respectivement chemins) hamiltoniens@g/’], ot hdG[V']) :== 0
(respectivement h@z[V']) := 0) si|V’| < 3 (respectivement’’| < 2). Posons

HCo(v):= Y  ho(G[V])-v",

pcv'cv

HPcw) == > hp(G[V']) v

hcv'cv

ainsi queE := Y, p1° et E := Y, zv° de sorte queE + E = V?/2 dans
l'algébre A[V].

Suivant la suggestion de Berge (voir [6, Préface]), remplacons chaque aréte
de G et de G par deux arcs dorientations opposées et munissons chaque
sommet deG d’une boucle pour obtenir deux graphes simples orientés qui
sont complémentaires. Tout circuit (respectivement chemin) hamiltonien non-
orienté conduit a deux circuits (respectivement chemins) hamiltoniens orientés.
De plus, une aréte non-orienté (respectivement un sommet) conduit a un circuit
(respectivement chemin) hamiltonien orienté. Par conséquent, le Théoreme 4.1
fournit le résultat suivant.

Théoréme 5.2. SoientG = (V, E) et G = (V, E) deux graphes simples non-
orientés qui sont complémentaires. Alors on a
14V 4+ 2HP;(v) =[1— V +2HP; (-] "
=expV + E + 2HCg(v) — E — 2HCg (—v)],
log[1+ V 4+ 2HPg(v)] = —log[1 — V + 2HPg (—v)]
=V +E — E + 2[HCg(v) — HCG (—v)].

Pour obtenir des relations plus simples modulo 2, commencons par développer
la fonction exponentielle dans le théoréme précédent modulo 4 :
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exgV + E + 2HCz(v) — E — 2HCg(—v)]
= explog(1+ V) + 2(E + HCz (v) + HCG (v) + V3/3! + V4/41)]
=[1+ VI[1+ 2(E + HCG(v) + HCG(v) + V3/31+ V*/41)]  (mod 4.

On en tire le corollaire suivant.

Corollaire5.2. Pour tout graphe simple non-orien@&= (V, E), on a

HPz(v) + E(1+ V)
=HPG () + E(1+V)
= [HCz(v) + HCG(W][1+ V1+ V3/31+ V*/41 + V3/51  (mod 2.

Un chemin (respectivement circuit) de= (V, E) (|V| = n) est ditélémen-
taire s’il ne rencontre pas deux fois le méme sommet. Notong@p (res-
pectivement hgG)) le nombre de chemins (respectivement circuits) élémen-
taires dek sommetsk > 3. En particulier, hp(G) = hp(G) (respectivement
hc,(G) = hc(G)) dénombre les chemins (respectivement circuits) hamiltoniens
deG, etlona

hp(G)= Y hp(GIV']),  ha(G)= > ho(GIV']),
vie(y) ve(y)
si (}) désigne I'ensemble des sous-ensembleE die cardinalitéc. Multiplions
I'identité du Corollaire 5.2 pav’ /h!, h e N :

vh vh
HPg(v)W +EQ+ v)ﬁ

Vh Vh
=HPG (1)~ + EA+ V) -

h h+1 h+3
= [HCz(v) + HCG (v)] |:V— +(h+ l)L] + (h r 3) v

h! (h+1)! 3 ) (h+3)
+<h+4> vita +<h+5> Vits (mod 2
4 J(h+4)! 5 J(h+9)! '

En regardant le coefficient d&’ nous déduisons le corollaire suivant, puisque
(h + 1) et (*£°) sont pairs si est un nombre impair.

Corollaire 5.3. SoientG = (V, E) et G = (V, E) deux graphes simples non-
orientés qui sont complémentaires, et soierth deux entiersavet>5,h > 1
etk +h =n=|V|. Sih est impair, alors on a moduld:
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hp(G) = hp,(G) = h&(G) + ha(G),
hp,1(G) = hp11(G) = ha (G) + ha(G) + hay1(G) + ha11(G),
hpe(G) + hpes1(G) = hpe(G) + hpy1(G) = e 1(G) + he11(G).

Lidentité hg<+1(5) = hp1(G) (mod 2 fut imaginée par Lovasz [24,
5.19] dans le cas particuliér+ 1 = n.

Un graphe simple non-orient& = (V, E) est appel@uto-complémentairsi
et seulement i et G sont isomorphes. Pour de tels graphes, notre Corollaire 5.3
fournit le théoréme principal de I'article [27] de Rao, que ce dernier a démontré
sur plusieurs pages.

Corallaire 5.4 (Rao). Soit G = (V, E) un graphe auto-complémentaire avec
|V|=n. Alorshp, (G) est pair pour toub < k < n.

Le cas le plus important du théoréme précédent, a savein, fut imaginé
par Camion [8].

6. Fonctionssymétriques et fonctionsd’ ensembles

Dans I'introduction de sa thése [11], Chow a suggéré une direction prometteuse
pour étendre son étude des fonctions symétriques et saisir ainsi davantage
de problemes en combinatoire. Il nous semble que les fonctions d’ensembles
permettent, par excellence, de réaliser cette idée de Chow.

Soient doncf, g:2¥ — A deux fonctions d’ensembles telles qu&y) =
g(®) = 0. Nous définissons, pour chaq@ec V' € V, la fonction symé-
trique de StanleySTy y(x1,x2,x3,...) et la fonction symétrique de Chow
CHg v/ (x1, x2, x3,...) par

o0
1+ > STyyenxzxs..) Y = [][14 Fro 0],
pcv'cv i=1

1+ Z CH, v (x1, X2, x3,...) - W
pcv'cv
respectivement (voir le début du Paragraphe 2). La relation fondamentale entre
la fonction symétrique de Chow et celle de Stanley est donnée par le théoréme
suivant.

eXD[Z Fo(x; - V)},

i=1

Théoréme6.1. Silog[1+ Fr(v)] = F,(v) oubienl+ Fy(v) = exf Fg(v)], alors
onapourtoud c V' CV

STy yr(x1, x2,x3,...) = CHg yr(x1, x2, x3, .. ).
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Démonstration. On a en effet

1+ Z STf,V,('xlv-XZv”')'vV/
pcv'cv

o0

= exp[z log[1+ Fy(x; - v)]:|

i=1

=1+ Y CHgy(xpxz..)-v". O
pgcv'cv

Exemple 6.1. Les fonctions symétriques de Stanley les plus fondamentales
(voir [22], [32, Chapitre 7], [25, Chapitre 1.2]) sont la fonction symétrique
élémentairee, = A"(x1, x2,x3,...) et la fonction symétrique complete, =
S"(x1, x2,x3,...),n €N :

1+V=1+Fp(v) = STpy(xr,x2,x3..)=|Vl-eyy,
A-V)r=1+Frw) = STry(xnxz,x3..) =V

Les fonctions symétriques les plus simples, cependant, sont bien les sommes
des puissancep, = ¥, (x1, x2,x3,...) = Z?ilxi". A l'aide de cette base de
'espace des fonctions symétriques, on définit I'involutienpar w(p,) =
(—=1)"1p,. Grace a l'exemple précédent, le théoréme suivant devient une
généralisation directe des identités classiques) = h, etw(h,) = e,.

Théoréme 6.2. Pour des fonctions d’ensemblgsg : 2V — A telles quef (%) =
g@=0,ona

o0
1+ Z STf V/(xl,xz,xg,...)) W= H[l—i— Fy(=x;- v)]fl,
gcv'cy i=1
1+ ) o(CHyv(x1.x2.x3,..)) v = exp|: ZF( xi - v)i|
hcv'cv

Démonstration. Supposons, sans restreindre la généralité, queFls (v) =
exd F, (v)]. Il s’ensuit :

w(]o_o[[1+ Fy(x; - v)])

i=1

_ w<p[§p< | )D - p[w(i e N

= exp|:— D Fy(—xi v):| =[]+ Fr—x-»] ™ ©
i=1

i=1
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Dans l'article [23], nous avons introduit, pour chaque graphe simple non-
orientéG = (V, E), la fonction indicatrice des ensembles de sommets indépen-
dants/ (v) ainsi que la fonction d’ensemblds; (v) (respectivemend; (v)) de-
nombrant les orientations acycliques (respectivement avec une seule source fixée)
pour tous les sous-graphes engendré& ddous avons établi les identités

[1+I6(—»)] =1+ Ac(),
—log[1+ Ig(—v)| =log[14+ Ag(v)] = AL ().

Stanley [30] a introduit et étudié la fonction chromatidie = X (x1, x2, x3,...),
qui est, par excellence, une fonction symétrique «de Stanley » :

00
1+ Z XG[V’]' 1_[1+IG(xl ]

hcv'cv =

Le corollaire suivant formule plusieurs théorémes principaux de l'article [30] de
Stanley dans le langage des fonctions d’ensembles.

Corollaire6.1 (Stanley).On a

1+ > Xen vV =[]+ 6 v) —exp|: ZAG( x; - v)i|
i=1

pcv'cv

1+ Z w(Xgpyn) - v =]_[ 1+ Ag(xi-v)]= |:ZA"(‘;(xi~v)i|.
i=1 =1

hcv'cv

Selon Stanley [30], une série formelle = p(x,y) en deux ensembles
de variablesx = (x1,x2,x3,...) et y = (y1,y2, y3,...) est appelédonction
supersymétriquei et seulement sp est symétrique par rapport aux variables
Xi ety,- et

p(x’ Y)|y1=fx1 = P(X, Y)|y1=x1=0.

Notonsw, l'involution w n'agissant que sur les variablgsen supposant que
X1, X2, X3, ... sont des constants. B{x) est une fonction symétrique, définissons
la superficationp(x/y) de p par

px/y):=w,(px, ),

c’est-a-dire en remplacant les variablgsx,, ... parxs, x2, ..., y1, y2, ... (C'est

une soi-disanteaddition des deux alphabgtst en utilisantw, ensuite. Pour

les fonctions symétriques de Stanley et de Chow, notre Théoréme 6.2 donne le
résultat suivant.
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Théoréme6.3. Soientf, g:2" — A telles quef () = g(¥) = 0, alors on a

o8]

I 14 Ff(xi-v)

b3 ST =TI

pcv'cv i=1

eXp|:Z(Fg(xi V) — Fo(—yi - v)):|.

i=1

1+ ) CHgyix/y)-v”
pcv'cv

Le théoréme précédent implique immédiatement le corollaire suivant, qui
exprime le Théoréeme 4.3 de [30] dans le langage des fonctions d’ensembles. La
démonstration proposée par Stanley est la plus longue de tout l'article [30] et
utilise les fonctions de Schur.

Corollaire6.2 (Stanley).On a

1+ Z Xopvn(x/y)-vY
pcv'cv

= <10_0[[1+ I (x; - v)]) : (]O_O[[1+ A (yi - v)]).

i=1 i=1

Etudions finalement la thése de Chow [11] ou bien son article [10]. Il est
utile de noter nos alphabets) = (x1,x2,...) et (y) = (y1, y2,...) de sorte
que(—x) = (—x1, —x2,...) et(—y) = (—y1, —y2,...). L'addition des alphabets
(x) 4+ (y) déja introduite peut étre généralisée en considérant des combinaisons
linéaires quelconques(x) + w(y), A, u € A, ou il faut faire attention que
—(—x) # (x), puisque(—x) est une multiplication des variables paf tandis
que—(x) est une soustraction de 'alphaliey (voir [22]). Le théoréme suivant
est évident ou bien une définition.

Théoréme6.4. Soientf, g:2" — A telles quef (9) = g(¥) = 0, alors on a pour
touti,ueA:

1+ ) STrv[a@ +um]-v”
pgcv'cv

=TT+ Froam) (L+ Frim)"],
i=1

1+ ) CHev[A) +p(]-v”
pcv'cv

= eXp|:Z(A - Fo(xiv) + - Fg(yiv)):|.

i=1
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En patrticulier,

oy (ST [Mx) + u(]) =STry [A(x) — n(=y)],
STy [(0)/(M] =STrv[x) = (=»)],
o(STry [(0)]) =STr v [-(—0)].
Soient cyg (v), ling(v), cycz(v) et ling(v) quatre fonctions d’ensembles
guelconques qui satisfont a l'identité de Berge, c'est-a-dire au Théoréme 4.1.

Nous définissons, pour chaqdec V' C V, la fonction symétrique de Chow—
StanleyCSg(v[(x); (y)] par

1+ Z CSG[V/][(X)Q()’)]'VV,

pcv'cv
o0 o0
= exp[z cycG(xiv)} . H[l +ling(y;v)].
i=1 j=1
Maintenant nous sommes en mesure de formuler notre généralisation du théoréme
principal de la these de Chow [11].

Théoréme 6.5 (Théoréme de dualité pour la fonction de Chow-Stanldggur
tousi¢, A7, e, 7 € A, 0N QA

CSg[Ae @) + e (y): M(x) + ()]
=CSg[Ae(—x) + pte(—=y); = (e + A1) (—x) = (e + 1) (—)].

Démonstration. Dans le langage des fonctions d’ensembles, il s’agit de démon-
trer I'identité suivante, que nous établissons a 'aide de l'identité de Berge :

eXp[kc > eyeg (i v)} : exp[uc > eyes(y; v)}

i=1 Jj=1

X (f_o[[1+ |in§(xiv)]>kl . (]O_O[[1+ |in5(ij)]>m

i=1 j=1
= exp[kc > cyeg(—xi v)} : exp[uc D cycg(—y jV):|
i=1 j=1
00 —de—Al o0 —MHe—H
X (n[l+|ing(—xiv)]> . <n[l+ling(—ij)]>
i=1 j=1
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) Ac
& (exp[ Z(cycg(xi V) — CYCg (—x; v))D

i=1

[ee] Me
X (exp|: > (eycg(vjv) — cyco(—y; v)):|>

j=1
—Mc

= <f[l[1 + Iing(—xiv)]> o (,fjl[l + |inG(—y;v)]>

Posonsh, = u; =1 etA; = u. = 0 pour obtenir le théoréme principal de la
thése de Chow [11] et de l'article [10].

Corollaire6.3 (Chow). On a

CS5[(): ] = CS6[(=x); (=) = (=]
= [0y (CSs[(=0): W])]

y—=>(x,y)°

Chow a également trouvé un deuxieme cas particulier du Théoreme 6.5, a
savoiri, = -2, u.=0etrh; =u; = 1.

Corollaire6.4 (Chow). On a

CSg[—2(x); (x) + ()]

CSg[—2(=x); (=x) — (=y)]
0y (CSe[—2(=x); (=x) + )])-

Tous les autres cas du Théoréme 6.5 sont nouveaux. De notre point de vue,
cependant, le Théoreme 6.5 et l'identité de Berge sont aussi des corollaires
immédiats des résultats de Chow. Par ailleurs, Chow [10, Paragraphe 6] a posé
la question de mieux comprendre le réle des inversions qu'il a considérées. Il
nous semble, que I'addition des alphabets répond parfaitement a cette question.
Au moins, il devient évident qu’il s’agit bien d’inversions, un fait que Chow a di
démontrer.

Remarquons finalement, que Gessel a aussi imaginé une démonstration de
l'identité

CS5[0: (1] = wy (CSe[0: (1])

qui se trouve dans l'intersection des deux résultats de Chow. Cette preuve de
Gessel reproduite dans [10], cependant, s'étend, elle aussi, sur plus d'une page
tout en utilisant les fonctions de Schur.
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