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Résumé

Soit G = (X,Y ;E) un graphe biparti etG = (X,Y ;E) le graphe biparti complémen-
taire. Notonsp(G, r) le nombre desr-couplages deG. Il est classique que le vecteur
[p(G, r)]r=1,2,... est déterminé par[p(G, r)]r=1,2,.... Nous explicitons ce fait en démon-
trant des théorèmes de dualité nouveaux, généralisant et globalisant notamment les résul-
tats de Chow, Foata, Gessel, Joni, Rota et Zeilberger. Pour des graphes orientés on obtient
ainsi une preuve rapide de l’identité fondamentale de Berge entre des chemins et des cir-
cuits hamiltoniens. Exprimée dans le langage des fonctions d’ensembles, celle-ci implique
immédiatement la conjecture de Chung et Graham (établie d’abord par Chow et Gessel)
ainsi que les théorèmes de parité de Rédei sur les tournois, de Lovász sur les graphes
non-orientés et de Camion et Rao sur les graphes auto-complémentaires. Finalement, nous
étudions les relations entre les fonctions d’ensembles et les fonctions symétriques. Le théo-
rème principal de la thèse de Chow devient ainsi une conséquence directe de l’identité de
Berge.
 2002 Elsevier Science (USA). All rights reserved.

Abstract

Let G = (X,Y ;E) be a bipartite graph with bipartite complementG = (X,Y ;E).
The number ofr-matchings ofG is denoted byp(G, r). It is classical that the vector
[p(G, r)]r=1,2,... is determined by[p(G, r)]r=1,2,.... We make this statement more
explicit by proving new duality theorems, generalizing and globalizing the results of Chow,
Foata, Gessel, Joni, Rota and Zeilberger, in particular. For oriented graphs this provides
a short proof of Berge’s fundamental identity between Hamiltonian paths and circuits.
Expressed in terms of set functions, the identity immediately implies the Chung–Graham
conjecture (first derived by Chow and Gessel) as well as Rédei’s, Lovász’, and Camion’s

Adresse e-mail :lass@math.u-strasbg.fr.

0196-8858/02/$ – see front matter 2002 Elsevier Science (USA). All rights reserved.
PII: S0196-8858(02)00010-6



216 B. Lass / Advances in Applied Mathematics 29 (2002) 215–242

and Rao’s parity results for tournaments, non-oriented and self-complementary graphs,
respectively. Finally, we study the relations between set functions and symmetric functions
and show that the main theorem in Chow’s PhD thesis becomes a direct consequence of
Berge’s identity.
 2002 Elsevier Science (USA). All rights reserved.

Keywords:Graph; Rook polynomial; Complementary graph; Hamiltonian circuit; Hamiltonian path;
Cover polynomial; Tournament; Rédei’s theorem; Self-complementary graph; Symmetric functions

1. Introduction

SoientX etY deux ensembles disjoints de cardinalitén etm, respectivement.
Un graphe bipartiG = (X,Y ;E) est dit simple si et seulement si l’ensemble de
ses arêtesE est un sous-ensemble deX × Y . Pour de tels graphes on définit
le graphe biparti complémentairepar G := (X,Y ;E) avecE := (X × Y )\E.
On appeller-couplagedeG un ensemble der arêtes tel que deux quelconques
des arêtes du couplage sont non-adjacentes. Notonsp(G, r) le nombre des
r-couplages deG et posonsp(G,0) := 1. Traditionellement, on interprèteX
(respectivementY ) comme un ensemble de lignes (respectivement colonnes) d’un
échiquier rectangulaire de sorte qu’un couplage devient un ensemble de tours non-
attaquantes. C’est pourquoi on appelle

ρ(G,x) :=
min(n,m)∑

r=0

(−1)rp(G, r) · xn−r

le polynôme des tours. Il est classique (voir le livre [28] de Riordan, Chapitre 7.7)
queρ(G,x) est complètement déterminé parρ(G,x). Toutefois, aucune relation
simple reliantρ(G,x) et ρ(G,x) n’a été imaginée jusqu’à présent. D’autre part,
inspirés par la définition visionnaire du polynôme de recouvrement de Chung et
Graham [12], Chow (et Gessel) [9] ont introduit le polynômefactoriel des tours
comme étant

ρ!(G, z) :=
min(n,m)∑

r=0

p(G, r) · zm−r ,

oùzk := z(z−1) · · · (z−k+1). Nous l’appellerons, ci-après,polynôme de Chow.
Il a déjà fait ses preuves dans l’étude des diagrammes de Ferrers (voir [15]), parce
qu’il se factorise naturellement (voir [19] et [31, Théorème 2.4.1]). De plus, il
satisfait une relation de dualité tout à fait remarquable

ρ!(G,z
)= (−1)mρ!(G,m− n− 1− z),

imaginée par Chow (et Gessel) [9] dans le casn = m. Outre cette généralisation,
nous établissons la nouvelle formule
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ρ!(G,z
)= 1

�(z+ 1+ n−m)

∞∫
0

xz · e−xρ(G,x) · dx,

dont la spécialisationn= m etz = 0 fut trouvée par Joni, Rota et Zeilberger [21],
puisque ρ!(G,0) compte le nombre des couplages parfaits deG lorsque
n = m. Ce résultat permet notamment d’interpréter des intégrales de produits de
polynômes de Laguerre généralisés comme nombre de dérangements (voir [3–5,
14,16,18,20,29,34]).

Suivant Godsil [17, p. 157], on peut, en effet, définir les polynômes de
Laguerre comme des polynômes des tours des graphes bipartis completsKn,m :=
(X,Y ;X × Y ) avec|X| = n et |Y | = m. Autrement dit, pour touta ∈ N, nous
posons

Le(a)n (x) := ρ(Kn,n+a, x).

Commeρ(Kn,n+a �Km+a,m, x)= xa ·Le(a)n (x) ·Le(a)m (x), l’identité de Joni, Rota
et Zeilberger implique alors

ρ!(Kn,n+a �Km+a,m,0
)=

∞∫
0

Le(a)n (x) ·Le(a)m (x) · xae−x dx

(voir [18]), ce qui fournit notamment l’orthogonalité de nos polynômesLe
(a)
n (x)

par rapport àxae−x dx. Voilà pourquoi notre définition des polynômes de
LaguerreLe(a)n (x) correspond bien à la définition classique. Notre normalisation,
cependant, est choisie de façon que le premier coefficient, i.e. le coefficient dexn,
vaille 1.

Il nous semble également utile d’introduire lespolynômes des tours symé-
triques(par rapport à la bipartition) en deux variables

ρ(G,x, y) :=
min(n,m)∑

r=0

(−1)rp(G, r) · xn−rym−r = ym−n · ρ(G,xy),

ρ̄(G,x, y) :=
min(n,m)∑

r=0

p(G, r) · xn−rym−r = (−1)nym−n · ρ(G,−xy),

si G = (X,Y ;E) est biparti avec|X| = n et |Y | = m. Pour ces polynômes,
nous démontrons plusieurs théorèmes de dualité qui font intervenir des opérateurs
différentiels. En particulier, nos identités nouvelles

ρ
(
G,x,y

) = exy · ρ̄
(
G,− d

dy
,− d

dx

)
· e−xy = (x/y)n−m · ρ(G,y,x

)
= (x/y)n−m · exy · ρ̄

(
G,− d

dx
,− d

dy

)
· e−xy

impliquent
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Le(m−n)
n (x) = ρ(Kn,m, x,1)=

[
exy ·

(
− d

dx

)m(
− d

dy

)n

· e−xy

]
y=1

= ex ·
(
− d

dx

)m[
xne−x

]= xn−m · ex ·
(
− d

dx

)n[
xme−x

]
,

où la toute dernière identité est la formule de Rodrigues pour les polynômes de
Laguerre généralisés. Dans le casn = m, nous établissons également le théorème
de dualité suivant pour le polynôme des tours lui-même :

ρ
(
G,−x

) = (−1)n · exp

[
d

dx
x

d

dx

]
ρ(G,x),

ρ
(
G,x

) = (−1)n · exp

[
− d

dx
x

d

dx

]
ρ(G,−x).

Nous démontrons tous nos résultats à l’aide des fonctions génératrices pour
les fonctions d’ensembles. Cette méthode algébrique permet, par excellence,
d’automatiser l’utilisation de plusieurs méthodes classiques de la combinatoire
énumérative et algébrique, et notamment l’utilisation du principe d’inclusion-
exclusion et de l’inversion de Möbius sur l’ensemble partiellement ordonné des
partitions d’un ensemble. L’algèbre des fonctions d’ensembles est introduite dans
le Paragraphe 2. Dans le Paragraphe 3, elle est appliquée pour le traitement
du polynôme des tours et de sa parenté. Ceci fournit des démonstrations
particulièrement courtes et explicatives et permet même de prolonger tous nos
résultats à l’étude des permanents des matrices quelconques.

Pour des matrices carrées on obtient ainsi une preuve rapide d’une générali-
sation pondérée d’une identité fondamentale de Berge entre les chemins et les
circuits hamiltoniens d’un graphe orienté simpleG = (V ,E), E ⊆ V × V , et
ceux de son complémentG= (V ,E), E = (V × V )\E. Appelonsbi-chemin ha-
miltonienune partition deV en deux chemins hamiltoniens non-vides. Si cyc(G)

désigne le nombre de circuits hamiltoniens deG, lin(G) le nombre de chemins
hamiltoniens et bilin(G) le nombre de bi-chemins hamiltoniens, alors Berge a
imaginé le théorème de dualité suivant :

lin
(
G
)≡ lin(G) (mod 2), bilin

(
G
)≡ bilin(G) (mod 2),

lin
(
G
)+ bilin

(
G
)≡ lin(G)+ bilin(G)≡ cyc

(
G
)+ cyc(G) (mod 2)

(voir [7] ainsi que [6, Chapitre 10, Théorème 1 et Exercice 9]). La démonstration
de Berge, cependant, contient un résultat nettement plus puissant que nous
appelonsidentité de Berge. Exprimée dans le langage des fonctions d’ensembles,
cette identité fondamentale prend toute sa force et implique immédiatement tous
les résultats des Paragraphes 4 et 5, et notamment la conjecture de Chung et
Graham (établie d’abord par Chow et Gessel), l’identité de Foata et Zeilberger
sur les polynômes de Laguerre, les théorèmes de parité de Rédei sur les tournois,
de Lovász sur les graphes non-orientés et de Camion et Rao sur les graphes
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auto-complémentaires. Les démonstrations de ces résultats données par Berge,
Camion, Chow, Foata, Gessel, Lovász, Moon, Rao, Szele et Zeilberger s’étendent
parfois sur plusieurs pages (voir [8,10,16,27,33], [24, 5.19, 5.20], [26, pp. 21–
23]).

Dans le Paragraphe 6, nous étudions les relations les plus importantes entre les
fonctions d’ensembles et les fonctions symétriques. Nous généralisons plusieurs
théorèmes de Stanley [30] et simplifions ses démonstrations. Finalement, nous
montrons que le théorème principal de la thèse de Chow [11] est une conséquence
directe de l’identité de Berge.

2. Outils algébriques

SoitV un ensemble fini et

f : 2V → A, V ′ ⊆ V �→ f (V ′) ∈ A

unefonction d’ensembles, oùA est unanneau commutatif(avec 1). Considérons
la fonction génératrice

Ff (ν) :=
∑
V ′⊆V

f (V ′) · νV ′
, ν∅ := 1,

à joindre aux règles de calcul suivantes (V ′,V ′′ ⊆ V ) :

νV
′ · νV ′′ := νV

′+V ′′
, où

V ′ + V ′′ :=
{
V ′ ∪ V ′′, si V ′ ∩ V ′′ = ∅,
†, si V ′ ∩ V ′′ �= ∅, où

†+ V ′ := †, †+ † := †, et ν† := 0.

L’algèbreA[V ] de ces fonctions génératrices n’est pas une inconnue. En effet, on
a l’isomorphisme

A[V ] � A[v1, . . . , vn]
/〈
v2

1, . . . , v
2
n

〉
,

si V contientn éléments.

Exemple 2.1. Le produitfg de deux fonctions d’ensemblesf,g est défini, pour
toutV ′ ⊆ V , par

(fg)(V ′) :=
∑

V ′=V ′′�V ′′′
f (V ′′) · g(V ′′′).

Il en résulte

Ffg(ν)= Ff (ν) · Fg(ν).
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Pour |V | = ∞, soit F(V ) l’ensemble partiellement ordonné des sous-
ensembles finis deV . On a des projections canoniquespV ′,V ′′ :A[V ′] → A[V ′′]
(V ′,V ′′ ∈ F(V ),V ′ ⊇ V ′′) et l’on pose

A[V ] := lim←−A[V ′], V ′ ∈ F(V )

pour travailler avec des fonctions génératrices de la forme

Ff (ν) =
∑

V ′∈F(V )

f (V ′) · νV ′
.

Soit

V :=
∑
v∈V

ν{v}

la fonction indicatrice des sous-ensembles deV de cardinalité 1 (l’usage double
deV pour l’ensemble et pour un élément deA[V ] ne pourra pas être à l’origine
de confusions). En multipliant la fonction génératriceV plusieurs fois par elle-
même, on voit queV n/n! représente la fonction indicatrice des sous-ensembles
de l’ensembleV de cardinalitén. L’identité

∞∑
n=0

f (n) · V n/n! =
∑

V ′∈F(V )

f
(|V ′|) · νV ′

, f :N → A,

fournit un plongement de l’anneauA![V ] des fonctions génératrices de type
exponentiel dans l’anneauA[V ]. Ce plongement est à l’origine de (presque ?)
toutes les applications deA![V ] en combinatoire, mais il nécessite l’existence
d’un modèle combinatoire infini (qui ne fait intervenir que les cardinalités). Par
conséquent,A[V ] donne plus de flexibilité et permet un traitement algébrique,
qui reflète parfaitement les opérations classiques de la combinatoire. Outre cela,
A[V ] est approprié, par excellence, aux calculs par ordinateur.

Remarque 2.1. L’anneau Z![V ] n’est pas noethérien, mais il contient des
fonctions importantes comme exp(V ) et log(1+ V ).

Exemple 2.2. Si charA = 2, on a

(1+ V )−1 =
∞∑
n=0

(−1)nn! · V n/n! ≡ 1+ V et

log(1+ V ) =
∞∑
n=1

(−1)n−1(n− 1)! · V n/n! ≡ V + V 2/2

dans l’anneauA![V ]. Ces identités sont à l’origine de maints résultats de parité
en combinatoire.



B. Lass / Advances in Applied Mathematics 29 (2002) 215–242 221

Pour toutt ∈ A posons(t · ν)V ′ := t |V ′| · νV ′
, V ′ ⊆ V , et, par conséquent,

Ff (tν) =
∑

∅⊆V ′⊆V

f (V ′)t |V ′|νV ′
.

Il est évident que cette définition est compatible avec l’addition et la multipli-
cation. Les cas particuliers les plus importants sontt = −1 et t = 0 : Ff (0) =
Ff (0 · ν) = f (∅).

Si Ff (0)= 0, alorsFf (ν)
n/n! est défini pour n’importe quel anneauA, parce

qu’une partition enn sous-ensembles non-vides peut être ordonnée den! manières
différentes. Voilà pourquoiA![V ] opère surA[V ] par la substitutionG(Ff (ν))

définie pour toutG ∈A![V ].
Finalement, on utilise les dérivées∂v pour toutv ∈ V définies par

∂vνV
′ :=

{
νV

′
, si v ∈ V ′,

0, sinon.

La formule de dérivation d’un produit

∂v
[
Ff (ν) · Fg(ν)

]= (
∂vFf (ν)

) · Fg(ν)+ Ff (ν) ·
(
∂vFg(ν)

)
est l’analogue algébrique du fait ensembliste le plus fondamental :

v ∈ V ′ � V ′′ ⇔ v ∈ V ′ ou v ∈ V ′′.
La formule

∂v
[
G
(
Ff (ν)

)]= G′(Ff (ν)
) · ∂vFf (ν), G ∈A![V ],

en découle immédiatement.

Remarque 2.2. L’isomorphismeA[V ] � A[v1, . . . , vn]/〈v2
1, . . . , v

2
n〉 ne fait pas

correspondre∂v à ∂/∂vi , mais àvi∂/∂vi . La dérivée partielle∂/∂vi n’a point
d’analogue dansA[V ].

Exemple 2.3. (a) Étant donnéesf,g : 2V →A, alors l’équivalence suivante n’est
rien d’autre que le principe d’inclusion-exclusion :

Fg(ν)= exp[V ] · Ff (ν) ⇔ Ff (ν)= exp[−V ] · Fg(ν).

(b) Étant donnéesf,g : 2V →A avecf (∅)= g(∅) = 0, l’équivalence

1+ Fg(ν)= exp
[
Ff (ν)

] ⇔ Ff (ν) = log
[
1+ Fg(ν)

]
s’écrit sous la forme

g(V ′) =
∑

V ′=B1�···�Bk

f (B1) · · ·f (Bk) ∀V ′ ⊆ V ⇔

f (V ′) =
∑

V ′=B1�···�Bk

(−1)k−1(k − 1)! · g(B1) · · ·g(Bk) ∀V ′ ⊆ V
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et n’est rien d’autre que l’inversion de Möbius pour des fonctions multiplicatives
généralisées sur l’ensemble partiellement ordonné des partitions deV (voir
[1, Chapitre V.1.C] ou [13, Chapitre 5.2]). Par ailleurs, on peut se servir de∂v

pour obtenir le résultat dérivé[
1+ Fg(ν)

] · ∂vFf (ν)= ∂vFg(ν),

qui, par suite de la profusion de méthodes inductives ou récursives, est souvent
beaucoup plus connu que le résultat « pur ». En outre, ce résultat dérivé a
l’avantage de n’utiliser qu’un seul produit, permettant des calculs par ordinateur
particulièrement rapides.

3. Le polynôme des tours et sa parenté

Soit G = (X,Y ;E) un graphe biparti simple et soitG = (X,Y ;E) son
complément biparti. PosonsV := X � Y et définissonsX,Y,E,E ∈A[V ] par

X :=
∑
x∈X

ν{x}, Y :=
∑
y∈Y

ν{y}, E :=
∑
e∈E

νe, E :=
∑
e∈E

νe,

où chaque arêtee ∈ E (respectivemente ∈ E) est considérée comme un sous-
ensemble deV de cardinalité deux. La définition du complément biparti implique
alors l’identité suivante, qui est à l’origine de tous les résultats de cet article.

Lemme fondamental. Dans l’algèbreA[V ] = A[X � Y ], on a

E +E = XY.

Pour ∅ ⊆ X′ ⊆ X et ∅ ⊆ Y ′ ⊆ Y , notonsG[X′, Y ′] le sous-graphe deG
engendré parX′ ∪ Y ′ (c’est le graphe dont les sommets sont les éléments de
X′ ∪ Y ′ et dont les arêtes sont les arêtes deG ayant leurs deux extrémités dans
X′ ∪ Y ′). Alors exp[E] compte, pour chaqueX′ ⊆ X et Y ′ ⊆ Y , le nombre des
couplages parfaits deG[X′, Y ′]. Voilà pourquoi la proposition suivante est une
conséquence immédiate des définitions du polynôme des tours et de sa parenté
(voir l’introduction).

Proposition 3.1. On a

∑
X′⊆X

∑
Y ′⊆Y

ρ!(G[X′, Y ′], z) · νX′∪Y ′ = exp[E] ·
∞∑
i=0

∞∑
j=0

Xi

i! · Y
j

j ! · zj

= exp[E] · exp[X] · (1+ Y )z et∑
X′⊆X

∑
Y ′⊆Y

ρ
(
G[X′, Y ′], x) · νX′∪Y ′ = exp[−E] · exp[xX] · exp[Y ],
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∑
X′⊆X

∑
Y ′⊆Y

ρ
(
G[X′, Y ′], x, y) · νX′∪Y ′ = exp[−E] · exp[xX] · exp[yY ],

∑
X′⊆X

∑
Y ′⊆Y

ρ̄
(
G[X′, Y ′], x, y) · νX′∪Y ′ = exp[E] · exp[xX] · exp[yY ].

Il est classique queρ(G,x) est complètement déterminé parρ(G,x), un
résultat que Riordan [28, Chapitre 7.7], démontra à l’aide de la proposition
suivante.

Proposition 3.2. SoitG = (X,Y ;E) un graphe biparti simple avec|X| = n et
|Y | = m. Alors on a pour le polynôme des tours du graphe biparti complémentaire
G= (X,Y ;E) l’identité

ρ
(
G,x

)= min(n,m)∑
r=0

p(G, r) · ρ(Kn−r,m−r , x).

Démonstration. En utilisant l’algèbreA[V ] = A[X � Y ], on a

∞∑
i=0

∞∑
j=0

ρ(Ki,j , x) · X
i

i! · Y
j

j ! = exp[xX + Y −XY ].

Par conséquent, l’identité suivante implique bien notre proposition :

exp
[
xX + Y −E

] = exp[xX + Y −XY +E]
= exp[E] · exp[xX+ Y −XY ]. ✷

Pour les polynômes des tours symétriques, nous pouvons établir des théorèmes
de dualité apparemment nouveaux.

Théorème 3.1. Pour tout graphe biparti simpleG= (X,Y ;E), on a

ρ̄
(
G,x,y

) = e−xy · ρ
(
G,

d

dy
,

d

dx

)
· exy,

ρ
(
G,x,y

) = exy · ρ̄
(
G,− d

dy
,− d

dx

)
· e−xy .

Démonstration. D’après le théorème de Taylor formel on a

f (x + a, y + b)= exp

[
d

dx
a + d

dy
b

]
· f (x, y)

pour des variablesx, y, a, b et une série formellef . Il s’ensuit
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exp[−xy] · exp

[
d

dy
X + d

dx
Y −E

]
· exp[xy]

= exp[−xy] · exp[−E] · exp

[
d

dx
Y + d

dy
X

]
· exp[xy]

= exp[−xy] · exp[−E] · exp
[
(x + Y )(y +X)

]
= exp

[
xX + yY +E

]
.

La deuxième égalité est démontrée de la même façon.✷
Comme[(

d

dx

d

dy

)i

(xy)j
]
y=1

=
(

d

dx
x

d

dx

)i

xj

pour touti, j ∈ N, nous obtenons le corollaire suivant pour le polynôme des tours
lui-même.

Corollaire 3.1. Soit G = (X,Y ;E) un graphe biparti simple tel que|X| =
|Y | = n. Alors on a pour le polynôme des tours deG= (X,Y ;E) les identités

ρ
(
G,−x

) = (−1)n · e−xρ

(
G,

d

dx
x

d

dx

)
ex,

ρ
(
G,x

) = (−1)n · exρ

(
G,− d

dx
x

d

dx

)
e−x .

Au lieu de reproduire des généralisations du corollaire précédent au cas
|X| �= |Y | (qui sont moins belles), nous préférons donner une autre forme des
théorèmes de dualité faisant intervenir des opérateurs différentiels.

Théorème 3.2. Pour tout graphe biparti simpleG= (X,Y ;E), on a

ρ̄
(
G,x,y

) = exp

[
d

dx

d

dy

]
· ρ(G,x, y),

ρ
(
G,x,y

) = exp

[
− d

dx

d

dy

]
· ρ̄(G,x, y).

Démonstration. Puisque d
dx

d
dy exp[xX + yY − E] = XY · exp[xX + yY − E],

nous avons

exp
[
xX + yY +E

] = exp[XY ] · exp[xX + yY −E]
= exp

[
d

dx

d

dy

]
· exp[xX + yY −E].

L’opérateur différentiel exp[− d
dx

d
dy ] est l’inverse de exp[ d

dx
d
dy ]. ✷



B. Lass / Advances in Applied Mathematics 29 (2002) 215–242 225

Le Corollaire 3.2 se déduit du Théorème 3.2 de la même façon que le
Corollaire 3.1 se déduit du Théorème 3.1.

Corollaire 3.2. Soit G = (X,Y ;E) un graphe biparti simple tel que|X| =
|Y | = n. Alors on a pour le polynôme des tours deG= (X,Y ;E) les identités

ρ
(
G,−x

) = (−1)n · exp

[
d

dx
x

d

dx

]
ρ(G,x),

ρ
(
G,x

) = (−1)n · exp

[
− d

dx
x

d

dx

]
ρ(G,−x).

Terminons ce paragraphe avec le théorème de dualité pour le polynôme de
Chow dont nous avons mentionné les spécialisations classiques dans l’introduc-
tion.

Théorème 3.3. Soit G = (X,Y ;E) un graphe biparti simple avec|X| = n et
|Y | = m. Alors on a

ρ!(G,z
) = (−1)mρ!(G,m− n− 1− z)

= 1

�(z+ 1+ n−m)

∞∫
0

xz · e−xρ(G,x) · dx.

Démonstration. La Proposition 3.1 permet d’exprimer la première identité dans
le langage des fonctions d’ensembles. En fait, pour représenter le facteur(−1)m,
il suffit de multiplier chaque élément deY (et deE) par−1. Autrement dit, il faut
démontrer

exp
[
E
] ∞∑
i=0

∞∑
j=0

Xi

i!
Y j

j ! z
j = exp[−E]

∞∑
i=0

∞∑
j=0

Xi

i!
(−Y )j

j ! (j − i − 1− z)j

⇔ exp
[
E
] ∞∑
i=0

∞∑
j=0

Xi

i! Y
j

(
z

j

)
= exp[−E]

∞∑
i=0

∞∑
j=0

Xi

i! Y
j

(
i + z

j

)

⇔ exp
[
E
] ∞∑
i=0

Xi

i! (1+ Y )z = exp[−E]
∞∑
i=0

Xi

i! (1+ Y )i+z

⇔ exp
[
E +E

]
exp[X] = exp

[
X(1+ Y )

]
.

Pour établir l’identité

(−1)mρ!(G,m− n− 1− z)

= 1

�(z+ 1+ n−m)

∞∫
0

e−x · xzρ(G,x) · dx,
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il suffit de constater que le coefficient dep(G, r) (voir l’introduction) dans le
membre de gauche et dans le membre de droite vaut

(−1)m(m− n− 1− z)m−r

= (−1)r(z+ n− r)m−r = (−1)r
�(z + 1+ n− r)

�(z+ 1+ n−m)

= 1

�(z + 1+ n−m)

∞∫
0

e−x · xz(−1)rxn−r · dx. ✷

Remarque 3.1. Dans le sens de Gessel et Stanley, il faudrait également étudier
les fonctions génératrices des suites de nombresρ!(G, z), z ∈ Z, une étude que
nous ne reproduisons pas ici.

Remarque 3.2. Pour plusieurs applications (voir [3–5,16], par exemple), il est
indispensable de prolonger nos résultats aux graphes bipartispondérésGw =
(X,Y ;E,w), où w :X � Y → A (respectivementE :X × Y → A) est une
fonction attachant un poids à chaque sommet (respectivement arête) du graphe.
Par définition,{x, y} est une arête deGw si et seulement siE({x, y}) �= 0, de
sorte qu’un graphe biparti simple est un graphe biparti pondéré tel quew(x) =
w(y)= 1 etE({x, y})∈ {0,1} pour toutx ∈ X et y ∈ Y .

Le complément pondéréGw = (X,Y ;E,w) du grapheGw = (X,Y ;E,w) est
défini par

E
({x, y})+ E

({x, y})= w(x) ·w(y)

pour toutx ∈ X ety ∈ Y . En posant

X :=
∑
x∈X

w(x) · ν{x}, Y :=
∑
y∈Y

w(y) · ν{y},

E :=
∑
x∈X

∑
y∈Y

E
({x, y}) · ν{x,y}, E :=

∑
x∈X

∑
y∈Y

E
({x, y}) · ν{x,y},

notre lemme fondamental

E +E = XY

reste alors valable.
Un r-couplagedeGw, finalement, est un recouvrement de tous lesn sommets

deX et de tous lesm sommets deY parr arêtes non-adjacentes,n− r sommets
deX etm− r sommets deY . Le poids dur-couplage est égal au produit des poids
de sesr arêtes, sesn− r sommets deX et sesm− r sommets deY .

Notonsp(Gw, r) la somme des poids de tous lesr-couplages deGw,

p(Gw,0)=
[∏
x∈X

w(x)

]
·
[∏
y∈Y

w(y)

]
.



B. Lass / Advances in Applied Mathematics 29 (2002) 215–242 227

De cette manière, la Proposition 3.1 ainsi que tous les autres résultats de ce
paragraphe restent effectivement valables pour les graphes bipartis pondérés.
Autrement dit,nous avons établi des théorèmes de dualité pour les permanents
des matrices de dimensionsn×m.

4. Chemins et circuits hamiltoniens

Supposons dorénavant que|X| = |Y | = n et fixons une bijection entreX etY .
Ceci nous permet d’identifier le graphe biparti simpleG = (X,Y ;E),E ⊆ X×Y ,
à un graphe orienté simpleG= (V ,E) avec|V | = n etE ⊆ V × V .

graphe biparti :

• • • • •
• • • • •

,

��������������

��������������

�������

graphe orienté :

• • • • •� �

�

� .

Notons queV n’est plus égal àX � Y à partir de ce paragraphe. La définition
du graphe biparti complémentaire fournit une définition naturelle du graphe orien-
té complémentaire, à savoirG = (V ,E), où E = (V × V )\E. En particulier,
G contient une boucle autour dev ∈ V si et seulement siG n’a pas de boucle
autour dev. Un r-couplage du graphe biparti, finalement, n’est rien d’autre
qu’une partition deV en plusieurs circuits hamiltoniens etn − r chemins
hamiltoniens du graphe orienté,de sorte que tous les résultats du paragraphe
précédent peuvent être interprétés dans le langage des graphes orientés.

Pour tout ∅ ⊂ V ′ ⊆ V , notonsG[V ′] le sous-graphe du graphe orienté
G= (V ,E) qui est engendré parV ′ (c’est le graphe dont les sommets sont les
éléments deV ′ et dont les arcs sont les arcs deG ayant leurs deux extrémités
dansV ′). Soit cyc(G[V ′]) le nombre de circuits hamiltoniens deG[V ′] et soit
lin(G[V ′]) le nombre de chemins hamiltoniens deG[V ′], où un seul sommet
v ∈ V est un chemin hamiltonien deG[{v}] dont v est à la fois le sommet
initial et le sommet terminal, alors qu’une boucle autour dev est bien un circuit
hamiltonien deG[{v}]. Les deux éléments

cycG(ν) :=
∑

∅⊂V ′⊆V

cyc
(
G[V ′]) · νV ′

,

linG(ν) :=
∑

∅⊂V ′⊆V

lin
(
G[V ′]) · νV ′

de l’algèbreA[V ], |V | = n, sont au centre du reste de cet article. En fait, si l’on
posen = m et z = 0 dans la première identité du Théorème 3.3, alors le membre
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de gauche de cette identité est égal au coefficient deνV dans exp[cycG(ν)], tandis
que le membre de droite est égal au coefficient deνV de la fonction d’ensembles
exp[cycG(−ν)] · [1+ linG(−ν)]−1. Autrement dit, notre Théorème 3.3 implique
la relation

exp
[
cycG(ν)

]= exp
[
cycG(−ν)

] · [1+ linG(−ν)
]−1

,

imaginée par Berge [7] sans utiliser les fonctions d’ensembles. En intervertissant
les rôles deG etG, nous obtenons le théorème suivant, qui est à l’origine de tous
les résultats des Paragraphes 4 et 5.

Théorème 4.1 (Identité de Berge).SoitG = (V ,E) un graphe orienté simple.
Alors on a

1+ linG(ν) = [
1+ linG(−ν)

]−1 = exp
[
cycG(ν)− cycG(−ν)

]
,

log
[
1+ linG(ν)

]= − log
[
1+ linG(−ν)

]= cycG(ν)− cycG(−ν) et[
1+ linG(−ν)

] · ∂v linG(ν) = −[1+ linG(ν)
] · ∂v linG(−ν)

= ∂v
[
cycG(ν)− cycG(−ν)

]
pour chaque sommetv ∈ V .

Remarque 4.1. Pour des applications futures, il est indispensable de prolonger
nos résultats aux graphes orientéspondérésGit = (V ,E, i, t), où i, t :V →A

et E :V × V → A sont des fonctions attachant des poids à chaque sommet et
arc, respectivement. Par définition,(u, v) est un arc deGit si et seulement si
E((u, v)) �= 0, de sorte qu’un graphe orienté simple est un graphe orienté pondéré
tel quei(v) = t (v) = 1 etE((u, v)) ∈ {0,1} pour toutu,v ∈ V . Le complément
pondéréGit = (V ,E, i, t) du grapheGit = (V ,E, i, t) est défini par

E
(
(u, v)

)+E
(
(u, v)

)= i(u) · t (v)
pour tout u,v ∈ V . Finalement, le poids d’un circuit hamiltonien est égal
au produit des poids de ses arcs, tandis que le poids d’un chemin hamilto-
nien est égal au produit des poids de ses arcs multiplié part (u) · i(v) si
u (respectivementv) est le sommet initial (respectivement terminal) du che-
min.

Pour tout∅ ⊂ V ′ ⊆ V , notons cyc(Git [V ′]) (respectivement lin(Git [V ′]))
la somme des poids de tous les circuits (respectivement chemins) hamil-
toniens deGit [V ′]. Avec ces définitions, notre Remarque 3.2 permet de
conclure que le Théorème 4.1 reste valable pour les graphes orientés pondé-
rés. Autrement dit, nous avons établi un théorème de dualité pour les ma-
trices carrées de dimensionn × n. En fait, la diagonale principale d’une ma-
trice carrée fournit une bijection canonique entre l’ensemble des lignes et
l’ensemble des colonnes (voir le début de ce paragraphe). Remarquons fi-
nalement que les autres résultats des Paragraphes 4 et 5 peuvent également
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être prolongés au cas pondéré. Nous laissons au lecteur le soin d’expliciter
ceci.

Grâce à notre Exemple 2.2, on peut simplifier le Théorème 4.1 sensiblement
en le considérant modulo 2 :

1+ linG(ν)≡ 1+ linG(ν) (mod 2),

linG(ν)+ linG(ν)2/2≡ linG(ν)+ linG(ν)2/2

≡ cycG(ν)+ cycG(ν) (mod 2).

Puisque le coefficient deνV dans linG(ν)2/2 compte le nombre de bi-chemins
hamiltoniens deG = (V ,E) (voir l’introduction), nous avons établi le résultat
principal de l’article [7] de Berge (voir [6, Chapitre 10, Théorème 1 et
Exercice 9]).

Corollaire 4.1 (Berge). Pour tout graphe orienté simpleG = (V ,E), on a

lin
(
G
)≡ lin(G) (mod 2), bilin

(
G
)≡ bilin(G) (mod 2),

lin
(
G
)+ bilin

(
G
)≡ lin(G)+ bilin(G) ≡ cyc

(
G
)+ cyc(G) (mod 2).

SoitG= (V ,E) un graphe orienté simple. Chung et Graham [12] (respective-
ment D’Antona et Munarini [2]) ont introduit et étudié le polynômeC!(G,x, y)

(respectivementC(G,x, z)) appelépolynôme de recouvrement(respectivement
polynôme de recouvrement géométrique). À l’aide des fonctions d’ensembles, on
peut définir ces polynômes comme suit :

1+
∑

∅⊂V ′⊆V

C!(G[V ′], x, y) · νV ′ := exp
[
x · cycG(ν)

] · [1+ linG(ν)
]y
,

1+
∑

∅⊂V ′⊆V

C
(
G[V ′], x, z) · νV ′ := exp

[
x · cycG(ν)

] · exp
[
z · linG(ν)

]
.

Il est évident que nos définitions sont équivalentes à celles proposées par Chung
et Graham [12], D’Antona et Munarini [2] et Chow [10]. Chung et Graham ont
posé la question de savoir siC!(G,x, y) est déterminé parC!(G,x, y). Une
réponse affirmative fut trouvée par Chow (et Gessel) [10], qui ont établi une belle
relation entre les deux polynômes, soulignant davantage le caractère visionnaire
de la définition de Chung et Graham. Nous montrons que la relation imaginée par
Chow (et Gessel) ainsi que notre relation entreC!(G,x, y) etC(G,x, z) sont des
corollaires directs de l’identité de Berge. Les différentes démonstrations de Chow
et Gessel [10] sont toutes plus longues.

Théorème 4.2. SoitG = (V ,E) un graphe orienté simple avec|V | = n. Alors
on a
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C!(G,x,y
) = (−1)nC!(G,x,−x − y)

= (−1)n

�(x + y)

∞∫
0

e−z ·C(G,x,−z) · zx+y · dz

z
.

Démonstration. Dans le langage des fonctions d’ensembles, la première identité
du corollaire s’exprime comme suit :

exp
[
x · cycG(ν)

] · [1+ linG(ν)
]y

= exp
[
x · cycG(−ν)

] · [1+ linG(−ν)
]−x−y

⇔ (
exp

[
cycG(ν)− cycG(−ν)

])x = [
1+ linG(−ν)

]−x
.

La seconde identité se vérifie de la façon suivante :

1

�(x + y)

∞∫
0

e−z · exp
[
x · cycG(−ν)

] · exp
[−z · linG(−ν)

] · zx+y−1 · dz

= exp
[
x · cycG(−ν)

] · 1

�(x + y)

×
∞∫

0

exp
(−z

[
1+ linG(−ν)

]) · zx+y−1 · dz

= exp
[
x · cycG(−ν)

] · 1

�(x + y)

×
∞∫

0

e−t ·
(

t

1+ linG(−ν)

)x+y−1

· dt

1+ linG(−ν)

= exp
[
x · cycG(−ν)

] · [1+ linG(−ν)
]−x−y · 1

�(x + y)

×
∞∫

0

e−t · tx+y−1 · dt

= exp
[
x · cycG(−ν)

] · [1+ linG(−ν)
]−x−y

. ✷
Remarque 4.2. Évidemment, le Théorème 4.1 est aussi une conséquence immé-
diate du Théorème 4.2. Le Théorème 4.1, cependant, est bien le chaînon essentiel
entre l’algèbre et la combinatoire.

Pour toutn ∈ N, n � 1, soitKn le graphe orienté completavecn sommets.
Évidemment, son complément ne contient aucun arc, et l’on a cyc(Kn)= (n−1)!
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et lin(Kn) = n!. Définissons le graphe infini completK∞ dans le sens du Para-
graphe 2 pour obtenir les identités

cycK∞(ν) =
∞∑
n=1

cyc(Kn) · V n/n! = − log(1− V ),

linK∞(ν) =
∞∑
n=1

lin(Kn) · V n/n! = V

1− V
.

Les polynômes de Laguerre généralisésLe
(α)
n (z) furent introduits dans l’intro-

duction pourα ∈ N. La proposition suivante est facile à établir pour eux (voir
notre relation entre graphes bipartis et graphes orientés). De plus, elle nous servira
de définition des polynômes de Laguerre pourα /∈ N. L’orthogonalité par rapport
àzαe−z dz des polynômesLe(α)n (z) ainsi définis sera une conséquence immédiate
de notre Corollaire 4.2.

Proposition 4.1. On a

1+
∞∑
n=1

Le
(α)
n (z) · V n

n! = (1+ V )−α−1 · exp

[
z · V
1+ V

]

= exp
[
(α + 1) · cycK∞(−ν)

]
exp

[−z · linK∞(−ν)
]
.

Autrement dit,Le(α)n (z)= (−1)n ·C(Kn,α + 1,−z).

Soit Kn1 � · · · � Knk l’union disjointe des graphes completsKn1, . . . ,Knk de
sorte que l’on a l’identité évidente

Le(α)n1
(z) · · ·Le(α)nk

(z)= (−1)n1+···+nk ·C(Kn1 � · · · �Knk ,α + 1,−z).

Le Théorème 4.2 implique donc le corollaire suivant.

Corollaire 4.2. On a

C!(Kn1 � · · · �Knk ,α + 1, β
)

= 1

�(α + β + 1)

∞∫
0

e−z ·
(

k∏
h=1

Le(α)nh
(z)

)
· zα+β · dz.

Le cas le plus important du corollaire précédent, à savoirβ = 0, fut imaginé par
Foata et Zeilberger [16, Théorème 1]. Si, de plus, on posek = 2, alors on obtient
l’orthogonalité par rapport àzαe−z dz pour nos polynômesLe(α)n (z) définis à
l’aide de la Proposition 4.1. Ceci montre qu’ils s’agit bien des polynômes de
Laguerre (généralisés) classiques.
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Remarque 4.3. Dans le sens de la Remarque 4.1, choisissons des poids
λ1, . . . , λk et définissons le graphe orienté pondéré(Kn1 � · · · �Knk )it en posant
i(v) := λh si et seulement siv est un sommet deKnh , alors que tous les autres
poids sont conservés, i.e.t (v) = 1 pour chaque sommet, par exemple. De cette
manière, on a

Le(α)n1
(λ1z) · · ·Le(α)nk

(λkz)

= (−1)n1+···+nk ·C((Kn1 � · · · �Knk )it , α + 1,−z
)

et le casβ = 0 de l’identité

C!((Kn1 � · · · �Knk )it , α + 1, β
)

= 1

�(α + β + 1)

∞∫
0

e−z ·
(

k∏
h=1

Le(α)nh
(λhz)

)
· zα+β · dz

n’est rien d’autre que le Théorème 2 de [16], c’est-à-dire le théorème principal de
cet article de Foata et Zeilberger.

5. Tournois et graphes non-orientés

Un tournoi G = (V ,E) est un graphe orienté simple sans boucles et tel
que pour deux sommets distinctsu,v ∈ V on ait toujours exactement l’une des
relations(u, v) ∈ E ou bien (v,u) ∈ E. Si G = (V ,E) est un tournoi, alors
chaque sommet deG contient une boucle et l’on a linG(ν)= linG(ν) ainsi que
cycG(ν)= V + cycG(ν). Voilà pourquoi le Théorème 4.1 implique le résultat sui-
vant.

Théorème 5.1. Pour chaque tournoiG= (V ,E), on a

1+ linG(ν) = [
1+ linG(−ν)

]−1 = exp[V ] · exp
[
cycG(ν)− cycG(−ν)

]
et

log
[
1+ linG(ν)

]= − log
[
1+ linG(−ν)

]= V + cycG(ν)− cycG(−ν).

Grâce à notre Exemple 2.2, on peut simplifier le théorème précédent sensible-
ment en le considérant modulo 2 :

1+ linG(ν) ≡ exp[V ] (mod 2),

linG(ν)+ linG(ν)2/2≡ V (mod 2).

On n’obtient ainsi rien d’autre que les théorèmes classiques de Rédei et de
Berge, formulés dans le langage des fonctions d’ensembles (voir [6, Chapitre 10,
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Théorème 6 et Exercice 9]). La démonstration du théorème de Rédei imaginée par
Berge est plus longue, bien qu’elle simplifie déjà considérablement les preuves
classiques (voir [33], [26, pp. 21–23]).

Corollaire 5.1 (Rédei, Berge).Pour chaque tournoiG = (V ,E) tel que|V | > 1,
on a lin(G)≡ bilin(G)≡ 1 (mod 2).

Finalement, soitE�E = (
V
2

)
une partition de la famille des sous-ensembles de

cardinalité 2 de l’ensembleV , et soientG = (V ,E) etG = (V ,E) deux graphes
simples non-orientés qui sont complémentaires. Pour tout∅ ⊂ V ′ ⊆ V , notons
G[V ′] le sous-graphe deG engendré parV ′ (c’est le graphe dont les sommets
sont les éléments deV ′ et dont les arêtes sont les arêtes deG ayant leurs deux
extrémités dansV ′). Soit hc(G[V ′]) (respectivement hp(G[V ′])) le nombre de
circuits (respectivement chemins) hamiltoniens deG[V ′], où hc(G[V ′]) := 0
(respectivement hp(G[V ′]) := 0) si |V ′| < 3 (respectivement|V ′| < 2). Posons

HCG(ν) :=
∑

∅⊂V ′⊆V

hc
(
G[V ′]) · νV ′

,

HPG(ν) :=
∑

∅⊂V ′⊆V

hp
(
G[V ′]) · νV ′

ainsi queE := ∑
e∈E νe et E := ∑

e∈E νe de sorte queE + E = V 2/2 dans
l’algèbreA[V ].

Suivant la suggestion de Berge (voir [6, Préface]), remplaçons chaque arête
de G et de G par deux arcs d’orientations opposées et munissons chaque
sommet deG d’une boucle pour obtenir deux graphes simples orientés qui
sont complémentaires. Tout circuit (respectivement chemin) hamiltonien non-
orienté conduit à deux circuits (respectivement chemins) hamiltoniens orientés.
De plus, une arête non-orienté (respectivement un sommet) conduit à un circuit
(respectivement chemin) hamiltonien orienté. Par conséquent, le Théorème 4.1
fournit le résultat suivant.

Théorème 5.2. SoientG = (V ,E) et G = (V ,E) deux graphes simples non-
orientés qui sont complémentaires. Alors on a

1+ V + 2 HPG(ν)= [
1− V + 2 HPG(−ν)

]−1

= exp
[
V +E + 2 HCG(ν)−E − 2 HCG(−ν)

]
,

log
[
1+ V + 2 HPG(ν)

]= − log
[
1− V + 2 HPG(−ν)

]
= V +E −E + 2

[
HCG(ν)− HCG(−ν)

]
.

Pour obtenir des relations plus simples modulo 2, commençons par développer
la fonction exponentielle dans le théorème précédent modulo 4 :
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exp
[
V +E + 2 HCG(ν)−E − 2 HCG(−ν)

]
≡ exp

[
log(1+ V )+ 2

(
E + HCG(ν)+ HCG(ν)+ V 3/3! + V 4/4!)]

≡ [1+ V ][1+ 2
(
E + HCG(ν)+ HCG(ν)+ V 3/3! + V 4/4!)] (mod 4).

On en tire le corollaire suivant.

Corollaire 5.2. Pour tout graphe simple non-orientéG= (V ,E), on a

HPG(ν)+E(1+ V )

≡ HPG(ν)+E(1+ V )

≡ [
HCG(ν)+ HCG(ν)

][1+ V ] + V 3/3! + V 4/4! + V 5/5! (mod 2).

Un chemin (respectivement circuit) deG = (V ,E) (|V | = n) est ditélémen-
taire s’il ne rencontre pas deux fois le même sommet. Notons hpk(G) (res-
pectivement hck(G)) le nombre de chemins (respectivement circuits) élémen-
taires dek sommets, k � 3. En particulier, hpn(G) = hp(G) (respectivement
hcn(G) = hc(G)) dénombre les chemins (respectivement circuits) hamiltoniens
deG, et l’on a

hpk(G)=
∑

V ′∈(Vk )
hp
(
G[V ′]), hck(G)=

∑
V ′∈(Vk )

hc
(
G[V ′]),

si
(
V
k

)
désigne l’ensemble des sous-ensembles deV de cardinaliték. Multiplions

l’identité du Corollaire 5.2 parV h/h!, h ∈ N :

HPG(ν)
V h

h! +E(1+ V )
V h

h!
≡ HPG(ν)

V h

h! +E(1+ V )
V h

h!
≡ [

HCG(ν)+ HCG(ν)
][V h

h! + (h+ 1)
V h+1

(h+ 1)!
]

+
(
h+ 3

3

)
V h+3

(h+ 3)!

+
(
h+ 4

4

)
V h+4

(h+ 4)! +
(
h+ 5

5

)
V h+5

(h+ 5)! (mod 2).

En regardant le coefficient deνV nous déduisons le corollaire suivant, puisque
(h+ 1) et

(
h+5

5

)
sont pairs sih est un nombre impair.

Corollaire 5.3. SoientG = (V ,E) et G = (V ,E) deux graphes simples non-
orientés qui sont complémentaires, et soientk eth deux entiers aveck � 5, h � 1
et k + h = n= |V |. Sih est impair, alors on a modulo2 :
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hpk
(
G
)≡ hpk(G)≡ hck

(
G
)+ hck(G),

hpk+1
(
G
)≡ hpk+1(G)≡ hck

(
G
)+ hck(G)+ hck+1

(
G
)+ hck+1(G),

hpk
(
G
)+ hpk+1

(
G
)≡ hpk(G)+ hpk+1(G)≡ hck+1

(
G
)+ hck+1(G).

L’identité hpk+1(G) ≡ hpk+1(G) (mod 2) fut imaginée par Lovász [24,
5.19] dans le cas particulierk + 1= n.

Un graphe simple non-orientéG = (V ,E) est appeléauto-complémentairesi
et seulement siG etG sont isomorphes. Pour de tels graphes, notre Corollaire 5.3
fournit le théorème principal de l’article [27] de Rao, que ce dernier a démontré
sur plusieurs pages.

Corollaire 5.4 (Rao). Soit G = (V ,E) un graphe auto-complémentaire avec
|V | = n. Alorshpk(G) est pair pour tout5< k � n.

Le cas le plus important du théorème précédent, à savoirk = n, fut imaginé
par Camion [8].

6. Fonctions symétriques et fonctions d’ensembles

Dans l’introduction de sa thèse [11], Chow a suggéré une direction prometteuse
pour étendre son étude des fonctions symétriques et saisir ainsi davantage
de problèmes en combinatoire. Il nous semble que les fonctions d’ensembles
permettent, par excellence, de réaliser cette idée de Chow.

Soient doncf,g : 2V → A deux fonctions d’ensembles telles quef (∅) =
g(∅) = 0. Nous définissons, pour chaque∅ ⊂ V ′ ⊆ V , la fonction symé-
trique de StanleySTf,V ′(x1, x2, x3, . . .) et la fonction symétrique de Chow
CHg,V ′(x1, x2, x3, . . .) par

1+
∑

∅⊂V ′⊆V

STf,V ′(x1, x2, x3, . . .) · νV ′ :=
∞∏
i=1

[
1+ Ff (xi · ν)

]
,

1+
∑

∅⊂V ′⊆V

CHg,V ′(x1, x2, x3, . . .) · νV ′ := exp

[ ∞∑
i=1

Fg(xi · ν)
]
,

respectivement (voir le début du Paragraphe 2). La relation fondamentale entre
la fonction symétrique de Chow et celle de Stanley est donnée par le théorème
suivant.

Théorème 6.1. Si log[1+Ff (ν)] = Fg(ν) ou bien1+Ff (ν)= exp[Fg(ν)], alors
on a pour tout∅ ⊂ V ′ ⊆ V

STf,V ′(x1, x2, x3, . . .) = CHg,V ′(x1, x2, x3, . . .).
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Démonstration. On a en effet

1+
∑

∅⊂V ′⊆V

STf,V ′(x1, x2, . . .) · νV ′

= exp

[ ∞∑
i=1

log
[
1+ Ff (xi · ν)

]]

= 1+
∑

∅⊂V ′⊆V

CHg,V ′(x1, x2, . . .) · νV ′
. ✷

Exemple 6.1. Les fonctions symétriques de Stanley les plus fondamentales
(voir [22], [32, Chapitre 7], [25, Chapitre 1.2]) sont la fonction symétrique
élémentaireen = Λn(x1, x2, x3, . . .) et la fonction symétrique complètehn =
Sn(x1, x2, x3, . . .), n ∈ N :

1+ V = 1+ Ff (ν) ⇒ STf,V ′(x1, x2, x3, . . .)= |V ′|! · e|V ′|,
(1− V )−1 = 1+ Ff (ν) ⇒ STf,V ′(x1, x2, x3, . . .)= |V ′|! · h|V ′|.

Les fonctions symétriques les plus simples, cependant, sont bien les sommes
des puissancespn = ψn(x1, x2, x3, . . .) = ∑∞

i=1x
n
i . À l’aide de cette base de

l’espace des fonctions symétriques, on définit l’involutionω par ω(pn) :=
(−1)n−1pn. Grâce à l’exemple précédent, le théorème suivant devient une
généralisation directe des identités classiquesω(en)= hn etω(hn) = en.

Théorème 6.2. Pour des fonctions d’ensemblesf,g : 2V → A telles quef (∅) =
g(∅) = 0, on a

1+
∑

∅⊂V ′⊆V

ω
(
STf,V ′(x1, x2, x3, . . .)

) · νV ′ =
∞∏
i=1

[
1+ Ff (−xi · ν)

]−1
,

1+
∑

∅⊂V ′⊆V

ω
(
CHg,V ′(x1, x2, x3, . . .)

) · νV ′ = exp

[
−

∞∑
i=1

Fg(−xi · ν)
]
.

Démonstration. Supposons, sans restreindre la généralité, que 1+ Ff (ν) =
exp[Fg(ν)]. Il s’ensuit :

ω

( ∞∏
i=1

[
1+ Ff (xi · ν)

])

= ω

(
exp

[ ∞∑
i=1

Fg(xi · ν)
])

= exp

[
ω

( ∞∑
i=1

Fg(xi · ν)
)]

= exp

[
−

∞∑
i=1

Fg(−xi · ν)
]

=
∞∏
i=1

[
1+ Ff (−xi · ν)

]−1
. ✷
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Dans l’article [23], nous avons introduit, pour chaque graphe simple non-
orientéG = (V ,E), la fonction indicatrice des ensembles de sommets indépen-
dantsIG(ν) ainsi que la fonction d’ensemblesAG(ν) (respectivementA∗

G(ν)) dé-
nombrant les orientations acycliques (respectivement avec une seule source fixée)
pour tous les sous-graphes engendrés deG. Nous avons établi les identités

[
1+ IG(−ν)

]−1 = 1+AG(ν),

− log
[
1+ IG(−ν)

]= log
[
1+AG(ν)

]= A∗
G(ν).

Stanley [30] a introduit et étudié la fonction chromatiqueXG = XG(x1, x2, x3, . . .),
qui est, par excellence, une fonction symétrique « de Stanley » :

1+
∑

∅⊂V ′⊆V

XG[V ′] · νV ′ :=
∞∏
i=1

[
1+ IG(xi · ν)

]
.

Le corollaire suivant formule plusieurs théorèmes principaux de l’article [30] de
Stanley dans le langage des fonctions d’ensembles.

Corollaire 6.1 (Stanley).On a

1+
∑

∅⊂V ′⊆V

XG[V ′] · νV ′ =
∞∏
i=1

[
1+ IG(xi · ν)

]= exp

[
−

∞∑
i=1

A∗
G(−xi · ν)

]
,

1+
∑

∅⊂V ′⊆V

ω(XG[V ′]) · νV ′ =
∞∏
i=1

[
1+AG(xi · ν)

]= exp

[ ∞∑
i=1

A∗
G(xi · ν)

]
.

Selon Stanley [30], une série formellep = p(x, y) en deux ensembles
de variablesx = (x1, x2, x3, . . .) et y = (y1, y2, y3, . . .) est appeléefonction
supersymétriquesi et seulement sip est symétrique par rapport aux variables
xi etyj et

p(x, y)|y1=−x1 = p(x, y)|y1=x1=0.

Notonsωy l’involution ω n’agissant que sur les variablesy en supposant que
x1, x2, x3, . . . sont des constants. Sip(x) est une fonction symétrique, définissons
la superficationp(x/y) dep par

p(x/y) := ωy

(
p(x, y)

)
,

c’est-à-dire en remplaçant les variablesx1, x2, . . . parx1, x2, . . . , y1, y2, . . . (c’est
une soi-disanteaddition des deux alphabets) et en utilisantωy ensuite. Pour
les fonctions symétriques de Stanley et de Chow, notre Théorème 6.2 donne le
résultat suivant.
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Théorème 6.3. Soientf,g : 2V → A telles quef (∅)= g(∅) = 0, alors on a

1+
∑

∅⊂V ′⊆V

STf,V ′(x/y) · νV ′ =
∞∏
i=1

1+ Ff (xi · ν)
1+ Ff (−yi · ν) ,

1+
∑

∅⊂V ′⊆V

CHg,V ′(x/y) · νV ′ = exp

[ ∞∑
i=1

(
Fg(xi · ν)− Fg(−yi · ν)

)]
.

Le théorème précédent implique immédiatement le corollaire suivant, qui
exprime le Théorème 4.3 de [30] dans le langage des fonctions d’ensembles. La
démonstration proposée par Stanley est la plus longue de tout l’article [30] et
utilise les fonctions de Schur.

Corollaire 6.2 (Stanley).On a

1+
∑

∅⊂V ′⊆V

XG[V ′](x/y) · νV ′

=
( ∞∏

i=1

[
1+ IG(xi · ν)

]) ·
( ∞∏

i=1

[
1+AG(yi · ν)

])
.

Étudions finalement la thèse de Chow [11] ou bien son article [10]. Il est
utile de noter nos alphabets(x) = (x1, x2, . . .) et (y) = (y1, y2, . . .) de sorte
que(−x) = (−x1,−x2, . . .) et (−y)= (−y1,−y2, . . .). L’addition des alphabets
(x) + (y) déjà introduite peut être généralisée en considérant des combinaisons
linéaires quelconquesλ(x) + µ(y), λ,µ ∈ A, où il faut faire attention que
−(−x) �= (x), puisque(−x) est une multiplication des variables par−1 tandis
que−(x) est une soustraction de l’alphabet(x) (voir [22]). Le théorème suivant
est évident ou bien une définition.

Théorème 6.4. Soientf,g : 2V → A telles quef (∅)= g(∅) = 0, alors on a pour
toutλ,µ ∈ A :

1+
∑

∅⊂V ′⊆V

STf,V ′
[
λ(x)+µ(y)

] · νV ′

=
∞∏
i=1

[(
1+ Ff (xiν)

)λ(
1+Ff (yiν)

)µ]
,

1+
∑

∅⊂V ′⊆V

CHg,V ′
[
λ(x)+µ(y)

] · νV ′

= exp

[ ∞∑
i=1

(
λ · Fg(xiν)+µ · Fg(yiν)

)]
.



B. Lass / Advances in Applied Mathematics 29 (2002) 215–242 239

En particulier,

ωy

(
STf,V ′

[
λ(x)+µ(y)

])= STf,V ′
[
λ(x)−µ(−y)

]
,

STf,V ′
[
(x)/(y)

]= STf,V ′
[
(x)− (−y)

]
,

ω
(
STf,V ′

[
(x)
])= STf,V ′

[−(−x)
]
.

Soient cycG(ν), linG(ν), cycG(ν) et linG(ν) quatre fonctions d’ensembles
quelconques qui satisfont à l’identité de Berge, c’est-à-dire au Théorème 4.1.
Nous définissons, pour chaque∅ ⊂ V ′ ⊆ V , la fonction symétrique de Chow–
StanleyCSG[V ′][(x); (y)] par

1+
∑

∅⊂V ′⊆V

CSG[V ′]
[
(x); (y)] · νV ′

:= exp

[ ∞∑
i=1

cycG(xiν)

]
·

∞∏
j=1

[
1+ linG(yjν)

]
.

Maintenant nous sommes en mesure de formuler notre généralisation du théorème
principal de la thèse de Chow [11].

Théorème 6.5 (Théorème de dualité pour la fonction de Chow–Stanley).Pour
tousλc,λl,µc,µl ∈A, on a

CSG
[
λc(x)+µc(y);λl(x)+µl(y)

]
= CSG

[
λc(−x)+µc(−y);−(λc + λl)(−x)− (µc +µl)(−y)

]
.

Démonstration. Dans le langage des fonctions d’ensembles, il s’agit de démon-
trer l’identité suivante, que nous établissons à l’aide de l’identité de Berge :

exp

[
λc

∞∑
i=1

cycG(xiν)

]
· exp

[
µc

∞∑
j=1

cycG(yjν)

]

×
( ∞∏

i=1

[
1+ linG(xiν)

])λl

·
( ∞∏

j=1

[
1+ linG(yjν)

])µl

= exp

[
λc

∞∑
i=1

cycG(−xiν)

]
· exp

[
µc

∞∑
j=1

cycG(−yjν)

]

×
( ∞∏

i=1

[
1+ linG(−xiν)

])−λc−λl

·
( ∞∏

j=1

[
1+ linG(−yjν)

])−µc−µl
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⇔
(

exp

[ ∞∑
i=1

(
cycG(xiν)− cycG(−xiν)

)])λc

×
(

exp

[ ∞∑
j=1

(
cycG(yjν)− cycG(−yjν)

)])µc

=
( ∞∏

i=1

[
1+ linG(−xiν)

])−λc

·
( ∞∏

j=1

[
1+ linG(−yjν)

])−µc

.

✷
Posonsλc = µl = 1 et λl = µc = 0 pour obtenir le théorème principal de la

thèse de Chow [11] et de l’article [10].

Corollaire 6.3 (Chow). On a

CSG

[
(x); (y)] = CSG

[
(−x);−(−x)− (−y)

]
= [

ωy

(
CSG

[
(−x); (y)])]

y→(x,y)
.

Chow a également trouvé un deuxième cas particulier du Théorème 6.5, à
savoirλc = −2,µc = 0 etλl = µl = 1.

Corollaire 6.4 (Chow). On a

CSG

[−2(x); (x)+ (y)
] = CSG

[−2(−x); (−x)− (−y)
]

= ωy

(
CSG

[−2(−x); (−x)+ (y)
])
.

Tous les autres cas du Théorème 6.5 sont nouveaux. De notre point de vue,
cependant, le Théorème 6.5 et l’identité de Berge sont aussi des corollaires
immédiats des résultats de Chow. Par ailleurs, Chow [10, Paragraphe 6] a posé
la question de mieux comprendre le rôle des inversions qu’il a considérées. Il
nous semble, que l’addition des alphabets répond parfaitement à cette question.
Au moins, il devient évident qu’il s’agit bien d’inversions, un fait que Chow a dû
démontrer.

Remarquons finalement, que Gessel a aussi imaginé une démonstration de
l’identité

CSG

[
0; (y)]= ωy

(
CSG

[
0; (y)]),

qui se trouve dans l’intersection des deux résultats de Chow. Cette preuve de
Gessel reproduite dans [10], cependant, s’étend, elle aussi, sur plus d’une page
tout en utilisant les fonctions de Schur.
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