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Abstract. 1In their recent preprint [3] Kontsevich and Shoikhet have introduced two graph-com-
plexes: the complex on the even (resp. odd) space in order to study the cohomology of
the Lie algebra Hamg (resp. Hamg%?) of Hamiltonian vector fields vanishing at the origin
on the infinite-dimensional even (resp. odd) space. We construct an isomorphism between
those two graph-complexes, proving in particular that their cohomologies coincide. This

solves a problem posed by Shoikhet. @ Académie des Sciences/Elsevier, Paris

Sur la combinatoire du complexe de graphes

Résumé. Dans leur prépublication récente [3], Kontsevich et Shoikhet ont introduit deux complezes
de graphes : le compleze sur l’espace pair (resp. impair) pour étudier la cohomologie de
lalgébre de Lie Hamg (resp. Ham3%?) des champs vectoriels hamiltoniens sans terme
constant sur l’espace pair (resp. impair) de dimension infinie. Nous construisons un
isomorphisme entre ces deux complexes de graphes, démontrant notamment que leur
cohomologies coincident. Ceci résoud un probléme posé par Shoikhet. @ Académie des
Sciences/Elsevier, Paris

Version francaise abrégée

Le probleme de calculer les groupes de cohomologie de beaucoup d’algebres de Lie peut étre
ramené au calcul des groupes de cohomologie de différents complexes de graphes (voir [1],[2],[3]).
Un compleze (cohomologique) de graphes est un complexe
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ou C"™ est 'espace vectoriel engendré par les classes d’isomorphie de paires (G, org) telles que G
est un (multi)graphe de n sommets et org est une orientation d’un espace vectoriel réel (ou plutot
d’un ensemble fini) associé a G. Un (multi)graphe G = (H;V, E) est un ensemble de demi-arétes
H (|H| = 2m) muni de deux partitions V et E. Les n blocs v € V sont appelés sommets tandis
que les m blocs e € E de la deuxiéme partition sont des sous-ensembles de H de cardinalité deux,
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appelés arétes. Une aréte est une boucle si et seulement si ses deux demi-arétes font partie du méme
sommet. Le degré d'un sommet v € V est sa cardinalité, c’est-a-dire le nombre de ses demi-arétes.
On dit que v est pair (resp. impair) si et seulement si son degré est pair (resp. impair). Notons Q
(resp. O) Pensemble des sommets pairs (resp. impairs) de G.

On oriente un ensemble fini (ou bien 'espace réel engendré par cet ensemble) en le munis-
sant d’une forme alternante (multilinéaire) [ - | prenant ses valeurs dans l’ensemble {1,—1}.
Evidemment, le nombre d’orientations différentes vaut deux. L’union disjointe de plusieurs en-
sembles orientés est naturellement pseudo-orientée (i.e. orientée par rapport a la partition) par le
produit ordinaire des formes alternantes des blocs de la partition. Une pseudo-orientation d’un en-
semble partitionné est alors une forme alternante par rapport a toutes les permutations respectant
la partition. Evidemment, le nombre de pseudo-orientations est aussi égal & deux. L’orientation
d’un graphe dite paire est la pseudo-orientation de I'union disjointe V' W (l#,c €); autrement
dit, on oriente ’ensemble V' et, pour chaque aréte e € E, ’ensemble des deux demi-arétes de e
(voir [2],[3],[4]). L’orientation d’un graphe dite impaire, cependant, est la pseudo-orientation de
'union disjointe Q W (I, ¢y v), ce qui veut dire que I'on oriente 'ensemble @ des sommets pairs
et, pour chaque sommet v € V, 'ensemble des demi-arétes de v (voir [3]).

Un automorphisme P du graphe G est une permutation Py de 1'ensemble des demi-arétes H
préservant les structures de V' et de E. Voila pourquoi P agit sur 'orientation paire (resp. impaire)
par une multiplication avec un nombre noté © .y, (P) € {1, —1} (resp. ©,44(P)). Pour la permuta-
tion T' des deux demi-arétes d’une boucle, on a, par exemple, O¢yen(T) = ©,q4(T) = —1, puisque
Porientation d’une seule aréte (pour 'orientation paire) et d’un seul sommet (pour lorientation
impaire) est renversée. De fagon plus générale, nous démontrerons pour chaque automorphisme P
que Ogyen(P) = ©,q4(P) = sign( Py )-sign(Py ), si Py désigne la permutation induite sur ’ensemble
des sommets de G. On impose la relation (G, —org) = —(G, org), de sorte que (G,org) = 0 si et
seulement si G a un automorphisme tel que O¢pen(P) = Opgq(P) = —1, comme dans le cas des
boucles (d’ot1 C* = 0). Par conséquent, les générateurs du complexe de graphes sont (3 une multi-
plication par 1 pres) les mémes pour l'orientation paire et impaire. En fait, nous montrerons que
ces deux orientations correspondent de fagon naturelle & une orientation ordinaire de ’ensemble
H @V, que nous appelons universelle.

Cette correspondance permet également de comparer les différentielles, définies par Kontsevich
et Shoikhet [3] de la maniére suivante : Pour deyen(G) et d,44(G) on prend toujours la somme
sur tous les « gonflages» de tous les sommets de G, ol un gonflage d’un sommet veut dire que
Pensemble de ses demi-arétes est partitionné (de fagon non-ordonnée) en deux blocs (ce sont des
sommets nouveaux), qui sont reliés par une aréte nouvelle (c’est-a-dire chaque bloc nouveau obtient
une demi-aréte nouvelle, et ces deux demi-arétes nouvelles forment une aréte). Evidemment,
chaque gonflage augmente le nombre de sommets d’une unité. Soit G = (H;V,E) avec V =
{Ulvv27"'>vn}; E= {ela"'vem}; U1 = {hala"'ahwlvhyU"'ahbl}v U2 = {hazv"'7hbz}7 sy Un =

{hap,-- - ko, }; €1 = {hiy, hey}, -, €m = {hi,, bt }; et H = iy v = Wiy ex. Considérons
un gonflage de vy avec v} = {hq,,..., s, }, v{ = {hy,, ..., hs, } et avec la nouvelle aréte {h},h{}.
Pour Vorientation, Kontsevich et Shoikhet [3] définissent alors
m m
[v1,vY,v2,...,v,] - [R}, BY] H[hik, hi,] = [vi,v2,...,05] - H[hikahtk] sur Pespace pair et
k=1 k=1

n
[Ui)vilavb--- aUn]Q ’ [hll)hala"' ahwl][ Ill)hylv""hh] H[hak7‘ . )hbk]
k=2
n
= [v1,v2,...,0]Q H[hak, ..., hp,] sur Pespace impair,
k=1
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ou [ - | signifie qu’il faut supprimer tous les sommets impairs entre les crochets. Nous démontrons
le théoréme suivant (o := |O|, n := |V|).

THEOREME. - Du point de vue de l'orientation universelle, il suffit de multiplier l’orientation de
chaque graphe G par (—1)"_"/ 2 pour obtenir un isomorphisme entre l’orientation paire et impaire
qui est compatible avec les différentielles. C’est pourquoi le complexe sur l’espace pair et le complexe
sur l’espace impair sont isomorphes.

1. Introduction

The underlying vector space of the Lie algebra Hamg(/N') of Hamiltonian vector fields vanishing
at the origin on the even space is equal to @, SS9V, where V is the defining 2N-dimensional
representation of sp(2N), S2V = sp(2N), etc. It is classical (see [1] and [2]) that the cochain
complex

Cri.(Hamg(N);0) = P A®(SV)AAR(SPV)A -
d2>0,d3>0, ...

is quasi-isomorphic to its sp-invariant part [C},,(Hamg(NN); C)]*?. Let us consider A% (S2V) A
A% (S3V) A--- as a quotient space of (V®2)®4: @ (V®3)®ds @ ... If 2dy + 3dg+--- =: 2m is even,
then any perfect matching on H := {1,2,...,2m} defines a (multi)graph G = (H;V, E) with 2m
half-edges in H, m edges in F and n := dz + d3 + - - - vertices in V', d2 of which have degree 2, d3 of
which have degree 3, etc. There exists a canonical symplectic invariant in /\2 V < V92 that can
be chosen in V; ® V; for every edge {i,j} € E (i,j € H) to obtain an invariant in V®?™. By the
main theorem of invariant theory those tensors form a basis of ["®2™]%? and there are no invariants
for (2d2 + 3d3 + -+ +) odd, if 2N = dim(V) is sufficiently large. The (multi)graphs G = (H;V, E)
carry the even orientation corresponding to the exterior product over the set of vertices (in the
definition of the cochain complex) and to the exterior products over the set of half-edges of any
edge (in the definition of the canonical symplectic invariants). In fact, the consideration of those
oriented graphs modulo the action of symmetric groups provides a bijection with the elements of
the complex [C},;,(Hamo(N); C)]*P. The differentials of this complex can be easily expressed in
graph-theoretical terms (see Section 3). Therefore the cohomology of the resulting graph-complex
on the even space is equal to the cohomology of Hamiltonian vector fields vanishing at the origin
on the infinite-dimensional even space.

The underlying vector space of the Lie algebra Ham$% () of Hamiltonian vector fields vanishing
at the origin on the odd space is equal to @ -, /\d V, where V is the defining N-dimensional

representation of sp®(N) = o(N), A>V = sp°@(N), etc. The main difference from the even case
is that the canonical invariant lies in S2V < V®?2 and that the cochain complex is given by

C;Jie (Hamgdd(N); C) = @ /\gZper(/\2 V) /\super /\fftper(/\s V) /\super T
d22>0,d32>0, ...

where Agyper denotes the graded exterior product (which is anticommutative if the degrees of both
factors are even and commutative otherwise). Therefore the cohomology of Hamiltonian vector
fields vanishing at the origin on the infinite-dimensional odd space is equal to the cohomology of
the graph-complex on the odd space, which differs from the graph-complex on the even space just by
its orientation. In fact, the (multi)graphs G = (H;V, E) carry the odd orientation corresponding
to the graded exterior product over the set of vertices and to the exterior products over the set
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of half-edges of any vertex, and the differentials of the graph-complex on the odd space can be
expressed in graph-theoretical terms with the help of the odd orientation.

With respect to this situation Shoikhet suggested that “you obtain at first look a different graph-
complex, but our idea with Kontsevich was that the two cohomologies coincide - and to prove it by
something like an isomorphism of orientations. ... So, up to me, a really interesting problem in
this direction is to prove that the even and the odd graph-complezres give the same orientation.”

We solve this problem in the next two sections using still another orientation, which we call
universal and which is more classical from the point of view of algebraic topology.

2. The generators of the graph complexes on the even space and on the odd space

A (multi)graph G = (H;V, E) is a set of half-edges H consisting of 2m elements, together with
two partitions of this set into disjoint unions of subsets. The n blocks of the first partition v € V
are called vertices whereas the m blocks of the second partition e € E are two-element subsets
of H called edges. The degree of a vertex v € V is the number of its half-edges and v is called even
(resp. odd) iff its degree is even (resp. odd). Let [ - | be an alternating (multilinear) form on (the real
space generated by) the disjoint union of all half-edges hq, ha, . .., hop, and all vertices vy, v, . .., Up.
The form [ - ] is uniquely defined by determining the value [hi,ha, ..., hom;v1,v2,...,0,] =
[v1,V2y .., Un; Ry, hoy ... hom] € {1,—1}. A (multi)graph with such a form will be called uni-
versally oriented. In order to determine [hq, hs, ..., hom;v1,s,...,V,] we can write the elements
hi,ha, ..., hom;v1,03,...,0, in different orders, all of which will start with the half-edges.

One natural order makes use of the block structure determined on the set of half-edges H by the

set of edges E, i.e. we consider [h;,, hiy; iy, eyi oo 5 Rin s By Vs Vja s - - -5 05, ], Where {hi,, he, },
{hiy, hty}, ..., {hi,,,he, } are the m edges of the graph G. Permuting whole edges does not
change the value of [h,, h¢,; hiy, Rty -5 Ry, Bty 3050, Vs s - - -, 05, ] Whereas permuting two half-

edges within an edge does change this value. Therefore, orienting a graph universally is canonically
the same as orienting the set V' of vertices and orienting, for every edge e € E, the set of half-egdes
of e. This corresponds to the orientation in the case of the graph-complex on the even space (see
2], 3], 4]).

Another natural order makes use of the block structure determined on the set of half-edges H
by the set Q (|Q| = ¢) of even vertices and by the set O (|O| = o) of odd vertices. In other words,
we consider

(¥) w = [hay,- s hegsee s hag, oy hpgs Reys oo Rays e heyy oo Rdy Vs oo VL Vgr s -5 Vg, ]

where {hg,,.--,he, }, -y {Pay,---,he,} as well as vy, ,...,v,, are the ¢ even vertices of G and
where vy, = {hey,---,ha}, ---5 v5, = {he,,---,hq,} are its o odd vertices. Permuting whole
even vertices (i.e. their sets of half-edges) does not change the value of w. But permuting whole
odd vertices (i.e. their sets of half-edges) does not change w either, because in that case the

vertices vy, ,...,vs, have to be permuted in the same way by our convention. On the other hand,
permutations within whole vertices (i.e. within their sets of half-edges) as well as permutations of
Q = {vg,,.--,vg,} do change w. Therefore, orienting a graph universally is equivalent to orienting

the set @ of even vertices and for every vertex v € V orienting the set of half-egdes of v. This
corresponds to the orientation in the case of the graph-complex on the odd space (see [3]).

An qutomorphism P of the graph G is an arbitrary permutation Py of the set H which preserves
the structures of V and E. In particular, it induces permutations Pg of @}, Po of O and Py of the
set V of vertices. The automorphism P acts on the even (resp. odd) orientation by a multiplication
by

Ocven(P) = sign(Py) - [[ er(e), ©oaa(P) = sign(Pq) - [] ep(v), respectively,
ecE veEV
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where ep(e) equals 1 (resp. —1) if and only if P is sign-preserving (resp. sign-reversing) on (the
set of half-edges of) e, and where ep(v) equals 1 (resp. —1) if and only if P is sign-preserving
(resp. sign-reversing) on (the set of half-edges of) v. Finally, P acts on the universal orientation by
a multiplication by sign(Py) - sign(Py ). Now our established correspondence between those three
orientations implies:

®even(P) = ®odd(P) = Sign(PH) ’ Sign(PV)'

The n-dimensional generators of the different graph-complexes are always equivalence classes of
pairs (G,org), where G is a graph with n vertices (whose degrees are all greater than one), and
where org is one of our orientations. One imposes the relation (G, —org) = —(G,org), so that
(G,org) = 0 if and only if G has an automorphism whose sign is —1. We have established the
following theorem.

THEOREM 1. - There is a canonical correspondence between the generators of the graph-complex
on the even space, the generators of the graph-complex on the odd space and the generators of the
graph-complex using the universal orientation. |[]

3. The differentials of the graph complexes on the even space and on the odd space

In order to get an isomorphism of complexes we have to verify whether our canonical correspon-
dences between the generators are compatible with the differentials. Let us first define a differential
for the universal orientation. It is essentially given by the dual of the operation of contracting each
edge. More precisely, some vertex v, € V has to be split up into two vertices v} and v/, i.e. the set
of its half-edges has to be partitioned. Moreover, a new edge {h/, h”} will be introduced, where
k! € vl and h! € v!. Finally, the orientation can be defined by

1o, 1o
[hlah2; s ah2’mahsahsavla1}2a"' yVUs—1,VUg, Vs, Us+1,--- avn]

— s—1 .
= (—1) [hl,hg, e ,th,vl,vz, ey VUg—1,VUs,Vs41y--- ,’Un].

It is evident that this definition is well defined and leads in fact to a differential § (for the differential,
the sum over all splittings is taken; if we split twice in the same way but in a different order, then
the corresponding terms cancel, i.e. §2 = 0).

The expression of the definition in terms of the block structure determined by the set of edges
of the graph G is immediate. It leads precisely to the definition of [3] (and [2]) in the case of the
graph-complex on the even space (corresponding to the cochain complex C7,, (Hamy; C)).

In order to find the expression for the definition in terms of the block structure determined by the
set of vertices of G, it is sufficient to consider what happens to w (see equation (*) in the preceding
section) if we partition vy, or vy, (these vertices are both on odd places because the number o of
odd vertices of G is even). First suppose that vy, = {h¢,,...,hay, Ry, ---, g, } and that the half-
edges of vy, are partitioned into the blocks v}l = {h’f1 yheyy -y hy, } and v}’l = {h’]i1 NN P
where {h’ ,h% } is the new edge. If [0} | is odd and [v}, | is even, then, according to our universal
orientation, w is transformed into

. . . h! n. . . . . .
[Rays-- s Bogee 5 Rags oy g B s Bh s Beys oy B By ooy Batys By ooy By o gy By

[ ", .
Vi VF 3V sy 5 Vf5 Vgys e e e Vgl =

. . . II . I . . . .
(Pars---shbys---3hags s Pogs B s hyys ooy hays Ry s Beys ooy Ry heys oo hays oo heyy -y Ry

/ oon
vfl,vfz,...,vfa,vfl,vgl,...,vgq] < (=1).
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If |v% | is even and [v}, | is odd, we get
(hays---sPoyse shags- -y hpys 'fl,hcl,...,hxl;h'f'l,hyl,...,hdl;hCZ,...,hdz;...;hco,...,hdo;

v}'l,vh,...,vfo;v}l,vgl,...,vgq] - (=1).
Now suppose that vy, = {hq,,...,ha,,hy,,---,hs,} and that the half-edges of v,, are partitioned
into the blocks vy, = {hy,,ha,,---,he,} and vy = {hy ,hy,,..., hp, }. If Jvg, | and |v] | are odd,
then

. . B! ", . . . . . . .
[Rags -y Boys e bl B shasyee o b ihy oo B3 hags oy By hers ooy Bgs e ey -+ hay;

91’ "g1?

o " .
VfyyenesVfy3VgysUgys Vgas - -+ VUgg] =

(hays---sPeyseesha, qseeesho, 3Ra,yseees Py a5 s Rags - Ry

/ L . .. .
hgishas- s ha,shg sy, sy ey hays o5 heys oy hays
/ " i

vgl,vgl,vfl,...,vfo,vgz,...,vgq].

Finally, if |v;, | and |vy | are even, we get

. N A . . . . . .
[Pays s s h s hays -y ha By by s B Ragy oy hogiheys s hays -3 Reys - - - By

g1’'"a
L " _
VfyyrVf,5Vgys Ugys Vgas - -+ Vgg] - (—1).

If there were no factors —1, the preceding relations would be precisely those used by Kontsevich and
Shoikhet [3] for defining their differential of the graph-complex on the odd space (corresponding to
the cochain complex Cf, (Ham$?; C)). In order to get rid of those factors —1, however, it suffices
to use the isomorphism which multiplies every graph G (i.e. its orientation) by (—1)"~°/2, if G
has n vertices, o of which are odd. In fact, the multiplication by (—1)" provides a minus for every
differential, whereas the multiplication by (—1)°/2 (note that o is always even) kills this minus if
two new odd vertices are created. Therefore we have proved the following theorem.

THEOREM 2. - The cohomological graph-complex on the even space, the cohomological graph-
complex on the odd space and the universally oriented cohomological graph-complezx are isomorphic.
In particular, their cohomologies coincide. |[]

By the classical arguments reproduced in the introduction this implies our final corollary, a
surprising duality relation which (according to Feigin) seems to be difficult to derive by different
means.

COROLLARY. - The cohomologies of the Lie algebras Hamy and Hamgdd of Hamiltonian vector

fields vanishing at the origin on the infinite-dimensional even and odd spaces coincide. []
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