Introduction à l'analyse numérique, TD1. Autour du point fixe.

1 Attraction – répulsion – super-attraction.

Soient $F: I \to \mathbf{R}$ de classe \mathcal{C}^1 sur un intervalle ouvert I, et $a \in I$ un point fixe de F.

- 1. On suppose |F'(a)| < 1. Montrer qu'il existe un intervalle fermé J de centre a, stable par F, et étudier la suite récurrente : $x_{n+1} = F(x_n), x_0 \in J$.
- 2. Sous les conditions de 1., on suppose de plus que F' ne s'annule pas sur J. Montrer que si $x_0 \neq a$ on a $x_n \neq a$ pour tout n et $x_{n+1} a \sim F'(a)(x_n a)$ pour $n \to \infty$ (convergence d'ordre un).
- 3. Sous les conditions de 1., on suppose maintenant que F est de classe C^2 , que F'(a) = 0 et que F'' ne s'annule pas sur J. Montrer que si $x_0 \in J$ et $x_0 \neq a$ on a $x_n \neq a$ pour tout n et $x_{n+1} a \sim \frac{F''(a)}{2}(x_n a)^2$ pour $n \to \infty$ (convergence d'ordre deux).
- 4. On suppose enfin |F'(a)| > 1. Montrer qu'il existe un intervalle fermé J de centre a tel que pour $x_0 \in J, x_0 \neq a$, la suite récurrente x_n sort de J.

2 Newton et la super-attraction.

Soit $f:[c,d] \to \mathbf{R}$ une fonction de classe C^2 . On suppose c < d, f(c) < 0 < f(d) et f'(x) > 0 pour tout $x \in [c,d]$. On considère la suite récurrente $x_{n+1} = F(x_n), n \ge 0$ avec $F(x) = x - \frac{f(x)}{f'(x)}$.

- 1. Montrer que f a un zéro unique a. Montrer que pour tout $x \in [c,d]$, il existe z entre a et x tel que $F(x) a = \frac{f''(z)}{2f'(x)}(x-a)^2$.
- 2. Déduire de 1. qu'il existe C > 0 tel que $|F(x) a| \le C|x a|^2$ pour tout $x \in [c, d]$ et qu'il existe $\alpha > 0$ tel que l'intervalle $I = [a \alpha, a + \alpha]$ soit stable par F. Montrer enfin que, pour chaque $x_0 \in I$, la suite x_n a une convergence d'ordre 2 vers a.
- 3. On suppose de plus f''(x) > 0 pour tout $x \in [c, d]$. Montrer que le résultat de 2. est valable avec l'intervalle I = [a, d], que la suite x_n est alors strictement décroissante ou constante, et qu'on a $0 \le x_{n+1} a \le C(x_n a)^2$ et $x_{n+1} a \sim \frac{f''(a)}{2f'(a)}(x_n a)^2$ quand $n \to \infty$; pour cet équivalent on suppose $x_0 > a$.
- 4. Exemple: on fixe y > 0 et on prend $f(x) = x^2 y$. Résoudre alors la relation de récurrence et donner une estimation de l'erreur $|x_n a|$ avec $a = \sqrt{y}$. Astuce: On pourra montrer que les nombres $(x_n a)/(x_n + a)$ vérifient une relation de récurrence simple.

3 Méthode de la sécante.

La méthode de la sécante est une variante de la méthode de Newton dans laquelle la dérivée $f'(x_n)$ est remplacée par le taux d'accroissement : $\frac{f(x_n)-f(x_{n-1})}{x_n-x_{n-1}}$. Ceci permet d'éviter d'avoir à évaluer la dérivée.

Soit $f:[c,d]\to \mathbf{R}$ une fonction de classe \mathcal{C}^2 . On suppose c< d, et a un zéro de f tel que $f'(a)\neq 0$. On considère la suite récurrente $x_{n+1}=F(x_n,x_{n-1}), n>0$ avec $F(x,y)=x-\frac{f(x)(x-y)}{f(x)-f(y)}$.

- 1. Montrer qu'il existe un voisinage V de a tel que pour $(x_0, x_1) \in V^2$ la suite construite par la formule précédente soit correctement définie. Etudier alors cette suite.
- 2. On suppose de plus que $f''(a) \neq 0$ et on pose $e_n = x_n a$. Quitte à restreindre V, montrer qu'il existe $C > 0, q \in]0,1[$ et $n_0 \in \mathbb{N}$ tels que

$$\forall n \in \mathbf{N}, n \geq n_0 \Rightarrow |e_n| \leq Cq^{\alpha^n}$$

avec $\alpha = \frac{1+\sqrt{5}}{2}$.

4 Point fixe et équations différentielles : théorème de Cauchy-Lipschitz.

Soit I un intervalle de \mathbf{R} et $f: I \times \mathbf{R}^m \to \mathbf{R}^m$ une application continue supposée globalement lipschitzienne en y au sens suivant : pour tout intervalle compact $K \subset I$ il existe k > 0 tel que pour tout $t \in K, y, z \in \mathbf{R}^m$ on a $||f(t,y) - f(t,z)|| \le k||y - z||$ pour une norme quelconque sur \mathbf{R}^m .

Le but de l'exercice est de montrer que le système différentiel $y' = f(t, y), y(t_0) = x$ avec $t_0 \in I$ et $x \in \mathbf{R}^m$ donnés, admet alors une solution unique définie sur I tout entier. On suppose dans les questions 1. à 4. que I est compact et on note $E = \mathcal{C}(I, \mathbf{R}^m)$ muni de la norme infinie. Pour $y \in E$ et $t \in I$ on définit $F(y)(t) = x + \int_{t_0}^t f(s, y(s)) ds$.

- 1. Montrer que le système différentiel équivaut à $y \in E$ et F(y) = y.
- 2. Soit l la longueur de I. Montrer que F est lipschitzienne sur E de rapport kl. Peut-on en déduire le résultat souhaité?
- 3. Montrer que pour tout entier $p \geq 1$ l'application itérée F^p est lipchitzienne de rapport $(kl)^p/(p!)$.
- 4. Conclure lorsque I est compact.
- 5. Et endre le résultat à un intervalle ${\cal I}$ que lconque.
- 6. Exemples : appliquer ce qui précède au système linéaire à coefficients constants y' = Ay, y(0) = x et à l'équation du pendule : $u'' = -\sin u$, u(0) = a, u'(0) = b.
- 7. Continuité par rapport à la condition initiale.
 - a. Soient v, α, β trois fonctions réelles continues sur un intervalle [a, b] de \mathbf{R} , avec a < b et $\beta \ge 0$ sur [a, b]. On suppose que pour tout $t \in [a, b]$,

$$v(t) \le \alpha(t) + \int_a^t \beta(s)v(s)ds.$$

Montrer que pour tout $t \in [a, b]$,

$$v(t) \le \alpha(t) + \int_a^t \alpha(s)\beta(s)exp\left(\int_s^t \beta(u)du\right)ds.$$

- b. Soit $t_0 \in I$. On définit l'application $\varphi:(t,a) \to \varphi(t,a)$ telle que $\forall (t,a), \frac{\partial \varphi(t,a)}{\partial t} = f(t,\varphi(t,a)), \varphi(t_0,a) = a$. Montrer que φ est K(t)-lipschitzienne par rapport à a.
- c. En déduire que φ est continue.

Remarque: Lors de la recherche de solutions approchées pour un système différentiel, il est souvent nécessaire d'approcher également la condition initiale. La continuité de la solution par rapport à la donnée initiale permet de justifier que l'on fasse cette approximation.

8. Autre exemple : Peut-on appliquer le théorème dans le cas suivant?

$$\begin{array}{cccc} f & : & \mathbf{R} \times \mathbf{R} & \to & \mathbf{R} \\ & (t,y) & \to & y^2. \end{array}$$

Montrer que le système $y' = y^2$, y(0) = 1 admet une unique solution et la déterminer. Que dire du temps maximal d'existence?

Remarque: On a le théorème plus général suivant : Soient U un ouvert de $\mathbf{R} \times \mathbf{R}^m$ et $f: U \to \mathbf{R}^m$ de classe C^1 . Alors, pour toute donnée initiale $(t_0, x) \in U$, le système différentiel $y' = f(t, y), y(t_0) = x$ admet une solution unique.