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Abstract

We give a necessary and sufficient condition on the cost function so that the map
solution of Monge’s optimal transportation problem is continuous for arbitrary smooth
positive data. This condition was first introduced by Ma, Trudinger and Wang [22, 29]
for a priori estimates of the corresponding Monge-Ampère equation. It is expressed by
a so-called cost-sectional curvature being non-negative. We show that when the cost
function is the squared distance of a Riemannian manifold, the cost-sectional curvature
yields the sectional curvature. As a consequence, if the manifold does not have non-
negative sectional curvature everywhere, the optimal transport map cannot be continuous
for arbitrary smooth positive data. The non-negativity of the cost-sectional curvature
is shown to be equivalent to the connectedness of the contact set between any cost-
convex function (the proper generalization of a convex function) and any of its supporting
functions. When the cost-sectional curvature is uniformly positive, we obtain that optimal
maps are continuous or Hölder continuous under quite weak assumptions on the data,
compared to what is needed in the Euclidean case. This case includes the quadratic cost
on the round sphere.
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1 Introduction

Given A,B two topological spaces, a cost function c : A × B → R, and µ0, µ1 two probability
measures respectively on A and B, Monge’s problem of optimal transportation consists in
finding among all measurable maps T : A → B that push forward µ0 onto µ1 (hereafter
T#µ0 = µ1) in the sense that

∀E ⊂ B Borel , µ1(E) = µ0(T−1(E)),(1)
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a map that realizes

Argmin
{∫

A

c(x, T (x)) dµ0(x), T#µ0 = µ1

}
.(2)

Optimal transportation has undergone a rapid and important development since the pioneering
work of Brenier, who discovered that when A = B = Rn and the cost is the distance squared,
optimal maps for the problem (2) are gradients of convex functions [1] (see also [20] where the
connection with gradients was first proved). Following this result and its subsequent extensions,
the theory of optimal transportation has flourished, with generalizations to other cost functions
[8, 16], more general spaces such as Riemannian manifolds [23], applications in many other areas
of mathematics such as geometric analysis, functional inequalities, fluid mechanics, dynamical
systems, and other more concrete applications such as irrigation, cosmology.

When A,B are domains of the Euclidean space Rn, or of a Riemannian manifold, a common
feature to all optimal transportation problems is that optimal maps derive from a (cost-convex)
potential, which, assuming some smoothness, is in turn solution to a fully non-linear elliptic
PDE: the Monge-Ampère equation. In all cases, the Monge-Ampère equation arising from an
optimal transportation problem reads in local coordinates

det(D2φ−A(x,∇φ)) = f(x,∇φ),(3)

where (x, p)→ A(x, p) is a symmetric matrix valued function, that depends on the cost function
c(x, y) through the formula

A(x, p) = −D2
xxc(x, y) for y such that −∇xc(x, y) = p.(4)

That there is indeed a unique y such that −∇xc(x, y) = p will be guaranteed by condition A1
given hereafter. The optimal map will then be

x→ y : −∇xc(x, y) = ∇φ(x).

In the case A = 0, equation (3) was well known and studied before optimal transportation
since it appears in Minkowsky’s problem: find a convex hypersurface with prescribed Gauss
curvature. In the case of optimal transportation, the boundary condition consists in prescribing
that the image of the optimal map equals a certain domain. It is known as the second boundary
value problem.

Until recently, except in the particular case of the so-called reflector antenna, treated by
Wang [37] (see also [11] for C1 regularity), the regularity of optimal maps was only known in
the case where the cost function is the (Euclidean) squared distance c(x, y) = |x − y|2, which
is the cost considered by Brenier in [1], for which the matrix A in (3) is the identity (which
is trivially equivalent to the case A = 0). Those results have involved several authors, among
which Caffarelli, Urbas , and Delanoë. An important step was made recently by Ma, Trudinger
and Wang [22], and Trudinger and Wang [29], who introduced a condition (named A3 and A3w
in their papers) on the cost function under which they could show existence of smooth solutions
to (3). Let us give right away this condition that will play a central role in the present paper.
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Let A = Ω, B = Ω′ be bounded domains of Rn on which the initial and final measures will be
supported. Assume that c belongs to C4(Ω × Ω′). For (x, y) ∈ (Ω × Ω′), (ξ, ν) ∈ Rn × Rn, we
define

Sc(x, y)(ξ, ν) := D2
pkpl
Aij ξiξj νkνl (x, p), p = −∇xc(x, y).(5)

Whenever ξ, ν are orthogonal unit vectors, we will say that Sc(x, y)(ξ, ν) defines the cost-
sectional curvature from x to y in the directions (ξ, ν). As we will see in Definition 2.13, this
definition is intrinsic. Note that this map is in general not symmetric, and that it depends
on two points x and y. The reason why we use the word sectional curvature will be clear in
a few lines. We will say that the cost function c has non-negative cost-sectional curvature on
(Ω× Ω′), if

Sc(x, y)(ξ, ν) ≥ 0 ∀(x, y) ∈ (Ω× Ω′),∀(ξ, ν) ∈ Rn × Rn, ξ ⊥ ν.(6)

A cost function satisfies condition Aw on (Ω×Ω′) if and only if it has non-negative cost-sectional
curvature on (Ω× Ω′), i.e. if it satisfies (6).

Under condition Aw and natural requirements on the domains Ω,Ω′, Trudinger and Wang
[29] showed that the solution to (3) is globally smooth for smooth positive measures µ0, µ1. They
showed that Aw is satisfied by a large class of cost functions, that we will give as examples
later on. Note that the quadratic cost satisfies assumption Aw. This result is achieved by
the so-called continuity method, for which a key ingredient is to obtain a priori estimates on
the second derivatives of the solution. At this stage, condition Aw was used in a crucial way.
However, even if it was known that not all cost functions can lead to smooth optimal maps,
it was unclear whether the condition Aw was necessary, or just a technical condition for the
a-priori estimates to go through.

In this paper we show that the condition Aw is indeed the necessary and sufficient condition
for regularity: one can not expect regularity without this condition, and more precisely, if
Sc(x, y)(ξ, ν) < 0 for (x, y) ∈ (Ω × Ω′), ξ ⊥ ν ∈ Rn, one can immediately build a pair of C∞

strictly positive measures, supported on sets that satisfy the usual smoothness and convexity
assumptions, so that the optimal potential is not even C1, and the optimal map is therefore
discontinuous. This result is obtained by analyzing the geometric nature of condition (6). Let
us first recall that the solution φ of the Monge-Ampère equation is a priori known to be cost-
convex (in short c-convex), meaning that at each point x ∈ Ω, there exist y ∈ Ω′ and a value
φc(y) such that

−φc(y)− c(x, y) = φ(x),

−φc(y)− c(x′, y) ≤ φ(x′), ∀x′ ∈ Ω.

The function −φc(y) − c(x, y) is called a supporting function, and the function y → φc(y) is
called the cost-transform (in short the c-transform) of φ, also defined by

φc(y) = sup
x∈Ω
{−c(x, y)− φ(x)}.
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(These notions will be recalled in greater details hereafter.) We prove that the condition Aw
can be reformulated as a property of cost-convex functions, which we call connectedness of the
contact set:

For all x ∈ Ω, the contact set Gφ(x) := {y : φc(y) = −φ(x)− c(x, y)}(7)

is connected.

Assuming a natural condition on Ω′ (namely its c-convexity, see Definition 2.9) this condition
involves only the cost function since it must hold for any φc defined through a c-transform.

A case of special interest for applications is the generalization of Brenier’s cost 1
2
|x− y|2 to

Riemannian manifolds, namely c(x, y) = 1
2
d2(x, y). Existence and uniqueness of optimal maps

in that case was established by McCann [23], and further examined by several authors, with
many interesting applications in geometric and functional analysis (for example [12, 25]). The
optimal map takes the form x→ expx(∇φ(x)) for φ a c-convex potential and is called a gradient
map. Then, a natural question is the interpretation of condition Aw and of the cost-sectional
curvature in this context. We show that for some universal constant K,

Cost-sectional curvature from x to x = K · Riemannian sectional curvature at x.

(We mean there that the equality holds for every 2-plane and actually K = 2/3.) As a di-
rect consequence of the previous result, the optimal (gradient) map will not be continuous for
arbitrary smooth positive data if the manifold does not have non-negative sectional curvature
everywhere. Although the techniques are totally different, it is interesting to notice that in
recent works, Lott & Villani [34], and Sturm [26] have recovered the Ricci curvature through a
property of optimal transport maps (namely through the displacement convexity of some func-
tionals). Here, we somehow recover the sectional curvature through the continuity of optimal
maps.

We next investigate the continuity of optimal maps under the stronger condition of uniformly
positive cost-sectional curvature, or condition As:

∃C0 > 0 : Sc(x, y, ξ, ν) ≥ C0|ξ|2|ν|2, ∀(x, y) ∈ (Ω× Ω′), (ξ, ν) ∈ Rn × Rn, ξ ⊥ ν.(8)

We obtain that the (weak) solution of (3) is C1 or C1,α under quite mild assumptions on the
measures. Namely, for Br(x) the ball of radius r and center x, µ1 being bounded away from 0, we
need µ0(Br(x)) = o(rn−1) to show that the solution of (3) is C1 and µ0(Br(x)) = O(rn−p), p < 1
to show that it is C1,α, for α = α(n, p) ∈ (0, 1). Those conditions allow µ0, µ1 to be singular
with respect to the Lebesgue measure and µ0 to vanish.

This result can be seen as analogous to Caffarelli’s C1,α estimate [5] for a large class of cost
functions and related Monge-Ampère equations. It also shows that the partial regularity results
are better under As than under Aw, since Caffarelli’s C1,α regularity result required µ0, µ1 to
have densities bounded away from 0 and infinity, and it is known to be close to optimal [35].

In a forthcoming work [21] we shall prove that the quadratic cost on the sphere has uniformly
positive cost-sectional curvature, i.e. satisfies As. We obtain therefore regularity of optimal
(gradient) maps under adequate conditions.
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The rest of the paper is organized as follows: in section 2 we gather all definitions and
results that we will need throughout the paper. In section 3 we state our results. Then each
following section is devoted to the proof of a theorem. The reader knowledgeable about the
subject might skip directly to section 3.

2 Preliminaries

2.1 Notation

Hereafter dVol denotes the Lebesgue measure of Rn and Br(x) denotes a ball of radius r centered
at x. For δ > 0, we set classically Ωδ = {x ∈ Ω, d(x, ∂Ω) > δ)}. When we say that a function
(resp. a measure) is smooth without stating the degree of smoothness, we assume that it is
C∞-smooth (resp. has a C∞-smooth density with respect to the Lebesgue measure).

2.2 Kantorovitch duality and c-convex potentials

In this section, we recall how to obtain the optimal map from a c-convex potential in the
general case. This allows us to introduce definitions that we will be using throughout the
paper. References concerning the existence of optimal map by Monge-Kantorovitch duality are
[1] for the cost |x − y|2, [16] and [8] for general costs, [23] for the Riemannian case, otherwise
the book [32] offers a rather complete reference on the topic.

Monge’s problem (2) is first relaxed to become a problem of linear programming; one seeks
now

I = inf
{∫

Rn×Rn
c(x, y)dπ(x, y); π ∈ Π(µ0, µ1)

}
(9)

where Π(µ0, µ1) is the set of positive measures on Rn × Rn whose marginals are respectively
µ0 and µ1. Note that the (Kantorovitch) infimum (9) is smaller than the (Monge) infimum
of the cost (2), since whenever a map T pushes forward µ0 onto µ1, the measure πT (x) :=
µ0(x)⊗ δT (x)(y) belongs to Π(µ1, µ1).

Then, the dual Monge-Kantorovitch problem is to find an optimal pair of potentials (φ, ψ)
that realizes

J = sup
{
−
∫
φ(x)dµ0(x)−

∫
ψ(y)dµ1(y);φ(x) + ψ(y) ≥ −c(x, y)

}
.(10)

The constraint on φ, ψ leads to the definition of c(c*)-transforms:

Definition 2.1 Given a lower semi-continuous function φ : Ω ⊂ Rn → R ∪ {+∞}, we define
its c-transform at y ∈ Ω′ by

φc(y) = sup
x∈Ω
{−c(x, y)− φ(x)}.(11)
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Respectively, for ψ : Ω′ ⊂ Rn → R also lower semi-continuous, define its c*-transform at x ∈ Ω
by

ψc∗(x) = sup
y∈Ω′
{−c(x, y)− ψ(y)}.(12)

A function is said cost-convex, or, in short, c-convex, if it is the c*-transform of another
function ψ : Ω′ → R, i.e. for x ∈ Ω, φ(x) = supy∈Ω′{−c(x, y) − ψ(y)}, for some lower
semi-continuous ψ : Ω′ → R. Moreover in this case φcc∗ := (φc)c∗ = φ on Ω (see [32]).

Our first assumption on c will be:

A0 The cost-function c belongs to C4(Ω̄× Ω̄′).

We will also always assume that Ω,Ω′ are bounded. These assumptions are not the weakest
possible for the existence/uniqueness theory.

Proposition 2.2 If c is Lipschitz and semi-concave with respect to x, locally uniformly with
respect to y, and if Ω′ is bounded, φc will be locally semi-convex and Lipschitz. In particular,
this holds under assumption A0. The symmetric statement holds for ψc∗.

By Fenchel-Rockafellar’s duality theorem, we have I = J . One can then easily show that the
supremum (10) and the infimum (9) are achieved. Since the condition φ(x) + ψ(y) ≥ −c(x, y)
implies ψ ≥ φc, we can assume that for the optimal pair in J we have ψ = φc and φ = φcc∗.
Writing the equality of the integrals in (9, 10) for any optimal γ and any optimal pair (φ, φc)

we obtain that γ is supported in
{
φ(x) + φc(y) + c(x, y) = 0

}
. This leads us to the following

definition:

Definition 2.3 (Gradient mapping) Let φ be a c-convex function. We define the set-valued
mapping Gφ by

Gφ(x) =
{
y ∈ Ω′, φ(x) + φc(y) = −c(x, y)

}
.

For all x ∈ Ω, Gφ(x) is the contact set between φc and its supporting function −φ(x)− c(x, ·).

Noticing that for all y ∈ Gφ(x), φ(·) + c(·, y) has a global minimum at x, we introduce / recall
the following definitions:

Definition 2.4 (subdifferential) For φ a semi-convex function, the subdifferential of φ at x,
that we denote ∂φ(x), is the set

∂φ(x) =
{
p ∈ Rn, φ(y) ≥ φ(x) + p · (y − x) + o(|x− y|)

}
.

The subdifferential is always a convex set, and is always non empty for a semi-convex function.
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Definition 2.5 (c-subdifferential) If φ is c-convex, the c-sub-differential of φ at x, that we
denote ∂cφ(x), is the set

∂cφ(x) =
{
−∇xc(x, y), y ∈ Gφ(x)

}
.

The inclusion ∅ 6= ∂cφ(x) ⊂ ∂φ(x) always holds.

We introduce now two assumptions on the cost-function, which are the usual assumptions made
in order to obtain an optimal map. For x = (x1, ..., xn), y = (y1...yn), let us first introduce the
notation

D2
xyc(x, y) =

[
∂xi∂yjc(x, y)

]
1≤i,j≤n .

A1 For all x ∈ Ω̄, the mapping y → −∇xc(x, y) is injective on Ω̄′.

A2 The cost function c satisfies detD2
xyc 6= 0 for all (x, y) ∈ Ω̄× Ω̄′.

This leads us to the definition of the c-exponential map:

Definition 2.6 Under assumption A1, for x ∈ Ω we define the c-exponential map at x, which
we denote by Tx, such that

∀(x, y) ∈ (Ω× Ω′),Tx(−∇xc(x, y)) = y.

Moreover, under assumptions A0, A1, A2, and assuming that Ω′ is connected, there exists a
constant CT > 0 that depends on c,Ω,Ω′, such that for all x ∈ Ω, for all p1, p2 ∈ −∇xc(x,Ω

′),

1

CT

≤ |Tx(p2)− Tx(p1)|
|p2 − p1|

≤ CT.(13)

Remark 1. The definition c-exponential map is again motivated by the case cost=distance
squared, where the c-exponential map is the exponential map. Moreover, notice the important
identity

[D2
xyc]

−1 = −DpTx

∣∣
x,p=−∇xc(x,y)

.(14)

Remark 2. Anticipating the extension to Riemannian manifolds, we mention at this point
that this definition is intrinsic, i.e. it defines in a coordinate independent way the map T as a
map going from M×TM to M . In this setting, the gradients should be computed with respect
to the metric g of the manifold.

Under assumptions A1, A2, Gφ is single valued outside of a set of Hausdorff dimension
less than or equal to n− 1, hence, if µ0 does not give mass to sets of Hausdorff dimension less
than n− 1, Gφ will be the optimal map for Monge’s problem while the optimal measure in (9)
will be π = µ0 ⊗ δGφ(x). So, after having relaxed the constraint that the optimal π should be
supported on the graph of a map, one still obtains a minimizer that satisfy this constraint.
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Notice that Monge’s historical cost was equal to the distance itself: c(x, y) = |x−y|. One sees
immediately that for this cost function, there is not a unique y such that −∇xc(x, y) = ∇φ(x),
hence assumption A1 is not satisfied and, indeed, there is in general no uniqueness of the
optimal map.

We now state a general existence theorem, under assumptions that are clearly not minimal,
but that will suffice for the scope of this paper, where we deal with regularity issues.

Theorem 2.7 Let Ω,Ω′ be two bounded domains of Rn. Let c ∈ C4(Ω̄×Ω̄′) satisfy assumptions
A0-A2. Let µ0, µ1 be two probability measures on Ω and Ω′. Assume that µ0 does not give
mass to sets of Hausdorff dimension less than or equal to n − 1. Then there exists a dµ0 a.e.
unique minimizer T of Monge’s optimal transportation problem (2). Moreover, there exists φ
c-convex on Ω such that T = Gφ (see 2.3). Finally, if ψ is c-convex and satisfies Gψ#µ0 = µ1,
then ∇ψ = ∇φ dµ0 a.e.

2.3 Notion of c-convexity for sets

Following [22, 29], we introduce here the notions that extend naturally the notions of convexity
/ strict convexity for a set.

Definition 2.8 (c-segment) Let p → Tx(p) be the mapping defined by assumption A1. The
point x being held fixed, a c-segment with respect to x is the image by Tx of a segment of Rn.

If for v0, v1 ∈ Rn we have Tx(vi) = yi, i = 0, 1, the c-segment with respect to x joining y0 to
y1 will be {yθ, θ ∈ [0, 1]} where yθ = Tx(θv1 + (1− θ)v0). It will be denoted [y0, y1]x.

Definition 2.9 (c-convex sets) Let Ω,Ω′ ⊂ Rn. We say that Ω′ is c-convex with respect to
Ω if for all y0, y1 ∈ Ω′, x ∈ Ω, the c-segment [y0, y1]x is contained in Ω′.

Remark. Note that this can be said in the following way: for all x ∈ Ω, the set −∇xc(x,Ω
′)

is convex.

Definition 2.10 (uniform strict c-convexity of sets) For Ω,Ω′ two subsets of Rn, we say
that Ω′ is uniformly strictly c-convex with respect to Ω if the sets {−∇xc(x,Ω

′)}x∈Ω are uniformly
strictly convex, uniformly with respect to x. We say that Ω is uniformly strictly c*-convex with
respect to Ω′ if the dual assertion holds true.

Remark 1. In local coordinates, Ω is uniformly strictly c*-convex with respect to Ω′ reads

[Diγj(x)−DpkAij(x, p)γk]τiτj ≥ ε0 > 0,(15)

for some ε0 > 0, for all x ∈ ∂Ω, p ∈ −∇xc(x,Ω
′), unit tangent vector τ and outer unit normal

γ.
Remark 2. When A does not depend on p, one recovers the usual convexity.
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Remarks on the sub-differential and c-sub-differential The question is to know if we
have for all φ c-convex on Ω, for all x ∈ Ω, ∂φ(x) = ∂cφ(x). Clearly, when φ is c-convex and
differentiable at x,the equality holds. For p an extremal point of ∂φ(x), there will be a sequence
xn converging to x such that φ is differentiable at xn and limn∇φ(xn) = p. Hence, extremal
points of ∂φ(x) belong to ∂cφ(x). Then it is not hard to show the

Proposition 2.11 Assume that Ω′ is c-convex with respect to Ω. The following assertions are
equivalent:

1. For all φ c-convex on Ω, x ∈ Ω, ∂cφ(x) = ∂φ(x).

2. For all φ c-convex on Ω, x ∈ Ω, ∂cφ(x) is convex.

3. For all φ c-convex on Ω, x ∈ Ω, Gφ(x) is c-convex with respect to x.

4. For all φ c-convex on Ω, x ∈ Ω, Gφ(x) is connected.

Proof. We prove only that (4) implies (2). First, the connectedness of Gφ(x) implies the
connectedness of ∂cφ(x), since ∇xc is continuous. Then for x0 ∈ Ω, y0, y1 ∈ Ω′, assume that y0

and y1 both belong to Gφ(x0). Letting

h(x) = max{−c(x, y0) + c(x0, y0) + φ(x0),−c(x, y1) + c(x0, y1) + φ(x0)},

one has φ(x) ≥ h(x) on Ω, with equality at x = x0. Hence ∂ch(x0) ⊂ ∂cφ(x0). Since the
property (4) is satisfied, ∂ch(x0) is connected, and as it is included in ∂h(x0) which is a segment,
it is equal to the segment [−∇xc(x0, y0),−∇xc(x0, y1)]. This shows that ∂cφ(x0) is convex.

�

2.4 The Monge-Ampère equation

In all cases, for φ a C2 smooth c-convex potential such that Gφ#µ0 = µ1, the conservation of
mass is expressed in local coordinates by the following Monge-Ampère equation

det(D2
xxc(x,Gφ(x)) +D2φ) = | detD2

xyc|
ρ0(x)

ρ1(Gφ(x))
,(16)

where ρi = dµi/dVol denotes the density of µi with respect to the Lebesgue measure. (See [22]
for a derivation of this equation, or [12], [14].) Hence, the equation fits into the general form
(3).

2.5 Generalized solutions

Definition 2.12 (Generalized solutions) Let φ : Ω→ R be a c-convex function. Then

• φ is a weak Alexandrov solution to (16) if and only if

for all B ⊂ Ω, µ0(B) = µ1(Gφ(B)).(17)

This will be denoted by µ0 = G#
φ µ1.
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• φ is a weak Brenier solution to (16) if and only if

for all B′ ⊂ Ω′, µ1(B′) = µ0(G−1
φ (B′)).(18)

This is equivalent to µ1 = Gφ#µ0.

Alexandrov and Brenier solutions First notice that in the definition (18), µ1 is deduced
from µ0, while it is the contrary in (17). As we have seen, the Kantorovitch procedure (10)
yields an optimal transport map whenever µ0 does not give mass to sets of Hausdorff dimension
less than n − 1. Moreover, the map Gφ will satisfy (18) by construction, and hence will be
a weak Brenier solution to (16). Taking advantage of the c-convexity of φ one can show that
whenever µ1 is absolutely continuous with respect to the Lebesgue measure, G#

φ µ1 is countably
additive, and hence is a Radon measure (see [22, Lemma 3.4]); then a Brenier solution is an
Alexandrov solution. Note that one can consider µ0 = G#

φ dVol, this will be the Monge-Ampère
measure of φ. Most importantly, for µ0 supported in Ω, Gφ#µ0 = 1Ω′dVol does not imply that

G#
φ dVol = µ0, except if Ω′ is c-convex with respect to Ω (see [22]).

2.6 Cost-sectional curvature and conditions Aw, As

A central notion in the present paper will be the notion of cost-sectional curvature Sc(x, y).

Definition 2.13 Under assumptions A0-A1-A2, one can define on TxΩ×TxΩ the real-valued
map

Sc(x0, y0)(ξ, ν) = D4
pνpνxξxξ

[
(x, p)→ −c(x,Tx0(p))

]∣∣∣
x0,p0=−∇xc(x0,y0)

.(19)

When ξ, ν are unit orthogonal vectors, Sc(x0, y0)(ξ, ν) defines the cost-sectional curvature from
x0 to y0 in directions (ξ, ν). The definition (19) is equivalent to the following:

Sc(x0, y0)(ξ, ν) = D2
ttD

2
ss

[
(s, t)→ −c(expx0

(tξ),Tx0(p0 + sν))
]∣∣∣
t,s=0

.(20)

The fact that the definition (20) and (19) are equivalent follows from the following observation:

Proposition 2.14 The definition of Sc(x0, y0)(ξ, ν) is intrinsic, i.e. depends only on (x0, y0) ∈
Ω × Ω′ and on (ξ, ν) ∈ Tx0(Ω) × Tx0(Ω), and not on the choice of local coordinates around x0

or y0. Moreover, it is symmetric: letting c∗(y, x) = c(x, y), and T∗ be the c*-exponential map,
the identity

Sc(x0, y0)(ξ, ν) = Sc∗(y0, x0)(ν̃, ξ̃)(21)

holds with ν̃ = DpTx0(p0) · ν,and ξ̃ = [DqT
∗
y0

(q0)]−1 · ξ, with p0 as above and q0 = −∇yc(x0, y0).

Notice that whenever ξ ⊥ ν, one has ξ̃ ⊥ ν̃.
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Proof. The proof is deferred to the appendix.
Remark. The intrinsic nature of the cost-sectional curvature tensor has been observed

independently in [19].

We are now ready to introduce the conditions:

As The cost-sectional curvature is uniformly positive i.e. there exists C0 > 0 such that for
all (x, y) ∈ (Ω× Ω′), for all (ν, ξ) ∈ Rn × Rn) with ξ ⊥ ν,

Sc(x, y)(ξ, ν) ≥ C0|ξ|2|ν|2.

Aw The cost-sectional curvature is non-negative: As is satisfied with C0 = 0.

Remark on the symmetry of the conditions on c. Let c∗(y, x) := c(x, y), from
Proposition 2.14, one checks that if c satisfies Aw (resp. As) then c∗ satisfies Aw (resp. As
with a different constant). The conditions A0 and A2 are also clearly satisfied by c∗ if satisfied
by c.

2.7 The Riemannian case

The construction of optimal maps has been extended in a natural way to smooth compact
Riemannian manifolds by McCann in [23] for Lipschitz semi-concave costs. All the above
definitions can be translated unambiguously in the Riemannian setting. In particular, the
notions of c-exponential map, c-convexity are intrinsic notions (see the Remark 2 after Definition
2.6). The definition of cost-sectional curvature 2.13 extends also naturally to the Riemannian
setting. Since it has been proved in Proposition 2.14 that the value of the cost-sectional
curvature is coordinate-independent, this gives sense to conditions Aw, As on a Riemannian
manifold. However, one needs to restrict to the set of pairs (x, y) such that c is smooth in a
neighborhood of (x, y), and this becomes an issue for costs that are functions of the distance:
Indeed, on a compact manifold, the distance can not be smooth on the whole of M ×M (due
to the cut-locus). Hence the Riemannian case requires to weaken somehow assumption A0.
For x in M , we let Domx be the set of y such that c(x, y) is smooth at (x, y). As developed by
the author in [21], and with P. Delanoë in [15], but also by Y. Kim and R. McCann [19], or by
C. Villani in [33], the relevant geometric condition on M that replaces A0 is the following: for
all x ∈M , T−1

x (Domx) = −∇xc(x,Domx) is convex.
A case of interest is when c(·, ·) = 1

2
d2(·, ·) with d(·, ·) the distance function (quadratic cost).

Then, the c-exponential map is the exponential map, the map Gφ will be x→ expx(∇gφ), the
gradient ∇gφ being relative to the Riemannian metric g. (We remind that gradient mappings
were first introduced by X. Cabré [2], to generalize the Alexandrov-Bakelman-Pucci estimate
on Riemannian manifolds.) Then, for x in M , we have Domx = M \ cut-locus(x). In [21],
we address the problem of the quadratic cost on the sphere, as well as the cost c(x, y) =
− log(|x− y|), that appears in the design optimal reflector antenna. To establish our regularity
results, we need to show a-priori that T (x) remains uniformly far from the boundary of Domx.
This is precisely the object of [15].
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2.8 Previous regularity results for optimal maps

The regularity of optimal maps follows from the regularity of the c-convex potential solution of
the Monge-Ampère equation (16), the former being as smooth as the gradient of the latter. It
falls thus into the theory of viscosity solutions of fully non-linear elliptic equations [10], however,
the Monge-Ampère equation is degenerate elliptic. A very complete reference concerning the
regularity theory for the quadratic case are the lecture notes by John Urbas [31]. Two types of
regularity results are usually sought for this type of equations:

Classical regularity: show that the equation has classical C2 solutions, provided the mea-
sures are smooth enough, and assuming some boundary conditions. Due to the log-concavity
of the Monge-Ampère operator, and using classical elliptic theory (see for instance [17]), C∞

regularity of the solution of (16) follows from C2 a priori estimates.
Partial regularity: show that a weak solution of (16) is C1 or C1,α under suitable condi-

tions. We mention also that W 2,p regularity results can be obtained.

The Euclidean Monge-Ampère equation and the quadratic cost This corresponds
to the case where the cost function is the Euclidean distance squared c(x, y) = |x − y|2 (or
equivalently c(x, y) = −x·y), for which c-convexity means convexity in the usual sense, Gφ(x) =
∇φ(x), and equation (16) takes the following form

detD2φ =
ρ0(x)

ρ1(∇φ(x))
.(22)

Here again, we have ρi = dµ0/dVol, i = 0, 1. Classical regularity has been established by
Caffarelli [3, 7, 6, 9], Delanoë [13] and Urbas [30]. The optimal classical regularity result, found
in [3, 9], is that for Cα smooth positive densities, and uniformly strictly convex domains, the
solution of (22) is C2,α(Ω̄). Partial regularity results have been obtained by Caffarelli [4, 5, 7, 6],
where it is shown that for µ0, µ1 having densities bounded away from 0 and infinity, the solution
of (22) is C1,α. Thanks to counterexamples by Wang [35] those results are close to optimal.

The reflector antenna The design of reflector antennas can be formulated as a problem of
optimal transportation on the unit sphere with cost equal to − log |x−y|. The potential (height
function) φ : Sn−1 → R+ parametrizes the antenna A as follows: A = {xφ(x), x ∈ Sn−1}. Then
the antenna is admissible if and only if φ is c-convex on Sn−1 for c(x, y) = − log |x − y|, and
Gφ(x) yields the direction in which the ray coming in the direction x is reflected. This is the
first non quadratic cost for which regularity of solutions has been established. Wang [36, 37]
(see also Guan and Wang [18] where the results are extended to higher dimension) has shown
classical C2 (and hence C∞) regularity of solutions of the associated Monge-Ampère equation
when the densities are smooth. In a recent work, with totally different techniques, Caffarelli,
Huang and Gutierrez [11] have shown C1 regularity for the solution (i.e. continuity of the
optimal map) under the condition that the measures µ0 and µ1 have densities bounded away
from 0 and infinity. This case of application will also be addressed by our forthcoming paper
[21].
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General costs and the conditions As, Aw Recently an important step was achieved in
two papers by Ma, Trudinger, and Wang . They gave in the first paper [22] a sufficient condition
(As, called A3 in their paper) for C2 (and subsequently C∞) interior regularity. In the second
paper [29], they could lower this condition down to Aw (condition A3w in their paper) to
obtain a sufficient condition for global C2 (and subsequently C∞) regularity, assuming uniform
strict c-convexity and smoothness of the domains. Note that the result under Aw recovers the
results of Urbas and Delanoë for the quadratic cost. We mention that the results obtained in
[22, 29] have been exposed by Trudinger in [27].

Theorem 2.15 ([29, 27]) Let Ω,Ω′ be two bounded domains of Rn. Assume that Ω,Ω′ are
strictly uniformly c,c*-convex with respect to each other Let c, c∗ satisfy A0-A1-A2 and Aw
on Ω×Ω′. Let µ0, µ1 be two probability measures on Ω,Ω′ having densities ρ0, ρ1. Assume that
ρ0 ∈ C2(Ω̄) is bounded away from 0, ρ1 ∈ C2(Ω̄′) is bounded away from 0. Then, for φ c-convex
on Ω such that Gφ#µ0 = µ1, φ ∈ C3(Ω) ∩ C2(Ω̄).

We also mention the continuity result obtained in [24] concerning optimal transportation be-
tween boundaries of uniformly convex domains, that might have some connections with the
present work.

3 Results

We present some answers to the following four questions:

1. Is there a sharp necessary and sufficient condition on the cost function which would
guarantee that when both measures have C∞ smooth densities, and their supports satisfy
usual convexity assumptions, the solution of (16) ( and hence the optimal map) is C∞

smooth ?

2. Is there a necessary and sufficient condition on the cost function and on the data under
which optimal maps are continuous ?

3. What are the cost-functions for which connectedness of the contact set holds (7) ?

4. When the cost is set to be the squared distance of a Riemannian manifold, what is the
meaning of conditions Aw, As in terms of the Riemannian metric ?

3.1 Condition Aw, connectedness of the contact set and regularity
issues

Answer to questions 1 and 3: Condition Aw is necessary and sufficient for regularity of optimal
maps. Moreover Aw is equivalent to the connectedness of the contact set.

In the following theorem, “smooth” means C∞-smooth. This is for simplicity, and one can
lower the smoothness assumptions on the domains and the measures, see [29].
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Theorem 3.1 Let Ω,Ω′ be two bounded domains of Rn. Let c be a cost function that satisfies
A0, A1, A2 on (Ω × Ω′). Assume that Ω,Ω′ are smooth, uniformly strictly c-convex (resp.
c*-convex) with respect to each other. The following assertions are equivalent.

1. The cost function c satisfies Aw in Ω× Ω′.

2. For µ0, µ1 smooth strictly positive probability measures in Ω̄, Ω̄′ there exists a c-convex
potential φ ∈ C1(Ω) such that Gφ#µ0 = µ1.

3. For µ0, µ1 smooth strictly positive probability measures in Ω̄, Ω̄′ there exists a c-convex
potential φ ∈ C∞(Ω̄) such that Gφ#µ0 = µ1.

4. For all φ c-convex in Ω, for all x ∈ Ω, ∂cφ(x) = ∂φ(x).

5. For all φ c-convex in Ω, for all x ∈ Ω, the set {y : φ(x) + φc(y) = −c(x, y)} is c-convex
with respect to x.

6. Continuously differentiable c-convex potentials are dense among c-convex potentials for
the topology of local uniform convergence.

Hence, if condition Aw is violated at some points (x0, y0) ∈ (Ω×Ω′), there exist smooth positive
measures µ0, µ1 on Ω,Ω′ such that there exists no C1 c-convex potential satisfying Gφ#µ0 = µ1.

Remark. Setting c∗(y, x) = c(x, y) we have seen that Sc ≥ 0 implies Sc∗ ≥ 0. Hence all
of those assertions are equivalent to their dual counterpart.

We can add the following equivalent condition for Aw:

Theorem 3.2 Under the assumptions of Theorem 3.1, condition Aw holds if and only if, for
any x0 ∈ Ω, (y0, y1) ∈ Ω′, letting φ̄ be defined by

φ̄(x) = max{−c(x, y0) + c(x0, y0),−c(x, y1) + c(x0, y1)},

for any yθ ∈ [y0, y1]x0 (see Definition 2.8),

φ̄(x) ≥ −c(x, yθ) + c(x0, yθ)

holds in Ω.

In other words, fθ(x) = −c(x, yθ) + c(x0, yθ) which is the supporting function that interpolates
at x0 (nonlinearly) between f0(x) = −c(x, y0) + c(x0, y0) and f1(x) = −c(x, y1) + c(x0, y1), has
to remain below max{f0, f1}.

Remark 1. The function φ̄ furnishes the counter-example to regularity when Aw is not
satisfied, since for a suitable choice of x0, y0, y1 φ̄ can not be approximated by C1 c-convex
potentials.

Remark 2. As shown by Propositions 5.1, 5.12, a quantitative version of Theorem 3.2
holds to express condition As.

Remark 3. The assertions Point 1 =⇒ Points 2, 3, 6 belong to Trudinger and Wang
in [29]. We show here that condition Aw is necessary: if it is violated at some point, one
can always build a counterexample where the solution to (16) is not C1 even with C∞ smooth
positive measures and good boundary conditions (hence the optimal map is not continuous).
Moreover condition Aw is equivalent to a very natural geometric property of c-convex functions.
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3.2 Improved partial regularity under As

Partial answer to question 2: There is partial (i.e. C1 and C1,α) regularity under As, requiring
much lower assumptions on the measures than what is needed in the quadratic case. There can
not be C1 regularity without Aw. When only Aw is satisfied, the question of C1 regularity
remains open, except for the case c(x, y) = |x− y|2 treated by Caffarelli [7].

Let us begin by giving the two integrability conditions that will be used in this result. The
first one reads

For some p ∈]n,+∞], Cµ0 > 0,

µ0(Bε(x)) ≤ Cµ0ε
n(1− 1

p
) for all ε ≥ 0, x ∈ Ω.(23)

The second condition reads

For some f : R+ → R+ with lim
ε→0

f(ε) = 0,

µ0(Bε(x)) ≤ f(ε)εn(1− 1
n

) for all ε ≥ 0, x ∈ Ω.(24)

In order to appreciate the forthcoming theorem, let us mention a few facts on these integrability
conditions (the proof of this proposition is given at the end of the paper).

Proposition 3.3 Let µ0 be a probability measure on Rn.

1. If µ0 satisfies (23) for some p > n, µ0 satisfies (24).

2. If µ0 ∈ Lp(Ω) for some p > n, µ0 satisfies (23) with the same p.

3. If µ0 ∈ Ln(Ω), µ0 satisfies (24).

4. If µ0 satisfies (24), µ0 does not give mass to set of Hausdorff dimension less than or equal
to n− 1, hence (24) guarantees the existence of an optimal map.

5. There are probability measures on Ω that satisfy (23) (and hence (24)) and that are not
absolutely continuous with respect to the Lebesgue measure.

Then our result is

Theorem 3.4 Let c be a cost function that satisfies assumptions A0, A1, A2, As on (Ω×Ω′),
Ω,Ω′ being bounded domains uniformly strictly c(resp c*)-convex with respect to each other. Let
µ0, µ1 be probability measures respectively on Ω and ω′ ⊂ Ω′, with ω′ c-convex with respect to
Ω. Let φ be a c-convex potential on Ω such that Gφ#µ0 = µ1. Assume that µ1 ≥ m dVol on ω′

for some m > 0.

1. Assume that µ0 satisfies (23) for some p > n. Let α = 1− n
p
, β = α

4n−2+α
. Then for any

δ > 0 we have

‖φ‖C1,β(Ωδ) ≤ C,

and C depends only on δ > 0, Cµ0 in (23), on m, on the constants in conditions A0, A1,
A2, As and on CT in (13).
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2. If µ0 satisfies (24), then φ belongs to C1(Ωδ) and the modulus of continuity of ∇φ is
controlled by f in (24).

As an easy corollary of Theorem 3.4, we can extend the C1 estimates to the boundary if the
support of the measure µ0 is compactly contained in Ω.

Theorem 3.5 Assume in addition to the assumptions of Theorem 3.4 that µ0 is supported in
ω̄, with ω compactly contained in Ω. Then, if µ0 satisfies (24), φ ∈ C1(ω̄) and if µ0 satisfies
(23), φ ∈ C1,β(ω̄), with β as in Theorem 3.4.

Remark on the conditions on Ω,Ω′. Our result holds true for µ0 supported in any
subset ω of Ω (hence not necessarily c*-convex), and µ1 supported in any subset ω′ of Ω′ c-
convex (but not necessarily strictly) with respect to Ω. Hence what we need is the existence of
supersets Ω,Ω′ uniformly c(c*)-convex with respect to each other, in order to use the results of
[29]. The only point where we need this condition is during the proof of Proposition 5.6, where
we rely on Theorem 3.1 to assert ∂φ = ∂cφ. However, in [22], Ma, Trudinger and Wang proved
the following:

Theorem 3.6 ([22]) Let c satisfy A0, A1, A2, As, on Ω×Ω′, Ω′ being c-convex with respect
to Ω. Then, for µ0, µ1 C

2 smooth positive probability measures on Ω,Ω′, the c-convex potential
φ such that Gφ#µ0 = µ1 is C2 smooth inside Ω.

Using this result, Proposition 4.4 yields that for all φ c-convex on Ω, ∂cφ = ∂φ. Hence we
could have relaxed the assumptions of Theorem 3.4 on Ω,Ω′, only requiring Ω′ to be c-convex
with respect to Ω, (i.e. no c*-convexity on Ω, no strict c-convexity of Ω′). Note that the proof
of Theorem 3.6 has been completed later on by Trudinger and Wang in [28], relying in part
on our Proposition 5.1 (which is an independent result). Thus we can now state the following
result:

Theorem 3.7 The results of Theorem 3.4 hold assuming only for Ω,Ω′ that Ω′ is c-convex with
respect to Ω.

We mention that the results of Kim and McCann [19], obtained simultaneously with those of
[28] but using different techniques, allow also to complete the proof of Theorem 3.6, under the
assumption that Ω′ and Ω are c-(c*)-convex with respect to each other. This allows to drop
the strict convexity assumption in Theorem 3.4.

Remark on the integrability conditions. The integrability conditions on µ0, µ1 are
really mild: we only ask that µ1 be bounded by below, and that µ0(Br) ≤ rn−p for p ≥ 1 (p > 1
yields C1,α regularity) (see conditions (23) and (24) and the subsequent discussion). The conti-
nuity of the optimal map is also asserted in the case µ0 ∈ Ln (that implies (24)), which is some-
how surprising: indeed D2φ ∈ Ln does not imply φ ∈ C1, but here det(D2φ−A(x,∇φ)) ∈ Ln
implies φ ∈ C1. In a forthcoming work, we shall show that our result adapts to the reflec-
tor antenna, hence improving the result obtained independently by Caffarelli, Gutierrez and
Huang [11] on reflector antennas. Moreover our techniques yield quantitative C1,α estimates:
the exponent α can explicitly computed. Finally, our continuity estimates extends up to the
boundary (Theorem 3.5). This is achieved through a geometric formulation of condition As.
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A full satisfactory answer would include a general result of partial regularity under condition
Aw. This result is expected in view of the Euclidean case (since the quadratic cost is really the
limit case for condition Aw). Note that, in view of counterexamples given in [35], the results
under Aw can not be as good as under As, and can not be much better than Caffarelli’s results
[7] that require densities bounded away from 0 and infinity.

3.3 Conditions Aw, As for the quadratic cost of a Riemannian man-
ifold

We refer the reader to the remark 2. after the definition of the cost-sectional curvature (19)
where the intrinsic meaning of (19) on a manifold is discussed.

Partial answer to question 4: When the cost is the Riemannian distance squared, the cost-
sectional curvature at y = x equals (up a multiplicative constant) the Riemannian sectional
curvature

Theorem 3.8 Let M be a C4 Riemannian manifold. Let c(x, y) = d2(x, y)/2 for all (x, y) ∈
M ×M . Let Sc be given by (19), Then, for all ξ, ν ∈ TxM ,

Sc(x, x)(ν, ξ)

|ξ|2g|ν|2g − (ξ · ν)2
g

=
2

3
· Sectional Curvature of M at x in the 2-plane (ξ, ν).

Hence if Aw (resp, As) is satisfied at (x, x), the sectional curvature of M at x is non-negative
(resp. strictly positive).

Corollary 3.9 Let M be a compact Riemannian manifold. If the sectional curvature of M is
not everywhere non-negative, there are smooth positive measures on M such that the optimal
map (for the cost function c(x, y) = d2(x, y)/2) is not continuous.

At the end of the proof of Theorem 3.8, we give a counterexample to regularity for a two-
dimensional manifold with negative sectional curvature.

This observation closes (with a negative answer) the open problem of the regularity of
optimal gradient maps when the manifold does not have non-negative sectional curvature ev-
erywhere. There is a partial converse assertion in the special case of constant sectional curva-
ture: The quadratic cost on the round sphere Sn−1 satisfies As. This will be the object of a
forthcoming work [21]. Hence our previous result can be adapted to this Riemannian case.

3.4 Examples of costs that satisfy As or Aw

We repeat the collection of cost that was given in [22], and [29].

• c(x, y) =
√

1 + |x− y|2 satisfies As.

• c(x, y) =
√

1− |x− y|2 satisfies As.

• c(x, y) = (1 + |x− y|2)p/2 satisfies As for 1 ≤ p < 2, |x− y|2 < 1
p−1

.

18



• c(x, y) = |x − y|2 + |f(x) − g(y)|2 f, g : C4(Rn; R) convex (resp. strictly convex) with
|∇f |, |∇g| < 1 satisfies Aw (resp. As).

• c(x, y) = ±1
p
|x− y|p, p 6= 0 and satisfies Aw for p = ±2 and As for −2 < p < 1 (− only).

• c(x, y) = − log |x− y| satisfies As on Rn × Rn \ {(x, x), x ∈ Rn}.

• The reflector antenna problem ([36]) corresponds to the case c(x, y) = − log |x − y| re-
stricted to Sn. As pointed out in [29], this cost satisfies As on Sn−1 × Sn−1 \ {x = y}.

• As shown in a forthcoming paper [21], the squared Riemannian distance on the sphere
satisfies As on the set Sn−1 × Sn−1 \ {x = −y}. Note that it is the restriction to Sn−1 of
the cost c(x, y) = θ2(x, y), where θ is the angle formed by x and y. (For those two cases,
see paragraph 2.7 where the meaning of conditions Aw, As on a Riemannian manifold is
discussed).
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4 Proof of Theorem 3.1

We begin with the following uniqueness result of independent interest:

Proposition 4.1 Let µ, ν be two probability measures on Ω,Ω′, with Ω and Ω′ connected do-
mains of Rn. Assume that either µ or ν is positive Lebesgue almost everywhere in Ω (resp.
in Ω′). Then, among all pairs of functions (φ, ψ) such that φ is c-convex, ψ is c*-convex, the
problem (10) has at most one minimizer up to an additive constant.

The proof of this proposition is deferred to the end of the paper.

4.1 Condition Aw implies connectedness of the contact set

We will begin with the following lemma:

Lemma 4.2 Let φ be c-convex. Let (φε)ε>0 be a sequence of c-convex potentials that converges
uniformly to φ on compact sets of Ω. Then, if p = −∇xc(x0, y) ∈ ∂φ(x0), x0 ∈ Ω, y ∈ Ω′, there
exists a sequence (xε)ε>0 that converges to x0, a sequence (yε)ε>0 that converges to y such that
pε = −∇xc(xε, yε) ∈ ∂φε(xε). Finally, pε converges to p.
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Proof. Let y = Tx0(p), i.e. p = −∇xc(x0, y). Since φ, φε are c-convex and c is semi-
concave, there exists K, r > 0 so that

φ̃(x) := φ(x) +K|x− x0|2/2 + c(x, y),

φ̃ε(x) := φε(x) +K|x− x0|2/2 + c(x, y),

are convex on Br(x0) compactly contained in Ω. One can also assume, by subtracting a constant
that φ̃(x0) = 0, and that φ̃(x) ≥ 0 on Ω. Finally, one can assume (by relabeling the sequence)
that on Br(x0) we have |φε − φ| ≤ ε.

Consider then φ̃δε = φ̃ε + δ|x−x0|2/2− ε. We have φ̃δε(x0) ≤ 0, and on ∂Bµ(x0), with µ ≤ r,

φ̃δε(z) ≥ φ̃(z) + δµ2/2− 2ε

≥ δµ2/2− 2ε.

By taking µ = ε1/3, δ = 4ε1/3, we get that φ̃δε has a local minimum in Bµ(x0), hence at some
point xε ∈ Bµ(x0), we have

∂φε(xε) 3 −∇xc(xε, y)−K(xε − x0)− δ(xε − x0).

Then we have |(K + δ)(xε − x0)| small, and thanks to A1, A2, there exists yε close to y such
that ∇xc(xε, yε) = ∇xc(xε, y) + K(xε − x0) + δ(xε − x0). Thus −φε(x) − c(x, yε) has a critical
point at xε. This implies that pε = −∇xc(xε, yε) ∈ ∂φε(xε). Finally, since xε → x, yε → y, we
conclude pε → p.

�

Now we prove that ∂cφ = ∂φ. In order to do this, we must show that if φ is c-convex, if
−φ(·)− c(·, y) has a critical point at x0, this is a global maximum.

We first have the following observation:

Lemma 4.3 Let φ be c-convex. Assume that −φ − c(·, y) has a critical point at x0 (i.e. 0 ∈
∂φ(x0) +∇xc(x0, y)), and that it is not a global maximum. Then φ is not differentiable at x0.

Proof. Indeed, −φ(·) − c(·, y) has a critical point at x0, but we don’t have φ(x0) +
φc(y) = −c(x0, y). However, there is a point y′ such that φ(x0) + φc(y′) = −c(x0, y

′). Hence,
{−∇xc(x0, y),−∇xc(x0, y

′)} ∈ ∂φ(x0), and we have ∇xc(x0, y) 6= ∇xc(x0, y
′) from assumption

A1.
�

We show the following:

Proposition 4.4 Assume D holds. Let p = −∇xc(x0, y) ∈ ∂φ(x0) with φ c-convex. Then
−φ(·)− c(·, y) reaches a global maximum at x0.

D C1 c-convex functions are dense in the set
{
φ c-convex on Ω, Gφ(Ω) ⊂ Ω′

}
for the

topology of uniform convergence on compact sets of Ω.
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Proof. Assume the contrary, i.e. that −φ(x1) − c(x1, y) > −φ(x0) − c(x0, y) for some
x1 ∈ Ω. We use D: there exists a sequence of C1 c-convex potentials (φε)ε>0 that converges to
φ. We use Lemma 4.2: there will exist a sequence (xε)ε>0 such that xε → x0 and ∇φε(xε) →
−∇xc(x0, y). Let yε be such that ∇φε(xε) = −∇xc(xε, yε). Then yε → y. Since φε is C1, by
Lemma 4.3, xε, the critical point of −φε(·)− c(·, yε) is necessarily a global maximum. Finally,
since φε converges locally uniformly to φ, we see that −φ(·) − c(·, y) reaches at x0 a global
maximum.

Lemma 4.5 Assume Ω,Ω′ are bounded, uniformly strictly c-(c*-) convex with respect to each
other. Assume that c satisfies A0, A1, A2, Aw on Ω× Ω′. Then D holds.

Proof. As we will see, this result is implied immediately by the result of [29] combined
with Proposition 4.1. Let φ be c-convex. Denote µ1 = Gφ#1ΩdVol. Note that from Proposition
4.1, φ is the unique up to a constant c-convex potential such that Gφ#1ΩdVol = µ1. Consider
a sequence of smooth positive densities (µε1)ε>0 in Ω′ such that µε1dVol converges weakly-∗ to
µ1, and has same total mass than µ1. Consider φε such that Gφε #1ΩdVol = µε1dVol. From
[29], φε is C2 smooth inside Ω. Then, by Proposition 4.1, up to a normalizing constant, φε is
converging to φ, and ∇φε is converging to ∇φ on the points where φ is differentiable. �

Hence, under the assumptions of Lemma 4.5, ∂φ(x) = ∂cφ(x). In view of Proposition 2.11,
the equality ∂φ(x) = ∂cφ(x) for all φ, x is equivalent to the c-convexity of the set

Gφ(x) =
{
y : φ(x) + φc(y) = −c(x, y)

}
.

This shows that condition Aw is sufficient. �

4.2 Condition Aw is necessary for smoothness and connectedness of
the contact set

We now show that if Aw is violated somewhere in (Ω×Ω′), there will exist a c-convex potential
for which we don’t have ∂φ = ∂cφ. Assuming this, in view of Lemma 4.5 and Proposition 4.4,
this will imply that this potential can not be a limit of C1-smooth c-convex potentials. Hence,
considering the sequence (φε)ε>0 used in the proof of Lemma 4.5, this sequence will not be C1

for ε smaller than some ε0. This implies in turn that there exists smooth positive densities
µ0, µ1 in Ω,Ω′ such that the c-convex potential φ satisfying Gφ#µ0 = µ1 is not C1 smooth.

Assume that for some x0 ∈ Ω, y ∈ Ω′, p = −∇xc(x0, y), for some ξ, ν unit vectors in Rn with
ξ ⊥ ν, one has

D2
pνpν

[
p→ D2

xξxξ
c(x,Tx(p))

]
≥ N0 > 0.(25)

Let y0 = Tx0(p− εν), y1 = Tx0(p+ εν), with ε small, and recall that y = Tx0(p). Hence y is the
’middle’ of the c-segment [y0, y1]x. Let us define

φ̄(x) = max
{
− c(x, y0) + c(x0, y0),−c(x, y1) + c(x0, y1)

}
.(26)
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(This function will be used often in the geometric interpretation of As, Aw. It is the “second
simplest” c-convex function, as the supremum of two supporting functions. It plays the role of
(x1, ..., xn)→ |x1| in the Euclidean case.)

Note first that ξ ⊥ ν implies that ξ ⊥ (∇xc(x0, y1) − ∇xc(x0, y0)). Consider near x0 a
smooth curve γ(t) such that γ(0) = x0, γ̇(0) = ξ, and such that for t ∈ [−δ, δ], one has

f0(γ(t)) := −c(γ(t), y0) + c(x0, y0) = −c(γ(t), y1) + c(x0, y1) =: f1(γ(t)).

Such a curve exists by the implicit function theorem, and it is C2 smooth. On γ, we have

φ̄ =
1

2
(f0 + f1)

since f0 = f1 on γ. Then we compare 1
2
(f0 + f1) with −c(x, y) + c(x0, y). By (25) we have

1

2

[
D2
xξxξ

c(x0, y0) +D2
xξxξ

c(x0, y1)
]
≥ D2

xξxξ
c(x0, y) + c(ε,N0),

where c(ε,N0) is positive for ε small enough. Then of course ∇xc(x0, y) = 1
2
[∇xc(x0, y0) +

∇xc(x0, y1)]. Hence we have, for ε small enough,

[−c(γ(t), y) + c(x0, y)]− φ̄(γ(t))

= [−c(γ(t), y) + c(x0, y)]− 1

2
(f0 + f1)(γ(t))

=
[1

2

[
D2
xxc(x0, y0) +D2

xxc(x0, y1)
]
−D2

xxc(x0, y)
]
· (γ(t)− x0) · (γ(t)− x0)/2 + o(t2)

=
[1

2

[
D2
xξxξ

c(x0, y0) +D2
xξxξ

c(x0, y1)
]
−D2

xξxξ
c(x0, y)

]
t2/2 + o(t2)

≥ c(ε,N0)t2/2 + o(t2).

This will be strictly positive for t ∈ [−δ, δ] \ {0} small enough, and of course the difference
−φ̄ − [c(x, y) − c(x0, y)] vanishes at x0. Obviously, the function φ̄ is c-convex, −φ̄(·) − c(·, y)
has a critical point at x0, and this is not a global maximum. Hence, from Proposition 4.4, D
can not hold true.

The proof of Theorems 3.1, 3.2 is complete.
�.

5 Proof of Theorem 3.4

5.1 Sketch of the proof

The key argument of the proof is the geometrical translation of condition As: assume that
φ c-convex is not differentiable at x = 0, hence, for some pair y0, y1, −φ(·) − c(·, y0) and
−φ(·) − c(·, y1) both reach a maximum at x = 0. (From Theorem 3.1, under As, all critical
points of −φ(·)−c(·, y) are global maxima.) Consider yθ in the c-segment with respect to x = 0
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joining y0 to y1. As we will see in Proposition 5.1, the function −φ(·) − c(·, yθ) will reach a
maximum at x = 0, and condition As implies moreover that for θ ∈ [ε, 1 − ε] this maximum
will be strict in the following sense: we will have

−φ(x)− c(x, yθ) ≤ −φ(0)− c(0, yθ)− δ|x|2 + o(|x|2),

with δ > 0 depending on |y1 − y0| and C0 > 0 in condition As, and bounded by below for θ
away from 0 and 1.

Then, by estimating all supporting functions to φ on Bη(0) a small ball centered at 0 , we
will find that for y in a Cη neighborhood of {yθ}θ∈[1/4,3/4], C > 0 depending on δ above, −φ(·)−
c(·, y) will reach a local maximum in Bη(0). Hence Gφ(Bη(0)) contains a Cη neighborhood of
{yθ}θ∈[1/4,3/4]. This is the Proposition 5.6. Once this is shown, we can contradict the bound on
the Jacobian determinant of Gφ.

We now enter into the rigorous proof of Theorem 3.4, this proof is articulated in three parts.

5.2 Part I. Geometric interpretation of condition As

This proposition is the geometrical translation of assumption As. Actually, as we will see in
Proposition 5.12, the result of Proposition 5.1 is equivalent to assumption As for a smooth cost
function.

Proposition 5.1 Let c be a cost function that satisfies A0,A1,A2,As on Ω×Ω′. For x0 ∈ Ω,
y0, y1 ∈ Ω′, let {yθ}θ∈[0,1] be the c-segment with respect to x0 joining y0 to y1, in the sense of
Definition 2.8, and assume that Ω′ is c-convex with respect to x0. Let

φ̄(x) = max{−c(x, y0) + c(x0, y0),−c(x, y1) + c(x0, y1)}.

There exist constants δ0, C > 0 and γ such that for all ε ∈]0, 1
2
[, θ ∈ [ε, 1 − ε], for all x ∈ Ω

such that |x− x0| ≤ Cε,

φ̄(x) ≥ −c(x, yθ) + c(x0, yθ) + δ0θ(1− θ)|y1 − y0|2|x− x0|2 − γ|x− x0|3,

with lower bounds on δ0 and C and an upper bound on γ that depend on the bounds in assump-
tions A0,A2,As, on an upper bound on |y1 − y0|, and on CT in (13).

Preliminary Results Shifting and rotating the coordinates, we can assume that x0 = 0 and
that ∇xc(0, y0)−∇xc(0, y1) is parallel to e1. Then, we observe the following fact:

Proposition 5.2 Subtracting from c a smooth function x → λ(x) that depends only on x
does not change the map solution of the optimal transportation problem, and the new cost
c(x, y) − λ(x) will still satisfy assumptions A0, A1, A2, Aw. The optimal potential will be
changed according to the rule φ→ φ+λ. If moreover the function λ is affine, this modification
does not change the bounds in assumptions A2, As.
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Using Proposition 5.2, we can subtract from c the affine function given by

λ(x) = ∇xc(0, y0) · (x− x1e1),

so that the new cost c will satisfy

∇xc(0, y0) = −ae1, ∇xc(0, y1) = −be1,(27)

for some a 6= b from assumption A1 (we will assume hereafter that b > a). Note that (27) is
equivalent to

y0 = Tx=0(ae1), y1 = Tx=0(be1).

We then have for all θ ∈ [0, 1],

−c(x, yθ) + c(0, yθ) = [θb+ (1− θ)a]x1 − 1

2
D2
xxc(0, yθ) · (x, x) + o(|x|2).(28)

We now have the following Lemma, which is the point where we use assumption As.

Lemma 5.3 Under assumptions and notations of Proposition 5.1, in particular assuming As,
for all x ∈ Rn, for all θ ∈ [0, 1], letting a and b be defined through (27), one has

−D2
xxc(0, yθ) · (x, x) ≤ −

[
(1− θ)D2

xxc(0, y0) + θD2
xxc(0, y1)

]
· (x, x)

−δ|x|2

+∆|x1|2,

where

δ =
1

4
C0|b− a|2θ(1− θ),

∆ =
∆2

0

C0

|b− a|2θ(1− θ),

with C0 given in assumption As and ∆0 depending on ‖c(·, ·)‖C4(Ω×Ω′), ‖[Dxyc]
−1‖L∞(Ω×Ω′). Note

in particular that under A0, As, C0 is bounded away from 0 and +∞.

We will also need the following elementary estimates, that we state without proof:

Lemma 5.4 Under assumptions and notations of Proposition 5.1, for all x ∈ Rn, for all
θ, θ′ ∈ [0, 1],

1

2
|D2

xxc(0, yθ) · (x, x)−D2
xxc(0, yθ′) · (x, x)| ≤ C1|θ − θ′||x|2,(29)

with C1 depends on |b− a|, ‖[Dxyc]
−1‖L∞(Ω×Ω′) and ‖c(·, ·)‖C3(Ω̄×Ω̄′).

Lemma 5.5 Let [t0, t1] ⊂ R and f belong to C2([t0, t1],R).

24



1. If f ′′ ≥ α, we have, for all t0, t1 ∈ R,

θf(t0) + (1− θ)f(t1) ≥ f(θt0 + (1− θ)t1) +
1

2
αθ(1− θ)|t1 − t0|2.

2. In all cases we have∣∣θf(t0) + (1− θ)f(t1)− f(θt0 + (1− θ)t1)
∣∣ ≤ 1

2
‖f‖C2(t0,t1)θ(1− θ)|t1 − t0|2.

Proof of Lemma 5.3. We apply the first part of Lemma 5.5 to the function

f : t→ −D2
xxc(0,Tx=0(te1)) · (x′, x′)

where x′ is equal to (0, x2, .., xn), and hence x′ ⊥ e1. From assumption As, this function satisfies
f ′′ ≥ C0|x′|2. Then, by choosing t0 = a, t1 = b (note that yθ = Tx=0((θb + (1 − θ)a)e1)), we
obtain that

−D2
xxc(0, yθ) · (x′, x′) ≤ −

[
(1− θ)D2

xxc(0, y0) + θD2
xxc(0, y1)

]
· (x′, x′)

−1

2
C0|x′|2θ(1− θ)|b− a|2.

To conclude the lemma, we have to control of the terms where x1 appears. For this we apply
the second part of Lemma 5.5 to

g : t→ D2
xxc(x,Tx(te1)) · (x, x)−D2

xxc(x,Tx(te1)) · (x′, x′),

for which we have |g′′| ≤ 2∆1|x1||x|, where ∆1 depends on ‖c(·, ·)‖C4 and on ‖[Dxyc]
−1‖L∞ .

This yields

−D2
xxc(0, yθ) · (x, x) ≤ −

[
(1− θ)D2

xxc(0, y0) + θD2
xxc(0, y1)

]
· (x, x)

+θ(1− θ)|b− a|2(−1

2
C0|x′|2 + ∆1|x1||x|)

≤ −
[
(1− θ)D2

xxc(0, y0) + θD2
xxc(0, y1)

]
· (x, x)

+θ(1− θ)|b− a|2(−1

2
C0|x|2 + (∆1 + C0)|x1||x|).

We set ∆0 = ∆1 + C0. Using a standard argument we have

∆0|x||x1| ≤ C0|x|2/4 + |x1|2∆2
0/C0,

and we obtain

−C0|x|2/2 + ∆0|x||x1| ≤ −C0|x|2/4 + (∆2
0/C0)|x1|2.

This concludes the proof of Lemma 5.3.
�
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Proof of Proposition 5.1. Using the general fact that for f0, f1 ∈ R, for 0 ≤ θ ≤ 1,

max{f0, f1} ≥ θf1 + (1− θ)f0,

we have, using (28),

φ̄(x) ≥ (θb+ (1− θ)a)x1

− 1

2

[
θD2

xxc(0, y1) + (1− θ)D2
xxc(0, y0)

]
· (x, x)

+ o(|x|2).

We now use assumption As through Lemma 5.3 to handle the second line of the right hand
side. This yields the intermediate inequality

φ̄(x) ≥ (θb+ (1− θ)a)x1 −
1

2
D2
xxc(0, yθ) · (x, x) + δ|x|2(30)

− ∆|x1|2

+ o(|x|2),

with δ,∆ given in Lemma 5.3. In order to eliminate the term −∆|x1|2 in the right hand side,
we proceed as follows: We write first (30) for some θ′ ∈ [0, 1], and then change it into

φ̄(x) ≥ (θb+ (1− θ)a)x1 −
1

2
D2
xxc(0, yθ) · (x, x) + δ|x|2

+
1

2

[
D2
xxc(0, yθ)−D2

xxc(0, yθ′)
]
· (x, x)

+ ((b− a)(θ′ − θ)−∆x1)x1

+ (δ′ − δ)|x|2 + (∆−∆′)|x1|2

+ o(|x|2),

where δ′ = δ(θ′),∆′ = ∆(θ′) as in Lemma 5.3. We now have to control the terms

T1 = ((b− a)(θ′ − θ)−∆x1)x1,

T2 =
1

2

[
D2
xxc(0, yθ)−D2

xxc(0, yθ′)
]
· (x, x),

T3 = (δ′ − δ)|x|2 + (∆−∆′)|x1|2.

The term T1 can be cancelled through an appropriate choice of θ′. We choose first ε > 0 small
(but fixed). Taking θ ∈ [ε, 1− ε], we choose θ′ such that

θ′ = θ + x1∆/(b− a) = θ + x1/C,(31)

with

C = (b− a)∆−1(32)

= C0

(
θ(1− θ)|b− a|∆2

0

)−1
.
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Since θ ∈ [ε, 1 − ε], this choice of θ′ is possible if we restrict to |x1| ≤ Cε. Note that C0 is
bounded away from 0, hence C is bounded away from 0 for |b− a| bounded (we don’t need C
to be bounded from above). Note also that θ′ will depend on x1 but θ has been fixed before.

The second term T2 is controlled using Lemma 5.4: We have

|T2| ≤ C1|θ′ − θ||x|2.

For the third term T3, we note, from the definition of δ,∆ in Lemma 5.3, that |∆ −∆′| ≤
|b− a|2 ∆2

0

C0
|θ′ − θ| and |δ − δ′| ≤ |C0||θ′ − θ|. Hence, using (31),

|T2 + T3| ≤ C2|x|3,

where C2 depends on the bounds in assumptions A0, A2, As, and on |b − a|. We conclude
that, for a suitable choice of θ′,

|T1 + T2 + T3| ≤ C2|x|3.(33)

We now have, for all θ ∈ [ε, 1− ε], for all x ∈ Ω with |x| < Cε,

φ̄(x) ≥ (θb+ (1− θ)a)x1 −
1

2
D2
xxc(0, yθ) · (x, x)

+δ|x|2

−C2|x|3 + o(|x|2).

Using (28), this leads to

φ̄(x) ≥ −c(x, yθ) + c(0, yθ)

+δ|x|2

−C2|x|3 + o(|x|2).

We now notice that all the terms in o(|x|2) are error terms in the second order Taylor expansions
(28). Under assumption A0, c belongs to C3(Ω̄× Ω̄′), hence there exists γ such that the above
inequality still holds true when replacing the third line of its right hand side by −γ|x|3. The
constant γ will depend on the bounds in A0, A2, As, and on |b − a|. From Lemma 5.3, we
have δ = 1

4
C0θ(1− θ)|b− a|2. Using now (13), we have

1

CT

|y1 − y0| ≤ |b− a|,

and letting δ0 = C0/(4C
2
T), we conclude the proof of Proposition 5.1.

�

5.3 Part II. Construction of supporting functions

We let Nµ(B) denote the µ-neighborhood of a set B, and we use the Proposition 5.1 to prove
the following:
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Proposition 5.6 Let φ be c-convex. Let c,Ω,Ω′ satisfy the assumptions of Theorem 3.4. Let
x0, x1 ∈ Ω, and y0 ∈ Gφ(x0), y1 ∈ Gφ(x1). There exist constants C,C ′, C ′′ > 0 and xm ∈ [x0, x1],
such that, if Nη([x0, x1]) ⊂ Ω, and

|y1 − y0| ≥ max{|x1 − x0|, C|x1 − x0|1/5} > 0,(34)

then
Nµ({yθ, θ ∈ [1/4, 3/4]}) ∩ Ω′ ⊂ Gφ(Bη(xm)),

where

η = C ′
(
|x1 − x0|
|y1 − y0|

)1/2

,(35)

µ = C ′′η|y1 − y0|2.(36)

Here {yθ}θ∈[0,1] = [y0, y1]xm denotes the c-segment from y0 to y1 with respect to xm. Under
assumptions A0-As, the constants C,C ′ are bounded away from infinity and C ′′ is bounded
away from 0 .

Remark. If x0, x1, y0, y1 satisfying (34) can not be found, then φ is Hölder continuous with
exponent 1/5.

Preliminary result Without loss of generality, we will assume that φ(x0) = φ(x1): indeed,
as remarked in Proposition 5.2, by subtracting from the cost function c an affine function λ
that depends only on x, we will not modify the map solution of the optimal transportation
problem, and the optimal potential φ will be changed into φ + λ. Hence one can subtract a
suitable affine function from c so that φ(x0) = φ(x1). Notice that, as λ is chosen affine, the
gradient of the ”new” potentials are deduced from the ”old” ones just by adding the constant
vector ∇xλ. Hence this does not change all the continuity properties of ∇φ, neither does it
change all the derivatives of c of order greater than or equal to 2.

As y0 ∈ Gφ(x0), y1 ∈ Gφ(x1) we have using (11), for all x ∈ Ω,

−c(x, y0) + c(x0, y0) + φ(x0) ≤ φ(x),

−c(x, y1) + c(x1, y1) + φ(x1) ≤ φ(x),

with equality at x = x0 in the first line, at x = x1 in the second line. Since φ(x0) = φ(x1),
the difference between the supporting functions x → −c(x, y0) + c(x0, y0) + φ(x0) and x →
−c(x, y1) + c(x1, y1) + φ(x1) will vanish at some point xm in the segment [x0, x1]. Without loss
of generality, we can add a constant to φ so that at this point both supporting functions are
equal to 0. Hence

−c(xm, y0) + c(x0, y0) + φ(x0) = 0,(37)

−c(xm, y1) + c(x1, y1) + φ(x1) = 0.(38)
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Lemma 5.7 Under the assumptions made above, and assuming moreover that

|y1 − y0| ≥ |x1 − x0|,

we have, for all x in the segment [x0, x1],

φ(x) ≤ C3|x1 − x0||y1 − y0|,

where C3 depends only on ‖c(·, ·)‖C2(Ω×Ω′).

Proof of Lemma 5.7. Using (37, 38), we have

H = φ(x0) ≤ −∇xc(xm, y0) · (x0 − xm) + ‖c‖C2|x0 − xm|2/2,(39)

H = φ(x1) ≤ −∇xc(xm, y1) · (x1 − xm) + ‖c‖C2|x1 − xm|2/2.(40)

By Proposition 2.2, the potential φ is semi-convex, with D2φ ≥ −‖D2
xxc‖L∞(Ω×Ω′)I. Applying

the first part of Lemma 5.5 to the function f : t → φ(x0 + t(x1 − x0)) on [0, 1], for which
f ′′ ≥ −D2φ · (x1 − x0, x1 − x0), we find that

∀x ∈ [x0, x1], φ(x) ≤ H + C|x1 − x0|2,(41)

where C = C(‖c‖C2(Ω×Ω′)). Then we consider two cases:
The first one is where −∇xc(xm, y0) · (x0 − xm) and −∇xc(xm, y1) · (x1 − xm) are not both

positive: let us assume for example that −∇xc(xm, y0) · (x0 − xm) is negative. Then we have,
using (39), H ≤ ‖c‖C2|x0 − xm|2/2, and using (41), we get that

∀x ∈ [x0, x1], φ(x) ≤ (C + ‖c‖C2(Ω×Ω′)/2)|x1 − x0|2.

Then we can conclude using |x1 − x0| ≤ |y1 − y0|.
We now consider the second case where −∇xc(xm, y0)·(x0−xm) and −∇xc(xm, y1)·(x1−xm)

are both positive. This implies that

−∇xc(xm, y0) · (x0 − xm) ≤ −∇xc(xm, y0) · (x0 − x1),

−∇xc(xm, y1) · (x1 − xm) ≤ −∇xc(xm, y1) · (x1 − x0).

Combining with (39, 40) we have

2H ≤ −∇xc(xm, y0) · (x0 − x1)−∇xc(xm, y1) · (x1 − x0) + ‖c‖C2|x0 − x1|2

≤ |∇xc(xm, y0)−∇xc(xm, y1)||x0 − x1|+ ‖c‖C2 |x0 − x1|2

≤ ‖c‖C2

(
|x1 − x0||y1 − y0|+ |x0 − x1|2

)
.

Using |x1 − x0| ≤ |y1 − y0|, and then (41) we conclude.
�

We now assume the following: letting Γ be defined by

Γ =

[
γ2

δ3
0

212C3

]1/5

,(42)
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with C3(‖c‖C2(Ω×Ω′)) defined in Lemma 5.7, x0, x1, y0, y1 satisfy

|y1 − y0| ≥ max{Γ|x1 − x0|1/5, |x1 − x0|}.(43)

Hence the constant C in Proposition 5.6 will be equal to Γ.

We next state the following result, from which the proof of Proposition 5.6 will follow easily:

Lemma 5.8 Let xm be defined as above. For y ∈ Ω′, consider the function

fy(x) = −c(x, y) + c(xm, y) + φ(xm).

Under the assumptions made above, there exist η, µ as in Proposition 5.6, such that for all
y ∈ Nµ({yθ, θ ∈ [1/4, 3/4]}) ∩ Ω′,

φ− fy ≥ 0 on ∂Bη(xm) ∩ Ω.(44)

Before proving this Lemma, we first show how it leads to Proposition 5.6.

Proof of Proposition 5.6. By construction fy(xm) = φ(xm), hence, if we have φ ≥ fy on
∂Bη(xm), then φ−fy will have a local minimum inside Bη(xm), and for some point x ∈ Bη(xm),
we will have −∇xc(x, y) ∈ ∂φ(x). Using Theorem 3.1, we have ∂φ(x) = ∂cφ(x), and this implies
y ∈ Gφ(x) ⊂ Gφ(Bη(xm)).

�
We now prove the main lemma:

Proof of Lemma 5.8. Using (37, 38) and then Proposition 5.1 centered at xm we obtain

φ(x) ≥ max{−c(x, y0) + c(xm, y0),−c(x, y1) + c(xm, y1)}
≥ −c(x, yθ) + c(xm, yθ) + δ0θ(1− θ)|y0 − y1|2|x− xm|2 − γ|x− xm|3

= Φ(x)(45)

for ε > 0, for all θ ∈ [ε, 1− ε], |x− xm| ≤ Cε, and with {yθ}θ∈[0,1] the c-segment with respect to
xm joining y0 to y1. Then we have for y ∈ Ω′

−c(x, y) + c(xm, y)

= −c(x, yθ) + c(xm, yθ)

+

∫ 1

s=0

[∇yc(xm, yθ + s(y − yθ))−∇yc(x, yθ + s(y − yθ))] · (y − yθ) ds

≤ −c(x, yθ) + c(xm, yθ) + C4|y − yθ||x− xm|,

where C4 = ‖D2
xyc‖L∞(Ω×Ω′). Combining this with Lemma 5.7 to estimate φ(xm), we have

fy(x) = −c(x, y) + c(xm, y) + φ(xm)

≤ −c(x, yθ) + c(xm, yθ) + C4|y − yθ||x− xm|+ C3|x1 − x0||y1 − y0|
= Fy(x).(46)
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Inequality (44) will be satisfied if we have, for Fy,Φ defined in (45, 46)

Fy(x) ≤ Φ(x)(47)

on the set {|x−xm| = η}, for some η > 0. First we restrict θ to [1/4, 3/4], (i.e. we take ε = 1/4
in (45)). Then (47) reads

3

16
δ0|y0 − y1|2η2 − γη3 ≥ C4|y − yθ|η + C3|x1 − x0||y1 − y0|.(48)

Inequality (48) will be satisfied if the three following inequalities are satisfied:

1

16
δ0|y0 − y1|2η2 ≥ C3|x1 − x0||y1 − y0|,

1

16
δ0|y0 − y1|2η2 ≥ C4|y − yθ|η,

1

16
δ0|y0 − y1|2η2 ≥ γη3.

In order to satisfy the first inequality, we define η by

η2 =
16C3

δ0

|x1 − x0|
|y1 − y0|

.

In order to satisfy the second, we define µ by

µ = C5η|y1 − y0|2,
where C5 = δ0/(16C4) (note that C5 is bounded away from 0), and consider y ∈ Ω′ such that
|y − yθ| ≤ µ. The third inequality will then be implied by

γη ≤ (δ0/16)|y0 − y1|2,
which is equivalent to

γ2

δ3
0

163C3|x1 − x0| ≤ |y1 − y0|5,

and we recognize here assumption (43). The constants C,C ′, C ′′ in Proposition 5.6 are defined
by C = Γ from assumption (43), C ′ = (16C3

δ0
)1/2, C ′′ = C5. Then, for all y ∈ Nµ{yθ, θ ∈

[1/4, 3/4]} ∩ Ω′, the function fy(x) = −c(x, y) + c(xm, y) + φ(xm) will satisfy fy ≤ φ on the
boundary of the ball Bη(xm). This proves Lemma 5.8.

�

5.4 Part III. Continuity estimates

Proposition 5.9 Let φ be c-convex with Gφ(Ω) ⊂ Ω′. Let c,Ω,Ω′ satisfy the assumptions of
Theorem 3.4. Then,

• if G#
φ dVol, satisfies (23), for some p > n, then φ ∈ C1,β

loc (Ω), with β(n, p) as in Theorem
3.4,

• if G#
φ dVol satisfies (24), then φ ∈ C1

loc(Ω),

where G#
φ is defined in Definition 2.12.
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Preliminary Result We first state the following general result, whose proof is deferred to
the appendix.

Lemma 5.10 Let Ω′ be c-convex with respect to xm ∈ Ω, let y0, y1 ∈ Ω′. There exists C, µ0 > 0
depending on c,Ω,Ω′ such that for all µ ∈ (0, µ0),

Vol (Nµ ([y0, y1]xm) ∩ Ω′) ≥ CVol (Nµ ([y0, y1]xm)) .

Proof of Proposition 5.9 Consider Ωδ = {x ∈ Ω, d(x, ∂Ω) > δ}. In order to have
Nη([x0, x1]) ⊂ Ω, it is enough to have

1. x0, x1 ∈ Ωδ,

2. |x0 − x1| < δ/2,

3. η < δ/2.

If yi ∈ Gφ(xi), i = 0, 1 satisfy (34) in Proposition 5.6, |y1 − y0| ≥ C|x1 − x0|1/5, then η ≤
E|x1 − x0|2/5, with η defined in Proposition 5.6, and E a constant depending only on C ′, C ′′

in Proposition 5.6. Hence for |x1 − x0|2/5 ≤ δ/(2E), it follows that Nη([x0, x1]) ⊂ Ω, and
Proposition 5.6 applies. We now set

Rδ = inf{δ/2, (δ/(2E))5/2},(49)

and in the remainder of the proof, we chose x1, x0 ∈ Ωδ such that |x1 − x0| ≤ Rδ. From
Proposition 5.6, we will have

Nµ{yθ, θ ∈ [1/4, 3/4]} ∩ Ω′ ⊂ Gφ(Bη(xm)).(50)

From Lemma 5.10, and the definition of µ in (36), there exits C,C ′ > 0 such that

Vol (Nµ{yθ, θ ∈ [1/4, 3/4]} ∩ Ω′) ≥ C|y1 − y0|µn−1(51)

= C ′|y1 − y0|ηn−1|y1 − y0|2(n−1).

C1,β estimates for data with bounded density If the Jacobian determinant of the map-
ping Gφ is bounded, (in other words, if G#

φ dVol has a density bounded in L∞ with respect to
the Lebesgue measure) then, for some C,C ′,

Vol (Gφ(Bη(xm))) ≤ CVol (Bη(xm))(52)

= C ′ηn.

Using (50) with (51), (52), we find for some C,C ′ that

|y1 − y0|2n−1 ≤ Cη

= C ′
(
|x1 − x0|
|y1 − y0|

)1/2

,
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which yields finally, for another constant C6 > 0,

|y1 − y0| ≤ C6|x1 − x0|
1

4n−1 .

From this we readily deduce that Gφ is single valued, moreover Gφ ∈ C
1

4n−1

loc (Ω). Since

−∇xc(x, yi) = ∇φ(xi), i = 0, 1, and ∇xc is Lipschitz, this yields also φ ∈ C1, 1
4n−1

loc (Ω).

C1,β estimates for data satisfying (23) We can refine the argument: Let again ν = G#
φ dVol

and F be defined by

F (V ) = sup
{

Vol(Gφ(B)), B ⊂ Ω a ball of volume V
}

(53)

= sup
{
ν(B), B ⊂ Ω a ball of volume V

}
.

Then, by Proposition 5.6, we have F (Vol (Bη(xm))) ≥ Vol(Nµ{yθ, θ ∈ [1/4, 3/4]} ∩ Ω′), which
yields, using (51) and the definition of η in (35)

F

(
ωnC

n
5

|x1 − x0|n/2

|y1 − y0|n/2

)
≥ C7|x1 − x0|(n−1)/2|y1 − y0|(3n−1)/2(54)

for some C7 bounded away from 0, with ωn the volume of the n-dimensional unit ball. Assume
that F (V ) ≤ CV κ for some κ ∈ R. Note that ν ∈ Lp implies the (stronger) bound F (V ) =
o(V 1−1/p), hence it is natural to write κ = 1− 1/p for some p ∈]1,+∞], and the condition

F (V ) ≤ CV 1−1/p(55)

is then equivalent to condition (23) for ν. We obtain from (54) and (55) that

|y1 − y0|2n−1+ 1
2

(1−n
p

) ≤ C8|x1 − x0|
1
2

(1−n
p

).

We see first that we need p > n, and, setting α = 1− n/p, we obtain

|y1 − y0| ≤ C9|x1 − x0|
α

4n−2+α .

This yields Hölder continuity for Gφ. Then we use that ∇φ(x) = −∇xc(x,Gφ(x)) and the
smoothness of c to obtain a similar Hölder estimate for ∇φ.

C1 estimates for data satisfying (24) We only assume condition (24) for ν = G#
φ dVol,

which we can rewrite under the following form:

F (V ) ≤
[
f(V 2/n)

]2n−1
V 1−1/n,(56)

for some increasing f : [0, 1]→ R+, with limV→0 f(V ) = 0, F being defined in (53). Consistently

with (43), we can assume that, as x1 goes to x0, |x1−x0|
|y1−y0| goes also to 0. Using (56) in (54), we

get for some C10, C11 bounded away from 0 and infinity,

f 2n−1

(
C10
|x1 − x0|
|y1 − y0|

)
≥ (C11|y1 − y0|)2n−1,
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hence we get that |y1 − y0| goes to 0 when |x1 − x0| goes to 0. Then, let g be the modulus of
continuity of Gφ in Ωδ; g satisfies:
∀u ≤ Rδ, either g(u) ≤ max{u,Γu1/5} or

f

(
C10

u

g(u)

)
≥ C11g(u),

which is equivalent to

u ≥ f−1(C11g(u))
g(u)

C10

,

which is in turn equivalent to

g(u) ≤ ω(u),

where ω is the inverse of z → f−1(C11z)
z

C10

. It is easily checked that limr→0+ ω(r) = 0. This

shows the continuity of Gφ. Finally we have ∇φ(x) = −∇xc(x,Gφ(x)), and the continuity of
∇φ is asserted.

�
Remark. The power β = α

4n−2+α
is not optimal for example if n = 1, p = +∞, for which

the C1,1 regularity is trivial, but note that in order to obtain this bound, we had to assume
(43). Hence the conclusion should be: either φ is C1,1, or φ is C1,1/5 or φ is C1,β. Note that
β ≤ 1/7 for n ≥ 2.

Proof of Theorem 3.4 In Proposition 5.9, we use a bound on G#
φ dVol. However, in Theorem

3.4, we only have Gφ#µ1 = µ0, and as we we do not want to assume that µ1 ∈ L1(Rn), this

does not imply necessarily that G#
φ µ1 = µ0 (See Definition 2.12 and the subsequent discussion).

Hence we need the following proposition to finish the proof:

Proposition 5.11 Let φ be c-convex on Ω, with Gφ(Ω) ⊂ Ω′. Assume that Gφ#µ0 = µ1.
Assume that µ1 ≥ mdVol on Ω′. Then for all ω ⊂ Ω, we have

µ0(ω) ≥ mVol(Gφ(ω)), and hence, G#
φ dVol ≤ 1

m
µ0.

Proof. In Ω′ we consider N = {y ∈ Ω′,∃x1 6= x2 ∈ Ω, Gφ(x1) = Gφ(x2) = y}. Then N =
{y ∈ Ω′, φc is not differentiable at y}. Hence Vol(N) = 0, and Vol(Gφ(ω) \ N) = Vol(Gφ(ω)).
Moreover, on Gφ(ω) \N , G−1

φ is single valued. Then G−1
φ (Gφ(ω) \N) ⊂ ω. Hence,

µ0(ω) ≥ µ0(G−1
φ (Gφ(ω) \N))

= µ1(Gφ(ω) \N)

≥ mVol(Gφ(ω) \N)

= mVol(Gφ(ω)).

�
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Proof of the boundary regularity This part is easy: under the assumptions of Theorem
3.5, the density µ0 satisfies (23) with p > n (resp. satisfies (24)). Hence Theorem 3.4 applies
and φ ∈ C1,β

loc (Ω) (resp. φ ∈ C1
loc(Ω)). Since Ω2 is compactly contained in Ω, we conclude the

boundary regularity on Ω2. This proves Theorem 3.5. �
Remark. This proof of the boundary regularity is very simple because we have interior

regularity even when µ0 vanishes. This is not the case for the classical Monge-Ampère equation,
and the boundary regularity requires that both Ω and Ω′ are convex, and is more complicated
to establish (see [6]).

We now show that there is indeed equivalence between assumption As at a point x and the
conclusion of Proposition 5.1. This is a quantitative version of Theorem 3.2.

Proposition 5.12 Assume that at a point x0 for all y0, y1, for y1/2 the ’middle’ point of
[y0, y1]x0, we have

φ̄(x) ≥ −c(x, y1/2) + c(x0, y1/2) + δ0|y0 − y1|2|x− x0|2 +O(|x− x0|3)

with φ̄ as above. Then the cost function satisfies assumption As at x0 with C0 = Cδ0, for some
constant C > 0 that depends on the bound in A2.

Proof. The proof follows the same lines as the proof of Theorem 3.1, and is omitted here.
�

6 Proof of Theorem 3.8

We consider condition Aw at (x0, y = x0). We recall that

Sc(x0, x0)(ξ, ν) = −D2
pνpνD

2
xξxξ

[(x, p)→ c(x,Tx0(p))].

for any ν, ξ in Tx0M . Let us first take a normal system of coordinates at x0, so that we will
compute

Q = −D2
ttD

2
ss[(x, p)→ c(Tx0(tξ),Tx0(sν))].

Let us write a finite difference version of this operator. We first introduce y− = Tx0(−hν), y+ =
Tx0(hν), x− = Tx0(−hξ), x+ = Tx0(hξ). We use the usual second order difference quotient, for
example

D2
xξ,xξ

c(x,Tx0(p)) = lim
h→0

1

h2
(c(x+, x0)− 2c(x0, x0) + c(x−, x0)).

(Of course we have c(x0, x0) = 0.) We will have, as h goes to 0,

lim
h→0

1

h4

( ∑
i,j=+,−

c(xi, yj)− 2
∑
i=+,−

(c(xi, x0) + c(yj, x0))

)
= −Q.
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Rearranging the terms, we find that the left hand side of the previous identity is equal to∑
i,j=+,−

[c(xi, yj)− c(x0, xi)− c(x0, yj)].

Each of the terms inside brackets has a simple geometric interpretation: consider the triangle
with vertices (x0, xi, yj) whose sides are geodesics. This is a square angle triangle. If the metric
is flat, by Pythagoras Theorem, the term inside the brackets is 0. In the general case, a standard
computation shows that it is equal to −1

6
κ(x0, ξ, ν)h4 + o(h4) where κ(x0, ξ, ν) is the sectional

curvature at x0 in the two-plane generated by ξ, ν. Hence, we get that Q = (2/3)κ(x, ξ, ν).
Now to reach the more general formula of Theorem 3.8, we use the following expansion of

the distance that Cédric Villani communicated us:

Lemma 6.1 Let M be a smooth Riemannian manifold. Let γ1, γ2 be two unit speed geodesics
that leave point x0 ∈ M . Let θ be the angle between γ̇1(0) and γ̇2(0) (measured with respect to
the metric), let κ be the sectional curvature of M at x0 in the 2-plane generated by γ̇1(0), γ̇2(0).
Then we have

d2(γ1(t), γ2(t)) = 2(1− cos(θ))(1− κ

6
(cos2(θ/2))t2 +O(t4))t2)2.

Then, we obtain easily, following the same lines as in the case looked above that

Sc(x0, x0)(ξ, ν) = (2/3)κ(x0, ξ, ν)(|ξ|2g|ν|2g − (ξ, ν)2
g),

where (·, ·)g, | · |g denote respectively the scalar product and the norm with respect to g. This
proves the Theorem. �

6.1 Counterexample to regularity for a manifold with negative cur-
vature

Consider the two dimensional surface H = {z = x2 − y2} ⊂ R3, endowed with the Riemannian
metric inherited from the canonical metric of R3. Then H has negative sectional curvature
around 0. For r sufficiently small, Ω = H ∩ Br(0) is c-convex with respect to itself. Consider
the function

φ̄(x) = max{−d2/2(X,X0),−d2/2(X,X1)},

where X0 = (0, a,−a2), X1 = (0,−a,−a2). Then, as shown by our proof of Theorem 3.1, for
a small enough, no sequence of C1 c-convex potentials can converge uniformly to φ̄ on Ω. Let
µ0 to be the Lebesgue measure of Ω, and µ1 = 1

2
(δX0 + δX1). We have Gφ̄#µ0 = µ1. Let

µε1 ∈ C∞(Ω̄) be a positive mollification of µ1 so that its total mass remains equal to 1, and that
preserves the symmetries with respect to x = 0 and y = 0. Let φn be such that Gφn #µ0 = µn.
Then, for n large enough, φn is not differentiable at the origin. Indeed, for symmetry reasons,
0 belongs to the subdifferential of φn at 0, on the other hand, φn converges uniformly to φ̄,
and we know from the fact that Aw is violated at 0 that −φ̄− c(·, 0) does not reach its global
maximum on Ω at 0.
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7 Appendix

Proof of proposition 2.14 We first prove the “intrinsic” part. In order to show this, we
consider γ a C2 curve in Ω defined in a neighborhood of 0, such that

γ(0) = x0,(57)

γ̇(0) = ξ.(58)

We then consider the quantity

Qγ = D2
ttD

2
ss

[
(s, t)→ c(γ(t),Tx0(p0 + sν))

]∣∣∣
t,s=0

.

We show that this quantity is independent of the choice of γ. We have

Qγ = D2
ss

(
s→ D2

ξξc(x0,Tx0(p0 + sν)) +Dxc(x0,Tx0(p0 + sν)) · γ̈(0)
)

= D2
ss

(
s→ D2

ξξc(x0,Tx0(p0 + sν))− (p0 + sν) · γ̈(0)
)

= D2
ss

(
s→ D2

ξξc(x0,Tx0(p0 + sν))
)
,

where the second line follows from the very definition of the c-exponential map. Hence, the
value of the curvature is independent of γ̈(0), and therefore of the choice of γ as long as it
satisfies (57, 58). One can now choose around x0 a system of geodesic coordinates, which yields
the equivalence of the definitions (19) and (20). Then, the second part of Proposition 2.14
follows by taking as new coordinates around x0 the c-geodesics with respect to y0, which yields

Sc(x0, y0)(ξ, ν) = D2
pνpνqξ̃qξ̃

[c(Ty0(q),Tx0(p))]
∣∣∣
q0=−∇yc(x0,y0), p0=−∇xc(x0,y0)

,(59)

where ξ̃ is chosen such that

DqT
∗
y0

(q0) · ξ̃ = ξ.

The condition ξ ⊥ ν nows reads (DqT
∗
y0

(q0) · ξ̃) ⊥ ν or equivalently [Dx,yc]
−1 · (ν, ξ̃) = 0. Then,

identity (21) follows by a symmetric argument.
�

Proof of Proposition 3.3. We prove only the last point, the other points being elementary.
Consider on Rn a measure locally equal to µ0 = Ln−1⊗µ, where Ln−1 is the n− 1-dimensional
Lebesgue measure, and µ is a probability measure on [0, 1] equal to the derivative of the Devil’s
staircase. Then, µ /∈ L1. On the other hand, for all [a, b] ⊂ [0, 1], µ([a, b]) ≤ |b− a|α, for some
α ∈ (0, 1]. Then, for x = (x1, .., xn),

µ0(Br(x)) ≤ Crn−1µ[xn − r, xn + r]) ≤ Crn−1+α = Crn(1−1/p)

for some p > n. Hence µ0 /∈ L1
loc and µ0 satisfies (23) for some p > n.
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Proof of Proposition 4.1 We know (see [32, chapter 2]) that there exists π a probability
measure on Rn × Rn, with marginals µ and ν, and such that∫

Rn
φ(x)dµ(x) + ψ(x)dν(x) = −

∫
c(x, y)dπ(x, y),

and moreover, there exists φ̄ a c-convex potential such that

supp(π) ⊂ {(x,Gφ̄(x)), x ∈ Rn}.

Let us decompose π as π = µ⊗γx, where for dµ almost all x ∈ Rn , γx is a probability measure
on Rn and γx is supported in Gφ̄(x). Hence we have∫

Rn
dµ(x)

[∫
Rn
dγx(y)(φ(x) + ψ(y)− c(x, y))

]
= 0.

This implies that for dµ a.e. x, for dγx a.e. y, we have y ∈ Gφ(x). Since for dµ a.e. x, we have
y ∈ Gφ̄(x) dγx a.s., we deduce that for dµ a.e. x, (and hence for Lebesgue a.e. x, since µ > 0
a.e.), we have Gφ̄(x) ∩ Gφ(x) 6= ∅. This implies that ∇φ = ∇φ̄ Lebesgue a.e., and that φ − φ̄
is constant. This shows that φ is uniquely defined up to a constant. Now the pair ψc∗, ψ can
only improve the infimum (10) compared to (φ, ψ), hence it is also optimal. Hence ψc∗ is also
uniquely defined up to a constant. If ψ is c*-convex, then ψc∗c = ψ, and ψ is thus uniquely
defined.

�

Proof of Lemma 5.10 From A1, A2, for all xm ∈ Ω, ψ : y → −∇xc(xm, ·) is a diffeomor-
phism from Ω′ to −∇xc(xm,Ω

′). Then

ψ (Nη ([y0, y1]xm) ∩ Ω′) = ψ (Nη ([y0, y1]xm)) ∩ ψ (Ω′) .

Letting pi = −∇xc(xm, yi), i = 0, 1, using A1, A2, there exists C > 0 such that

NCη ([p0, p1]) ⊂ ψ (Nη ([y0, y1]xm)) .

Moreover, as Ω′ is c-convex with respect to xm, ψ(Ω′) is a convex set.
Then we claim the following: for U ⊂ Rn convex, for u, v ∈ U , the function

r → Vol(Nr([u, v]) ∩ U)/Vol(Nr([u, v]))

is non-increasing. Indeed, by convexity of U , for w ∈ [u, v], if w+w′ ∈ Br(w)∩U , for θ ∈ [0, 1],
w + θw′ ∈ Bθr(w) ∩ U . Then the claim follows easily.

Hence, we have

Vol (ψ (Nη ([y0, y1]xm) ∩ Ω′))

≥ Vol (NCη ([p0, p1]) ∩ ψ(Ω′))

≥ Vol (NCη ([p0, p1])) Vol (N1 ([p0, p1]) ∩ ψ(Ω′)) Vol−1 (N1 ([p0, p1])) ,
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whenever η is small enough so that Cη ≤ 1. By compactness, one has

Vol (N1 ([p0, p1]) ∩ ψ(Ω′)) Vol−1 (N1 ([p0, p1])) ≥ C(Ω′).

Moreover, for C > 0, there exists a constant C ′ > 0 such that

Vol (NCη ([p0, p1])) ≥ C ′Vol (Nη ([p0, p1]))

for all η > 0. Then, as ψ is a smooth diffeomorphism, one has

Vol (Nη ([y0, y1]xm) ∩ Ω′) /Vol (Nη ([y0, y1]xm))

≥ C(c,Ω,Ω′)Vol (ψ (Nη ([y0, y1]xm) ∩ Ω′)) /Vol (ψ (Nη ([y0, y1]xm))) .

�
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