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Abstract

We give a necessary and sufficient condition on the cost function so that the map
solution of Monge’s optimal transportation problem is continuous for arbitrary smooth
positive data. This condition was first introduced by Ma, Trudinger and Wang [22, 29]
for a priori estimates of the corresponding Monge-Ampere equation. It is expressed by
a so-called cost-sectional curvature being non-negative. We show that when the cost
function is the squared distance of a Riemannian manifold, the cost-sectional curvature
yields the sectional curvature. As a consequence, if the manifold does not have non-
negative sectional curvature everywhere, the optimal transport map cannot be continuous
for arbitrary smooth positive data. The non-negativity of the cost-sectional curvature
is shown to be equivalent to the connectedness of the contact set between any cost-
convex function (the proper generalization of a convex function) and any of its supporting
functions. When the cost-sectional curvature is uniformly positive, we obtain that optimal
maps are continuous or Holder continuous under quite weak assumptions on the data,
compared to what is needed in the Euclidean case. This case includes the quadratic cost
on the round sphere.
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Given A, B two topological spaces, a cost function ¢: A x B — R, and pq, 11 two probability
measures respectively on A and B, Monge’s problem of optimal transportation consists in
finding among all measurable maps 7' : A — B that push forward po onto p; (hereafter
Tyupio = 1) in the sense that

(1)

VE C B Borel , 1 (E) = uo(T'(E)),



a map that realizes

(2) Argmin{ /Ac(x,T(x))d,ug(a:),T#uo = ,ul}.

Optimal transportation has undergone a rapid and important development since the pioneering
work of Brenier, who discovered that when A = B = R™ and the cost is the distance squared,
optimal maps for the problem (2) are gradients of convex functions [1] (see also [20] where the
connection with gradients was first proved). Following this result and its subsequent extensions,
the theory of optimal transportation has flourished, with generalizations to other cost functions
8, 16], more general spaces such as Riemannian manifolds [23], applications in many other areas
of mathematics such as geometric analysis, functional inequalities, fluid mechanics, dynamical
systems, and other more concrete applications such as irrigation, cosmology.

When A, B are domains of the Euclidean space R”, or of a Riemannian manifold, a common
feature to all optimal transportation problems is that optimal maps derive from a (cost-convex)
potential, which, assuming some smoothness, is in turn solution to a fully non-linear elliptic
PDE: the Monge-Ampere equation. In all cases, the Monge-Ampere equation arising from an
optimal transportation problem reads in local coordinates

(3) det(D2¢ - A(IL‘, v¢)) = f(iL‘, ng)v

where (x,p) — A(z, p) is a symmetric matrix valued function, that depends on the cost function
¢(x,y) through the formula

(4) A(x,p) = —D? c(x,y) for y such that — V,c(z,y) = p.

That there is indeed a unique y such that —V,c(z,y) = p will be guaranteed by condition A1
given hereafter. The optimal map will then be

r—y:—=Vyc(r,y) = Vo(x).

In the case A = 0, equation (3) was well known and studied before optimal transportation
since it appears in Minkowsky’s problem: find a convex hypersurface with prescribed Gauss
curvature. In the case of optimal transportation, the boundary condition consists in prescribing
that the image of the optimal map equals a certain domain. It is known as the second boundary
value problem.

Until recently, except in the particular case of the so-called reflector antenna, treated by
Wang [37] (see also [11] for C! regularity), the regularity of optimal maps was only known in
the case where the cost function is the (Euclidean) squared distance c(x,y) = |x — y|?, which
is the cost considered by Brenier in [1], for which the matrix A in (3) is the identity (which
is trivially equivalent to the case A = 0). Those results have involved several authors, among
which Caffarelli, Urbas , and Delanoé. An important step was made recently by Ma, Trudinger
and Wang [22], and Trudinger and Wang [29], who introduced a condition (named A3 and A3w
in their papers) on the cost function under which they could show existence of smooth solutions
to (3). Let us give right away this condition that will play a central role in the present paper.
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Let A =Q, B = Q' be bounded domains of R™ on which the initial and final measures will be
supported. Assume that ¢ belongs to C*(Q x ). For (z,y) € (2 x ), (&,v) € R" x R, we
define

(5) Gc(l’,y)(f, V) = Dikpl‘Aij 515] Vv (ZL’,p), p= —ch(l’, y)

Whenever £, v are orthogonal unit vectors, we will say that &.(z,y)(&,v) defines the cost-
sectional curvature from x to y in the directions (&,v). As we will see in Definition 2.13, this
definition is intrinsic. Note that this map is in general not symmetric, and that it depends
on two points x and y. The reason why we use the word sectional curvature will be clear in
a few lines. We will say that the cost function ¢ has non-negative cost-sectional curvature on

(Q x ), if
(6) Sz, y)(&v) >0 V(r,y) € (Ax ), V(Ev) e R" xR, € L.

A cost function satisfies condition Aw on (2x ') if and only if it has non-negative cost-sectional
curvature on (2 x ), i.e. if it satisfies (6).

Under condition Aw and natural requirements on the domains 2, ', Trudinger and Wang
[29] showed that the solution to (3) is globally smooth for smooth positive measures p, p1. They
showed that Aw is satisfied by a large class of cost functions, that we will give as examples
later on. Note that the quadratic cost satisfies assumption Aw. This result is achieved by
the so-called continuity method, for which a key ingredient is to obtain a priori estimates on
the second derivatives of the solution. At this stage, condition Aw was used in a crucial way.
However, even if it was known that not all cost functions can lead to smooth optimal maps,
it was unclear whether the condition Aw was necessary, or just a technical condition for the
a-priori estimates to go through.

In this paper we show that the condition Aw is indeed the necessary and sufficient condition
for regularity: one can not expect regularity without this condition, and more precisely, if
Se(z,y)(& v) <0 for (z,y) € (2 xQ),& L veR" one can immediately build a pair of C*
strictly positive measures, supported on sets that satisfy the usual smoothness and convexity
assumptions, so that the optimal potential is not even C*, and the optimal map is therefore
discontinuous. This result is obtained by analyzing the geometric nature of condition (6). Let
us first recall that the solution ¢ of the Monge-Ampere equation is a priori known to be cost-
convex (in short c-convex), meaning that at each point x € €, there exist y € )’ and a value
¢°(y) such that

—¢°(y) — c(x,y) = (),
—¢°(y) — (2, y) < ¢(a'), Va' € Q.

The function —¢°(y) — c(z,y) is called a supporting function, and the function y — ¢°(y) is
called the cost-transform (in short the c-transform) of ¢, also defined by

¢°(y) = sup{—c(z,y) — é(z)}.

€



(These notions will be recalled in greater details hereafter.) We prove that the condition Aw
can be reformulated as a property of cost-convex functions, which we call connectedness of the
contact set:

(7) For all z € Q, the contact set Gy(z) = {y : ¢°(y) = —¢(z) — c(x,y)}

is connected.

Assuming a natural condition on €' (namely its c-convexity, see Definition 2.9) this condition
involves only the cost function since it must hold for any ¢¢ defined through a c-transform.

A case of special interest for applications is the generalization of Brenier’s cost %|l‘ —y|? to
Riemannian manifolds, namely c(z,y) = %dQ(x, y). Existence and uniqueness of optimal maps
in that case was established by McCann [23], and further examined by several authors, with
many interesting applications in geometric and functional analysis (for example [12, 25]). The
optimal map takes the form z — exp,(V¢(z)) for ¢ a c-convex potential and is called a gradient
map. Then, a natural question is the interpretation of condition Aw and of the cost-sectional

curvature in this context. We show that for some universal constant K,
Cost-sectional curvature from z to £ = K - Riemannian sectional curvature at x.

(We mean there that the equality holds for every 2-plane and actually K = 2/3.) As a di-
rect consequence of the previous result, the optimal (gradient) map will not be continuous for
arbitrary smooth positive data if the manifold does not have non-negative sectional curvature
everywhere. Although the techniques are totally different, it is interesting to notice that in
recent works, Lott & Villani [34], and Sturm [26] have recovered the Ricci curvature through a
property of optimal transport maps (namely through the displacement convexity of some func-
tionals). Here, we somehow recover the sectional curvature through the continuity of optimal
maps.

We next investigate the continuity of optimal maps under the stronger condition of uniformly
positive cost-sectional curvature, or condition As:

(8) 3Co>0: &clz,y,&,v) = ColéP|vf*, V(w,y) € (Ax Q),(&,v) ER" xR™, € Lv.

We obtain that the (weak) solution of (3) is C'' or C** under quite mild assumptions on the
measures. Namely, for B,.(z) the ball of radius r and center x, y1; being bounded away from 0, we
need po(B,(x)) = o(r"~1) to show that the solution of (3) is C' and po(B,(x)) = O(r"?),p < 1
to show that it is C*, for @ = a(n,p) € (0,1). Those conditions allow g, it; to be singular
with respect to the Lebesgue measure and p to vanish.

This result can be seen as analogous to Caffarelli’s C*® estimate [5] for a large class of cost
functions and related Monge-Ampere equations. It also shows that the partial regularity results
are better under As than under Aw, since Caffarelli’s C1* regularity result required pg, jt1 to
have densities bounded away from 0 and infinity, and it is known to be close to optimal [35].

In a forthcoming work [21] we shall prove that the quadratic cost on the sphere has uniformly
positive cost-sectional curvature, i.e. satisfies As. We obtain therefore regularity of optimal
(gradient) maps under adequate conditions.



The rest of the paper is organized as follows: in section 2 we gather all definitions and
results that we will need throughout the paper. In section 3 we state our results. Then each
following section is devoted to the proof of a theorem. The reader knowledgeable about the
subject might skip directly to section 3.

2 Preliminaries

2.1 Notation

Hereafter dVol denotes the Lebesgue measure of R™ and B,.(z) denotes a ball of radius r centered
at x. For 6 > 0, we set classically Q5 = {z € Q,d(x,09) > §)}. When we say that a function
(resp. a measure) is smooth without stating the degree of smoothness, we assume that it is
C*°-smooth (resp. has a C*°-smooth density with respect to the Lebesgue measure).

2.2 Kantorovitch duality and c-convex potentials

In this section, we recall how to obtain the optimal map from a c-convex potential in the
general case. This allows us to introduce definitions that we will be using throughout the
paper. References concerning the existence of optimal map by Monge-Kantorovitch duality are
[1] for the cost |z — y|?, [16] and [8] for general costs, [23] for the Riemannian case, otherwise
the book [32] offers a rather complete reference on the topic.

Monge’s problem (2) is first relaxed to become a problem of linear programming; one seeks
now

9) 7 = inf { /Rann c(x,y)dr(z,y); 7€ H(,ug,ul)}

where TI(1, pt1) is the set of positive measures on R" x R™ whose marginals are respectively
po and py. Note that the (Kantorovitch) infimum (9) is smaller than the (Monge) infimum
of the cost (2), since whenever a map T pushes forward j onto pu, the measure 7p(z) =
po(x) @ dre) (y) belongs to TI(gr, ).

Then, the dual Monge-Kantorovitch problem is to find an optimal pair of potentials (¢, )
that realizes

1) T=sw{- [e@dul) - [B@dn@so) + v 2 o)}

The constraint on ¢, leads to the definition of c¢(c*)-transforms:

Definition 2.1 Given a lower semi-continuous function ¢ : Q@ C R" — R U {400}, we define
its c-transform at y € € by

(11) ¢“(y) = sup{—c(z,y) — é(z)}.

€



Respectively, for : ' C R™ — R also lower semi-continuous, define its ¢*-transform at x € Q
by

(12) 7 () = sup{—c(z,y) — P(y)}.

ye

A function is said cost-convex, or, in short, c-convez, if it is the c*-transform of another
function ¢ = QO — R, die. for v € Q, ¢(x) = supyeq{—clz,y) — ¥(y)}, for some lower
semi-continuous 1 : ' — R. Moreover in this case ¢°* := (¢°)* = ¢ on Q (see [32]).

Our first assumption on ¢ will be:
A0 The cost-function ¢ belongs to C*(2 x ).

We will also always assume that §2,€) are bounded. These assumptions are not the weakest
possible for the existence/uniqueness theory.

Proposition 2.2 If ¢ is Lipschitz and semi-concave with respect to x, locally uniformly with
respect to y, and if ' is bounded, ¢°¢ will be locally semi-convexr and Lipschitz. In particular,
this holds under assumption AQ. The symmetric statement holds for .

By Fenchel-Rockafellar’s duality theorem, we have Z = 7. One can then easily show that the
supremum (10) and the infimum (9) are achieved. Since the condition ¢(z) + ¥(y) > —c(x,y)
implies ¢ > ¢°, we can assume that for the optimal pair in J we have ¢ = ¢¢ and ¢ = ¢°*.
Writing the equality of the integrals in (9, 10) for any optimal v and any optimal pair (¢, ¢)
we obtain that v is supported in {qb(x) + ¢°(y) + c(z,y) = 0}. This leads us to the following

definition:

Definition 2.3 (Gradient mapping) Let ¢ be a c-convex function. We define the set-valued
mapping Gy by

Golw) = {y € ¥, 9(x) + ¢°(y) = —c(w,9) }.
For all v € Q, Gy(x) is the contact set between ¢¢ and its supporting function —¢(z) — c(x,-).

Noticing that for all y € Gy(z), ¢(-) + c(-, y) has a global minimum at z, we introduce / recall
the following definitions:

Definition 2.4 (subdifferential) For ¢ a semi-convex function, the subdifferential of ¢ at x,
that we denote 0¢(x), is the set

90(x) = {p € B",6(y) = 6(x) +p- (y — 2) + ollx — o)) }.

The subdifferential is always a convex set, and is always non empty for a semi-convex function.



Definition 2.5 (c-subdifferential) If ¢ is c-convez, the c-sub-differential of ¢ at z, that we
denote 0°¢(x), is the set

06(x) = { = Vacla,y),y € Gyla) }.
The inclusion ) # 0°¢(x) C 0¢(x) always holds.

We introduce now two assumptions on the cost-function, which are the usual assumptions made
in order to obtain an optimal map. For z = (x1,...,2,),y = (Y1...Yn), let us first introduce the
notation

Dgyc(% y) = [awiayj c(x, yﬂ 1<i,j<n’

A1 For all x € Q, the mapping y — —V,c(z,y) is injective on (V'

A2 The cost function ¢ satisfies det D2 ¢ # 0 for all (z,y) € Q x (V.

This leads us to the definition of the c-exponential map:

Definition 2.6 Under assumption A1, for x € Q we define the c-exponential map at x, which
we denote by T, such that

V(z,y) € (2 xQ), T (=Vac(z,y)) = y.

Moreover, under assumptions A0, A1, A2, and assuming that €)' is connected, there exists a
constant Cx > 0 that depends on c,€Q), Y, such that for all x € Q, for all py,ps € =V c(z, ),

i < |Sm(p2) _i{x(plﬂ

13
(13) Cz — |p2 — 1l

< Cs.

REMARK 1. The definition c-exponential map is again motivated by the case cost=distance
squared, where the c-exponential map is the exponential map. Moreover, notice the important
identity
(14) [D2,c 7! = —Dpzx|x,p}vzc(x’y).

REMARK 2. Anticipating the extension to Riemannian manifolds, we mention at this point
that this definition is intrinsic, i.e. it defines in a coordinate independent way the map ¥ as a
map going from M x T'M to M. In this setting, the gradients should be computed with respect
to the metric g of the manifold.

Under assumptions Al, A2, G is single valued outside of a set of Hausdorff dimension
less than or equal to n — 1, hence, if pg does not give mass to sets of Hausdorff dimension less
than n — 1, G4 will be the optimal map for Monge’s problem while the optimal measure in (9)
will be 7 = pp ® dg o(x)- D0, after having relaxed the constraint that the optimal = should be
supported on the graph of a map, one still obtains a minimizer that satisfy this constraint.



Notice that Monge’s historical cost was equal to the distance itself: ¢(x,y) = |r—y|. One sees
immediately that for this cost function, there is not a unique y such that —V,c(z,y) = Vo(x),
hence assumption A1 is not satisfied and, indeed, there is in general no uniqueness of the
optimal map.

We now state a general existence theorem, under assumptions that are clearly not minimal,
but that will suffice for the scope of this paper, where we deal with regularity issues.

Theorem 2.7 Let 2, be two bounded domains of R™. Let c € C*(Qx Y satisfy assumptions
AO0-A2. Let ug,puy be two probability measures on Q0 and €Y. Assume that po does not give
mass to sets of Hausdorff dimension less than or equal to n — 1. Then there exists a dug a.e.
unique minimizer T of Monge’s optimal transportation problem (2). Moreover, there exists ¢

c-convez on Q such that T' = G (see 2.8). Finally, if ¢ is c-conver and satisfies Gy ppio = p1,
then Vi =Vo dug a.e.

2.3 Notion of c-convexity for sets

Following [22, 29], we introduce here the notions that extend naturally the notions of convexity
/ strict convexity for a set.

Definition 2.8 (c-segment) Let p — T,.(p) be the mapping defined by assumption A1l. The
point x being held fixed, a c-segment with respect to x is the image by T, of a segment of R™.

If for vo, v, € R™ we have T, (v;) = y;,i = 0,1, the c-segment with respect to x joining yy to
y1 will be {yg, 0 € [0, 1]} where yg = T, (0vy + (1 — O)vy). It will be denoted [yo, Y1)

Definition 2.9 (c-convex sets) Let Q,Q C R™. We say that Y is c-convex with respect to
Q if for all yo,y1 € ',z € Q, the c-segment [yo, Y1 is contained in .

REMARK. Note that this can be said in the following way: for all z € ), the set —V c(z, )
is convex.

Definition 2.10 (uniform strict c-convexity of sets) For Q, Q' two subsets of R", we say
that ' is uniformly strictly c-convex with respect to Q if the sets {—V c(x, V) }peq are uniformly
strictly convex, uniformly with respect to x. We say that ) is uniformly strictly ¢*-convex with
respect to ' if the dual assertion holds true.

REMARK 1. In local coordinates, €2 is uniformly strictly c*-convex with respect to Q' reads

(15) [Di'Yj(l") - DpkAij(x,p)Vk]TiTj > €y > 0,

for some €y > 0, for all z € 9, p € —V,c(z, '), unit tangent vector 7 and outer unit normal
.
REMARK 2. When A does not depend on p, one recovers the usual convexity.



Remarks on the sub-differential and c-sub-differential The question is to know if we
have for all ¢ c-convex on €, for all z € Q, dp(x) = 0°¢(z). Clearly, when ¢ is c-convex and
differentiable at z,the equality holds. For p an extremal point of d¢(x), there will be a sequence
x, converging to x such that ¢ is differentiable at x, and lim, V¢(x,) = p. Hence, extremal
points of d¢(z) belong to 0°¢(z). Then it is not hard to show the

Proposition 2.11 Assume that Q) is c-convex with respect to Q. The following assertions are
equivalent:

1. For all ¢ c-convex on Q, x € Q, 0°¢p(x) = 0¢(x).
2. For all ¢ c-convex on ), x € Q, 0°p(x) is conver.
3. For all ¢ c-convex on 2, x € Q, Gy(x) is c-convex with respect to x.

4. For all ¢ c-convex on Q, x € ), Gy(x) is connected.

PROOF. We prove only that (4) implies (2). First, the connectedness of G4(x) implies the
connectedness of 0°¢(x), since V¢ is continuous. Then for zy € Q, yo,y1 € V', assume that yq
and y; both belong to Gy (). Letting

h(x) = max{—c(z,y0) + c(zo, yo) + d(x0), —c(x,y1) + c(x0,51) + ¢(70)},

one has ¢(x) > h(z) on ), with equality at = xy. Hence 0°h(zy) C 0°¢(xp). Since the
property (4) is satisfied, 9°h(zo) is connected, and as it is included in Oh(z() which is a segment,
it is equal to the segment [—V c(zo,yo), —Vc(x,y1)]. This shows that 0°¢(z) is convex.

O

2.4 The Monge-Ampere equation

In all cases, for ¢ a C? smooth c-convex potential such that G4xpo = p1, the conservation of
mass is expressed in local coordinates by the following Monge-Ampere equation

(16) det(D}c(w, Go(w)) + D?6) = | det Df el %ﬁl‘))’

where p; = du; /dVol denotes the density of p; with respect to the Lebesgue measure. (See [22]
for a derivation of this equation, or [12], [14].) Hence, the equation fits into the general form

(3).

2.5 Generalized solutions
Definition 2.12 (Generalized solutions) Let ¢ : Q — R be a c-convex function. Then

e ¢ is a weak Alexandrov solution to (16) if and only if
(17) for all B C 9, jio(B) = jn(Go(B)).

This will be denoted by g = Gj;f,ul.
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e ¢ is a weak Brenier solution to (16) if and only if
(18) for all B C Y, u(B') = uo(G5'(B)).

This is equivalent to p11 = Gyufo-

Alexandrov and Brenier solutions First notice that in the definition (18), uy is deduced
from i, while it is the contrary in (17). As we have seen, the Kantorovitch procedure (10)
yields an optimal transport map whenever o does not give mass to sets of Hausdorff dimension
less than n — 1. Moreover, the map G, will satisfy (18) by construction, and hence will be
a weak Brenier solution to (16). Taking advantage of the c-convexity of ¢ one can show that
whenever p; is absolutely continuous with respect to the Lebesgue measure, ijul is countably
additive, and hence is a Radon measure (see [22, Lemma 3.4]); then a Brenier solution is an
Alexandrov solution. Note that one can consider ug = Gfd\fol, this will be the Monge-Ampere
measure of ¢. Most importantly, for i, supported in €2, G4 410 = 1ordVol does not imply that
Gfd\/ol = Lo, except if €' is c-convex with respect to € (see [22]).

2.6 Cost-sectional curvature and conditions Aw, As

A central notion in the present paper will be the notion of cost-sectional curvature S.(x,y).

Definition 2.13 Under assumptions A0-A1-A2, one can define on T2 x T, the real-valued
map

(19) S(10,40) (€ V) = D s | (#:7) = —€(w, T (1)

z0,p0=—Vzc(x0,Y0)

When &, v are unit orthogonal vectors, S(xo,y0)(&, V) defines the cost-sectional curvature from
xy to yo in directions (&,v). The definition (19) is equivalent to the following:

(20) Sl o) (& v) = DD (5,8) = —e(expy, (t€), Tuq (po + )|

t,s=0

The fact that the definition (20) and (19) are equivalent follows from the following observation:

Proposition 2.14 The definition of & (xo, yo)(&, V) is intrinsic, i.e. depends only on (xo,yo) €
Qx Q and on (&, v) € T,y () X T,y (2), and not on the choice of local coordinates around xg
or yo. Moreover, it is symmetric: letting c*(y,z) = c(x,y), and T* be the c¢*-exponential map,
the identity

(21) Se(w0,%0)(&, V) = G0, 70) (7, §)

holds with ¥ = D, %, (po) - v,and £ = (D% (q0)] 7'+ &, with po as above and gy = —V (0, Yo)-
Notice that whenever & 1L v, one has §~ 1o

11



PrROOF. The proof is deferred to the appendix.
REMARK. The intrinsic nature of the cost-sectional curvature tensor has been observed
independently in [19)].

We are now ready to introduce the conditions:

As The cost-sectional curvature is uniformly positive i.e. there exists Cy > 0 such that for

all (z,y) € (2 x ), for all (v,£) € R" x R") with £ L v,

Gc(xv y)(£7 V) Z C’0|f|2|l/|2'
Aw The cost-sectional curvature is non-negative: As is satisfied with Cjy = 0.

REMARK ON THE SYMMETRY OF THE CONDITIONS ON c¢. Let ¢*(y,z) := ¢(z,y), from
Proposition 2.14, one checks that if ¢ satisfies Aw (resp. As) then ¢* satisfies Aw (resp. As
with a different constant). The conditions AQ and A2 are also clearly satisfied by ¢* if satisfied
by c.

2.7 The Riemannian case

The construction of optimal maps has been extended in a natural way to smooth compact
Riemannian manifolds by McCann in [23] for Lipschitz semi-concave costs. All the above
definitions can be translated unambiguously in the Riemannian setting. In particular, the
notions of c-exponential map, c-convexity are intrinsic notions (see the Remark 2 after Definition
2.6). The definition of cost-sectional curvature 2.13 extends also naturally to the Riemannian
setting. Since it has been proved in Proposition 2.14 that the value of the cost-sectional
curvature is coordinate-independent, this gives sense to conditions Aw, As on a Riemannian
manifold. However, one needs to restrict to the set of pairs (x,y) such that ¢ is smooth in a
neighborhood of (z,y), and this becomes an issue for costs that are functions of the distance:
Indeed, on a compact manifold, the distance can not be smooth on the whole of M x M (due
to the cut-locus). Hence the Riemannian case requires to weaken somehow assumption AO.
For z in M, we let Dom, be the set of y such that ¢(x,y) is smooth at (z,y). As developed by
the author in [21], and with P. Delanoé in [15], but also by Y. Kim and R. McCann [19], or by
C. Villani in [33], the relevant geometric condition on M that replaces A0 is the following: for
allx € M, T ' (Dom,) = —Vc(x, Dom,) is conver.

A case of interest is when c(-,-) = 2d?(-,-) with d(-, -) the distance function (quadratic cost).
Then, the c-exponential map is the exponential map, the map G, will be © — exp,(V,¢), the
gradient V, ¢ being relative to the Riemannian metric g. (We remind that gradient mappings
were first introduced by X. Cabré [2], to generalize the Alexandrov-Bakelman-Pucci estimate
on Riemannian manifolds.) Then, for x in M, we have Dom, = M \ cut-locus(z). In [21],
we address the problem of the quadratic cost on the sphere, as well as the cost c¢(z,y) =
—log(|z —y|), that appears in the design optimal reflector antenna. To establish our regularity
results, we need to show a-priori that T'(z) remains uniformly far from the boundary of Dom,.
This is precisely the object of [15].
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2.8 Previous regularity results for optimal maps

The regularity of optimal maps follows from the regularity of the c-convex potential solution of
the Monge-Ampere equation (16), the former being as smooth as the gradient of the latter. It
falls thus into the theory of viscosity solutions of fully non-linear elliptic equations [10], however,
the Monge-Ampere equation is degenerate elliptic. A very complete reference concerning the
regularity theory for the quadratic case are the lecture notes by John Urbas [31]. Two types of
regularity results are usually sought for this type of equations:

Classical regularity: show that the equation has classical C? solutions, provided the mea-
sures are smooth enough, and assuming some boundary conditions. Due to the log-concavity
of the Monge-Ampere operator, and using classical elliptic theory (see for instance [17]), C*>
regularity of the solution of (16) follows from C? a priori estimates.

Partial regularity: show that a weak solution of (16) is C'' or C'** under suitable condi-
tions. We mention also that W?2? regularity results can be obtained.

The Euclidean Monge-Ampeére equation and the quadratic cost This corresponds
to the case where the cost function is the Euclidean distance squared c(z,y) = |z — y|* (or
equivalently ¢(z,y) = —z-y), for which c-convexity means convexity in the usual sense, G(z) =
V¢(x), and equation (16) takes the following form

2, po()
22) D0 = o)

Here again, we have p; = duo/dVol, i = 0,1. Classical regularity has been established by
Caffarelli [3, 7, 6, 9], Delanoé [13] and Urbas [30]. The optimal classical regularity result, found
in [3, 9], is that for C'“ smooth positive densities, and uniformly strictly convex domains, the
solution of (22) is C*%(Q)). Partial regularity results have been obtained by Caffarelli [4, 5, 7, 6],
where it is shown that for pg, 1 having densities bounded away from 0 and infinity, the solution
of (22) is C*. Thanks to counterexamples by Wang [35] those results are close to optimal.

The reflector antenna The design of reflector antennas can be formulated as a problem of
optimal transportation on the unit sphere with cost equal to — log |z —y|. The potential (height
function) ¢ : S"! — R* parametrizes the antenna A as follows: A = {z¢(z),z € S*"'}. Then
the antenna is admissible if and only if ¢ is c-convex on S"~! for c¢(x,y) = —log |z — y|, and
Gy(x) yields the direction in which the ray coming in the direction x is reflected. This is the
first non quadratic cost for which regularity of solutions has been established. Wang [36, 37]
(see also Guan and Wang [18] where the results are extended to higher dimension) has shown
classical C* (and hence C™) regularity of solutions of the associated Monge-Ampere equation
when the densities are smooth. In a recent work, with totally different techniques, Caffarelli,
Huang and Gutierrez [11] have shown C! regularity for the solution (i.e. continuity of the
optimal map) under the condition that the measures ug and p; have densities bounded away
from 0 and infinity. This case of application will also be addressed by our forthcoming paper
21].
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General costs and the conditions As, Aw Recently an important step was achieved in
two papers by Ma, Trudinger, and Wang . They gave in the first paper [22] a sufficient condition
(As, called A3 in their paper) for C? (and subsequently C'*°) interior regularity. In the second
paper [29], they could lower this condition down to Aw (condition A3w in their paper) to
obtain a sufficient condition for global C? (and subsequently C'*°) regularity, assuming uniform
strict c-convexity and smoothness of the domains. Note that the result under Aw recovers the
results of Urbas and Delanoé for the quadratic cost. We mention that the results obtained in
22, 29] have been exposed by Trudinger in [27].

Theorem 2.15 ([29, 27]) Let Q,Q be two bounded domains of R"™. Assume that 2, are
strictly uniformly c,c*-convex with respect to each other Let c,c* satisfy A0-A1-A2 and Aw
on Qx . Let pg, puy be two probability measures on 2, having densities pg, p1. Assume that
po € C2(Q) is bounded away from 0, p; € C*(Q') is bounded away from 0. Then, for ¢ c-convex
on Q such that Ggupo = 1, ¢ € C3(Q) N C?* Q).

We also mention the continuity result obtained in [24] concerning optimal transportation be-
tween boundaries of uniformly convex domains, that might have some connections with the
present work.

3 Results

We present some answers to the following four questions:

1. Is there a sharp necessary and sufficient condition on the cost function which would
guarantee that when both measures have C*° smooth densities, and their supports satisfy
usual convexity assumptions, the solution of (16) ( and hence the optimal map) is C*
smooth 7

2. Is there a necessary and sufficient condition on the cost function and on the data under
which optimal maps are continuous ?

3. What are the cost-functions for which connectedness of the contact set holds (7) 7
4. When the cost is set to be the squared distance of a Riemannian manifold, what is the

meaning of conditions Aw, As in terms of the Riemannian metric 7

3.1 Condition Aw, connectedness of the contact set and regularity
issues

Answer to questions 1 and 3: Condition Aw is necessary and sufficient for reqularity of optimal
maps. Moreover Aw is equivalent to the connectedness of the contact set.

In the following theorem, “smooth” means C'*°-smooth. This is for simplicity, and one can
lower the smoothness assumptions on the domains and the measures, see [29].

14



Theorem 3.1 Let 2,€) be two bounded domains of R™. Let ¢ be a cost function that satisfies
A0, A1, A2 on (2 x ). Assume that 2,8 are smooth, uniformly strictly c-convez (resp.
c*-convex) with respect to each other. The following assertions are equivalent.

1. The cost function c satisfies Aw in Q x Q.

2. For g, pn smooth strictly positive probability measures in €, Q' there exists a c-convex
potential ¢ € C1(Q) such that Gyypg = 1.

3. For pg, pn smooth strictly positive probability measures in €, Q' there ewists a c-convex

potential ¢ € C(Q) such that Gyppo = f11.
4. For all ¢ c-convex in Q, for all x € Q, O°¢P(x) = Op(x).

5. For all ¢ c-conver in ), for all x € Q, the set {y : ¢(x) + ¢°(y) = —c(x,y)} is c-convex
with respect to x.

6. Continuously differentiable c-convexr potentials are dense among c-convex potentials for
the topology of local uniform convergence.

Hence, if condition Aw is violated at some points (xo,yo) € (2% ), there exist smooth positive
measures fio, 1 on Q, QY such that there exists no C c-convex potential satisfying Gsppo = i1

REMARK. Setting ¢*(y,z) = c(z,y) we have seen that &, > 0 implies & > 0. Hence all
of those assertions are equivalent to their dual counterpart.
We can add the following equivalent condition for Aw:

Theorem 3.2 Under the assumptions of Theorem 3.1, condition Aw holds if and only if, for
any xg € Q, (yo,y1) € &, letting ¢ be defined by

¢(x) = max{—c(z,y0) + c(xo, Yo), —c(z,y1) + c(wo, y1) },
for any yg € Yo, y1]z, (see Definition 2.8),
o(x) > —c(x,y0) + (o, Yo)
holds in €.

In other words, fp(z) = —c(x, yg) + c(xo, yp) which is the supporting function that interpolates
at zo (nonlinearly) between fo(z) = —c(x, yo) + (w0, yo) and fi(x) = —c(z,y1) + c(zo,v1), has
to remain below max{ fo, f1}.

REMARK 1. The function ¢ furnishes the counter-example to regularity when Aw is not
satisfied, since for a suitable choice of g, yo, 71 ¢ can not be approximated by C' c-convex
potentials.

REMARK 2. As shown by Propositions 5.1, 5.12, a quantitative version of Theorem 3.2
holds to express condition As.

REMARK 3. The assertions Point 1 = Points 2, 3, 6 belong to Trudinger and Wang
in [29]. We show here that condition Aw is necessary: if it is violated at some point, one
can always build a counterexample where the solution to (16) is not C' even with C°° smooth
positive measures and good boundary conditions (hence the optimal map is not continuous).
Moreover condition Aw is equivalent to a very natural geometric property of c-convex functions.
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3.2 Improved partial regularity under As

Partial answer to question 2: There is partial (i.e. C* and CY) regularity under As, requiring
much lower assumptions on the measures than what is needed in the quadratic case. There can
not be C! reqularity without Aw. When only Aw is satisfied, the question of C' regularity
remains open, except for the case c(x,y) = | — y|* treated by Caffarelli [7].

Let us begin by giving the two integrability conditions that will be used in this result. The
first one reads

For some p €|n, +oc],C,, > 0,
(23) po(Be(x)) < CMOE"(P%) for all e > 0,z € Q.
The second condition reads

For some f:RT — RT with lll% fle) =0,
(24) to(Be(x)) < f(e)e”(l_%) for all e > 0,2 € Q.

In order to appreciate the forthcoming theorem, let us mention a few facts on these integrability
conditions (the proof of this proposition is given at the end of the paper).

Proposition 3.3 Let py be a probability measure on R™.
1. If po satisfies (23) for some p > n, ug satisfies (24).
2. If po € LP(Q) for some p > n, py satisfies (23) with the same p.

3. If po € L™(Y), wo satisfies (24).

4. 1If ug satisfies (24), po does not give mass to set of Hausdorff dimension less than or equal
ton — 1, hence (24) guarantees the existence of an optimal map.

5. There are probability measures on Q that satisfy (23) (and hence (24)) and that are not
absolutely continuous with respect to the Lebesgue measure.

Then our result is

Theorem 3.4 Let ¢ be a cost function that satisfies assumptions AO, A1, A2, As on (2 x ),
Q, QY being bounded domains uniformly strictly c(resp ¢*)-convex with respect to each other. Let
Lo, 11 be probability measures respectively on 0 and ' C ', with W' c-convex with respect to
Q. Let ¢ be a c-convex potential on Q such that Gy upo = p11. Assume that p1n > mdVol on W/
for some m > 0.

1. Assume that pg satisfies (23) for some p >n. Let a« =1 — %, B = 555 Then for any
0 > 0 we have

Pllcrs@y < C,

and C depends only on 6 >0, C,, in (23), on m, on the constants in conditions A0, A1,
A2, As and on Cx in (13).
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2. If po satisfies (24), then ¢ belongs to C'(Qs) and the modulus of continuity of V¢ is
controlled by f in (24).

As an easy corollary of Theorem 3.4, we can extend the C! estimates to the boundary if the
support of the measure pq is compactly contained in §2.

Theorem 3.5 Assume in addition to the assumptions of Theorem 3.4 that pg is supported in
@, with w compactly contained in Q2. Then, if o satisfies (24), ¢ € CH (@) and if o satisfies
(23), ¢ € CYP(@), with 3 as in Theorem 3.4.

REMARK ON THE CONDITIONS ON §2,€Q. Our result holds true for py supported in any
subset w of 2 (hence not necessarily c¢*-convex), and p; supported in any subset w’ of €' c-
convex (but not necessarily strictly) with respect to 2. Hence what we need is the existence of
supersets €, Q" uniformly c(c*)-convex with respect to each other, in order to use the results of
[29]. The only point where we need this condition is during the proof of Proposition 5.6, where
we rely on Theorem 3.1 to assert d¢ = 0°¢. However, in [22], Ma, Trudinger and Wang proved
the following;:

Theorem 3.6 ([22]) Let ¢ satisfy A0, A1, A2, As, on Qx Y, ' being c-convex with respect
to Q. Then, for ug, p1 C? smooth positive probability measures on Q, €Y, the c-convex potential
¢ such that Ggypo = py is C* smooth inside €.

Using this result, Proposition 4.4 yields that for all ¢ c-convex on €2, 0°¢ = 0¢. Hence we
could have relaxed the assumptions of Theorem 3.4 on €2, ), only requiring {2’ to be c-convex
with respect to €2, (i.e. no c*-convexity on €2, no strict c-convexity of Q2'). Note that the proof
of Theorem 3.6 has been completed later on by Trudinger and Wang in [28], relying in part
on our Proposition 5.1 (which is an independent result). Thus we can now state the following
result:

Theorem 3.7 The results of Theorem 3.4 hold assuming only for €2, Q' that €V is c-convex with
respect to 2.

We mention that the results of Kim and McCann [19], obtained simultaneously with those of
28] but using different techniques, allow also to complete the proof of Theorem 3.6, under the
assumption that Q' and Q are c-(c*)-convex with respect to each other. This allows to drop
the strict convexity assumption in Theorem 3.4.

REMARK ON THE INTEGRABILITY CONDITIONS. The integrability conditions on g, pt1 are
really mild: we only ask that p; be bounded by below, and that po(B,) < r" Pforp>1(p>1
yields C' regularity) (see conditions (23) and (24) and the subsequent discussion). The conti-
nuity of the optimal map is also asserted in the case ug € L™ (that implies (24)), which is some-
how surprising: indeed D?¢ € L™ does not imply ¢ € C*, but here det(D?¢ — A(z, Vo)) € L™
implies ¢ € C!. In a forthcoming work, we shall show that our result adapts to the reflec-
tor antenna, hence improving the result obtained independently by Caffarelli, Gutierrez and
Huang [11] on reflector antennas. Moreover our techniques yield quantitative C'' estimates:
the exponent « can explicitly computed. Finally, our continuity estimates extends up to the
boundary (Theorem 3.5). This is achieved through a geometric formulation of condition As.
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A full satisfactory answer would include a general result of partial regularity under condition
Aw. This result is expected in view of the Euclidean case (since the quadratic cost is really the
limit case for condition Aw). Note that, in view of counterexamples given in [35], the results
under Aw can not be as good as under As, and can not be much better than Caffarelli’s results
[7] that require densities bounded away from 0 and infinity.

3.3 Conditions Aw, As for the quadratic cost of a Riemannian man-
ifold

We refer the reader to the remark 2. after the definition of the cost-sectional curvature (19)
where the intrinsic meaning of (19) on a manifold is discussed.

Partial answer to question 4: When the cost is the Riemannian distance squared, the cost-
sectional curvature at y = x equals (up a multiplicative constant) the Riemannian sectional
curvature

Theorem 3.8 Let M be a C* Riemannian manifold. Let c(x,y) = d*(x,y)/2 for all (z,y) €
M x M. Let &, be given by (19), Then, for all {,v € T, M,

Se(x,x)(,§) _ 2 : :
= — - Sectional Curvature of M at x in the 2-plane (&, v).
5l — (v 3

Hence if Aw (resp, As) is satisfied at (x,x), the sectional curvature of M at x is non-negative
(resp. strictly positive).

Corollary 3.9 Let M be a compact Riemannian manifold. If the sectional curvature of M is
not everywhere non-negative, there are smooth positive measures on M such that the optimal
map (for the cost function c(x,y) = d*(x,y)/2) is not continuous.

At the end of the proof of Theorem 3.8, we give a counterexample to regularity for a two-
dimensional manifold with negative sectional curvature.

This observation closes (with a negative answer) the open problem of the regularity of
optimal gradient maps when the manifold does not have non-negative sectional curvature ev-
erywhere. There is a partial converse assertion in the special case of constant sectional curva-
ture: The quadratic cost on the round sphere S"~! satisfies As. This will be the object of a
forthcoming work [21]. Hence our previous result can be adapted to this Riemannian case.

3.4 Examples of costs that satisfy As or Aw

We repeat the collection of cost that was given in [22], and [29].

o c(x,y) = +/1+ |z — y|? satisfies As.
o c(x,y) = /1 — |x — y|? satisfies As.

o c(z,y) = (14 |z — y|>)?/? satisfies As for 1 <p <2, |z —y|* < [ﬁ‘
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o c(x,y) = v —yl*+|f(x) —g(y)]® f,g : CHR™;R) convex (resp. strictly convex) with
IVfl,|Vg| < 1 satisfies Aw (resp. As).

o c(z,y) = :I:Il)|m —y[P,p # 0 and satisfies Aw for p = +2 and As for —2 < p < 1 (— only).
o ¢(z,y) = —log |xr — y| satisfies As on R” x R"\ {(z,z),z € R"}.

e The reflector antenna problem ([36]) corresponds to the case ¢(z,y) = —log|x — y| re-
stricted to S™. As pointed out in [29], this cost satisfies As on S*1 x S"71\ {x = y}.

e As shown in a forthcoming paper [21], the squared Riemannian distance on the sphere
satisfies As on the set S*™! x S"~1\ {x = —y}. Note that it is the restriction to S*~! of
the cost c(z,y) = 6(x,y), where 6 is the angle formed by x and y. (For those two cases,
see paragraph 2.7 where the meaning of conditions Aw, As on a Riemannian manifold is
discussed).
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4 Proof of Theorem 3.1

We begin with the following uniqueness result of independent interest:

Proposition 4.1 Let p,v be two probability measures on 2, , with € and € connected do-
mains of R™. Assume that either p or v is positive Lebesque almost everywhere in Q (resp.
in Q). Then, among all pairs of functions (¢,1) such that ¢ is c-convex, 1 is c¢*-convex, the
problem (10) has at most one minimizer up to an additive constant.

The proof of this proposition is deferred to the end of the paper.

4.1 Condition Aw implies connectedness of the contact set

We will begin with the following lemma:

Lemma 4.2 Let ¢ be c-convex. Let (¢c)e=o be a sequence of c-convex potentials that converges
uniformly to ¢ on compact sets of Q. Then, if p = =V c(xo,y) € 0d(x0), xog € Q,y € U, there
exists a sequence (T¢)eso that converges to xqy, a sequence (y)eso that converges to y such that
Pe = —Vac(xe,ye) € 00c(xe). Finally, p. converges to p.
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PrROOF. Let y = %,,(p), i.e. p = —V,c(xo,y). Since ¢, ¢, are c-convex and c¢ is semi-
concave, there exists K,r > 0 so that

Bx) = o) + Ko = wol/2 + (),
8e(z) 1= 0clw) + Kl = wo*/2 + e(a,y),

are convex on B,.(xy) compactly contained in €2. One can also assume, by subtracting a constant
that &(mo) = 0, and that qg(x) > 0 on 2. Finally, one can assume (by relabeling the sequence)
that on B,.(zg) we have |¢. — ¢| < e.

Consider then ¢! = ¢, + 8|x — 20|?/2 — e. We have ¢(z0) < 0, and on 9B,,(x), with p < r,

F(2) > dz)+op2/2 — 2
> 6u/2 — 2.

By taking p = ¢'/3,8 = 4¢'/3, we get that ¢ has a local minimum in B, (z), hence at some
point z. € B, (xo), we have

0¢c(x) > =Vye(ze,y) — K(ze — 20) — d(2e — 20).

Then we have |(K + §)(x. — x¢)| small, and thanks to A1, A2, there exists y. close to y such
that V,c(ze,ye) = Vac(ze, y) + K(xe — 29) + 6(xc — x0). Thus —¢.(x) — c(z,y.) has a critical
point at x.. This implies that p. = =V c(z,, ye) € 0pc(x,). Finally, since z. — z,y. — y, we
conclude p, — p.

0

Now we prove that 9°¢ = 0¢. In order to do this, we must show that if ¢ is c-convex, if
—¢(+) — c(+,y) has a critical point at zy, this is a global maximum.
We first have the following observation:

Lemma 4.3 Let ¢ be c-conver. Assume that —¢p — c(-,y) has a critical point at xo (i.e. 0 €
0¢(xg) + Vec(xo,y) ), and that it is not a global mazimum. Then ¢ is not differentiable at xy.

PROOF. Indeed, —¢(-) — ¢(-,y) has a critical point at zg, but we don’t have ¢(zg) +
¢°(y) = —c(wo,y). However, there is a point y’ such that ¢(xg) + ¢°(v') = —c(zo,y’). Hence,
{=V.c(xg,y), —Vec(xo,y)} € 00(x0), and we have V, c(zo,y) # Viec(xg,7y’) from assumption
Al

0

We show the following:

Proposition 4.4 Assume D holds. Let p = —V,c(xo,y) € 0p(xy) with ¢ c-conver. Then
—¢(+) — c(+,y) reaches a global mazimum at ;.

D C' c-convex functions are dense in the set {¢ c-convex on £, G4(Q) C } for the
topology of uniform convergence on compact sets of 2.
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PROOF. Assume the contrary, i.e. that —¢(z1) — c(z1,y) > —@(x¢) — c(xo,y) for some
z1 € Q. We use D: there exists a sequence of C' c-convex potentials (¢)c~o that converges to
¢. We use Lemma 4.2: there will exist a sequence ().~ such that z. — x¢ and Vo, (z.) —
—V.c(xg,y). Let y. be such that Vo.(z.) = —V.c(z,y.). Then y. — y. Since ¢, is C1, by
Lemma 4.3, x., the critical point of —¢.(-) — (-, y.) is necessarily a global maximum. Finally,
since ¢, converges locally uniformly to ¢, we see that —¢(-) — ¢(+,y) reaches at zy a global
maximum.

Lemma 4.5 Assume Q,Q) are bounded, uniformly strictly c-(c*-) convex with respect to each

other. Assume that c satisfies A0, A1, A2, Aw on Q x Q. Then D holds.

PROOF. As we will see, this result is implied immediately by the result of [29] combined
with Proposition 4.1. Let ¢ be c-convex. Denote p; = G441qdVol. Note that from Proposition
4.1, ¢ is the unique up to a constant c-convex potential such that G441qdVol = 1. Consider
a sequence of smooth positive densities (1)eo in €' such that p§dVol converges weakly-* to
i1, and has same total mass than p;. Consider ¢, such that G4 x1qdVol = pjdVol. From
29], ¢. is C* smooth inside Q. Then, by Proposition 4.1, up to a normalizing constant, ¢, is
converging to ¢, and V¢, is converging to V¢ on the points where ¢ is differentiable. O

Hence, under the assumptions of Lemma 4.5, d¢(x) = 0°¢(z). In view of Proposition 2.11,
the equality d¢(z) = 0°¢(x) for all ¢, x is equivalent to the c-convexity of the set

Golw) = {y: 6(2) + 9°(y) = —cl.9) }.

This shows that condition Aw is sufficient. O

4.2 Condition Aw is necessary for smoothness and connectedness of
the contact set

We now show that if Aw is violated somewhere in (€ x '), there will exist a c-convex potential
for which we don’t have d¢ = 9°. Assuming this, in view of Lemma 4.5 and Proposition 4.4,
this will imply that this potential can not be a limit of C'-smooth c-convex potentials. Hence,
considering the sequence (¢,)~o used in the proof of Lemma 4.5, this sequence will not be C*
for € smaller than some ¢;. This implies in turn that there exists smooth positive densities
to, 1 in €2, such that the c-convex potential ¢ satisfying G4 xpo = p1 is not C* smooth.

Assume that for some g € Q,y € Q',p = —V,c(xo,y), for some &, v unit vectors in R™ with
¢ L v, one has
(25) D2, [p = D2 cw, o)) = No > 0

Let yo = Ty (p — ev), y1 = 1oy (p + €v), with € small, and recall that y = T, (p). Hence y is the
'middle’ of the c-segment [yo, y1].. Let us define

(26) o) = max { = ez, yo) + (o, o), —c(w, 1) + (0, 1) }.
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(This function will be used often in the geometric interpretation of As, Aw. It is the “second
simplest” c-convex function, as the supremum of two supporting functions. It plays the role of
(21, ..., 2y) — |z1] in the Euclidean case.)

Note first that £ L v implies that & L (V,c(zo,y1) — Vac(xo,yo)). Consider near x; a
smooth curve y(t) such that v(0) = xg, ¥(0) = &, and such that for ¢ € [—d, ], one has

fo(y(1)) == —c(v(8), yo) + c(0, yo) = —c(v(t), 41) + c(x0, 11) == fr(7(1)).

Such a curve exists by the implicit function theorem, and it is C? smooth. On 7, we have

5= (ot 1)

since fo = fi on . Then we compare 3(fo + f1) with —c(z,y) + ¢(xo,y). By (25) we have

1
5 D?chg <x07y0> +Dx§x£ <x07y1) 2 D?cgﬂﬁg (l‘o,y) +C<€ NO)

where c(e, No) is positive for € small enough. Then of course V,c(zo,y) = 3[Vac(zo,y0) +
V.c(xo,y1)]. Hence we have, for e small enough,

(v(#))
(fo+ f1) (7 (1))

- [; (o, o) + Dy, )] — Dyl )] - (0) = 0) - (3(2) — 70)/2 + o)

1
|5 [D2wcclwo, vo) + D2y, )| = D2 e, )| 2/2 + of#)
> ce, No)t? /2 + o(t?).

[—C(v(t), y) + c(xo,y)] —

;
= [e(r(t).9) +ela9)] -

This will be strictly positive for ¢t € [—d,d] \ {0} small enough, and of course the difference
—¢ — [c(w,y) — c(wo,y)] vanishes at x9. Obviously, the function ¢ is c-convex, —¢(-) — c(-, )
has a critical point at xy, and this is not a global maximum. Hence, from Proposition 4.4, D
can not hold true.

The proof of Theorems 3.1, 3.2 is complete.

5 Proof of Theorem 3.4

5.1 Sketch of the proof

The key argument of the proof is the geometrical translation of condition As: assume that
¢ c-convex is not differentiable at = = 0, hence, for some pair yo,y1, —¢(-) — c(+,y0) and
—¢(-) — ¢(+,y1) both reach a maximum at z = 0. (From Theorem 3.1, under As, all critical
points of —¢(-) —c(+, y) are global maxima.) Consider yy in the c-segment with respect to z = 0
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joining yo to y;. As we will see in Proposition 5.1, the function —¢(-) — (-, yp) will reach a
maximum at = 0, and condition As implies moreover that for 6 € [¢,1 — €] this maximum
will be strict in the following sense: we will have

—() — c(z,y9) < —p(0) — c(0,59) — dJ[* + o(|z[*),

with 6 > 0 depending on |y; — yo| and Cy > 0 in condition As, and bounded by below for
away from 0 and 1.

Then, by estimating all supporting functions to ¢ on B, (0) a small ball centered at 0 , we
will find that for y in a C'n neighborhood of {ys}oci/4,3/4), C > 0 depending on § above, —¢(-) —
c(+,y) will reach a local maximum in B, (0). Hence G,(B,(0)) contains a C'n neighborhood of
{yo}toci/a,3/4). This is the Proposition 5.6. Once this is shown, we can contradict the bound on
the Jacobian determinant of Gj.

We now enter into the rigorous proof of Theorem 3.4, this proof is articulated in three parts.

5.2 Part I. Geometric interpretation of condition As

This proposition is the geometrical translation of assumption As. Actually, as we will see in
Proposition 5.12, the result of Proposition 5.1 is equivalent to assumption As for a smooth cost
function.

Proposition 5.1 Let ¢ be a cost function that satisfies A0, A1, A2, As on Qx Q. Forxz, € QQ,
Yo, y1 € Y, let {yo}ocp,) be the c-segment with respect to xo joining yo to y1, in the sense of
Definition 2.8, and assume that €)' is c-convex with respect to xq. Let

o(x) = max{—c(z,yo) + c(z0, Yo), —c(z, y1) + (o, y1)}.

There exist constants 6y, C' > 0 and ~y such that for all € €]0, %[, 0 €le,1 —¢|, forall z € Q
such that |z — x¢| < Ck,

o(x) > —c(z,y0) + c(z0,Y0) + 000(1 — 0)|y1 — ?/0|2|$ - 5130|2 — |z — $0|3,

with lower bounds on 0y and C' and an upper bound on 7y that depend on the bounds in assump-
tions A0, A2, As, on an upper bound on |y; — yol|, and on Cx in (13).

Preliminary Results Shifting and rotating the coordinates, we can assume that o = 0 and
that V,c(0,v0) — V.c(0,y) is parallel to e;. Then, we observe the following fact:

Proposition 5.2 Subtracting from ¢ a smooth function x — \(x) that depends only on x
does not change the map solution of the optimal transportation problem, and the new cost
c(x,y) — ANx) will still satisfy assumptions A0, A1, A2, Aw. The optimal potential will be
changed according to the rule ¢ — ¢+ . If moreover the function X is affine, this modification
does not change the bounds in assumptions A2, As.
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Using Proposition 5.2, we can subtract from c¢ the affine function given by
Mz) = V,e(0,0) - (x — x'ey),

so that the new cost ¢ will satisfy

(27) V.c(0,90) = —aey, Vc(0,y1) = —bey,

for some a # b from assumption A1l (we will assume hereafter that b > a). Note that (27) is
equivalent to

Yo = Ta—olaer), y1 = To—o(ber).
We then have for all 6 € [0, 1],

(28) —c(x,yp) +c(0,9) = [0b+ (1 —0)ala — %Dixc(o,yg) (z, ) + o(|z]?).

We now have the following Lemma, which is the point where we use assumption As.

Lemma 5.3 Under assumptions and notations of Proposition 5.1, in particular assuming As,
for all x € R™, for all 6 € [0, 1], letting a and b be defined through (27), one has

_chzc(ov y9) ' (JI,I‘) < - [(1 - Q)D?ﬁmc(O? yO) + echzC(Oa yl)] ' (x,x)
s
—}-A|I’1|2,

where
1 2
6 = 4_100|b_a| 6(1—0),

AQ
A = Z2p—al?0(1-0
G, |b—al?0(1-0),

with Cy given in assumption As and A depending on ||c(-, ) ||caaxar): [|[Day€] ™| Lo axar)- Note
i particular that under AO, As, Cy is bounded away from 0 and +o0.

We will also need the following elementary estimates, that we state without proof:

Lemma 5.4 Under assumptions and notations of Proposition 5.1, for all x € R™, for all
0,0 €10,1],

1
(29) §’D§xc(0>y9) ’ (:wa) - Dixc(()?y@) ’ (iL‘,.ﬁE)‘ < 01‘0 - 9/”*%‘27
with Cy depends on |b— al, ||[Dayc] ™ || @xqy and ||c(-,-)|lcos@xar)-

Lemma 5.5 Let [tg,t;] CR and f belong to C*([to, t1],R).
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1. If f" > «, we have, for all tg,t; € R,

0f(to) + (1 = 0)f(t1) = f(Oto + (1 — 0)t1) + %049(1 — )|t — tol*.

2. In all cases we have

|0f(to) + (1= 0)f(t:1) — f(0to + (1 = O)t1)] < 1||f||02(to e 0(1 = O)[ts — tol*.

[\

Proor or LEMMA 5.3. We apply the first part of Lemma 5.5 to the function
fit— —D2 c(0,%,—o(ter)) - (2, 2")

where 2’ is equal to (0,22, .., 2™), and hence 2’ | e;. From assumption As, this function satisfies
1" > Cyla’|?. Then, by choosing tg = a,t; = b (note that yp = T,—o((00 + (1 — 0)a)e;)), we
obtain that

_D:%xc([)?y@) ’ (1:,7 (L’/> < - [(1 - Q)Dzzc(07 yO) + eDimc(Oa yl)] ’ (xla .Z'/)
—%C’0|x’\29(1 — )b — af.

To conclude the lemma, we have to control of the terms where 2! appears. For this we apply
the second part of Lemma 5.5 to

g:t— D? c(x,Z,(ter)) - (w,2) — D2 c(x, Tu(tey)) - (2, 2),

for which we have |¢”| < 2A;|z||z|, where A; depends on ||c(-,-)||cs and on ||[Dayc] ™| L.
This yields

_Dixc(o’yo) ’ (:L‘,J?) = [(1 0) (073/0) + eDng(O,yl)] ' (Z’,$)
+9(1 Ol — aP(—5Cola’? + Al )
— [(1 = 6)D2,c(0, yo) +6D2,c(0,11)] - (2, )

+0(1 — 0)|b — a? (——C‘0|90|2 + (A1 + Co)|z1||x])-
We set Ag = A; 4+ Cp. Using a standard argument we have
No|z||zt| < Colz|? /4 + |2 [2PA2/Cy,
and we obtain
—Colz[*/2 + Aol[|a1| < —Colz[*/4 + (AG/Co)l="[*.

This concludes the proof of Lemma 5.3.
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Proof of Proposition 5.1. Using the general fact that for fy, fi € R, for 0 <0 <1,

max{fo, £1} > 0f: + (1 - 0)fo,
we have, using (28),
o(z) > (0b+ (1 — 0)a)x’
— L [D%e0.3) + (1~ O)DLe(0.0)] - (a.)
+ o(|z]?).

We now use assumption As through Lemma 5.3 to handle the second line of the right hand
side. This yields the intermediate inequality

(30) Ba)> B0+ (L= B)a)e — SD2e(0,5) - (x,7) + af
A|£L‘1|2
+ ollP)

with &, A given in Lemma 5.3. In order to eliminate the term —A|z!|? in the right hand side,
we proceed as follows: We write first (30) for some ¢’ € [0, 1], and then change it into

Bz O+ (= 0ae — 3 D200, p0) - (w,0) + Sl

% [D2,¢(0,y5) — D3,c(0,yp)] - (2, )
(b= a)(¥' = 0) — Aa')a’
(8 = 0)|z)? + (A — A) |2

o|z*),

+ o+ + o+

where ¢’ = 0(6'), A’ = A(#') as in Lemma 5.3. We now have to control the terms
T = (b—a)@ —0)— Ax')zt,
T, = 5 [D2e0.0) — D0, 90)] - (2,2,
Ty = (6 =68)|z|* + (A — A)|x'].

The term T can be cancelled through an appropriate choice of 6. We choose first € > 0 small
(but fixed). Taking 6 € [¢,1 — €], we choose 6’ such that

(31) 0 =0+2'A/(b—a)=0+2"/C,
with
(32) C = (b—a)A™!

= Co (01— 0)|b—ala2)™".
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Since 6 € [e,1 — €], this choice of § is possible if we restrict to |#'| < Ce. Note that Cj is

bounded away from 0, hence C' is bounded away from 0 for |b — a| bounded (we don’t need C

to be bounded from above). Note also that 6" will depend on z' but @ has been fixed before.
The second term T is controlled using Lemma 5.4: We have

T < C1|0" — 0] |z,
For the third term T3, we note, from the definition of §, A in Lemma 5.3, that |A — A/| <
|b— a|22—§|0' — 6| and |6 — | < |Cy||¢" — 0]. Hence, using (31),
Ty + T3] < Cylzf?,

where Cy depends on the bounds in assumptions AO, A2, As, and on |b — a|. We conclude
that, for a suitable choice of ',

(33) Ty + Ty + T3] < Oyl

We now have, for all 0 € [e,1 — €], for all z € Q with |z] < Ck,

6w) 2 00+ (1= 0)a)s = 3D%e(0,3) - (22)
+0lf*

—Calz[’ + o(|z[*).
Using (28), this leads to

(5(37) 2 —C<$, y@) + C<07 y@)
+6]z[?
—Colal* + o(|z]?).
We now notice that all the terms in o(|2|?) are error terms in the second order Taylor expansions
(28). Under assumption A0, ¢ belongs to C3(2 x '), hence there exists v such that the above
inequality still holds true when replacing the third line of its right hand side by —v|z|®>. The

constant vy will depend on the bounds in A0, A2, As, and on |b — a|. From Lemma 5.3, we
have § = $Co0(1 — 0)|b — a|?. Using now (13), we have

1
oy — <|p—
OT|y1 yo‘ —| a”

and letting dy = Cy/(4C%), we conclude the proof of Proposition 5.1.

5.3 Part II. Construction of supporting functions

We let NV, (B) denote the p-neighborhood of a set B, and we use the Proposition 5.1 to prove
the following:
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Proposition 5.6 Let ¢ be c-convexr. Let ¢,$2, €Y satisfy the assumptions of Theorem 3.4. Let
xo, 21 € Q, and yo € Gy(xo),y1 € Gy(x1). There exist constants C,C',C" > 0 and x., € [xo, x1],
such that, if Nyy([zo,21]) C 2, and

(34) ly1 — yo| = max{|z1 — x|, Clzy — 20|/°} > 0,
then
Nu{ye, 0 € [1/4,3/4]}) N Q" C Gy(By(am)),
where
o (|21 — o] i

(35) n=0C0|+—— ,

Y1 — Yol
(36) = C"nlyr — yol*.
Here {yo}ocio1) = [Yo, Yi]a,, denotes the c-segment from yo to yy with respect to x,,. Under

assumptions A0-As, the constants C,C" are bounded away from infinity and C" is bounded
away from 0 .

REMARK. If zg, z1, Yo, y1 satisfying (34) can not be found, then ¢ is Hélder continuous with
exponent 1/5.

Preliminary result Without loss of generality, we will assume that ¢(xg) = ¢(z1): indeed,
as remarked in Proposition 5.2, by subtracting from the cost function ¢ an affine function A
that depends only on x, we will not modify the map solution of the optimal transportation
problem, and the optimal potential ¢ will be changed into ¢ + A\. Hence one can subtract a
suitable affine function from ¢ so that ¢(zg) = ¢(z1). Notice that, as A is chosen affine, the
gradient of the "new” potentials are deduced from the "old” ones just by adding the constant
vector V. Hence this does not change all the continuity properties of V¢, neither does it
change all the derivatives of ¢ of order greater than or equal to 2.

As yo € Gy(xo), 11 € Gy(z1) we have using (11), for all z € Q,

—c(w,0) + c(0,Yo) + (o)

<
—c(x, 1) +c(z1,p1) + (1) <

with equality at © = x in the first line, at = x; in the second line. Since ¢(zg) = ¢(z1),
the difference between the supporting functions x — —c(z, o) + c(xo, yo) + ¢(x0) and z —
—c(x,11) + c(x1,y1) + ¢(x1) will vanish at some point x,, in the segment [z, z1]. Without loss
of generality, we can add a constant to ¢ so that at this point both supporting functions are
equal to 0. Hence

(37) —c(Tm, Yo) + (20, yo) + d(x0) = 0,
(38) —(Tm,y1) + (@1, 1) + ¢(x1) = 0.
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Lemma 5.7 Under the assumptions made above, and assuming moreover that
ly1 — ol 2> |71 — w0,
we have, for all x in the segment [zo, 1],
¢(z) < Cslzr — @ollyr — vol,
where Cs depends only on ||c(-, )| c2@xar -
PROOF OF LEMMA 5.7. Using (37, 38), we have

(39) H = QS(I'O) < _vxc(zmayO) ’ (l’o - xm) + ||C||C2|£B0 - $m|2/27
(40) H = ¢(1) < =Vl @m, 1) - (21 — ) + llellezlr — zml*/2.
By Proposition 2.2, the potential ¢ is semi-convex, with D?¢ > —||D2_¢||1=xa)!. Applying

the first part of Lemma 5.5 to the function f : ¢ — ¢(xo + t(x1 — x0)) on [0,1], for which
f" > —D?*¢- (v — mg, 1 — Tp), we find that

(41) Va € [z0,71], ¢(z) < H + Clay — x0)%,

where C' = C(]|c||c2ax))- Then we consider two cases:

The first one is where —V,c(zm, %) - (xo — ) and —Vc(2m, 1) - (21 — @) are not both
positive: let us assume for example that —V .c(z,, yo) - (xo — x,,) is negative. Then we have,
using (39), H < ||c||c2|zo — Tm|?/2, and using (41), we get that

Va € [zo, 11], ¢(z) < (C+ HCHC2(QxQ')/2)|5171 - 930|2-

Then we can conclude using |21 — zo| < |y1 — Yo
We now consider the second case where —V ,.c(xp,, yo) - (€o— ) and —V (T, 11) - (21— 2m)
are both positive. This implies that
—Val(Tm, Yo) - (20 — Tm) < =Val(Tm, Yo) - (20 — 1),
_ch(mma yl) ' (xl - xm) S _vxc(l‘ma yl) : (xl - l’o).
Combining with (39, 40) we have

2

2H < =Vic(@m, o) - (o — 1) — Ve @m, y1) - (21 — 20) + ||cflo2]x0 — 21
< Vel 40) = Vaclm )0 — 2] + lellcalro — 21
< elles (ler = ollyn = ol + |20 — 1?)

Using |z1 — zo| < |y1 — yol, and then (41) we conclude.

We now assume the following: letting I' be defined by

(42) I = 122120 ”
- (58 3 )
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with Cs([[c[|c2@xq)) defined in Lemma 5.7, zg, 21, Yo, y1 satisfy
(43) ly1 — yo| > max{T|z; — x|, |21 — z0}.
Hence the constant C' in Proposition 5.6 will be equal to I'.

We next state the following result, from which the proof of Proposition 5.6 will follow easily:

Lemma 5.8 Let x,, be defined as above. For y € ', consider the function

fy(x) - —C(C(J,y) + C(xma y) + gb(l‘m)

Under the assumptions made above, there exist n,u as in Proposition 5.6, such that for all

y € Nul{ye, 0 € [1/4,3/4]}) N €Y,
(44) ¢ — f, >0 on 0B, (x,,) N Q.
Before proving this Lemma, we first show how it leads to Proposition 5.6.

Proof of Proposition 5.6. By construction fy(x,,) = ¢(z,,), hence, if we have ¢ > f, on
0B, (x,), then ¢ — f, will have a local minimum inside B, (z,,), and for some point x € B, (x,),
we will have —V  c(z,y) € 0¢(z). Using Theorem 3.1, we have d¢(x) = 0°¢(x), and this implies
y € Gy(x) C Gy(By(m)). -

We now prove the main lemma:

Proof of Lemma 5.8. Using (37, 38) and then Proposition 5.1 centered at z,, we obtain

¢($) Z max{—c(a:, yO) + C(xma yO)v —C(ZE, yl) + C(xma yl)}
Z —C((L‘, yQ) + C<xm7 y¢9) + 509(1 - 9)|yo - y1|2|5(] - xm|2 - 7|J7 - xm|3
(45) = O(x)

for e > 0, for all 6 € [e,1 — €], |v — x| < Ce, and with {ys}ecp,1 the c-segment with respect to
T, joining yo to y;. Then we have for y €

) ) + C(iL‘m, y)

c(x,y
(#,50) + c(Zm, yo)

= —C s

+ /_0 [Vyc(@m, yo + 5(y — ya)) — Vyc(z,yo + 5(y — ya))| - (v — yo) ds

< —clz,yp) + c(Tm: Yo) + Caly — ol — il
where Cy = || D2 || = (@xqy- Combining this with Lemma 5.7 to estimate ¢(z,,), we have
fy(x) = —c@,9) + c(@m, y) + o(zm)
—c(z,Y0) + c(@m, yo) + Caly — yol|lz — @m| + Cslz1 — 2ol|y1 — Yol

y ().

A
T

(46)
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Inequality (44) will be satisfied if we have, for F,, ® defined in (45, 46)
(47) Fy(r) < ®()

on the set {|z —x,,| = n}, for some n > 0. First we restrict 6 to [1/4,3/4], (i.e. we take e =1/4
n (45)). Then (47) reads

3
(48) 500l =y *n” =i’ = Caly = woln + Csler — wollyn — gol.
Inequality (48) will be satisfied if the three following inequalities are satisfied:

1

E5o|yo —yi*n? > Cslzr — ollyr — wol,
1

Tg00lvo — i’ > Culy — veln,

—5o’yo yil’n® >
In order to satisfy the first inequality, we define n by
2 _ 16Cs |21 — 2o
do |y1 — ol
In order to satisfy the second, we define u by

= Csnlyr — yol*,
where C5 = 09/(16C,) (note that Cj is bounded away from 0), and consider y € €’ such that
|y — yo| < p. The third inequality will then be implied by
71 < (d0/16)y0 — 1|,
which is equivalent to

%16303@1 — 20| < |y1 — wol’,
and we recognize here assumption (43). The constants C, C’, C" in Proposition 5.6 are defined
by C = T from assumption (43), C' = (1§2)1/2 C” = C5. Then, for all y € N,{yo,0 €
[1/4,3/4]} N €Y, the function f,(x) = —c(z, y) + (2, y) + ¢(z,,) will satisty f, < ¢ on the
boundary of the ball B, (x,,). This proves Lemma 5.8.

O

5.4 Part III. Continuity estimates

Proposition 5.9 Let ¢ be c-convex with G4(Q2) C Y. Let ¢, 2, Q' satisfy the assumptions of
Theorem 3.4. Then,

o if Gfd\fol, satisfies (23), for some p > n, then ¢ € C’llof(Q), with 3(n,p) as in Theorem
3.4,

o if ijd\/ol satisfies (24), then ¢ € CL (),
where Gf is defined in Definition 2.12.
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Preliminary Result We first state the following general result, whose proof is deferred to
the appendix.

Lemma 5.10 Let Y be c-convex with respect to x,, € S, let yo,y1 € V. There exists C, jig > 0
depending on ¢,Q, Q' such that for all 1 € (0, o),

Vol (N, ([yo, 1]z, ) N ) > CVOl (N, ([v0, Y1l ) -

Proof of Proposition 5.9 Consider Qs = {z € Q,d(z,00) > 6}. In order to have
N, ([0, 21]) C €, it is enough to have

1. xg,x1 € Qs,
2. |.7)0—ZE1| <5/2,
3. n<d/2.

If y; € Gy(w;),i = 0,1 satisfy (34) in Proposition 5.6, |y1 — yo| > C|r1 — 20|*/®, then n <
E|zy — x0[*°, with 1 defined in Proposition 5.6, and E a constant depending only on C’,C”
in Proposition 5.6. Hence for |z, — 2¢|*® < §/(2F), it follows that A ([zo,71]) C ©Q, and
Proposition 5.6 applies. We now set

(49) R; = inf{/2,(6/(2E))*?},

and in the remainder of the proof, we chose 1,29 € €5 such that |1 — 29| < Rs. From
Proposition 5.6, we will have

(50) Nu{ye,0 € [1/4,3/4]} N QY C Gy(By(xm)).
From Lemma 5.10, and the definition of x in (36), there exits C,C” > 0 such that
(51) Vol (N, {ye, 0 € [1/4,3/4]} N ) > Clyr —yolp" ™

= C'lyr — yoln" My — o2 7.

C'# estimates for data with bounded density If the Jacobian determinant of the map-
ping G, is bounded, (in other words, if Gdeol has a density bounded in L*> with respect to
the Lebesgue measure) then, for some C, ",

(52) Vol (Gy(By(zm))) < CVol(By(zm))
= C'n".

Using (50) with (51), (52), we find for some C,C’ that

ly — w7t < O

= (’951 —$0|)1/2
|y1 —?/0| 7
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which yields finally, for another constant Cs > 0,
1
[y1 = yo| < Colzy — o ™.

From this we readily deduce that G, is single valued, moreover G, € C"‘” '(Q). Since

loc

—Vc(z,y;) = Vo(x;),i = 0,1, and V,c is Lipschitz, this yields also ¢ € c T (Q).

loc

C1P estimates for data satisfying (23) We can refine the argument: Let again v = do\/ol
and F' be defined by

(53) F(V) = sup {VOI(G¢(B)), B C Q a ball of volume V}
= sup {V(B),B C 0 a ball of volume V}.

Then, by Proposition 5.6, we have F'(Vol (B, (z,,))) > Vol(N,{ys,0 € [1/4,3/4]} N ), which
yields, using (51) and the definition of 7 in (35)

(54) ( CsW)ZCﬂxl—xo! I

for some C'; bounded away from 0, with w,, the volume of the n-dimensional unit ball. Assume
that F'(V) < CV* for some x € R. Note that v € LP implies the (stronger) bound F(V) =
o(V1=1/P) hence it is natural to write x = 1 — 1/p for some p €]1, +oc], and the condition

(55) F(V)<Covi-ie
is then equivalent to condition (23) for v. We obtain from (54) and (55) that

TL

1 — ol EOTE) < Gyl — 20,
We see first that we need p > n, and, setting a = 1 — n/p, we obtain
ly1 — ol < Colary — ol 727w,
This yields Holder continuity for G4. Then we use that Vo(r) = —V,c(z, Gg(x)) and the

smoothness of ¢ to obtain a similar Holder estimate for V.

C' estimates for data satisfying (24) We only assume condition (24) for v = Gfd\fol,
which we can rewrite under the following form:
(56) F(V) < [f2m]" v,

for some increasing f : [0, 1] — RT, with limy_o f(V) = 0, F being defined in (53). Consistently

with (43), we can assume that, as x; goes to o, ‘| ! x°|| goes also to 0. Using (56) in (54), we

get for some g, C1; bounded away from 0 and mﬁnlty,

xT
fzn ! (Clou) > (011\3/1 y0|)2n !
’yl y0|
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hence we get that |y; — yo| goes to 0 when |z; — x| goes to 0. Then, let g be the modulus of
continuity of G, in ()5; g satisfies:
Vu < Rj, either g(u) < max{u, Tu!'/?} or

u

g(u)

i (cm ) > Cuglu)

which is equivalent to

-1 g(u)
uz f(Cug(w) .

which is in turn equivalent to

9(u) < w(u),
z
Cho
shows the continuity of G,. Finally we have Vo(z) = —V,c(z, G4(x)), and the continuity of

V¢ is asserted.

where w is the inverse of z — f~*(C112)=—. It is easily checked that lim,_o+ w(r) = 0. This

O

REMARK. The power § = ;—5-— is not optimal for example if n = 1,p = 400, for which

the C1! regularity is trivial, but note that in order to obtain this bound, we had to assume

(43). Hence the conclusion should be: either ¢ is C*!', or ¢ is CY/5 or ¢ is C*#. Note that
B <1/7forn > 2.

Proof of Theorem 3.4 In Proposition 5.9, we use a bound on Gfd\fol. However, in Theorem
3.4, we only have G44p1 = pg, and as we we do not want to assume that p; € L'(R™), this

does not imply necessarily that ij p1 = po (See Definition 2.12 and the subsequent discussion).
Hence we need the following proposition to finish the proof:

Proposition 5.11 Let ¢ be c-conver on 2, with G4(Q) C Q. Assume that Gyupto = 1.
Assume that py > mdVol on Q. Then for all w C ), we have

1
po(w) > mVol(Gy(w)), and hence, Gfd\fol < — pp.
m

PROOF. In ' we consider N = {y € ', 3z, # x5 € Q,Gy(x1) = Gy(x2) = y}. Then N =
{y € &, ¢° is not differentiable at y}. Hence Vol(N) = 0, and Vol(G4(w) \ N) = Vol(G4(w)).
Moreover, on Gy(w) \ N, G, is single valued. Then G'(Gy(w) \ N) C w. Hence,

1o(G5 (Go(w) \ N))
1 (Go(w) \ N)
mVol(Gy(w) \ N)
mVol(Gy(w)).

v

fo(w)

AVA
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Proof of the boundary regularity This part is easy: under the assumptions of Theorem
3.5, the density puq satisfies (23) with p > n (resp. satisfies (24)). Hence Theorem 3.4 applies
and ¢ € CL2(Q) (resp. ¢ € CL (Q)). Since Qy is compactly contained in , we conclude the
boundary regularity on €2,. This proves Theorem 3.5. 0

REMARK. This proof of the boundary regularity is very simple because we have interior
regularity even when py vanishes. This is not the case for the classical Monge- Ampere equation,
and the boundary regularity requires that both Q and €2 are convex, and is more complicated
to establish (see [6]).

We now show that there is indeed equivalence between assumption As at a point x and the

conclusion of Proposition 5.1. This is a quantitative version of Theorem 3.2.

Proposition 5.12 Assume that at a point xo for all yo,y1, for yij2 the 'middle’ point of
[Y0, Y1y, we have

d(x) > —c(z,y1/2) + c(x0,Y1/2) + dolyo — y1|2|x — $0|2 + O(|z — $0|3)

with ¢ as above. Then the cost function satisfies assumption As at xo with Cy = Cdy, for some
constant C' > 0 that depends on the bound in A2.

PRrROOF. The proof follows the same lines as the proof of Theorem 3.1, and is omitted here.
O

6 Proof of Theorem 3.8

We consider condition Aw at (zg,y = x¢). We recall that

Sc(wo. 70) (6,v) = —D2,,, D, [(2.p) — c(z, Tuy(p))].

for any v,& in T,, M. Let us first take a normal system of coordinates at z(, so that we will
compute

Q = =Dy D[(x,p) = Ty (6), Tay (sv))].

Let us write a finite difference version of this operator. We first introduce y_ = T, (—hv),y; =
Too(hv), 2 = Ty (—hE), x4 = T, (hE). We use the usual second order difference quotient, for
example

.1
Dazcg e co(z, Tao (p) = }Lli% ﬁ(c(mewO) = 2¢(wo, To) + (-, o).

(Of course we have c¢(zg, x9) = 0.) We will have, as h goes to 0,

1
]{%ﬁ < Z xzuy] —2 Z 5517150 +C<y]7'r0))> = _Q

‘)j:+1_ i=4,—
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Rearranging the terms, we find that the left hand side of the previous identity is equal to

Z (@i, y5) — c(@o, ) — c(zo,y5)].

7;7j:+7_

Each of the terms inside brackets has a simple geometric interpretation: consider the triangle
with vertices (zo, x;, y;) whose sides are geodesics. This is a square angle triangle. If the metric
is flat, by Pythagoras Theorem, the term inside the brackets is 0. In the general case, a standard
computation shows that it is equal to —gr(xo, &, v)h* 4 o(h*) where k(z9,&, v) is the sectional
curvature at xo in the two-plane generated by &, v. Hence, we get that Q = (2/3)k(x, &, v).

Now to reach the more general formula of Theorem 3.8, we use the following expansion of
the distance that Cédric Villani communicated us:

Lemma 6.1 Let M be a smooth Riemannian manifold. Let v1,v2 be two unit speed geodesics
that leave point xo € M. Let 0 be the angle between 41(0) and *2(0) (measured with respect to
the metric), let k be the sectional curvature of M at xqy in the 2-plane generated by 41(0), 42(0).
Then we have

d*(71(1), 72(t)) = 2(1 — cos(6))(1 — 2(6082(9/2))752 +O0(t))e*)*.
Then, we obtain easily, following the same lines as in the case looked above that

Se(0, 20) (&, v) = (2/3)k(0, &, V) ([ElgIV]5 — (& v)g),

where (-, -),, |- |, denote respectively the scalar product and the norm with respect to ¢g. This
proves the Theorem. 0

6.1 Counterexample to regularity for a manifold with negative cur-
vature

Consider the two dimensional surface H = {z = 22 — y*} C R3, endowed with the Riemannian
metric inherited from the canonical metric of R®. Then H has negative sectional curvature
around 0. For r sufficiently small, Q@ = H N B,(0) is c-convex with respect to itself. Consider
the function

o(r) = max{—d?/2(X, Xo), —d*/2(X, X1)},

where Xy = (0,a, —a?), X; = (0,—a,—a?). Then, as shown by our proof of Theorem 3.1, for
a small enough, no sequence of C'! c-convex potentials can converge uniformly to ¢ on €. Let
fto to be the Lebesgue measure of Q, and p; = $(dx, + 0x,). We have Ggupo = p1. Let
pg € C*(Q) be a positive mollification of 11 so that its total mass remains equal to 1, and that
preserves the symmetries with respect to x = 0 and y = 0. Let ¢,, be such that Gy, 410 = fin.
Then, for n large enough, ¢, is not differentiable at the origin. Indeed, for symmetry reasons,
0 belongs to the subdifferential of ¢, at 0, on the other hand, ¢, converges uniformly to ¢,
and we know from the fact that Aw is violated at 0 that —¢ — ¢(-,0) does not reach its global

maximum on 2 at 0.
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7 Appendix

Proof of proposition 2.14 We first prove the “intrinsic” part. In order to show this, we
consider v a C? curve in € defined in a neighborhood of 0, such that

(57) v(0) = o,
(58) Y(0) = &

We then consider the quantity

Q, = D} D7, [(37 t) — c(y(t), Tap(po + sy))]

t,s=0

We show that this quantity is independent of the choice of v. We have
Qy = D2(s = Diec(wo, Ty (po + 5v)) + Daclto, Tey (po + 1)) - §(0))
= D2, (s — Dggc(xo, To(Po + sv)) — (po + sv) - ﬁ(O))
= Dgs (s — Déc(xo, T o (D0 + sz/))>,

where the second line follows from the very definition of the c-exponential map. Hence, the
value of the curvature is independent of %(0), and therefore of the choice of v as long as it
satisfies (57, 58). One can now choose around z( a system of geodesic coordinates, which yields
the equivalence of the definitions (19) and (20). Then, the second part of Proposition 2.14
follows by taking as new coordinates around zy the c-geodesics with respect to yg, which yields

(59)  Selro. ) (€)= D2y [e(Ty0(a). Ty (1)

)
qo=—Vyc(x0,Y0), po=—Vzc(x0,y0)

where ¢ is chosen such that
DyT;,(q0) - € =&

The condition § L v nows reads (D,%; (qo) - €) L v or equivalently [D, ]! - (v,€) = 0. Then,
identity (21) follows by a symmetric argument.
0

Proof of Proposition 3.3. We prove only the last point, the other points being elementary.
Consider on R™ a measure locally equal to pg = £"1 ® u, where £7~! is the n — 1-dimensional
Lebesgue measure, and p is a probability measure on [0, 1] equal to the derivative of the Devil’s
staircase. Then, u ¢ L'. On the other hand, for all [a,b] C [0,1], u([a,b]) < |b — a|]®, for some
a € (0,1]. Then, for x = (x4, .., z,),

po(By(x)) < Cr* plwy — 7y, + 1)) < Cr e = CpnP)

1
loc

for some p > n. Hence py ¢ L;,, and iy satisfies (23) for some p > n.
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Proof of Proposition 4.1 We know (see [32, chapter 2]) that there exists m a probability
measure on R™ x R™, with marginals ¢ and v, and such that

[ ola)dnte) + v@)iv(@) == [ cla,pintz.n),

and moreover, there exists ¢ a c-convex potential such that
supp(m) C {(z,Gy(x)),z € R"}.

Let us decompose 7 as m = y ® ,, where for du almost all x € R™ | v, is a probability measure
on R™ and 7, is supported in Gg(z). Hence we have

[t | [ et + v - ctan)| =o.

This implies that for du a.e. z, for dv, a.e. y, we have y € G,(z). Since for du a.e. z, we have
y € Gy(x) dv, a.s., we deduce that for du a.e. x, (and hence for Lebesgue a.e. x, since u > 0
a.e.), we have Gz(x) N Gy(x) # 0. This implies that V¢ = V¢ Lebesgue a.e., and that ¢ — ¢
is constant. This shows that ¢ is uniquely defined up to a constant. Now the pair ¢, 1) can
only improve the infimum (10) compared to (¢,), hence it is also optimal. Hence ¥ is also
uniquely defined up to a constant. If ¢ is c¢*-convex, then ¢¥“¢ = ¢, and ¢ is thus uniquely
defined.

OJ

Proof of Lemma 5.10 From Al, A2 forall z,, € Q, ¥ :y — —V.c(z,, ) is a diffeomor-
phism from ' to =V ¢(z,,, ). Then

¥ (N ([0, Y1len) N ) = (N ([%0, Y1) N0 ().
Letting p; = —V.c(zm,y:),7 = 0,1, using A1, A2, there exists C' > 0 such that

Nen ([po; p1]) € ¥ (N, (o, v1lan)) -

Moreover, as €' is c-convex with respect to z,,, ¥(£2) is a convex set.
Then we claim the following: for U C R™ convex, for u,v € U, the function

r — Vol(N:([u, v]) N U) /Vol(N:([u, v]))

is non-increasing. Indeed, by convexity of U, for w € [u,v], if w+w" € B,.(w)NU, for § € [0, 1],
w + Ow" € By.(w) NU. Then the claim follows easily.
Hence, we have

VOl <¢ (Nn ([y07 yl]mm) N Q/))
Vol (Ney, ([po, p1]) N ()
Vol (Ney ([po; p1])) Vol (N ([po, p1]) N 9b(€)) Vol ™" (N ([po, p1])) »
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whenever 7 is small enough so that C'n < 1. By compactness, one has

Vol (N1 ([po, pr]) N () VoI ™ (N ([po, p1])) = C(€Y).

Moreover, for C' > 0, there exists a constant C’ > 0 such that

Vol (Ney, ([po, p1])) = C'Vol (N, ([po, p1]))

for all n > 0. Then, as v is a smooth diffeomorphism, one has

Vol (N ([yo, 91]z,.) N €Y) /Vol (N ([yo, 1] )
> (e, Q, Q)Vol (¢ (Ny ([yo, vala,,.) N ) /Vol (& (Ny ([yo, y1le))) -
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