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Abstract

Building on the results of Ma, Trudinger and Wang [17], and of the author [16], we
study two problems of optimal transportation on the sphere: the first corresponds to the
cost function d2(x, y), where d(·, ·) is the Riemannian distance of the round sphere; the
second corresponds to the cost function − log |x− y|, it is known as the reflector antenna
problem. We show that in both cases, the cost-sectional curvature is uniformly positive,
and establish the geometrical properties so that the results of [16] and [17] can apply:
global smooth solutions exist for arbitrary smooth positive data and optimal maps are
Hölder continuous under weak assumptions on the data.

1Institut Camille Jordan, Université Claude Bernard Lyon 1
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1 Introduction

1.1 Monge-Kantorovitch problem on a Riemannian manifold

Let M be a topological space, let c : M × M → R ∪ {+∞} be a cost function and µ0, µ1

be probability measures on M . In the optimal transportation problem, one looks for a map
T : M →M that minimizes the functional

I(T) =

∫
M

c(x,T(x))dµ0(x),(1)

under the constraint that T pushes forward µ0 onto µ1, (hereafter T#µ0 = µ1), i.e.

∀B ⊂M Borel, µ1(B) = µ0(T−1(B)).

This problem has been first studied by Monge [19], with M = Rn, for the cost c = |x − y|
(the Euclidean distance). Beyond Monge’s original problem, Brenier studied the case of the
quadratic cost c = |x−y|2, and pointed out its close connection with important nonlinear PDEs
(Monge-Ampere, Euler etc...). For the quadratic cost, when µ0 is absolutely continuous with
respect to the Lebesgue measure, he proved the existence and uniqueness of an optimal map
T. This maps has a convex potential (i.e. T = ∇φ with φ convex) and is shown to be the only
map with convex potential that pushes forward µ0 onto µ1. After Brenier’s result, the theory of
optimal transportation has been extended to general cost functions. The existence of optimal
maps is granted under very generic conditions on the cost function, and the way to obtain
it is achieved through a general procedure, known as Kantorovitch duality: Optimal maps
are obtained by solving the dual Monge-Kantorovitch problem, whose unknown are potential
functions. For φ a lower semi-continuous function on M , we define its c-transform as

φc(x) = sup
y∈M
{−c(x, y)− φ(x)}.

A potential φ is c-convex if it is the c-transform of some other ψ : M → R. In that case, the
equality φ = φcc holds. (Notice that the quadratic cost is equivalent to the cost −x · y, for
which the c-transform is nothing but the Legendre-Fenchel transform; hence, [−x · y]-convex
functions are convex functions.) Under suitable assumptions, and following for example [6], the
minimizers in (1) are related to c-convex potentials as follows: for an optimal Topt in (1), there
exists a c-convex potential φ such that

for a.e. x ∈M,Topt(x) = Gφ(x) := {y ∈M,φ(x) + φc(y) = −c(x, y)}.(2)

Conversely, if T : M → M can be expressed under the form (2) for some c-convex φ, for µ0 a
probability measure on M and µ1 its push-forward by T, then T is the optimal map between
µ0 and µ1. Of course, it is not clear a-priori that (2) defines a map, as Gφ(x) is a set. However,
under a suitable assumption on the cost (assumption A1 below), the set Gφ(x) will be reduced
to a single point for Lebesgue almost every x. Note also that when M is compact (which we
will assume throughout the remainder of the paper), the set Gφ(x) is never empty when φ is
c-convex.
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Brenier’s result was generalized in a natural way to Riemannian manifolds by McCann: Let
M be a manifold, with Riemannian metric g, compact and without boundary, with distance
function d(·, ·). For u, v ∈ Tx(M), (u, v)g(x) (or in short (u, v)g) denotes the scalar product on
Tx(M) with respect to the metric g, |v|2g = (v, v)g. From the results of [18], in the case where
c = d2/2, the optimal map can be expressed as a so-called gradient map, i.e.

Gφ(x) = expx(∇gφ(x)),

where ∇g denotes the gradient with respect to the Riemannian metric g on M (and from now,
we omit the subscript g), and φ is some c-convex potential. For a general cost, one needs first
to introduce the c-exponential map c-expx(·), defined as the inverse of y → −∇xc(x, y) (again
see assumption A1 below). Optimal maps will then be given by

Topt(x) = Gφ(x) := c-expx(∇φ(x)).

(This definition holds in the a.e. sense and is consistent with the definition (2).) In all cases,
for a smooth potential φ such that Gφ#µ0 = µ1, the conservation of mass is expressed in local
coordinates by the Monge-Ampère type equation

det(D2φ+D2
xxc(x,Gφ)) =

ρ0

ρ1(Gφ)
| detD2

x,yc(x,Gφ)|,(3)

where ρ0, ρ1 are densities of µ0, µ1 with respect to the Lebesgue measure.
A complete description of the optimal transportation problem can be found in [24], otherwise

the introduction of [16] encloses the necessary material for the present paper. We also mention
the second book by Villani on optimal transport [25], which presents some of the results enclosed
in this paper.

In the present work, we will address the problem of regularity of solutions of (3) (or equiv-
alently of minimizers of (1)) in the particular geometrical setting of the constant curvature
sphere of Rn, that we will denote Sn−1. We will consider two cases: the quadratic cost c(x, y) =
1
2
d2(x, y) with d the Riemannian distance, and the reflector antenna case c(x, y) = − log |x− y|

(see below). We will show that in both cases, the regularity results obtained in [16] and [17]
hold. As noticed at the end of the paper, our result can be easily generalized to the case
c(x, y) = f(d(x, y)), assuming some conditions on f (see Theorem 4.1).

The problem of regularity of optimal maps is related to the problem of regularity of solutions
of the associated elliptic Monge-Ampére type equation. This fully non-linear elliptic partial
differential equation has received considerable attention over the last decades. Up to recently,
the only case where regularity results had been obtained were for the Monge-Ampère equation

detD2u = f,

u convex,

with works by Caffarelli [1, 2, 3, 4, 5, 7], Urbas [23], and Delanoë [9]. This form of the Monge-
Ampère equation is associated to the quadratic cost. It was only recently with the works of Ma,
Trudinger and Wang [17, 22] and subsequent results by the author [16] that regularity results
for generic costs were obtained. Our goal in the present paper is to continue this study in the
Riemannian setting, in the particular case of the round sphere.
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The reflector antenna problem Consider a closed hypersurface Σ of Rn parametrized by
a so-called ”height” function h from Sn−1 to R, i.e. Σ = {xh(x), x ∈ Sn−1}. Given Ω,Ω′ two
domains of Sn−1, and two probability measures µ0, µ1 on Ω,Ω′, the reflector antenna problem
is then to find h, under the constraint that the antenna reflects the incoming intensity ρ0 into
the outgoing of intensity ρ1. If a ray with direction x is reflected into a ray of direction T (x),
the conservation of energy turns into a Monge-Ampère type equation for h (see [8]):

det (∇ijh+ (u− η)eij)

ηn−1 det eij
=

ρ0(x)

ρ1(T (x))

with

η =
|∇h|2 + h2

2h
,

∇ijh the second covariant derivative of h, and eij the Riemannian metric of Sn−1.
Existence, regularity and uniqueness of weak and strong solutions have been addressed by

several authors, among them Wang [26], Guan and Wang [14], Glimm and Oliker [13], and
Oliker [20]. The connection with optimal transport theory was established by Wang in [27],
who showed that the reflector antenna problem is equivalent to an optimal transport problem
on the sphere with cost equal to − log |x− y|.

Organization of the paper In the next section, we will expose our results; then we will
give a reminder of previous results and give some definitions and notations (some of them can
be needed to understand the results). The rest of the paper is dedicated to the proofs of the
results.

2 Results

This work addresses the issue of regularity of optimal maps. We deal only with global solutions
(the measures and transport maps are defined on the whole of Sn−1). When the data are
positive and C2 (resp. C∞) smooth, we show that the optimal potential is C3 (resp. C∞).
When the target measure is bounded by below, and the source measure satisfies B(n-1), see
(7) (resp. A(n-1,p) for some p > n − 1, see (6)) the optimal potential is C1 (resp. C1,α for
α(n, p)). We also give an original and self-contained proof of the connectedness of the contact
set Gφ(x) (defined in (2)) in those particular cases. Our results are identical for the quadratic
cost c(x, y) = 1

2
d2(x, y) and the reflector antenna c(x, y) = − log |x− y|.

For the reflector antenna problem, classical smooth solutions of (3) had been obtained in
[26, 27, 14]. Global C1 regularity for weak solutions of (3) had also been obtained independently
in [8], under the assumption that both the source and target measures have densities bounded
away from 0 and infinity. Here we relax their assumptions, allowing the source measure to
vanish, and requiring an integrability condition that does not even imply absolute continuity
with respect to the Lebesgue measure. Moreover the Hölder exponent in the C1,α result is
explicit.
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Our results are not a simple corollary of the results of [16] once the positivity of the cost-
sectional curvature is asserted. Indeed, the basic assumption A0 is not satisfied on Sn−1×Sn−1,
due to singularities of the cost functions (cut-locus), hence the equation (3) itself could become
singular. We have to show first that the graph of optimal transport map lies in a subdomain
of Sn−1 × Sn−1 which is uniformly far from the cut locus. This is done by improving a result
established in [11], and also adapting it to the antenna case (see the Propositions 5.2 and 6.1).

Then we can localize the problem and reduce it locally to an Euclidean problem, and thus
use the C1,α estimates of [16] to show partial regularity under assumption (6) or (7).

For classical regularity, we employ the method of continuity: combining the results of [10]
with the crucial a-priori estimate established in [17], we obtain classical smooth solutions.

We choose to present in details the proof of the results for the quadratic case, from which
the antenna case follows easily, once the key ingredients are verified.

Acknowledgments I wish to thank Alessio Figalli and Cédric Villani for precious remarks
and fruitful discussions. I also thank Philippe Delanoë with whom we started to think about the
problem of regularity for optimal transportation on the sphere, and Robert McCann who first
raised to me the issue of the connectedness of the contact set, in 2003. I gratefully acknowledge
the support of a French Australian exchange grant PHC FAST EGIDE No.12739WA. I wish also
to thank Neil Trudinger, Xu-Jia Wang and the Center for Mathematics and its Applications at
University of Canberra for their hospitality, as part of this work was accomplished there.

2.1 The quadratic cost

In this part, we consider Sn−1 the unit sphere of Rn equipped with the round metric g, and
Riemannian distance d, and we let c(x, y) = 1

2
d2(x, y). We first have the following essential

remark:

Proposition 2.1 For all x ∈ Sn−1, the set {p ∈ ∂xc(x, y), y ∈ Sn−1} is the closed ball B̄(0, π).
Letting x̂ be the antipodal point of x, the set {−∇xc(x, y), y ∈ Sn−1 \ x̂} is the open ball B(0, π).
Hence for all y0, y1 ∈ Sn−1 \ x̂, the c-segment [y0, y1]x (see definition 3.5) is well defined.

The next result shows that As is satisfied outside of the cut-locus.

Theorem 2.2 Let antidiag be the set {(x, x̂), x ∈ Sn−1} with x̂ the antipodal point of x. Then
the cost-sectional curvature is uniformly positive on Sn−1 × Sn−1 \ antidiag.

Then we show that the contact set Gφ(x) is always connected (and even c-convex). The
definitions of ∂φ(x), ∂cφ(x) are reminded below in Definitions 3.2, 3.3.

Theorem 2.3 Let φ be a c-convex potential on Sn−1. For all x ∈ Sn−1, let the set Gφ(x) be
defined as in (2). Then

1. Gφ(x) is c-convex with respect to x, and ∂φ(x) = ∂cφ(x).

2. When x̂ ∈ Gφ(x), Gφ(x) is equal to the whole sphere Sn−1.
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Finally, we conclude with our regularity result:

Theorem 2.4 Let µ0, µ1 be two probability measures on Sn−1 and φ be a c-convex potential.
Assume that Gφ#µ0 = µ1. Assume that µ1 ≥ mdVol, for some m > 0. Then

1. If µ0 satisfies B(n-1) (see (7)), then φ ∈ C1(Sn−1), and as in Theorem 3.11, the modulus
of continuity of ∇φ depends on f in (7).

2. If µ0 satisfies A(n-1,p) (see (6)) for some p > n − 1, then φ ∈ C1,β(Sn−1) with β =
β(n− 1, p) as in Theorem 3.11.

3. If µ0, µ1 have positive C1,1 (resp. C∞) densities with respect to the Lebesgue measure,
then φ ∈ C3,α(Sn−1) for every α ∈ [0, 1[ (resp. φ ∈ C∞(Sn−1).)

2.2 The reflector antenna

The results presented above adapt with almost no modification to the reflector antenna. Before
that, we remark that by changing y into −y, it is equivalent to study the cost c(x, y) =
− log |x + y|. Then, as in the previous case, the set of singular points of the cost is equal to
antidiag (i.e. the set of antipodal pair of points). Moreover, it is straightforward to check
that whenever c(x, y) satisfies A0, A1, A2, AS, then c(x,−y) also satisfies those assumptions.
Then, we prove the

Theorem 2.5 Theorem 2.3 and 2.4 hold for c(x, y) = − log |x− y|.

(For point 2 of Theorem 2.3, notice that one must not consider x̂ the antipodal point of x, but
x itself.) Before entering into the proofs of our results, we present a review of previous results
and concepts from the work of Ma, Trudinger and Wang in [17] and the author in [16].

3 Cost-sectional curvature : from geometry of contact

sets to elliptic regularity

This paragraph is a short reminder of the results established in [16], [22], [17]. In a nutshell, the
things to remember are the following: when the contact set defined in (2) is unconditionally con-
nected, the associated Monge-Ampère equation behaves well (i.e. smooth data lead to smooth
solutions). Moreover, there is a tensor whose non-negativity is equivalent to the connectedness
of the contact set. This tensor is the Ma-Trudinger-Wang tensor, or cost-sectional curvature
tensor. When the cost is the squared Riemannian distance, this tensor contains informations
about the Riemannian curvature of the underlying manifold.

We adapt the results of [16], [22], [17] to the Riemannian case by considering considering M
a n-dimensional manifold, and D a general domain of M ×M (which for simplicity we assume
compact), instead of restricting to tensorial domains of Rn×Rn, i.e. domains of the form Ω×Ω′

for Ω,Ω′ domains of Rn. We denote π1, π2 the usual canonical projections. For any x ∈ π1(D),
we denote by Dx the set D ∩ π−1

1 (x). We proceed similarly for the y variable. Let us introduce
the following conditions:
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A0 The cost function c belongs to C4(D).

A1 For all x ∈ πx(D), the map y → −∇xc(x, y) is injective on Dx.

A2 The cost function c satisfies detD2
x,yc 6= 0 for all (x, y) in D.

Assumption A1 allows to introduce the following definition:

Definition 3.1 Under assumption A1, for x ∈ π1(D) we define the c-exponential map at x,
which we denote by c-expx, the map such that

∀(x, y) ∈ D, c-expx(−∇xc(x, y)) = y.

The c-exponential map coincides with the Riemannian exponential map when c = d2/2. In the
general case, optimal maps are defined by

Topt(x) = Gφ(x) = c-expx(∇φ(x))

for some c-convex potential φ.
Noticing that for all y ∈ Gφ(x), φ(·) + c(·, y) has a global minimum at x, we introduce /

recall the following definitions:

Definition 3.2 (subdifferential) For φ a semi-convex function, the subdifferential of φ at x,
that we denote ∂φ(x), is the set

∂φ(x) =
{
p ∈ Tx(M) : ∀y ∈M,φ(y) ≥ φ(x) + (p · exp−1

x (y)) + o(d(x, y))
}
.

The subdifferential is always a convex set, and is always non empty for a semi-convex function.

Definition 3.3 (c-subdifferential) If φ is c-convex, the c-sub-differential of φ at x, that we
denote ∂cφ(x), is the set

∂cφ(x) =
{
−∇xc(x, y), y ∈ Gφ(x)

}
.

The inclusion ∅ 6= ∂cφ(x) ⊂ ∂φ(x) always holds.

We make here the following important remark: c-expx(∂
cφ(x)) is set of all y such that −φ(·)−

c(·, y) reaches a global maximum at x, while c-expx(∂φ(x)) is the set of all y such that −φ(·)−
c(·, y) has a critical point at x.

We remind the definition of c-convexity (see [17]):

Definition 3.4 (c-convex sets) Let x ∈ π1(D). A subset ω′ of π2(Dx) is c-convex (resp.
uniformly c-convex) with respect to x if the set {−∇xc(x, y), y ∈ ω′} is a convex (resp. uniformly
convex) set of TxM . Whenever ω × ω′ ⊂ D, ω′ is c-convex with respect to ω if it is c-convex
with respect to every x ∈ ω.

There exits also a notion of segment associated to the cost c, which we call c-segment:
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Definition 3.5 (c-segment) Let (x, y0) and (x, y1) ∈ D. Let pi = −∇xc(x, yi), i = 0, 1.
Assume that [p0, p1] ⊂ −∇xc(x,Dx). Then the c-segment between y0 and y1 with respect to x,
which we denote [y0, y1]x is defined by

[y0, y1]x =
{
y ∈ Dx,−∇xc(x, y) ∈ [p0, p1]

}
.

Then yθ will be such that −∇xc(x, yθ) = θp1 + (1− θ)p0.

We now remind the definition of the cost-sectional curvature. Although this name and the
present formulation comes from [16], this tensor has first been introduced by Ma, Trudinger
and Wang in [17].

Definition 3.6 Under assumptions A0-A1-A2, for every (x0, y0) ∈ D, one can define on
Tx0M × Tx0M the real-valued map

Sc(x0, y0)(ξ, ν) = D4
pνpνxξxξ

[
(x, p)→ −c(x, c-expx0(p))

]∣∣∣
x0,p0=−∇xc(x0,y0)

.(4)

When ξ, ν are unit orthogonal vectors (with respect to the metric g at x0), Sc(x0, y0)(ξ, ν) defines
the cost-sectional curvature from x0 to y0 in directions (ξ, ν). This definition is intrinsic (i.e.
coordinate independent).

We are now ready to introduce the following condition on the cost function:

As (Positive sectional curvature) The cost-sectional curvature is uniformly positive on
D. In other words, there exists C0 > 0 such that for all (x0, y0) ∈ D, for all ξ, ν ∈ Tx0M ,
(ξ, ν)g = 0,

Sc(x0, y0)(ξ, ν) ≥ C0|ν|2|ξ|2.(5)

Alternatively, condition Aw (non-negative sectional curvature) is satisfied whenever
(5) is satisfied with C0 = 0.

In [17], [22], [16] the study was restricted to the case where M = Rn, D = Ω×Ω′, for Ω,Ω′

two domains of Rn. Concerning classical regularity, Ma, Trudinger and Wang [17] proved the
following:

Theorem 3.7 ([17]) Let c be a C4(Ω× Ω′) cost function that satisfies assumptions A1, A2,
As on (Ω × Ω′), Ω′ being c-convex with respect to Ω. Let µ0 = ρ0dx, µ1 = ρ1dx be probability
measures respectively on Ω and Ω′. Assume that ρ0, ρ1 are bounded away from 0, and belong
to C2(Ω) (resp. C2(Ω′)). Let φ be a c-convex potential on Ω such that Gφ#µ0 = µ1. Then
φ ∈ C3,α(Ω) for every α ∈ [0, 1).

The key step toward this result is an interior a-priori estimate for second derivatives of
solutions of (3); we will rely on this a-priori estimate in the present paper.

In [16] we proved the following relationship between regularity and a natural geometric
property of the c-convex potentials:
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Theorem 3.8 ([16]) Assume that for all µ0, µ1 smooth positive probability measures, the c-
convex potential φ such that Gφ#µ0 = µ1 is C1. Then for all φ c-convex on Ω, for all x ∈ Ω,
∂φ(x) = ∂cφ(x).

This result, combined with Theorem 3.7 yields easily the following:

Theorem 3.9 ([16]) Let c be a C4(Ω× Ω′) cost function that satisfies assumptions A1, A2,
As on (Ω × Ω′), Ω,Ω′ being c(resp c*)-convex with respect to each other. Then, for all φ
c-convex on Ω, for all x ∈ Ω, the set Gφ(x) is connected.

In [16], it was also proved that the non-negativity of the cost-sectional curvature (i.e. con-
dition Aw) is a necessary condition for regularity: without that condition, one can construct
potentials that are not C1 even though the data are smooth and positive. Relying on the results
of [22], it was then shown that the non-negativity of the cost-sectional curvature was equivalent
to the connectedness of the set Gφ(x) (see (2)).

Theorem 3.10 ([16], [22]) Let c be a C4(Ω×Ω′) cost function that satisfies assumptions A1,
A2 on (Ω× Ω′), Ω,Ω′ being uniformly c(resp c*)-convex with respect to each other. Then the
following are equivalent:

1. The cost c satisfies Aw;

2. For all φ c-convex, for all x ∈ Ω, Gφ(x) is connected;

3. For all µ0, µ1 C
∞-smooth positive probability measures on Ω,Ω′, the optimal map between

µ0 and µ1 is C∞.

Under positive cost-sectional curvature, we proved also C1,α regularity of optimal potentials
for rough data. Let us first introduce some regularity properties on the measures µ0, µ1. The
first one reads

A(n, p) For some p ∈]n,+∞], Cµ0 > 0,

µ0(Bε(x)) ≤ Cµ0ε
n(1− 1

p
) for all ε ≥ 0, x ∈M.(6)

The second condition reads

B(n) For some f : R+ → R+ with limε→0 f(ε) = 0,

µ0(Bε(x)) ≤ f(ε)εn(1− 1
n

) for all ε ≥ 0, x ∈M.(7)

We remark that µ ∈ Lp implies A(n, p) with the same p, while B(n) doest not imply µ ∈ L1.
Letting Hn−1 be the n − 1 dimensional Hausdorff measure, we also notice that (7) implies
that µ does not give mass to sets A such that Hn−1(A) is finite, which is close to the optimal
assumption for existence of an optimal map in (1) (e.g. µ0 does not charge n − 1-rectifiable
sets). We also denote classically Ωδ = {x ∈ Ω : d(x, ∂Ω) > δ).
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Theorem 3.11 ([16]) Under the assumptions of Theorem 3.9 on c, Ω, Ω′, let µ0, µ1 be prob-
ability measures respectively on Ω and Ω′. Let φ be a c-convex potential on Ω such that
Gφ#µ0 = µ1. Assume that µ1 ≥ m dVol on Ω′ for some m > 0.

1. Assume that µ0 satisfies A(n,p) for some p > n. Let α = 1− n
p
, β = α

4n−2+α
. Then for

any δ > 0 we have

‖φ‖C1,β(Ωδ) ≤ C,

and C depends only on δ > 0, Cµ0 in (6), on m, on the constants in conditions A0, A1,
A2, As.

2. If µ0 satisfies B(n), then φ belongs to C1(Ωδ) and the modulus of continuity of ∇φ depends
also on f in (7).

Moreover, it was shown that in the case where c is the squared Riemannian distance on M ,
denoting Σg the sectional curvature of M , the identity

Sc(x, x) =
3

2
Σg(x)

holds (meaning that the two tensors coincide on (TxΩ)2). Gathering all those results implies
that for a manifold whose sectional curvature is negative at some point on some two-plan, one
can exhibit positive smooth densities such that the optimal transport map between them (for
the cost equal to d2(·, ·)) is not continuous.

4 Connectedness of the contact set: Proof of Theorem

2.3

We prove the following more general result:

Theorem 4.1 Let Sn−1 be the unit sphere of Rn equipped with the round metric g, and Rie-
mannian distance d. Let c(x, y) = f(d(x, y)) for some f : [0, π) → R smooth and strictly
increasing, with f ′(0) = 0 and such that the conditions A0, A1, A2, As are satisfied on
Sn−1 × Sn−1 \ antidiag. Then

1. for all x, y0, y1 ∈ Sn−1 such that −x /∈ {y0, y1}, for all y ∈ [y0, y1]x, y 6= −x;

2. for all φ c-convex, for all y ∈ Sn−1, φ+ c(·, y) reaches a global maximum at x = −y, and
any other critical point is a global minimum;

3. for all φ c-convex, for all x ∈ Sn−1, ∂φ(x) = ∂cφ(x).
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Remark. We notice that d(x, y) = arccos(x · y), and that

− log |x+ y| = −1

2
(log(

1

2
|x+ y|2) + cste

= −1

2
log(1 + cos(d(x, y))) + cste.

Hence in both cases the cost-function is of the form c(x, y) = f(d(x, y)) that fits into the
framework of Theorem 4.1.
Proof of Theorem 4.1. We first prove the point 1: as the cost c is under the form c = f(d),
we have, for all x 6= y,

∇xc(x, y) = −f ′(d(x, y))ey,(8)

where ey = exp−1
x (y)/d(x, y). If the cost satisfies A1, then f ′ should obviously be a strictly

monotone function. This yields that f is necessarily strictly convex. Now since f is non-negative
and increasing, from the definition of the c-segment, we have easily using (8)

max{d(x, yθ), θ ∈ [0, 1]} ≤ max{d(x, y0), d(x, y1)}.

This yields point 1. Note that point 1 implies that the c-segment [y0, y1]x is well defined provided
−x /∈ {y0, y1}. We now prove point 2 and 3 for φ of the form

φ̄(x) = max{−c(x, y0) + a0,−c(x, y1) + a1}.(9)

We let

h(x) = φ̄(x) + c(x, y),

Dy = Sn−1 \ {−y}.

Note that h is semi-convex on Dy. We say that x ∈ Dy is a critical point of h whenever
0 ∈ ∂h(x). We now use the fact that the cost satisfies assumption As:

Lemma 4.2 Under the assumptions of Theorem 4.1, let x 6= −y be a critical point of h, then
x is a local minimum of h. Moreover h reaches its global maximum at x = −y.

Proof. We choose x 6= −y and assume that φ̄ is not differentiable at x otherwise the conclusion
is trivial. Without loss of generality, one can then write

φ̄(x′) = max{−c(x′, y0) + c(x, y0),−c(x′, y1) + c(x, y1)}.

Moreover, if φ̄ + c(·, y) has a critical point at x where c(·, y) is differentiable, then necessarily
y ∈ [y0, y1]x, the c-segment with respect to x. Hence, one can write y = yθ for some θ ∈ [0, 1].
Finally, if y0 6= y1, φ̄ is necessarily differentiable at x = −yi, i = 0, 1, since in a neighborhood of
y0 (resp. y1), φ̄ ≡ −c(x′, y1) + c(x, y1) (resp. φ̄ ≡ −c(x′, y0) + c(x, y0)). Hence we can assume
that x 6= −y0 and x 6= −y1. If y = y0 or y = y1 then φ̄+ c(·, y) has a global minimum at x. In
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the case where y /∈ {y0, y1} we use the result of [16, Proposition 5.1]. Locally around x, under
assumption As, we have for θ ∈ [ε, 1− ε]

max{−c(x′, y0) + c(x, y0),−c(x′, y1) + c(x, y1)}
≥ −c(x′, yθ) + c(x, yθ) + δd2(x, x′) + o(d2(x, x′)),

where δ > 0 for ε > 0, d(y1, y0) > 0. Hence, we have

φ̄(x′) + c(x′, yθ) ≥ c(x, yθ) + δd2(x, x′) + o(d2(x, x′)),

with equality at x′ = x. So if φ̄ + c(·, y) has a critical point at x, either y = y0 or y1 in which
case x is a global minimum, or y = yθ for some θ ∈ (0, 1), and then x is a strict local minimum.

This implies that h reaches its global maximum at x = −y: Indeed, if h reaches its maximum
at x ∈ Dy, then h is semi-convex around x (since it is the sum of a c-convex function and a
smooth function), and x is thus a critical point of h. As we saw in Lemma 4.2, any critical
point of h in Dy is a local minimum, and as we are on a compact manifold, h must have a
global maximum, which is thus necessarily −y.

�

Lemma 4.3 Let h, φ̄ be defined as above. Then any local minimum of h is a global minimum
on Sn−1.

Proof. We first assume that y /∈ {y0, y1}. In this case, we prove the stronger assertion that
h has only one local minimum (which in particular is the global minimum). So let us assume
that h has two distinct local minima x1 6= x2. Note that from Lemma 4.2, both x1 and x2 are
different from −y, which is the global maximum of h. From the proof of Lemma 4.2, these two
local minima are strict, and are thus separated: x1 and x2 do not belong to the same connected
component of a level set of h. Then consider

inf
γ∈Γ

sup
t∈[0,1]

h(γ(t)),

where Γ is the set of continuous paths from [0, 1] to Sn−1 such that γ(0) = x1, γ1 = x2.
By standard compactness arguments, this saddle point is attained at some point x3. Clearly
x3 6= −y since, from Lemma 4.2, h reaches its global maximum at −y. Thus x3 ∈ Dy, and x3 is
a critical point of h. In view of Lemma 4.2, x3 should then be a local minimum of h, moreover,
since y /∈ {y0, y1}, this local minimum should be strict. We reach a contradiction.

If y = y0, the situation is simpler: h reaches its global minimum on the whole set

E = {x′ : −c(x′, y0) + a0 ≥ −c(x′, y1) + a1}.

Moreover h reaches its global maximum at x′ = −y1, and, from assumption A1, there are no
critical points outside of E, so there can be no local minima of h outside of E.

�

Lemma 4.4 Let φ̄ be defined as above. Then for all x ∈ Sn−1, ∂cφ̄(x) = ∂φ̄(x).

12



Proof. Consider p ∈ ∂φ̄(x). Then p ∈ [−∇xc(x, y0),−∇xc(x, y1)]x. If x is on the set where φ
is not differentiable, (otherwise there is nothing to prove) then −x /∈ {y0, y1}. From the point
1 already proved, there exists y ∈ [y0, y1]x ⊂ Sn−1 \ {−x}, such that p = −∇xc(x, y). Then
considering the function h = φ̄+ c(·, y) on Sn−1, clearly x is a critical point of h. Thus, by what
we proved above, x is a global minimum of h, and so p ∈ ∂cφ̄(x).

�
Then arguing as in [16, Proposition 2.11], if the conclusion of Lemma 4.4 holds for all c-

convex functions of the form (9), it holds for all φ c-convex; this achieves the proof of Theorem
4.1.

�
Remark. This argument allows to go from [16, Proposition 5.1] to the important identity

∂cφ = ∂φ. One of the crucial ingredients is the absence of boundary used in the saddle point
argument. The case with boundary has been treated by Trudinger and Wang in [21]. An
alternative argument to obtain ∂cφ = ∂φ from Aw has been obtained in [15].

5 Proof of Theorem 2.4

Strategy of the proof Most of the proof is contained in the following points:
1- Given µ0, µ1 satisfying the assumptions of Theorem 2.4, there exists a constant σ such

that d(x,Gφ(x)) ≤ π − σ for all x ∈ Sn−1. Hence, Gφ(x) stays uniformly far away from the
cut-locus of x. Then we can reduce locally the problem to an Euclidean problem.

2- The assumption As is satisfied by the cost function distance squared on the sphere
(Theorem 2.2).

Once this is established, we proceed as follows:
Given x0 ∈ Sn−1 we can build around x0 a system of geodesic coordinates on the set

{x, d(x, x0) ≤ R} for R < π. From point 1-, for r small enough, the graph {(x,Gφ(x)), x ∈
Br(x0)} is included in the set Br(x0)×Bπ−2r(x0) on which the cost function is C∞. From point
2- and using [17], a C4 smooth solution to (3) on Br(x0) will enjoy a C2 a priori estimate at
x0. This estimate will depend only on the smoothness of µ0, µ1, on r, and r is small but can
be chosen once for all.

Once a C2 a priori estimate is established we use the result of [10]: the method of continuity
allows to build smooth solutions for any smooth positive densities.

Then, we use the results of [16] to conclude our partial C1,α regularity result.

5.1 Reduction of the problem to an Euclidean problem

Uniform distance to the cut locus We show that there exists a subset S2
σ of Sn−1 × Sn−1

on which A0-A2 are satisfied, and such that the graph of Gφ, i.e. {(x,Gφ(x)), x ∈ Sn−1}, is
contained in S2

σ. This subset S2
σ is defined by

S2
σ =

{
(x, y) ∈ Sn−1 × Sn−1 : d(x, y) ≤ π − σ

}
(10)

where σ > 0 depends on some condition on µ0, µ1. We first remark that
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Lemma 5.1 For all x ∈ Sn−1, the set {y, (x, y) ∈ S2
σ} is c-convex with respect to x.

Then we show the following crucial result:

Proposition 5.2 Let µ0, µ1 be two probability measures on Sn−1, let φ be a c-convex potential
such that Gφ#µ0 = µ1. Assume that there exists m > 0 such that µ1 ≥ mdVol and that µ0

satisfies B(n-1) (see (7)). Then there exists σ > 0 depending on m and on f in (7), such that
{(x,Gφ(x)), x ∈ Sn−1} ⊂ S2

σ, where S2
σ is defined in (10).

Proof: We use [11]; in that paper, it was shown, for φ satisfying Gφ#µ0 = µ1, that we
have |dφ| ≤ π− ε, and ε > 0 depends on ‖dµ1/dVol‖L∞‖ (dµ0/dVol)−1 ‖L∞ . Considering φc and
Gφc that pushes forward µ1 onto µ0, we also have a bound such as |dφ| ≤ π − ε, where ε > 0
depends on ‖dµ0/dVol‖L∞‖ (dµ1/dVol)−1 ‖L∞ . Here we slightly extend this bound to the case
where µ0 satisfies B(n-1) (7), and µ1 ≥ mdVol.

The starting point of the proof is [11, Lemma 2] where it is shown that for all x1, x2 ∈ Sn−1,
for all ψ c-convex,

d(Gψ(x2), x̂1) ≤ 2π
d(Gψ(x1), x̂1)

d(x1, x2)
,

where x̂1 is the antipodal point to x1. Hence the set Eδ = {x : d(x, x1) ≥ δ} is sent by Gψ in
Bε(x̂1) where

ε = 2π
d(Gψ(x1), x̂1)

δ
.

Considering ψ = φc, we have Gψ#µ1 = µ0. This implies

µ0(Bε(x̂1)) ≥ µ1(Eδ).

Taking δ > 0 fixed (for example δ = π/2), we have

µ0(B4d(Gφc (x1),x̂1)(x1)) ≥ inf
z
µ1(Dz),

where Dz is the half-sphere centered at z. Hence

inf
x∈Sn−1

{
|π − dφc(x)|

}
≥ inf

{
r : ∃x ∈ Sn−1, µ0(B4r(x)) ≥ inf

z
µ1(Dz)

}
:= σ.

In particular, if µ0 satisfies B(n-1), we have

µ0(B4r(x)) ≤ C (Vol(B4r(x)))1−1/(n−1)

for r small enough, hence if µ1 ≥ mdVol,m > 0 we find that σ > 0 and the uniform distance
between Gψ(x) and the cut locus of x is asserted. Now notice that sup{|dφ(x)|, x ∈ Sn−1} =
sup{|dφc(x)|, x ∈ Sn−1}, and the proposition follows.

�
Remark. It is enough to conclude the proof to assume that µ0(Bε(x))→ 0 uniformly with

respect to ε.
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Construction of a local system of coordinates Given x0 ∈ Sn−1, we consider a system of
geodesic coordinates around x0, i.e. given a system of orthonormal coordinates at x0 and the
induced system of coordinates on Tx0(Sn−1), we consider the mapping p ∈ Tx0(Sn−1)→ expx0(p).
This mapping is a diffeomorphism from BR(0) ⊂ Rn−1 to BR(x0) as long as R < π. Then, for
for r < σ/2 we have

S2
σ ∩ {(x, y) : x ∈ Br(x0)} ⊂ Br(x0)×Bπ−σ+r ⊂ S2

σ−2r.

We now take r = σ/3 Hence, Br(0) is sent in Bπ−2r(0), and the cost function is C∞ on
Br(0)×Bπ−2r(0)for r small enough.

In this case, we have c-expx(p) = expx(p), and also

D2
x,yc(x, y) = −[Dv expx]

−1(y),(11)

where Dv expx is the derivative with respect to v of v → expx(v). Assumption A1 is trivial,
since y is indeed uniquely defined by y = expx(p). From (11), assumption A2 is true on any
smooth compact Riemannian manifold, since in this case Jac(v → expx v) is bounded by above.

5.2 Verification of assumption As: Proof of Theorem 2.2

It has been established in [11] that in a system of normal coordinates e1, .., en−1 at x with
e1 = p/|p|, we have

D2
xixj

c|x,expx(p) =

 1 if i = j = 1

δij
|p| cos(|p|)

sin(|p|)
otherwise.

This relies on the fact that D2
xxc(x, expx(p)) = [Dp(expx(p))]

−1Dx(expx(p)), and follows by
computations of Jacobi fields. Hence, we have, in this system of coordinates,

M(x, p) := D2
xxc(x, c-expx(p)) = I − (1− r cos r

sin r
)I ′,

where r = |p|, I is the identity matrix of order n − 1, and I ′ is the identity matrix on
vect(e2, .., en−1). So, for a given v ∈ Rn−1,

M(x, p) · v · v = |v|2 − (1− r cos r

sin r
)|Πv|2,

where Πv is the projection of v on p⊥. This can be written, using intrinsic notations(
H(c(·, y))|y=expx(z)v, v

)
g

= |v|2g − (1− |z|g cos |z|g
sin |z|g

)|Πv|2g,

where (·, ·)g denotes the Riemannian scalar product on c-expx(Sn−1) and |p|2g = (p, p)g.
Let α, β ∈ Rn−1, t ∈ R, ut = α + tβ and r = |ut|. We assume that r < π, and Πtv is the

projection of v on u⊥t . Assumption As is then equivalent to show

d2

dt2
[t→M(x, α + βt) · v · v] ≤ −C0|β|2|v|2,
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for all α, β ∈ c-expxSn−1, v ⊥ β, which is equivalent to

d2

dt2

[
t→ (1− r cos r

sin r
)|Πtv|2

]
≥ C0|β|2|v|2,

for all α, β ∈ Rn−1, v ⊥ β. Without loss of generality, we assume by changing t in t − t0 that
α ⊥ β. We have

Πtv = v − |ut|−2(v · ut)ut,

hence, using v ⊥ β,

|Πtv|2 = |v|2 − 2(v · ut)2|ut|−2 + (v · ut)2|ut|−2

= |v|2 − (v · α)2|ut|−2.

Now, assuming |v| = 1 and (v, α)g = c, we have to evaluate d2

dt2
F , where F = G ◦ r, and

G(r) = (1− r cos r

sin r
)(1− c2

r2
),

r(t) = |α + tβ|.

A computation shows that

d2

dt2
F =

α2β2

r3

{
1

sin2 r
(r − sin r cos r)(1− c2

r2
)

+
1

sin r
(sin r − r cos r)

2c2

r3

}

+
t2β4

r2

{
2

sin3 r
(sin r − r cos r)(1− c2

r2
)

+
2

sin2 r
(r − sin r cos r)

2c2

r3

− 1

sin r
(sin r − r cos r)

6c2

r4

}
.

Notice that we have for some C > 0, and for all r ∈ [0, π],

sin r − r cos r ≥ Cr3,(12)

r − sin r cos r ≥ Cr3.(13)

Hence, all terms are positive, except the last one. The sum of the last two lines has for r ∈ [0, π]
the sign of

2(r2 − r sin r cos r)− 3(sin2 r − r sin r cos r)

=
1

2

(
r sin 2r + 3 cos 2r + 4r2 − 3

)
.

16



One can check (by two successive differentiations) that this quantity is non-negative for r ∈
[0, π]. Hence we have, using (12, 13),

d2

dt2
F ≥ Cβ2

[
(1− c2

r2
)
α2 + t2β2

r2
+
α2c2

r4

]
= Cβ2

[
(1− c2

r2
) +

α2c2

r4

]
.

Remember that c = α · v, with |v| = 1, hence |α| ≥ |c| and r ≥ |c|, to conclude that d2

dt2
F ≥

C0|β|2.
Hence in a normal system of coordinates at x, we see that As is satisfied at x for any y such

that d(x, y) < π. As seen in [16], the cost-sectional curvature is intrinsic. This proves Theorem
2.2.

�

5.3 C1 regularity for weak solutions

Consider a system of geodesic coordinates around x0. As we have seen, using Proposition 5.2,
in this system of coordinates, for r0 = σ/3, we have

{(x,Gφ(x)), x ∈ Br0(0)} ⊂ Br0(0)×Bπ−2r0(0) ⊂ S2
σ/3.

Moreover, c satisfies A0-As on Br0(0) × Bπ−2r0(0). We let Ω = Br0(0), R = π − 2r0, and
Ω′ = BR(0), and remark that Ω,Ω′ are uniformly strictly c-convex with respect to each other
if r0 is small enough. Now, given φ c-convex on Sn−1 such that Gφ#µ0 = µ1, we consider φ̃ the
restriction of φ to Ω. We recall the definition of the Monge-Ampère measure of φ with respect
to µ1, defined by

∀B Borel, G#
φ µ1(B) = µ1(Gφ(B)).(14)

We claim the following:

Proposition 5.3 Let φ, φ̃,Ω,Ω′ be as above. Let µ0, µ1 be probability measures on Sn−1 such
that Gφ#µ0 = µ1, and µ1 ≥ mdVol; then

1. φ̃ is c-convex on Ω with respect to the restriction of c to Ω× Ω′;

2. Gφ̃ coincides with Gφ on Ω;

3. G#

φ̃
dVol ≤ 1

m
dVol on Ω.

Remark. Note that in general, Gφ#µ01Ω = µ11Ω′ will not hold. Indeed, Gφ(Ω) is a pri-
ori strictly included Ω′, hence for B ⊂ Ω′, µ1(B) = µ0(G−1

φ (B)) will be strictly larger than

µ0(G−1
φ (B) ∩ Ω). However, point 2. suffices to conclude that G#

φ̃
µ1 = G#

φ µ1.

Proof. The first point is straightforward: indeed at every x ∈ Ω, φ̃ has global c-support
−φc(y)− c(·, y), and y ∈ Ω′ since Gφ(Ω) ⊂ Ω′.
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The delicate issue for the second part comes from the following point: we have

Gφ̃(x) =
{
y : φ(x) + c(x, y) = inf{φ(x′) + c(x′, y), x′ ∈ Ω}

}
.

As we see, the infimum above has to be on Ω, whereas for the definition of Gφ it has to be
on Sn−1. Thus the inclusion Gφ(x) ⊂ Gφ̃(x) is straightforward while the reverse inclusion is
unclear. To overcome this we use the Theorem 4.1, and the fact that for all φ c-convex on Sn−1,
∂cφ = ∂φ. Hence if φ + c(·, y) has a local minimum it has to be a global minimum in all of
Sn−1. Hence, if y ∈ Gφ̃(x), then φ + c(·, y) has a local minimum at x, and hence a global one,
thus y ∈ Gφ(x).

Now the last point follows from the following lemma, which is a reformulation of [16, Propo-
sition 5.11] in the sphere case.

Lemma 5.4 Let φ be c-convex on Sn−1. Assume that Gφ#µ0 = µ1. Assume that µ1 ≥ mdVol
on Ω′. Then for all ω ⊂ Sn−1, we have

µ0(ω) ≥ mVol(Gφ(ω)), and hence, G#
φ dVol ≤ 1

m
µ0.

Before proving this lemma, we conclude the proof of Proposition 5.3, by observing that,
from the point 2 of Proposition 5.3, on Ω we have G#

φ̃
dVol = G#

φ dVol.

�
Proof of Lemma 5.4. In Sn−1 we consider N = {y ∈ Sn−1 : ∃x1 6= x2 ∈ Sn−1, Gφ(x1) =

Gφ(x2) = y}. Then N = {y ∈ Sn−1 : φc is not differentiable at y}. Hence Vol(N) = 0,
and Vol(Gφ(ω) \ N) = Vol(Gφ(ω)). Moreover, on Gφ(ω) \ N , G−1

φ is single valued. Then

G−1
φ (Gφ(ω) \N) ⊂ ω. Hence,

µ0(ω) ≥ µ0(G−1
φ (Gφ(ω) \N))

= µ1(Gφ(ω) \N)

≥ mVol(Gφ(ω) \N)

= mVol(Gφ(ω)).

We are now allowed to use [16, Proposition 5.9] to prove Theorem 2.4. Let first recall the
result:

Proposition 5.5 (Proposition 5.9 [16]) Let Ω,Ω′ be domains of Rn−1. Let φ be c-convex
with Gφ(Ω) ⊂ Ω′. Let c satisfy assumptions A0, A1, A2, As on Ω,Ω′ with Ω,Ω′ strictly
c-convex with respect to each other, then

• if G#
φ dVol satisfies A(n-1, p) (see (6)), for some p > n − 1, then φ ∈ C1,β

loc (Ω), with
β(n− 1, p) as in Theorem 3.11,

• if G#
φ dVol satisfies B(n-1) (see(7)), then φ ∈ C1

loc(Ω).

This achieves the proof of C1 regularity.
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5.4 C2 a priori estimates for smooth solutions

Let φ be a C4 smooth c-convex potential on Sn−1 such that Gφ#µ0 = µ1, with µ0, µ1 having
positive C1,1 smooth densities. We recall the a-priori estimate of [17, Theorem 4.1], adapted to
our notations:

Theorem 5.6 ([17]) Let Ω,Ω′ be subsets of Rn. Let φ be a C4(Ω) c-convex solution of (3)
with Gφ(Ω) ⊂ Ω′. Suppose assumptions A0, A1, A2, As are satisfied by c on Ω × Ω′. Then
we have the a priori second order derivative estimate

|D2φ|(x) ≤ C,

where C depends on n, dist(x, ∂Ω), supΩ φ, ρ0, ρ1 up to their second derivatives, the cost function
c up to its fourth order derivatives, the constant C0 in As, and a positive lower bound of
| detD2

x,yc| on Ω.

Applying this result with Ω = Br(0), Ω′ = Bπ−2r0(0), we have a bound on D2φ(x0) that depends
only on r0 and on the bounds on µ0, µ1. Finally, note that r0 can be chosen once for all once σ
is known.

Continuity method In [10] it was established that given a C∞ smooth c-convex potential
φ, a C∞ smooth positive measure µ0, and µ1 = Gφ#µ0, the operator

F : φ→ F (φ) = Gφ#µ0

was locally invertible in C∞ around µ1. Then the existence, for a given pair of C∞ smooth
positive probability measures µ0, µ1 of a C∞ smooth c-convex potential φ is granted once a-
priori estimates for the second derivatives have been derived. Indeed, this follows from the
concavity of the equation and and the well known continuity method (see [12]).

We conclude the following: for µ0, µ1 having C1,1 smooth probability densities, there exists a
(unique up to a constant) c-convex potential φ ∈ C3,α for every α ∈ [0, 1[ such that Gφ#µ0 = µ1.
If moreover µ0, µ1 are C∞, φ ∈ C∞. This concludes the third point of Theorem 2.4.

�
The proof of Theorem 2.4 is complete.

6 Proof of Theorem 2.5

For this case it has already been checked (see [26, 27, 14]) that the cost function c(x, y) =
− log |x − y| satisfies As for x 6= y. We will just prove that under some assumptions on the
measures µ0, µ1 we can guarantee that Gφ(x) stays away from x. This will imply that when
the cost is − log |x+ y|, Gφ(x) stays away from x̂. Then, the proof of the Theorem 2.5 mimics
the proof of Theorem 2.4. We prove the
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Proposition 6.1 Let Sn−1 be unit sphere of Rn. Let c(x, y) = − log |x − y|. Let T : Sn−1 →
Sn−1 be a 2-monotone map, i.e. such that

∀x1, x2 ∈ Sn−1, c(x1, T (x1)) + c(x2, T (x2)) ≤ c(x2, T (x1)) + c(x1, T (x2)).(15)

Let µ0, µ1 be two probability measures on Rn. Assume that µ1 ≥ mdVol for m > 0, and that µ0

satisfies B(n-1) (7). Then there exists ε0 > 0 depending only on m, f in (7) such that

∀x ∈ Sn−1, d(x, T (x)) ≥ ε0.

Proof of Proposition 6.1. We follow the same lines as in [11]. From (15), we have

log |x1 − T (x2)| ≤ log |x1 − T (x1)|+ log 2− log |x2 − T (x1)|.

Letting M = − log |x1 − T (x1)|, the set {x : |x − T (x1)| ≥ 1} is sent by T in the set {y :
|y−x1| ≤ 2 exp(−M)}. Then the bounds on µ0, µ1 yield an upper bound on M as in the proof
of Proposition 5.2.

�
Remark. The results that we have established for the reflector antenna and the quadratic

cost can certainly be extended to the class of all costs that follow the assumptions of Theorem
4.1. Indeed the argument used to show the ”stay away from the cut locus” property can be
easily adapted in this case, and all the other arguments remain true.
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[10] P. Delanoë. Gradient rearrangement for diffeomorphisms of a compact manifold. Diff.
Geom. Appl., 20:145–165, 2004.
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