Gradient estimates for potentials of invertible
gradient—mappings on the sphere*

Philippe Delanoé!, Grégoire Loepert

Abstract

McCann showed that, if the potential of a gradient-mapping, on a com-
pact riemannian manifold, is c-convex, the length of its gradient cannot
exceed the diameter of the manifold. We improve this bound in two dif-
ferent manners on the constant curvature spheres, under assumptions on
the relative density of the image-measure of the riemannian volume. One
proof, with the standard metric, relies on the Brenier—-McCann optimal
measure-transport property; the other, purely pde, ignores it.

Introduction

Following Robert McCann [13], we consider gradient-mappings on a riemannian
manifold: these are mappings of the form m — exp,,(grad,, ¢) =: G(¢)(m)
where ¢ is a real function on the manifold, the ”potential” of the gradient-
mapping G(¢). Brenier, in the euclidean space [4, 5], then McCann on compact
riemannian manifolds [13], established the optimal character of such mappings
for measure-transport when the cost-integrand is the squared distance from the
generic point to its image. For the mapping G(¢) this distance is nothing but the
norm |d¢| of the gradient. On a compact manifold, granted the cost-convexity
of ¢ (definition recalled below), which holds whenever G(¢) is a diffeomorphism
[12, Proposition 2], that norm cannot exceed the diameter of the manifold [13,
Lemma 2] (see also [12, Proposition 4]).

In the present note, using the Brenier—-McCann optimal transport result
[13], we improve that bound on the standard unit n-sphere in case the image-
measure by G(¢) of the riemannian measure has essentially bounded relative
density. Here is the idea of the proof: if the gradient-mapping G(¢) sends a
point m close to its antipodal point m’ (or equivalently, if |d¢|(m) is close to
m), then the cost-convexity of the potential ¢ implies that G(¢) must actually
send a large neighborhood of m into a small cap around m’, contradicting the
bound on the density of the image-measure (see section 1).

Under stronger regularity assumptions, but ignoring the Brenier—-McCann
result and dealing with a general constant curvature metric, we carry out further
estimates of the gradient in terms of a relative density (section 2). The analysis
here is not quite standard because we must cope with the exponential map
involved in the operator ¢ — G(¢). Such techniques will be required for higher
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order estimates (still open) which would provide (via the continuity method,
see [12, section 5.1]) a regular potential anytime we are given a regular relative
density. Given so, the a posteriori regularity of the Brenier-McCann cost-convex
potential is not known, except on flat manifolds [6, 7, 8, 9], where a smooth
potential is known to exist directly as well [12, Theorem 3] (see also [11, 15]).
Progressing on that regularity problem was our present motivation.

1 Gradient estimate via optimal
measure-transport

To begin with, let us recall the notion of cost-convexity on a riemannian manifold
(see [13] and further references therein) formulated with the Brenier quadratic
cost-function ¢(m, p) = 3 d2(m,p).

Definition 1 Let M be a compact riemannian manifold and d(-,-), its rieman-
nian distance-function. The c-transform ¢° of a function ¢ : M — R is defined
for allp € M by

2(m, p)

d
¢°(p) = sup {— 5
meM

—¢(m)}.

The function ¢ is said to be c-convex if (¢°)¢ = ¢.

The c-transform is the riemannian counterpart of the Legendre transform in the
euclidean space. If ¢ is c-convex, then ¢ is D-Lipschitz (with D the diameter of
M) [13, Lemma 2] and twice differentiable almost everywhere [10, Proposition
3.14] [1, 3]; in particular, the gradient-mapping G(¢) is (differentiable, hence)
continuous at almost every point of M. Moreover, if the push-forward by G(¢)
of the riemannian Lebesgue measure dVol is absolutely continuous with respect
to dVol, then the gradient-mapping G(¢) is invertible almost everywhere on M
(see [13, Corollary 10]).

In this section, we take for M the standard unit sphere S™. We aim at the
following result:

Theorem 1 Let ¢ : S™ — R be a c-convex function such that
G(¢)4dVol = pdVol

for some p € L>=(S™,dVol), where dVol stands for the canonical Lebesgue mea-
sure on S". There exists € > 0 depending on ¢ only through ||p|| e (sn avol) such
that |dp| < 7 — € almost everywhere on S™.

This result will follow from a property of G(¢) called 2-monotonicity which
we now define:

Definition 2 A map A : S™ +— S™ is called 2-monotone if it satisfies identically
the inequality:

d2[A(m),m] + d2[A(p),p] < d2[A(m), p] + d2[A(p),m] .

It is called a.e. 2-monotone if the inequality holds only almost-everywhere in
S™ x S™.
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The following property holds for 2-monotone maps:

Theorem 2 Let A : S™ — S" be a measurable a.e. 2-monotone map. If
AydVol = pdVol for some p € L*>®(S",dVol), there exists € > 0 (depending
on ||pll o (sn ,avoly) such that dim, A(m)] <7 — e at almost every m € S™.

Before proving Theorem 2, let us show how it implies Theorem 1, relying on
the Brenier—-McCann’s optimal transportation property [13, Theorem 8] recalled
here for completeness:

Theorem 3 (McCann) If a function : S™ — R is c-convez, then the gradient-
mapping G(1) minimizes the quadratic cost

/n d2[m, A(m)] dVol(m)

amonyg all measurable maps A : S™ — S™ satisfying AxdVol = G(¢)xdVol.

This key-property implies the following lemma from which Theorem 2 yields at
once Theorem 1:

Lemma 1 If a function ¥ : S™ — R is c-convez, then the gradient-mapping
G(v) is a.e. 2-monotone.

Proof of Lemma 1. Let m, mo be distinct points of continuity for A = G(v).
Consider an ambiant rotation in the plane (mq,0,m3) that sends m; to mao,
leaving 0 unchanged. The rotation induces a measure-preserving map R of S™.
Let now R, be defined as follows (setting B(m,r) for the riemannian ball of S™
given by d(m,p) < r):

Ym € S\ [B(my,€) U B(ma,€)] Re(m)=m;
Ym € B(ma,e€), Re(m) = R(m);
VYm € B(ma,e€), Rc(m)= R~ (m).
It is easily checked that R, is also measure-preserving, satisfying (Ao R.)xdVol =

Ay dVol. From Theorem 3, we have (setting V, for the volume of geodesic balls
of radius € in S"):

0o > 1 [d2(A(m), m) — d2((A o R.)(m), m)] dVol
Ve Jgn

1
= 7 {/B(whe) [d2(A(m), m) — d2((A o R)(m), m)] dVol

+ / [d2(A(m),m) — d2((Ao R™")(m),m)] dVol}
B(x2,€)

and, due to the continuity of A at m; and mo, the latter readily goes to
d2(A(mq),ml) + d2(A(mz), ma) — [d2(A(m1), m2) + d2(A(mz), m1)]

as € goes to 0, proving the lemma.
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Proof of Theorem 2.
For (m1, ma,p) € (S™)3, let us consider the function:

d2 d2

F(m17m27p) = 7(m27p) - E(mlap)

The couple (m1, ms2) being fixed, we have
grad, F(m1,mg,p) = exp, ' (m1) — exp,, ' (n2)

(see [12, p.152]). This gradient is thus defined everywhere except at m/ and
mb, the antipodal points respectively to m; and my. Moreover, the map

V € TpS™ — exp, (V) € 8"

is uniformly Lipschitz, so there exists a positive constant 6 independent of
(m1, mg) such that:

(1) |grad,, F(m1,ma,p)| > 6 d(mi,ms) .

Now it is easily seen that p — F(mq,ma,p) reaches its infimum at p = m) and
nowhere else.

Lemma 2 For all (m1, ma,p) € (S™)3, with m1 # mg, we have

F(my1,ma,p) — F(mi,ma,m})
92d2(m1,m2) ’

d(p,m}) <2m

where mY stands for the antipodal point to m;.

Proof of Lemma 2. Fixing (m1, ms), let us consider on S™ the steepest descent
equation:

p(t) = _gradpF[m17m27p(t)]‘

Using (1), any solution p(t) satisfies

d 2
EF[mlam2ap(t)] = _‘gradpF[mlam27p(t)]| < 02 d2(m17m2) :
Therefore, starting from p(0) = pg distinct from m} and mj, the minimum of
p +— F(mi,ma,p) is reached (necessarily at p = m/) within some finite time T
estimated by:

T < F(ml,mz,po) - F(m1;m27m/1)
- 602 d2(m1,m2)

Since |p(t)| is bounded above by 27, we also have d(pg, m}) < 27T. Combining
both inequalities we obtain the lemma.

Back to the proof of Theorem 2, the assumption 'A is a.e. 2-monotone’ reads
equivalently: for almost all (m,ms) € S™ x S™,

(2) Flmy,ma, A(mz)] < Flmy, ma, A(my)] .
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Combining this with Lemma 2, we get

Flmy,ma, A(m1)] — F(my, mz,m})
62 d2(m1,m2) ’

dim’y, A(mz)] < 27

hence also, since p — F(mq, ma,p) is 2m-Lipschitz,

, 472 d[m}, A(my))
o A= S G ma)

Fixing 6 > 0, and a point m; such that (2) holds at almost all points mo, let
Es denote the set of points mg € S™ such that: d(mi,ms2) > § and (2) holds at
(m1, m2). On the one hand, from the preceding inequality, which holds almost
everywhere, we infer

Vol[A(Es)] < Vol[B(m/,€)]

47?2 d[A(mq), m}]

thoe— 21
with € 92 52

. On the other hand, the definition of dyu = A4dVol

implies:
Vol(Es) < u[A(Es)] -
Altogether, we thus obtain:

Vol(Es) plAES)] 1
Vol[B(mf, )] = Vol[A(E,)] ~ VollA(Es) /A(E{s)f’ dVol < [lpll s -

With 6 > 0 fixed, the left-hand side goes to infinity as € or d[A(m1), m]]
goes to 0, whereas [|p||pe(sn) stays finite: so there must exist ey such that
d[A(mq),m}] > €o, which is the desired result.

Remark. Sticking to the standard metric, but given an arbitrary regular posi-
tive measure du = M dVol on S™ with same total mass as dVol, if ¢ is c-convex
satisfying G(¢)xdp = pdp with p € L, the simplest way to again derive a
bound on |d¢| sharper than 7 goes by noting that, if 7 < M < 1/7 for some
7 € (0,1) and if G(¢)xdVol =: f dVol, then || f|| Lo (sn) < 72| pll Loe(sm)-

2 Gradient estimates wvia a classical approach

This section contains a pde approach to gradient estimates for potentials of
C1 gradient-diffeomorphisms on the sphere equipped with a constant curvature
metric. It is less straightforward and requires stronger regularity assumptions
than the preceding approach. But it shows how to deal with more general
metrics than just round ones and to cope without McCann’s theorem (Theorem
3 above), relying on a careful use of the Jacobi equation which is encoded in the
gradient-rearrangement operator.

Fixing a real K > 0, let us work on the n-sphere equipped with a metric
g = gk of constant curvature K, denoted by S%. For each C1 real function 1,
we set Gg (1) for the gradient-mapping m — exp,,(grad,, 1) built on S, and
drop the subscript K unless necessary.
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Theorem 4 Let ¢ : S* — R be a C3 function such that Gk (¢) is a diffeomor-
phism and let p : S™ — R be the positive C1 function defined by:

GK((b)#dVOlK =p dVOlK .
There exists € > 0 depending on ¢ and K only through the quantity

—~— max |d(log p)|

VK

such that the following estimate holds:
(3) max (VE|dg|) <7 —e .

Furthermore, letting

o = max lM]
B | (VK do)

we also have:

(4) max (\/E|d¢|) < \/% max |d[p~V/(=D]] .

Remarks. (i) The estimates (3) and (4) are dilation-invariant. Indeed, the po-
lar factorization [13] [12, Remark 2] on S% of a gradient-diffeomorphism G1(¢1)
built on S} yields G1(¢1) = Gr(¢x) with ¢px = ¢1/K. Now, one easily verifies
that vK|dox| o = |dpn | g, - Furthermore, the density p is readily independent

of K; finally |df|,, / VK is independent of K, for any function f on S™.
(7i) The estimate (3) ensures, in terms of the density p, that the generic point m
and its image G (¢)(m) are uniformly non-antipodal on S%,. The estimate (4)
specifies rather how close the points m and G g (¢)(m) must be when the density
p is slowly varying; in particular, we recover the implication p =1 = Gk (¢) = I
(see [12, Remark 4]).
(#i7) Let us provide a motivation for using more general constant curvature
metrics than just the round ones. Given a regular positive measure du on the
sphere, with total mass equal to the one of a round metric gg, there exists a
diffeomorphism 1 pulling back the gg-measure to du [14]. By naturality du
coincides with the Lebesgue measure of the pulled-back metric ©*gg; the latter
has the same curvature as gg but, in general, it is no more round.

Proof. Consider the scalar second order differential operator u +— F(u)
defined on S™ by G(u)*dVol = F(u) dVol. It is elliptic at ¢ [12, Proposition 3],
satisfying

(5) F(g) = —

T poG(9)

Fix a point my € S™ where |d¢| assumes its mazimum and a Fermi chart
(z',...,2™) at mo (see e.g. [2, p.15]) such that ¢ — (0,...,0,try) represents
the geodesic t — exp,, (tgrad,, #). Set ro = |d¢[(mo) and py = G(¢)(mo);
recall VKry < 7 [13, Lemma 2] [12, Proposition 4]. The critical condition at
mo for w := |d¢|?/2 simply reads (setting u; = %, and so on):

(6) Vie{l,...,n}, ¢in(0)=0,
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while differentiating twice w at mgq yields:

n

(7) wig(0) = 70 bnij + Y _ bk Gjk + 102K (55 — 6injn) -
k=1

Henceforth, we further select the Fermi chart such that the sub-matrix ¢q3(0),
for 1 < a,8 <n-—1,is diagonal. Now we write the maximum condition for w
at mg using the linearization of the operator F' at ¢; specifically we write:

(8) 0= dF(¢)(w)(mo) -

Lemma 3 In our Fermi chart, we have at mg:

dF (¢)(w)(mo) = K7¢2 (Z Fw> - <'Z—g(o, ..., ro)) + 37 FO ($aa) 2

with
ae _ SIN(VE7) | sin(vVKro) -
p(po) F* = 71(_7“0 lcos(\/ Kro) + ¢aa(0) 7—1(7"0 ] .

Differing the proof of the lemma, we infer from it (since, by ellipticity, the FF**’s
are positive) first of all, the vanishing of ro (thus, the constancy of ¢) if p is
constant (which we exclude from now on); secondly, the inequalities:

Ya <n, F*(¢aa)2 < —= —(0,...,0,r9)

hence also

Yo < n, M ((baa) 2 S Cl [COS(@TO) + ¢ao¢ (0) Sin(ﬁrO)

VEKrg VKro

with C; = # maxgn |d(log p)| # 0. So X := ¢ (0) satisfies the inequality:

M()@ — C1X) = Cycos(VKrg) <0,

VErg
with [sin(\/F r0)/VE ro} > 0 (by ellipticity); therefore the discriminant of the
left-hand quadratic polynomial must be non-negative, which reads:
sin(vVKro) 4

—cos(VK >0.
N +C1 cos(VKrg) >0

The latter implies (3) as routinely verified.
Besides, we also infer from (8) and Lemma 3 the bound:

1
Ky < (Z F°‘°‘> Prio,...,0,70) .

a<n p2
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On the one hand, the arithmetic-geometric inequality provides:

1/(n—1)
ZFaaz(n_1)<HFaa> :

a<n a<n

on the other hand, we will check (below) the following relation at mq:

(9) H e = l%] p>7(0,...,0,70) .

a<n

Altogether, we thus obtain:

vV K 1
KT()S - 10 p_ﬁ_l pn(07...,0,r0)
sin(vKrg) (n—1)

which immediately yields (4). So we are left with the proof of Lemma 3, in the
course of which (9) will be checked.

Proof of Lemma 3. We will proceed stepwise.

Step 1. Given ¢ and p as in Theorem 4, we fix a generic point m € S™
and, recalling that m and G(¢)(m) are not antipodal [12, Corollary 1], we take
a chart p € S” — z(p) = («',...,2™) € R" whose domain contains m and
G(¢)(m), with z(m) = 0. In such a chart, setting dVol(p) = v[z(p)] dzl...dx"
and G'[z(p)] = 2'[G(¢)(p)], we readily find for F(¢) the local expression:

vzlGO)@IY (aGi) :

(10) Fo)) = T —

where (g—g) stands for the matrix of the jacobian map JG(¢) in our chart (see

12)).

Step 2. First, let us specify what is G%(x) equal to. It is the value taken
at ¢ = 1 by the solution X i(t) of the geodesic Cauchy problem, namely (setting
Xt = dd—)f, and so on):

Xi 4D [X () XXt =0, X'(0) =2', Xi(0) = ¢ (2)¢r(z),

where the I'?,’s are the Christoffel symbols of the round metric g in our chart,
and Einstein’s convention is used. Then, let us compute gg; (z): it is the value
at t = 1 taken by the solution X;(#) of the previous problem differentiated once

with respect to the parameter 27, that is to say, the problem

Xi+(Thy), Xy Xexb42r7, XeXb =0, Xi(0) =06!, X1(0)= (gir)j¢r+g"¢rj

(we recognize the Jacobi equation along the geodesic X (t)).
Step 3. We pause to complete the calculation of g—g(O) when m = mg (cf.
supra) and the chart is our above Fermi chart at mg. When so, X;: (like Y

below) satisfies the normalized Jacobi equation along the geodesic from mg to
G(¢)(mo), namely:

(11) Y 4 Rping(0,...,0,tr0)Y?rg2 = 0
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here with Rping = K(0iq — 0indgn), together with the initial conditions:
X3(0) = &5, X1(0) = ¢45(0) -

Therefore we routinely find (¢f. supra, in particular equation (6)) that the

jacobian matrix gTG;(O) is diagonal, with %gn (0) =1 and:
oG* sin(v Kro)

12 Va <n, ——(0) = cos 70) + daa .

(12) G (0) = cos(VE) + G (0) 2 210
Moreover, noting that v(0) = v(0,...,0,79) = 1, we get from (10):

sin(v Kro)
F mp) = cos(VKry) + ¢qa(0)————=| ,

((b)( 0) H ( 0) ¢ ( ) \/?7'0

a<n
from which equation (9) readily follows, using (5). Besides, we also get:

) oG
—[poG(¢ Zpl 3 0,70) =—(0) = pn(0,...,0,7) .

(13) 8 n

ozn

Step 4. Now, back to the fixed generic point m, varying the potential ¢ in the
direction of the above function w, we proceed to compute:

L[+ 3] m)

To begin with, we do so on X*(t), setting )Z(t) for the resulting solution of:
Xi 4 (Thy), XrXaXb 42T, Xe X0 =0, Xi(0) =0, X/(0) = ¢"w,

and also on X;: (t), setting )’E;(t) for the resulting solution of:

X: o+ (T}

: i), XX Xaxb

+ (Th,), ()?}X’aXb +2XTX XD 4 2)??)('an1?)
% /L?l b .a./\.?J —
+ ori, (X Xb+X Xj) =0,

X;(0) = 0, X3(0) = (9"), wr + g"wy; .
Step 5. We simplify the preceding calculations by taking for m the point mg

where w is maximum and by using our above Fermi chart at mg. Then X i =
and X}(t) satisfies the normalized equation (11) with the initial conditions:
X}(O) =0, X}(O) = w;;(0) .
Recalling (7), we routinely find for )A(;Z at t = 1 the expressions:
Vi=1,...,n, XP(1) = 106u;(0)
— sin(v/Kro)
Va <n, X&(1) = [rodnaa(0)+ ¢20a(0) +102K] ————— ;
(1) [ro¢naa(0) + ¢2aa(0) + ro2K] VK
sin(v/Kro)

Va < n, Vj # a, XJE(I) e
0

To (bnaj (0)
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Step 6. Let us compute dF(¢)(w)(mg) from (10), using the preceding

expressions X}(l) and X? = 0. The latter yields 0 at mg for the linearization
of v{z[G(¢)]}. We thus obtain, using (12) to invert the jacobian matrix then
taking the trace:

o 11
AF (@) )(mo) = f«¢xnm>{XﬁuJ+»§j[§§;<m] Xg<n}

a<n

& Grnn(0) + Z Foo [’r‘o ®naa(0) + Qﬁia (0) + KTQZ] :

a<n

with F** as defined in Lemma 3.
Step 7. It remains only to treat the third derivatives of ¢ occuring in the
preceding expression of dF(¢)(w)(mo), namely to prove the equality:

1 aa _ P .
(14) o l@@mn(oHZF ¢W(0)1 = 10 50, 0,70) .

a<n

To do so, we first go back to the end of step 2 and differentiate the initial value
problem once again, with respect to the parameter z*, getting:

Xi + (Thy),, XiXjXaxb
+ (i), (X XoX? 42X X0 x) + 2X[ X X?)

+2rh, (Xpx? + Xexb) =0,

with the initial conditions:
5(0) =0, X5(0) = (97) 1 & + (97), ot + (977) o bug + 9" br

Then we take m = mg and k = n in our Fermi chart. From step 2 we have
X3 =62 due to (6); it implies the relation
(Tiy),, X5 XX =ro2 (T

77«”)7’77,

the right-hand side of which wvanishes because, along Oz™ (the geodesic from
mo to G(¢)(my)), we have:

(len)r = Rninr =K (5zr - 5zn5rn) .
Still from X? = 6%, we infer X% = 0; and from X/ = 6" we also have:
2 (Thy), X5 X =2rq (T%,), =0.

Altogether, the above equation for X7, (¢) thus reduces to the Jacobi equation,
namely (11). Moreover, the initial conditions become X Jln (0) =0 and

X1,(0) = ¢ (0)



Gradient estimates on the sphere 11

(noting that (g")jn br = To (gm)jn = 0, since (gm)j = 0 along Oz"). In
particular at ¢t = 1, we find X7, (1) = ¢pnn(0) and:

sin(vKro)
VErg

Finally, we differentiate equation (5) at mo with respect to z™ (in our Fermi
chart), using the generic expression (10). Since v = 1 along Oz™, it yields:

Va < n, Xgn(l) = ¢naa(0)

oG 17t
o) Xanu)}
1

= m (bnnn(o) + Z Faa¢naa (O) ’

1/poGo)n = F<¢><mo>{X::n<l>+Z[

a<n

a<n
and recalling (13), the proof of (14) is complete.

An analogous proof works for the backward transport equation (which reads
F(¢) = p). It yields the following result (with related remarks as above):

Theorem 5 Let ¢ : S* — R be a C3 function such that Gk (¢) is a diffeomor-
phism and let p : S™ — R be the positive C1 function defined by:

Gk (¢)*dVolg = p dVolk .
There exists € > 0 depending on ¢ and K only through the quantity

—~— max |d(log p)|

VK

such that the following estimate holds:
(15) max (\/E|d¢|) <m—e.

Furthermore, letting

C = max \/E|d¢|
# | sin(VE] )

we also have:

(16) max (VE|dd|) < = max [d [p/ ]

Finally, recalling that the diffeomorphism inverse of G(¢) is nothing but G(¢<)
[12, Corollary 3] and thus, that the equation G(¢)xdVolgx = pdVolg is equiva-
lent to G(¢°)*dVolg = pdVolg (with the same density-function p), noting more-
over the double identity |dp(m)| = |d¢°(p)| = dk (m, p) where p = G(¢)(m) and
dg stands for the distance-function of gx, we may combine the estimates (4)
(applied to ¢) and (16) (applied to ¢¢) and get the sharper bound:

C . —1/(n— n—
max (\/?|dd)|) < TR min {I%%X |d [p~Y/(n=1)] |,H§ETH:X |d [pt/ (=] |} .

Acknowledgment: the authors thank Yann Brenier for introducing each to
the other and for stimulating conversations.
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