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Abstract

McCann showed that, if the potential of a gradient-mapping, on a com-

pact riemannian manifold, is c-convex, the length of its gradient cannot

exceed the diameter of the manifold. We improve this bound in two dif-

ferent manners on the constant curvature spheres, under assumptions on

the relative density of the image-measure of the riemannian volume. One

proof, with the standard metric, relies on the Brenier–McCann optimal

measure-transport property; the other, purely pde, ignores it.

Introduction

Following Robert McCann [13], we consider gradient-mappings on a riemannian
manifold: these are mappings of the form m 7→ expm(gradmφ) =: G(φ)(m)
where φ is a real function on the manifold, the ”potential” of the gradient-
mapping G(φ). Brenier, in the euclidean space [4, 5], then McCann on compact
riemannian manifolds [13], established the optimal character of such mappings
for measure-transport when the cost-integrand is the squared distance from the
generic point to its image. For the mappingG(φ) this distance is nothing but the
norm |dφ| of the gradient. On a compact manifold, granted the cost-convexity
of φ (definition recalled below), which holds whenever G(φ) is a diffeomorphism
[12, Proposition 2], that norm cannot exceed the diameter of the manifold [13,
Lemma 2] (see also [12, Proposition 4]).

In the present note, using the Brenier–McCann optimal transport result
[13], we improve that bound on the standard unit n-sphere in case the image-
measure by G(φ) of the riemannian measure has essentially bounded relative
density. Here is the idea of the proof: if the gradient-mapping G(φ) sends a
point m close to its antipodal point m′ (or equivalently, if |dφ|(m) is close to
π), then the cost-convexity of the potential φ implies that G(φ) must actually
send a large neighborhood of m into a small cap around m′, contradicting the
bound on the density of the image-measure (see section 1).

Under stronger regularity assumptions, but ignoring the Brenier–McCann
result and dealing with a general constant curvature metric, we carry out further
estimates of the gradient in terms of a relative density (section 2). The analysis
here is not quite standard because we must cope with the exponential map
involved in the operator φ 7→ G(φ). Such techniques will be required for higher
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order estimates (still open) which would provide (via the continuity method,
see [12, section 5.1]) a regular potential anytime we are given a regular relative
density. Given so, the a posteriori regularity of the Brenier-McCann cost-convex
potential is not known, except on flat manifolds [6, 7, 8, 9], where a smooth
potential is known to exist directly as well [12, Theorem 3] (see also [11, 15]).
Progressing on that regularity problem was our present motivation.

1 Gradient estimate via optimal

measure-transport

To begin with, let us recall the notion of cost-convexity on a riemannian manifold
(see [13] and further references therein) formulated with the Brenier quadratic
cost-function c(m, p) = 1

2 d2(m, p).

Definition 1 Let M be a compact riemannian manifold and d(·, ·), its rieman-
nian distance-function. The c-transform φc of a function φ : M 7→ R is defined
for all p ∈ M by

φc(p) = sup
m∈M

{−d2(m, p)

2
− φ(m)}.

The function φ is said to be c-convex if (φc)c = φ.

The c-transform is the riemannian counterpart of the Legendre transform in the
euclidean space. If φ is c-convex, then φ is D-Lipschitz (with D the diameter of
M) [13, Lemma 2] and twice differentiable almost everywhere [10, Proposition
3.14] [1, 3]; in particular, the gradient-mapping G(φ) is (differentiable, hence)
continuous at almost every point of M . Moreover, if the push-forward by G(φ)
of the riemannian Lebesgue measure dVol is absolutely continuous with respect
to dVol, then the gradient-mapping G(φ) is invertible almost everywhere on M
(see [13, Corollary 10]).

In this section, we take for M the standard unit sphere S
n. We aim at the

following result:

Theorem 1 Let φ : S
n 7→ R be a c-convex function such that

G(φ)#dVol = ρ dVol

for some ρ ∈ L∞(Sn, dVol), where dVol stands for the canonical Lebesgue mea-
sure on S

n. There exists ε > 0 depending on φ only through ‖ρ‖L∞(Sn,dVol) such
that |dφ| ≤ π − ε almost everywhere on S

n.

This result will follow from a property of G(φ) called 2-monotonicity which
we now define:

Definition 2 A map A : S
n 7→ S

n is called 2-monotone if it satisfies identically
the inequality:

d2[A(m),m] + d2[A(p), p] ≤ d2[A(m), p] + d2[A(p),m] .

It is called a.e. 2-monotone if the inequality holds only almost-everywhere in
S

n × S
n.
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The following property holds for 2-monotone maps:

Theorem 2 Let A : S
n 7→ S

n be a measurable a.e. 2-monotone map. If
A#dVol = ρ dVol for some ρ ∈ L∞(Sn, dVol), there exists ε > 0 (depending
on ‖ρ‖L∞(Sn,dVol)) such that d[m,A(m)] ≤ π − ε at almost every m ∈ S

n.

Before proving Theorem 2, let us show how it implies Theorem 1, relying on
the Brenier–McCann’s optimal transportation property [13, Theorem 8] recalled
here for completeness:

Theorem 3 (McCann) If a function ψ : S
n 7→ R is c-convex, then the gradient-

mapping G(ψ) minimizes the quadratic cost

∫

Sn

d2[m,A(m)] dVol(m)

among all measurable maps A : S
n 7→ S

n satisfying A#dVol = G(ψ)#dVol.

This key-property implies the following lemma from which Theorem 2 yields at
once Theorem 1:

Lemma 1 If a function ψ : S
n 7→ R is c-convex, then the gradient-mapping

G(ψ) is a.e. 2-monotone.

Proof of Lemma 1. Let m1,m2 be distinct points of continuity for A = G(ψ).
Consider an ambiant rotation in the plane (m1, 0,m2) that sends m1 to m2,
leaving 0 unchanged. The rotation induces a measure-preserving map R of S

n.
Let now Rε be defined as follows (setting B(m, r) for the riemannian ball of S

n

given by d(m, p) < r):

∀m ∈ S
n \ [B(m1, ε) ∪ B(m2, ε)] Rε(m) = m;

∀m ∈ B(m1, ε), Rε(m) = R(m);

∀m ∈ B(m2, ε), Rε(m) = R−1(m).

It is easily checked that Rε is also measure-preserving, satisfying (A◦Rε)#dVol =
A#dVol. From Theorem 3, we have (setting Vε for the volume of geodesic balls
of radius ε in S

n):

0 ≥ 1

Vε

∫

Sn

[d2(A(m),m) − d2((A ◦Rε)(m),m)] dVol

=
1

Vε

{∫

B(x1,ε)

[d2(A(m),m) − d2((A ◦R)(m),m)] dVol

+

∫

B(x2,ε)

[
d2(A(m),m) − d2((A ◦R−1)(m),m)

]
dVol

}

and, due to the continuity of A at m1 and m2, the latter readily goes to

d2(A(m1),m1) + d2(A(m2),m2) − [d2(A(m1),m2) + d2(A(m2),m1)]

as ε goes to 0, proving the lemma.
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Proof of Theorem 2.

For (m1,m2, p) ∈ (Sn)3, let us consider the function:

F (m1,m2, p) =
d2

2
(m2, p) −

d2

2
(m1, p).

The couple (m1,m2) being fixed, we have

gradpF (m1,m2, p) = exp−1
p (m1) − exp−1

p (m2)

(see [12, p.152]). This gradient is thus defined everywhere except at m′
1 and

m′
2, the antipodal points respectively to m1 and m2. Moreover, the map

V ∈ TpS
n 7→ expp(V ) ∈ S

n

is uniformly Lipschitz, so there exists a positive constant θ independent of
(m1,m2) such that:

∣∣gradpF (m1,m2, p)
∣∣ ≥ θ d(m1,m2) .(1)

Now it is easily seen that p 7→ F (m1,m2, p) reaches its infimum at p = m′
1 and

nowhere else.

Lemma 2 For all (m1,m2, p) ∈ (Sn)3, with m1 6= m2, we have

d(p,m′
1) ≤ 2π

F (m1,m2, p) − F (m1,m2,m
′
1)

θ2d2(m1,m2)
,

where m′
1 stands for the antipodal point to m1.

Proof of Lemma 2. Fixing (m1,m2), let us consider on S
n the steepest descent

equation:

ṗ(t) = −gradpF [m1,m2, p(t)].

Using (1), any solution p(t) satisfies

d

dt
F [m1,m2, p(t)] = −

∣∣gradpF [m1,m2, p(t)]
∣∣2 ≤ −θ2 d2(m1,m2) .

Therefore, starting from p(0) = p0 distinct from m′
1 and m′

2, the minimum of
p 7→ F (m1,m2, p) is reached (necessarily at p = m′

1) within some finite time T
estimated by:

T ≤ F (m1,m2, p0) − F (m1,m2,m
′
1)

θ2 d2(m1,m2)
.

Since |ṗ(t)| is bounded above by 2π, we also have d(p0,m
′
1) ≤ 2πT . Combining

both inequalities we obtain the lemma.

Back to the proof of Theorem 2, the assumption ’A is a.e. 2-monotone’ reads
equivalently: for almost all (m1,m2) ∈ S

n × S
n,

F [m1,m2, A(m2)] ≤ F [m1,m2, A(m1)] .(2)
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Combining this with Lemma 2, we get

d[m′
1, A(m2)] ≤ 2π

F [m1,m2, A(m1)] − F (m1,m2,m
′
1)

θ2 d2(m1,m2)
,

hence also, since p 7→ F (m1,m2, p) is 2π-Lipschitz,

d[m′
1, A(m2)] ≤

4π2

θ2

d[m′
1, A(m1)]

d2(m1,m2)
.

Fixing δ > 0, and a point m1 such that (2) holds at almost all points m2, let
Eδ denote the set of points m2 ∈ S

n such that: d(m1,m2) ≥ δ and (2) holds at
(m1,m2). On the one hand, from the preceding inequality, which holds almost
everywhere, we infer

Vol[A(Eδ)] ≤ Vol[B(m′
1, ε)]

with ε =
4π2

θ2

d[A(m1),m
′
1]

δ2
. On the other hand, the definition of dµ = A#dVol

implies:

Vol(Eδ) ≤ µ[A(Eδ)] .

Altogether, we thus obtain:

Vol(Eδ)

Vol[B(m′
1, ε)]

≤ µ[A(Eδ)]

Vol[A(Eδ)]
≡ 1

Vol[A(Eδ)]

∫

A(Eδ)

ρ dVol ≤ ‖ρ‖L∞(Sn) .

With δ > 0 fixed, the left-hand side goes to infinity as ε or d[A(m1),m
′
1]

goes to 0, whereas ‖ρ‖L∞(Sn) stays finite: so there must exist ε0 such that
d[A(m1),m

′
1] ≥ ε0, which is the desired result.

Remark. Sticking to the standard metric, but given an arbitrary regular posi-
tive measure dµ = M dVol on S

n with same total mass as dVol, if φ is c-convex
satisfying G(φ)#dµ = ρ dµ with ρ ∈ L∞, the simplest way to again derive a
bound on |dφ| sharper than π goes by noting that, if τ ≤ M ≤ 1/τ for some
τ ∈ (0, 1) and if G(φ)#dVol =: f dVol, then ‖f‖L∞(Sn) ≤ τ−2‖ρ‖L∞(Sn).

2 Gradient estimates via a classical approach

This section contains a pde approach to gradient estimates for potentials of
C1 gradient-diffeomorphisms on the sphere equipped with a constant curvature
metric. It is less straightforward and requires stronger regularity assumptions
than the preceding approach. But it shows how to deal with more general
metrics than just round ones and to cope without McCann’s theorem (Theorem
3 above), relying on a careful use of the Jacobi equation which is encoded in the
gradient-rearrangement operator.

Fixing a real K > 0, let us work on the n-sphere equipped with a metric
g = gK of constant curvature K, denoted by S

n
K . For each C1 real function ψ,

we set GK(ψ) for the gradient-mapping m 7→ expm(gradmψ) built on S
n
K and

drop the subscript K unless necessary.
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Theorem 4 Let φ : S
n → R be a C3 function such that GK(φ) is a diffeomor-

phism and let ρ : S
n → R be the positive C1 function defined by:

GK(φ)#dVolK = ρ dVolK .

There exists ε > 0 depending on φ and K only through the quantity

π√
K

max
Sn

|d(log ρ)|

such that the following estimate holds:

max
Sn

(√
K|dφ|

)
≤ π − ε .(3)

Furthermore, letting

c = max
Sn

[ √
K|dφ|

sin(
√
K|dφ|)

]

we also have:

max
Sn

(√
K|dφ|

)
≤ c√

K
max

Sn

d
[
ρ−1/(n−1)

] .(4)

Remarks. (i) The estimates (3) and (4) are dilation-invariant. Indeed, the po-
lar factorization [13] [12, Remark 2] on S

n
K of a gradient-diffeomorphism G1(φ1)

built on S
n
1 yields G1(φ1) = GK(φK) with φK = φ1/K. Now, one easily verifies

that
√
K|dφK |gK

≡ |dφ1|g1
. Furthermore, the density ρ is readily independent

of K; finally |df |gK
/
√
K is independent of K, for any function f on S

n.
(ii) The estimate (3) ensures, in terms of the density ρ, that the generic point m
and its image GK(φ)(m) are uniformly non-antipodal on S

n
K . The estimate (4)

specifies rather how close the points m and GK(φ)(m) must be when the density
ρ is slowly varying ; in particular, we recover the implication ρ = 1 ⇒ GK(φ) = I
(see [12, Remark 4]).
(iii) Let us provide a motivation for using more general constant curvature
metrics than just the round ones. Given a regular positive measure dµ on the
sphere, with total mass equal to the one of a round metric g0, there exists a
diffeomorphism ψ pulling back the g0-measure to dµ [14]. By naturality dµ
coincides with the Lebesgue measure of the pulled-back metric ψ∗g0; the latter
has the same curvature as g0 but, in general, it is no more round.

Proof. Consider the scalar second order differential operator u 7→ F (u)
defined on S

n by G(u)∗dVol = F (u) dVol. It is elliptic at φ [12, Proposition 3],
satisfying

F (φ) =
1

ρ ◦G(φ)
.(5)

Fix a point m0 ∈ S
n where |dφ| assumes its maximum and a Fermi chart(

x1, . . . , xn
)

at m0 (see e.g. [2, p.15]) such that t 7→ (0, . . . , 0, t r0) represents
the geodesic t 7→ expm0

(t gradm0
φ). Set r0 = |dφ|(m0) and p0 = G(φ)(m0);

recall
√
Kr0 ≤ π [13, Lemma 2] [12, Proposition 4]. The critical condition at

m0 for w := |dφ|2/2 simply reads (setting ui = ∂u
∂xi , and so on):

∀i ∈ {1, . . . , n}, φin(0) = 0 ,(6)
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while differentiating twice w at m0 yields:

wij(0) = r0 φnij +
n∑

k=1

φik φjk + r02K(δij − δinδjn) .(7)

Henceforth, we further select the Fermi chart such that the sub-matrix φαβ(0),
for 1 ≤ α, β ≤ n − 1, is diagonal. Now we write the maximum condition for w
at m0 using the linearization of the operator F at φ; specifically we write:

0 ≥ dF (φ)(w)(m0) .(8)

Lemma 3 In our Fermi chart, we have at m0:

dF (φ)(w)(m0) = Kr02

(
∑

α<n

Fαα

)
− r0

(
ρn

ρ2
(0, . . . , 0, r0)

)
+
∑

α<n

Fαα (φαα) 2

with

ρ(p0)F
αα =

sin(
√
Kr0)√
Kr0

[
cos(

√
Kr0) + φαα(0)

sin(
√
Kr0)√
Kr0

]−1

.

Differing the proof of the lemma, we infer from it (since, by ellipticity, the F αα’s
are positive) first of all, the vanishing of r0 (thus, the constancy of φ) if ρ is
constant (which we exclude from now on); secondly, the inequalities:

∀α < n, Fαα (φαα) 2 ≤ π√
K

ρn

ρ2
(0, . . . , 0, r0)

hence also

∀α < n,
sin(

√
Kr0)√
Kr0

(φαα) 2 ≤ C1

[
cos(

√
Kr0) + φαα(0)

sin(
√
Kr0)√
Kr0

]

with C1 = π√
K

maxSn |d(log ρ)| 6= 0. So X := φαα(0) satisfies the inequality:

sin(
√
Kr0)√
Kr0

(X2− C1X) − C1 cos(
√
Kr0) ≤ 0 ,

with
[
sin(

√
Kr0)/

√
Kr0

]
> 0 (by ellipticity); therefore the discriminant of the

left-hand quadratic polynomial must be non-negative, which reads:

sin(
√
Kr0)√
Kr0

+
4

C1
cos(

√
Kr0) ≥ 0 .

The latter implies (3) as routinely verified.
Besides, we also infer from (8) and Lemma 3 the bound:

Kr0 ≤
(
∑

α<n

Fαα

)−1
ρn

ρ2
(0, . . . , 0, r0) .
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On the one hand, the arithmetic-geometric inequality provides:

∑

α<n

Fαα ≥ (n− 1)

(
∏

α<n

Fαα

)1/(n−1)

;

on the other hand, we will check (below) the following relation at m0:

∏

α<n

Fαα =

[
sin(

√
Kr0)√
Kr0

]n−1

ρ2−n(0, . . . , 0, r0) .(9)

Altogether, we thus obtain:

Kr0 ≤
√
Kr0

sin(
√
Kr0)

1

(n− 1)
ρ−

1

n−1
−1 ρn(0, . . . , 0, r0)

which immediately yields (4). So we are left with the proof of Lemma 3, in the
course of which (9) will be checked.

Proof of Lemma 3. We will proceed stepwise.
Step 1. Given φ and ρ as in Theorem 4, we fix a generic point m ∈ S

n

and, recalling that m and G(φ)(m) are not antipodal [12, Corollary 1], we take
a chart p ∈ S

n 7→ x(p) =
(
x1, . . . , xn

)
∈ R

n whose domain contains m and
G(φ)(m), with x(m) = 0. In such a chart, setting dVol(p) = v[x(p)] dx1 . . . dxn

and Gi[x(p)] = xi[G(φ)(p)], we readily find for F (φ) the local expression:

F (φ)(p) =
v{x[G(φ)(p)]}

v[x(p)]
det

(
∂Gi

∂xj

)
,(10)

where
(

∂Gi

∂xj

)
stands for the matrix of the jacobian map JG(φ) in our chart (see

[12]).
Step 2. First, let us specify what is Gi(x) equal to. It is the value taken

at t = 1 by the solution X i(t) of the geodesic Cauchy problem, namely (setting

Ẋ i = dXi

dt , and so on):

Ẍ i + Γi
ab[X(t)]ẊaẊb = 0 , X i(0) = xi , Ẋ i(0) = gir(x)φr(x) ,

where the Γi
ab’s are the Christoffel symbols of the round metric g in our chart,

and Einstein’s convention is used. Then, let us compute ∂Gi

∂xj (x): it is the value
at t = 1 taken by the solution X i

j(t) of the previous problem differentiated once

with respect to the parameter xj , that is to say, the problem

Ẍ i
j +
(
Γi

ab

)
r
Xr

j Ẋ
aẊb+2Γi

abẊ
aẊb

j = 0 , X i
j(0) = δi

j , Ẋ
i
j(0) =

(
gir
)

j
φr +girφrj

(we recognize the Jacobi equation along the geodesic X(t)).

Step 3. We pause to complete the calculation of ∂Gi

∂xj (0) when m = m0 (cf.
supra) and the chart is our above Fermi chart at m0. When so, X i

j (like Y i

below) satisfies the normalized Jacobi equation along the geodesic from m0 to
G(φ)(m0), namely:

Ÿ i +Rninq(0, . . . , 0, tr0)Y
q r02 = 0(11)
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here with Rninq ≡ K(δiq − δinδqn), together with the initial conditions:

X i
j(0) = δi

j , Ẋ
i
j(0) = φij(0) .

Therefore we routinely find (cf. supra, in particular equation (6)) that the

jacobian matrix ∂Gi

∂xj (0) is diagonal, with ∂Gn

∂xn (0) = 1 and:

∀α < n,
∂Gα

∂xα
(0) = cos(

√
Kr0) + φαα(0)

sin(
√
Kr0)√
Kr0

.(12)

Moreover, noting that v(0) = v(0, . . . , 0, r0) = 1, we get from (10):

F (φ)(m0) =
∏

α<n

[
cos(

√
Kr0) + φαα(0)

sin(
√
Kr0)√
Kr0

]
,

from which equation (9) readily follows, using (5). Besides, we also get:

∂

∂xn
[ρ ◦G(φ)](m0) =

n∑

i=1

ρi(0, . . . , 0, r0)
∂Gi

∂xn
(0) ≡ ρn(0, . . . , 0, r0) .(13)

Step 4. Now, back to the fixed generic point m, varying the potential φ in the
direction of the above function w, we proceed to compute:

d

dλ
[F (φ+ λw)]λ=0 (m) .

To begin with, we do so on X i(t), setting X̃ i(t) for the resulting solution of:

¨̃
X i +

(
Γi

ab

)
r
X̃rẊaẊb + 2Γi

abẊ
a

˙̃
Xb = 0 , X̃ i(0) = 0 ,

˙̃
X i(0) = girwr

and also on X i
j(t), setting X̃ i

j(t) for the resulting solution of:

¨̃
X i

j +
(
Γi

ab

)
rs
X̃sXr

j Ẋ
aẊb

+
(
Γi

ab

)
r

(
X̃r

j Ẋ
aẊb + 2Xr

j Ẋ
a

˙̃
Xb + 2X̃rẊaẊb

j

)

+ 2Γi
ab

(
˙̃
XaẊb

j + Ẋa
˙̃
Xb

j

)
= 0 ,

X̃ i
j(0) = 0 ,

˙̃
X i

j(0) =
(
gir
)
j
wr + girwrj .

Step 5. We simplify the preceding calculations by taking form the point m0

where w is maximum and by using our above Fermi chart at m0. Then X̃ i ≡ 0

and X̃ i
j(t) satisfies the normalized equation (11) with the initial conditions:

X̃ i
j(0) = 0 ,

˙̃
X i

j(0) = wij(0) .

Recalling (7), we routinely find for X̃ i
j at t = 1 the expressions:

∀j = 1, . . . , n, X̃n
j (1) = r0φnnj(0) ;

∀α < n, X̃α
α (1) = [r0φnαα(0) + φ2αα(0) + r02K]

sin(
√
Kr0)√
Kr0

;

∀α < n, ∀j 6= α, X̃α
j (1) = r0φnαj(0)

sin(
√
Kr0)√
Kr0

.
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Step 6. Let us compute dF (φ)(w)(m0) from (10), using the preceding

expressions X̃ i
j(1) and X̃ i ≡ 0. The latter yields 0 at m0 for the linearization

of v{x[G(φ)]}. We thus obtain, using (12) to invert the jacobian matrix then
taking the trace:

dF (φ)(w)(m0) = F (φ)(m0)

{
X̃n

n (1) +
∑

α<n

[
∂Gα

∂xα
(0)

]−1

X̃α
α (1)

}

≡ r0
ρ(p0)

φnnn(0) +
∑

α<n

Fαα
[
r0 φnαα(0) + φ2

αα(0) +Kr02
]
,

with Fαα as defined in Lemma 3.

Step 7. It remains only to treat the third derivatives of φ occuring in the
preceding expression of dF (φ)(w)(m0), namely to prove the equality:

r0

[
1

ρ(p0)
φnnn(0) +

∑

α<n

Fααφnαα(0)

]
= −r0

ρn

ρ2
(0, . . . , 0, r0) .(14)

To do so, we first go back to the end of step 2 and differentiate the initial value
problem once again, with respect to the parameter xk, getting:

Ẍ i
jk +

(
Γi

ab

)
rs
Xs

kX
r
j Ẋ

aẊb

+
(
Γi

ab

)
r

(
Xr

jkẊ
aẊb + 2Xr

j Ẋ
aẊb

k + 2Xr
kẊ

aẊb
j

)

+ 2Γi
ab

(
Ẋa

k Ẋ
b
j + Ẋa ˙Xb

jk

)
= 0 ,

with the initial conditions:

X i
jk(0) = 0 , ˙X i

jk(0) =
(
gir
)
jk
φr +

(
gir
)
j
φrk +

(
gir
)
k
φrj + girφrjk .

Then we take m = m0 and k = n in our Fermi chart. From step 2 we have
Xs

n ≡ δs
n due to (6); it implies the relation

(
Γi

ab

)
rs
Xs

n Ẋ
aẊb = r02

(
Γi

nn

)
rn

the right-hand side of which vanishes because, along Oxn (the geodesic from
m0 to G(φ)(m0)), we have:

(
Γi

nn

)
r
≡ Rninr = K (δir − δinδrn) .

Still from Xb
n ≡ δb

n, we infer Ẋb
n = 0; and from Xr

n = δr
n we also have:

2
(
Γi

ab

)
r
Xr

nẊ
a = 2r0

(
Γi

nb

)
n
≡ 0 .

Altogether, the above equation for X i
jn(t) thus reduces to the Jacobi equation,

namely (11). Moreover, the initial conditions become X i
jn(0) = 0 and

˙X i
jn(0) = φijn(0)
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(noting that
(
gir
)
jn
φr = r0

(
gin
)
jn

≡ 0, since
(
gin
)
j
≡ 0 along Oxn). In

particular at t = 1, we find Xn
nn(1) = φnnn(0) and:

∀α < n, Xα
αn(1) = φnαα(0)

sin(
√
Kr0)√
Kr0

.

Finally, we differentiate equation (5) at m0 with respect to xn (in our Fermi
chart), using the generic expression (10). Since v ≡ 1 along Oxn, it yields:

[1/ρ ◦G(φ)]n = F (φ)(m0)

{
Xn

nn(1) +
∑

α<n

[
∂Gα

∂xα
(0)

]−1

Xα
αn(1)

}

≡ 1

ρ(p0)
φnnn(0) +

∑

α<n

Fααφnαα(0) ,

and recalling (13), the proof of (14) is complete.

An analogous proof works for the backward transport equation (which reads
F (φ) = ρ). It yields the following result (with related remarks as above):

Theorem 5 Let φ : S
n → R be a C3 function such that GK(φ) is a diffeomor-

phism and let ρ : S
n → R be the positive C1 function defined by:

GK(φ)∗dVolK = ρ dVolK .

There exists ε > 0 depending on φ and K only through the quantity

π√
K

max
Sn

|d(log ρ)|

such that the following estimate holds:

max
Sn

(√
K|dφ|

)
≤ π − ε .(15)

Furthermore, letting

c = max
Sn

[ √
K|dφ|

sin(
√
K|dφ|)

]

we also have:

max
Sn

(√
K|dφ|

)
≤ c√

K
max

Sn

d
[
ρ1/(n−1)

] .(16)

Finally, recalling that the diffeomorphism inverse of G(φ) is nothing but G(φc)
[12, Corollary 3] and thus, that the equation G(φ)#dVolK = ρdVolK is equiva-
lent to G(φc)∗dVolK = ρdVolK (with the same density-function ρ), noting more-
over the double identity |dφ(m)| ≡ |dφc(p)| ≡ dK(m, p) where p = G(φ)(m) and
dK stands for the distance-function of gK , we may combine the estimates (4)
(applied to φ) and (16) (applied to φc) and get the sharper bound:

max
Sn

(√
K|dφ|

)
≤ c√

K
min

{
max

Sn

d
[
ρ−1/(n−1)

],max
Sn

d
[
ρ1/(n−1)

]
}
.
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12 Ph. Delanoë and G. Loeper

References

[1] A. D. Aleksandrov, Almost everywhere existence of the second differential
of a convex function and some properties of convex surfaces connected with
it, Uchenye Zapiski Leningrad. Gos. Univ. 6:37 (1939) 3–35 (in russian).

[2] Th. Aubin, Nonlinear analysis on manifolds. Monge–Ampère equations,
Grundlehren der math. Wissensch. 252 (Springer, New-York, 1982).

[3] V. Bangert, Analytische Eigenschaften konvexer Funktionen auf Rie-
mannschen Manigfaltigkeiten, J. Reine Angew. Math. 307 (1979) 309–324.
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[12] Ph. Delanoë, Gradient rearrangement for diffeomorphisms of a compact
manifold, Diff. Geom. Appl. 20:2 (2004) 145-165.

[13] R. McCann, Polar factorization of maps on riemannian manifolds, Geom.
Funct. Anal. 11 (2001) 589–608.

[14] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc.
120 (1965) 286–294.

[15] J. Urbas, On the second boundary-value problem for equations of Monge–
Ampère type, J. reine angew. Math. 487 (1997) 115–124.

Ph. Delanoë
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