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Abstract. We propose a few variations around a simple model in order to

take into account the market impact of the option seller when hedging an
option. This ”retro-action” mechanism turns the linear Black and Scholes
PDE into a non-linear one. This model allows also to retrieve some earlier
results of [9]. Numerical simulations are then performed.

1. Introduction

We are interested in the derivation of a pricing model for options that takes
into account the market impact of the option issuer, i.e. the feedback mechanism
between the option hedging induced stock trading activity and the price dynamics.
For a start, we will assume a linear market impact: each order to buy N stocks
impacts the stock price by λNS2 (λ ≥ 0). The scaling in S2 means that the impact
in relative price move depends on the amount of stock traded expressed in currency,
hence λ is homogeneous to the inverse of the currency i.e. percents per dollar.

Order to buy N stocks =⇒ S → S(1 + λNS).(1)

In the literature devoted to the study of the market impact, it is more frequent to
find an impact that varies as a power law of the size of the trade (see for example [2]
for a detailed analysis of the subject). Although our linear approach is clearly not
the most realistic, it has the advantage of avoiding arbitrage opportunities, as well
as not being sensitive to the hedging frequency: in a non-linear model, splitting
an order in half and repeating it twice would not yield the same result, a situation
that we want to avoid here. Later on, we will show that this can be refined to other
”non-linear” situations, by allowing λ to depend on the trading intensity.

In addition we assume that there is no lasting effect of trade orders. This seems
in contradiction with other studies (see Bouchaud [3] for example) that give a long
term correlation between an order given at time t, and returns at times t+τ, τ > 0.
However this impact is due to large orders that are split into several small pieces,
hence to correlation between market orders. This point of view is not relevant here,
as we are concerned with our own market impact.

In terms of concrete applications, this problem arises notably when equity deriva-
tives houses trade corporate deals, (i.e. sell options to a company on its own stock,
for example when hedging a stock option’s plan), as the amount engaged are often
large compared to the average daily volume traded. In such situations, the option
hedger can not immediately unwind his position in the market, and he has to an-
ticipate the feedback mechanism between its own hedging activity and the price
dynamic. This is also observed when a large long call position is hedged near the
maturity. The hedging activity has the effect to stick the price around the strike,
an effect known as stock pinning.
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There is already a substantial amount of literature on the subject of option
hedging with transaction costs, market impact, or liquidity constraints. We mention
the related works by Soner and Touzi [11] and Cheridito Soner Touzi [9] that deal
with the problem of liquidity constraints, as well as the work [4] by Cetin, Jarrow
and Protter and [5] by Cetin, Soner and Touzi that deal with the problem of
liquidity (or transaction) costs. Recently Almgren et al. [1] have also looked at
the subject of hedging with market impact. Our approach through the ”physical”
incorporation of the market impact is clearly related to those works, and a more
thorough discussion of the consistency between our results and theirs will be done
hereafter.

The aim of the paper is to propose a simple and direct approach to derive a
pricing equation that is adaptable to a wide range of situations. This can be also
seen as related to the approach of [8] that derive non-linear heat equations starting
from a stationary game approach. We will also provide a numerical implementation
of the non-linear Black and Scholes pde that appear. One of the key points in the
paper is the incorporation of the market impact in the Black and Scholes pde that
is turned into the original form (when using rescaled variables)

1

∂tu
+

1

s2∂ssu
= λ(∂tu),

where the function ∂tu → λ(∂tu) accounts for the trading intensity dependent
market impact.

The rest of the paper is organized as follows: through P&L calculations, we first
derive in the simple linear case the pricing pde. We then extend this approach to
more general non-linear market impact model which in turn can be extended to the
known gamma max model (treated in [11]). We then show rigorously how the the
gamma max model can be obtained as a limit of well chosen market impact models.
We then discuss the consistency of our approach with the above mentioned papers.
Finally we present the results of a numerical implementation.

2. Derivation of the pricing equation

2.1. The linear case. We assume that we have sold an option whose value is
u(S, t), and greeks are as usual

∆ = ∂su,

Γ = ∂s∆,

Θ = ∂tu.

We also introduce the Gamma in currency, i.e.

Γc = ΓS2.(2)

Assume the stock price S moves by dS. A naive trader would want to buy ΓdS
stocks, but our smart trader anticipates that his order will impact the market (if
Γ > 0 the hedging trade will amplify the initial move and conversely otherwise),
hence will change the spot move of dS to µdS for some µ to be found. He then buys
instead µΓdS. Let us now compute the value of µ: we want to be delta-hedged
when the spot reaches its final value, i.e. S + µdS. Hence using (1), we write that

Safter re-hedging − Sbefore re-hedging = λS2 Number of stocks bought to re-hedge,

and this yields

µdS − dS = λ[∆(S + µdS)−∆(S)]S2.
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This identity expresses the fact that the number of titles we have bought is ∆(S +
µdS)−∆(S), hence that we are Delta-hedged at the end of the day. Performing a
Taylor expansion, we get that

ΓµdSλS2 = (µ− 1)dS,(3)

which yields

µ =
1

1− λΓc
.(4)

Remember that Γ is computed with respect to the option we have sold, hence
Γ > 0 when we sell the call, and we see that in this case, assuming that λΓc is
not too big (we’ll discuss that later), we get µ > 1, hence the hedger increases the
volatility by buying when the spot rises, and selling when it goes down. Equation
(4) can be interpreted as follows: after the initial move S → S + dS, the hedge is
adjusted ”naively” by ΓdS stocks, which then impacts the price by λS2ΓdS, which
in turn impacts the hedge by Γ(λS2ΓdS), etc ... The final spot move is thus the
sum of the geometric sequence

dS(1 + λS2Γ + (λS2Γ)2 + ...) =
1

1− λΓ2
c

.

One sees right away that in this sequence, the critical point is reached when the
”first” rehedge (i.e. buying ΓdS stocks after the initial move of dS) doubles the
initial move: the sum will not converge. This situation will discussed hereafter.

Then the value of our portfolio Q, containing -1 option + ∆ stocks at the begin-
ning of the day, and ∆(S + µdS) stocks at the end of the day evolves as

dQ = −du+∆dS +R
and R is the P&L realized during the re-hedging (in the usual Black and Scholes
derivation, this term is zero). Our approach is thus the following: we first observe
a spot move of dS, and then we re-hedge, and during this operation, the only spot
moves are due to our market impact.

We assume that during the re-hedging S evolves along

Sθ := θ(S + µdS) + (1− θ)(S + dS), θ ∈ [0, 1],

and similarly, ∆ (the number of stocks that we hold) evolves along

∆θ := ∆(S) + θ(∆(S + µdS)−∆(S))

= ∆(S) + θΓµdS, θ ∈ [0, 1].

The computation of R then yields

R =

∫ 1

0

∆θdSθ

=

∫ 1

0

(∆θ −∆0 +∆0)dSθ

=

∫ 1

0

(∆θ −∆0)dSθ +∆0(µ− 1)dS

=

∫ 1

0

ΓµdSθ(µ− 1)dSdθ +∆0(µ− 1)dS

=
1

2
Γµ(µ− 1)(dS)2 +∆0(µ− 1)dS.

The result is expected: the first term amounts to say that we have bought (resp.
sold) ΓµdS stocks at a price lower (resp. higher) by (µ − 1)dS/2 than the ”final”
price. This is similar to a transaction cost, but in favour of the hedge provider,
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which is somehow surprising (this could not be turned into real money, as reverting
the operation would have the inverse market impact). The second term is the usual
profit obtained by holding ∆0 stocks. We assume that the option is sold at its fair
price, hence dQ = 0 (we neglect the interest rates, but they can be added to the
study without modifying its conclusions). Then we have as S moves to S + µdS,

du = Θdt+∆µdS +
1

2
Γ(µdS)2,

and we thus get the following Black&Scholes identity

−Θdt+ Γ(dS)2/2
[
−µ2 + µ(µ− 1)

]
= 0,

hence writing

−µ2 + µ(µ− 1) = −µ

= − 1

1− λΓc
,

we obtain the following pde:

∂tu+
1

2
σ2F (S2∂ssu) = 0,(5)

F (Γc) =
Γc

1− λΓc
.(6)

(Remember that Γc = S2∂ssu.) This can be formally rewritten as

2

σ2

1

∂tu
+

1

s2∂ssu
= λ.(7)

When λ → 0, we note that we recover the usual B&S equation. This equation
clearly poses problems when 1 − λΓc goes to 0, and even becomes negative. This
case arises when one has sold a convex payoff (Γ > 0) and an initial move of dS
would be more than doubled during a naive re-hedging (see above) due to our
market impact. Intuitively, we run after the spot, and each time we re-hedge, it
goes away further. Thus if we hedge naively, the spot will clearly go away very
quickly. This arises near the maturity of the product, if the spot is close to the
strike. Hence, following the model, when the spot moves up, one should sell stocks
instead of buying, because the market impact will make the spot go down. We rely
on the market impact to take back the spot at a level where we are hedged, whereas
usally we change our hedge to adapt it to the spot. This situation is clearly not
realistic (or at least no trader would accept to do that ...), and is a limit of our
linear model.

On the other hand, if we consider a function that satisfies for all time t ∈ [0, T ]
the constraint

∂ssu(S) ≤
1

λS2
,(8)

solving (5, 6) with terminal payoff u(T, ST ) = Φ(ST ) then our approach is valid,
and the pde system (5, 6) yields the exact replication strategy (we shall prove this
in the verification theorem hereafter). Note that our approach has been presented
in the case of a constant volatility, but would adapt with no modification to an-
other volatility process, local or stochastic. The function F is increasing, which
guarantees that the time independent problem is elliptic, and thus the evolution
problem is well posed.

Another (informal) way to see the constraint (8), is to consider instead of F

F (Γc) =
Γc

1− λΓc
if λΓc < 1,

= +∞ otherwise.
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The physical interpretation of the singular part is that areas with large positive
Γ ( i.e such as Γc > λ−1) will be quickly smoothed out and will instantaneously
disappear, as if the final payoff was smoothed (again this argument will be made
rigorous later on). This amounts to replace the solution u by the smallest func-
tion greater than u and satisfying the constraint (8) (a semi-concave envelope, the
so-called ”face-lifting” in [11]). That could be compared to what is done by prac-
titioners: one replaces then a single call by a strip of calls, in order to cap the Γ.
The constraint can be rigorously included expressed by turning the system (5, 6)
into

max{∂tu+
1

2
σ2S2F (S2∂ssu), ∂ssu− 1

λS2
} = 0,(9)

F (Γc) =
Γc

1− λΓc
.(10)

Under this formulation the problem enters into the framework of viscosity solutions,
see [6].

Note that on the other hand, areas with large negative Γ (when we buy the call)
would have very little diffusion, but pose no theoretical difficulties.

2.2. The intensity dependent impact. Let us now turn to a slightly more gen-
eral heuristic. In the previous approach we have assumed that the market impact
of buying N stocks is, in terms of price, λNS2, regardless of the time on which the
order is spread. We now define the intensity as follows: let Nt be the number of
stocks detained in the portfolio, and assume that Nt is a stochastic process with
finite quadratic variation. Let It be the square root of the quadratic variation of
Nt i.e. I2t dt = (dNt, dNt). In the usual Black and Scholes case, dNt = ΓdS so
It = ΓSσ. To express the intensity in currency so we introduce Ict (t) = StIt. Note
that we have the representation

dNt = ItdBt + νdt,(11)

for some Brownian motion B, drift term ν. We assume now that the market
impact λ is a function of the intensity. If the initial move from S to S + dS is
still transformed into S + µdS by the market impact of the re-hedging trade, the
intensity of the hedging-induced trading is ΓS2σµ, and we now have λ = λ(ΓS2µσ).
From (3), σ being fixed, µ is implicitly deduced from Γc through the relation

µ− Γcµλ(Γcµσ) = 1.(12)

We now introduce F (Γc) := Γcµ, then F solves

1

F
+ λ(σF ) =

1

Γc
,(13)

which implies the ode on F

F ′ =
F 2

Γ2
c(1− σF 2λ′(σF ))

.(14)

The natural assumption F (0) = 0 implies the existence locally around 0 of a non-
decreasing solution . Conversely, given F the condition for λ to be well behaved
around 0 is that µ(Γc) =

F
Γc

be differentiable at 0 with µ(0) = 1.
Then the same P&L calculations as above lead to the Black and Scholes pde

∂tu+
1

2
Γcµ(Γc)σ

2 = 0,(15)

which reads also

∂tu+
1

2
F (Γc)σ

2 = 0.(16)
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Note that the conditions stated above guarantee the ellipticity of the operator
u → F (γc), since F is increasing. Equation (16) can then be rewritten as

θ +
σ2

2
F (Γc) = 0,

hence in view of (13), the non-linear B&S equation takes the simple form

σ2

2

1

θ
+

1

Γc
= λ(

2

σ
θ),(17)

or equivalently

σ2

2

1

∂tu
+

1

s2∂ssu
= λ(

2

σ
∂tu).(18)

Note that a simple linear change of variable in time simplifies the above equation
in

1

∂tu
+

1

s2∂ssu
=

1

Λ(∂tu)
,(19)

where Λ̃ = λ−1(σ·).
We summarize the results concerning the compatibility conditions onf F, λ, µ in

the following Proposition.

Proposition 1. For any λ : R → [0,+∞] continuous, there exits µ(Γc) such that
F : Γc → Γcµ(Γc) is defined locally around 0 and non decreasing, and µ(0) = 1.
Then for all Γc ∈ R, either (12) holds or µ = +∞.

Conversely, if µ(0) = 1, µ is differentiable at 0 and positive, then there exists λ
satisfying (12) whenever µ is defined.

2.3. The Verification Theorem. The following result shows that, granted there
is a smooth solution of (15), one is able to replicate a contingent claim equal to the
terminal value of u at time T , taking into account the market impact effect on the
volatility of the underlying and on the P&L of the strategy.

Theorem 2.1. Let u be a smooth solution of (15) with terminal condition u(T, ·) =
Φ. Let Bt be the standard Brownian motion with Ft the associated filtration. Let
λ(Γcµσ), f(Γcµ), µ(Γc) be defined as above. Let St satisfy

dSt

St
= σdBt.

Let S̃t satisfy

dS̃t

S̃t

= σµ(Γc)dBt,

with Γc = S̃2
t ∂ssu(t, S̃t). Then, almost surely

u(0, S0) +

∫ T

0

∂sudS̃ +
1

2

∫ T

0

Γcσ
2(µ2(Γc)− µ(Γc))dt(20)

= Φ(S̃T ).

Proof. The proof is a simple application of Ito’s formula, since we restrict our-
selves to the case where the solution of (15) is smooth, and thus solution in the
classical sense. �

Remark 1. Note that the P&L generated by the hedging strategy is no more

the usual expression
∫ T

0
∂sudS̃, but includes an additional term due to the market

impact.
Remark 2. The dynamic of S will not be directly observed, it is the trajectory

that S would have followed if one had not delta hedged the option. The observed
6



spot trajectory is S̃. It is still driven by the same noise source as S, and measurable
with respect to Ft.

Remark 3. Note that the 3rd term of the left hand side of (20) accounts for extra
P&L due to re-hedging. It is always positive (i.e. in favor of the option’s seller). As
observed above this seems surprising, but note that the change of volatility from
σ to µσ acts always against the option’s seller (µ is greater (resp. lower) than one
when Γ is positive (resp. negative)) , and the sum of the two impacts is always
against the option’s seller.

2.4. Rewriting the market impact in terms of transaction costs on the
volatility. We consider here that there is an active option trading market, so that
it is possible to hedge not only the delta, but also the gamma of a position, through
short term at the money options. The replication strategy is thus achieved by
trading zero delta very short term options physically settled (i.e. at maturity the
options buyer of a call receives the stock and pays the strike in cash). One can show
quite easily that when the hedging frequency goes to infinity, such a strategy allows
to perfectly replicate the final payoff. Assume that a given amount of Gamma, say
Γc can be bought (resp. sold if this amount is negative) at a given implied volatility
level σ(Γc). In this case, following a standard replication portfolio argument, the
B&S pricing equation becomes (still in the absence of interest rates)

∂tu+
1

2
Γcσ

2(Γc) = 0.(21)

One sees that there will be a correspondence with the previous pde

∂tu+
1

2
Γcµ(Γc)σ

2 = 0,

namely through the relation

σ(Γc) = µ
1
2 (Γc)σ.(22)

So to a market impact model (parametrized either by the function λ or directly by
µ) one can associate a transaction cost function on the short term volatility, i.e. a
supply curve (in the spirit of [4]) of volatility Γc → σ(Γc).

2.5. A limit case: The Gamma-max Theta-max model. An input meaning-
ful for practitioners is the value of the Gamma-max, i.e. the quantity of stocks that
one is able to buy/sell on a given market move. Again, this relies on some linearity,
i.e. on a twice bigger move, one is able to do a twice bigger transaction.

It is important to understand that this constraint in the ”Gamma short” case
(one sells the convex payoff) is the most natural one: a trader can not take too much
”Gamma-short”, moreover it is also the easiest to deal with in terms of smoothing:
if suffices to replace the payoff by the smallest function majoring it and satisfying
(8). This case has already been treated , see [10] for example. It is shown there
that the constraint

∂ssu ≤ K(S)

is enforced in the B&S pde by solving

max{∂tu+
1

2
σ2S2∂ssu, ∂ssu−K(S)} = 0.

Conversely, it is difficult to enforce the constraint Γ ≥ −Γmax by a function
majoring the payoff (this would amount to find a semi-convex upper envelope ...).
In this case, the constraint realizes as a bound on the theta paid by the option’s
seller (which in this case has bought a convex payoff / sold a concave payoff). This
can be still be understood as a bound on the number of stocks bought/sold on
a move of S to S + dS: If the option held is has a positive Gamma, following a
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move of the stock by dS, assuming that one is delta-hedged before the move, the
P&L realized is Γ(dS)2/2 + Θdt. In this case Θ is negative and Γ positive. This
P&L is locked only if one can re-hedge after the spot move. The lack of liquidity
(i.e. the Gamma-max) prevents from being able to lock this P&L: possibly after
the spot move, the market impact of the re-hedge will make the spot go partially
backward, cancelling some of the P&L. Hence instead of paying a theta equal to
1
2ΓS

2σ2/2, one agrees to pay only 1
2ΓmaxS

2σ2/2. The constraint will appear more
like a bound on the theta than on the second derivative of the payoff. (The induced
hedging strategy will be discussed hereafter).

We introduce the parameter Λ, equal to the Gamma max in currency. In the
Gamma max Theta max model, the B&S pde becomes

∂tu+
1

2
F (Γc)σ

2 = 0,

with

F (Γc) = −Λ for Γc ≤ −Λ,

= Γc for − Λ ≤ Γc ≤ Λ,

= +∞ for Γc ≥ Λ.

The last line must be understood as ”At all times one enforce the constraint Γc ≤
Λ”. This last model can be seen as the ”cheapest” way smoothing of the option:
when the constraint is not saturated, no smoothing is applied. Somehow, the
Gamma-max model behaves like ”all or nothing”, compared to the market impact
model. It is easy to see that the function F of the Gamma max model can be
approximated by smooth functions of the form Γc → Γcµ(Γc), and, indeed, as
we will show in next section, this case is a limiting case of the general intensity
dependent model. Note also that the Gamma max parameter Λ is closely related
to the market impact parameter λ. More precisely, in the linear case, the theta
max paid is equal to 1

2λ
−1, and the Gamma in currency can not be grater than

λ−1. Therefore we hereafter denote λ = Λ−1 to unify this case with the linear case.
The functions Γ → F (Γ) are represented in Fig. 1.

3. Passing to the limit

Here we give a rigorous result implying that for a well chosen sequence of market
impact functions λ (or µ) the solution converges to the solution of the Gamma max
Theta max problem. Hence the problem with constraint is recovered as the limit
case of unconstrained penalized problems. This result also clarifies the intuition
that the non-linearity F has the effect of taking a semi-concave envelope in the
regions where the second derivative becomes large. We show the following result:

Theorem 3.1. Let µn, n ≥ 0 be a sequence of functions satisfying the conditions of
Proposition 1, such that for all n, µn is smooth on all R. Assume that µn converges
to µ such that µ is continuous on (−∞,Γmax] and µ ≡= +∞ for x > Γmax, for
some Γmax. Let Φ be a given terminal payoff and for all n let un solve (15) on
[0, T ]× (0,+∞) with terminal condition uT = Φ. Then for all n, un is smooth on
[0, T ) × R, and the sequence un converges locally uniformly in [0, T ) × (0,+∞) to
u viscosity solution of

max{∂tu+
1

2
σ2Γcµ(Γc), S

2∂ssu− Γmax} = 0.(23)

Proof. The fact that un is smooth comes from the smoothness of µn and then
follows from classical results on one dimensional diffusion equations. Then the
convergence is a consequence of the following intermediary result:
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Figure 1. The function Γc → F (Γc) used for the different models

Theorem 3.2. Let F : R → R be smooth and increasing with

lim inf
γ→+∞

F ′(γ) = A > 0.(24)

Let u be solution on [0, T ]× (0,+∞) of

∂tu+ F (x2∂xxu) = 0,(25)

with uT ∈ C∞. Then for all M > 0, ϵ > 0, there exists τ > 0 depending only on
A, ∥uT ∥L1 such that ∀t ≤ T − τ , ∥F (x2∂xxu(t, ·))+∥L∞[ϵ,ϵ−1] ≤ M .

We denote as before Fn(γ) = µn(γ)γ. Given the growth condition assumed on
µn, Theorem 3.2 implies that on any compact set of [0, T )× (0,+∞), for any ϵ > 0,
there will exists nϵ such that for all n ≥ nϵ, s

2∂ssun ≤ Γmax+ ϵ. Then un will solve
on every compact set of [0, T )× (0,+∞)

max{∂tun +
1

2
σ2F (S2∂ssun), S

2∂ssun − Γmax} = ηn,(26)

for some sequence ηn converging uniformly to 0 in L∞. This in turn implies Theo-
rem 3.1.

�
Proof of Theorem 3.2. This is a classical result on non-linear semi-groups that

can be retrieved from Veron [12] or Evans [7], we will therefore only sketch the
proof. First by differentiation, we get that w = ∂xxu solves

∂tw + ∂xx(F (x2w)) = 0.(27)

Then, by applying a classical sequence of change of variables, we transform (27)
into

∂tw + ∂xx(F (w))− x∂x(F (w)) = 0,(28)

for x ∈ R. For simplicity we will now drop the first order term that can be treated
without difficulty, and then obtain

∂t(F (w)) + F ′(w)∂xx(F (w)) = 0.
9



Consider now G smooth, convex on R and k(t, x) = G(F (w(t, x))). We have

∂xxk = G′∂xx(F (w)) +G′′(∂x(F (w)))2,

and using the convexity of G we get

∂tk + F ′(w)∂xxk ≥ 0.

Now we choose G such that G = 0 on {F ≤ M − 1} and G ≥ (F −M)+. We then
have F ′(w) ≥ F ′(F−1(M − 1)) on {k > 0}. Using then (24) we get that F ′ ≥ A/2
on {k > 0} if M is large enough, and then by standard comparison arguments,
(following for example Veron [12] or Evans [7]) we get the existence of τ such that
G(t) ≤ M for t ≤ T − τ . This in turn leads to F ≤ 2M for t ≤ T − τ .

�
Remark. We do not claim any bound on the negative part of ∂ssu.

3.1. The induced hedging strategy. The previous result shows that any market
impact model enforces the Gamma max Theta max constraint when the market
impact becomes large enough outside of the admissible range for Γc. For the upper
constraint, this is clear that the diffusion becoming infinite has the effect of taking a
semi-concave envelope of the payoff. On the gamma long side (we buy a call) assume
that the function λ rises very quickly when Γc goes under the limit. Imagine that
you are long a convex option, and that the spot has gone up by δS. The ”linear”
pde tells you to sell ΓδS stocks. The ”non-linear” approach developed above tells
you to that any attempt to sell more than ΓmaxδS stocks would make the spot
immediately go back under its original position. The pde tells you that you pay a
theta equal to the worst case scenario: you sell ΓmaxδS, and this makes the spot
go back to the point where you are delta hedged. If the spot ends up anywhere
else, your P& L is positive. Notice however that following this strategy, the number
of shares that you hold in your delta hedge will not be equal to the delta of the
option. Your strategy is to follow as much as you can this theoretical delta, and the
P& L that you can not lock is considered as lost as you pay a lower theta. Hence,
the replication is not exact: assume that you are long a call, with zero delta (just
under the strike) and that the spot goes up quickly and keeps rising for several days
until the expiry: then every day you would sell stocks as much as you can, but your
theoretical δ would be far above this value, and at the expiry your net position will
be very positive. If the spot went down rapidly before expiry, there would exist
a time when your delta would be the ”good” delta. If the maturity falls at this
precise moment, your P& L will be 0, otherwise it will be positive. This strategy
is therefore a super-replication strategy.

3.2. Consistency with earlier results. Our approach is consistent with the one
proposed in [11], [9]. In this work, the authors introduce the operator

G(p,A) = min{−p− 1

2
σ2A,Γmax −A,−Γmin +A}.

Intuitively, the solution of the super replication problem satisfying the gamma
constraint Γmin ≤ S2∂ssu ≤ Γmax would satisfy

G(∂tu, S
2∂ssu) = 0.

However, it appears clearly that F is not monotone in A, which means that the prob-
lem is ill-posed. The authors therefore introduce the modified operator (adapted
to our notations)

Ĝ(p,A) = sup{G(p,A+ β), β ≥ 0}.
10



This operator is by construction non increasing in the variable A. The above
equation can be rewritten as

∂tu = min{−1

2
σ2S2Γmin,−

1

2
σ2S2∂ssu}

if S2∂ssu ≤ Γ,

u := inf{v > u, ∂ssv ≤ Γ}

otherwise. Here again the ill-posed constraint S2∂ssu ≥ Γmin is changed into the
constraint ∂tu ≤ − 1

2σ
2Γmin, which shows the consistency between our approach

and the one of [11], [9].
We mention also the works [4] and [5] by Cetin, Jarrow, Touzi and Protter

which set the problem in a more general formalism: indeed they introduce the
notion of supply curve, that is a price process S(t, x, ω), which describes the price
when trading a quantity x of the stock. This approach is somehow equivalent to
our intensity based model. However note that they consider a model with liquidity
costs but without market impact, therefore the volatility of the underlying is not
affected.

4. Numerical simulations

We present our simulation in the linear impact model. We propose the following
numerical scheme: We set ϵ to a small constant (ϵ = 10−3 in our applications), and
divide the time interval [0, T ] into [0, t1, . . . , tN = T ].

- Define

F (Γc, Γ̄c) =
Γc

1− λΓ̄c
if Γ̄c ≤

1

λ
,

= ϵ−1 otherwise.

- Initialize i = N .
- Terminal condition Initialize u(tN ) = Φ(T )
- time loop For i = N down to i = 1
- initialize v1 = u(ti).
- Non linear iterations for j in [1..Nitnl] solve on [ti−1, ti]

∂tw = −σ2F (s2∂ssw, s
2∂ssvj),

w(ti) = u(ti).

- Set vj+1 = w(ti−1) and loop on j until j = Nitnl.
- Set u(ti−1 = w(ti−1) and iterate on the time step i.

Typically, the number of non linear iterations Nitnl needed for convergence was
small: Nitnl = 3 was enough in our numerical example.

For stability reasons, we used an implicit scheme. This avoids problem that
could have arisen with the brutal method that we use to enforce the upper bound
on the gamma (i.e. infinite diffusion). Alternatives to this method do exist (it
is a semi-concave envelope problem), but we found that our method worked quite
well. As noticed in [11], with a constant volatility model, it is enough to enforce
the upped bound on Γ on the terminal condition, but this fails to be true with a
generic local volatility.

We present some numerical simulations of the linear model in Fig. 2 and Fig.
3. Note that in Figure 2 (resp. 3) the option sold is convex (resp. concave), while
in Figure 4 the option is a call spread, therefore the second derivative of the payoff
changes sign. One sees that the impact-free solution is below the solution with
market impact both in the concave and in the convex area.
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Figure 2. Example on a put option of the market impact model
(gamma short case)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 60  80  100  120  140  160

Effect of the market impact model, gamma long case

no impact T=0.5
impact T=0.5

Figure 3. Example on a put option of the market impact model
(gamma long case)

Numerical implementation of the Gamma-max model. For the Gamma max model,
we just replace the definition of F by

F (Γc, Γ̄c) = Γc if |Γ̄c| ≤
1

λ
,

= ϵ−1 if Γ̄c ≥
1

λ
,

=
−1

λ
otherwise.
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