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Abstract

We consider the polar factorization of vector valued mappings, introduced in [3],
in the case of a family of mappings depending on a parameter. We investigate the
regularity with respect to this parameter of the terms of the polar factorization by
constructing some a priori bounds. To do so, we consider the linearization of the
associated Monge-Ampére equation.

1 Introduction

Polar factorization and Monge-Ampére equation

Brenier in [3] showed that given Q a bounded open set of R? such that |0§2| = 0, with |.| the
Lebesgue measure of R?, every Lebesgue measurable mapping X € L?(Q, R¢) satisfying
the non-degeneracy condition

(1) VB C R* measurable, |[B| =0 = |[X *(B)|=0
can be factorized in the following (unique) way:
(2) X=Vdog,

where ® is a convex function and g belongs to G(2) the set of Lebesgue-measure pre-
serving mappings of €2, defined by

3) g€ G(Q) <« Vf €GO, / /() dz = / f(2) dr,

where Cj, is the set of bounded continuous functions. If da denotes the Lebesgue measure
of 2, the push-forward of da by X, that we denote X#da, is the measure p defined by

(4) Vi € Cy(RY), / dp= / £(X(a))da.
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One sees first that the condition (1) is equivalent to the fact that p is absolutely continuous
with respect to the Lebesgue measure, or has a density in L!(R?, dr). Then @ satisfies in
() the Monge-Ampére equation:

p(V®(z)) det D*®(x) = 1

in the following weak sense:

(5) Vg € Cy(RY), / g(VE(y)dy = / g()dp(a).

Q

W, the Legendre transform of ®, defined by

(6) U(y) =sup{z -y — ®(v)},

e

satisfies the Monge-Ampére equation
det D*W¥(z) = p(z)

in the following weak sense:

(7) Vf € Cy(Q /fV\IJ Vdp(z /f

Note that the existence and uniqueness of the pair V@, V¥ and the validity of (5) is not
subject to the condition (1) (see [22] Th 2.12 for this precise fact, and for a complete
reference on polar factorization and optimal transportation). However (7) may not hold.
Note also that this formulation of the second boundary value problem for the Monge-
Ampére equation is strictly weaker than the Aleksandrov formulation (see |8] where the
different formulations are compared and where it is shown that they may not coincide if
some extra conditions are not satisfied).

The periodic case The polar factorization of maps on general Riemannian manifolds
has been treated by [17], and also in the particular case of the flat torus by [10]. Given
X a mapping of T¢ = R?/Z into itself, we look for a pair (®,g) such that

1. g is measure preserving from T? into itself,
2. ® is convex from R? to R and ® — |z|?/2 is periodic,
3. X = V®og (Note that the condition above ensures that V® — z is Z¢ periodic).

Then under the non-degeneracy condition (1), there exists a unique such pair (g, V®).
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Introducing the time-dependence

In this paper we are interested in the following problem: given a “time” dependent family
of mappings t — X(t, .), where for all ¢, X(¢) maps Q in R?, we investigate the regularity
of the curve t — (g(t,.), ®(¢,.), ®(t,.)).

We state different results under different assumptions. The weakest assumption is that
p = X+#da, X and 0;X belong to L* in time and space. In this case 9;V® and 0;g are
bounded as measures (Th. 2.1).

Under the additional assumption that p is close to 1 (or actually to a continuous
positive function) in L* norm (but we do not ask for continuity), we obtain that 0,®
belongs to C* for some o > 0 (Th. 2.2). To this purpose we use a local maximum principle
for solutions of degenerate elliptic equations (Theorem 3.5, Theorem 3.7) obtained by
Murthy and Stampacchia ([18]) and Trudinger ([20]), and use a result by Caffarelli and
Gutierrez (|9]) that establishes the Harnack inequality for solutions of the homogeneous
linearized Monge-Ampére equation (Theorem 3.4).

The polar factorization has the following geometrical interpretation: if X = V®og, as
in (2), then g is the projection, in the L2(€, R?) sense, of X on G(), the set of Lebesgue
measure preserving mappings. Therefore our study amounts to examine the continuity
and the differentiability of the projection operator on G(€2). We also briefly discuss a
variant of the Hodge decomposition of vector fields that appears naturally in this study.

Our results have an immediate application to the semi-geostrophic equations, a system
arising in meteorology to model frontogenesis (see [12]). They allow in particular to define
the velocity in the physical space, a fact that was not known for weak solutions. We discuss
this application in a more extensive way in section 9.

1.1 Heuristics

We present here some formal computations, assuming that all the terms considered are
smooth enough. Suppose that Q is bounded, and for any ¢ we denote by dp(t,:) =
X(t,-)#da (with da the Lebesgue measure on €2) the measure defined by (4). Then for
all t, ®(¢,-), ¥(t,-) are as in (5,7).

Parallel with the Hodge decomposition of vector fields
By differentiating (2) with respect to time one finds
0 X(t,a) = 0, V®(t,g(t,a)) + D*®(t,g(t,a))0g(t,a).
If X is invertible, one can write
(8) 0. X(t,a) = v(t,X(t,a))

for some “Eulerian” vector field v(t, z) defined dp a.e. Note that p = X#da and v will be
linked through the mass conservation constraint

9) Oip+ V- (pv) =0.
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g will then also be invertible and composing with g=! one gets:
(10) v(t, V®(t,z)) = O,V®(t, 1) + D*®(t,v)w(t, z)

with w = d,g(t,g~'(t,z)). Since for all ¢, g(t) € G(Q), it follows that w is divergence
free. Composing with V¥ = V®~! we obtain

v=0,V®(V¥) + D*® w(VD).
It is easily checked that w = D?® w(V®¥) satisfies
V- (pw) =0,

therefore the second term in the decomposition (10) does not move mass. It plays the
role of a divergence free vector field for a uniform density.

Note that a similar decomposition is performed in the study of the incompressible inho-
mogeneous Navier-Stokes equation in [15] where for a given velocity field v, and a density
p > 0, one seeks to decompose v as

1
v=-Vp+w, V-w=0.
P

The next proposition shows that, in the non-degenerate case where ® is smooth and
strictly convex, the decomposition (10) is defined in an unique way.

Proposition 1.1 Let v € L2(R%,dp; RY), let @ : Q0 — RY be C? and strictly conver on (Q,
with p = V®F#da. Then there exists a unique decomposition of v such that

(11) v(V®) =Vp+ D*®w
with (Vp,w) € L2(;RY), V-w =0, w- 09 = 0.

Proof: We only sketch the proof of this classical result. w can be found by looking for

1
(12) inf {/ —w' - D*® - w—v(VP) - w}.
w € L2(;RY) 2
w-00=0
V-w=0

Using the strict convexity of ® we have D?® > \I on Q, and we obtain that

9 1/2
ol <3| [ o]

The functional to minimize is strictly convex, and weakly lower semi continuous, therefore
the problem admits a minimizer. For the uniqueness of the decomposition, notice that if

0=Vp+ D*®w

for Vp,w € L?, multiplying by w and integrating over €, we get that Vp,w = 0. There-
fore, if v governs the evolution of p through the equation (9), the decomposition (11) will
coincide with (10) and will yield Vp = 0,V ®.
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The associated elliptic problems: The linearized Monge-Ampére equation

Multiplying (10) by D?®~!, we find that 9;® will be solution of the following elliptic
problem:

V- (D’®7'Vo,®) =V - (D*® '0(VP)).
On the other hand, ¥ = ®* (see (6)) solves formally the equation
det D*¥ = p.
Then for any (d X d) matrices A, B we have
det(A +tB) = det A + ¢ trace(*A*B) + o(t)

where A* is the matrix of cofactors (or co-matrix) of A and thus, formally, 9, ¥ solves the
elliptic equation

M;;0;;0,% = 0,p,
where (M;;); jepr..q is the co-matrix of D*®¥, given by
M = det D*¥[D*¥]™! = pD*® (V).
Then if M is the co-matrix of a second derivative matrix, for all j € [1..d]

d

> " 0:My(z) = 0,

i=1
and using this and the equation (9), we obtain a divergence formulation of the problem:
(13) V- (MVo,¥)=0p=—-V-(pv).

In the case where p is smooth and supported in a convex set, it will be shown using classical
elliptic regularity and results on Monge-Ampére equation, that the decomposition holds
(Proposition 4.1) and that the terms are smooth.

For a generic, non-necessarily smooth p, we see that the difficulty will be coming from the
lack of regularity and ellipticity of this equation. Indeed we only know a-priori that D?®
is a measure. If p is close to 1 in L* norm, we get that D?*® is in L} for some p < oo,
and thus non necessarily uniformly elliptic.

2 Results

Notations

In the remainder of the paper €2 will be kept fixed once for all and chosen bounded and
convex. We will furthermore assume for simplicity (although one may possibly remove
this assumption through approximation) that it is smooth and strictly convex.

The Lebesgue measure of Q, xoL?, will be denoted in short da.

For compatibility p will be a probability measure on R? and Q of Lebesgue measure one.
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M () will design the set of (possibly vector valued) bounded measures on €2, with norm
s

For M a (d x d) matrix, and u,v two vectors of R?, uMv will denote > i uiMijv;.

I will be an non-empty open interval of R.

We still use dp(t,-) = X(t,-)#da, the functions ®(t,-), ¥(¢,-) will be as in (5, 7) with
(p(t,-),2). Since they are defined only up to a constant, we will impose the condition:

(14) Viel, / ®(t,x) de =0,
Q

and this sets also ¥ through the relation ¥ = &*.

Theorem 2.1 Let 0,1 be as above, let X : I x Q — R4, Let, for any t € I, dp(t,-) =
X(t,)#da as in (4). Assume that (X,0,X) € L*(I x ), with R = || X||1e(1xq), and
assume that p € L= (I x RY). Take

X() = VB() oglt),  s(t) = VE(H) o X(1)
to be the polar factorization of X as in (2) where we impose (14). Then

1. for a.e. t € I, O,V®(t,-) is a bounded measure in 0 with

109l =riaacon) < C(R: dy Dl e gy 10K =15
and 0;® € L®(I, L**(2)) with 1x =d/(d —1).
2. ® (resp. ¥) belongs to C*(I;C°(Y)) (resp. to C*(I;C°(Bg))) for some a €]0,1][.
3. For a.e. t € I, 0;,g 1s a bounded measure on 2 with

10| Lo (:m(02)) < C(R, d, Q)| pl| oo (13 ) |0:X | oo (1x) -

4. If p is supported in ' for some open set ', and 0 < X < p(-,+) < A on Y, for some
(A, A) € RY, then there exists 8 €]0, 1] such that for any w' CC €V,

V¥ € CA(I; C%(w")),
with B8 depending on AJ\.
5. If in addition Q' is convez, then there exists ' €]0, 1] such that for any w CC €,

V® € C(I;C°w)).

Theorem 2.2 Under the assumptions of Theorem 2.1, and assuming that p is supported
in Y, for some open set ), we have:
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1. There exists g > 0 such that if |p— 1] < € < € in ', then there exists a > 0
(depending on €) such that, for any w' CC Y,
0,0 € L>(I;C*(w")).
If in addition Q' is convex, for any w CC €,
0y® € L=®(I;C*(w)).
2. For any p < 2, there exists €(p) > 0 such that, if |p — 1| < €(p) in ', for any
w' cC &,
o,V € L>(I; LP(w")).
If in addition €Y is convex, for any w CC €2,

o,V® € L*(I; L*(w)).

Remark: The Theorem remains true if one replaces the condition |[p—1| < eby [p—f| <€
with f a positive continuous function and the bounds will then depend on the modulus
of continuity of f (see [4]) .

We also state the result in the periodic case: In this setting we have the following
theorem, which is just an adaptation of the two previous:

Theorem 2.3 Under the assumptions that p € L®(I x T?), 9,X € L>(I x T¢), we have:

1. With the same bounds as in Theorem 2.1,

O,V® € L™(I; M(T?)),
g € L=(I; M(T?)),

and for some o > 0, we have

o, c C*(I;C°(T%).

2. If for all (t,z) € (I x T%) we have 0 < X\ < p(t,x) < A, then for some 3 > 0
depending on (A, A) € R%,

g, V&,V € CP(I; L*(T)).

3. There exists €y such that if |p — 1| < € < €, then for some a > 0 depending on e,

0¥ € L>(I;C*(T%)),
0,® € L™®(I;C*(T%)).
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4. For any p < 2 there exists e(p) such that if |p— 1| < e(p) then

O,V € L>(I; LP(T%)),
O,V® € L>=(I; [*(T%)),
O,g € L>®(I; LP(T%)).

Remark: in this case, the absence of boundary allows to have a bound over T¢ and not
only interior estimates as in the previous results.

2.1 Related results
The linearized Monge-Ampére equation

The linearized Monge-Ampére equation (LM A) is a well known equation, since it is used
to carry out the continuity method, in order to obtain classical solutions of the Monge-
Ampére equation (see [14], chapter 17). However for this purpose this is always made in
the case where the densities and the domains considered are smooth, and thus the LM A
equation is uniformly elliptic.

In the non-smooth case, [9] proved Harnack inequality for solutions of

Mij(?iju =0

with M the co-matrix of D?¥, for some ¥ convex, under the assumption that the measure
p = det D?U satisfies the following absolute continuity condition:

C: For any 0 < 01 < 1 there exists 0 < do < 1 such that for any section S and any
measurable set E C S,

i Bl p(E)
15 if — < 4§, then =—2 <6,
) S| es) T

(a section is a set of the form
Si(xo) = {z|¥(z) — ¥(xo) <p-(z—z0) +t, p€ IV (x0)}).

They showed that the solution of (det DQ‘II)(DQ\IJ)i_le,-ju = 0 satisfies a Harnack in-
equality on the sections of ¥ and subsequently is C'*. The precise result is stated below
(Theorem 3.4). We will use this result to obtain the first part of Theorem 2.2. Note that
the condition (15) implies CY* regularity of the Aleksandrov solution of det D*¥ = p
([6])- Note also that the condition (15) is satisfied when the density p is bounded between
two positive constants. We will also obtain some results (Theorem 2.1) in the degenerate
case when the condition (15) is not satisfied and show in some counterexamples (section
8) that when this condition is not fulfilled, the result of Theorem 2.2 does not hold.

Maximum principles for degenerate elliptic equations

We will use a local maximum principle for degenerate elliptic equations to obtain Holder
continuity in Theorem 2.2. Consider the problem

V- (M(z)Vu(z)) = V- f(z)
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where M (x) = M;j(x), (4,7) € [1..d] is a symmetric positive semi-definite, matrix, f(z) =
(fi(x))i € [1..d]. In the cases we will study, we will not have the usual uniform ellipticity
condition

M <M< AL

with I the d x d identity matrix, and for some positive numbers A\, A, but a condition of
the form

(16) AMz)I <M < A(z)!

for some non negative measurable functions A(z),A(z). Under the assumption that
(A Yz),A(z)) € L? (Q) for some p > d and that f € L, we can obtain a bound

loc
on the solution u in L{3.. Properly localized, this bound with the Harnack inequality

(Theorem 3.4) will yield Hélder continuity of the solution of the LM A equation (13).
This type of maximum principles have been already obtained in [18], [20], (see also [19]),
and we will use them under the forms of Theorems 3.5, 3.7, and Corollary 3.6. Note
however that the condition (16) is not know by itself to guaranty Hélder continuity of the
solution, but only a L* bound.

It can be interesting to point out that we will thus use both the divergence and non-
divergence structure of the LMA to obtain our results.

3 Some preliminary results

In this section we state the results that we are going to need for the proofs of the theorems.
The reader may skip this section and come back to it whenever needed. Note that all
these results can be extended to the periodic case.

3.1 Regularity for solutions of Monge-Ampére equation

Theorem 3.1 Let Q,€) be bounded, C*, strictly conver, and |Q| = 1. Let p be a prob-
ability measure in ', belong to C® (), and satisfy 0 < A < p(t,z) < A for some pair
(A, A). Then there exists a unique (up to a constant) solution of

det D*¥ = p,
V¥ maps Q to Q,

in the sense of (7). The solution ¥ belongs to C*(Y'), and ®, defined as in (5), belongs
to C=().

For this the reader can refer to [4]-[8], [13], [21]-.

The next Theorem can be found in [6], [8], [7].
Theorem 3.2 Let p be supported in Q' with Q' open, satisfy 0 < A\ < p < A, and let ¥

be solution of
det D*¥ = p,
V¥ maps Q to Q,



3 SOME PRELIMINARY RESULTS 10

in the sense of (7) with Q2 convex. Then for some o €]0,1[ depending on A/X\, ¥ €

Co(QY). If moreover ' is also convexr then ¥ (resp. its Legendre transform ®) is in

Che(QY) (resp. in C1*(Q)).

The next Theorem can be found in [4].

Theorem 3.3 Let Q2 be normalized so that B; C Q2 C By. Let ¥ be a convex Aleksandrov
solution of

det D*¥ = p,
W =0 on 0f.

Then for every p < oo there exists €(p) such that if |p — 1| < e(p) then ¥ € W2P(Q) and

loc
¥ llw22(5,,,) < Cle)-

Remark 1: This implies also, maybe for a smaller value of €(p) that one can also have
10" 15, ) < C(6).

Remark 2: The theorem remains true if one replaces |p — 1| < e by |p — f| < ¢, for some
continuous positive f, and the bounds depends on the modulus of continuity of f.

3.2 The linearized Monge-Ampére equation

We state here the result of [9] evoked in the previous section:
Theorem 3.4 Let S be a domain in R¢, let U be an Aleksandrov solution in Q of
det D*U = p

where p the satisfies the condition (15). Let w be a solution in § of the linearized homo-
geneous Monge-Ampére equation

Az-jaijw =0

where A;j is the co-matriz of D*U, let R > 0 and y € Q be such that Br(y) C Q, then
for some 3 < 1 depending only on the condition (15), for any r < R/4,

osc(r/2) < Bosc(r),
where
osc(r) = M(r) —m(r),

M(r) = gu(p)w, m(r) = Bin(g)w.
r\Y r
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3.3 Maximum principle for degenerate elliptic equations

We give here some results concerning degenerate elliptic equations of the form

(17) V- (M(z)Vu(z)) =V - f(z)

where M is symmetric non-negative matrix, f = (f;),? = 1..d. The equation can be writ-
ten 0;(M;;0;u) = 0, f; with summation over repeated indices. The usual strict ellipticity
condition

/\‘5‘2 < szfzfj < A|§‘2 for all 6 S Rd,

is replaced by the following
d
> M| + [MY| € L, () for some p,

loc
ij=1
where M% denotes the inverse matrix of M. This is equivalent to the condition that there
exists A(z), A(z) such that A™!, A are in L} () and such that A\(z)I < M(z) < A(x)I,
in the sense of symmetric matrices.
The class of admissible test functions is

C(Q) = {ve Wy (), M/*Vv e L*(Q)}.
A subsolution (resp. supersolution) u of (17) is defined by the condition that for all
non-negative v € C(€2),
/VUMVU— Vo - f < (>)0.
Q

Then, following [18] and [20], we have the following results:

Bound for Dirichlet boundary data

We denote by S the set of d X d non negative symmetric matrices.

Theorem 3.5 Let M : Q — S be such that M ' is in LP(Q; S;) for some p > d. Let f
be in L®(Q;RY). Let u be a subsolution (supersolution) of

V- (M(z)Vu(z)) = V- f(z)
in §, satisfying u < 0 (u>0) on 0. Then
Sup u(—u) < C([[u’(u)llzeo@) + |1 fllLeo(e))

where C, C depends on |Q|,a0 > 0,p > d, || M| Lo(e)-

This maximum principle can be precised in the following corollary, that will be crucial for
the proof of Holder continuity in Theorem 2.2.

Corollary 3.6 Under the previous assumptions, for y € Q, Br(y) C Q, if u is a subso-
lution (supersolution) in Bg of (17) and u < 0 (u > 0) on 0Bg, then

supu(—u) < ClM || |1 f [l (5 B,

Bg

whereézl—ﬁ.
b
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Bound without boundary data

Here we state a maximum principle that does not depend on the boundary data. Note
that here we need to control the norm of both M and M~! whereas we only needed to
control M1 above.

Theorem 3.7 Let M : Q — S be such that M, M~ are both in L} (), with p > d.
Let f be in L*>(S2). Let u be a subsolution of

V- (M(z)Vu(z)) = V- (f(2))
in Q. Then we have for any ball Bor CC 2 and ag > 0

sup u < Cil|[u||zao(Byn(y)) + Cok
Br(y)

where k‘ = ||f||L°°(BzR)7 01,02 depend on R, Ao, P, ||M||LP(B2R)a ||M_1||LP(B2R)-

3.4 Convex functions and Legendre transforms
We state first the following classical lemma on convex functions:

Lemma 3.8 Let ¢ be a convex function from R? to R, globally Lipschitz with Lipschitz
constant L. Then we have

|1 D?*¢|| (g < C(d)R*L.

Proof: we have

1%l < C / Ag
Bgr

We recall here some useful properties of the Legendre transform. Let {2 be a convex
domain, let ¢ : Q — R be C! convex. Let ¢* be its Legendre transform defined by

¢*(y) =supz -y — ¢(z).

zef

Then, for all x € €,
V' (Vo(z)) = x.
If moreover ¢ is C? strictly convex, then, for all z € €,
(18) D*¢*(Vé(x)) = D*¢~" ().

From this we deduce the following lemma:
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Lemma 3.9 Let Q be convez, let (t,x) — ®(t,z) : I x Q — R and (t,y) — ¥(t,y) :
I x R — R be such that

1. V& (resp. V) belongs to CH(I x Q) (resp. belongs to C*(I x R?)),

2. forallt € I, ®(t,-) is conver and ¥(t,-) is the Legendre transform of ®(t,-).

then for every (t,x) € I x Q,

(19) ®(t,r) + P (t, VO®(t,z)) =z - VP(t,x),
(20) 0,® + 0, ¥(V®) =0,
(21) O,V® + D’®9,VI(VP) = 0.

Proof: the first identity expresses just the fact that ®(¢,-), ¥ (¢, -) are Legendre transforms
of each other (see (6)), then the two other come by differentiating with respect to time

and then to space.
d

4 Approximation by smooth functions

4.1 Construction of smooth solutions.

In this section we build an adequate smooth approximation of the problem. More pre-
cisely, given a mapping X(t) and p(t) = X(¢)#da, we construct an associated pair (p, v)
satisfying

(22) 0p+ V- (pv) =0

and then find a “good” regularization of (p,v). One of the problems is the following: it is
known from a counterexample by Caffarelli (see [8]), that when transporting a (smooth)
density p; onto another (smooth) density ps by the gradient of a convex function, one can
not expect the convex function to be C! unless p, is supported and positive in a convex
set. Therefore it is not enough to only regularize (by convolution for example) the density
p = XF#da, we must also approximate it by a density supported in a convex set.

The density p and 0;p are constructed from X, 0;X respectively by the following procedure:

v/ e CH(RY), / ) () = / (X (t,a)) da

Dup(t, 2)f (z)dz = /Q VF(X(t, ) - 8,X(t, a) da.

R4

To define v such that d;p + V - (pv) = 0, we define the product pv as follows:

V6 € CO(I x RERY), / p-pdtdr= | 6(X(t,a))- OX(t a) dtda.

IxRd IxQ

Since 0; X € L*, v is well defined dp a.e. and we have

[0(E, )|z dpyy < N0X(Es )]l oo (@)
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Now we construct (p,, v,,) a smooth approximating sequence for (p, v) as follows: (remem-
ber that we have taken p(t,-) to be supported in B at any time ¢ € I). We take n € C®
a standard convolution kernel, of integral 1, supported in B(0,1) and positive. Take
N = nn(nz). We also note xgy1/, the characteristic function of the ball B(0, R+ 1/n).
Let

1
Pn = (EXR+1/7L + N * p)cna
o = ¢, T (V)

Pn

with ¢, chosen such that p, remains a probability measure. (Note that ¢, is close to 1 for
n large). The purpose of this construction is to have the following properties:

L lon, valloe <l vl|ze,

2. pn, v, satisfy the continuity equation (22),

3. pn is supported and strictly positive in B(0, R+ 1/n), and belongs to C*(B(0, R+

4. If ®,(t), ¥,(t) are associated to p,(t) through (5,7), then, for every t € I, ®,(t)
converges uniformly on compact sets of Q to ®(¢) and ¥, (¢) converges uniformly
on compact sets of R? to ¥(¢). This last result can be found in [3]. Therefore,
0,P,,, 0,¥,, will converge in the distribution sense to 0;®, 0, W.

Now we have the following regularity result, for smooth densities. Note that this result
will only be used to legitimate the forthcoming computations, and not as an a-priori
bound.

Proposition 4.1 let 1, be as above, let Q' be C* strictly convex. For any t € I, let
p(t,-) be a probability density in ', strictly positive in Q' with p € C*(I x Q'). Let, for
allt, ®(t,-), ¥(t,-) be as in (5,7) with (p(t),2). Then, for any 0 < o < 1,

0P € L>(1,C**(Q)), 0, ¥ € L™®(I,C%(Y)).

Proof of Proposition 4.1: Theorem 3.1 implies that for all ¢, D?¥ (resp. D?®) belongs
to C(QY) (resp. belongs to C*®()).

Now we wish to solve det D?*®(t) = p(t) with ¢ near t,. We write a priori ¥(t) =
W(ty) + (t — to)u + o(|t — to|), for some u, then we have

det D*®(t) = det D*W¥(ty) + (t — to)trace(M D?u) + o(|t — to])
where M is the comatrix of D?® defined by

-1

M(t,z) = det D*®(t, z) (D*¥(t,z))
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Note that M belongs to C*(Q') and is uniformly elliptic. Let us now show that 9, % can
indeed be sought as the solution of

trace(M D?*u) = d;p

with a suitable boundary condition. For this we introduce h a defining function for €2,
(i.e. h € C*(Q) is strictly convex and vanishes on 99, we can also impose |Vh|5n = 1).
The condition V¥ maps €' on 2 can be replaced by A(V¥) = 0 on 0€2'. Now consider
the operator

F 1) (det D, B(V))|aer)

defined on {1 € C**(Q),4 convex } and ranging in C*(') x CH*(dSY'). First note that
a smooth solution of

(23) F(4) = (p(t),0)

will satisfy (7) and thus coincide (up to a constant) with ¥(¢). We now solve (23) around
to by the implicit function Theorem. The derivative of F at W is defined by

The operator I = M;;0;; is uniformly elliptic with coefficients M;; in C*°(Q)'). We need
also to show that the boundary operator B is strictly oblique: First, note that Vh = 7
on 02, where 7i; is the outer unit normal to 0€2. Moreover, if 7i5 is the outer unit normal
to 082, it has been established in [8], [13], [21], that there exists a constant C' depending
on €, ||pl| 2y, and therefore uniform on I, such that

iy - 711 (VE) > C > 0.

Thus the boundary condition is strictly oblique, uniformly with respect to ¢. It has been
established in [13], p. 448, that the equation

dF(T)u = (1,0)

with 2 € C*(€') is solvable up to an additive constant if [, = 0. This condition is met
by 9;p, since [ p(t,z) dz = 1.
We conclude that the operator dF(¥) is invertible on the set

{wec@), [u=0px -0}

i.e. for each u € C*(Q), with Joy 1t = 0, there exists a unique up to a constant solution
u of dF(V®)u = (u,0). Moreover, following [14], Theorem 6.30, u belongs to C**(£Y').
Therefore we can apply the implicit function Theorem and solve F(¥(t)) = (p(t),0) for ¢
near ty. By uniqueness of the solution of (7), this solution will coincide with the solution
of Theorem 3.1. As we have built it, ;¥ (¢, -) = u is the unique (up to a constant) solution
of

(24) trace (MD?*u) = yp in
(25) Vu-n1(V®) =0 in 99,
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and since 9;p € C*®(Q), 0, % belongs to C**(QY) for any a < 1.
We also have, using the identity (20)

0P + 0, ¥ (VP) = 0.

therefore 0,® € C%*(Q) for any o < 1.
This achieves the proof of Proposition 4.1.

5 Proof of Theorem 2.1

Theorem 2.1 will be deduced through approximation from the following proposition:

Proposition 5.1 Let p satisfy the assumptions of Proposition 4.1 above, with ' = Bg,
and ®, W be as in (5, 7). Let v(t,z) € R? be a smooth vector field on B and satisfy on
I x BR

(26) Op+ V- (pv) =0.

Take 1 < p,r < o0, %—!—%zl,q:Q—p. Then for any t € I, for any w C Q we have:

1/2
(27) 18:V®llra) < (lolo 2l 1 D*® 1 (i) | D?@ 1)

which implies in particular
(28) 107130y < C(R,d, Q) (Ilplollze) ",

and for any t € I, for any w' C Br we have:

1/q 1/p\ /2
@ | [ s 5(Wny'||D2‘I'||LT<BR> [ oper ) |

which tmplies in particular

1 1
(30) [, 1099 < OOl 0P ey

Proof of Proposition 5.1:
Using Proposition 4.1, we can perform the following computations. We have from (5)

0,¥p = / 0, ¥ (V)
Rd Q
Then we use the continuity equation:

Op+V - (pv)=0
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which implies for any smooth f

/Rdfatp:/dev-Vf.

/ 5t‘118tp = / 8,5V\Il - pU
Rd R4

= / VI (V) - 9,V P
Q

We obtain

— _/atvt\p(V@)-DQ<I>-atV\Il(vq>)
Q

where we have used (21). Since we can write v D2® because this is a positive symmetric
matrix, we have

IVD2® 0,V T (V)22 = —/deatV‘Il-v
= - /Q AVE(VE) - v(VD)
= - /Q VD?BI,VE(V®) - VD?® v(V®).
This implies that
(31) IVD?® 0,V (V®) |20 < VD2 0(V)]|12(0)-

In order to estimate the right hand side, we write

IVD2® o(V®)|| 2 = (/Qvt(vq)) (D) -v(V@))l/Q

- (/R ot - (D2B (V)" -v)l/z

1/2
= (/ pvt-D2\Il-v)
R4
1/2
(32) < (10"l 1% 5) -

In the second line we have used D?*®(V®¥) = (D*®)~'. From (21),

-1
||VD2(I’ (9tV‘I’||L2(Q) = ||VD2¢(915V‘I’(V(§)”L2(Q)
-1
< VD& w(V®)]|20-

Writing

Vd = VD2® VD2BO,VP,
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and, using Holder’s inequality, we obtain for w C €2
1
10:V®||Law)y < (VD@ 9V 20)||VD*®| 1e(w)
1/2

/
(1ol 50 | D*® ] ) | D* Pl )

IA

2s

51;- BY taking p := s/2 we have

with ¢ =

1/2
109l < (10102 e | PPl ) | D@l 1500

and ¢ = iL—”p. This proves (27). To obtain a bound on ;¥ we write

2
/p‘\/DhI)(V\I’)atV\I" - /p(?tVt‘I!-D2@(V\I')-8tV\I'
R4 Rd
= / VT (V) - D*® - 9,VE(VP)
Q

< ID*®| sy llplo [l 2 (5

from (31) and (32). Then using Holder’s inequality, with ¢ = ;2 we obtain for w' C Bk,

[ vowr] "
[ o[vrEmwosy|] " [ slwrewe |

The first factor of the right hand product has been estimated above, and the second is
1/s
equal to </ p|D2\IJ|5/2> . We conclude that

/s

Ve 2 2 1/2 2y 15/2 e
[ o] < 10wyl | [ drver]

Taking again p := s/2, we have proved (29).
The bounds (28, 30) are obtained as follows: we know from Lemma 3.8 that

||D2‘II||L1(BR) < C(R7 d: Q)a
|ID*®|| 1) < C(R, d, Q).

Taking in (27, 29) r = 400, = 1,p = 1 we obtain the desired bounds. This ends the
proof of Proposition 5.1.
O

5.1 Proof of Theorem 2.1
Proof of the bound on 0;,V®

Here we prove points 1,2,4,5 of Theorem 2.1. To obtain point 1, we just need to pass to
the limit in the estimate (28). We need to have liminf ||p,, |v,|?||z < ||p|v|?||z: to prove
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2
this, notice that F(p,v) = plv|*/2 = (p\211|) is a convex functional in (pv, p) since it is
p
expressed as:
2
v
(p|2 J = sup {pc+ pv-m}.
p c+|m|2/2<0

1
Then since p,v, = i * (pv), P, = Cn(g + 7y % p) We get that

| 2

v
F(pn,pnvn) < Cplp * F(pa p’U) < Cﬂ”pTHL‘X’

and letting n — oo:
1
10Vl < (loloPll) C (R, d,0)
< ol oy llvllze (5,40 C (R, d, £2).

Since we impose / ®(t,x) dx = 0, and since () is convex, (note that since 9,®,, ¢ Wol’l,
Q

a condition of this type is necessary, see [14], chap. 7) by Sobolev imbeddings we get also

a bound on ||0,®,||11+(q). This proves the first point of Theorem 2.1.

Then we obtain points 2,4,5 by the following interpolation lemma:

Lemma 5.2 Let ®; and ®5 be two R — Lipschitz convex functions on €0 convex. Then
1- there exists C, 3 > 0 depending on (S, R,d,p) such that

@1 — @l oo (0) < Cl| @1 — Bo[7(0)-

2- If moreover ®, € C for some 0 < a < 1 then there exists C',3' > 0 depending
also on a, ||®1]|cra, such that, if Qs = {x € Q,d(z,00) > 0}, with § going to 0 with
|®1 — Py Lo(q), then

IV®1 — Vs 10(05) < C'[|@1 = &5][7, -

Proof: Suppose that / |®; — ®9° < €. Choose a point inside 2 (say 0) such that

Q
|®,(0) — ®2(0)| = M. @, and P, are globally Lipschitz with Lipschitz constant bounded
by R. On Byor(x) NS we have |®, — ®,|(z) > M/2 and thus

“1’1 - ‘I’z‘p 2 VO](Q N BM/QR(.’L'))(M/2)p

By

Next note that for Q convex, M small enough, for any = € €, vol(Q2 N Byjzr(z)) >
Cqvol(Ba/2r(x)). Finally we have

(33) e > / (B, — ®,” > C(Q, R, d) MPT,
Q
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and thus
wsc@rad [ 1-ap|"
B,
which gives the first part of the lemma, with g = %
p

Now suppose that |[V®,(0) — V®,(0)| = M. One can also set ®,(0) = 0, V®,(0) = 0.
We know that @, is C** thus ®,(z) < Clz|'*t®. It follows that going in the direction of
V®, one will have

Dy(z) — ®1(x) > M|z| — Clz|'T™ + $4(0).
Keeping in mind that |®;(z) —®,(z)| < C€? yields M |z|—C|z|'T® < Ce®. The maximum

1/ 1/a
of the left hand side is attained for |z| = (%) , and is equal to (%) M.

Therefore we have
M < Cé”

in 5 with 6 = () going to 0 as € goes to 0 and with g’ = l‘i—i O

Remark: Suppose, as it is the case for ¥, that we only know that /,0|‘I’1 — WP < &P,
then we have instead of (33),

> [ ol - Wl > plBuan(e) M7

The first part of the lemma yields immediately that ® € C*(I,C°(Q2)) for some o > 0.
Moreover if ¢7, ¢4 are the Legendre transform of ¢y, ¢o, then ||¢p7 — ¢3||1o < ||d1 — dol|L,
thus ¥ € C%(I,C°(Bg)), and this gives the point 2.

The second point of the lemma will be used to prove point 4 and 5: Indeed, if p supported
in (¥ for some open set ', and there exists 0 < A, A such that A < p < A in ', from
Theorem 3.2 we get that for any w’ CcC Q', ¥(t,-) € CH*1(w') for some a; > 0. Since
0,® € L'*(Q), using (21) we get that

uniformly in n, and thus that
0,%, € LI, L"™()).

Therefore we can use Lemma 5.2 to obtain that for any w' cC ¥, V¥ € C(I,C°(w'))
(point 4 of Theorem 2.1).

Under the additional assumption that €' is convex, Theorem 3.2 yields that ®(¢,-) in
C122(Q) for some ay > 0. The same procedure as above yields point 5.

Now we prove the point 3 of Theorem 2.1:
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Proof of the bound on 0,9
Recall from Theorem 2.2:

: ;
[ o1 < € R oulw 902 e

We have g(t,a) = V¥(t,X(t,a)) and thus formally
0g(t,a) = O, V¥ (t,X(t,a)) + D*¥(t,X(t,a))0:X(t,a).

Since p, converges strongly (actually weakly would be enough) to p, we know that V&,
converges almost everywhere to V. (See [3] for a proof of this fact, which relies on the
convexity of ¥,, and on the uniqueness of the polar factorization). Now consider

n(t0) = [ VE (1)l = K00y = (10 VL) (X (1, )

with 7, a smoothing kernel as above. Then g, converges almost everywhere to g. For
feC%I xQ,R%), let us compute

//atgn(t,a)-f(t,a) dtda =T, + T,
I1JQ
with
7= [ [ [ o= X009 (0,0) - F(t,) dydac
T, = — /1 /Q RdV\Iln(t,y)-f(t,a) O X(T, a) - Vi (y — X(¢, a)) dydadt

Let us evaluate 717 and 75.

T [Ny [ ol — )10 Bt 0)| dody
I Ré x R4
< [ ot [ pu) 0T Wt )] dady
I RéxRR4

< /I”f(t")||L°°(Q)C(Rad)||pn||L°°(I><Rd)”Un“L‘x’(Ide)
with d,, = 1/¢, and from Theorem 2.2. For T, we have:

Ty =

/]/Q e V‘I’n(t, y) . f(t, a) atX(T’ a) . Vnn(y _ X(t, a)) dydadt‘

/I/Q/Rd X T, a) - (D*®, *n,)(t,X(t,a)) - f(t,a) dydadt‘
< [ 109X ey [ plt,2) (D0 4 m) @)

< [ ID0X oy Itt, Mo C (R, d, )
I
where we have used the bound on ||D2\Il||L110C (Lemma, 3.8); we conclude that

10¢gll Loo (1, m(0)) < C(R, d, Q)| pll Loo (13 BR) |0 K| oo (1x2) -
This achieves the proof of Theorem 2.1.
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6 Proof of Theorem 2.2

6.1 Holder regularity
It has been established ((13) and Theorem 3.1) that 0,®,, satisfies

1]

where M, is the comatrix of D?®¥,,. To establish the Holder regularity of 9,%,, we need
to combine three preliminary results:

The first one (Theorem 3.4) asserts the Harnack inequality for solutions of the homo-
geneous linearized Monge-Ampére equation under a condition which is satisfied when the
density p is between two positive constants.

The second one (Theorem 3.5, Theorem 3.7 and Corollary 3.6) is a local maximum
principle that generalizes the local maximum principle for uniformly elliptic equations, to
degenerate elliptic equations of the form V - (MVu) = V - f. The uniform ellipticity is
relaxed to the condition that the (positive symmetric matrix valued) functions M, M~!
belong to LP for p large enough. p depends only on the dimension d.

The third one (Theorem 3.3) asserts that the comatrix of D?®, and its inverse, are
indeed in L} (€2") provided that the density p is close enough to a continuous positive
function, the closeness being measured in L* norm.

The result will be a consequence of the following propositions:

Proposition 6.1 Let p = X#da be supported in ', X\ and A be two positive constants
such that 0 < A < p(t,z) < A for all (t,x) € I x Q. Let p,, v, be constructed from X as
above. Let (®,,¥,) be associated to (py,SY) through (5, 7). Then there exists f < 1, and
for any p > d, there exists C such that for any ' CC ', for any (y,r) with By (y) C W',

0sca,w, (r/2) < Bosco,w, (1) + Cr°

forn large enough. § < 1 depends on (A, A) (see Theorem 3.4), C depend on (p, A\, A, inf e d(x,09),
d

ID*®||Lo(5, (), 6 =1 = 0 and

0scy(r) = max & — min u.

Remark: The requirement n large enough is just to enforce that A < p, < A.

Proposition 6.2 Under the assumptions of Proposition 6.1, we have, for every w' CC ',

||8t‘IJn||L°°(w’) S C(K’pa 3}25' d(ﬂ'), 89/)5 )\’ Aa ||Un||L°°(dp(t)))

where K = || D*®,, + D*¥, || o), p > d.
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Proposition 6.3 Under the assumptions of Proposition 6.1, for any p < oo, there exists
€ > 0 such that if |p— 1| < € in ', then for every K' C Q', K' compact, there exists Ck:
such that

limsup || D*¥,, + DQ\IITZIHL,,(K,) < Ck.

Temporarily admitting these propositions we obtain the following:

Proof of the first part of Theorem 2.2

From Propositions 6.1, 6.2, 6.3, we obtain that for any w’ CC €V, there exists C,, 8 < 1
independent of n such that, for n large enough, for any B, = B,(y) C w', with By, C €,
we have:

0scs,w, (r/2) < Bosca,w, (1) + C .

Moreover from Proposition 6.2, 0;¥,, is uniformly bounded for the sup norm inside w’. It
is well known that this property implies Holder continuity: using [14], Lemma 8.23, we
obtain that for n large enough, for any w' CC ', there exists a > 0,C,, that do not
depend on n, such that for any (z,y) € W',

0% (y) — 0% ()] < Culz —y[*.

Thus we have a uniform L*(I; C*(w')) bound that will pass to the limit as n — co. We
thus obtain the C'* estimate of Theorem 2.2.

To obtain Hélder continuity for 9,®, in the case where €' is convex, we just have to use
the identity (19)

0,® = —0,T(VP)

and the Holder regularity of V@, under the condition 0 < A < p < A, Q' convex (Theorem
3.2), to conclude Hoélder regularity for 0,®.
O

In the next proofs we drop the suffix n for simplicity.
Proof of Proposition 6.2: This proposition is a direct consequence of Theorem 3.7. It has
been established that 0, W satisfies

V- (MO,V®) = M;o;;0% = —0yp ==V - (pv)

i!j

where M is the comatrix of D*¥, given by M = det D*®[D*®¥| ! or M = pD?*® (VD).
We remember that 0 < A < p < A. From Theorem 2.1, we have the a priori bound

/Q 10,8 < C(lpnlvnl2ll 1, O, R, d).
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Using then that ;% = —0, ¥ (V®) we have

[ olow = [ o
Q

C
\I’l*<—.
/Q,|at =3

We can therefore apply Theorem 3.7 with ag = 1x.

and thus

Proof of Proposition 6.1:
We consider a ball By, (y) contained in €2 and write ;¥ = u + w where u satisfies

V- (MVu) = =V - (pu),
u =0 on 0B, (y),

and w satisfies

V- (MVw)=0
w = 0;¥ on 0B, (y).

Note that w satisfies also M;;0;;w = 0 which is the equation treated in [9)].
We denote oscs(r) = sup f — igff and oscy(0B,) =sup f — })Ill?f f.
B r 0By r

The assumptions of Th:eorem 3.4 are satisfied: indeed, in w’ CC ', we have, for n large
enough, A < p, < A. From Theorem 3.4, there exists 8 < 1 such that

05Cy(r/2) < Boscy(r).
From Corollary 3.6 we have

sup |u| < C||pv|| L1,

r

where a =1 —d/p, C = Co|| M|z = Co|lp” ' D*®||1s(p,) (note that we have 0 < A <
p < A). Combining the two estimates, we have

05Cy(1/2) + 0scy(r/2)
Boscy(r) + Cr®
Boscy,(0B,) + Cr®
Bosca,w(0B,) + Cr®
Bosco,w(r) + Cr®

0scp,w(r/2)

VAN VAN VANVANR VAN

where in the third line we have used the maximum principle to say that osc,(r) =
0s¢,(0B;) since w can not have interior extrema. Finally we conclude

0sca,w(r/2) < Boscs,e(r) + Cre.
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This achieves the proof of Proposition 6.1. ]

Proof of Proposition 6.3 We show here how to use the WP regularity Theorem 3.3 to
obtain estimates. First let us notice that if VW satisfies (7) for p supported in (¥,
0 < X< p <A, and since Q is convex, we know from [8] that ¥ is strictly convex in €/
and solution in the viscosity sense to

det D*¥ = p

in Q'. Moreover ¥ is Cllo’g in Q (Theorem 3.2). From the strict convexity, for any = € ¥,
there exists a section

Stee =1y ¥(y) < ¥(z) + VE(2).(y — 7) + 1.}

with non-empty interior and compactly contained in '. (Indeed the strict convexity
means that diameter of the sections decreases to 0 as the height of the section ¢, goes to
0). Then for every compact set K contained in €' there exists a finite covering of K by
sets 375i, Si = Sy, 4;, and 3;5; means a contraction of S; with respect to ;. Then the
functions u;(y) = ¥(y) — t; — V¥ (x;) - (y — x;) are solutions of

det D*u; = pin S;
u; = 0 on 05S;.

From John’s lemma (see [5]), we can find an affine transformation 7;, with det7; = 1
and a real number p; such that By C p;'T;'(S;) = S; C dB;. Finally, considering

w;(y) = u%uz(pzTZ y) we get that ; is solution to

det D*@i(y) = ply) = p(uiTry) in S;
1; = 0 on 0S;

We can invoke Theorem 3.3 for @;: For any 0 < p < oo, if [p — 1| < €(p) (this property is
invariant under the renormalizations performed above), we have

| D*1; + D2ﬂ;1||Lp(B%) <C
-1 _
(meas(S:)) ™" (| D?u; + D*ui | o 1,5,y < T

By our covering process, we have K C |, TipiBy (x;)- It follows that for every compact set
K C (V' there exists and constant Cx such that || D*®||1»x) < Cx and || D*T Y| 1ok <
Ck. The constant C'x depends on the supremum of the norm of the transformations 7;
and can be taken (by compactness) uniformly bounded given 2, Q') K, A, A.

Now we show that this covering process behaves uniformly well when we consider the
regularization p, of p and let n go to oo. Indeed the corresponding ¥, will converge
uniformly to ¥ and since the limit ¥, is C' the sequence V¥,, converges also uniformly
in every compact set of Q'. Therefore the set SI* = {y, ¥,(y) < ¥, (x;) + V¥, (z;) - (y —
x;) +t;} converge uniformly to S;. This means that for n large enough, the set K will be
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covered by |, 2%5’{‘. Consider ', T7* the corresponding normalization. then we also have

T, i converging to T;, y1;, and K will be covered by |J; Ti”,u?B% (x;).

Moreover since we consider a compact set K contained in €' and since [p — 1| < € in
(Y, it follows from the construction of p, that, for n large enough, |p, — 1| < € in Q. For
n large enough, the functions @ (obtained by the renormalization procedure) will thus
all satisfy the assumptions of Theorem 3.3.

Therefore, for every K CC €, there exists Ck independent of n such that, for n large
enough,

|D*®,, + D*® | 1oy < Ck.

This achieves the proof of Proposition 6.3.

Proof of the gradient bounds

This is point 2 of Theorem 2.2. The gradient bounds follow directly from Proposition 5.1

combined with Proposition 6.3. In estimates (27, 29) take r = oco. Note that from Lemma

3.8 we have the bound || D*®¥||1(p,) < C(R,d,2). This ends the proof of Theorem 2.2.
O

7 The periodic case: proof of Theorem 2.3

This result is only an adaptation of the two previous Theorems. All the regularity results
used adapt to the periodic case as follows:

Theorem 7.1 Let p be a Lebesgue integrable probability measure on R? /Z4. There exists
a unique ¥ convexr on RY, with ¥ — |x|2/2 periodic, that satisfies

det D*¥ = p

in the following sense:

Vf € CO(RY/29), / ot = [ g

It has the following reqularity properties:

1. If for some pair (A\,A) € R, we have A < p < A, then for some o > 0 depending
on A/, ¥ — |z|?/2 is in CL*(T?).

2. For every p < oo, there exists €(p) such that if |p — 1| < €(p), then ¥ — |z|?/2 €
W2p(T?),

8. If p is positive and in C™(T?), then ¥ — |z|?/2 € C*(T%).
We then modify the approximation procedure as follows: we take

1
Pr = Cn(T * p + ;)
det D?®¥, = p,
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with the constant ¢, such that de pn = 1. Then we use the same techniques as in the
Theorems 2.1, 2.2.
We only mention the two new results that arise in this case:

In point 2, we obtain that g € C*(I, L®(T%)). Indeed, g = V¥ (t,X(t)). We al-
ready know that, under the present assumptions, V¥ € C*(I x T%), moreover X €
Whee(I, L*(T¢)) and the result follows.

In point 4, under the assumption that ||p—1|| Leo(;x74) < € for € small enough depending
on g, , we are able to obtain a bound in LI(T¢), ¢ < 2 for d;g. Indeed, writing

gn(t,a) = VI, (t,X(t,a))
as in the proof of Theorem 2.1, and differentiating with respect to time, we obtain
Oign(t,a) = O,VE,(t,X(t,a)) + D*¥,(t, X(t,a))9,X(t, a)-

with ¥, obtained from p,, and thus in C*°(I x T%). If p is close enough to 1 so that
D?W,, is bounded in LP(T?) (cf. Theorem 7.1 above), the first term is bounded in L9(T%),
with ¢ = 12Tpp (as in Proposition 4.1). The second term is bounded in LP(T?). Then we
let g,, converge to g.

Note that this bound can not be obtained in the non periodic case since we have only

interior regularity available for ¥.

8 Counter-examples

Here we show through some examples that the bounds obtained in Theorem 2.1 are sharp

under our present assumptions.
Example 1: 9,V® ¢ L . and 9, ¢ C°.

loc
Consider in Q = B(0,1) in R?, and X(¢,-) : B(0,1) — R? defined with complex notations
X =z+1y by
ony >0,

X(t, (v,y)) = ' (x +iy) +1t,
on y <0,
X(t, (v,y)) = (2 + iy) + 2.

We check that X#da has a density bounded by 1, that ;X € L*(QxR"). If X = V®og
is the polar factorization of X then up to a constant, ® is defined for ¢t > 0, (z,y) € Q by:

1 1
(¢, (z,y)) = Sup{§($2 + %) + t’z, 5(062 + %) + ty}.

On {y > tz} we have

—t

o(t, (,y)) = 5 2+ + ty,

V@(t, ("an)) = (33, y) + (Oat):



8 COUNTER-EXAMPLES 28

and on {y < tz}
B(t,(3,9)) = 5 (&2 + ) + £,
VCI’(t, (.’L‘, y)) = (33, y) + (t2a 0)'
Thus

at(b(t: (.’13, y)) = YX{y>tx} + 2t$X{y<t:c} ¢ 00:
V(L (z,9)) = (0, 1)X(y>ta) + (28, 0)X(yay + (1%, =) H "y = ta} ¢ Ly,

Example 2: Here we adapt a counterexample of Wang to build an example of a
solution where 8,¥ ¢ C°.
In Rd, let x = (xi)lsigd and

X(0,z) = V®qy(x)

®((x) convex Lipschitz on 2, ® = +oco outside, such that p = V®(z)#dx has a density
in L*(R?). Let

X(t,z) = V®q(z) + tv
for some fixed v € R?. X is Lipschitz with respect to time. Then

®(t,z) = ®(x) +tx - v,
V&(t,x) = V®y(z) + tv.

If ¥, is the Legendre transform of ®, the Legendre transform of ®(t,-) is given by

W(t,x) = Wo(z — tv),
V¥(t,z) = V¥y(z — tv),

thus

0¥ (t,z) =v- V¥y(z — tv),
OV (t,1) = D*Ty(z — tv) - v.

Wang has shown in [23] some counterexamples to the regularity of solutions of Monge-
Ampére equations: namely, for d > 3 he has exhibited a solution u of

det D*u = f

with f only bounded by above, such that u ¢ C'. By taking ¥, = u one has an example
of time dependent map such that

O (t,x) =v-V¥y(z —tv) ¢ C°.
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9 Application: the semi-geostrophic equations

The semi-geostrophic system is derived as an approximation to the primitive equations in
meteorology, and is believed to model frontogenesis (see [12]). The formulation of the 3-d
incompressible version is the following: we look for a time dependent probability measure
p that satisfies the following SG system:

(34) Op+V-(pv)=0
(35) v(t,z) = (V¥(t,z) — 2)"
(36) det D*®(t,z) = p(t, 7).

Here v means (—v,,v1,0). Equation (36) is understood in the sense of (7), where an
open set 2 of total mass 1 has been given before.

The system has also a periodic version in which = T? itself and equation (36) is solved
with the condition that ¥ — |z|?/2 is Z? periodic.

The set €2 is here called the physical space, whereas the space in which p lives is the dual
space. Existence of global weak solutions for the SG system with initial data in L' has
been proved in [2], [11] and [16]. Note that uniqueness of weak solutions is still an open
question.

9.1 The Lagrangian formulation of the (SG) system
Here we look for a mapping X : Rt x Q — R? that satisfies

(37) 9, X(t,a) = (V¥(t,X(t,a)) — X(t,a))*
(38) V¥ (t) o X(t) = g(t) € G(), ¥ convex.

If we define p(t) = X(t)#da, the last equation means that for all ¢, ¥(¢) solves det D*® (¢) =
p(t) in the sense of (7). Having X solution of (37, 38) implies that p(t) = X(t)#da is
solution of (34, 35, 36). X defines the characteristics in the dual space whereas g defines
the characteristics in the physical space.

We expose briefly the arguments that allow to define the characteristics of the SG
system:

1- First we check that X(t) will satisfy for any time ¢ the condition (1): indeed, the flow
being incompressible, all the L? norms of p are conserved. Therefore, given the potential
¥(t), if X, satisfies the condition (1), or equivalently if py € L', then we know a priori
that X(¢) satisfies the condition (1) for all time.

2- The velocity field is a priori bounded in BV because of the convexity of ¥ (see Lemma
3.8). Moreover it is incompressible. Therefore thanks to the result of [1], the characteris-
tics of the corresponding ODE are uniquely defined for almost every initial data, which
means that the curve ¢ — X(¢, a) is uniquely defined for almost every a € €.

For € bounded, it is easily checked (see [2]) that if X, € L*(Q), then (X,0,X) €
L>([0,T] x Q) for all T > 0. The velocity field being incompressible, if p, € L®(R?),
then p € L®(R" x R3). Note that the Lagrangian system can also be defined in a periodic
space, where X is periodic in space for all time, and we require ¥ — |z|?/2 to be periodic.
The bound of X,3,X in L®(R" x T?) is then independent of the initial data. Moreover,
in this setting, if py is such that

(39) 0<A<po<A
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for two constants A, A, this property remains satisfied for all time, once again due to the
incompressibility of the velocity field.
Thus we conclude the following:

Lemma 9.1 Let Xy € L®(Q;R?), po = Xo#da € L®(R®). Then p, X the corresponding
solution of the SG system satisfies for all'T > 0,

X,0,X € L°([0,T] x Q)
pe LR x R?).

In the periodic case this remains true, and if moreover py satisfies (39), then for all time
t, p(t) satisfies (39).

Under the assumptions of the above lemma, it is clear that X satisfies the assumptions of
Theorem 2.1. In the periodic case, if satisfied at time 0, all the assumptions of Theorem
2.3 are satisfied for all time. We can now state the following theorem of partial regularity.
We restrict ourselves to the periodic case.

Remark: We also conjecture that the assumptions of Theorem 2.2 can be satisfied for some
finite time, but the control the evolution of the support of p poses some some difficulties.

Theorem 9.2 Let X, p, g, ¥, ® be as above, with p = X#da be a space-periodic solution
of (34, 35, 36), and X the corresponding space-periodic solution of (37, 38). Suppose that
po € L®(T?), then

8tg € LOO(R+7M(T3))7
8,v® € L®(R*, M(T*)).

If moreover there exists 0 < X\, A such that A < py < A, then there exists a > 0 depending
on (A, A) such that

g € C*(RY, L>(T?%)).
For all p < 2, there exists €(p), such that if |py — 1| < €(p), then
o,g € L>([0,T), LP(T?)).
There exists €y, such that if |po — 1| < € < €, then
0,®,0,¥ € L=(R", C*(T?))
where a > 0 depends on €.

Remark: The equations of motion in physical space We derive here formally
the equation giving the evolution of g: writing (10) with v as above, we have

(- V®)*: =v(VP®) =9,V® + D*duw,
V-w=0,



9 APPLICATION: THE SEMI-GEOSTROPHIC EQUATIONS 31

where 9;g(g™"') = w. This equation formally determines the evolution of the system, since
the knowledge of ®(¢) determines a unique pair 0,V®, w satisfying the above decomposi-
tion (see Proposition 1.1). One can see a parallel with the Euler incompressible equation
where the evolution is given by solving the following decomposition problem:

—v - Vv = 0w+ Vp,
V.v=0.

Thus the semi-geostrophic equations are associated to the decomposition of vector fields
of Proposition 1.1 in a similar way as the Euler incompressible equations are associated
to the Hodge “div-curl” decomposition.
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