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Abstract

We solve numerically the Monge-Ampère equation with periodic boundary condition using a Newton’s algorithm.

We prove convergence of the algorithm, and present some numerical examples, for which a good approximation is

obtained in 10 iterations. To cite this article : G. Loeper, F. Rapetti, C. R. Acad. Sci. Paris, Ser. I 339 (2004).

Résumé

Nous résolvons numériquement l’équation de Monge-Ampère avec donnée au bord périodique en utilisant un

algorithme de Newton. Nous prouvons la convergence de l’algorithme, et présentons quelques exemples numériques,

pour lesquels une bonne approximation de la solution est obtenue en 10 itérations. Pour citer cet article : G. Loeper,
F. Rapetti, C. R. Acad. Sci. Paris, Ser. I 339 (2004).

Version française abrégée

Nous nous intéressons à la résolution numérique dans R
d, d ≥ 2, de l’équation de Monge-Ampère (1).

Pour des fonctions ψ : R
d 7→ R, convexes, l’équation (1) est de type elliptique non-linéaire. L’existence

de solutions classiques pour cette équation se prouve par la méthode de continuité [7]. L’algorithme de
Newton que nous adoptons pour résoudre (1) numériquement peut être considéré comme une mise en
œuvre de cette méthode. Cette dernière s’appuie de manière essentielle sur les estimations a priori des
dérivées secondes de la solution de (1), et nous nous appuyons également sur ces estimations pour prouver
la convergence de l’algorithme (Théorème 2.1). Les experiences numériques ont été menées en dimension 2
et 3, mais les résultats théoriques restent valables en toute dimension. Du point de vue computationnel, à
chaque itération de l’algorithme de Newton, les dérivées secondes de la fonction u sont approchées par un
schéma de différences finies centré d’ordre 2 et le système (4) est résolu itérativement par une procedure
BiCG non préconditionné. Les résultats numériques montrent la flexibilité et l’efficacité de l’algorithme en
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termes de nombre d’itérations et de temps de calcul pour une taille fixée du système (4). Une conclusion
importante de ces travaux, est que l’on peut résoudre numériquement une équation elliptique pleinement
non-linéaire au prix d’un nombre fini (i.e., indépendant de la taille de la grille) de problèmes elliptiques
linéaires, au coût optimal O(N logN) si l’on dispose d’un solveur multi-grille pour problèmes linéaires.
Les limitations de la méthode sont la restriction à des densités suffisamment régulières (Hölder continues).

1. Introduction

We are here interested by the numerical solution of the Monge-Ampère equation

detD2ψ = ρ, ψ convex over R
d, d ≥ 2, (1)

where D2ψ = (Dijψ)i,j=1,d, denotes the Hessian matrix of ψ and ρ is a given positive function. For a
convex function ψ, equation (1) belongs to the class of fully non-linear elliptic equations. This class of
equations has been a source of intense investigations in the last decades, with the theory of viscosity
solutions [3]. Equation (1) is also related to many areas of mathematics, such as geometry and optimal
transportation (see [2],[10] and the references therein). One of the crucial tools for proving the existence
and regularity of a solution to this equation is the validity of a priori estimates on the solution’s second
order derivatives; these estimates allow to use the well known continuity method [7], in order to state
the existence of (smooth) solutions. To obtain a solution of the Monge-Ampère equation, we implement
a Newton’s algorithm, which can be seen as a variant of the continuity method. The convergence of the
algorithm is proved, for smooth enough right-hand sides, by using the same a priori estimates as before;
these estimates allow to control the linearized problem, starting point of the algorithm formulation. The
theoretical results we present are valid in any dimension, even if numerical experiments have been done
in R

2 and R
3. We will be concerned here only with periodic boundary conditions in order to avoid, in

a first time, problems arising from the boundary. In the periodic setting, equation (1) reads as follows:
given a positive periodic function ρ on T

d = R
d/Zd, find a periodic function u : T

d → R such that

F (u) := det(I +D2u) = ρ, x 7→ |x|2/2 + u convex over R
d. (2)

Note that a necessary condition for equation (2) to be well-posed is that
∫

Td ρ = 1. Wishing to solve
(2) by using a Newton’s algorithm, we need to linearize the operator F . Given A,B two d × d matrices,
det(A + sB) = detA + s trace(At

comB) + o(s), where s ∈ R and Acom is the co-matrix of A, i.e.,
Acom = (detA) A−1, provided A is invertible. This yields

F (u+ s v) = det(I +D2(u+ s v)) = det(I +D2u) + s trace ([I +D2u]tcomD
2v) + o(s),

for a smooth periodic function v and a parameter s ∈ R. The linearized Monge-Ampère operator reads

DF (u) · v =
d

∑

i=1

Mij Dijv, (3)

where M = (Mij)i,j=1,d is the co-matrix of (I +D2u). Equation (2) being fully non-linear, we see that
the coefficients of the linearized problem are second order derivatives of the solution itself, which explains
the need for a priori estimates on these derivatives to control the linearized problem.

2. The algorithm : presentation and proof of convergence

The algorithm we consider to solve equation (3) reads: Given u0, loop over n ∈ N,
• Computation of ρn = det(I +D2 un).
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• Assembling of Mn the co-matrix of (I +D2un).
• Solution of the linearized Monge-Ampère equation

d
∑

i,j=1

Mn
ijDijθn =

1

τ
(ρ− ρn). (4)

• Computation of un+1 = un + θn.

The stabilization factor τ ≥ 1 is useful in the proof of the following convergence theorem

Theorem 2.1 Let ρ be a positive probability density on T
d belonging to Cα(Td) for some α ∈ (0, 1).

There exists τ ≥ 1 depending on
{

min
x∈Td ρ,max

x∈Td ρ, ‖ρ‖Cα(Td)

}

, such that if (un)n∈N is the sequence

constructed by the above algorithm, it converges in C2,α′

to the (unique up to a constant) solution u of
det(I +D2u) = ρ, for every 0 < α′ < α.

We recall a result of existence of smooth solutions to equation (2) for Hölder continuous, positive
right-hand sides. This result gives us the a priori bound needed to show the convergence of algorithm (4).

Theorem 2.2 (Caffarelli,[4]) Let ρ be a probability density over T
d such that m ≤ ρ ≤ M for some

pair (m,M) > 0. Let u : T
d 7→ R be solution of det(I +D2u) = ρ, with u + | · |2/2 convex. Then there

exists a non-decreasing function Hm,M such that ‖u‖C2,α(Td) ≤ Hm,M (‖ρ‖Cα(Td)).

Proof of Theorem 2.1: The Cα norm ‖f‖Cα(Td) of a function f is defined by ‖f‖L∞(Td) +sup
x,y∈Td

|f(x)−f(y)|
|x−y|α

.
We prove the following bounds by induction : There exist C1 > 0, C2 > 0 depending on the quantities
stated in Theorem 2.1 such that (i) 1

C1
ρ ≤ ρn ≤ C1 ρ and (ii) ‖ρ− ρn‖Cα ≤ C2.

For a smooth ρ0 (note that, in practice, we shall take u0 = 0, ρ0 = 1) we can always find C1, C2 so that
(i) et (ii) are satisfied. We suppose that (i) and (ii) hold true for ρn and show that they extend to ρn+1.
We recall that θn is defined in (4) by D det(I +D2un) ·D2θn = Mn

ijDijθn = 1
τ (ρ − ρn). We then have

ρn+1 = det(I +D2un +D2θn) = det(I +D2un) +D det(I +D2un) ·D2θn + rn = ρn + 1
τ (ρ − ρn) + rn.

Let us evaluate rn: it consists of products of at least two second derivatives of θn and eventually second
derivatives of un, depending on the dimension. Assuming that the bounds (i) and (ii) hold, Theorem 2.2
implies that I +D2un and therefore Mn are Cα smooth, uniformly elliptic matrices. Since θn solves (4),

from standard Schauder elliptic theory [7] we get that ‖D2θn‖Cα ≤ C3(C1,C2)
τ ‖ρ− ρn‖Cα . Therefore

‖rn‖Cα ≤ C4(C1, C2)‖ρ− ρn‖
2
Cα

1

τ2
. (5)

Combining with the identity

(ρ− ρn+1)(x) = (1 −
1

τ
)(ρ− ρn)(x) + rn(x), (6)

we obtain

‖ρ− ρn+1‖Cα ≤ (1 −
1

τ
)‖ρ− ρn‖Cα +

C4

τ2
‖ρ− ρn‖

2
Cα . (7)

By the induction assumption (ii), ‖ρ − ρn‖Cα is bounded by C2, and the inequality (7) implies that

‖ρ−ρn+1‖Cα ≤ ‖ρ−ρn‖Cα

(

1 − 1
τ + C4C2

τ2

)

. This is smaller than ‖ρ−ρ0‖Cα if
C4C2

τ
≤ 1, thus for τ large

enough depending on C1, C2. So far we have checked that the bound (ii) is preserved for τ large enough.
Let us now check bound (i): Let m = inf

x∈Td ρ(x),M = sup
x∈Td ρ(x) (we recall that m > 0). The

induction assumption (i) says that (ρ− ρn)(x) ≤ ρ(x)(1 − 1/C1). Then (5) implies ‖rn‖L∞ ≤ C5(C1,C2)
τ2

and this bound combined with (6) yields (ρ−ρn+1)(x) ≤ τ−1
τ (ρ−ρn)(x)+ C5

τ2 ≤ τ−1
τ ρ(x)(1−1/C1)+

C5

τ2 .
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The last expression is smaller than ρ(x)(1 − 1/C1) for τ > C5

ρ(x)(1−1/C1) . Therefore we conclude the

following: if τ > C5

m(1−1/C1)
, bounds (i) and (ii) imply that ρn+1 ≥ ρ/C1.

Now we follow the same strategy and use that (ρn − ρ)(x) ≤ (C1 − 1)ρ(x) (still from bound (i)). We
then check that for τ ≥ C5

m(C1−1) , we have also (ρn+1 − ρ)(x) ≤ (C1 − 1)ρ(x).

We conclude that for a choice of ρ0 and C1 > 1, C2 > 0 that satisfy (i), (ii), there exists τ that depends
only on {m,M,C1, C2} such that bounds (i) and (ii) are preserved for all n ∈ N.

Concerning the convergence of algorithm (4), from (7), we see that if ‖ρ− ρn‖Cα ≤ τ/(2C4), we have
a geometric convergence with rate at least 1− 1/(2τ). This will be satisfied for τ ≥ 2C2C4. Therefore ρn

converges to ρ in Cα . From Theorem 2.2, the sequence (un)n∈N is bounded in C2,α; note also that we
have imposed un(0) = 0. Therefore by the Ascoli-Arzela’s theorem, (un)n∈N is precompact in C2,α′

for
every α′ < α. The solution of (2) being unique once we impose u(0) = 0, the whole sequence must be
converging to the solution u of (2). This ends the proof of Theorem 2.1.

3. Numerical experiments

The computational domain for the algorithm is T
d which is reproduced by considering V = [0, 1]d

together with periodic boundary conditions. The solution of the linearized Monge-Ampère equation in V
is unique, up to a constant that can be easily fixed by assigning the value of u at a given point of V . At
each iteration n of the algorithm, the two matrices D2un and Mn are assembled by means of a centered
second order finite difference scheme on a Cartesian grid of N d points over V . This means, e.g., that
(D12u)i,j ≈ (ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1)/(4h2), with ui,j ≈ u (i h, j h), 1 ≤ i, j ≤ N , h = 1/N ,
and periodicity N in considering the indexes i ± 1, j ± 1. System (4) is then solved iteratively by a BiCG
procedure [9], with stopping threshold on the residual norm equal to 10−8. The BiCG algorithm is not
preconditioned, and the average number of BiCG iterations to converge at each Newton’s one goes from
30 on the coarsest grid up to 1000 on the finest. For the numerical tests, we consider a starting density
ρ̄ = 1 and a target density ρ of the form ρ(x) = 1 + β sin(2πkx) sin(2πky), with 0 < β < 1 and k ≥ 1.
All shown results are obtained in T

d, d = 2; those for d = 3 are similar.

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 2  4  6  8  10  12  14  16  18  20

L2
 e

rr
or

iteration

N =  16
N =  32
N =  64
N = 512

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 2  4  6  8  10  12  14  16  18  20

L2
 e

rr
or

iteration

tau = 1
tau = 3

tau = 11
-x/2

-x/10

Figure 1. Convergence history of the error on ρ (β = 0.8 and k = 2) in the L2-norm over 20 iterations. A semi-logarithmic

scale is used. Left: the linearized Monge-Ampère equation is solved on different grids with τ = 1. Right: the linearized

Monge-Ampère equation is solved on a given grid (N = 64) and for different values of τ .

Concerning the performances of the considered algorithm, Figure 1 (left) shows the convergence history
of the error ||ρ − ρn||L2(Ω). Different grids are used, from a coarse one, N = 16, to a fine one, N = 512,
and in all the cases, 10 Newton’s iterations are enough to have an error ≈ 10−10. Note that in practice
we have taken τ = 1, and the convergence is faster than geometric. In Figure 1 (right) the convergence
history of the error is shown together with the asymptotic behavior for three different values of τ .

4



The algorithm is quite flexible and efficient: similar results can be obtained on very coarse (N = 16) as
well as on very fine (N = 512) grids to approximate a sine function. A variety of parameters β, k and τ
can be selected. Moreover, the algorithm convergence is quite fast. In Figure 2 are shown the distributions
of the error on ρ at the grid points for the first 4 iterations. For the considered case, the highest absolute
value of the error is reduced, in 4 iterations, to O(10−3), with a dumping factor ≈ 2 at each iteration, in
agreement with the convergence order of a Newton’s algorithm.

Figure 2. Distribution over V of the error on ρ (β = 0.8, k = 2) with N = 64. The highest absolute value is 0.0609 (n = 1,

top left), 0.0239 (n = 2, top right), 0.00949 (n = 3, bottom left) and 0.00379 (n = 4, bottom right), respectively.
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Figure 3. (Left) CPU time in logarithmic scale for the algorithm with respect to N (β = 0.8, k = 2 and τ = 1). (Right)

Convergence history of the error on ρ (β = 0.99 and k = 1) in the L2-norm over 20 iterations. The Laplace and the linearized

Monge-Ampère equations are solved with N = 128 and τ = 1.

The CPU time curve for the considered algorithm is presented in Figure 3 (left). Note that this curve
is in between the (optimal) N log(N) and the (asymptotic) N 3/2 ones.

A simplified version of the algorithm can be obtained by replacing the solution θn of the linearized
Monge-Ampère equation (4) with that of the Laplace equation ∆ θn = 1

τ (ρ − ρn). This amounts to
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replace the co-matrix Mn with the identity matrix, for all n ∈ N. Finite differences are thus involved to
discretize the Laplace operator, which has smoother coefficients, and guarantees strict ellipticity. For a
smooth right-hand side far from zero, the two methods do not differ too much, however, for a density
that goes very close to 0, such as in the considered case with β = 0.99 and k = 1, the method based on
the linearized Monge-Ampère equation gives better results, as it is shown in Figure 3 (right).

In Figure 4 we present the behavior with respect to N of the errors ||u−uex||L2(V ) and ||u−uex||L∞(V )

for uex(x) = β sin(2πkx) sin(2πky), β = 0.02, k = 1. The asymptotic order in both cases is O( 1
N2 ).
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Figure 4. Approximation error in the L2 and L∞ norms for the given function uex(x) = β sin(2πkx) sin(2πky), β = 0.02 and

k = 1. The error values, presented in logarithmic scale, are obtained after 10 Newton’s iterations for N = 16, 32, 64, 128, 256.

We have presented an efficient algorithm to solve the Monge-Ampère equation for smooth right-hand
sides. In this case, the cost of the algorithm is very close to optimal, since the convergence is obtained
in O(N3/2) seconds, with a finite number of Newton’s iterations, each one being the approximation of a
linear elliptic problem. We see that solving a fully non-linear elliptic equation can be done at the cost of
solving a finite number of linear elliptic problems. The convergence of the method is not guaranteed for
non-smooth right-hand side and alternative approaches are proposed in [1], [5], [6] and [8].
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