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Abstract
The semi-geostrophic equations are used in meteorology. They

appear as a variant of the two-dimensional Euler incompressible equa-
tions in vorticity form, where the Poisson equation that relates the
stream function and the vorticity field is just replaced by the fully non
linear elliptic Monge-Ampère equation. This work gathers new results
concerning the semi-geostrophic equations: Existence and stability of
measure valued solutions, existence and uniqueness of solutions un-
der certain continuity conditions for the density, convergence to the
incompressible Euler equations.

1 Introduction

The semi-geostrophic equations are an approximation to the Euler equations
of fluid mechanics, used in meteorology to describe atmospheric flows. They
are believed (see [12]) to be an efficient model to describe frontogenesis. Dif-
ferent versions (incompressible [1], shallow water [10] , compressible [11]) of
this model have been studied, and we will focus here on the incompressible
2-d and 3-d versions. The 3-d model describes the behavior of an incompress-
ible fluid in a domain Ω ⊂ R3. To the evolution in Ω is associated a motion
in a ’dual’ space, described by the following non-linear transport equation:

∂tρ+∇ · (ρv) = 0,

v = (∇Ψ(x)− x)⊥,

detD2Ψ = ρ,

ρ(t = 0) = ρ0.

Here ρ0 is a probability measure on R3, and for every v = (v1, v2, v3) ∈ R3,
v⊥ stands for (−v2, v1, 0). The velocity field can be recovered at each time
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by solving a Monge-Ampère equation in the sense of the polar factorization
of maps (see [3]), i.e. in the sense that Ψ is convex from R3 to R and
satisfies ∇Ψ#ρ = χΩL3, where L3 is the Lebesgue measure of R3, and χΩ

is the indicator function of Ω. It is imposed as a compatibility condition
that Ω has Lebesgue-measure one. This model arises as an approximation
to the primitive equations of meteorology, and we shall give a brief idea of
the derivation of the model, although the reader interested in more details
should refer to [12].

In this work we will deal with various questions related to the semi-
geostrophic (hereafter SG) system: Existence and stability of measure-valued
solutions, existence and uniqueness of smooth solutions, and finally conver-
gence towards the incompressible Euler equations in 2-d. As stated in the
title, we will all along the paper exploit the strong analogy with the 2-d
incompressible Euler equations that we recall here:

∂tω +∇ · (ωv) = 0,

v = (∇Φ)⊥,

∆Φ = ω,

ω(t = 0) = ω0.

We recognize clearly that the vorticity ω plays here the role of the density
ρ in the SG system. One obtains the SG system just by replacing the
Poisson equation ∆Φ = ω by the Monge-Ampère equation det(I+D2Φ) = ω.
(However, note that the density ρ does not have a clear physical interpretation
since it is a density in a dual space). From this analogy, and inspired by the
well developed mathematical theory on the 2-d Euler equations (see [21] for
instance) the goal of this paper is twofold:

The first goal is to the study of the initial value problem for the SG
system. We will first establish a global existence result for weak measure-
valued solutions, hence giving a framework for weak solutions that strictly
contains the results obtained in previous works. We will also obtain local
smooth solutions, trying to lower as much as possible the requirement on the
initial data, and prove uniqueness in a certain class of smooth solutions. This
well posedness result for smooth initial data will be our main result.

The second goal is to give some rigorous mathematical justification of the
derivation of the SG system from the 2-d Euler equations. As an attempt in
this direction, we will show that in some asymptotic regime (namely ’small’
solutions over a long time) the SG system and and the 2-d Euler system are
asymptotically close.

We will use a combination of various techniques: The SG system is a
transport equation, and we will study it as such, using either the Eulerian
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or the Lagrangian point of view. Since the coupling between density and
velocity field involves a Monge-Ampère equation, we will also rely on the
regularity theory developed for this fully non linear elliptic equation, which
is much more recent and far less known than the results on solutions to the
Poisson equation. More originally we will use optimal transportation and the
technique developed in [18] to show uniqueness of certain solutions. Note (but
this is a cöıncidence) that optimal transportation will appear earlier in the
paper in the derivation of the SG system. Finally the proof of the convergence
toward the incompressible Euler equations will be done using modulated
energy techniques, a general technique (also known as the ’relative entropy
method’, documented in [13]) used for the asymptotic study of hyperbolic
systems.

The paper is organized as follows: In the next paragraph we give a short
idea of the derivation of the Semi-Geostrophic system from the Euler incom-
pressible equations. To formulate rigorously the system, we then review the
results concerning optimal transportation and polar factorization of maps,
that are key concepts used through the paper (section 1.2). We are then
able to formulate the Semi-Geostrophic system, both in its Lagrangian, and
Eulerian (or dual) form (sections 1.3 and 1.4).

Section 1.5 is then dedicated to a longer discussion on the results obtained,
and gives a sketch of some of the crucial arguments. This section closes the
introduction. Then each of the following sections is dedicated to the proof of
one of the results.

Section 2 is devoted to the existence of weak measure-valued solution, in
section 3 we show existence of Dini continuous solutions, in section 4 we show
uniqueness of solutions with Hölder continuous density, and in section 5 we
show the convergence of solutions of SG towards solutions of the 2-d Euler
incompressible equations.

All those results will be reviewed and discussed in greater detail in section
1.5, after we have derived the Semi-Geostrophic equations.

1.1 Derivation of the semi-geostrophic equations

We now give for sake of completeness a brief and simplified idea of the deriva-
tion of the system, inspired from [1], and more complete arguments can be
found in [12].
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Lagrangian formulation

We start from the 3-d incompressible Euler equations with constant Coriolis
parameter f in a domain Ω.

Dv

Dt
+ fv⊥ =

1

ρ
∇p−∇ϕ,

∇ · v = 0,
Dρ

Dt
= 0,

v · ∂Ω = 0,

where
D·
Dt

stands for ∂t + v · ∇, and we still use v⊥ = (−v2, v1, 0). The

term ∇ϕ denotes the gravitational effects (here we will take ϕ = gx3 with
constant g), and the term fv⊥ is the Coriolis force due to rotation of the
Earth. For large scale atmospheric flows, the Coriolis force fv⊥ dominates

the advection term
Dv

Dt
, and renders the flow mostly two-dimensional. We

use the hydrostatic approximation: ∂x3p = −ρg and restrict ourselves to the
case ρ ≡ 1.

Keeping only the leading order terms leads to the geostrophic balance

vg = −f−1∇⊥p,

that defines vg, the geostrophic wind. Decomposing v = vg + vag where the
second component is the ageostrophic wind, a supposed small departure from
the geostrophic balance, the semi-geostrophic system reads:

Dvg

Dt
+ fv⊥ = ∇Hp,

∇ · v = 0,

where ∇H = (∂x1 , ∂x2 , 0). Note however that the advection operator ∂t+v ·∇
still uses the full velocity v. Introducing the potential

Φ =
1

2
|xH |2 + f−2p,

with xH = (x1, x2, 0), we obtain the following

D

Dt
∇Φ(t, x) = f(x−∇Φ(t, x))⊥.

We introduce the Lagrangian map g : Ω × R+ 7→ Ω giving the position at
time t of the particle of fluid located at x0 at time 0. The previous equation
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means that, if for fixed x ∈ Ω we consider the trajectory in the ’dual’ space,
defined by X(t, x) = ∇Φ(t,g(t, x)), we have

∂tX(t, x) = f (g(t, x)−X(t, x))⊥ .

By rescaling the time, we can set f = 1. Under this form the system
looks under-determined: Indeed Φ is unknown; however we have the condi-
tion X(t, x) = ∇Φ(t,g(t, x)). Moreover, the motion of the fluid being incom-
pressible and contained in Ω, the map g(t, ·) must be measure preserving in
Ω for each t, i.e.

L3(g(t)−1(B)) = L3(B)

for each B ⊂ Ω measurable (where L3 denotes the Lebesgue measure of R3).
We shall hereafter denote by G(Ω) the set of all such measure preserving
maps. Then Cullen’s stability criteria ([12]) asserts that the potential Φ
should be convex for the system to be stable to small perturbations of par-
ticle’s positions in the x space. Indeed the convexity of Φ asserts that ∇Φ
minimizes some potential energy (the reader interested in a more detailed
explanation of this variational principle should refer to [12]).

Hence, for each t, Φ must be a convex function such that

X(t, ·) = ∇Φ(t,g(t, ·)),

with g(t, ·) ∈ G(Ω).
In the next paragraph we shall see that, under very mild assumptions

on X, this decomposition, called polar factorization, can only happen for a
unique choice of g and ∇Φ. Now if Φ∗ is the Legendre transform of Φ,

Φ∗(y) = sup
x∈Ω

x · y − Φ(x),

then ∇Φ and ∇Φ∗ are inverse maps of each other, and the semi-geostrophic
system then reads

DX

Dt
= (∇Φ∗(X(t))−X(t))⊥ ,

∇Φ∗(t) ◦X(t) ∈ G(Ω).

In this context, X(t) is thus the dual trajectory to the physical trajec-
tory g(t), and (∇Φ∗(X(t))−X(t))⊥ is up to a multiplicative constant, the
geostrophic wind at point g(t) = ∇Φ∗(X(t)).

In the next paragraph, we review the results concerning the existence and
uniqueness of the gradients ∇Φ,∇Φ∗.
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1.2 Polar factorization of vector valued maps

The polar factorization of maps has been discovered by Brenier in [3]. It has
later been extended to the case of general Riemannian manifolds by McCann
in [23].

The Euclidean case

Let Ω be a fixed bounded domain of Rd of Lebesgue measure 1 and satisfying
the condition Ld(∂Ω) = 0. We consider a mapping X ∈ L2(Ω; Rd). We will
also consider the push-forward of the Lebesgue measure of Ω by X, that we
will denote by X#χΩLd = dρ (or, in short, X#dx) and which is defined by

∀f ∈ C0
b (Rd),

∫
Rd

f(x) dρ(x) =

∫
Ω

f(X(x)) dx.

Let P be the set of probability measures Rd, and P2
a the subset of P where

the subscript a means absolutely continuous with respect to the Lebesgue
measure (or equivalently that have a density in L1(Rd)), and the superscript
2 means with finite second moment. (i.e. such that∫

Rd

|x|2dρ(x) < +∞.)

Note that for X ∈ L2(Ω,Rd), the measure ρ = X#dx has necessarily finite
second moment, and thus belongs to P2.

Theorem 1.1 (Brenier, [3]). Let Ω be as above, X ∈ L2(Ω; Rd) and ρ =
X#dx.

1. There exists a unique up to a constant convex function, that will be
denoted Φ[ρ], such that:

∀f ∈ C0
b (Rd),

∫
Ω

f(∇Φ[ρ](x)) dx =

∫
Rd

f(x)dρ(x).

2. Let Ψ[ρ] be the Legendre transform of Φ[ρ], if ρ ∈ P2
a , Ψ[ρ] is the unique

up to a constant convex function satisfying

∀f ∈ C0
b (Ω),

∫
Rd

f(∇Ψ[ρ](x)) dρ(x) =

∫
Ω

f(x)dx.

3. If ρ ∈ P2
a , X admits the following unique polar factorization:

X = ∇Φ[ρ] ◦ g,

with Φ[ρ] convex, g measure preserving in Ω.
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Remark: Ψ[ρ],Φ[ρ] depend only on ρ, and are solutions (in some weak
sense) in Rd and Ω respectively, of the Monge-Ampère equations

detD2Ψ = ρ,

ρ(∇Φ) detD2Φ = 1.

When Ψ and Φ are not in C2
loc these equations can be understood in the

viscosity (or Alexandrov) sense or in the sense of Theorem 1.1, which is
strictly weaker. For the consistency of the different weak formulations and
regularity issues the reader can refer to [8].

The periodic case

The polar factorization theorem has been extended to Riemannian manifolds
in [23] (see also [9] for the case of the flat torus). In this case, we consider
a mapping X : Rd 7→ Rd such that for all ~p ∈ Zd, X(· + ~p) = X + ~p. Then
ρ = X#dx is a probability measure on Td. We define Ψ[ρ],Φ[ρ] through the
following:

Theorem 1.2. Let X : Rd → Rd be as above, with ρ = X#dx.

1. Up to an additive constant there exists a unique convex function Φ[ρ]
such that Φ[ρ](x) − x2/2 is Zd-periodic (and thus ∇Φ[ρ](x) − x is Zd

periodic), and

∀f ∈ C0(Td),

∫
Td

f(∇Φ[ρ](x)) dx =

∫
Td

f(x) dρ(x).

2. Let Ψ[ρ] be the Legendre transform of Φ[ρ]. If ρ is Lebesgue integrable,
Ψ[ρ] is the unique up to a constant convex function satisfying
Ψ[ρ](x) − x2/2 is Zd-periodic (and thus ∇Ψ[ρ](x) − x is Zd periodic),
and

∀f ∈ C0(Td),

∫
Td

f(∇Ψ[ρ](x)) dρ(x) =

∫
Td

f(x) dx.

3. If ρ is Lebesgue integrable, X admits the following unique polar factor-
ization:

X = ∇Φ[ρ] ◦ g

with g measure preserving from Td into itself, and Φ[ρ] convex, Φ[ρ]−
|x|2/2 periodic.
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Remark 1: From the periodicity of ∇Φ[ρ](x)− x,∇Ψ[ρ](x)− x, for every
f Zd-periodic, f(∇Ψ[ρ]), f(∇Φ[ρ]) are well defined on Rd/Zd.

Remark 2: Both in the periodic and non periodic case, the definitions
of Ψ[ρ] and Φ[ρ] make sense if ρ is absolutely continuous with respect to
the Lebesgue measure. If not, the definition and uniqueness of Φ[ρ] is still
valid, as well as the property ∇Φ[ρ]#ρ = χΩLd. The definition of Ψ[ρ]
as the Legendre transform of Φ[ρ] is still valid also, but then the expression∫
f(∇Ψ[ρ](x)) dρ(x) does not necessarily make sense since ∇Ψ[ρ] is not nec-

essarily continuous, and hence not defined dρ almost everywhere. Moreover
the polar factorization does not hold any more.

Remark 3: We have (see [9]) the unconditional bound

‖∇Ψ[ρ](x)− x‖L∞(Td) ≤
√
d/2

that will be useful later on.

1.3 Lagrangian formulation of the SG system

From Theorems 1.1, 1.2 the Lagrangian formulation of the semi-geostrophic
equation then becomes

DX

Dt
= [∇Ψ(X)−X]⊥ , (1)

Ψ = Ψ[ρ], ρ = X#dx. (2)

1.4 Eulerian formulation in dual variables

In both cases (periodic and non periodic) we thus investigate the following
system that will be referred to as SG in dual variables (but we will only say
SG hereafter): We look for a time dependent probability measure t→ ρ(t, ·)
satisfying

∂tρ+∇ · (ρv) = 0, (3)

v(t, x) = (∇Ψ[ρ(t)](x)− x)⊥ , (4)

ρ(t = 0) = ρ0. (5)

Global existence of weak solutions (which are defined below) of this system
with Lp initial data for p ≥ 1 has been shown in [1], [10], [20].
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1.5 Results

In this work we deal with various mathematical problems related to this sys-
tem: We first extend the notion of weak solutions that had been shown to ex-
ist for ρ ∈ L∞(R+, L

q(R3)), q > 1 ([1], [10]), and then for ρ ∈ L∞(R+, L
1(R3))

([20]), to the more general case of bounded measures. The question of ex-
istence of measure-valued solutions was raised and left unanswered in those
papers, and we show here existence of global solutions to the Cauchy prob-
lem with initial data a bounded compactly supported measure, and show the
weak stability/compactness of these weak measure solutions.

Then we show existence of continuous solutions, more precisely, we show
local existence of solutions with Dini-continuous (see (12)) density. For this
solutions, the velocity field is then C1 and the Lagrangian system (1,2) is de-
fined everywhere. This proof relies heavily on the available regularity results
on solutions to the Monge-Ampère equation (Theorem 3.1). Note that the
Dini condition is the lowest condition known on the right hand side of the
Poisson equation that enforces C2 regularity for the solution. Our result is
not totally satisfactory since it does not provide existence of a global smooth
solution, which is the case for the 2-d incompressible Euler equation. The
reason for this more powerful result is that for the Poisson equation

∆Φ = ω,

ω bounded implies that ∇Φ is Log-Lipschitz. This continuity is slightly
weaker that the Lipschitz continuity, but allows to define a Holder continuous
flow (see [21]). Moreover, the flow being incompressible, this implies (when
d = 2) that the vorticity is just transported along the streamlines. The
construction of global smooth solutions can then be achieved only using those
two arguments.

For the SG system, solutions to

detD2Ψ = ρ

are only C1,α when ρ is merely bounded. This is not enough to build a
continuous flow, and prevents us from obtaining the same results as for Euler.

We also show uniqueness in the class of Hölder continuous solutions (a
sub-class of Dini continuous solutions). This proof uses in an crucial way the
optimal transportation of measures by convex gradients and its regularity
properties, and can be adapted to give a new proof of uniqueness for solutions
of the 2-d Euler equation with bounded vorticity, but also for a broad class
of non-linearly coupled system. The typical application is a density evolving
through a transport equation where the velocity field depends on the gradient
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of a potential. The potential is obtained by solving an elliptic equation, where
the density appears in the right hand side. Well known examples of such cases
are the Vlasov-Poisson and Euler-Poisson systems (see [18]). We point out
that the results of existence and uniqueness obtained here are all obtained
by working in a purely Lagrangian framework.

Finally, in the 2-d case, we study the convergence of the system to the
Euler incompressible equations; this convergence is expected for ρ close to
1, since formally expanding Ψ = x2/2 + εψ, and linearizing the determinant
around the identity matrix, we get

ρ = detD2Ψ = 1 + ε∆ψ +O(ε2),

and the Monge-Ampère equation turns into the Poisson equation

∆ψ =
ρ− 1

ε
=: µ.

We then perform the change of time scale t→ t/ε, and consider now µε(t) :=
µ( t

ε
). Then µε solves

∂tµ
ε +∇ · (µε∇⊥ψε) = O(ε),

∆ψε = µε,

where, when we set O(ε) = 0, we recognize as the vorticity formulation of
the 2-d Euler incompressible equation.

Let us comment this scaling: We consider a small solution to SG, i.e. a
solution where ρ− 1 is small. We then expand this solution by a factor ε−1,
and study it on a time scale of order ε−1.

From a physical point of view, this asymptotic study may be seen as a
justification of the consistency of the semi-geostrophic approximation when
d = 2. Indeed, when d = 2, the Euler equations are not affected by the
Coriolis force, i.e. the solutions to

∂tv + v · ∇v = −∇p, (6)

divv = 0, (7)

and to

∂tv + v · ∇v + fv⊥ = −∇p, (8)

divv = 0, (9)

are the same, since the term v⊥ can be considered as a pressure term (re-
member that v = ∇⊥Φ). The term f is just a time scale, and the geostrophic
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regime is the one where
v

L
<< f , where v denotes here the typical size of

v and L the typical space scale of the system. Then, note that if v(t, x) is

solution to (6), so is vε = εv(εt, x). But the ratio
vε

L
goes to 0 as ε goes to

0 (note that the space scales for v and vε are the same). Hence, in the limit
ε→ 0, i.e. for small solutions to Euler, the geostrophic approximation should
be valid. This is precisely in this regime that we show that the SG system
and the incompressible Euler system are asymptotically close to each other,
since for SG, a small solution is a one where ρ is close to 1. Hence what
we show is the following: Let ρ0 be a ’small’ initial data for SG. Consider
µε obtained from ρ as explained above, then µε is close to some ω where ω
solves the 2-d Euler incompressible equation in vorticity form

∂tω +∇ · (ω∇⊥φ) = 0,

∆φ = ω.

In other words, when ρ goes to 1, ρ is equivalent to a solution of Euler, on a
time that goes to infinity.

The study of this ’quasi-neutral’ limit is done by two different ways: One
uses a modulated energy method similar as the one used in [4] and [5] and
is valid for weak solutions. The other uses a more classical expansion of the
solution, and regularity estimates, and is similar to the method used in [17].
The second method also yields almost global solutions: Indeed, it will be
shown in this paper that smooth (say with Lipschitz density) solutions exists
in short time. The asymptotic study of the convergence to Euler shows that
the Lipschitz bound on the solution remains valid on a time that goes to
infinity when the solution is chosen with an initial condition that converges
toward the uniform density.

2 Measure valued solutions

2.1 A new definition of weak solutions

We have first the following classical weak formulation of equation (3):
ρ ∈ C(R+, L1(R3)− w) is said to be a weak solution of SG if

∀T > 0, ∀ϕ ∈ C∞
c ([0, T ]× R2),∫

∂tϕρ+∇ϕ · (∇Ψ[ρ]− x)⊥ ρ dtdx

=

∫
ϕ(T, x)ρ(T, x)dx−

∫
ϕ(0, x)ρ(0, x)dx,
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where for all t, Ψ[ρ] is as in Theorem 1.1. The problematic part in the case
of measure valued solutions is to give sense to the product ρ∇Ψ[ρ] since at
the point where ρ is singular ∇Ψ[ρ] is unlikely to be continuous. Therefore
we use the Theorem 1.1 to write for any ρ ∈ P2

a(R3)

∀ϕ ∈ C∞
c (R3),

∫
R3

ρ∇Ψ[ρ]⊥ · ∇ϕ =

∫
Ω

x⊥ · ∇ϕ(∇Φ[ρ])

(the integrals would be performed over T3 in the periodic case). The property
∇Φ[ρ]#χΩL3 = ρ is still valid when ρ is only a measure with finite second
moment (see Remark 2 after Theorem 1.2). Therefore, the formulation on
the right hand side extends unambiguously to the case where ρ /∈ L1(R2).

Geometric interpretation

This weak formulation has a natural geometric interpretation: At a point
where Ψ[ρ] is not differentiable, and thus where ∂Ψ[ρ] is not reduced to a
single point, ∇Ψ[ρ] should be replaced by ∂̄Ψ[ρ] the center of mass of the
(convex) set ∂Ψ[ρ]. The function ∂̄Ψ[ρ] cöıncides Lebesgue almost every-
where with ∇Ψ, and is defined as follows

Definition 2.1. The map ∂̄Ψ[ρ] is defined at every point x by the center
of mass with respect to the Lebesgue measure of the set ∂Ψ[ρ](x). In other
words, if ∂Ψ[ρ](x) is a k-dimensional convex set, we have

∂̄Ψ[ρ](x) =

∫
∂Ψ[ρ](x)

y dLk(y).

This motivates the following definition of weak measure solutions

Definition 2.2. Let, for all t ∈ [0, T ], ρ(t) be a probability measure of R3.
It is said to be a weak measure solution to SG if

1- The time dependent probability measure ρ belongs to C([0, T ],P−w∗),

2- there exists t→ R(t) non-decreasing such that for all t ∈ [0, T ], ρ(t, ·)
is supported in B(0, R(t)),

3- for all T > 0 and for all ϕ ∈ C∞
c ([0, T ]× R3) we have∫

[0,T ]×R3

∂tϕ(t, x) dρ(dt, x) (10)

+

∫
[0,T ]×Ω

∇ϕ(t,∇Φ[ρ(t)](x)) · x⊥ dtdx−
∫

[0,T ]×R3

∇ϕ(t, x) · x⊥ dρ(dt, x)

=

∫
ϕ(T, x)dρ(T, x) dx−

∫
ϕ(0, x)dρ(0, x) dx.
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This definition is consistent with the classical definition of weak solu-
tions if for all t, ρ(t, ·) is absolutely continuous with respect to the Lebesgue
measure.

2.2 Result

Here we prove the following

Theorem 2.3. 1. Let ρ0 be a probability measure compactly supported.
There exists a global weak measure solution to the system SG in the
sense of Definition 2.2.

2. For any T > 0, if (ρn)n∈N is a sequence of weak measure solutions on
[0, T ] to SG with initial data (ρ0

n)n∈N, supported in BR for some R > 0
independent of n, the sequence (ρn)n∈N is precompact in C([0, T ],P −
w∗) and every converging subsequence converges to a weak measure
solution of SG.

Proof of Theorem 2.3

We first show the weak stability of the formulation of Definition 2.2, and
the compactness of weak measure solutions. We then use this result to ob-
tain global existence of solutions to the Cauchy problem with initial data a
bounded measure.

Weak stability of solutions

We consider a sequence (ρn)n∈N of solutions of SG in the sense of Definition
2.2. The sequence is uniformly compactly supported at time 0. We first show
that there exists a non-decreasing function R(t) such that ρn(t) is supported
in B(R(t)) for all t, n:

Lemma 2.4. Let ρ ∈ C([0, T ],P(R3)−w∗) satisfy (10), let ρ0 = ρ(t = 0) be
supported in B(0, R0), then ρ(t) is supported in B(0, R0+CΩt), CΩ = supy∈Ω{|y|}.

Proof. Consider any function ξε(t, r) ∈ C∞([0, T ]× R) such that

ξε(0, r) ≡ 1 if −∞ < r ≤ R0,

ξε(0, r) ≡ 0 if r ≥ R0 + ε,

ξε(t, r) = ξε(0, r − CΩt),
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with ξ(0, ·) non increasing. Then applying (10) to the test function ξε(t, |x|),
we find

d

dt

∫
ξε(t, |x|) dρ(t, x)

= −
∫
∂rξε(t, |x|)CΩ dρ(t, x) +

∫
Ω

∂rξε(t, |∇Φ[ρ(t)]|) ∇Φ[ρ(t)]

|∇Φ[ρ(t)]|
· x⊥ dx

≥
∫

Ω

∂rξε(t, |∇Φ[ρ(t)]|)(−CΩ + |x|) dx

≥ 0

since, by definition of CΩ, for x ∈ Ω, |x| ≤ CΩ and ξε is non increasing with

respect to r. Note also that we have used

∫
∇x[ξ(t, |x|)] · x⊥dρ(t, x) dx ≡ 0.

We know on the other hand that∫
R3

ξε(0, |x|)dρ(0, x) = 1,∫
R3

ξε(t, |x|)dρ(t, x) ≤ 1,

therefore we conclude that

∫
R3

ξε(t, |x|)dρ(t, x) ≡ 1, which concludes the

lemma by letting ε go to 0.
�

From Lemma 2.4, we have:∣∣∣∣−∫
[0,T ]×R3

∇ϕ(t, x) · x⊥ dρn(dt, x) +

∫
[0,T ]×Ω

∇ϕ(t,∇Φ[ρn(t)](x)) · x⊥ dtdx

∣∣∣∣
≤ C(T )‖ϕ‖L1([0,T ],C1(BR(T )).

Thus from Definition 2.2 equation (10) we know that for any time t ≥ 0,
∂tρn(t, ·) is bounded in the dual of L1([0, T ], C1(R3)) and thus in the dual of
L1([0, T ],W 2,p(R3)) for p > 3 by Sobolev embeddings. Thus for some p′ > 1
we have

∂tρn ∈ L∞([0, T ],W−2,p′(R2)).

With the two above results, and using a classical compactness result (see
[16, Chapter 1, lemma 5.1]), we can obtain the following lemma:

Lemma 2.5. Let the sequence (ρn)n∈N be as above, there exists ρ ∈ C([0, T ],P−
w∗) and a subsequence (ρnk

)k∈N, such that for all t ∈ [0, T ], ρnk
(t) converges

to ρ(t) in the weak-∗ topology of measures.
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With this lemma, we need to show that for all ϕ ∈ C∞
c ([0, T ] × R3)

we have ∇ϕ(t,∇Φ[ρn(t)]) converging to ∇ϕ(t,∇Φ[ρ(t)]) whenever ρn(t) con-
verges weakly-∗ to ρ(t). This last step will be a consequence of the following
stability theorem:

Theorem 2.6 (Brenier, [3]). Let Ω be as above. Let (ρn)n∈N be a sequence
of probability measures on Rd, such that ∀n,

∫
(1 + |x|2)dρn ≤ C, let Φn =

Φ[ρn] and Ψn = Ψ[ρn] be as in Theorem 1.1. If for any f ∈ C0(Rd) such that
|f(x)| ≤ C(1 + |x|2),

∫
fρn →

∫
ρf, then the sequence Φn can be chosen in

such a way that Φn → Φ[ρ] uniformly on each compact set of Ω and strongly
in W 1,1(Ω; Rd), and Ψn → Ψ[ρ] uniformly on each compact set of Rd and
strongly in W 1,1

loc (Rd).

From this result, we obtain that the sequence ∇Φ[ρn] converges strongly
in L1(Ω) and almost everywhere (because of the convexity of Φ[ρ]) to ∇Φ[ρ].
Thus ∇ϕ(t,∇Φ[ρn]) converges to ∇ϕ(t,∇Φ[ρ]) in L1(Ω) and one can pass to
the limit in the formulation of Definition 2.2. This ends the proof of point 2
of Theorem 2.3.

Existence of solutions

We show briefly the existence of a solution to the Cauchy problem in the
sense of Definition 2.2. Indeed given ρ0 the initial data for the problem that
we want to solve, by smoothing ρ0, we can take a sequence ρ0

n of initial
data belonging to L1(R2), uniformly compactly supported and converging
weakly-∗ to ρ0. We know already from [1], [10], [20] that for every ρ0

n, one
can build a global weak solution of (3, 4, 5), that will be uniformly compactly
supported on [0, T ] for all T ≥ 0. This sequence will also be solution in
the sense of Definition 2.2. We then use the stability Theorem 2.6, and
conclude that, up to extraction of a subsequence, the sequence ρn converges
in C([0, T ],P − w∗) to a weak measure solution of SG with initial data ρ0.
This achieves the proof of Theorem 2.3. �

Remark: One can prove in fact the more general result, valid for non
linear functionals:

Proposition 2.7. Let F ∈ C0(Ω×Rd), such that |F (x, y)| ≤ C(1+ |y|2), let
(ρn)n∈N be a bounded sequence of probability measures, Lebesgue integrable,
with finite second moment. Let ρ be a probability measure with finite sec-
ond moment, such that for all f ∈ C0(Rd) such that |f(x)| ≤ C(1 + |x|2),
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∫
fdρn →

∫
fdρ. Then as n goes to ∞, we have∫

Rd

F (∇Ψ[ρn](x), x) dρn(x) =

∫
Ω

F (y,∇Φ[ρn](y)) dy

→n

∫
Ω

F (y,∇Φ[ρ](y)) dy =:

∫
Rd

F (∂̄Ψ[ρ](x), x) dρ(x),

where ∂̄Ψ[ρ] is given in Definition 2.1.

Remark: One checks easily that this definition of
∫

Rd F (∂̄Ψ[ρ](x), x) dρ(x)
is consistent with the definition of

∫
Rd F (∇Ψ[ρ](x), x) dρ(x) whenever ρ is

absolutely continuous with respect to the Lebesgue measure, or ∇Ψ[ρ] is
continuous. Indeed, note that ∇Ψ and ∂̄Ψ always cöıncide Lebesgue almost
everywhere, since as a convex and hence Lipschitz function Ψ is differentiable
Lebesgue almost everywhere (Rademacher’s Theorem), hence ∂Ψ is single
valued Lebesgue almost everywhere.

3 Continuous solutions

What initial regularity is necessary in order to guarantee that the velocity
fields remains Lipschitz, or that the flow remains continuous, at least for a
short time ? The celebrated Youdovich’s Theorem for the Euler incompress-
ible equation shows that when d = 2, if the initial vorticity data is bounded
in L∞, the flow is Hölder continuous, with Hölder index decreasing to 0 as
time goes to infinity. This proof relies on the following regularity property
of the Poisson equation: If ∆φ is bounded in L∞, then ∇φ is Log-Lipschitz.
This continuity is enough to define a Hölder continuous flow for the vector
field ∇φ⊥. Such a result is not valid for the Monge-Ampère equation. As far
as we know, the strongest regularity result for Monge-Ampère equations is
the following:

3.1 Regularity of solutions to Monge-Ampère equation
with Dini-continuous right hand side

Theorem 3.1 (Wang, [25]). Let u be a strictly convex Alexandrov solution
of

detD2u = ρ (11)

with ρ strictly positive. If w(r), the modulus of continuity of ρ, satisfies∫ 1

0

w(r)

r
dr <∞, (12)
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then u is in C2
loc.

We will work here in the periodic case. In this case, u the solution of
(11) will be Ψ[ρ] of Theorem 1.2. The arguments of [7], [8], adapted to the
periodic case, show that Ψ[ρ] is indeed a strictly convex Alexandrov solution
of solution of (11). Therefore we obtain the following corollary of Theorem
3.1:

Corollary 3.2. Let ρ ∈ P(Td) be such that

0 < m ≤ ρ ≤M,∫ 1

0

w(r)

r
dr = C <∞.

where m,M,C are positive constants. Let Ψ[ρ] be as in Theorem 1.2. We
have, for some constant H depending only on m,M,C

‖Ψ[ρ]‖C2(Td) ≤ H.

3.2 Result

We will now prove the following:

Theorem 3.3. Let ρ0 be a probability on T3, such that ρ is strictly positive
and satisfies the continuity condition (12). Then there exists T > 0 and
C1, C2 depending on ρ0, such that on [0, T ] there exists a solution ρ(t, x) of
SG that satisfies for all t ∈ [0, T ]:∫ 1

0

w(t, r)

r
dr ≤ C1, ‖Ψ(t, ·)‖C2(T3) ≤ C2,

where w(t, r) is the modulus of continuity (in space) of ρ(t, .).

Proof of Theorem 3.3

Let us first sketch the proof: If Ψ ∈ C2, then the flow t→ X(t, x) generated
by the velocity field [∇Ψ(x) − x]⊥ is Lipschitz in space. Since the flow is
incompressible, we have ρ(t, x) = ρ0(X−1(t, x)).
Now we use the following property: If two functions f, g have modulus of
continuity respectively wf , wg then g ◦ f has modulus wg ◦ wf .
Thus ifX−1(t) is Lipschitz, we have wρ0◦X−1(t) ≤ wρ0(L ·) with L the Lipschitz
constant of X−1(t) and condition (12) remains satisfied.
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Remark 1: Note that Hölder continuous functions satisfy the condition
(12).

Remark 2: Note also that we do not need any integrability on ∇ρ and
the solution of the Eulerian system (3, 4, 5) still has to be understood in the
distributional sense.

A fixed point argument

Let us introduce the semi-norm

‖µ‖C =

∫ 1

0

wµ(r)

r
dr (13)

defined on P(T3), where we recall that wµ is the modulus of continuity of µ.
We denote PC the set P equipped with this semi-norm, i.e.

PC = {µ ∈ P(T3), ‖µ‖C <∞}.

From now, we fix ρ0 a probability density in PC , satisfying m ≤ ρ0 ≤ M ,
where m and M are strictly positive constants. Let µ be a time dependent
probability density in L∞([0, T ];PC), such that m ≤ µ(t) ≤ M for all t, we
consider the solution ρ of the initial value problem:

∂tρ+ (∇Ψ[µ](x)− x)⊥ · ∇ρ = 0, (14)

ρ(t = 0) = ρ0. (15)

From Theorem 3.1 and its corollary, the vector field v[µ] = (∇Ψ[µ](x)−x)⊥ is
C1 uniformly in time, therefore there exists a unique solution to this equation,
by Cauchy-Lipschitz Theorem. This solution can be built by the method of
characteristics as follows: Consider the flow X(t, x) of the vector field v[µ],
then ρ(t) is ρ0 pushed forward by X(t), i.e. ρ(t) = ρ0 ◦ X−1(t). From the
incompressibility of v[µ] the condition m ≤ ρ0 ≤ M implies that for all
t ∈ [0, T ], m ≤ ρ(t) ≤M .

The initial data ρ0 being fixed, the map µ 7→ ρ will be denoted by F .
The spatial derivative of X, DxX satisfies

∂tDxX(t) = Dxv[µ](X)DxX(t), (16)

therefore we have

|DxX(t)| ≤ exp(t sup
s∈[0,t]

‖Dxv[µ](s)‖L∞). (17)

We have also from (16),

∂t

[
DxX

−1(t,X(t, x))
]

= DxX
−1(t,X(t, x)),
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hence

|DxX
−1(t)| ≤ exp(t sup

s∈[0,t]

‖Dxv[µ](s)‖L∞). (18)

Since wf◦g ≤ wf ◦ wg, and writing Ct = exp(t sups∈[0,t] ‖Dxv[µ]‖L∞), we
obtain wρ(t)(·) ≤ wρ0(Ct·), and∫ 1

0

wρ(t)(r)

r
dr ≤

∫ Ct

0

wρ0(r)

r
dr

≤
∫ 1

0

wρ0(r)

r
dr + (M −m)(Ct − 1),

(using that ∀r, wρ(r) ≤M −m). Therefore,

‖ρ(t)‖C ≤ ‖ρ0‖C + (M −m)(Ct − 1).

Now from Corollary 3.2, and m,M being fixed, there exists a non-decreasing
function H such that

‖v[µ]‖C1 ≤ H(‖µ‖C),

and so Ct ≤ exp(tH(‖µ‖L∞([0,t];PC
))). Hence we can chose Q > 1, and then

T such that

‖ρ0‖C + (M −m)
(
exp(T H(Q‖ρ0‖C))− 1

)
= Q‖ρ0‖C.

Note that for Q > 1, we necessarily have T > 0. Then the map F : µ 7→ ρ
goes now from

A =
{
µ, ‖µ‖L∞([0,T ];PC) ≤ Q‖ρ0‖C, m ≤ µ ≤M

}
into

B =
{
ρ, ‖ρ(t)‖C ≤ ‖ρ0‖C + (M −m)

(
exp(t H(Q‖ρ0‖C))− 1

)
,∀t ∈ [0, T ]

}
,

and with our choice of T = T (Q), we have B ⊂ A. Moreover from the
unconditional bounds

ρ ≤M,

‖v[µ]‖L∞([0,T ]×T3) ≤
√

3/2,

(see the remark after Theorem 1.2 for the second bound) and using equation
(14), we have also ‖∂tρ‖L∞([0,T ];W−1,∞) ≤ K(M) whenever ρ = F(µ).

Call Ã (resp. B̃) the set A ∩ {ρ, ‖∂tρ‖L∞([0,T ];W−1,∞) ≤ K(M)}, (resp.
B ∩ {ρ, ‖∂tρ‖L∞([0,T ];W−1,∞) ≤ K(M)}); we claim that
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• F(Ã) ⊂ B̃ ⊂ Ã,

• Ã is convex and compact for the C0([0, T ]× T3) topology,

• F is continuous for this topology,

so that we can apply the Schauder fixed point Theorem. We only check the
last point, the second being a classical result of functional analysis. So let
us consider a sequence (µn)n∈N converging to µ ∈ A, and the corresponding
sequence (ρn = F(µn))n∈N. The sequence ρn is pre-compact in C0([0, T ]×T3),
from the previous point, and we see (with the stability Theorem 2.6) that it
converges to a solution ρ of

∂tρ+∇ · (ρv[µ]) = 0.

But, v[µ] being Lipschitz, this solution is unique, and therefore F(µn) con-
verges to F(µ), which proves the continuity of F , and ends the proof of
existence by the Schauder fixed point Theorem.

�
We state here some consequences of the previous result:

Corollary 3.4. Let ρ0 ∈ P(T3), such that 0 < m ≤ ρ ≤M .

1. If ρ0 ∈ Cα, α ∈]0, 1], for T ∗ > 0 depending on ρ0, a solution ρ(t, x) to
(3,4,5) exists in L∞([0, T ∗[, Cα(T3)).

2. If ρ0 ∈ W 1,p, p > 3, for T ∗ > 0 depending on ρ0, a solution ρ(t, x) to
(3,4,5) exists in L∞([0, T [,W 1,p(T3)).

3. If ρ0 ∈ Ck,α, α ∈]0, 1], k ∈ N, for T ∗ > 0 depending on ρ0, a solution
ρ(t, x) to (3,4,5) exists in L∞([0, T ∗[, Ck,α(T3)).

Moreover, for these solutions, the velocity field is respectively in C1,α(T3),
W 2,p(T3), and Ck+1,α(T3) on [0, T ∗[.

Proof. We prove only the first point. We use the representation formula
ρ(t) = ρ0(X−1(t)). Since Hölder continuous functions satisfy condition (12),
we can construct a solution such that X−1(t) remains Lipschitz with respect
to the x variable. Then composing a Hölder continuous function with a
Lipschitz function, we obtain a Hölder continuous function, which yields the
result.
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4 Uniqueness of solutions to SG with Hölder

continuous densities

4.1 Result

Here we prove the following theorem:

Theorem 4.1. Suppose that ρ0 ∈ P(T3) with 0 < m ≤ ρ0 ≤M , and belongs
to Cα(T3) for some α > 0. From Theorem 3.3, for some T > 0 there exists
a solution ρ̄ to SG in L∞([0, T ], Cα(T3)). Then every solution of SG in
L∞([0, T ′], Cβ(T3)) for T ′ > 0, β > 0 with same initial data coincides with ρ̄
on [0, inf{T, T ′}].

Remark 1: The uniqueness of weak solutions is still an open question.
Remark 2: Our proof of uniqueness is thus valid in a smaller class of

solutions than the one found in the previous section, the reason is the follow-
ing: During the course of the proof, we will need to solve a Monge-Ampère
equation, whose right-hand side is a function of the second derivatives of the
solution of another Monge-Ampère equation. In Theorem 3.1, if u is solution
to (11) with a right hand side satisfying (12), although u ∈ C2, it is not clear
that the second derivatives of u satisfy (12). Actually, it is even known to be
wrong in the case of the Laplacian (for a precise discussion on the subject,
the reader may refer to [15]). However, from Theorem 4.3 below, if ρ ∈ Cα

then u ∈ C2,α.
What we actually need is a continuity condition on the right hand side

of (11) such that the second derivative of the solution u satisfies (12). This
may be a weaker condition than Hölder continuity, however the proof would
not be affected, therefore it is enough to give it under the present form.

Proof of Theorem 4.1

Let ρ1 and ρ2 be two solutions of (3, 4, 5), in L∞([0, T ], Cβ(T3)) that coincide
at time 0. Let X1, X2 be the two corresponding Lagrangian solutions, (i.e.
solutions of (1,2)). The velocity field being C1, for all t ∈ [0, T ], X1(t, ·) and
X2(t, ·) are both C1 diffeomorphisms of Td.

We call v1 (resp. v2) the velocity field associated to X1 (resp. X2),
vi(t, x) = [∇Ψi(t, x)− x]⊥, i = 1, 2. We have

∂t(X1 −X2) = v1(X1)− v2(X2)

= (v1(X1)− v1(X2)) + (v1(X2)− v2(X2)).



The Semi-Geostrophic equations 22

We want to obtain a Gronwall type inequality for ‖X1 − X2‖L2 . Since v1

is uniformly Lipschitz in space (from Theorem 3.3), the first bracket is esti-
mated in L2 norm by C‖X1 −X2‖L2 .
We now need to estimate the second term. We first have that∫

|v1(X2)− v2(X2)|2 =

∫
ρ2|∇Ψ1 −∇Ψ2|2,

and since ρ2 is bounded, we need to estimate ‖∇Ψ1 −∇Ψ2‖L2 . This will be
done in the following Proposition:

Proposition 4.2. Let X1, X2 be mappings from Td into itself, such that the
densities ρi = Xi#dx, i = 1, 2 are in Cα(Td) for some α > 0, and satisfy
0 < m ≤ ρi ≤M . Let Ψi, i = 1, 2 be convex such that

detD2Ψi = ρi

in the sense of Theorem 1.1, i.e. Ψi = Ψ[ρi]. Then

‖∇Ψ1 −∇Ψ2‖L2 ≤ C‖X1 −X2‖L2 ,

where C depends only on α (the Hölder index of ρi), ‖ρi‖Cα(Td), m and M .

Before giving a proof of this result, we conclude the proof of the Theorem
4.1. The Proposition 4.2 implies immediately that

‖∂t(X1 −X2)‖L2 ≤ C‖X1 −X2‖L2 ,

and we conclude the proof of the Theorem by a standard Gronwall lemma.
�

4.2 Energy estimates along Wasserstein geodesics: Proof
of Proposition 4.2.

In the proof of this result we will need the following result on optimal trans-
portation of measures by gradient of convex functions:

Theorem 4.3 (Brenier, [3], McCann, [23], Cordero-Erausquin, [9],
Caffarelli,[6]). Let ρ1, ρ2 be two probability measures on Td, such that ρ1 is
absolutely continuous with respect to the Lebesgue measure.

1. There exists a convex function φ such that φ − | · |2/2 is Zd periodic,
satisfying ∇φ#ρ1 = ρ2.
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2. The map ∇φ is the dρ1 a.e. unique solution of the minimization prob-
lem

inf
T#ρ1=ρ2

∫
Td

ρ1(x)|T (x)− x|2Td dx, (19)

and for all x ∈ Rd, |∇φ(x)− x|Td = |∇φ(x)− x|Rd.

3. If ρ1, ρ2 are strictly positive and belong to Cα(Td) for some α > 0 then
φ ∈ C2,α(Td) and satisfies pointwise

ρ2(∇φ) detD2φ = ρ1.

For complete references on the optimal transportation problem (19) and
its applications, the reader can refer to [24].

Remark 1: The expression | · |Td denotes the Riemannian distance on the
flat torus, whereas |·|Rd is the Euclidean distance on Rd. The second assertion
of point 2 means that, for all x ∈ Rd, |∇φ(x)− x| ≤ diam(Td) =

√
d/2.

Remark 2: Here again, note that since φ − | · |2/2 is periodic, the map
x 7→ ∇φ(x) is compatible with the equivalence classes of Rd/Zd, and therefore
is defined without ambiguity on Td.

Wasserstein geodesics between probability measures

In this part we use results from [2], [22]. Using Theorem 4.3, we consider the
unique (up to a constant) convex potential φ such that

∇φ#ρ1 = ρ2,

φ− | · |2/2 is Zd − periodic.

We consider, for θ ∈ [1, 2], φθ defined by

φθ = (2− θ)
|x|2

2
+ (θ − 1)φ.

We also consider, for θ ∈ [1, 2], ρθ defined by

ρθ = ∇φθ #ρ1.

Then ρθ interpolates between ρ1 and ρ2. This interpolation has been in-
troduced in [2] and [22] as the time continuous formulation of the Monge-
Kantorovitch mass transfer. In this construction, a velocity field vθ is defined
dρθ a.e. as follows:

∀f ∈ C0(Td; Rd),

∫
ρθvθ · f =

∫
ρ1f(∇φθ) · ∂θ∇φθ

=

∫
ρ1f(∇φθ) · (∇φ(x)− x). (20)
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It is easily checked that the pair ρθ, vθ satisfies

∂θρθ +∇ · (ρθvθ) = 0,

and for any θ ∈ [1, 2], we have (see [2]):

1

2

∫
Td

ρθ|vθ|2 =
1

2

∫
Td

ρ1|∇φ(x)− x|2 = W 2
2 (ρ1, ρ2),

where W2(ρ1, ρ2) is the Wasserstein distance between ρ1 and ρ2, defined by

W 2
2 (ρ1, ρ2) = inf

T#ρ1=ρ2

{∫
ρ1(x)|T (x)− x|2Td

}
.

The Wasserstein distance can also be formulated as follows:

W 2
2 (ρ1, ρ2) = inf

Y1,Y2

{∫
Td

|Y1 − Y2|2Td

}
where the infimum is performed over all maps Y1, Y2 : Td 7→ Td such that
Yi#dx = ρi, i = 1, 2. From this definition we have easily

W 2
2 (ρ1, ρ2) ≤

∫
|X2(t, a)−X1(t, a)|2 da,

and it follows that, for every θ ∈ [1, 2],∫
Td

ρθ|vθ|2 = W 2
2 (ρ1, ρ2) ≤ ‖X2 −X1‖L2 . (21)

Regularity of the interpolant measure ρθ

From Theorem 4.3, for ρ1, ρ2 ∈ Cβ and pinched between the positive positive
constants m and M , we know that φ ∈ C2,β and satisfies

detD2φ =
ρ1

ρ2(∇φ)
.

We now estimate ρθ = ρ1[detD2φθ]
−1. From the concavity of log(det(·))

on symmetric positive matrices, we have

detD2φθ = det((2− θ)I + (θ − 1)D2φ)

≥ [detD2φ]θ−1

≥ m

M
.

Moreover, since φ ∈ C2, detD2φθ is bounded by above. Thus ρθ is uniformly
bounded away from 0 and infinity, and uniformly Hölder continuous.
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Final energy estimate

If we consider, for every θ ∈ [1, 2], Ψθ solution of

detD2Ψθ = ρθ, (22)

in the sense of Theorem 1.2, and we impose that∫
Td

Φθ = 0 (23)

(see [19]). Then Ψθ interpolates between Ψ1 and Ψ2, and Ψθ ∈ C2,β uniformly,
from the regularity of ρθ. We will estimate ∂θ∇Ψθ by differentiating (22)
with respect to θ. The fact that Ψθ,Φθ is differentiable with respect to θ
is a consequence of the results of [19]. We will have, following the a priori
estimate of [19, Propositon 5.1, Theorem 2.3]

∂θ∇Φθ, ∂θ∇Ψθ ∈ L∞([1, 2], L2(Td)),

∂θΦθ, ∂θΨθ ∈ L∞([1, 2], Cγ(Td)),

for some γ ∈]0, 1[. (Note that we need the condition (23).)
Let us obtain a precise quantitative estimate in our present case. First

we recall the following fact: For M,N two d× d matrices, t ∈ R

det(M + tN) = detM + t (trace M t
coN) + o(t),

where Mco is the co-matrix (or matrix of cofactors) of M . Moreover, for any
f ∈ C2(Rd; R), if M is the co-matrix of D2f , it is a common fact that

∀j ∈ {1..d},
d∑

i=1

∂iMij ≡ 0. (24)

Hence, denoting Mθ the co-matrix of D2Ψθ, we obtain that ∂θΨθ satisfies

∇ · (Mθ∇∂θΨθ) = ∂θρθ(t)

= −∇ · (ρθvθ), (25)

where vθ is given by (20). From the C2,β regularity of Ψθ, D
2Ψθ is a Cβ

smooth, positive definite matrix, and its co-matrix Mθ as well. Thus the
problem (25) is uniformly elliptic. If we multiply by ∂θΨθ, and integrate by
parts we obtain∫

∇t∂θΨθ Mθ ∇∂θΨθ = −
∫
∇∂θΨθ · vθρθ.
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Using that Mθ ≥ λI for some λ > 0, and combining with the inequality (21)
above, we obtain

‖∇∂θΨθ(t)‖L2 ≤ λ−1‖ρθvθ‖L2

≤ λ−1‖X2 −X1‖L2

(
sup

θ
‖ρθ‖L∞

)1/2

.

The constant λ−1 depends only on m,M, β, {‖ρi‖Cβ , i = 1, 2}, and is thus
bounded under our present assumptions. We have already seen that ρθ is
uniformly bounded, and we finally obtain that

‖∇Ψ1 −∇Ψ2‖L2 ≤ C‖X1 −X2‖L2 , (26)

this ends the proof of Proposition 4.2.
�.

Remark 1. In [19], the author obtains also (weaker) estimates of the type
of Proposition 4.2, for discontinuous densities ρ1, ρ2.

5 Uniqueness of solutions to the 2-d Euler

equations with bounded vorticity: A new

proof

As stated in the introduction, the method that we have presented here to
show uniqueness of solutions to SG is in fact quite general. It has been
shown in [18] to yield a uniqueness result for solutions to the Vlasov-Poisson
system under the only condition that the density in the physical space is
bounded. In that paper it was also shown that the method could give a new
proof of Youdovich’s theorem for solutions in the whole space R2.

We give here a simplified version of this proof in the periodic case.
We start now from the following system:

∂tρ+∇ · (ρ∇ψ⊥) = 0, (27)

ρ = ∆ψ, (28)

ρ(t = 0) = ρ0. (29)

We restrict ourselves to the periodic case, i.e. x ∈ T2, ρ, ψ periodic, this
implies that ρ has total mass equal to 0. We reprove the following classical
result:

Theorem 5.1 (Youdovich, [26]). Given an initial data ρ0 ∈ L∞(T2) sat-
isfying

∫
T2 ρ

0 = 0, there exists a unique solution to (27, 28, 29) such that ρ
belongs to L∞loc(R+ × T2).
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Proof of Theorem 5.1

We consider two solutions ρ1, ψ1 and ρ2, ψ2, such that ρi, i = 1, 2 are bounded
in L∞([0, T ]×Td). In this case the velocity fields vi = ∇ψ⊥i both satisfy (see
[21, Chapter 8])

∀(x, y) ∈ T2, |x− y| ≤ 1

2
, |vi(x)− vi(y)| ≤ C|x− y| log

1

|x− y|
.

The flows (t, x) 7→ Xi(t, x) associated to the velocity fields vi = ∇ψ⊥i are
then Hölder continuous, and one has, for all t ∈ [0, T ], ρi(t) = Xi(t)#ρ

0.
Applying the same technique as before, we need to estimate ‖∇ψ1 −

∇ψ2‖L2(T2) in terms of ‖X1 − X2‖L2(T2). In the present case, the energy
estimate of Proposition 4.2 will hold under the weaker assumptions that the
two densities are bounded.

Proposition 5.2. Let X1, X2 be continuous injective mappings from Td into
itself, let ρ0 be a bounded measure, with

∫
Td ρ

0 = 0. Let ρi = Xi #ρ
0, i = 1, 2.

Assume that ρ1, ρ2 have densities in L∞ with respect to the Lebesgue measure.
Let ψi, i = 1, 2 be periodic solutions of ∆ψi = ρi, i = 1, 2, then we have

‖∇ψ1 −∇ψ2‖L2(Td) ≤ (2 max{‖ρ1‖L∞ , ‖ρ2‖L∞}‖ρ0‖L∞)1/2 ‖X1 −X2‖L2(Td).

Remark 1: In other words, this proposition shows that for ρ1, ρ2 bounded,
the H−1 norm of ρ1 − ρ2 is controlled by some ’generalized’ (since here we
have unsigned measures) Wasserstein distance between ρ1 and ρ2.

Remark 2: We see that we obtain a result as in Proposition 4.2 under the
weaker condition that the densities are bounded in L∞ (and not in Cα). This
is because the Laplacian is uniformly elliptic, independently of the regularity
of the solution, while the Monge-Ampère operator is uniformly elliptic only
for C2 solutions.

To conclude the proof of Theorem 5.1, note first that for all C > 0, we
can take T small enough so that ‖X2 − X1‖L∞([0,T ]×T2) ≤ C. Now we have
for the difference X1 −X2, as long as |X1 −X2| ≤ 1/2,

‖∂t(X1 −X2)‖L2

≤ ‖∇ψ1(X1)−∇ψ1(X2)‖L2 + ‖∇ψ1(X2)−∇ψ2(X2)‖L2

≤ C1‖|X1 −X2| log(|X1 −X2|)‖L2 + C2‖X1 −X2‖L2 ,

where we have used Proposition 5.2 to evaluate the second term. We just
need to evaluate ‖|X1 −X2| log(|X1 −X2|)‖L2 . We take T small enough so
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that ‖X2 −X1‖L∞([0,T ]×T2) ≤ 1/e and notice that x 7→ x log2 x is concave for
0 ≤ x ≤ 1/e, therefore by Jensen’s inequality we have∫

T2

|X2 −X2|2 log2(|X1 −X2|)

=
1

4

∫
T2

|X2 −X2|2 log2(|X1 −X2|2)

≤ 1

4

∫
T2

|X2 −X1|2 log2

(∫
T2

|X2 −X1|2
)
,

and some elementary computations finally yield

∂t‖X2 −X1‖L2 ≤ C‖X2 −X1‖L2 log
1

‖X2 −X1‖L2

.

The conclusion X1 ≡ X2 follows then by standard arguments.

5.1 Energy estimates along Wasserstein geodesic: Proof
of Proposition 5.2

The proof of this proposition is very close to the proof of Proposition 4.2, and
we will only sketch it, insisting on the specific points. Here the densities ρi

can not be of constant sign, since their mean value is zero, hence we introduce
ρ+

i (resp. ρ−i ) the positive (resp. negative) part of ρi, i.e. ρi = ρ+
i − ρ−i . The

mappings Xi are supposed injective, therefore we have Xi#ρ
±
0 = ρ±i . Now,

ρ±i are positive measures of total mass equal to say M , with M <∞.

Wasserstein geodesic

We interpolate between the positive parts ρ+
i , and the negative part is han-

dled in the same way. As before we introduce the density ρ+
θ (t) that inter-

polates between ρ+
1 (t) and ρ+

2 (t). In this interpolation, we consider v+
θ such

that

∂θρ
+
θ +∇ · (ρ+

θ v
+
θ ) = 0, (30)

and we introduce as well ρ−θ , v
−
θ . Then ρθ = ρ+

θ − ρ−θ has mean value 0. Let
the potential ψθ be solution to

∆ψθ = ρθ. (31)

Note that ρθ has mean value zero therefore this equation is well posed on T2,
moreover ψθ interpolates between ψ1 and ψ2.
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Bound on the interpolant measure ρθ

Instead of interpolating between two smooth densities, we interpolate be-
tween bounded densities, and use the following result from [22]:

Proposition 5.3 (McCann, [22]). Let ρ+
θ be the Wasserstein geodesic link-

ing ρ+
1 to ρ+

2 defined above. Then, for all θ ∈ [1, 2],

‖ρ+
θ ‖L∞ ≤ max

{
‖ρ+

1 ‖L∞ , ‖ρ+
2 ‖L∞

}
.

The same holds for ρ−i , ρ
−
θ .

Remark: This property is often referred to as ’displacement convexity’.

Energy estimates

Now we impose that
∫

Td φθ = 0. Since ρ±θ , v
±
θ are uniformly bounded in

L∞, we have using (30) that ∂θρθ ∈ L∞([1, 2];W−1,∞(Td)). We can thus
differentiate (31) with respect to θ, to obtain

∆∂θψθ = ∂θρθ = −∇ · (ρ+
θ v

+
θ − ρ−θ v

−
θ ), (32)

with v±θ the interpolating velocity defined as in (20), and satisfying for all
θ ∈ [1, 2], ∫

ρ±θ (t)|v±θ |
2(t) = W 2

2 (ρ±1 (t), ρ±2 (t)).

Multiplying (32) by ∂θψθ, and integrating over θ ∈ [1, 2], we obtain

‖∇ψ1 −∇ψ2‖L2(Td) ≤
∫ 2

θ=1

‖ρ+
θ v

+
θ ‖L2 + ‖ρ−θ v

−
θ ‖L2

≤ W2(ρ
+
1 , ρ

+
2 )

(
sup

θ
‖ρ+

θ ‖L∞

)1/2

+ W2(ρ
−
1 , ρ

−
2 )

(
sup

θ
‖ρ−θ ‖L∞

)1/2

.

Note that the energy estimate is easier here than in the Monge-Ampère case,
since the problem is immediately uniformly elliptic.

The mappings Xi are injective and satisfy Xi #ρ0 = ρi, therefore we have
Xi #(ρ±0 ) = ρ±i . Hence,

W 2
2 (ρ±1 , ρ

±
2 ) ≤

∫
ρ±0 |X1 −X2|2

≤ ‖ρ0‖L∞‖X1 −X2‖L2 .
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Using Proposition 5.3, we conclude:

‖∇ψ1 −∇ψ2‖L2(Td)

≤ 2‖ρ0‖1/2
L∞‖X2 −X1‖L2 (max {‖ρ1‖L∞ , ‖ρ2‖L∞})1/2 .

This ends the proof of Proposition 5.2. Note that in our specific case, Xi

are Lebesgue measure preserving invertible mappings, therefore ‖ρ±i ‖L∞ =
‖ρ±0 ‖L∞ , and the estimate can be simplified in

‖∇ψ1 −∇ψ2‖L2(Td) ≤ 2‖ρ0‖L∞‖X2 −X1‖L2(Td).

�

6 Convergence to the Euler equation

6.1 Scaling of the system

Here we present a rescaled version of the 2-d SG system and some formal
arguments to motivate the next convergence results. Here x ∈ T2, t ∈ R+

and for v = (v1, v2) ∈ R2, v⊥ now means (−v2, v1). Introducing ψ[ρ] =
Ψ[ρ] − |x|2/2, where Ψ[ρ] is given by Theorem 1.2, the periodic 2-d SG
system now reads

∂tρ+∇ · (ρ∇ψ⊥) = 0,

det(I +D2ψ) = ρ.

If ρ is close to one then ψ should be small, and therefore one may consider
the linearization det(I+D2ψ) = 1+∆ψ+O(|D2ψ|2), that yields ∆ψ ' ρ−1.
Thus for small initial data, i.e. ρ0− 1 small, one expects ψ, µ = ρ− 1 to stay
close to a solution of the Euler incompressible equation EI

∂tρ̄+∇ · (ρ̄∇φ̄⊥) = 0, (33)

∆φ̄ = ρ̄. (34)

We shall rescale the equation, in order to consider quantities of order one.
We introduce the new unknown

ρε(t, x) =
1

ε
(ρ(

t

ε
, x)− 1),

ψε(t, x) =
1

ε
ψ(
t

ε
, x).
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Then we have

ρ(t) = 1 + ερε(εt),

Ψ[ρ](t) = |x|2/2 + εψε(εt),

and we define φε by

εφε = |x|2/2− Φ[ρ],

so that

∇φε = ∇ψε(∇Φ[ρ]). (35)

Hence, at a point x ∈ T2, ∇φε⊥ is the velocity of the associated dual point
∇Φ[ρ](x). The evolution of this quantities is then governed by the system
SGε

∂tρ
ε +∇ · (ρε∇ψε⊥) = 0, (36)

det(I + εD2ψε) = 1 + ερε. (37)

Remark: Note that this system admits global weak solutions with initial
data any bounded measure ρε 0, as long as∫

T2

ρε 0 = 0, (38)

ρε 0 ≥ −1

ε
. (39)

Note also that if the pair (ρ̄, φ̄) is solution to the EI system (33, 34), so

is the pair

(
1

ε
ρ̄(
t

ε
, x),

1

ε
φ̄(
t

ε
, x)

)
.

We now present the convergence results. We show that solutions of SGε

converge to solutions of EI in the following sense: If ρε 0, the initial data of
SGε, is close (in some sense depending on the type of convergence we wish
to show) to a smooth initial data ρ̄0 for EI, then ρε and ρ̄ remain close for
some time. This time goes to ∞ when ε goes to 0.

We present two different versions of this result: The first one is for weak
solutions of SGε, and the second one is for Lipschitz solutions.

6.2 Convergence of weak solutions

Theorem 6.1. Let (ρε, ψε) be a weak solution of the SGε system (36, 37).
Let (ρ̄, φ̄) be a smooth C3([0, T ]×T2) solution of the EI system (33, 34). Let
φε be obtained from ψε as in (35), let Hε(t) be defined by

Hε(t) =
1

2

∫
T2

∣∣∇φε −∇φ̄
∣∣2 ,
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then

Hε(t) ≤ (Hε(0) + Cε2/3(1 + t)) expCt

where C depends only on sup0≤s≤t{‖D3φ̄(s), D2∂tφ̄(s) ‖L∞(T2)}.
In particular, if Hε(0) ≤ C0ε

2/3, we have for all T > 0, t ∈ [0, T ],

Hε(t) ≤ CT ε
2/3.

where CT depends on T,C,C0 above.

Remark 1: Note that∇φε⊥(t, x) is the velocity at point∇Φ[ρ] = x−ε∇φε.
Thus we compare the SGε velocity at point x−ε∇φε (the dual point of x) with
the EI velocity at point x. Our result allows also to compare the velocities
at the same point, by noticing that

Gε(t) =
1

2

∫
T2

ρ
∣∣∇ψε −∇φ̄

∣∣2
=

1

2

∫
T2

∣∣∇φε −∇φ̄(x− ε∇φε)
∣∣2

≤ C(Hε(t) + ε2)

using the smoothness of φ̄, and if vsgε ,vei are the respective velocities of the

SGε and EI systems, Gε =

∫
T2

ρε|vsgε − vei|2.

Remark 2: The expansion det(I +D2ψ) = 1 + ∆ψ + O(|D2ψ|2), used in
the heuristic argument above to justify the convergence relies a priori on the
control of D2ψ in the sup norm. But in the Theorem 6.1, the initial data
must satisfy ∇ψε close in L2 norm to ∇φ̄; this condition means that D2ψε is
close in H−1 norm to D2φ̄, which is smooth. This control does not allow to
justify the expansion det(I +D2ψ) = 1 + ∆ψ + O(|D2ψ|2), but we see that
the result remains valid.

Proof of Theorem 6.1

In all the proof, we use C to denote any quantity that depends only on φ̄.
We use the conservation of the energy of the SGε system, given by

E(t) =

∫
T2

|∇φε|2. (40)

This fact, although formally easily justified, is actually not so straightforward
for weak solutions, and has been proved by F. Otto in an unpublished work.
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The argument is explained in [5]. Therefore E(t) = E0. The energy of the
smooth solution of EI is given by

Ē(t) =

∫
T2

|∇φ̄|2 (41)

and also conserved. For all smooth θ, we will use the notation:

< D2θ > (t, x) =

∫ 1

s=0

(1− s)D2θ(t, x− sε∇φε(t, x)).

Thus we have the identity∫
T2

ρεθ =

∫
T2

θ(x− ε∇φε) (42)

=

∫
T2

θ − ε

∫
T2

∇θ · ∇φε + ε2
∫

T2

< D2θ > ∇φε∇φε. (43)

Using the energy bound, the last term is bounded by ε2‖D2θ‖L∞(T2)E0. Then,
using the conservation of the energies E and Ē defined respectively in (40,
41), we have

d

dt
Hε(t) = − d

dt

∫
T2

∇φ̄ · ∇φε.

Using the identity (43), we have for all smooth θ,

ε

∫
T2

∇θ · ∇φε = −
∫

T2

ρεθ +

∫
T2

θ + ε2
∫

T2

< D2θ > ∇φε∇φε,

hence, replacing θ by φ̄ in this identity, we get

d

dt
Hε(t) =

1

ε

d

dt

∫
T2

[ρεφ̄− φ̄− ε2 < D2φ̄ > ∇φε∇φε].

We can suppose without loss of generality that

∫
T2

φ̄(t, x) dx ≡ 0. Then if

we define

Qε(t) =

∫
T2

ε < D2φ̄ > ∇φε∇φε,

(note that |Qε(t)| ≤ Cε), we have

d

dt
(Hε +Qε) =

1

ε

d

dt

∫
T2

ρεφ̄.
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Hence we are left to compute

1

ε

d

dt

∫
T2

ρεφ̄ =
1

ε

∫
T2

∂tρ
εφ̄+ ρε∂tφ̄

=
1

ε

∫
T2

ρε∇ψε⊥ · ∇φ̄− ε∇φε · ∇∂tφ̄+ ε2 < D2∂tφ̄ > ∇φ̄∇φ̄

=
1

ε

∫
T2

ρε∇ψε⊥ · ∇φ̄−
∫

T2

∇φε · ∇∂tφ̄+O(ε)

= T1 + T2 +O(ε),

where at the second line we have used (36) for the first term and (43) with
θ = ∂tφ̄ for the second and third term. (Remember also that we assume∫
∂tφ̄ ≡ 0.)
We will now use the other formulation of the Euler equation: v = ∇φ̄⊥

satisfies

∂tv + v · ∇v = −∇p.

After a rotation of π/2, this equation becomes:

∂t∇φ̄+D2φ̄∇φ̄⊥ = ∇p⊥,

thus for T2 we have

T2 = −
∫

T2

∇φε · ∇∂tφ̄

=

∫
T2

∇φεD2φ̄∇φ̄⊥.

For T1, using (35) and (43), we have

εT1 =

∫
T2

ρε∇ψε⊥ · ∇φ̄

=

∫
T2

∇ψε⊥(x− ε∇φε) · ∇φ̄(x− ε∇φε)

=

∫
T2

∇φε⊥ · ∇φ̄− ε∇φε⊥D2φ̄∇φε + εΞ

where Ξ is defined by

Ξ =

∫
T2

∇φε⊥
(
D2φ̄−

∫ 1

s=0

D2φ̄(x− sε∇φε) ds

)
∇φε. (44)

The term
∫

T2 ∇φε⊥ · ∇φ̄ vanishes identically. Concerning Ξ, we claim the
following estimate:
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Lemma 6.2. Let Ξ be defined by (44), then

|Ξ| ≤ C(ε
2
3 +Hε),

where C depends on ‖D3φ̄‖L∞.

We postpone the proof of this lemma after the proof of Theorem 6.1. We
now obtain

d

dt
(Hε(t) +Qε(t)) ≤

∫
T2

(∇φ̄⊥ −∇φε⊥)D2φ̄∇φε + CHε + Cε2/3.

Noticing that for every θ : T2 7→ R we have∫
T2

∇θ⊥D2φ̄∇φ̄ =

∫
T2

∇θ⊥ · ∇(
1

2
|∇φ̄|2) = 0,

we find that∫
T2

(∇φ̄⊥ −∇φε⊥)D2φ̄∇φε =

∫
T2

(∇φ⊥ −∇φ̄ε⊥)D2φ̄(∇φε −∇φ̄),

hence

d

dt
(Hε(t) +Qε(t)) ≤ −

∫
T2

(∇φε⊥ −∇φ̄⊥)D2φ̄(∇φε −∇φ̄) + CHε + Cε2/3

≤ C(Hε(t) +Qε(t) + ε2/3)

using that Qε(t) ≤ Cε. Therefore

Hε(t) +Qε(t) ≤ (Hε(0) +Qε(0) + Cε2/3t) exp(Ct)

and finally

Hε(t) ≤ (Hε(0) + Cε2/3(1 + t)) exp(Ct)

and the result follows. Check that the constant C depends only on
sup0≤s≤t{‖D3φ̄, D2∂tφ̄‖L∞(T2)}. This ends the proof of Theorem 6.1

�

Proof of Lemma 6.2

First we show that if Θ(R) =

∫
{|∇φε|≥R}

|∇φε|2, then, for some C > 0

Θ(R) ≤ C

∫
|∇φε −∇φ̄|2 +

C

R2
. (45)
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Indeed,
∫
|∇φε|2 ≤ C, implies that meas{|∇φε| ≥ R} ≤ C

1

R2
. Since |∇φ̄(t, x)| ≤

C for (t, x) ∈ [0, T ′]× Td, we have

Θ(R) ≤ 2

∫
{|∇φε|≥R}

|∇φ̄|2 + 2

∫
{|∇φε|≥R}

|∇φε −∇φ̄|2

≤ 2C

R2
+ 2

∫
|∇φε −∇φ̄|2.

Hence (45) is proved, for C replaced by max{2, 2C}.
Then, letting

K(x) = D2φ̄−
∫ 1

s=0

D2φ̄(x− sε∇φε) ds,

we have

Ξ ≤ CΘ(R) +

∫
|∇φε|≤R

|K(x)||∇φε|2

with |K(x)| ≤ Cε|∇φε| thus

Ξ ≤ Cε

∫
|∇φε|≤R

|∇φε|3 + CΘ(R)

≤ C

(
εR

∫
|∇φε|2 +

1

R2
+

∫
|∇φε −∇φ̄|2

)
≤ C

(
εR +

1

R2
+

∫
|∇φε −∇φ̄|2

)
for all R, so for R = ε−1/3 we obtain:

Ξ ≤ Cε2/3 + C

∫
|∇φε −∇φ̄|2.

This proves Lemma 6.2
�

6.3 Convergence of strong solutions

We present here another proof of convergence, that holds for stronger norms.
Let us consider as above the solution (ρ̄, φ̄) to Euler:

∂tρ̄+∇ · (ρ̄∇φ̄⊥) = 0,

∆φ̄ = ρ̄,
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and we recall the SGε system

∂tρ
ε +∇ · (ρε∇ψε⊥) = 0,

det(I + εD2ψε) = 1 + ερε.

We have then

Theorem 6.3. Let (ρ̄, φ̄) be a solution of EI, such that that ρ̄ ∈ C2
loc(R+ ×

T2). Let ρε 0 be a sequence of initial data for SGε satisfying (38, 39), and

such that
ρε 0 − ρ̄0

ε
is bounded in W 1,∞(T2). Then there exists a sequence

(ρε, ψε) of solutions to SGε that satisfies: For all T > 0, there exists εT > 0,
such that the sequence

ρε − ρ̄

ε
,
∇ψε −∇φ̄

ε

for 0 < ε < εT is uniformly bounded in L∞([0, T ],W 1,∞(T2)).

Remark: In the previous theorem, we obtained estimates in L2 norm, here
we obtain estimates in Lipschitz norm. Estimates of higher derivatives follow
in the same way.

Proof of Theorem 6.3

We expand the solution of SGε as the solution of EI plus a small perturbation
of order ε and show that this perturbation remains bounded in large norms
(at least Lipschitz). We first remark the the assumption on ρ̄ implies that
∀T > 0, φ̄ ∈ L∞([0, T ];C3(T2)). Let us write

ρε = ρ̄+ ερ1

ψε = φ̄+ εψ1.

Rewritten in terms of ρ1, ψ1, the SGε system reads:

∂tρ1 + (∇φ̄+ ε∇ψ1)
⊥ · ∇ρ1 = −∇ψ⊥1 · ∇ρ̄,

∆ψ1 + ε trace [D2ψ1D
2φ̄] + ε2 detD2ψ1 = ρ1 − detD2φ̄.

Differentiating the first equation with respect to space, we find the evolution
equation for ∇ρ1:

∂t∇ρ1 + ((∇φ̄+ ε∇ψ1)
⊥ · ∇)∇ρ1

= −(D2φ̄+ εD2ψ1)∇ρ⊥1 −D2ψ1∇ρ̄⊥ −D2ρ̄∇ψ⊥1 . (46)
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We claim that in order to conclude the proof it is enough to have an estimate
of the form

‖ψ1(t, ·)‖C1,1(T2) ≤ C(1 + ‖ρ1(t, ·)‖C0,1(T2)), (47)

where C depends on φ̄. Let us admit this bound temporarily, and finish the
proof of the theorem: Using (47) and (46), we obtain

d

dt
‖∇ρ1‖L∞ ≤ C(t)(1 + ‖∇ρ1‖L∞ + ε‖∇ρ1‖2

L∞),

where the constant C(t) depends on the C2(T2) norm of (ρ̄(t, ·), φ̄(t, ·)). This
quantity is bounded on every interval [0, T ].

Thus we conclude using Gronwall’s lemma that ‖∇ρ1(t, ·)‖L∞(T2) remains
bounded on [0, Tε] with Tε going to T as ε goes to 0. We then choose T as
large as we want, since when d = 2 the smooth solution to EI is global in
time. From estimate (47) the W 1,∞ bound on ρ1 implies a W 2,∞ bound on
ψ1. Then, we remember that

ρ1 =
ρε − ρ̄

ε
, ∇ψ1 =

∇ψε −∇φ̄
ε

to conclude the proof of Theorem 6.3.
�

Proof of the estimate (47)

We write the equation followed by ψ1 as follows:

∆ψ1 = − trace [εD2ψ1D
2φ̄]− ε2 detD2ψ1 + ρ1 − detD2φ̄.

We recall that

‖fg‖C2,α ≤ ‖f‖C2,α‖g‖C2,α ,

hence, using Schauder C2,α estimates for solutions to Laplace equation (see
[14]), we have

‖ψ1‖C2,α ≤ C1(1 + ε‖ψ1‖C2,α + ε2‖ψ1‖2
C2,α), (48)

where C1 depends on ‖φ̄‖C2,α , ‖ρ1‖Cα . The inequality (48) will be satisfied
in two cases: Either for ‖ψ1‖C2,α ≤ C2 or for ‖ψ1‖C2,α ≥ C3ε

−2 where C2, C3

are positive constants that depend on C1.
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Now we show that ψε, solution of (37), is bounded in C2,α for ρε bounded
in Cα norm. We consider for t ∈ [0, 1] ψε

t the unique up to a constant periodic
solution of

det(I + εD2ψε
t) = 1 + tερε.

Differentiating this equation with respect to t, we find

MijDij∂tψ
ε
t = ρε,

where M is the co-matrix of I+εD2ψε
t . From the regularity result of Theorem

4.3, M is Cα and strictly elliptic. From Schauder estimates, we have then
‖∂tψ

ε
t‖C2,α ≤ C‖ρε‖C2,α , and integrated over t ∈ [0, 1], we get

‖ψε‖C2,α ≤ C‖ρε‖C2,α .

Hence, since ψε = φ̄+ εψ1, we have ψ1 bounded by C/ε in C2,α. Hence it can
not be bigger than C3/ε

2, and to satisfy (48), we must have

‖ψ1‖C2,α ≤ C2,

where C2 as above depends on ‖φ̄‖C2,α , ‖ρ1‖Cα . This proves estimate (47).
�
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