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M. Jacques BLUM Université de Nice invité
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M. Philippe GHENDRIH CEA Cadarache invité
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Résumé

L’objet de cette thèse est d’utiliser les outils du transport optimal et l’équation
de Monge-Ampère dans l’étude de certaines équations aux dérivées partielles de la
mécanique des fluides, modélisant fluides, plasmas et matière stellaire. On y étudiera
notamment :

- des modèles dynamiques provenant du transport optimal, représentant une re-
laxation géométrique de l’équation d’Euler incompressible,

- les équations semi-géostrophiques, utilisées en météorologie,
-le problème de reconstruction en cosmologie, qui généralise le transport optimal

à des coûts de transport dépendant d’une énergie interne du système.

Mots-clés

Mécanique des fluides, équations cinétiques, transport optimal, calcul variationnel,
analyse asymptotique, équations aux dérivées partielles non-linéaires, équation de
Monge-Ampère.

Abstract

In this thesis we use optimal transportation techniques and Monge-Ampère equa-
tion to study some partial differential equations arising in fluid mechanics, plasma
physics and cosmological modelling. Our work studies :

- a geometrical relaxation of the Euler incompressible equation, derived using
optimal transportation,

- the semi-geostrophic model, used in meteorology,
- the reconstruction problem in cosmology, that generalizes optimal transportation

to costs depending on an internal energy of the system.
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5. Régularité de la factorisation polaire pour des applications dépendant d’un paramètre. 19
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8 1. INTRODUCTION

L’objet de cette thèse est d’utiliser les outils du transport optimal, et donc l’équation de Monge-
Ampère qui y est associée, dans l’étude de certaines équations aux dérivées partielles (EDP) de
la mécanique des fluides modélisant fluides, plasmas et cosmologie. Le transport optimal lui-même
est un sujet à part entière qui répond à un problème pratique compréhensible : transporter à un
moindre coût. Si la motivation originelle du problème était de transporter de la terre ou du sable,
la problèmatique du transport optimal est présente sous des formes moins évidentes dans la nature,
ou l’évolution est souvent guidée par un principe de moindre action. Pour un certain choix du coût
de transport, la solution du problème de transport optimal est liée à la résolution de l’équation de
Monge-Ampère

det ∂xi
∂xj

Ψ = f.

Cette dernière était déjà étudiée pour des applications géométriques comme le problème de Min-
kowski (trouver une hypersurface à courbure de Gauss prescrite). Son étude représente une part non
négligeable du domaine des EDP elliptiques et on s’appuiera sur les nombreux résultats d’existence
et de régularité déjà obtenus.

Récemment de nombreuses applications du transport optimal ont été trouvées comme en mé-
téorologie, avec les équations semi-géostrophiques de Hoskins. Il apparait souvent comme un outil
puissant pour fournir des démonstrations élégantes et directes d’inégalités d’analyse fonctionnelle
(inégalités de type Log-Sobolev), où d’inégalités géométriques (ex. Brun Minkowski) ou pour four-
nir une interprétation élégante et nouvelle de phénomènes pourtant bien connus (les équations des
milieux poreux sont interprétées comme des flots gradients pour une certaine métrique).

Dans cette thèse nous tenterons d’apporter une contribution à la compréhension de problèmes
dont la relation avec le transport optimal est déjà connue comme les équations semi-géostrophiques
(chapitres 4 et 5), mais aussi de l’appliquer à d’autres problèmes de modélisation en tentant de
faire apparâıtre le bien fondé de ces applications. La première application sera l’approximation des
équations d’Euler incompressible (chapitres 2 et 3). L’équation de Monge-Ampère apparaitra natu-
rellement dans un modèle dynamique dont on montrera qu’il représente une approximation naturelle
des équations d’Euler incompressible.

Une autre application nouvelle sera l’étude du mouvement de la matière stellaire (équation
d’Euler-Poisson) (chapitre 6 et article joint en annexe). On traitera le problème inverse pour le
système Euler-Poisson gravitationnel : trouver une solution de ce système en prescrivant non pas
densité et vitesse initiales, mais densités intiale et finale. En effet il apparâıt que ce problème peut se
formuler comme un problème de transport optimal où le coût ne dépend pas seulement de la distance
mais aussi d’une énergie interne du système.

Enfin le dernier chapitre (chapitre 7) de la thèse, qui n’est pas lié au transport optimal, concerne
l’étude du comportement asymptotique d’un plasma (gaz ionisé) soumis à un champ électrique turbu-
lent et à un fort champ magnétique. Cette étude vise des applications à la modélisation des réacteurs
à fusion nucléaire.

Mis à part le chapitre 1 d’introduction, chaque chapitre de la thèse correspond à un article qui
peut donc être lu indépendamment.

1. Concepts mathématiques de mécanique des milieux continus

1.1. Notations. Se placant dans R
d on désignera la position par x = (x1, ..., xd) et le temps par

t ∈ R. L’opérateur de dérivée partielle par rapport à une coordonnée xi sera noté ∂i et par rapport
au temps ∂t. L’opérateur gradient qui à f : Rd → R associe ( ∂f

∂xi
), i = 1..d sera noté ∇x et pour un
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champ de vecteurs v = vi, i = 1..d on notera ∇x · v la divergence de v égale à
∑d

i=1
∂vi

∂xi
. Si cela ne

porte pas à confusion on notera seulement ∇ au lieu de ∇x.

1.2. Transport de densités. Soient X, Y deux espaces topologiques, L une application boré-
lienne de X dans Y , et µ une mesure bornée sur X. Soit Cb(Y ) l’ensembrle des fonctions continues
et bornées sur Y ; on notera ν = L#µ la mesure image de µ par L définie par

dν = L#dµ⇐⇒ ∀f ∈ Cb(Y ),

∫

Y

fdν =

∫

X

f(L(x))dµ.

1.3. Formulations lagrangiennes, hydrodynamiques et cinétiques. On veut décire ma-
thématiquement le mouvement d’un continuum de matière. Pour cela on se donne A un espace
métrique compact muni d’une mesure de probablité da. A sera l’ensemble des “noms” des particules.
Soit L0 de A dans Rd, qui donne la position initiale de chaque particule. Si (t, x) → v(t, x) est un
champ de vecteurs suffisamment régulier (disons C1) sur Rd alors la solution (unique localement en
temps par le théorème de Cauchy-Lipschitz) de l’équation différentielle ordinaire

∂tL(t, a) = v(t, L(t, a))

L(0, a) = L0(a)

donnera pour tout a ∈ A la position à l’instant t de la particule a située en L0(a) à l’instant initial
et se déplacant avec le champ de vitesse v. De plus à tout instant t on aura

ρ(t, ·) = L(t, ·)#da
et la paire ρ, v satisfaira l’equation de conservation de la masse où équation de continuité

∂tρ + ∇ · (ρv) = 0.(1)

∂ttL(t, a), l’accélération de la particule a, sera donnée dans sa formulation ”eulérienne” par

∂ttL(t, a) = (∂tv + v · ∇v)(t, L(t, a))

où v ·∇v est le vecteur de R
d de j-ième coordonnée

∑d
i=1 v

i∂iv
j. Cette formulation appelée eulérienne

nécessite que la vitesse soit déterminée par la position ce qui est la norme pour un fluide mais pas pour
un plasma en général (où plusieurs particules peuvent se trouver au même endroit avec des vitesses
différentes). Dans cas d’un plasma sans collision on peut s’affranchir de cette contrainte en considérant
pout t ∈ I une application P (t) de A dans Rd × Rd, a → P (t, a) = (X,Ξ)(t, a) où la première
coordonnée donne la position et la deuxième la vitesse. En considérant (t, x, ξ) → γ(t, x, ξ) ∈ Rd un
champ C1 sur Rd × Rd, la solution de l’équation différentielle ordinaire

∂tX(t, a) = Ξ(t, a)

∂tΞ(t, a) = γ(t, X(t, a),Ξ(t, a))

donnera pour tout a ∈ A et à tout instant t la position et la vitesse de la particule a accélérée dans
le champ γ. De plus à tout instant t on aura

f(t, ·, ·) = P (t, ·, ·)#da
et la paire (f, γ) satisfera l’équation dite cinétique (ou de Vlasov, ou de Liouville selon les termino-
logies en vigueur)

∂tf(t, x, ξ) + ξ · ∇xf(t, x, ξ) + γ · ∇ξf(t, x, ξ) = 0.(2)
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Si f(t, x, ξ) = ρ(t, x) ⊗ δ(ξ = v(t, x)) pour un certain champ de vecteur v alors alors l’équation (2)
suivie par f implique v suit l’équation

∂tv(t, x) + v(t, x) · ∇v(t, x) = γ(t, x, v).

La formulation eulérienne (ou hydrodynamique) est donc un cas particulier de la formulation cinétique
où la mesure f(t, ·, ·) est supportée par le graphe d’un champ de vecteur.

2. Brève introduction au transport optimal

La théorie du transport optimal remonte au problème de Monge dit des déblais et des remblais
et consiste à trouver la manière la moins coûteuse de déplacer un tas de sable dans un trou de même
volume. En termes plus mathématiques, on cherchera à transporter une mesure de probabilité sur
une autre mesure de probabilité. Le coût du transport d’une particule du point x au point y sera
c(x, y) et en général la fonction c(x, y) sera une fonction de la distance d(x, y). Une approche naturelle
consiste à chercher la solution du problème suivant : trouver une application T̄ telle que T̄#µ = ν
et telle que

∫

X

c(x, T̄ (x))dµ(x) = inf
T#µ=ν

{
∫

X

c(x, T (x))dµ(x)

}

.

Un progrès important fut fait par Kantorovitch qui formula le problème de la manière suivante :
soient µ et ν deux mesures de probabilité sur un Banach X, on définit Γ(µ, ν) comme l’ensemble des
mesures de probabilité sur X ×X ayant µ et ν pour marginales, i.e.

γ ∈ Γ(µ, ν) ⇐⇒

∀f ∈ Cb(X),

∫

X×X

f(x)dγ(x, y) =

∫

X

f(x)dµ(x)

et

∫

X×X

f(y)dγ(x, y) =

∫

X

f(y)dν(y).

On voit que ce problème est une relaxation du précédent car à toute application T vérifiant T#µ = ν
on peut associer la mesure γT = µ⊗ δ(y = T (x)) qui appartient à Γ(µ, ν). Le problème de transport
optimal est alors le suivant : étant donné une fonction coût c : X×X → R+, trouver une probabilité
γ0 minimisant

C(γ) =

∫

X×X

c(x, y)dγ(x, y).

parmi tous les γ ∈ Γ(µ, ν). Dans cette thèse on s’interessera tout particulèrement au cas dit qua-
dratique où la fonction coût est la distance euclidienne au carré entre x et y : c(x, y) = 1

2
|x − y|2

et X = R
d . Il a été montré dans [10] que si dµ est absolument continue par rapport à la mesure

de Lebesgue, la probabilité optimale est alors supportée par le graphe du gradient d’une fonction
convexe :

γopt = µ⊗ δ(y = ∇Φ(x))

et ∇Φ est l’unique (dµ presque partout) gradient de fonction convexe satsifaisant

∀f ∈ C0(Rd),

∫

Rd

f(x)dν(x) =

∫

Rd

f(∇Φ(x))dµ(x).(3)
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Cette formulation est une forme faible de l’équation de Monge-Ampère

dν

dx
(∇Φ) detD2Φ =

dµ

dx
.

où dν
dx
, dµ
dx

sont les densités (si elles existent) des mesures µ, ν. Notons que Ψ la transformée de Legendre
de Φ, définie par

Ψ(y) = sup
x∈Rd

{x · y − Φ(x)}

sera solution du problème en intervertissant µ et ν, et satisfera donc

∀f ∈ C0(Rd),

∫

Rd

f(x)dµ(x) =

∫

Rd

f(∇Ψ(x))dν(x).(4)

Une application frappante de ce résultat est la factorisation polaire des applications :
Soit Ω un ouvert borné de Rd. On introduit G(Ω) l’ensemble des applications g : Ω → Ω préservant
la mesure de Lebesgue de Ω notée 1Ωdx :

∀g ∈ G(Ω), ∀f ∈ C0(Ω),

∫

Ω

f(g(x))dx =

∫

Ω

f(x)dx.

On suppose que ∂Ω est de mesure de Lebesgue nulle. Soit m : Ω → Rd telle que la mesure image de
m donnée par m#1Ωdx soit absolument continue par rapport à la mesure de Lebesgue de Rd, alors
il existe une unique décomposition de m de la forme

m = ∇Φ ◦ π

avec Φ convexe de Rd dans R. ∇Φ est unique 1Ωdx presque partout. De plus Φ est la solution du
problème précédent avec µ la mesure de Lebesgue de Ω et ν la mesure image de µ par m.
Notons que G(Ω) est inclus dans l’espace de Hilbert H = L2(Ω,Rd). Alors π a la propriété supplé-
mentaire d’être la projection orthogonale de m sur G(Ω) :

‖m − π‖L2(Ω) = inf{‖m − g‖L2(Ω), g ∈ G(Ω)}.

2.0.1. Le cas périodique. Dans le cas où Rd est remplacé par une variété compacte lisse et sans
bord, il a été montré dans [49] que les résultats énoncés ci-dessus se transposent intégralement. C’est
notamment le cas pour le tore plat Td = Rd/Zd. La solution du problème de transport sera alors le
gradient d’une fonction convexe, Φ, avec Φ(x) − |x|2/2 périodique. Cette dernière condition permet
de définir sans ambigüité la classe de ∇Φ(x) dans Td pour x ∈ Rd. ∇Φ sera alors l’unique gradient
de fonction convexe, vérifiant

∀~p ∈ Z
d, Φ(x + ~p) − |x+ ~p|2/2 = Φ(x) − |x|2/2(5)

∀f ∈ C0(Td),

∫

Td

f(x)dν(x) =

∫

Td

f(∇Φ(x))dν(x).(6)

3. Les équations d’Euler/Vlasov-Monge-Ampère

La factorisation polaire permet d’introduire le concept de géodésique approchée sur G(Ω) qui fait
l’objet de la première partie de la thèse.
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3.0.2. Motivations. Signalons tout d’abord la motivation de cette étude qui est son lien avec
l’équation d’Euler incompressible rappelée ici :

∂tv + v · ∇v = ∇p
v · n = 0 sur ∂Ω

∇ · v = 0.

Ce système donne le mouvement d’un fluide parfait incompressible dans un domaine Ω. Il a été
interprété par Arnold ([2]) comme décrivant les géodésiques pour la métrique L2(Ω) sur le groupe
des difféomorphismes de Ω de jacobien 1. Cette célèbre équation fait l’objet de nombreuses études et
l’existence globale de solution faibles ou fortes en dimension 3 reste à ce jour un problème ouvert. Ce
système décrit également le comportement asymptotique de nombreux systèmes issus de la mécanique
des fluides et des plasmas : citons par exemple le cas d’un fluide parfait compressible dont le taux de
compressibilité tend vers 0, le cas d’un fuide incompressible mais visqueux dont la viscosité tend vers 0,
ainsi qu’un plasma où la permitivité électrique du milieu tend vers 0. La convergence repose donc sur
l’interprétation physique de l’équation d’Euler : elle décrit le mouvement d’un fluide incompressible.

Ici nous allons construire un système qui constitue une approximation géométrique de l’équation
d’Euler dans le sens de l’interprétation qui en a été donnée par Arnold.

On peut commencer par étudier un problème modèle. Soit M une sous-variété lisse de Rd, consi-
dérons le système dynamique

∂ttX(t) =
1

2ε2
∇x[d

2(X(t),M)].

Ce système s’écrit également de la manière suivante :

∂ttX(t) =
1

ε2
(πX −X)(7)

avec πX la projection orthogonale (au sens de la distance euclidienne de Rd) de X sur M . De plus il
est Hamiltonien, son énergie étant donnée par

H(t) =
1

2
|Ẋ|2 +

d2(X,M)

2ε2

et indépendante du temps. On peut alors montrer que t→ X(t) se comporte quand ε tend vers 0 et
pour une donnée initiale bien préparée (X0 proche de M et Ẋ0 presque parallèle à M en X0) comme
une géodésique de M .
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Figure 1 : Principe de l’approximation géométrique

Vitesse

Trajectoire

VARIETE

Geodesique

Acceleration
Projete orthogonal

Nous étudierons un système analogue où Rd sera remplacé par H = L2(Ω,Rd) avec la métrique
correspondante et M sera remplacé par G(Ω). X étant un élément de L2(Ω,Rd), sa projection πX
sera alors donnée par la factorisation polaire, i.e. πX = ∇Ψ ◦X, où pour tout t, Ψ(t, ·) satisfait (4)
avec µ = 1Ωdx, ν = X(t, ·)#µ. Le système (7) prend alors la forme suivante :

∂ttX(t, a) =
1

ε2
[∇Ψ(t, X(t, a)) −X(t, a)](8)

∇Ψ(t, X(t, ·)) ∈ G(Ω),Ψ convexe.(9)

Si le résultat précédent s’étend à ce cas où la variété limite est de dimension infinie, et d’une ré-
gularité inconnue, alors comme les géodésiques de G(Ω) sont les solutions de l’équation d’Euler
incompressibles, on aura montré que le système consiste en une approximation géométrique d’Euler
incompressible et que ses solutions convergent vers celles d’Euler incompressible quand ε tend vers 0.

Ce résultat sera montré de plusieurs manières différentes : on étudiera deux versions du système
(8, 9) : une version cinétique et une version hydrodynamique. On se placera à présent dans le tore
plat Td = Rd/Zd avec d quelconque.

3.1. L’équation de Vlasov-Monge-Ampère. Cette partie correspond au chapitre de la thèse.
Elle fait l’objet d’un article co-écrit avec Y. Brenier ([16]).

L’intérèt d’un modèle cinétique est qu’il présente des propriétés analytiques qui le rendent sous
certains aspects plus faciles à manier qu’un modèle fluide. La densité est notamment plus facilement
contrôlable. C’est pourquoi nous commencerons ainsi notre étude. On considèrera f : (t, x, ξ) ∈
R × Rd × Rd → f(t, x, ξ) ∈ R+ avec t le temps, x la position et ξ la vitesse. La densité sera donnée
par

ρ(t, x) =

∫

Rd

f(t, x, ξ) dξ.
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L’équation de Vlasov-Monge-Ampère est alors la suivante :

∂tf + ξ · ∇xf +
1

ε2
[∇Ψ(x) − x] · ∇ξf = 0(10)

∇Ψ(t, .)#dρ(t, .) = 1Ωdx, Ψ convexe.(11)

Ce système peut s’interpréter comme une version non-linéaire du système Vlasov-Poisson (12, 13)
introduit plus bas. Notons que dans ce cas le champ éléctrique est borné dans L∞ car ∇Ψ(t, x) ∈ Ω et
Ω est supposé borné. On montrera l’existence de solutions faibles globales renormalisées, et l’existence
locale de solutions fortes. On procèdera ensuite à l’analyse asymptotique ε → 0. On montrera que
le système converge effectivement vers la solution de l’équation d’Euler sur l’intervalle de temps où
celle-ci est régulière et si les données initiales sont bien préparées. La convergence aura lieu au sens
suivant :

G(t) =
1

2

∫

f(t, x, ξ)|ξ − v̄(t, x)|2 dxdξ +
1

2ε2

∫

ρ(t, x)|∇Ψ(t, x) − x|2

≤ C(G(0)eCt + ε2)

où la constante C dépend des normes des dérivées de v̄, la solution de l’équation d’Euler. La technique
utilisée pour la preuve impose de se placer au voisinage d’une solution régulière de l’équation d’Euler
incompressible. Cette condition remplace en fait la condition que variété limite soit lisse : il suffit
de se placer au voisinage d’une géodésique régulière. Si la variété était lisse, toutes les géodésiques
seraient régulières.

3.2. Le système Euler/Vlasov-Poisson. Le système de Vlasov-Poisson

∂tf + ξ · ∇xf +
1

ε2
∇φ · ∇ξf = 0(12)

∆φ = ρ− 1(13)

décrit le comportement des électrons dans un plasma, les ions étant supposés au repos. La limite
quasi-neutre ε → 0 a fait l’objet de nombreuses études et il a été montré dans [13] que pour des
données initiales bien préparées, la solution converge vers la solution d’Euler incompressible. La
convergence de Vlasov-Monge-Ampère vers Euler s’inspire fortement de cette preuve.

Nous étudierons le système Euler-Poisson (sans pression)

∂tρ + ∇ · (ρv) = 0(14)

∂tv + v · ∇v =
1

ε2
∇φ(15)

∆φ = ρ− 1(16)

qui est la version hydrodynamique de (12, 13), i.e. qui correspond au cas de données monocinétiques.
On montrera alors que pour des données bien préparées, la solution de ce système converge vers la
solution d’Euler incompressible en normes L∞([0, T ], Hs(Td)) pour s grand, toujours en s’appuyant
sur la régularité de la limite. Ce résultat, bien que présentant un intérêt indépendant, permettra
d’obtenir une meilleure description de la limite quasi-neutre (i.e. ε→ 0) de (10, 11) :
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3.3. Lien entre Vlasov-Monge-Ampère et Euler-Poisson. Dans la limite ε → 0, les solu-
tions de Vlasov-Monge-Ampère et de Euler-Poisson convergent toutes deux vers la solution d’Euler
incompressible. On montrera de plus que la solution de Vlasov-Monge-Ampère se rapproche asympto-
tiquement à un ordre plus élevé de la solution d’Euler-Poisson lors de cette limite. La raison formelle
de ce dernier résultat est que l’expression det(I + ε2D2φ) se développe à l’ordre 1 en ε2 en 1 + ε2∆φ.
Comme φ = 1

ε2
(Ψ − x2/2) satisfait formellement det(I + ε2D2φ) = ρ alors pour ρ proche de 1 cette

équation devient formellement 1+ε2∆φ = ρ et on retrouve l’équation de Poisson (13). Finalement les
résultats obtenus pour des solutions faibles de (10, 11) seront également obtenus pour les solutions
fortes du système suivant :

3.4. L’équation d’Euler-Monge-Ampère. Cette partie correspond au chapitre 3.
On étudie la forme hydrodynamique de (10, 11).

∂tρ+ ∇ · (ρv) = 0(17)

∂tv + v · ∇v =
1

ε2
[∇Ψ(x) − x](18)

∇Ψ(t, .)#dρ(t, .) = 1Ωdx.(19)

En utilisant une technique similaire à celle utilisée pour étudier (15, 16) on montrera l’existence locale
de solutions fortes, la convergence en normes L∞([0, T ], Hs(Td)) pour s grand vers la solution d’Euler
incompressible si cette dernière est régulière sur [0, T ]. (On obtiendra ainsi l’existence de solutions
quasi globales au voisinage des solutions globales régulières d’Euler). L’asymptotique à un ordre plus
élevé vers (15, 16) sera également obtenues en norme d’ordre élevé. Ci-dessous un schéma récapitule
les différents résultats de convergence. Les ordres de grandeur indiquent l’écart en vitesse. Noter que
la convergence de VP vers EI a été prouvée par Brenier dans [13].

Figure 2 : Schéma récapitulatif des convergences
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4. Le problème de reconstruction en cosmologie

4.1. La reconstruction MAK. Cette partie est le fruit d’une collaboration avec Y. Brenier,
U. Frisch, M. Hénon, S. Matarrese, R. Mohayaee, A. Sobolevskii et fait l’objet d’un article ([15]),
fourni en annexe.
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4.1.1. Le problème de reconstruction. Il est admis que juste après le Big Bang et avant le dé-
couplage baryons/photons, l’univers présente une répartition quasi-homogène de matière noire froide
sans collisions entre particules. On connâıt également la répartition actuelle de matière dans l’uni-
vers, grâce aux observations et sous certaines hypothèses admises. La question est alors de déterminer
l’évolution de la répartition de matière entre l’origine de l’univers (t = 0) et aujourd’hui (t = T ).
La connaisance de cette évolution permettrait notamment de connâıtre les fluctuations initiales de
densité, ainsi que les fluctuations de la vitesse actuelle autour du mouvement d’expansion global.

4.2. Un modèle d’interaction gravitationnelle. Le mouvement d’un continuum de matière
soumis à sa propre gravitation peut être décrit par l’équation d’Euler-Poisson, mais les forces entre
particules étant attractives, l’équation de Poisson aura un signe opposé au cas éléctrostatique étudié
plus haut. Le système Euler-Poisson gravitationnel prendra alors la forme suivante :

∂tρ+ ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρv ⊗ v) = −ρ∇p
∆p = 4πGρ

où G est la constante de gravitation. Il suppose que la formulation hydrodynamique est valide :
la solution doit rester monocinétique, cela est d’ailleurs vérifié par les mesures, pour des échelles
suffisament grandes.

4.2.1. L’approximation de Zel’dovich. En se placant dans un système de coordonnées qui prend
en compte l’expansion de l’univers (appelées coordonnées co-mobiles) en étudiant les fluctuations
de vitesse et de densité autour du mouvement d’expansion uniforme, une première approximation
consiste à considérer que les particules ( dans le nouveau repère) se déplacent en ligne droite et à
vitesse constante. D’ autre part, pour que le problême ne soit pas singulier à l’ origine, la vitesse
initiale (toujours dans ce repère co-mouvant) doit être potentielle, ce phénomène également admis
porte le nom de slaving. La position à l’instant t d’une particule initialement située en X(0) seradonc
donnée par

X(t) = X(0) + t∇φ(X(0)).

Signalons qu’une justification rigoureuse (au moins en dimension 1) de cette approximation a été
donnée dans [52]. La condition nécessaire et suffisante pour que la solution reste monocinétique pour
des temps t ≤ T est que la fonction x→ |x|2/2+Tφ(x) soit convexe. Sous l’hypothèse monocinétique,
∇Φ = x + T∇φ sera donc l’unique gradient de fonction convexe tel que ∇Φ#ρ0 = ρT .

4.2.2. Résolution numérique. Ce problème est alors résolu numériquement : On approche tout
d’abord les mesures initiale et finale par des nuages de N points de masse 1

N
: ρ0 =

∑N
i=1

1
N
δx=xi

,

ρT =
∑N

j=1
1
N
δy=yj

. le problème devient alors un problème d’assignement. On cherche une permutation
optimale σ̄ telle que

N
∑

i=1

|xi − yσ̄(i)|2 = inf
σ∈S(n)

{
N
∑

i=1

|xi − yσ(i)|2}.

Le problème est ensuite relaxé : on ne cherche plus nécessairement ne permutation, un point xi peut
être réparti sur plusieurs points yσ(j). On obtient ainsi le problème de Kantorovitch : minimiser

C =

N
∑

i,j=1

cijfij
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où les variables fij satisfont

fij ≥ 0,
N
∑

i=1

fij =
N
∑

j=1

fij = 1.

et avec cij = 1
2
|xi − yj|2. On va résoudre ici le problème dual : maximiser

D =

N
∑

i=1

βi −
N
∑

j=1

αj

sous la contrainte

βi − αj ≤ cij.

Ce problème est résolu suivant un algorithme du à Bertseakas et Hénon, qui converge en O(N 3)
itérations. Les test comparant avec une simulation du problème à N corps montrent un taux de
reconstruction exacte de 60%. Ce taux est calculé en comparant la permutation obtenue avec la
permutation exacte qui est connue, puis en prenant le rapport en nombre de points bien“reconstruits”
sur nombre de points total.

4.3. Reconstruction avec les équations d’Euler-Poisson. C’est le chapitre 6 de la thèse.
Mentionnée dans le précédent travail, et examinée plus en détail dans le chapitre suivant, la recons-
truction sans approximation de Zel’dovich peut-être traitée avec succès et présente en outre un intérêt
théorique indépendant. On se placera dans le tore unité Td = Rd/Zd, et le système Euler-Poisson
gravitationnel prendra alors la forme suivante :

∂tρ+ ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρv ⊗ v) = −ρ∇p
∆p = ρ− 1

avec la contrainte
∫

Td ρ(·, x) dx ≡ 1. Ce système est Hamiltonien avec un Hamiltonien (i.e. une
énergie) donné par

H(t) =
1

2

∫

Td

ρ(t, x)|v(t, x)|2 − |∇p(t, x)|2 dx.

Les solutions des systèmes Hamiltoniens peuvent être obtenus en cherchant les points critiques pour
l’action du Lagrangien. Si celui-ci s’avère convexe, on cherchera alors les minimiseurs de l’action du
Lagrangien. Un exemple classique est l’équation d’Euler incompressible : le Lagrangien se réduit à
l’énergie cinétique, et on trouve comme solutions formelles les géodésiques de G(Ω). Si l’on enlève la
contrainte d’incompressibilité on trouve le transport optimal pour le coût quadratique. En général
pour des systèmes hyperboliques tels que ceux de la dynamique des gaz barotropes le Lagrangien
est une fonctionnelle concave en la densité, et la recherche de points critiques devient scabreuse. En
revanche dans le cas présent, le Lagrangien est donné par :

L(ρ(t, ·), v(t, ·)) =
1

2

∫

Td

ρ(t, x)|v(t, x)|2 + |∇p(t, x)|2 dx.



18 1. INTRODUCTION

Après le changement de variables ρ, v → ρ, J = ρv on obtient un Lagrangien convexe, et donc on
cherchera les minimiseurs de l’action

I(ρ0, ρT ) =

∫ T

0

L(ρ(t, ·), v(t, ·)) dt

sous les contraintes

∂tρ + ∇ · (ρv) = 0

ρt=0 = ρ0

ρt=T = ρT .

4.4. Résultats. En utilisant des techniques de dualité on montrera tout d’abord l’existence et
l’unicité d’un minimiseur pour le problème énoncé ci-dessus. Le champ de vitesse sera potentiel, avec
potentiel φ solution en un sens qui sera examiné attentivement de l’équation de Hamilton-Jacobi
définie ρ presque partout :

ρ(∂tφ+
1

2
|∇φ|2 + p) = 0(20)

∂tφ+
1

2
|∇φ|2 + p ≤ 0.(21)

Des propriétés de régularité interessantes seront alors montrées. La solution ne pourra pas développer
de chocs à l’intérieur de l’intervalle ]0, T [, et la densité ρ sera de plus bornée dans L∞([τ, T − τ ]×T

d)
pour tout τ ∈]0, T/2]. Un point remarquable est que cette borne sera indépendante de la donnée
ρ0, ρT . Ce genre de résultat est à rapprocher de ceux d’Evans et Gomes [33] dans leur étude des
ensembles d’Aubry-Mather et de la théorie KAM faible.

On voit que dans l’équation (20) le comportement de φ n’est imposé que ρ presque partout, et
qu’une certaine latitude est laissée lorsque ρ peut s’annuler sur des ensembles de mesure non nulle.
On montrera cependant que l’on peut choisir φ comme étant la solution de viscosité de

∂tφ+
1

2
|∇φ|2 + p = 0.

Les résultats obtenus sur ρ permettront d’obtenir de la régularité pour p puis pour φ.
Enfin il sera noté au passage que ce problème induit naturellement une interpolation entre den-

sités, et qu’au cours de ce déplacement, des quantités telles

∫

Td

[ρ(t, x)]k dx, k ≥ 1 seront convexes

par rapport à t. On retrouve ainsi des résultats similaires à ceux de [48].
Rappelons que si l’on enlève le terme de Poisson on retrouve le problème de transport optimal de

densité, sous la formulation de [7] : on cherche à minimiser

I(ρ0, ρT ) =

∫ T

0

∫

Td

1

2
ρ(t, x)|v(t, x)|2 dtdx

sous les contraintes

∂tρ + ∇ · (ρv) = 0

ρt=0 = ρ0

ρt=T = ρT .
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Le potentiel φ de la vitesse vérifie alors

ρ(∂tφ+
1

2
|∇φ|2) = 0,

∂tφ+
1

2
|∇φ|2 ≤ 0

Les techniques employées fonctionnent ici encore pour obtenir les résultats de convexité de [48].

5. Régularité de la factorisation polaire pour des applications dépendant d’un
paramètre.

C’est le chapitre 4. Si X est une application de Ω ⊂ R
d dans R

d, 1Ωdx est la mesure de Lebesgue
de Ω, et si la mesure X#1Ωdx est absolument continue par rapport à la mesure de Lebesgue, alors
X se factorise de manière unique en

X = ∇Φ ◦ g
avec Φ convexe et g ∈ G(Ω) préservant la mesure de Lebesgue de Ω. La question posée ici est la
suivante : si l’application X dépend d’un paramètre, : X : (t, a) ∈ I ⊂ R × Ω → Rd, quelle est la
dépendance par rapport à t de sa factorisation polaire.

5.1. Motivations.
5.1.1. Les équations Semi-Géostrophiques. Une des motivations de cette question est l’étude des

équations Semi-Géostrophiques, utilisées en météorologie [27]. Dans le cas le plus simple, ces équa-
tions se formulent de la manière suivante : étant donné un ouvert Ω ⊂ R2 de mesure 1, on cherche
une mesure de probabilité ρ satisfaisant

∂tρ+ ∇ · (ρv) = 0(22)

v̄(t, x) = (∇Ψ(t, x) − x)⊥(23)

∇Ψ(t, ·)#ρ(t, ·) = 1Ωdx, Ψ convexe.(24)

La suffixe ⊥ signifie tourné de π/2. Si t, a→ X(t, a) pour t ∈ I, a ∈ Ω (remarquons que les noms de
particules appartiennent ici à Ω) satisfait

X(t, ·)#1Ωda = ρ(t, ·)
∂tX(t, a) = v̄(t, X(t, a))

alors pour tout t, ∇Ψ(t, ·) est l’unique gradient de fonction convexe tel que ∇Ψ(t, X(t, ·)) ∈ G(Ω).
On a également Ψ(t, ·) = Φ∗(t, ·) où pour tout t ∈ I, X(t, ·) = ∇Φ(t, g(t, ·)), Φ(t, ·) convexe et
g(t, ·) ∈ G(Ω). Le champ de vitesse v̄ est donc donné à chaque instant par la factorisation polaire de
X.

5.1.2. Une décomposition de Hodge liée à un problème elliptique dégénéré. Formellement en dé-
rivant la factorisation polaire de X on trouverait :

∂tX(t, a) = ∂t∇Φ(t, g(t, a)) +D2Φ(t, g(t, a))∂tg(t, a)

et en supposant g inversible alors on aurait

∂tX(t, g−1(t, b)) = ∂t∇Φ(t, b) +D2Φ(t, b)∂tg(t, (g
−1(t, b)).
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Formellement ∂tg(t, g
−1(t, ·)) est un champ de vecteurs sur Ω à divergence nulle. Si X est le flot d’un

champ de vecteur, i.e.

∂tX(t, a) = v(t, X(t, a))

alors on obtient une décomposition de type Helmoltz pour v de la forme :

v(t,∇Φ) = ∇p+D2Φw

avec ∇ ·w = 0 et w · ∂Ω = 0. Il existe un problème elliptique naturellement associé à cette question :
Ψ(t, x) étant l’unique fonction convexe satisfaisant pour tout t

detD2Ψ(t, x) = ρ(t, x)

au sens de la factorisation polaire, ∂tΨ satisfait

Mij∂ij∂tΨ = ∂tρ(25)

où Mij est la comatrice de D2Ψ. Ce problème elliptique est en général dégénéré, mais il fournira
néanmoins des estimations à priori qui mèneront au résultat de régularité.

5.1.3. Résultat. Dans le cas le plus général on suppose seulement que ∂tX ∈ L∞(I × Ω) et
ρ = X#dx ∈ L∞(I × Rd) supportée dans B(0, R) pour tout t. On a alors

‖∂t∇Φ‖L∞(I,M(Ω)) ≤ C(R, d)‖ρ‖
1
2

L∞(I×BR)‖∂tX‖L∞(I×Br)

et φ ∈ Cα(I, C0(Ω̄)) pour un certain α ∈]0, 1[.
Sous l’hypothèse supplémentaire que la densité ρ est comprise entre deux valeurs strictement positives
sur un ouvert convexe, alors on obtiendra que ∇Φ,∇Ψ ∈ Cα

loc(R × Ω). En dimension 2 si 0 < λ1 ≤
ρ ≤ λ2 on aura de plus ∂t∇Φ ∈ L∞(I, Lploc(Ω)) pour un certain p ∈]1, 2[ dépendant de λ2

λ1
.

Signalons que ces résultats s’appliquent de manière immédiate aux équations
semi-géostrophiques qui vérifient toutes les hypothèses requises : la vitesse est bornée et les bornes
inférieures et supérieures pour la densité sont indépendantes du temps.

5.1.4. Remarque : Analogie avec Euler incompressible en dimension 2. En dimension 2, l’équation
d’Euler incompressible admet une formulation vorticité : On cherche une fonction Θ s’annulant sur
∂Ω telle que

v = ∇⊥Ψ

∂tρ + ∇ · (ρv) = 0

∆Ψ = ρ.

Le système semi-géostrophique s’obtient donc à partir d’Euler en remplacant l’équation de Poisson
∆Ψ = ρ par l’équation de Monge-Ampère detD2Ψ = ρ cette dernière devant être entendue au sens
∇Ψ#ρ = 1Ω. Dans le cas Euler, ∂tΨ satisfait l’équation de Poisson ∆∂tΨ = ∂tρ qui remplace (25).

6. Contribution à l’étude des équations semi-géostrophiques

Cette partie correspond au chapitre 5. Dans cette courte partie, on montrera que les equations
semi-géostrophiques introduites ci-dessus (22, 23, 24) admettent des solutions à valeurs dans les
mesures bornées et des solutions régulières (densité continue ou Lipschitz). L’existence de solutions
faibles pour ce système avait déjà été traitée ([6], [26],[47]). La technique utilisée pour montrer
l’existence de solutions classiques est analogue à celle utilisée pour le sytème Vlasov-Monge-Ampère
au chapitre 2.
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7. Turbulence dans un plasma

C’est le chapitre 7. Ce travail a été effectué avec Alexis Vasseur. Il concerne la limite turbulente
d’un plasma bidimensionnel soumis simultanément à un fort champ magnétique transverse (limite
gyrocinétique) et à un champ électrique fortement oscillant. On montre que dans cette limite le
plasma satisfait une équation de diffusion en énergie.

7.1. Motivations. Ce travail est motivé par l’étude de la turbulence éléctrique dans les toka-
maks. Les tokamaks sont des réacteurs à fusion nucléaire qui sont encore à l’état de prototype. Pour
que les réactions nucléaires puissent avoir lieu, les composants doivent se trouver à une température
telle qu’ils sont uniquement présents sous forme de gaz ionisé (plasma). L’idée est alors de confiner le
plasma au centre d’un réacteur torique (le tokamak) grâce à un fort champ magnétique dans la direc-
tion toröıdale. On peut considérer une section du tore et le problème devient alors bi-dimensionnel,
avec un champ magnétique transverse. Les ions étant supposés au repos, l’équation cinétique satis-
faite par la fonction de distribution des électrons
f : (t, x, v) ∈ (R+ × R2 × R2) → f(t, x, v) ∈ R+ est alors donnée par

(26) m

(

∂f

∂t
+ v · ∇xf

)

+ q
(

Bv⊥ + ∇V turb(t, x)
)

· ∇vf = 0,

m désigne la masse des électrons, q leur charge, B la norme du champ magnétique transverse, v⊥ est la
vitesse tournée de π/2 et ∇V turb(t, x) le champ électrique turbulent. Dans cette étude on négligera les
effets non-linéaires du couplage entre densité et champ électrique : le champ éléctrique stochastique
sera donné et indépendant de f . Le paramètre ε = m

qB
désigne la fréquence cyclotronique, c’est à dire

la fréquence de gyration d’un électron lorsque le champ électrique est nul. Quand ε tend vers 0, on
montrera que le système satisfait à la limite l’équation de diffusion

(27) ∂tρ− ∂e(a(e)∂eρ) = 0

où ρ est ici donné par ρ(t, x, e) = 1
2π

∫

|v|2/2=e
f(t, x, v) dv. Le coefficient a(e) sera obtenu comme une

fonction explicite de la corrélation V turb, et sa dépendance en la variable e permet alors d’expliquer des
phénomènes de diffusion anormale, là où la théorie quasi-linéaire obtenait des coefficients constants.
Cette équation de diffusion est similaire au modèle SHE (spherical harmonics expansion) obtenue
dans [28] pour modéliser le comportement asymptotique de certains semi-conducteurs.
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The Vlasov-Monge-Ampère equation
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A geometric approximation to the Euler equations :
the Vlasov-Monge-Ampère system
Yann Brenier, Grégoire Loeper,

UMR 6621, Parc Valrose, 06108 Nice, France

Résumé. This paper studies the Vlasov-Monge-Ampère system (V MA), a fully non-linear version of

the Vlasov-Poisson system (V P ) where the (real) Monge-Ampère equation det ∂2
Ψ

∂xi∂xj
= ρ substitutes

for the usual Poisson equation. This system can be derived as a geometric approximation of the Euler
equations of incompressible fluid mechanics in the spirit of Arnold and Ebin. Global existence of weak
solutions and local existence of smooth solutions are obtained. Links between the V MA system, the
V P system and the Euler equations are established through rigorous asymptotic analysis.

1. Introduction

The classical Vlasov-Poisson (V P ) system describes the evolution of an electronic cloud in a
neutralizing uniform background through the following equations

∂f

∂t
+ ξ · ∇xf + ∇xϕ · ∇ξf = 0(28)

ε2∆ϕ = ρ− 1,(29)

where f(t, x, ξ) ≥ 0 denotes the electronic density at time t ≥ 0, point x ∈ Rd, velocity ξ ∈ Rd

(usually d = 3), ρ(t, x) ≥ 0 denotes the ’macroscopic’ density

ρ(t, x) =

∫

Rd

f(t, x, ξ)dξ,(30)

and ϕ(t, x) denotes the electric potential at time t and point x generated, through the Poisson
equation (29), where ε is a coupling constant, by the difference between the electronic density ρ(t, x)
and the neutralizing background density, which is supposed to be uniform and normalized to unity.
Standard notations ∇ = (∂1, ..., ∂d) and ∆ = ∂2

1 + ... + ∂2
d have been used and · stands for the inner

product in Rd. The mathematical theory of the V P system is now well understood. In particular,
existence of global smooth solutions in three space dimensions has been proved in [56] (see also [46],
[60]). In the present paper, a fully nonlinear version of the V P system is addressed :

∂f

∂t
+ ξ · ∇xf + ∇xϕ · ∇ξf = 0(31)

det(I + ε2D2ϕ) = ρ,(32)

where the (real) Monge-Ampère equation (32) substitutes for the Poisson equation (29). Here,
D2ϕ(t, x) stands for the d × d symmetric matrix made of all second order x−partial derivatives
of ϕ, I stands for the d × d identity matrix and det for the determinant of a square matrix. The
occurrence of the Monge-Ampère equation in mathematical modeling is rather unusual. Notice, ho-
wever, that a very similar structure can be found in meteorology with Hoskins’ semi-geostrophic
equations (cf. [6], [26] and the included references).
Formally, as the coupling constant ε is small, the V P and VMA equations asymptotically approach
each other up to order O(ε4). Indeed, linearizing the determinant about the identity matrix leads to

det(I + ε2D2ϕ) = 1 + ε2∆ϕ+O(ε4).(33)
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The formal limit, as ε = 0, reads

∂f

∂t
+ ξ · ∇xf + ∇xϕ · ∇ξf = 0(34)

ρ = 1,(35)

where constraint (35) substitutes for both the Poisson and the Monge-Ampère equations. The limit
system, that we call constrained Vlasov system, can be seen as a ’kinetic’ extension of the Euler
equations of classical incompressible fluid mechanics,

∂tv + (v · ∇)v = −∇p,(36)

∇ · v = 0,(37)

where v(t, x) ∈ Rd and p(t, x) ∈ R respectively are the velocity and the pressure of the fluid at
time t and position x. Indeed, any smooth solution (v, p) provides a ’monokinetic’ solution to the
constrained Vlasov system defined by

f(t, x, ξ) = δ(ξ − v(t, x)), ϕ = −p.
Here a monokinetic solution means a delta-valued solution in the ξ variable. In a similar way, there
is a monokinetic version of the V P system, the so-called (pressureless) Euler-Poisson (EP ) system,
which reads

∂tv + (v · ∇)v = ∇ϕ,(38)

∂tρ+ ∇ · (ρv) = 0(39)

ε2∆ϕ = ρ− 1.(40)

A rigorous asymptotic analysis of the VMA system as ε→ 0 will be provided (sections 5.1 and 5.2),
in the case when the initial electronic density

f(t = 0, x, ξ) = f 0(x, ξ),(41)

is asymptotically monokinetic, namely approaching δ(ξ − v0(x)), for some smooth divergence free
velocity field v0, as ε tends to zero. Before this asymptotic analysis, we want to explain the geometric
origin of the VMA system. It has been known, since Arnold’s celebrated work (cf. [2]), that the Euler
equations correspond to geodesics curves along a suitable group of volume preserving maps, lengths
being measured in the L2 sense. We will show (section 2) that the VMA system just describes
approximate geodesics obtained through a very natural penalty method, where ε stands for the
penalty parameter. For this geometric interpretation to be valid, the Monge-Ampère equation (32)
must be understood in the following weak sense : for each fixed t, ϕ(t, ·) is the unique (up to an
additive constant) function such that Φ(x) = x2/2 + ε2ϕ(t, x) is convex in x and

∀g ∈ C0(Rd),

∫

Rd

g(∇Φ(x))ρ(t, x)dx =

∫

Ω

g(y)dy,(42)

where Ω is a fixed bounded open convex set where the neutralizing background of the electrons is
assumed to be located. (This definition is made precise in section 2.3.) Notice that, by construction,
∇Φ must be valued in the closure of Ω and, therefore, the potential ϕ enjoys the following property

|x+ ε2∇xϕ(t, x)| ≤ sup
y∈Ω

|y| < +∞.

There is no similar bound for the electrostatic potential of the classical V P system. Thus, in some
sense, the VMA system can be seen as a nonlinearly cutoffed version of the V P system.
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Beyond the geometric derivation of the VMA system, our main analytic results are as follows :

– The VMA system admits global energy preserving weak solutions.
– The VMA system admits local strong solutions in periodic domains.
– For well prepared, nearly monokinetic, initial data, the solutions of the VMA system converge

when ε goes to 0 to those of the Euler equations.
– In this asymptotic, the EP system is a higher order approximation of the VMA system.

The paper is organized as follows : in the first section, we introduce the concept of approximate
geodesics for volume preserving maps, and derive the VMA system. The second section is devoted
to the proof of existence of global energy preserving weak solutions. In the third section, we prove
existence of local strong solutions, in the case of a periodic domain. In the final section, we study the
asymptotic behavior of the VMA system as ε goes to 0.

2. The geometric origin of the Vlasov-Monge-Ampère system

2.1. The Euler equations. The motion of an incompressible fluid in a domain Ω ⊂ R
d is

described by the Euler equations (E) :

∂tv + (v · ∇)v = −∇p,(43)

∇ · v = 0,(44)

with t ∈ R, x ∈ Ω, where v = v(t, x) stands for the velocity field and p = p(t, x) for the scalar
pressure field. These equations have a nice geometrical interpretation going back to Arnold (see [2]).
Introducing G(Ω) the group of all volume preserving diffeomorphisms of Ω with jacobian determinant
equal to 1, and measuring lengths in the L2 sense, we may define (at least formally) geodesic curves
along G(Ω). It turns out that the Euler equations just describe these curves.

2.2. Approximate geodesics. A general strategy to define approximate geodesics along a ma-
nifold M (in our case M = G(Ω)) embedded in a Hilbert space H (here H = L2(Ω,Rd)) is to
introduce a penalty parameter ε > 0 and the following unconstrained dynamical system in H

∂ttX +
1

2ε2
∇X

(

d2(X,M))
)

= 0.(45)

In this equation, the unknown t→ X(t) is a curve in H, d(X,M) is the distance (in H) of X to the
manifold M , i.e. in our case as M = G(Ω),

d(X,G(Ω)) = inf
g∈G(Ω)

‖X − g‖H,(46)

and, finally, ∇X denotes the gradient operator in H. This penalty approach has been used for the
Euler equations by Brenier in [13]. It is similar-but not identical- to Ebin’s slightly compressible flow
theory [31], and is a natural extension of the theory of constrained finite dimensional mechanical
systems [58]. The penalized system is formally hamiltonian in variables (X, ∂tX) with Hamiltonian
(or energy) given by :

E =
1

2
‖∂tX‖2

H +
1

2ε2
d2(X,G(Ω)).

(Multiplying equation (45) by ∂tX, we formally get that the energy is conserved.) Therefore it is
plausible that the map X(t) will remain close to G(Ω) if properly initialized at t = 0. A formal



2. THE GEOMETRIC ORIGIN OF THE VLASOV-MONGE-AMPÈRE SYSTEM 27

computation shows that, given a point X for which there is a unique closest point πX to X in the H
closure of G(Ω), we have :

∇X (d(X,G)) =
1

d(X,G)
(X − πX).(47)

Thus the equation (45) formally becomes :

∂ttX +
1

ε2
(X − πX) = 0.(48)

To understand why solutions to such a system may approach geodesics along G(Ω) as ε goes to 0,
just recall that, in the simple framework of a surface S embedded in the 3 dimensional Euclidean
space, a geodesic t → s(t) along S is characterized by the fact that for every t, the plane defined
by {ṡ(t), s̈(t)} is orthogonal to S. In our case, ∂ttX(t) is nearly orthogonal to G(Ω) thanks to (48)
meanwhile X(t) remains close to G(Ω).
The approximate geodesic equation was introduced in [13] in order to allow a spatial approximation
of G(Ω) by the group of permutations of N points Aj chosen to form a discrete grid on Ω. On such a
discrete group, the concept of geodesics becomes unclear meanwhile approximate geodesics still make
sense. They can be interpreted as trajectories of a cloud of N particles Xi moving in the Euclidean
space RdN , which substitutes for H. These particles solve the following coupled system of harmonic
oscillators

ε2
d2Xi

dt2
+Xi − Aσi

= 0,

where σ is a time dependent permutation minimizing, at each fixed time t, Σ
∣

∣Xi − Aσ(i)

∣

∣

2
among

all other permutations of the first N integers. The convergence of this discrete model to the incom-
pressible Euler equations for well prepared initial data was proved in [13]. In order to study the
continuous version (48), a specific study of the projection problem (46) is needed.

2.3. The polar decomposition theorem. Let us first recall a general measure theoretic defi-
nition :

Definition 2.1. Let A and B be two topological spaces, let ρ be a Borel finite measure of A and
X a Borel map A→ B, we call the push-forward of ρ by X and note X#dρ the Borel measure η on
B defined by

∀f ∈ C0(B),

∫

B

f(y)dη(y) =

∫

A

f(X(x))dρ(x)

Let us now consider the case of a bounded open subset Ω of the Euclidean space Rd equipped
with the Lebesgue measure that we denote dx. We say that a Borel map s : Ω → Ω is volume (or
Lebesgue measure) preserving if s#dx = dx i.e. if for all g ∈ C0(Ω) one has

∫

Ω
g(x)dx =

∫

Ω
g(s(x))dx,

or equivalently for any Borel subset B of Ω one has |s−1(B)| = |B|. The set of all measure preserving
maps of Ω is a closed subset of the Hilbert space H = L2(Ω,Rd) and will be denoted by S(Ω). Notice
that S(Ω) is only a semi-group for the composition rule and contains the group of volume preserving
diffeomorphisms G(Ω). It is known [51] that, at least in the case when Ω is convex and d ≥ 2, S(Ω)
is exactly the closure of G(Ω) in L2(Ω,Rd), which implies d(., G(Ω)) = d(., S(Ω)).
The polar decomposition theorem for maps [10] (extended to Riemannian manifolds in [49]) will be
crucial for our analysis of the VMA system :
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Theorem 2.2. Let Ω be a bounded convex open subset of Rd, let X ∈ L2(Ω; Rd) and ρX =
X#dx, where dx is the Lebesgue measure on Ω. Assume ρX to be a Lebesgue integrable function, or,
equivalently, X to satisfy the non-degeneracy condition :

∀E ⊂ R
d Borel , |E| = 0 ⇒ |X−1(E)| = 0.(49)

Then there exists a unique pair (∇ΦX , πX) where ΦX is a convex function, and πX ∈ S(Ω) such that

X = ∇ΦX ◦ πX .(50)

In this ’polar decomposition’, πX is also characterized as the unique closest point to X on S(Ω) in
the L2 sense and ΦX is characterized to be (up to an additive constant) the unique convex function
on Ω satisfying

∫

Rd

g(x)dρX =

∫

Ω

g(X(y))dy =

∫

Ω

g(∇ΦX(y))dy,(51)

for any g ∈ C0(Rd) such that |g(x)| ≤ C(1 + |x|2).
In addition, the Legendre-Fenchel transform ΨX of ΦX defined by

ΨX(x) = sup
y∈Ω

{x · y − ΦX(y)}(52)

is Lipschitz continuous on Rd, with Lipschitz constant bounded by supx∈Ω |x| and has the following
properties :
∇ΦX(x) ∈ Ω holds true for ρX a.e. x,

∫

Rd

g(∇ΨX)ρX(x)dx =

∫

Ω

g(∇ΨX(X(x)))dx =

∫

Ω

g(x)dx(53)

for any g ∈ C0(Ω), and

∇ΦX(∇ΨX(x)) = x, ρX(x)dx a.e,(54)

∇ΨX(∇ΦX(y)) = y, dy a.e(55)

πX(y) = ∇ΨX(X(y)), dy a.e.(56)

We make here several remarks on theorem 2.2 :

Link with the Monge-Ampère equation : We can interpret (51) as a weak version of the Monge-
Ampère equation :

ρX(∇Φ) detD2Φ = 1

and (53) can be seen as a weak version of another Monge-Ampère equation :

detD2Ψ = ρX

∇Ψ maps supp(ρX) in Ω.

The pair ΦX ,ΨX depends in fact only of Ω and the measure ρX = X#dx, and if condition (49) fails,
then existence and uniqueness of the projection πX may fail, but existence and uniqueness of ∇ΦX

remain true.
Theorem 2.2 and the subsequent remarks allows us to introduce the following notation that will

be used throughout the paper :
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Definition 2.3. Let Ω be a fixed bounded convex open set of Rd, let ρ be a positive measure on
Rd of total mass |Ω|. We call Φ[Ω, ρ], or, in short, Φ[ρ], the unique up to a constant convex function
on Ω satisfying

∀g ∈ C0(Rd) ∩ L1(dρ),

∫

Rd

g(x)dρ(x) =

∫

Ω

g(∇Φ[Ω, ρ](y))dy.(57)

We call Ψ[Ω, ρ] its Legendre-Fenchel transform satisfying

∀g ∈ C0(Rd) ∩ L1(Ω, dy),

∫

Rd

g(∇Ψ[Ω, ρ](x))dρ(x) =

∫

Ω

g(y)dy(58)

If no confusion is possible we may write Φ (resp. Ψ) instead of Φ[Ω, ρ] (resp. Ψ[Ω, ρ]).

We will use some additional results from [10]. The first one establishes the continuity of the polar
decomposition :

Theorem 2.4. Let ρn be a sequence of bounded positive measures on Rd, of total mass |Ω| such
that ∀n,

∫

(1 + |x|2)dρn ≤ ∞, let Φn = Φ(Ω, ρn) and Ψn = Ψ(Ω, ρn) be as in definition 2.3. If for
any f ∈ C0(Rd) such that |f(x)| ≤ C(1+ |x|2),

∫

fρn →
∫

ρf , then Φn → Φ[Ω, ρ] uniformly on each
compact set of Ω and strongly in W 1,1(Ω; Rd), and Ψn → Ψ[Ω, ρ] uniformly on each compact set of
Rd.

The second one provides a ’dual’ definition of the distance between a map X and the semi-group
S(Ω)

Theorem 2.5. let X ∈ L2(Ω; Rd) and ρ = X#dx, where dx is the Lebesgue measure on Ω.
Assume ρ to be a Lebesgue integrable function. Then

1

2
d2(X,S(Ω)) =

∫

(

|x|2/2 − Ψ[Ω, ρ](x)
)

ρ(x)dx +

∫

Ω

(

|y|2/2 − Φ[Ω, ρ](y)
)

dy

= sup
u,v

∫

(

|x|2/2 − u(x)
)

ρ(x)dx +

∫

Ω

(

|y|2/2 − v(y)
)

dy,

where the supremum if performed over all pairs (u, v) of continuous functions on Rd such that u(x)+
v(y) ≥ x · y pointwise.

2.4. The Vlasov-Monge-Ampère system. Let us now derive the VMA system as the kinetic
formulation of the approximate geodesic equation (48). First, from the polar decomposition theorem
2.2, equation (48) reads

∂ttX(t, x) = ∇ϕ(t, X(t, x)),(59)

where

∇ϕ(t, x) =
∇Ψ[Ω, ρ(t, ·)](x) − x

ε2
(60)

and Ψ[Ω, ρ] is as in definition (2.3). This means that ∇ϕ satisfies (32) in a weak form with the
additional condition that the range of x→ x + ε2∇ϕ(t, x) is contained in Ω.

Next, let f 0 ≥ 0 be a given initial density function, that we assume to be in L∞(Rd × Rd),
compactly supported and satisfying the compatibility condition :

∫

f 0(x, ξ)dxdξ = |Ω|.(61)
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For each t ≥ 0, let us define (x, ξ) → f(t, x, ξ) to be f 0 pushed forward by the following ODE

∂tX(t, x, ξ) = Ξ(t, x, ξ)(62)

∂tΞ(t, x, ξ) = (∇ϕ)(X(t, x, ξ))(63)

(X,Ξ)(t = 0, x, ξ) = (x, ξ).(64)

Then f satisfies the following kinetic (or Liouville) equation :

∂f

∂t
+ ∇x · (ξf) + ∇ξ · (∇ϕf) = 0(65)

f(0, ·, ·) = f 0,(66)

which must be understood in the following weak sense :

∀g ∈ C∞
c ([0,+∞) × R

d × R
d),

∫ ∞

0

dt

∫

Rd×Rd

(

∂g

∂t
+ ξ · ∇xg + ∇ϕ · ∇ξg

)

fdxdξ

= −
∫

Rd×Rd

f0(x, ξ)g(t = 0, x, ξ)dxdξ.(67)

This linear Liouville equation is nonlinearly coupled to equation (60), where ρ is linked to f by
equation (30). Finally, we have defined, through (60,65,66), the weak formulation of the VMA initial
value problem.
The energy of the system is defined by

E(t) =
1

2

∫

Rd×Rd

f(t, x, ξ)|ξ|2dxdξ

+
1

2ε2

∫

Rd

ρ(t, x) |∇Ψ[Ω, ρ](t, x) − x|2 dx.(68)

3. Existence of global renormalized weak solutions

The main result of this section is as follows :

Theorem 2.6. Let (x, ξ) → f0(x, ξ) ≥ 0 be in L∞(Rd ×Rd), with compact support in both x and
ξ, satisfying condition (61).
Then the VMA system (60,65,66) admits a global weak solution (f, ρ,∇Ψ) ∈ L∞. In addition, each
such weak solution enjoys the following properties

– f is a continuous function of t, valued in L∞(Rd × Rd) weak star,
– the density ρ is a continuous function of t, valued in L∞(Rd) weak star,
– the support of f(t, ·, ·) in (x, ξ) is compact, with a diameter growing no more than linearly in t.
– the total energy defined by (68) is conserved,
– the ’renormalization’ property (in the sense of [30])

∂g(f)

∂t
+ ∇x · (ξg(f)) + ∇ξ · (∇ϕg(f)) = 0

holds true for all g ∈ C1(R),
– the trajectories of (63,64) are uniquely defined for almost every initial condition (x, ξ).
– t→ fh(t, ·, ·) is just f 0 pushed forward along the trajectories of (63,64).
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Proof of theorem 2.6 :
We build a sequence of approximate solutions (fh,Ψh) by time discretization and let the time step
h go to zero. To handle the limiting process, the non-linear terms will be treated with the help of
theorem 2.4. More precisely if one can extract a subsequence such that, for every t, fh(t, ·, ·) converges
weakly, then we can deduce from theorem 2.4 that the corresponding sequence ∇Ψh(t, ·) will converge
strongly, and so we can pass to the limit in the nonlinear term.

3.1. Construction of a sequence of approximate solutions. We consider η ∈ C∞
c (Rd)

such that η ≥ 0,
∫

Rd η = 1 and ηh = 1
hdη(

·
h
). We then seek approximate solutions as solutions of the

approximate problem

∂fh
∂t

+ ξ · ∇xfh +
∇Ψh(x) − x

ε2
· ∇ξfh = 0(69)

fh(0, x, ξ) = f 0
h(x, ξ) = f0 ?x,ξ ηh ⊗ ηh(70)

Ψh(t) = ηh ?Ψ(Ω, ρ(t = nh)) for t ∈ [nh, (n+ 1)h[.(71)

∇Ψh being a smooth function of space this regularized equation admits a unique solution that one
builds by the method of characteristics. Since the flow is divergence-free in the phase space , the
solution fh satisfy

∀p ∈ [1,+∞], ‖fh(t)‖Lp
x,ξ

= ‖fh(0)‖Lp
x,ξ
.(72)

By construction (through theorem 2.2), ∇Ψh is valued in the convex bounded set Ω. Suppose that
f 0(x, ξ) vanishes outside of the set {x2 + ε2ξ2 ≤ C2} for some constant C > 0 fixed and denote
R = supy∈Ω |y|. Then we have

Lemma 2.7. ∀t ≥ 0, fh(t, ·, ·) is supported in {
√

x2 + ε2ξ2 ≤ C +Rt/ε}.
Proof : We just write

ε2∂ttX +X = ∇Ψh(X)

in complex notation −iε∂tZ + Z = F , where Z = X + iε∂tX and F = ∇Ψh(X), which is bounded
by R. This leads to

Z(t) = Z(0) exp(−it/ε) + iε−1

∫ t

0

exp(−i(t− s)/ε)F (s)ds

ant the desired bound easily follows. Notice here a sharp contrast with the classical V P system, for
which the ξ−support of the solutions cannot be controlled so easily (except in the one dimensional
case). �

Convergence of the sequence of approximate solutions.
Using (72) and lemma 2.7 there exists, for any 1 < p < ∞, up to the extraction of a subsequence,
f ∈ Lp([0, T ] × R

d × R
d) such that fh converges weakly to f as h→ 0.

It remains to show that the product fh∇Ψh converges to the good limit. For this we need a
stronger convergence for ∇Ψh. We already know that ∇Ψh ∈ L∞([0, T ] × Rd). We claim that for
all t > 0, ∇Ψh(t, ·) strongly converges to ∇Ψ(t, ·) in Lqloc, ∀q ∈ [1,+∞[. Indeed, such a strong
convergence of ∇Ψh follows from Theorem 2.4 provided that we have for all t > 0,

∫

Rd

g(x)ρh(t, x)dx→
∫

Rd

g(x)ρ(t, x)dx.(73)
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for any g ∈ Cc(R
d). For this we show that the sequence ρh is relatively compact in C([0, T ], Lp−w).

This is done by the following lemma :

Lemma 2.8. For all T > 0, for all p with 1 ≤ p <∞ the sequence fh (resp. ρh) satisfies
– fh (resp. ρh) is a bounded sequence in L∞([0, T ];Lp(Rd × Rd)) (resp. in L∞([0, T ];Lp(Rd)).
– ∂tfh (resp. ∂tρ

h) is a bounded sequence in L∞([0, T ];W−1,p(Rd×Rd))), (resp. in L∞([0, T ];W−1,p(Rd)).
and one can extract from fh (resp. from ρh) a subsequence converging in C([0, T ], Lp(Rd × R

d) −w)
(resp. in C([0, T ], Lp(Rd) − w)).

Proof : the first point uses equation (72) and lemma 2.7. The second point uses equation (65)
and the identity :

∂tρh = −∇x ·
∫

Rd

ξfhdξ,

then the last point is a classical result of functional analysis. �

This lemma and lemma 2.7 yield (73). Then using theorem 2.4 and if we denote ρ the limit of a
subsequence of ρh we have convergence of the sequence ∇Ψh to ∇Ψ[Ω, ρ] in C([0, T ], Lp(Rd)). We
have extracted a subsequence fh such that

– fh converges in C([0, T ], Lp(Rd × Rd) − w) for every 1 ≤ p <∞.
– ρh converges in C([0, T ], Lp(Rd) − w) for every 1 ≤ p <∞.
– ∇Ψh(t, ·) converges in Lp(Rd) for every t and for every 1 ≤ p <∞.

Thus the limit (f,∇Ψ) satisfies equations (65-66) and the first part of theorem 2.6 is proved.

3.2. Conservation of energy. We now give a rigorous proof of the conservation of energy follo-
wing an argument going back to F. Otto (in an unpublished work on the semi-geostrophic equations).
We recall the definition of the energy as

E(t) =
1

2

∫

Rd×Rd

f(t, x, ξ)|ξ|2dxdξ +
1

2ε2

∫

Rd

ρ(t, x)|∇Ψ(t, x) − x|2dx.

We call the first term the kinetic energy Ec and the second term, multiplied by ε2, the (normalized)
potential energy Ep. We have

Proposition 2.9. Let f be any solution of 65 such that on every interval [0, T ], f(t, ·, ·) is
uniformly compactly supported in |x|, ‖ξ| ≤ R(T ) for some function R(T ). Then the energy of the
solution f is conserved.

Proof :
From theorem 2.5, we know that

Ep(t) =

∫

(

|x|2/2 − Ψ(t, x)
)

ρ(t, x)dx +

∫

Ω

(

|y|2/2 − Φ(t, y)
)

dy

= sup
u,v

∫

(

|x|2/2 − u(x)
)

ρ(t, x)dx+

∫

Ω

(

|y|2/2 − v(y)
)

dy,

where the supremum if performed over all pairs (u, v) of continuous functions on Rd such that
u(x) + v(y) ≥ x · y pointwise. Thus for each t, t0 ∈ R+, we have

Ep(t) ≥
∫

(

|x|2/2 − Ψ(t0, x)
)

ρ(t, x)dx +

∫

Ω

(

|y|2/2 − Φ(t0, y)
)

dy.
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and this implies

Ep(t) − Ep(t0) ≥
∫

Rd

(

|x|2/2 − Ψ(t0, x)
)

(ρ(t, x) − ρ(t0, x))dx

=

∫ t

t0

∫

Rd

∂tρ(s, x)
(

|x|2/2 − Ψ(t0, x)
)

dxds

=

∫ t

t0

∫

Rd×Rd

ξf(s, x, ξ) (x−∇Ψ(t0, x)) dxdξds.

Notice that the product in the second line makes sense because ∂tρ is in W−1,p for any 1 ≤ p <≤ ∞
and Ψ is in W 1,∞, moreover f(t, ·, ·) and therefore ρ(t, ·) are compactly supported. Exchanging t0
and t we would have found :

Ep(t0) − Ep(t) ≥
∫ t0

t

∫

Rd×Rd

ξf(s, x, ξ) (x−∇Ψ(t, x)) dxdξds,

moreover we have for the kinetic energy :

ε2(Ec(t) − Ec(t0)) =

∫ t

t0

∫

Rd×Rd

ξf(t, x, ξ) · (∇Ψ(s, x) − x)dxdξds

dividing by t− t0, t > t0 we find

ε2
E(t) − E(t0)

t− t0

≥ 1

t− t0

∫ t

t0

∫

Rd×Rd

ξf(s, x, ξ) · (∇Ψ(s, x) −∇Ψ(t0, x))dxdξds

and

ε2
E(t) − E(t0)

t− t0

≤ 1

t− t0

∫ t

t0

∫

Rd×Rd

ξf(s, x, ξ) · (∇Ψ(t, x) −∇Ψ(s, x))dxdξds

We know from 3.1 that ∇Ψ(t, .) converges strongly in Lploc(R
d), 1 ≤ p < ∞ to ∇Ψ(t0, .) as t goes to

t0, and so the right hand sides of the above inequalities converges to 0 and we conclude that

lim
t>t0

E(t) − E(t0)

t− t0
= 0

We could take t < t0 and find the same result. Finally we conclude that

dE

dt
≡ 0(74)

�
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3.3. Renormalized solutions and existence of trajectories. The study of renormalized
solutions for transport equations has been introduced in [30] for vector fields in W 1,1 and with
bounded divergence. These results have been extended by Bouchut [9] to the case of Vlasov type
equations with acceleration field in BV . The fact that solutions of (65, 66) are renormalized solutions
is an immediate consequence of the following theorem :

Theorem 2.10. (F. Bouchut).
Let f ∈ L∞(]0, T [, L∞

loc(R
d × Rd)) satisfy

∂f

∂t
+ ∇x · (ξf) + ∇ξ · (E(t, x)f) = 0,

with E(t, x) ∈ L1(]0, T [;L1
loc(R

d)) ∩ L1(]0, T [;BVloc(R
d)),

then for any g ∈ C1(R)

∂g(f)

∂t
+ ∇x · (ξg(f)) + ∇ξ · (E(t, x)g(f)) = 0.

In our case the BV bound on the acceleration ∇Ψ is a direct consequence of the fact that Ψ is
a globally Lipschitz convex function. Finally, as in [30], it can be deduced from the renormalization
property that
1) for almost every initial condition (x, ξ), there is a unique trajectory solving (63,64),
2) t→ f(t) is just f 0 pushed forward along these trajectories.

A complete proof is given in appendix.
Remark : From the renormalization property it follows that, once the potential Ψ(t, x) is known,

there exists a unique solution to (65) in L∞
t,x,ξ. Of course, this does not imply at all the uniqueness of

weak solutions to the Vlasov-Monge-Ampère system ! This paragraph ends the proof of theorem 2.6.

4. Strong solutions

In this section we show existence of strong solutions for small times. To do this we need regularity
estimates on solutions of the Monge-Ampère equation and this will be simpler to handle in the periodic
case.

4.1. Polar factorization of maps in a periodic domain. The polar decomposition theorem
has been generalized by McCann [49] to general Riemannian manifolds, while the particular case of
the flat torus had been addressed in [24]. Here we use both results. We thus consider the flat torus
Td = Rd/Zd.

Definition 2.11. We say that a mapping Y : Rd → Rd is Zd additive if the mapping x→ Y (x)−x
is Zd periodic. The set of all measurable Zd additive mappings is denoted P. For each x ∈ Rd we call
x̂ the class of x in Rd/Zd, and for any X ∈ P, X̂ the mapping of Td into itself defined by

∀x ∈ R
d, X̂(x̂) = ˆX(x).

We may say if no confusion is possible additive instead of Zd additive. Then the following theorem
can be deduced from the results of [24] and [49] :

Theorem 2.12. Let X : Rd → Rd be additive and assume that ρX = X#dx has a density in
L1([0, 1]d).
Then there exists an a.e. unique decomposition

X = ∇ΦX ◦ πX
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such that ΦX is a convex function and ΦX(x) − |x|2/2 is Zd periodic,
πX : Rd → Rd is additive and π̂X is (Lebesgue) measure preserving in Td. Moreover we have

‖X − πX‖L2([0,1]d) = ‖X̂ − π̂X‖L2(Td)

and, ΨX denoting the Legendre transform of ΦX , we have

πX = ∇ΨX ◦X.
Remark : The pair ΦX ,ΨX is uniquely defined by the density ρX = X#dx.

Notice that the periodicity of ΦX(x) − |x|2/2 implies that ∇ΦX and ∇ΨX are Zd additive, and that
ΨX − |x|2/2 is also Zd periodic. As in the previous case, we introduce the following notation :

Definition 2.13. Let ρ be a probability measure on Td then we denote Φ[ρ] (resp. Ψ[ρ]) the
unique up to a constant convex function such that

Φ[ρ] − |x|2/2 is Z
d periodic ,(75)

∀f ∈ C0(Td),

∫

Td

f(∇̂Φ[ρ](x))dx =

∫

fdρ(76)

(resp. its Legendre fenchel transform).

Ψ[ρ] will thus be a generalized solution of the Monge-Ampère equation detD2Ψ = ρ. Next the
results of Caffarelli in [18],[20],[21] on the regularity of solutions to Monge-Ampère equation yield
the following theorem :

Theorem 2.14. Let ρ > 0 be a Cα(Td) probability density on Td.
Then Ψ = Ψ[ρ] (see definition 2.13) is a classical solution of

detD2Ψ = ρ(77)

and satisfies :

‖∇Ψ(x) − x‖L∞ ≤ C(d) =
√
d/2(78)

‖D2Ψ‖Cα ≤ K(m,M, ‖ρ‖Cα)(79)

where m = inf ρ and M = sup ρ.

This theorem is an adaptation of the regularity results stated above, whose complete proof is
given in appendix.

4.2. Existence of local strong solutions. Let (x, ξ) → f0(x, ξ) be in L∞(Td × Rd), positive,
compactly supported in x and ξ satisfying the compatibility condition :

∫

f0(x, ξ)dxdξ = 1.(80)

We look for f(t, x, ξ) : [0, T ] × Td × Rd → R+ satisfying the system (VMAp) :

∂f

∂t
+ ∇x · (ξf) +

1

ε2
∇ξ · ((∇Ψ[ρ](x) − x)f) = 0(81)

f(0, ·, ·) = f 0(82)

The macroscopic density ρ is still related to f by equation (30). We mention first that the proof of
existence of global weak solutions adapts with minor changes to the periodic case.

Our result in this section is the following :
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Theorem 2.15. Let f0 ∈ W 1,∞(Td × Rd), be such that :

∃C0 > 0 : f0 ≡ 0 for |ξ| ≥ C0,(83)

∃α > 0 : ρ0(x) =

∫

Rd

f0(x, ξ)dξ ≥ α ∀x ∈ T
d,(84)

then there exists T > 0 and a solution f to the VMAp system (81,82), in the space W 1,∞([0, T ] ×
Td × Rd).

Proof of theorem 2.15 : First we deduce from theorem 2.14 :

Corollary 2.16. Let ρ,Ψ = Ψ[ρ] be as in theorem 2.14. Then, we have

‖D2Ψ‖L∞(Td) ≤ C(m,M, ‖∇ρ‖L∞(Td)),

and we can define

K(m,M, l) = sup{‖D2Ψ[ρ]‖L∞(Td); ‖∇ρ‖L∞(Td) ≤ l, m ≤ ρ ≤M} <∞.

We see that in order to use theorem 2.14 we need ρ to be bounded away from below. In the
following lemma, we show that under suitable assumptions on the initial data, it is possible to
enforce locally in time the condition 0 < m ≤ ρ ≤M.

Lemma 2.17. Let f ∈ L∞([0, T ] × Td × Rd) satisfy

∂f

∂t
+ ∇x · (ξf) + ∇ξ · (E(t, x)f) = 0(85)

f(0, ., .) = f 0(86)

with

‖E‖L∞
t (L∞

x ∩BVx) ≤ F,(87)

let the initial condition f0 be such that :

a(x, ξ) ≤ f(0, x, ξ) ≤ b(x, ξ),

with ρa(x) =
∫

a(x, ξ)dξ ≥ m > 0 and ρb(x) =
∫

b(x, ξ)dξ ≤M <∞ and a, b satisfying

|∇x,ξa, b| ≤
c

1 + |ξ|d+2
(88)

Then there exists a constant R > 0 depending on m,M, c, F , such that

(ρa(x) −Rt) ≤ ρ(t, x) ≤ (ρb(x) +Rt).

The proof of the lemma is given in appendix.
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4.2.1. Construction of approximate solutions. Let us consider (t, x) → E(t, x) a smooth vector-
field on Td, and write

TE(f) =
∂f

∂t
+ ∇x · (ξf) + ∇ξ · (E f)

then, if TE(f) = 0 then we have :

TE∇xf = −(∇xE) · ∇ξf

TE∇ξf = −∇xf

TE∂tf = −∂tE · ∇ξf,

thus if TE(f) = 0 we have

d

dt
‖∇x,ξf‖L∞ ≤ ‖∇x,ξf‖L∞(1 + ‖∇xE‖L∞)(89)

and

‖∇x,ξf(t)‖L∞ ≤ ‖∇x,ξf(t = 0)‖L∞ exp

(
∫ t

0

(1 + ‖∇xE(s)‖L∞)ds

)

.

Now let f0 be given as in theorem 2.15, satisfying (83,84). Thanks to lemma 2.17 it is possible to
find t1, m,M such that for any f satisfying

TE(f) = 0

f(t = 0) = f0,

for any field E ∈ L1([0, t1], BV (Td)) satisfying ‖E‖L∞([0,t1]×Td) ≤ C(d), we have

m ≤ ρ(t, ·) ≤ M, ∀t ∈ [0, t1](90)

‖ξ‖max ≤ C1 = 10C0,(91)

with f supported in {|ξ| ≤ ‖ξ‖max} and with C0 as in theorem 2.15, so that we have for 0 ≤ t ≤ t1 :

‖∇ρ‖L∞ ≤ ωdC
d
1‖∇xf‖L∞,(92)

ωd being the volume of the unit ball of R
d. Then we construct a family of approximate solutions

(fh,Ψh) to (81), in the same spirit as we did for weak solutions, by solving

∂fh
∂t

+ ξ · ∇xfh +
∇Ψh(x) − x

ε2
· ∇ξfh = 0

fh(t = 0) = f0

Ψh(t) = Ψ(ρ(t = nh)) for t ∈ [nh, (n + 1)h[.

Note that we have neither mollified the term ∇Ψ nor the initial condition and that ‖∇Ψh‖L∞ ≤ C(d).
Now choose l = 10‖∇x,ξf0‖L∞ωdC

d
1 . If for some t = nh ≤ t1 − h we have

‖∇x,ξf
h(t = nh)‖L∞ ≤ l

ωdCd
1

this implies, thanks to (92), that

‖∇xρ
h(t = nh)‖L∞ ≤ l
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and conditions (90,91) are satisfied because t ≤ t1. Then if we denote K = K(m,M, l) as in corollary
2.16, we have for nh ≤ t < nh + h,

d

dt
‖∇x,ξf

h‖L∞ ≤ (K + 1)‖∇x,ξf
h‖L∞,

and then

‖∇x,ξf
h(t = nh + h)‖L∞ ≤ ‖∇x,ξf

h(t = nh+ h)‖L∞ exp (K + 1)h.

So if we define T as

T = min{t1, t2},

with exp((K + 1)t2) = 10, then we have, for 0 ≤ t ≤ T ,

‖∇x,ξf
h‖L∞ ≤ 10‖∇x,ξf0‖L∞

‖∇ρh‖L∞ ≤ l

m ≤ ρ ≤M

‖D2Ψh‖L∞ ≤ K.

Thus we can extract a subsequence converging to a strong solution of (81,82). Then we argue as
in section 2 to show that all terms converge to the correct limit.

5. Asymptotic analysis

5.1. Convergence to the Euler equation. In this section we justify that the Vlasov-Monge-
Ampère system describes approximate geodesics on volume preserving transforms : indeed we will
show that weak solutions of this system converge to a solution of the incompressible Euler equations
(E) as the parameter ε goes to 0, at least for well prepared initial data. We restrict ourselves to the
space periodic case. In this section,the macroscopic density ρ is still defined by (30) and the convex
potentials Φ[ρ],Ψ[ρ] are still as in definition 2.13.

For sake of simplicity, we slightly modify our notations and introduce the following rescaled
potentials :

ϕ̃[ρ] =
|x|2/2 − Ψ[ρ]

ε
(93)

ϕ[ρ] =
Φ[ρ] − |x|2/2

ε
(94)

so that

∇ϕ[ρ] = ∇ϕ̃[ρ] ◦ ∇Φ[ρ],(95)

and the (VMAp) (p stands for periodic) system takes the following form :

∂f

∂t
+ ξ · ∇xf − ∇ϕ̃[ρ]

ε
· ∇ξf = 0.(96)

f(0, ·, ·) = f0(97)
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The energy is given by :

E(t) =
1

2

∫

f(t, x, ξ)|ξ|2dxdξ +
1

2

∫

|∇ϕ|2dx(98)

=
1

2

∫

f(t, x, ξ)|ξ|2dxdξ +
1

2

∫

ρ|∇ϕ̃|2dx(99)

It has been shown in section 3.2 that the energy is conserved. The Euler equations for incompressible
fluids read (E) :

∂tv̄ + v̄ · ∇v̄ = −∇p(100)

∇ · v̄ = 0.(101)

Theorem 2.18. Let f be a weak solution of (96, 97) with finite energy, let (t, x) → v̄(t, x) be a
smooth C2([0, T ]×Td) solution of (100,101) for t ∈ [0, T ], and p(t, x) the corresponding pressure, let

Hε(t) =
1

2

∫

f(t, x, ξ)|ξ − v̄(t, x)|2dxdξ +
1

2

∫

|∇ϕ(t, x)|2dx,

then

Hε(t) ≤ C exp(Ct)(Hε(0) + ε2), ∀t ∈ [0, T ].

The constant C depends only on sup0≤s≤T

{

‖v̄(s, .), p(s, .), ∂tp(s, .),∇p(s, .)‖W 1,∞(Td)

}

.

Remark : This estimate is enough to compare the weak solutions f to the VMA system (for well
prepared initial datas) and the smooth solutions v̄ of the Euler equations. For instance,

∫

f(t =
0, x, ξ)dξ ≡ 1 implies ϕ(t = 0, x) ≡ 0 and, therefore,

∫

|ξ − v(t = 0, x)|2f(t = 0, x, ξ)dxdξ ≤ C0ε
2

implies

sup
t∈[0,T ]

∫

|ξ − v(t, x)|2f(t, x, ξ)dxdξ ≤ CT ε
2,

where CT depends only on C0, T and v̄.
Proof of Theorem 2.18. We shall show that

d

dt
Hε = −

∫

f(t, x, ξ)(ξ − v̄)∇v̄(ξ − v̄)

+

∫

f(t, x, ξ)
1

ε
v̄ · ∇ϕ̃

−
∫

f(t, x, ξ)(v̄ − ξ) · ∇p,(102)

where we will use the notation

u ∇v̄ w =

d
∑

i,j=1

ui∂iv̄
jwj.

The proof of this identity is postponed to the end of the section.
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Now we look at all terms of the right hand side. All the constants that we call C are controlled
as in theorem 2.18. We set

T1 = −
∫

f(t, x, ξ)(ξ − v̄)∇v̄(ξ − v̄)

T2 =

∫

f(t, x, ξ)
1

ε
v̄ · ∇ϕ̃

T3 = −
∫

f(t, x, ξ)(v̄ − ξ) · ∇p

First we have T1 ≤ CHε. For T2 we have :

T2 =
1

ε

∫

ρv̄ · ∇ϕ̃ =
1

ε

∫

v̄(∇Φ[ρ]) · ∇ϕ̃(∇Φ[ρ])

=
1

ε

∫

v̄(x + ε∇ϕ) · ∇ϕ

=
1

ε

∫

v̄ · ∇ϕ+ (v̄(x+ ε∇ϕ) − v̄(x)) · ∇ϕ

≤ 0 + C

∫

|∇ϕ|2 ≤ CHε,

we have used that v̄ is divergence-free thus its integral against any gradient is zero. Next we have
the following lemma :

Lemma 2.19. Let G : Td → R be Lipschitz continuous such that

∫

Td

G = 0 then for all R > 0

one has

|
∫

ρG| ≤ 1

2
‖∇G‖L∞(

1

R
ε2 +RHε).

Proof :
∣

∣

∣

∣

∫

(ρ− 1)G

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

(G(x+ ε∇ϕ) −G(x)

∣

∣

∣

∣

≤ ε‖∇G‖L∞‖∇ϕ‖L1 ≤ ε‖∇G‖L∞H1/2
ε ≤ 1

2
‖∇G‖L∞(

1

R
ε2 +RHε).

�

Again, since v̄ is divergence-free
∫

v̄ · ∇p = 0, thus from lemma 2.19 we have :

−
∫

ρv̄ · ∇p ≤ C(ε2 +Hε).

We remind that

∂tρ(t, x) = −∇x ·
∫

f(t, x, ξ)ξdξ.
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Since it costs no generality to suppose that for all t ∈ [0, T ],
∫

p(t, x)dx ≡ 0, we get :
∫

f(t, x, ξ)ξ · ∇p

=

∫

∂ρ

∂t
p

=
d

dt

∫

ρp−
∫

ρ
∂p

∂t

≤ C(ε2 +Hε) −
dQ

dt

again using lemma 2.19, where Q(t) = −
∫

ρp. Thus

T3 ≤ C(Hε + ε2) − dQ

dt
.

Thus we have the following inequality :

d

dt
(Hε +Q) ≤ CHε +O(ε2).(103)

Moreover, using lemma 2.19

|Q(t)| ≤ Cε2 +Hε(t)/2,(104)

thus

Hε +Q ≥ Hε/2 − Cε2,(105)

and we can transform (103) in

d

dt
(Hε +Q) ≤ C(Hε +Q) + Cε2,(106)

and thus Gronwall’s lemma yields

Hε(t) +Q(t) ≤ (Hε(0) +Q(0) + ε2) exp(Ct).

Using again (104) we obtain

Hε(t) ≤ C(Hε(0) + Cε2) exp(Ct),(107)

which achieves the proof of Theorem 2.18. �

Proof of identity (102) :
We first notice that, for all g ∈ C1(R × Td) , we have :

d

dt

∫

ρ(t, x)g(t, x)dx =

∫ ∫

f(t, x, ξ)(∂tg(t, x) + ξ · ∇g(t, x))dξdx.

We also use the conservation of energy defined by (98). Then we get
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d

dt
Hε =

d

dt

1

2

∫

f(t, x, ξ)(|v̄|2 − 2ξ · v̄)dxdξ

=

∫

f(t, x, ξ)(∂tv̄ · v̄ − ∂tv̄ · ξ) −
1

2

∫

∇x · (f(t, x, ξ)ξ)(|v̄|2 − 2ξ · v̄)dxdξ

+
1

2

∫

∇ξ · (
1

ε
∇ϕ̃f(t, x, ξ))(|v̄|2 − 2ξ · v̄)

integrating by part, we get :

d

dt
Hε =

∫

f(t, x, ξ)(∂tv̄ · v̄ − ∂tv̄ · ξ) +

∫

f(t, x, ξ)ξ∇v̄(v̄ − ξ)

+

∫

f(t, x, ξ)
1

ε
∇ϕ̃ · v̄

the first two terms can be rewritten as
∫

f(t, x, ξ)(∂tv̄ · v̄ − ∂tv̄ · ξ) +

∫

f(t, x, ξ)ξ∇v̄(v̄ − ξ)

= −
∫

f(t, x, ξ)(v̄ − ξ)∇v̄(v̄ − ξ) +

∫

f(t, x, ξ)∂tv̄ · (v̄ − ξ)

+

∫

f(t, x, ξ)v̄∇v̄(v̄ − ξ)

= −
∫

f(t, x, ξ)(v̄ − ξ)∇v̄(v̄ − ξ) +

∫

f(t, x, ξ)(v̄ − ξ) · (∂tv̄ + v̄ · ∇v̄)

and finally using equation (100) we conclude. �

5.2. Comparison with the Euler-Poisson system. Here we show that, as mentioned in the
introduction, the Euler-Poisson (EP ) system is a more accurate approximation to the Vlasov Monge-
Ampère system than the Euler equations, as ε goes to zero. For notational simplicity, we drop most
ε’s.

The EP system Let us recall that the (pressureless) Euler-Poisson system describes the motion of
a continuum of electrons on a neutralizing background of ions through electrostatic interaction. Let
v̄ and ρ̄ be the velocity and density of electrons. Let ϕ̄ be the (rescaled) electric potential. Under
proper scaling, these functions of x ∈ Rd and t > 0 satisfy the Euler-Poisson system which will be
referred to as (EP ) :

∂tv̄ + v̄ · ∇v̄ = −1

ε
∇ϕ̄(108)

∂tρ̄ + ∇ · (ρ̄v̄) = 0(109)

1 − ε∆ϕ̄ = ρ̄.(110)
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The so-called ’quasi-neutral’ limit ε → 0 of similar systems has been studied for example in
[41] and [25] and convergence results have been established using pseudo-differentials energy esti-
mates. For well-prepared initial datas, we expect solutions of (EP ) to behave as solutions of Euler-
Incompressible equations. This is actually proved by the second author in the third chapter of this
thesis.

Theorem 2.20. Let v be a smooth solution of (100,101) on [0, T ] × T
d, with initial data v0 and

satisfying v ∈ L∞([0, T ], Hs(Td)) for some s ≥ s0 = d
2

+ 2. Let v̄ε0, ρ̄
ε
0 be a sequence of initial data

such that
v̄ε0 − v0

ε
and

ρ̄ε0 − 1

ε2
(111)

are bounded in Hs(Td). Then there exists a sequence of solutions v̄ε, ρ̄ε to the Euler-Poisson system,
with initial data v̄ε0, ρ̄

ε
0, on [0, Tε[ with lim infε→0 Tε ≥ T . Moreover, for T ′ < T and ε small enough

ε−1(v̄ε− v) and ε−2(ρ̄ε− 1) are bounded in L∞([0, T ′], Hs′(Td)) for some s′ < s, s′ going to +∞ as s
goes to +∞.

Here we consider v a smooth (at least C2([0, T ] × Td)) solution to (100, 101) with initial data v0, a
sequence f of solutions of (96,97) , and a sequence v̄, ρ̄ solutions of (EP ) satisfying the assumptions
of Theorem 2.20 We still define Hε as in Theorem 2.18 :

Hε(t) =
1

2

∫

f ε(t, x, ξ)|ξ − v(t, x)|2dxdξ +
1

2

∫

|∇ϕε|2dx(112)

with v, p as above. We choose the initial data f ε0 such that

H1 : f ε0 satisfies Hε(0) ≤ Cε2 for some C > 0 fixed.

From Theorem 2.18, this implies that there exists a constant that we still denote C such that

Hε(t) ≤ Cε2 for t ∈ [0, T ].(113)

Then we fix s′ so large thatHs′(Td) is continuously embedded inW 2,∞(Td), and we make the following
assumption on the solutions of (EP ) :

H2 : The sequence (v̄ε0, ρ̄
ε
0) of initial data of (EP ) is chosen such that ε−1(v̄ε − v), ε−2(ρ̄ε − 1) is a

bounded sequence in L∞([0, T ], Hs′(Td)).

This condition is non-empty from Theorem 2.20 and take s large enough. H2 implies then that the
sequence ε−1(v̄ε − v), ε−2(ρ̄ε − 1) remains bounded in L∞([0, T ],W 2,∞(Td)).

We are now ready to prove

Theorem 2.21. Let f ε0 , v̄
ε
0, ρ̄

ε
0, v, T be as above, satisfying assumptions H1 and H2. Define

Gε(t) =
1

2

∫

f ε(t, x, ξ)|ξ − v̄ε(x)|2dxdξ +
1

2

∫

|∇ϕε −∇ϕ̄ε|2dx.

Then there exists C > 0 such that

Gε(t) ≤ C exp(Ct)(Gε(0) + ε3), ∀t ∈ [0, T ].

where C does not depend on ε.
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Remark : the theorem shows that the distance between solutions of the EP system and the VMA
system measured with Gε is like O(ε3) whereas Theorem 2.18 stated that the distance between the
solution of the Euler equation and the VMA system was like O(ε2). Note also that Gε and Hε can
be interpreted as the square if a distance.

Proof of theorem 2.21 : Proceeding as in (102) and noticing that :

d

dt

∫

Td

|∇ϕ̄|2 =
1

ε

∫

Td

ρ̄v̄ · ∇ϕ̄

we obtain the following identity :

d

dt
Gε = −

∫

f(t, x, ξ)(ξ − v̄)∇v̄(ξ − v̄)

+

∫

f(t, x, ξ)
1

ε
v̄ · ∇ϕ̃−

∫

f(t, x, ξ)
1

ε
v̄ · ∇ϕ̄

+

∫

f(t, x, ξ)
1

ε
ξ · ∇ϕ̄+

∫

1

ε
ρ̄v̄ · ∇ϕ̄

− d

dt

∫

∇ϕ̄ · ∇ϕ(114)

Then we notice
∫

f(t, x, ξ)
1

ε
ξ · ∇ϕ̄ =

d

dt

(
∫

1

ε
ρϕ̄

)

− 1

ε

∫

ρ∂tϕ̄.

Next, we state

Lemma 2.22. Let us introduce notations

< ∇θ > (x) =

∫ 1

0

∇θ(x + sε∇ϕ(x))ds

< ∇2θ > (x) =

∫ 1

0

(1 − s)∇2θ(x + sε∇ϕ(x))ds,

for any θ ∈ C2(Td). Then,
∫

ρθ =

∫

θ + ε

∫

< ∇θ > ∇ϕ

=

∫

θ + ε

∫

∇θ · ∇ϕ+ ε2
∫

< ∇2θ > ∇ϕ∇ϕ.

Proof : the proof just uses the Taylor expansion and the identity
∫

ρθ =
∫

θ(x + ε∇ϕ). �

Using Lemma 2.22, we get

1

ε

∫

ρ∂tϕ̄

=
1

ε

∫

∂tϕ̄+

∫

∂t∇ϕ̄ · ∇ϕ+ ε

∫

< ∂t∇2ϕ̄ > ∇ϕ∇ϕ.
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Using the assumptions of Theorem 2.21 we have

‖∂t∇2ϕ̄‖L∞([0,T ′]×Td) ≤ C.

Proof : from equation (109), we know ∂tρ̄ = −ρ̄∇ · v̄ − v̄ · ∇ρ̄. Thanks to H2, this implies that
‖∂tρ̄‖Hs′−1 ≤ Cε. Since Hs′(Td) is continuously embedded in W 1,∞(Td), Hs′−1(Td) is continuously
embedded in L∞(Td). Then, using equation (110) and classical elliptic regularity, we have

ε‖∂t∇2ϕ̄‖Hs′−1 ≤ C‖∂tρ̄‖Hs′−1 ,

and the desired result follows.

So, from assumption H1 and (113), we have
∣

∣

∣

∣

ε

∫

< ∂t∇2ϕ̄ > ∇ϕ∇ϕ
∣

∣

∣

∣

≤ Cε3.

Next,
∫

∂t∇ϕ̄ · ∇ϕ = −
∫

∂t∆ϕ̄ϕ

=
1

ε

∫

∂tρ̄ϕ =
1

ε

∫

ρ̄v̄ · ∇ϕ.

Using again lemma 2.22, we get

d

dt

∫

∇ϕ̄ · ∇ϕ

=
1

ε

d

dt

(
∫

ρϕ̄− ε2
∫

< ∇2ϕ̄ > ∇ϕ∇ϕ
)

and for the same reasons we have ‖∇2ϕ̄‖L∞([0,T ]×Td)) ≤ Cε and this yields

Q(t) = ε

∫

< ∇2ϕ̄ > ∇ϕ∇ϕ = O(ε4) .

Moreover, it does not cost to set
∫

ϕ̄ ≡ 0 and deduce
∫

f(t, x, ξ)
1

ε
ξ · ∇ϕ̄− d

dt

∫

∇ϕ̄ · ∇ϕ = −1

ε

∫

ρ̄v̄ · ∇ϕ+O(ε3) +
d

dt
Q .

Thus the remaining terms are

R =
1

ε

∫

[ρ∇ϕ̃− ρ∇ϕ̄+ ρ̄∇ϕ̄− ρ̄∇ϕ] · v̄ .

Calculations that we postpone to the end of the proof show that

R ≤
∫

(∇ϕ−∇ϕ̄)∇v̄(∇ϕ−∇ϕ̄) + C

∫

|∇ϕ−∇ϕ̄|2

−1

2

∫

∇ · v̄(|∇ϕ̄|2 − 2∇ϕ · ∇ϕ̄) +O(ε3) .(115)
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with C controlled by ‖∇2v̄‖L∞([0,T ]×Td). So finally we have

d

dt
Gε ≤ −

∫

f(t, x, ξ)(ξ − v̄)∇v̄(ξ − v̄) + (∇ϕ−∇ϕ̄)∇v̄(∇ϕ−∇ϕ̄)

−1

2

∫

(∇ · v̄)(|∇ϕ̄|2 − 2∇ϕ̄ · ∇ϕ) + C

∫

|∇ϕ−∇ϕ̄|2

+Cε3 +
d

dt
Q

with |Q(t)| ≤ Cε4 for t ∈ [0, T ]. If we assume Theorem 2.20 and H2 we have
‖∇ · v‖L∞([0,T ]×Td) ≤ Cε and ‖∇ϕ̄‖L∞([0,T ]×Td) ≤ Cε, whereas H1 yields

∫

|∇ϕ|2 ≤ Cε2 Note that we
also have

−
∫

f(t, x, ξ)(ξ − v̄)∇v̄(ξ − v̄) + (∇ϕ−∇ϕ̄)∇v̄(∇ϕ−∇ϕ̄)

+C

∫

|∇ϕ−∇ϕ̄|2 ≤ CGε

so we have :

d

dt
(Gε −Q) ≤ C((Gε −Q) + ε3)

Then the Theorem follows by Gronwall’s lemma.
�

Proof of identity (115) : Here we have to compute :

R =
1

ε

∫

v̄(x + ε∇ϕ) · ∇ϕ− (v̄∇ϕ̄)(x + ε∇ϕ) + (1 − ε∆ϕ̄)(v̄ · ∇ϕ̄− v̄ · ∇ϕ)

Using lemma 2.22 we have :

R =
1

ε

∫

v̄ · ∇ϕ− v̄ · ∇ϕ̄+ v̄ · ∇ϕ̄− v̄ · ∇ϕ

+

∫

∇v̄ · ∇ϕ∇ϕ−∇(v̄∇ϕ̄)∇ϕ− v̄∇ϕ̄∆ϕ̄ + v̄∇ϕ∆ϕ̄

+

∫

(< ∇v̄ > −∇v̄)∇ϕ∇ϕ− ε < ∇2(v̄∇ϕ̄) > ∇ϕ∇ϕ

We see that the first line cancels. Then we show that the last line is bounded by Cε3. This is obvious
for the last term since from Theorem 2.20 we have ‖∇ϕ̄, v̄‖W 2,∞ ≤ Cε. Then for the first term we
show the

Lemma 2.23. We define

∆ =

∫

(< ∇v̄ > (x) −∇v̄(x))∇ϕ∇ϕdx,

then one has :

|∆| ≤ Cε10/3 + C

∫

|∇ϕ−∇ϕ̄|2dx.
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Proof : First we show that if Θ(R) =
∫

{|∇ϕ|≥R}
|∇ϕ|2,

Θ(R) ≤ C

∫

|∇ϕ−∇ϕ̄|2 +
Cε4

R2
.

Proof :
∫

|∇ϕ|2 ≤ Cε2, implies that

meas{|∇ϕ| ≥ R} ≤ C(
ε

R
)2.

Since |∇ϕ̄(t, x)| ≤ ε for (t, x) ∈ [0, T ′x] × Td

Θ(R) ≤
∫

{|∇ϕ|≥R}

|∇ϕ̄|2 +

∫

{|∇ϕ|≥R}

|∇ϕ−∇ϕ̄|2

≤ Cε4

R2
+

∫

|∇ϕ−∇ϕ̄|2 .

Then we have

∆ ≤ CΘ(R) +

∫

|∇ϕ|≤R

|< ∇v̄ > (x) −∇v̄(x)| ∇ϕ∇ϕ

with |< ∇v̄ > (x) −∇v̄(x)| ≤ Cε |∇ϕ|

thus ∆ ≤ Cε

∫

|∇ϕ|≤R

|∇ϕ|3 + CΘ(R)

≤ C

(

εR

∫

|∇ϕ|2 +
ε4

R2
+

∫

|∇ϕ−∇ϕ̄|2
)

≤ C

(

ε3R + +
ε4

R2
+

∫

|∇ϕ−∇ϕ̄|2
)

for all R, so for R = ε(1/3) one obtains :

∆ ≤ Cε10/3 + C

∫

|∇ϕ−∇ϕ̄|2 .

�

Thus we have shown that R = S +O(ε4), and S = Σ6
k=1Tk where each Tk is given by :

T1 = ∂j v̄i∂jϕ∂iϕ

T2 = −∂j v̄i∂jϕ∂iϕ̄
T3 = −v̄i∂ijϕ̄∂jϕ
T4 = ∂j v̄i∂jϕ̄∂iϕ̄

T5 = v̄i∂ijϕ̄∂jϕ̄

T6 = v̄i∂jjϕ̄∂iϕ

where we have used Einstein’s convention for repeated indices. First we have

T5 = −1

2

∫

(∇ · v̄) |∇ϕ̄|2
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T1 + T2 + T4 =

∫

∂j v̄i(∂jϕ− ∂jϕ̄)(∂iϕ− ∂iϕ̄) + T7

with T7 =
∫

∂j v̄i∂jϕ̄∂iϕ.

T6 = −
∫

∂iv̄i∂jjϕ̄ϕ+ v̄i∂ijjϕ̄ϕ

and

−
∫

v̄i∂ijjϕ̄ϕ =

∫

∂j v̄i∂ijϕ̄ϕ+ v̄i∂ijϕ̄∂jϕ

thus

T6 =

∫

−(∇ · v̄)∆ϕ̄ ϕ+ T8 − T3

with T8 =
∫

∂j v̄i∂ijϕ̄ϕ. Then

T8 = −
∫

∂j v̄i∂jϕ̄∂iϕ+ ∂ij v̄i∂jϕ̄ϕ

= −T7 +

∫

∇ · v̄(∆ϕ̄ϕ+ ∇ϕ̄∇ϕ)

and finally we obtain

S(t) =

∫

∇v̄(∇ϕ̄−∇ϕ)(∇ϕ̄−∇ϕ) − 1

2
(∇ · v̄) |∇ϕ̄−∇ϕ|2

+
1

2

∫

(∇ · v̄) |∇ϕ|2

and the identity (115) is proved.
�
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6. Appendix

6.1. Existence and uniqueness of solutions to second order ODE’s with BV field. In
this section we prove existence and a.e. uniqueness for ordinary differential equations of the form :

d

dt

(

X
V

)

=

(

V
E(t, X)

)

(116)

for X ∈ Td, Y ∈ Td, and where the field E belongs to L∞(]0, T [×Td)∩L1(]0, T [, BV (Td)). We work
in the flat torus for simplicity, but our results are still valid in an open subset of Rd. This result is
an adaptation of the proof of [30] that uses the result of [9] on renormalized solutions of transport
equations.

Renormalized solutions for Vlasov equation with BV field. Theorem 3.4 in [9] adapted to the
periodic case sates that if f ∈ L∞(]0, T [×T

d × R
d) satisfies :

∂f

∂t
+ ∇x · (ξf) + ∇ξ · (E(t, x)f) = 0(117)

with E(t, x) ∈ L1(]0, T [×Td) ∩ L1(]0, T [, BV (Td)), then for all g Lipschitz continuous we have

∂g(f)

∂t
+ ∇x · (ξg(f)) + ∇ξ · (E(t, x)g(f)) = 0

The property of renormalization implies that
– solutions to (117) with initial data in L∞

loc(T
d × Rd) belong to

C(]0, T [, Lploc(T
d × Rd)) for any 1 ≤ p <∞,

– solutions to (117) with prescribed initial data in L∞(]0, T [×Td × Rd) are a.e. unique,
– if En converges to E in L1(]0, T [×T

d) then the solutions of (117) with En instead of E converge
to the solution of (117).

We notice that equation (81) satisfies the hypothesis of the Theorem, and thus will have the renor-
malization property. This renormalization property enabled DiPerna and Lions in [30] to obtain a.e.
uniqueness for solutions of the corresponding ODE’s. Indeed, the ODE

∂tX(t, s, x) = b(t, X)

X(s, s, x) = x

is associated to the transport equation :

∂tu+ b(t, x).∇u = 0

whose solutions satisfy for all t, s ∈]0, T [

u(t, X(t, s, x)) = u(s, x).

We extend this consequence to the case of second order equation, with BV acceleration field. To the
kinetic equation

∂tf + ξ · ∇xf + E(t, x) · ∇ξf = 0(118)

we associate the second order ODE (116) which can rewritten as ∂ttX = E(t, X). The result is then
the following :
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Theorem 2.24. Let E(t, x) ∈ L∞(]0, T [×Td) ∩ L1(]0, T [, BV (Td)),
then the ODE

∂ttX(t, s, x, ξ) = E(t, X)(119)

(X(s, s, x, ξ), ∂tX(s, s, x, ξ)) = (x, ξ)(120)

admits an a.e. unique solution.

Proof of Theorem 2.24 : We know that through equation (116) equation (119) can be consi-
dered as a first order differential equation. Let us first consider the case where E is smooth. Note
Y ∈ Td ×Rd (resp. y) for (X, V ) (resp. for (x, ξ)) and B ∈ Rd× Rd for (ξ, E). Then for all s ∈]0, T [,
Y solves :

∂tY (t, s, y) = B(t, Y (t, s, y))(121)

Y (s, s, y) = y(122)

Then for all t, t1, t2, t3 ∈]0, T [ we have the following :

Y (t3, t2, Y (t2, t1, y)) = Y (t3, t1, y)

Y (t, t, y) = y

Y (t1, t2, Y (t2, t1, y)) = y

differentiating the last equation with respect to t2 yields :

∂sY (t, s, y) + ∇yY (t, s, y) ·B(s, y) = 0(123)

Y (t, t, y) = y(124)

Yt(s, y) = Y (t, s, y) thus solves a transport equation which is nothing but equation (118). Using
Theorem 2.10 we know that for all g : R → R Lipschitz continuous, g(t, s, y) = g0(Y (t, s, y)) is the
unique solution of

∂sg(t, s, y) + ∇yg(t, s, y) ·B(s, y) = 0(125)

g(t, t, y) = g0(y).(126)

Now we show existence and uniqueness for solutions of (121,122). Let t and s be fixed. Let us
consider a regularization En of the the field E and set Bn = (ξ, En). We have

– t→ Y1,n(t, s, y) that satisfies (121,122)
– s→ Y2,n(t, s, y) that satisfies (123,124).

From the stability Theorem 2.4 in [30] we know that the whole sequence
t→ Y2,n(t, s, .) converges in C(]0, T [, Lploc(R

d×Td)) to t→ Y2(t, s, .), the unique renormalized solution
of (123,124). Thus for fixed t the whole sequence Y2,n(t, s, .) converges strongly in Lploc(R

d×Td). Now
since for every n we have Y1,n(t, s, y) = Y2,n(t, s, y) the same property holds for Y1,n(s, t, .). Now we
can pass to the limit in the term Bn(t, Y1,n(t, s, y)). Indeed, by density of C∞

c functions in L1, if we
have Es ∈ C∞

c approximating E then

‖B(t, Yn(t, s, y))− B(t, Y (t, s, y))‖L1

≤ ‖B(t, Yn(t, s, y))− Bs(t, Yn(t, s, y))‖L1

+‖Bs(t, Yn(t, s, y)) − Bs(t, Y (t, s, y))‖L1

+‖B(t, Y (t, s, y)) −Bs(t, Y (t, s, y))‖L1
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The second term goes to 0 because of the strong convergence of Yn, the first and the third go
to 0 because Y and Yn are measure preserving mappings, and so for example ‖B(t, Y (t, s, y)) −
Bs(t, Y (t, s, y))‖L1 = ‖B(t, y) − Bs(t, y)‖L1. So finally we have

‖Bn(t, Yn(t, s, y)) − B(t, Y (t, s, y))‖L1

≤ ‖Bn(t, Yn(t, s, y)) − B(t, Yn(t, s, y))‖L1

+‖B(t, Yn(t, s, y)) − B(t, Y (t, s, y))‖L1

that goes to 0 and we can pass to the limit in the equation (121,122) and the existence of a solution
to (121,122) is proved.

To obtain uniqueness, we argue as in DiPerna-Lions. Any function of the form g0(Y (t, s, y)) is a solu-
tion of (125,126), thus by uniqueness of the solution of the transport equation we obtain uniqueness
of the ODE.

A remark on ODE’s of second order. In this section, we want to solve the Cauchy problem for :

∂ttX(t, x) = E(t, X)

(X(0, x) , ∂tX(0, x)) = (x, v(x))

with E as above. We are thus interested in monokinetic initial data.

Theorem 2.25. for all v0(x) vector field on Td, and for Lebesgue almost every δv ∈ Rd, there
exists an a.e. unique solution to

∂ttX(t, x) = E(t, X(t, x))

(X(0, x) , ∂tX(0, x)) = (x, v0(x) + δv)

Proof : Let g(x, ξ) be the indicator function of the set of those (x; ξ) such that the trajectory coming
from x is not well defined. We just have to prove that for a.e. δv ∈ Rd we have

∫

g(x, v0(x)+δv)dx = 0,
which is true because

∫

g(x, v0(x) + ξ)dxdξ =

∫

g(x, ξ)dxdξ = 0.

Stability. Using the fact that for En converging to E in L1 with
E ∈ L1(]0, T [, BV (Td)), we have Xn(t, x, v) → X(t, x, v) in C([0, T ], Lp), we have then, for all t, for
almost every δv, Xn(t, x, v

0(x) + δv) → X(t, x, v0(x) + δv) in Lp. Thus we have

Theorem 2.26. If En converges to E in L1 let Xn be solution of

∂ttXn(t, x) = En(t, Xn(t, x))

(Xn(0, x), ∂tXn(0, x)) = (x, v0(x) + δv)

then for all t, for almost every δv, Xn converges in Lp(R3)− s to a solution (unique for almost every
δv) of

∂ttX(t, x) = E(t, X)

(X(0, x), ∂tX(0, x)) = (x, v0(x) + δv)
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6.2. Control of macroscopic density in kinetic
equations. Here we are going to prove the lemma 2.17 :

Lemma 2.27. Let f ∈ L∞([0, T ] × Td × Rd) satisfy

∂f

∂t
+ ∇x · (ξf) + ∇ξ · (E(t, x)f) = 0(127)

f(0, ., .) = f 0(128)

with

‖E‖L∞
t (L∞

x ∩BVx) ≤ F.(129)

Let the initial condition f0 be such that :

a(x, ξ) ≤ f(0, x, ξ) ≤ b(x, ξ),

with ρa(x) =
∫

a(x, ξ)dξ ≥ m > 0 and ρb(x) =
∫

b(x, ξ)dξ ≤M <∞ and a, b satisfying

|∇x,ξa, b| ≤
c

1 + |ξ|d+2
(130)

Then there exists a constant R > 0 such that

(ρa(x) −Rt) ≤ ρ(t, x) ≤ (ρb(x) +Rt).

Proof : First suppose that the force field and the initial data are smooth. For equation (127,128)
we can exhibit characteristics (x, ξ)(t; t0, x0, ξ0), giving the evolution of the particles in the phase
space. We have f(t, x, ξ) = f(t0, x0, ξ0). Since the initial data is compactly supported and the force
field is bounded in the L∞ norm, we have

|ξ − ξ0| ≤ F |t− t0|,

|x− x0| ≤ (|ξ0| +
F

2
|t− t0|)|t− t0|.

If for t = 0 we have a(x, ξ) ≤ f(0, x, ξ) ≤ b(x, ξ) then

A(t, x, ξ) ≤ f(t, x, ξ) ≤ B(t, x, ξ)

A(t, x, ξ) = inf
|σ1|,|σ2|≤1

a(x + |t− t0|(ξ +
F

2
|t− t0|)σ1, ξ + F |t− t0|σ2)

B(t, x, ξ) = sup
|σ1|,|σ2|≤1

b(x + |t− t0|(ξ +
F

2
|t− t0|)σ1, ξ + F |t− t0|σ2)

Using (130) and integrating in ξ we find thus a constant R = R(F,C, d) such that for t− t0 ≤ 1 we
have :

ρa(x) −R|t− t0| ≤ ρ(t, x) ≤ ρb(x) +R|t− t0|.

Next we need to show that the solution of the regularized equation converges to the solution we are
studying : this result comes from the uniqueness of the solution to (127,128) which is a consequence
of the renormalization property. Indeed since E is bounded in BV the system (127,128) admits a
unique renormalized solution and the sequence of approximate solutions converge in C([0, T ], Lpx,ξ)
for 1 ≤ p < ∞ thus the bounds obtained above are preserved. We notice that the uniqueness of the
limit is crucial to conclude. �
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6.3. Regularity of the polar factorization on the flat torus. Here we deduce from [49],
[24] and [18], [20], [21] the Theorem 2.14.

Theorem 2.28. If ρ ∈ Cα(Td) with 0 < m ≤ ρ ≤M is a probability measure on Td then Ψ = Ψ[ρ]
(see definition 2.13) is a classical solution of

detD2Ψ = ρ(131)

and satisfies :

‖∇Ψ(x) − x‖L∞ ≤ C(d) =
√
d/2(132)

‖D2Ψ‖Cα ≤ K(m,M, ‖ρ‖Cα)(133)

Proof of Theorem 2.28 : Consider ρ a Zd periodic probability measure, satisfying

0 < m ≤ ρ ≤M,(134)

and Φ[ρ] as in Definition 2.13. First it is shown in [24] that

|∇Φ[ρ](x) − x| ≤ C(d).(135)

It follows that the strict convexity argument of [18] applies : indeed if Φ = Φ[ρ] is not strictly convex
its graph contains a line and this contradicts (135). Moreover since Φ − |x|2/2 is globally Lipschitz
and periodic there exists N(d) such that ‖Φ − |x|2/2‖L∞ ≤ N(d). It follows then that there exists
0 < r(d) ≤ R(d) and M(d) such that

B(r(d)) ⊂ {Φ − Φ(0) ≤M(d)} ⊂ B(R(d))(136)

It remains to show that our solution “ à la Brenier” is a solution in the Aleksandrov sense of the
Monge-Ampère equation

m ≤ detD2Φ ≤M.

This is a direct consequence with minor changes (to adapt to the periodic case) of Lemma 2 of [21].

Then, normalizing Φ to Φ̃ = Φ − Φ(0) −M(d) it follows that Φ̃ is a solution of

ρ(∇Φ̃) detD2Φ̃ = 1

Φ̃ = 0 on ∂Ω

B(r(d)) ⊂ Ω ⊂ B(R(d))

Thus the interior regularity results of [20] apply uniformly to all Φ[ρ] with ρ satisfying (134) and
‖ρ‖Cα(Td) bounded and Theorem 2.14 follows.
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G. Loeper1

Résumé. This paper studies the Euler-Poisson system and its fully non-linear counterpart, the Euler-
Monge-Ampère system, where the Monge-Ampère equation substitutes for the Poisson equation. Using
energy estimates, long term existence and convergence of both systems to the Euler equations is proved.

1. Introduction

In this paper we consider a model of a collisionless plasma where the ions are supposed to be at rest
and create a neutralizing background field. The motion of the electrons can then be described by using
either the kinetic formalism or the hydrodynamic equations of conservation of mass and momentum
as we do here. The self-induced electric field is the gradient of a potential given either by the linear
Poisson equation ∆φ = 1

ε
(ρ−1) or by the fully non-linear Monge-Ampère equation det(I+ε∂ijφ) = ρ.

This gives the Euler-Poisson ((E − P )) system and Euler-Monge-Ampère ((E −MA)) system. The
systems are thus the following :

∂tρ + ∇ · (ρv) = 0

∂tv + v · ∇v =
1

ε
∇φ

∆φ =
1

ε
(ρ− 1) in the Poisson case

det(I + ε∂ijφ) = ρ in the Monge-Ampère case.

Note that the systems are pressureless, and the only force is due to electrostatic interaction. The
asymptotic we look at consists in considering large scales compared to the Debye length (ε). At
those scales the plasma appears to be electrically neutral. In this limit the plasma behaves like an
incompressible fluid thus governed by the incompressible Euler equation (E). We intend to rigorously
justify those limits in this paper.

Whereas the Euler-Poisson system relies on a well known physical model, the Euler-Monge-
Ampère system, less famous, is a fully non-linear (but asymptotically close in the quasi neutral
regime) version of the Euler-Poisson system, which also has the geometric interpretation to describe
approximate geodesics on the group of measure preserving diffeomorphisms, an interpretation that
will be developed more accurately in the sections 3.1, 3.1.2 devoted to the Euler-Monge-Ampère
equation. ( See also chapter 2 where the closely related Vlasov-Monge-Ampère system is introduced).
The reader can refer to [42] and [55] where different regimes of the Euler-Poisson system are studied.

To see why both systems should be asymptotically close in the quasi-neutral regime, notice that
if ρ is close to 1 then ε∂ijφ should be small and thus det(I + ε∂ijφ) = 1 + ε∆φ + O(ε2) and one
recovers the Poisson equation. For this reason the proof of the convergence of both systems will be
very close and this is why we present them altogether.

This work can be seen as the continuation of the study begun in the chapter 2 where the quasi
neutral limit of the Vlasov-Monge-Ampère system was studied. It also provides the proof of the
uniform bounds of solutions to (E − P ) used in the section 5 of chapter 2. In a broader perspective,
it concerns the motion of slightly compressible fluids seen as singular perturbations of the Euler
incompressible equation : this field as been investigated using different techniques :

1Laboratoire J.A.Dieudonné, Université de Nice-Sophia-Antipolis, Parc Valrose, 06108 NICE Cedex 2.
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- Traditional analysis and the geometrical property of Euler equation (see sections 3.1 and 3.1.2)
as done in [31] where the convergence holds in say L∞ for the velocity and in the case of barotropic
fluids (i.e. when the pressure is a function of the density ρ, a case different from the one studied
here.)

- Energy estimates as done in [45] again for the case of barotropic fluids, where convergence holds
in all Hs norms for well prepared initial data. The result has been also extended to the non-isentropic
case by [50].

- Pseudo-differential estimates as done in [41] which can be seen as a pseudo-differential genera-
lization of [45] and where the same convergence holds for a broader class of singular perturbations.

- Modulated energy techniques for convergence of the Vlasov-Poisson system to the so-called
dissipative solutions of the Euler equation, as done in [13], and for the convergence of Vlasov-Monge-
Ampère system (a kinetic version of the Euler-Monge-Ampère system) to Euler as done in chapter
2. The result obtained there says roughly that the convergence holds in “L2” norms and does not
require smoothness of the initial data.

Here we obtained by energy estimates a convergence to the Euler incompressible system in L∞
t H

s
x

norm for any s ≥ s0 = E(d/2) + 2 where E will denote the integer part. The convergence of both
systems holds on the range of time on which the solution of Euler is smooth enough. We obtain also
that both systems are closer to each other than they are close to the Euler incompressible system.
(E − P )ε is thus a corrector in the convergence of (E −MA)ε to (E). Although the operators that
define the acceleration from the density are differential operators, (and even fully non-linear in the
second case) our proof doesn’t use the pseudo-differential formalism. Actually the general theorem
obtained by Grenier for singular perturbations does not apply directly to the Euler-Poisson system.

We split the rest of the paper in two sections : the first one devoted to the study of the Euler-
Poisson system, and the second devoted to the study of the Euler-Monge-Ampère system.

2. The Euler-Poisson system

Here x ∈ Td = Rd/Zd and t ∈ R+. v(t, x) ∈ Rd stands for the velocity and ρ(t, x) ∈ R+ is the
macroscopic density of electrons. φ(t, x) ∈ R is the electrostatic potential. d = 2 or 3. We consider
the following Euler-Poisson system denoted by (E − Pε) :

∂tρ+ ∇ · (ρv) = 0(137)

∂tv + v · ∇v =
∇φ
ε

(138)

ε∆φ = ρ− 1(139)

and consider the limit ε going to 0. We recall also the incompressible Euler equation (E) :

∂tv + v · ∇v = ∇p
∇ · v = 0.

(140)

We will then prove the following :

2.1. Result.

Theorem 3.1. Let (v̄, p) be a smooth solution of the Euler incompressible system (140) on [0, T ]×
Td, with initial data v̄0, satisfying v̄ ∈ L∞([0, T ], Hs(Td)) for some s ≥ s0 = E(d/2)+2, (E the integer
part), let vε0, ρ

ε
0 be a sequence of initial data such that ε−1(vε0 − v̄0) and ε−2(ρε0 − 1) are bounded in

Hs(Td). Then there exists a sequence (vε, ρε) of solutions to (E−Pε) with initial data vε0, ρ
ε
0 belonging
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to L∞([0, Tε], H
s(Td)) with lim infε→0 Tε ≥ T . Moreover for T ′ < T and ε small enough ε−1(vε − v̄)

and ε−2(ρε − 1) are bounded in L∞([0, T ′], Hs′(R2)) for some s′ < s, s′ going to +∞ as s goes to
+∞. Finally when T = +∞, Tε goes to infinity.

2.2. Proof of Theorem 3.1.
2.2.1. Heuristics. Let us introduce v̄, p the solution of the Euler incompressible system (140) and

corresponding pressure. Note that by taking the divergence of (140) the pressure is given by the
following :

∆p =

d
∑

i,j=1

∂iv̄
j∂j v̄

i.

We will all along the paper use the following notation : for two vector fields u, v

∇u : ∇v =
d
∑

i,j=1

∂iu
j∂jv

i.

If v is solution to (E − Pε) we note also

v = v̄ + εv1,

ρ = 1 + ε2ρ1.

In terms of the unknowns v1, E1 = ∇∆−1(ρ1) the system (E − Pε) takes the following form :

∂tv1 + v1 · ∇v̄ + v̄ · ∇v1 + εv1 · ∇v1 =
E1 −∇p

ε
∂tE1 + ∇ · E1 v̄ + ε∇ ·E1 v1 = −v1

ε
+ ∇× F

∇× E1 = 0

(141)

where ∇× F is just a Lagrange multiplier for the irrotationality constraint on E1. Keeping only the
leading order terms of (141), one gets the following system

∂tv1 =
E1 −∇P

ε

∂t(E1 −∇P ) = −v1

ε
.

that describes the oscillation of the electric field. Setting Ẽ1 := E1 −∇P this yields

∂tt

(

v1

Ẽ1

)

(t, x) = − 1

ε2

(

v1

Ẽ1

)

(t, x).

The solution is thus with complex notations

uε = uε0 exp i(
t

ε
+ ϕ)

where uε is the unknown vector of R2d, given by uε = (v1
1, ..., v

d
1 , Ẽ

1
1 , ..., Ẽ

d
1) with the compatibility

condition Ẽj
1 = i

ε
vj1 and the energy of the perturbation is given by E = 1

2
(|v1|2+ε2|Ẽ1|2) and conserved.
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2.2.2. Reformulation of the system with new unknowns. We define the new unknowns ω1, β1, ρ1

as follows :

∇ · v = εβ1

ρ = 1 + ε2ρ1 = 1 + ε∆φ

curl v = ω = ω̄ + εω1

with v̄, p, ω̄ = curl v̄ as before. We note also

v = v̄ + εv1

but v1 is not really an unknown since it can be obtained from ω1 and β1 : Indeed when d = 2 we have

∂1β1 + ∂2ω1 = ∆v1,(142)

∂2β1 − ∂1ω1 = ∆v2.(143)

In the 3 dimensional case we have equations (142, 143) replaced by

(∇×∇× v) + ∇(∇ · v) = ∆v

and thus

(∇× ω1)
i + ∂iβ1 = ∆ui1.(144)

Note that when d = 2 the vorticity is scalar and when d 6= 2 it is a vector field of Td. Taking the curl
of equation (138) we recall the following identities :

∂tω + (v · ∇)ω + (∇ · v)ω = 0 when d = 2,(145)

∂tω + (v · ∇)ω + (∇ · v)ω + (ω · ∇)v = 0 when d = 3.(146)

When d = 2 the EP system then becomes :

∂t(ω̄ + εω1) + v · ∇(ω̄ + εω1) = −(ω̄ + εω1)εβ(147)

∂tεβ1 + v · ∇εβ1 + 2ε∂iv̄
j∂jv

i
1 + ε2∂iv

j
1∂jv

i
1 =

∆φ

ε
− ∂iv̄

j∂j v̄
i(148)

∂tε
2ρ1 + v · ∇ε2ρ1 = −(1 + ε2ρ1)εβ1(149)

whereas when d = 3 one would have to replace equation (147) by

∂t(ω̄ + εω1) + v · ∇(ω̄ + εω1) = −(ω̄ + εω1)εβ − ω · ∇v(150)

Noticing that ∆φ = ερ1, if we set

ρ̃1 = ρ1 − ∆p(151)

we get the following system in two dimensions :


















∂tω1 + v · ∇ω1 = −ω̄β1 − εω1β1 − v1 · ∇ω̄
∂tβ1 + v · ∇β1 =

ρ̃1

ε
− 2∇v1 : ∇v̄ − ε∇v1 : ∇v1

∂tρ̃1 + v · ∇ρ̃1 = −β1

ε
− ε(ρ̃1 + ∆p)β1 − (∂t∆p+ v · ∇∆p)

(152)

In 3 dimensions one would replace the first equation by

∂tω1 + v · ∇ω1 =(153)

−ω̄β1 − v1 · ∇ω̄ − ω̄ · ∇v1 − ω · ∇v̄ − εω1β1 − εω1 · ∇v1(154)
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Remark : For the pair β1, ρ̃1 we have at the leading order the equation

∂tβ1 =
ρ̃1

ε

∂tρ̃1 = −β1

ε

We for which the solutions are

β1(t) = R [β0
1 exp(

it

ε
)]

ρ̃1(t) = R [ρ̃0
1 exp(

it

ε
)]

with β0
1 , ρ̃

0
1 = iβ0

1 ∈ C. The remainder of the right hand side consists in terms that are like
O(|ω1, β1, ρ̃1|) + ε O(|ω1, β1, ρ̃1|2) +O(1) as long as the solution of Euler is smooth.

2.2.3. Energy estimates. We handle the energy estimates when d = 2 but the same result would
hold when d = 3, just with more terms. The system can be written in the following way :

∂tu
ε +
∑

i

vi∂iu
ε +Rεuε = Sε(uε)(155)

uε(0) = uε0(156)

where v is still the velocity, and where

u =





ω1

β1

ρ̃1



 , Rε =





0 0 0
0 0 1

ε
0 −1

ε
0





Sε is given by :

Sε =





−ω̄β1 − εω1β1 − v1 · ∇ω̄
−2∇v1 : ∇v̄ − ε∇v1 : ∇v1

−ε(ρ̃1 + ∆p)β1 − (∂t∆p+ v · ∇∆p)





We apply ∂γ to this equation, with γ = (γ1, ..., γd) and ∂γ means ∂|γ|

∂xγ1

1 ...∂xγd

d

and where |γ| =
∑d

i=1 γ
i.

One gets

∂t∂
γu + vi∂i∂

γu + Σ +Rε∂
γu = ∂γS

where

Σ =
d
∑

i=1

∑

|µ|≥1,γ≥µ

∂µvi∂γ−µ∂iu.

Then we have

Lemma 3.2. If γ > d/2, then for Σ and S defined as above we have :

‖Σ(t, ·)‖L2(Td) ≤ C(1 + ‖u(t, ·)‖Hγ(Td) + ε‖u(t, ·)‖2
Hγ(Td))

and

‖∂γS(t, ·)‖L2(Td) ≤ C(1 + ‖u(t, ·)‖Hγ(Td) + ε‖u(t, ·)‖2
Hγ(Td)).
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Proof : Point 1 : the proof is a straightforward adaptation of the proof of [1] p.151. It is based
on the following estimate : [1] Proposition 2.1.2 p. 100 :

Proposition 3.3. If u, v ∈ L∞ ∩Hs s ∈ N, then for any δ, η, |δ| + |η| = s, one has

‖(∂δu)(∂ηv)‖L2 ≤ C(‖u‖L∞‖v‖Hs + ‖u‖Hs‖v‖L∞).

Applying this result to ∂µvi∂γ−µ∂iu |µ| ≥ 1 we obtain

‖∂µvi∂γ−µ∂iu‖L2(Td) ≤ C
(

‖∇vi‖L∞(Td)‖u‖Hγ(Td) + ‖∇vi‖Hγ(Td)‖u‖L∞(Td)

)

.

We know that ‖ · ‖L∞(Td) ≤ C‖ · ‖Hγ(Td) if γ > d/2. Thanks to (142, 143) we have for any s

‖∇v1‖Hs(Td) ≤ C(‖ω1‖Hs(Td) + ‖β1‖Hs(Td)).(157)

thus ‖∇v1‖Hγ(Td) ≤ C‖u‖Hγ(Td). Then using that v = v̄ + εv1 we conclude.

Point 2 : We also know thanks to proposition 3.3 that for s > d/2

‖∇v1 : ∇v1‖Hs ≤ C‖∇v1‖L∞‖∇v1‖Hs.

It follows that for s > d/2, we have

‖Sε‖Hs ≤ C(1 + ‖uε‖Hs + ε‖uε‖2
Hs)

where C depends on the smoothness of the solution of (140).
�

Then after having applied ∂γ to (141) and multiplied by ∂γu and noticing that for any w ∈ Rd+2 one
has (w,Rεw) = 0 one gets finally

∂t|∂γu|2 +
d
∑

i=1

∂i(v
i|∂γu|2)

= ∇ · v |∂γu|2 + (∂γS + Σ)∂γu

Since ‖∇ · v‖L∞ = ε‖β1‖L∞ ≤ Cε‖u‖Hγ if γ > d/2, using lemma 3.2, and integrating over Td we
have, for any γ > d/2 :

d

dt
‖∂γu(t, ·)‖2

L2(Td) ≤ C
(

1 + ‖∂γu(t, ·)‖2
L2(Td) + ε‖∂γu(t, ·)‖3

L2(Td)

)

and we can conclude using a standard Gronwall lemma that if the smooth solution v̄, p of Euler exists
on a time interval [0, T ], for any T ′ < T the sequence uε for ε < ε0 is bounded in L∞([0, T ′], Hγ(R2))
for some ε0.

Minimal regularity for Euler. In order to perform our computations, we need to have at least
β1, ρ̃1, ω1 in L∞([0, T ]×Td) and thus to have an estimate on their norms in L∞([0, T ], Hc0(Td)), with
c0 strictly grater that d/2. We thus have to differentiate E(d/2) + 1 times the equation. It can be
checked that this requires that the L∞([0, T ], Hs0(Td)) of v̄ is bounded with s0 equal to E(d/2) + 2.

This achieves the proof of Theorem 3.1. �.
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3. The Euler-Monge-Ampère system

We consider here the following Euler-Monge-Ampère system denoted by (E −MAε) :

∂tρ + ∇ · (ρv) = 0(158)

∂tv + v · ∇v =
∇ψ − x

ε2
(159)

detD2ψ = ρ(160)

The last equation is to be understood in the following weak sense : ψ is the only (up to a constant )
convex function with ψ − |x|2/2 being Z

d periodic such that

∀f ∈ C0(Td),

∫

Td

f(∇ψ)dρ =

∫

Td

f(x)dx.(161)

A more precise sense will be given to the definition of ψ, in Theorem 3.4 and definition 3.5.

3.1. Geometric derivation of the Euler-Monge-Ampère system. This derivation has been
introduced in chapter 2 and [13] . We reproduce it for sake of completeness. The reader only interested
in the convergence proof may therefore skip this section.

3.1.1. The Euler equations of incompressible fluid mechanics. The motion of an incompressible
fluid in a domain Ω ⊂ Rd is described by the Euler incompressible equation (E) that we recall here :

∂tv + (v · ∇)v = ∇p,
∇ · v = 0,

Following Arnold (see [2]), we have a formal interpretation of the Euler incompressible equations :
introducing G(Ω) the group of all volume preserving diffeomorphisms of Ω with jacobian determinant
equal to 1, the Euler equations describe the geodesics of G(Ω) with length measured in the L2 sense.

3.1.2. Approximate geodesics. A general strategy to define approximate geodesics along a mani-
fold M (in our case M = G(Ω)) embedded in a Hilbert space H (here H = L2(Ω,Rd)) is to introduce
a penalty parameter ε > 0 and the following unconstrained dynamical system in H

∂ttX +
1

2ε2
∇X

(

d2(X,M))
)

= 0.(162)

In this equation, the unknown t→ X(t) is a curve in H, d(X,M) is the distance (in H) of X to the
manifold M , i.e. in our case when M = G(Ω),

d(X,G(Ω)) = inf
g∈G(Ω)

‖X − g‖H,(163)

finally, ∇X denotes the gradient operator in H. This penalty approach has been introduced for the
Euler equations by Brenier in [13]. It is similar-but not identical- to Ebin’s slightly compressible flow
theory [31], and is a natural extension of the theory of constrained finite dimensional mechanical
systems [58]. Actually if G(Ω) were a smooth manifold, the result would be exactly the one of [31],
Theorem 2.7, but this is not the case, here because the L2 metric is too weak. The penalized system
is formally hamiltonian in variables (X, ∂tX) with hamiltonian (or energy) given by :

E =
1

2
‖∂tX‖2

H +
1

2ε2
d2(X,G(Ω))

Multiplying equation (162) by ∂tX, we get immediately that the energy is formally conserved. The-
refore it is plausible that the map X(t) will remain close to G(Ω) if it is close at t = 0. A formal
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computation shows that, given a point X for which there is a unique closest point πX to X in the H
closure of G(Ω), we have :

∇X (d(X,G)) =
1

d(X,G)
(X − πX).(164)

Thus the equation (162) formally becomes :

∂ttX +
1

ε2
(X − πX) = 0.

To understand why solutions to such a system may approach geodesics along G(Ω) as ε goes to 0,
just recall that, in the simple framework of a surface S embedded in the 3 dimensional Euclidean
space, a geodesic t→ s(t) along S is characterized by the fact that for every t, the plane defined by
{ṡ(t), s̈(t)} is orthogonal to S. In our case, ∂ttX(t) is orthogonal to G(Ω) thanks to (163) and X(t)
remains close to G(Ω).
The approximate geodesic equation was introduced in [13] in order to allow a spatial discretization
of G(Ω) by the group of permutations of N points Aj chosen to form a grid of Ω. On such a discrete
group, the concept of geodesics becomes unclear meanwhile approximate geodesics still make sense.
They can be interpreted as trajectories of a cloud of N particles Xi moving in the Euclidean space
RdN , which substitutes for H. These particles solve the following coupled system of springs

ε2
d2Xi

dt2
+Xi − Aσi

= 0,

where σ is a time dependent permutation minimizing, at each fixed time t, Σ
∣

∣Xi − Aσ(i)

∣

∣

2
among

all other permutations of the first N integers. The convergence of this discrete model to the incom-
pressible Euler equations for well prepared initial data was proved in [13]. In order to study the
continuous version (162), a specific study of the problem (163) is needed.
Notation
Since we intend to work on the flat torus Td we might consider Zd additive mappings (i.e. such that

∀~p ∈ Z
d, X(.+ ~p) = X(.) + ~p),

as well as periodic mappings (i.e. mappings from Td into itself).
Then given m an additive mapping,we denote by m̂ the naturally associated mapping on Td. The fol-
lowing polar factorization Theorem is a periodic version of [10], it has been discovered independently
by [49] and [24].

Theorem 3.4. Let X : R
d → R

d be Z
d additive suppose that ρX = X#dx has a density in

L1([0, 1]d) then there exits an a.e. unique pair ∇φX , πX satisfying

X = ∇φX ◦ πX
with φX a convex function such that φX(x) − |x|2/2 is Z

d periodic, and πX : R
d → R

d additive such
that π̂X is measure preserving in Td. Moreover we have

‖X − πX‖L2([0,1]d) = ‖X̂ − π̂X‖L2(Td) = d(X̂, G(Td))

and if ψX is the Legendre transform of φX then

πX = ∇ψX ◦X.
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Remark : The pair φX , ψX is uniquely defined by the density ρX = X#dx.

Important properties of the optimal potential : The periodicity of φX(x) − |x|2/2 implies that ∇φX
and ∇ψX are Zd additive, and that ψX−|x|2/2 is also Zd periodic. This allows the following definition :

Definition 3.5. Let ρ be a probability measure on Td then we denote φ[ρ] (resp. ψ[ρ]) the unique
up to a constant convex function such that

φ[ρ] − | · |2/2 is Z
d periodic ,(165)

∀f ∈ C0(Td),

∫

Td

f(∇̂φ[ρ](x))dx =

∫

Td

f(x)dρ(x)(166)

(resp. its Legendre fenchel transform).

Remark : We recover thus that ψ[ρ], φ[ρ] will be generalized solutions of the following Monge-
Ampère equations

detD2ψ = ρ

ρ(∇φ) detD2φ = 1

3.1.3. The Vlasov-Monge-Ampère equation. As mentioned in the introduction, in chapter 2 a
kinetic version of this model has been studied :

∂f

∂t
+ ∇x (ξf) +

1

ε2
∇ξ (∇ψ(x) − x)f) = 0(167)

detD2ψ = ρ(168)

f(0, ·, ·) = f 0(169)

where the following was proved :

Theorem 3.6. Let f be a weak solution of (167, 168,169) with finite energy, let (t, x) → v̄(t, x)
be a smooth solution of (140) for t ∈ [0, T ], and p(t, x) the corresponding pressure, let

Hε(t) =
1

2

∫

f(t, x, ξ)|ξ − v̄(x)|2dxdξ +
1

2ε2

∫

ρ|∇ψ(x) − x|2dx,

then

Hε(t) ≤ C exp(Ct)(Hε(0) + Cε2), ∀t ∈ [0, T ].

The constant C depends only of the W 1,∞
x norm of the quantities

{v̄(s, .), p(s, .), ∂tp(s, .),∇p(s, .) s ∈ [0, T ]}.
Thus a “L2” convergence was obtained for the VMA system to the incompressible Euler System.

What we intend to obtain here is a convergence in any Hs norm for well prepared initial data provided
that s is larger that d/2 + 2.

3.2. Result.

Theorem 3.7. Let v̄, p be a smooth solution of the Euler incompressible system (140) on [0, T ]×
Td, with initial data v̄0 and satisfying v̄ ∈ L∞([0, T ], Hs(Td)) for some s ≥ s0 = E(d/2)+2(d/2)+2,
let vε0, ρ

ε
0 be a sequence of initial data such that ε−1(vε0 − v̄0) and ε−2(ρε0 − 1) are bounded in Hs(Td).

Then there exists a sequence (vε, ρε) of solutions to (E −MAε) with initial data vε0, ρ
ε
0 belonging to

L∞([0, Tε], H
s(Td)) with lim infε→0 Tε ≥ T . Moreover for T ′ < T and ε small enough ε−1(vε − v̄) and



3. THE EULER-MONGE-AMPÈRE SYSTEM 65

ε−2(ρε − 1) are bounded in L∞([0, T ′], Hs′(R2)) for some s′ < s, s′ going to +∞ as s goes to +∞.
Finally when T = +∞, Tε goes to infinity.

3.3. Proof of Theorem 3.7. The proof is much inspired from the proof of Theorem 3.1 for the
following reason : by taking the divergence of equation (159) one gets :

∂t(∇ · v) + v · ∇(∇ · v) + ∂iv
j∂jv

i =
∆ψ − d

ε2

Suppose that ρ is close to 1, we guess that we have the following :

ψ = |x|2/2 + ε2ϕ,

ρ = detD2ψ = 1 + ε2∆ϕ +O(ε4)

and thus ∆ψ = d+ ε2∆ϕ = d+ ρ− 1 +O(ε4). Therefore we expect that

∂t(∇ · v) + v · ∇(∇ · v) + ∂iv
j∂jv

i =
ρ− 1

ε2
+O(ε2),

and that the technique of Theorem 3.1 will apply. We will justify the previous expansion in the next
subsection :

3.3.1. Linearization of the Monge-Ampère operator in H s norm. This section is devoted to the
proof of the following proposition :

Theorem 3.8. let ρ be a probability measure on Td, d ≤ 3, let ψ satisfy

detD2ψ = ρ

in the sense of definition (3.5). Then, there exists ε0 such that if ‖ρ − 1‖H2(Td) ≤ ε0 then for any
s > d/2, there exists C(s) that satisfies

‖D2ψ − I‖Hs(Td) ≤ C(s)‖ρ− 1‖Hs(Td)(170)

‖(∆ψ − d) − (ρ− 1)‖Hs(Td) ≤ C(s)‖(ρ− 1)‖2
Hs(Td).(171)

We first state the following result that can be obtained from [18] on the regularity of solutions
to Monge-Ampère equation adapted to the periodic case.

Theorem 3.9. Let ρ ∈ Cα(Td) for some α > 0, with 0 < m ≤ ρ ≤ M be a probability measure
on Td, let then ψ = ψ(ρ) in the sense of definition 3.5. Then ψ is a classical solution of

detD2ψ = ρ

and satisfies for any α′ < α :

‖∇ψ(x) − x‖L∞ ≤ C(d) =
√
d/2(172)

‖D2ψ‖Cα′ ≤ K(m,M, ‖ρ‖Cα , α, α′)(173)

Then we state a classical result of elliptic regularity that we will need to use in the course of the
the proof. It can be found in [39], Theorem 9.11.

Theorem 3.10. Let Ω be an open set in Rd, u ∈ W 2,p
loc (Ω) ∩ Lp(Ω), 1 < p < ∞, be a strong

solution of the equation

d
∑

i,j=1

aij∂iju = f
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in Ω where the coefficients aij satisfy

aij ∈ C0(Ω), f ∈ Lp(Ω);

λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2,
for i, j = 1..d. Then for any Ω′ ⊂⊂ Ω,

‖u‖W 2,p(Ω′) ≤ C(‖u‖Lp(Ω′) + ‖f‖Lp(Ω′)),

where C depends on d, p, λ,Λ,Ω′,Ω and the moduli of continuity of the coefficients aij on Ω′.

Now we are ready to prove Proposition 3.8. We recall that ψ satisfies

detD2ψ = ρ(174)

‖ρ− 1‖H2 ≤ ε0(175)

We suppose d = 3 and the proof can be reproduced in the case d = 2 with minor changes. The proof
is in 3 steps :
1-In the first step we prove that under condition (175) for any N ≥ 0 there exit εN , CN > 0 such
that for |γ| ≤ N if ‖ρ− 1‖H|γ| ≤ εN we have ‖D2ψ‖H|γ| ≤ CN .
2-Then we show that we have indeed the control (170).
3-Finally we prove (171).

We first prove by induction that if γ ∈ Nd then ρ ∈ H |γ| implies D2ψ ∈ H |γ|. It can be checked
during the proof that this bound will be uniform under the condition (175) for ε0 small enough.

First notice that this condition implies that there exists 0 < λ1 < 1 < λ2 with ρ(x) ∈ [λ1, λ2] and
that ρ is in Cα for some α = 1

2
. Then from Theorem 3.9, D2ψ ∈ Cα′

with α′ < α. Note also that

since ρ ∈ [λ1, λ2] and using equation (174), D2ψ ∈ Cα′
implies that [D2ψ]−1 ∈ Cα′

, and thus M ij the
comatrix of D2ψ is uniformly elliptic and in Cα′

.

The case γ = 0 is a consequence of Theorem 3.9.

For |γ| = 1 we differentiate (174) with respect to xν , this gives :

M ij∂ij(∂νψ) = ∂νρ(176)

with M ij the comatrix of ∂ijψ. Then if ∂νρ ∈ L2, by Theorem 3.10, ∂νψ ∈ W 2,2. If ∂νρ ∈ L6 we also
get that ∂νψ ∈ W 2,6.

For |γ| = 2 differentiating once more one with respect to xβ one gets :

M ij∂ij(∂νβψ) + (∂βM
ij)∂ij(∂νψ) = ∂νβρ(177)

still with M ij the comatrix of ∂ijψ. Suppose that ρ ∈ H2, then W 2,2 ⊂ W 1, 2d
d−2 = W 1,6 if d = 3, and

∂νψ ∈ W 2,6. ∂βM
ij is a sum of terms of the form ∂ij(∂βψ)∂klψ and thus the second term of the left

hand side of (177) is bounded in L2. Then once again by Theorem 3.10 one gets that ∂ij∂νβψ ∈ L2

if ∂νβρ ∈ L2.
Moreover if ∂νβρ ∈ L6 then ∂νρ ∈ Cα for some α > 0 and D2∂νψ ∈ Cα′

from (176) and Schauder
interior estimates (see [39], Theorem 6.2.). Thus (∂βM

ij)∂ij(∂νψ) ∈ Cα′
. From (177) and Theorem

3.10 we obtain ∂νβD
2ψ ∈ L6.
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We now make the following induction assumption :
(Hn) : Under assumption (175), for any γ ∈ Nd, |γ| ≤ n, ρ ∈ H |γ| implies that ∂γD2ψ ∈ L2. If
moreover ρ ∈ W |γ|,6 then ∂γD2ψ ∈ L6.
As we just saw, this assertion is true for n = 1, 2. Take |γ| = n + 1 ≥ 3, ρ ∈ H |γ|, and apply ∂γ to
(174) :

M ij∂ij∂
γψ +

∑

γ1+γ2+γ3=γ

|γ|−1≥|γ1|≥|γ2|≥|γ3|

∗ ∂ij∂γ1ψ∂kl∂γ2ψ∂mn∂γ3ψ = ∂γρ(178)

with ∗ some constant coefficients. We call T the second term of the left hand side of (178). Since
ρ ∈ H |γ|, ρ ∈ W |γ|−1,6 we have ∂αD2ψ ∈ L6(Td) for any |α| ≤ n using (Hn). Therefore T ∈ L2 and
since ∂γρ ∈ L2 we obtain M ij∂ij∂

γψ ∈ L2. Using Theorem 3.10 it follows that ∂γD2ψ ∈ L2.
Remember that |γ| ≥ 3 thus |γ3| ≤ 1

3
|γ| ≤ γ − 2, and |γ2| ≤ 1

2
|γ| ≤ γ − 2. Since d = 3, we have

H2 ⊂ Cα for some α > 0 and thus ∂kl∂
γ2ψ, ∂mn∂

γ3ψ are in Cα, moreover H1 ⊂ L6 and since
|γ1| ≤ |γ| − 1, ∂ij∂

γ1ψ is in L6. Therefore T is in L6. If ∂γρ ∈ L6 we have ∂γD2ψ in L6. So far we
have achieved the first step of the proof.

Now by induction on |γ| we prove (170) and (171). From (175) we have ‖ρ − 1‖L2 ≤ ε0 small.
Take ψ = |x|2/2 + ϕ solution of (160) with ϕ periodic and

∫

Td ϕ = 0. If ρ is close enough to 1 in L2

then the Wasserstein distance from ρ to 1 given by

W 2
2 (ρ, 1) =

∫

Td

1

2
ρ(x)|∇ϕ(x)|2 dx

will be small. See ([62]) for references about the Wasserstein distance. Remember that 0 < λ1 ≤ ρ ≤
λ2. Then ϕ will be small in in H1 norm, and D2ϕ is bounded in Cα thus by interpolation, D2ϕ will
be small in C0 norm. Then we have

det(I +D2ϕ) = 1 + ∆ϕ +Rij∂ijϕ

where R is a symmetric matrix whose coefficients are polynomials in ∂ijϕ of degree greater or equal
than 1. |Rij| is small and belongs to Cα uniformly for ‖ρ− 1‖Cα ≤ ε0, thus the matrix δij + Rij are
uniformly bounded, elliptic, and Cα continuous. Since ϕ satisfies

(δij +Rij)∂ijϕ = ρ− 1(179)

it follows from Theorem 3.10 that ‖∂ijϕ‖L2 ≤ C‖ρ− 1‖L2 and this proves (170) for γ = 0. If |γ| = 1,
we have

(M ij)∂ij∂νϕ = ∂νρ

with M uniformly bounded, elliptic and Cα continuous. For the same reasons we have ‖∂ij∂νϕ‖L2 ≤
C‖∂νρ‖L2 .
Now if |γ| ≥ 2, T is a sum of terms which contain all a product of at least two derivatives of ψ of
degree higher than 3. Since D3ψ = D3ϕ this means that

∂ij∂
γ1ψ∂kl∂

γ2ψ∂mn∂
γ3ψ

= ∂ij∂
γ1ϕ∂kl∂

γ2ϕ∂mn∂
γ3ψ
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Then by induction we know that ‖∂ijϕ‖H|γ|−1 ≤ C‖ρ− 1‖H|γ|−1 . Since ρ− 1 ∈ H |γ| we also have that
D2ψ ∈ H |γ|. Therefore ∂kl∂

γ2ϕ and ∂mn∂
γ3ψ are bounded in L∞. We obtain that

‖∂ij∂γ1ψ∂kl∂γ2ψ∂mn∂γ3ψ‖L2 ≤ C‖ρ− 1‖H|γ|−1

∂γϕ satisfies

(M ij)∂ij∂
γϕ = ∂γρ− T

thus from Theorem 3.10

‖∂γD2ϕ‖L2 ≤ C(‖ρ− 1‖H|γ|−1 + ‖∂γρ‖L2)

≤ C(‖ρ− 1‖H|γ|)

and we conclude that

‖D2ψ − I‖Hs ≤ C(s)‖ρ− 1‖Hs

for s ∈ N, s ≥ 2 and under condition (175) ; thus (171) is obtained.
Using Proposition 3.3 and the fact that ∂mn∂

γ3ψ is bounded in L∞, we can also obtain that

∂ij∂
γ1ϕ∂kl∂

γ2ϕ∂mn∂
γ3ψ ≤ C‖D2ϕ‖2

H|γ| ≤ C‖ρ− 1‖2
H|γ|

for |γ| ≥ 2. To obtain (171) note that formula (178) can be written in the following way :

∆∂γψ + Sij∂ij∂
γψ + T = ∂γρ

where Sij = M ij − I. The components of S are polynomials of degree greater or equal to 1 of ∂ijϕ,
thus ‖Sij‖Cα ≤ C‖D2ϕ‖Cα ≤ C‖ρ− 1‖H2 for some α > 0 and thus ‖Sij∂ij∂γϕ‖L2 ≤ C‖ρ− 1‖2

H|γ| . It
follows that

‖∆∂γϕ− ∂γρ‖L2 ≤ C‖∂γρ‖2
L2 .

Since ∆ϕ and ρ− 1 are periodic with zero mean value (171) follows and Proposition 3.8 is proved. �

3.3.2. Estimates. Doing the same change of variables as in the proof of Theorem 3.1

∇ · v = εβ1

ρ = 1 + ε2ρ1

curlv = ω = ω̄ + εω1

we obtain :

∂t(ω̄ + εω1) + v · ∇(ω̄ + εω1) = −(ω̄ + εω1)εβ(180)

∂tεβ1 + v · ∇εβ1 + 2ε∂iv̄
j∂jv

i
1 + ε∂iv

j
1∂jv

i
1 =

∆ψ − d

ε2
− ∂iv̄

j∂j v̄
i(181)

∂tε
2ρ1 + v · ∇ε2ρ1 = −(1 + ε2ρ1)εβ1(182)

Now we define Ξ by

∆ψ − d = ε2ρ1 + ε4Ξ,

and from Proposition 3.8 inequality (171), we have ‖Ξ‖Hs ≤ C‖ρ1‖2
Hs. The system can here be

written in the following way :

∂tu
ε +
∑

i

vi∂iu
ε +Rεuε = Sε(uε) + V ε

uε(0) = uε0
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still with

u =





ω1

β1

ρ̃1



 , Rε =





0 0 0
0 0 1

ε
0 −1

ε
0





with the same Rε, Sε as in the Euler-Poisson case and with

V ε =





0
εΞ
0



 ,

and thus ‖V ε‖Hs ≤ ε‖u‖2
Hs . Then the energy estimates are the same as in the first proof, the solution

u satisfying a control of the form :

d

dt
‖u‖Hs ≤ C‖u‖Hs + ε‖u‖2

Hs

and the same conclusion holds true. �

4. Higher order approximation

Here we prove that the the Euler-Poisson system and the Euler-Monge-Ampère system are closer
as ε goes to 0 than Euler-Poisson and Euler. We consider v̄, p a solution of the Euler incompressible
system (140) smooth in [0, T ]. For any ε > 0, we consider also vεep, ρ

ε
ep a smooth solution of the

(E−P )ε system with initial conditions vεep,0, ρ
ε
ep,0 satisfying the assumptions of Theorem (3.1). Thus

ε−1(vεep− v̄) and ε−2(ρεep− 1) are bounded in L∞([0, T ′], Hs(Td)) for some s > s0 for any 0 < T ′ < T .

Theorem 3.11. Let v̄, vεep, ρ
ε
ep be as above. Let vε0, ρ

ε
0 be a sequence of initial data such that

ε−2(vε0 − vεep,0) and ε−3(ρε0 − ρεep,0) are bounded in Hs(Td) for s ≥ s0 = E(d/2) + 2. Then there exists

a sequence (vε, ρε) of solutions to (E −MAε) with initial data vε0, ρ
ε
0 belonging to L∞([0, Tε], H

s(Td))
with lim infε→0 Tε ≥ T . Moreover for T ′ < T and ε small enough ε−2(vε − vεep) and ε−3(ρε − ρεep) are

bounded in L∞([0, T ′], Hs′(R2)) for some s′ < s, s′ going to +∞ as s goes to +∞.

Remark : We see here that the difference between solutions of (E − P )ε and (E −MA)ε is of
order ε3 for the density and of order ε2 for the velocity whereas the difference between solutions of
(E − P )ε (or (E −MA)ε) and Euler was of order ε2 for the density and of order ε for the velocity.
Proof : We introduce vep = v̄+ εv1, ρep = 1+ ε2ρ1 solution to (E−P )ε with β1 = ∇· v1, ω1 = curlv1.
Then we set

v = v̄ + εv1 + ε2v2

∇ · v = εβ1 + ε2β2

ρ = 1 + ε2ρ1 + ε3ρ2

curlv = ω = ω̄ + εω1 + ε2ω2.
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The system (E −MA)ε now reads :

∂t(ω̄ + εω1 + ε2ω2) + v · ∇(ω̄ + εω1 + ε2ω2)

= −(ω̄ + εω1 + ε2ω2)(εβ1 + ε2β2)(183)

∂t(εβ1 + ε2β2) + v · ∇(εβ1 + ε2β2)

+∇(vep + ε2v2) : ∇(vep + ε2v2)

=
∆ψ − d

ε2
− ∂iv̄

j∂j v̄
i(184)

∂t(ε
2ρ1 + ε3ρ2) + v · ∇(ε2ρ1 + ε3ρ2)

= −(1 + ε2ρ1 + ε3ρ2)(εβ1 + ε2β2)(185)

Here we will define Ξ by

∆ψ − d = ε2ρ1 + ε3ρ2 + ε4Ξ,

and thus from Proposition 3.8 we will have

‖Ξ‖Hs(Td) ≤ C‖ρ1 + ερ2‖2
Hs(Td) ≤ C(‖ρ1‖2

Hs(Td) + ε2‖ρ2‖2
Hs(Td))

Setting

u =





ω2

β2

ρ2





and using that v̄ + εv1, 1 + ε2ρ1 is a smooth solution to (E − P )ε we obtain that

∂tu + v · ∇u = Rεu + Tε

with Rε as before and Tε defined by

Tε =





−v2 · ∇wep − εβ1ω2 − β2ωep − ε2ω2β2

−εv2 · ∇β1 − 2∇vep : ∇v2 − ε2∇v2 : ∇v2 + Ξ
−εv2 · ∇ρ1 − εβ1ρ2 − εβ2ρ1 − ε2β2ρ2





Using again Proposition 3.3 as in lemma 3.2 we obtain that

‖Tε‖Hs(Td) ≤ C(1 + ‖u‖Hs(Td) + ε‖u‖2
Hs(Td))

for s large enough where the constant C depends on the smoothness of v̄, p, v1, ρ1 which is controlled
for t ≤ T ′ < T with T the time on which the solution of (140) is smooth. Then ρ2, v2 remain bounded
in L∞([0, T ′′], Hs(Td)) for any T ′′ < T ′ and for ε < ε0 small enough. It follows that 1

ε3
(ρep − ρema)

and 1
ε2

(vep− vema) remain bounded in L∞([0, T ′′], Hs(Td)). This achieves the proof of Theorem 3.11.
�
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G. Loeper1

Résumé. We consider the polar factorization of vector valued mappings introduced in [10] in the case
of a family of mappings depending on a parameter. We investigate the regularity with respect to this
parameter of the terms of the polar factorization by constructing some a priori bounds. To do so, we
consider the linearization of the associated Monge-Ampère equation which we view as a conservation
law.

1. Introduction

Brenier in [10] showed that given Ω an open set of Rd such that |∂Ω| = 0 with |.| the Lebesgue
measure of R

d, every Lebesgue measurable mapping X ∈ L2(Ω,Rd) satisfying the non-degeneracy
condition

∀B ⊂ R
d measurable, |B| = 0 ⇒ |X−1(B)| = 0(186)

can be factorized in the following (unique) way :

X = ∇Φ ◦ g,(187)

where Φ is a convex function and g is Lebesgue-measure preserving for Ω, i.e.

∀f ∈ C0(Ω),

∫

Ω

f(g(x)) dx =

∫

Ω

f(x) dx(188)

If the measure ρ is defined by

∀f ∈ C0(Rd),

∫

Rd

fdρ =

∫

Ω

f(X(a))da(189)

one sees first that the condition (186) is equivalent to the fact that ρ is absolutely continuous with
respect to the Lebesgue measure, or has a density in L1(Rd, dx). Then Φ satisfies on Ω in the weak
sense of (191) below the following Monge-Ampère equation :

ρ(∇Φ(x)) detD2Φ(x) = 1,

and Ψ the Legendre transform of Φ, defined by

Ψ(y) = sup
x∈Rd

{x · y − Φ(x)}(190)

satisfies in the weak sense of (192) the equation

detD2Ψ(x) = ρ(x).

In this paper we are interested in the following problem : given a “time” dependent family of
mappings t → X(t, .), look at the regularity of the curve t → g(t, .),Φ(t, .),Ψ(t, .). We will obtain
our results by linearizing the factorization (187). One of the interests of such a study is its applica-
tion to the semi-geostrophic equation, a system arising in meteorology to model frontogenesis. This
application is discussed in section 7.

1Laboratoire J.A.Dieudonné, Université de Nice-Sophia-Antipolis, Parc Valrose, 06108 NICE Cedex 2.
email : loeper@math.unice.fr
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1.1. Heuristics. Suppose that Ω is bounded, and for any t we denote by dρ(t, ·) = X(t, ·)#da
(with da the Lebesgue measure on Ω) the measure defined by (189). Then if Φ is as in (187) and Ψ
is its Legendre transform, we have

∀g ∈ C0(Rd),

∫

Ω

g(∇Φ(y))dy =

∫

Rd

g(x)dρ(x)(191)

∀f ∈ C0(Ω),

∫

Rd

f(∇Ψ(x))dρ(x) =

∫

Ω

f(y)dy.(192)

Note that the existence and uniqueness of the pair ∇Φ,∇Ψ is not subject to the condition (186).
We suppose that X is chosen such that dρ(t, ·) is absolutely continuous with respect to the Lebesgue
measure of R

d thus dρ(x) = ρ(x)dx with ρ ∈ L1(Rd). Considering formally that all the terms are
smooth, if we differentiate with respect to time, we obtain :

∀f ∈ C1(Rd),

∫

Ω

∇f(X(t, a)) · Ẋ(t, a)da =

∫

Rd

f(x)∂tρ(t, x)dx

=

∫

Ω

∇f(∇Φ(t, x)) · ∂t∇Φ(t, x)dx.(193)

1.1.1. Parallel with the Hodge decomposition of vector fields. By differentiating (187) with respect
to time one finds

∂tX(t, a) = ∂t∇Φ(t, g(t, a)) +D2Φ(t, g(t, a))∂tg(t, a).

Thus if X is invertible, one can write write ∂tX(t, a) = v(t, X(t, a)) for some “Eulerian” vector field
v(t, x). g will then also be invertible and composing with g−1 one gets :

v(t,∇Φ(t, x)) = ∂t∇Φ(t, x) +D2Φ(t, x)w(t, x)(194)

with w = ∂tg(t, g
−1(t, x)). Then w is divergence free on Ω : indeed (188) is valid for all time, and

differentiating w.r.t time one gets formally :

∀f ∈ C0(Rd),

∫

Ω

∇f(g(t, x))∂tg(t, x) dx = 0.

By composing with g−1 we find that ∂tg(t, g
−1(t, x)) is divergence free. This gives rise to a decompo-

sition of vector fields : if dρ = da the Lebesgue measure of Ω then ∇Φ(x) = x and one recovers the
usual“div-curl”or Hodge decomposition of vector fields. Then for a generic ρ, the Lagrangian velocity
v(t, X(t, a)) = ∂tX(t, a) is decomposed as the sum of two terms : the first T1 = ∂t∇Φ(t, g(t, a)) is a
gradient computed at g, and the second T2 = D2Φ(t, g(t, a))w(t, g(t, a)) doesn’t move any mass, i.e
in Eulerian coordinates, T2 = w̄(t, X(t, a)) such that ∇ · (ρw̄) = 0.

1.1.2. The associated elliptic problem. Since Ψ solves the equation detD2Ψ = ρ then one retrieves
∂tΨ by solving the following elliptic problem :

ρ[D2Ψ]−1
ij ∂ij∂tΨ = ∂tρ(195)

∇∂tΨ · ~n1(∇Ψ) = 0 on (∇Ψ)−1(∂Ω)

where ρ[D2Ψ]−1 is the comatrix of D2Ψ. This is what we intend to do here, the difficulty coming
from the lack of regularity and ellipticity of this equation since we do not make any smoothness
assumption on ρ.
Let us now state our results :
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2. Results

In the remainder of the paper Ω will be kept fixed once for all and we will assume for simplicity
(although one may possibly remove this assumption through approximation) that it is smooth and
strictly convex. For compatibility ρ will be a probability measure on R

d and Ω of Lebesgue measure
one. M(Ω) will design the set of (possibly vector valued) bounded measures on Ω, with norm ‖.‖M(Ω).
I will be an non-empty open interval of R.

Theorem 4.1. Let Ω, I be as above, let

X : I × Ω → R
d.

Let for any t ∈ I ρ(t, ·) be the measure defined by dρ(t, ·) = X(t, ·)#da as in (189). Suppose that
ρ(t, ·) is supported for any t ∈ I in BR = B(0, R) that ∂tX ∈ L∞(I × Ω) and ρ ∈ L∞(I × Rd). Take

X(t) = ∇Φ(t) ◦ g(t)
g(t) = ∇Ψ(t) ◦X(t)

to be the polar factorization of X as in (187) where for some x0 in Ω we impose ∀t ∈ I
∫

Ω
Φ(t, x) dx =

0, then
1 - For a.e. t ∈ I ∂t∇Φ(t, ·) is a bounded measure on Ω with

‖∂t∇Φ‖L∞(I,M(Ω)) ≤ C(R, d)‖ρ‖
1
2

L∞(I×BR)‖∂tX‖L∞(I×Br)

and thus ∂tΦ ∈ L∞(I, L1∗(Ω)) with 1∗ = d/(d− 1).
2 - Φ(t, x) ∈ Cα(I, C0(Ω̄)) for some α ∈]0, 1[,
3 - ∂tg is a bounded measure on Ω with

‖∂tg‖L∞(I,M(Ω)) ≤ C(R, d)‖ρ‖L∞(I×BR)‖∂tX‖L∞(I×Ω)

4- If for any t ∈ I, ρ is supported in some open set Ω′ and ρ(·, ·) ≥ C > 0 on Ω′ then there exists
1 > β > 0 such that for any ω′ ⊂⊂ Ω′, ∇Ψ ∈ Cβ(I × ω′).
4’-If moreover Ω′ is convex, then for any ω ⊂⊂ Ω, ∇Φ ∈ Cβ(I × ω)

Remark1 : The C1,α regularity in the space variable in point 4, 4′ are due to [18],[20]. The precise
result is given in Proposition 4.4.
Remark2 : The condition

∫

Ω
Φ(t, x) dx = 0 is necessary, since the function Φ is only defined up to a

constant.
The Theorem 4.1 will be deduced through approximation from the following theorem :

Theorem 4.2. let I be as above, for any t ∈ I, let ρ(t, ·) be a smooth probability density of Rd

such that ρ(t, ·) is supported in B(0, R) and positive in B(0, R), let v(t, x) ∈ Rd be a smooth vector
field on Rd and satisfy on I × Rd

∂tρ + ∇ · (ρv) = 0,(196)

Let Ω be as above let Ψ(t, ·),Φ(t, ·) be as in (192,191), then for any t ∈ I, for any 1 ≤ p, r ≤ ∞,

‖∂t∇Φ‖Lq(Ω) ≤
(

‖ρ|v|2‖Lr‖D2Ψ‖Lr′(BR)‖D2Φ‖Lp(Ω)

)1/2

(197)

with q = 2p
1+p

, and in particular

‖∂t∇Φ‖M(Ω) ≤ C(R, d)
(

‖ρ|v|2‖L∞

)1/2
.
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[
∫

ρ|∂t∇Ψ|q
]1/q

≤
(

‖ρ|v|2‖Lr‖D2Ψ‖Lr′(BR)

[
∫

ρ|D2Ψ|p
]1/p

)1/2

,(198)

and in particular
∫

Rd

ρ|∂t∇Ψ| ≤ C(R, d)‖ρ‖
1
2

L∞(Rd)
‖ρ|v|2‖

1
2

L∞(Rd)
.

Remark 1 : Those theorems can be almost immediately adapted to the case of polar factorization
for mappings of the d-dimensional torus Td = Rd/Zd, see [49] and [24].
Remark 2 : It follows that for a pair (ρ, v) satisfying the conditions of Theorem 4.1 one can define
the decomposition as in (194). The uniqueness comes from the uniqueness of the polar factorization.

3. Related results

The linearization of the Monge-Ampère equation is a well known subject since it is used to carry
out the continuity method, in order to obtain solutions of the Monge-Ampère equation. However for
this purpose this is always made in the case where the densities and the domains considered are
smooth.

In [22] the authors proved Harnack inequality for solutions of

aij∂iju = 0

with a the comatrix of D2Ψ, Ψ convex, under the assumption that the measure ρ = detD2Ψ satisfies
the following absolute continuity condition :
C : For any 0 < δ1 < 1 there exists 0 < δ2 < 1 such that for any section S and any measurable set
E ⊂ S

if
|E|
|S| ≤ δ2 then

ρ(E)

ρ(S)
≤ δ1,(199)

(a section is a set of the form

St(x0) = {x|u(x) − u(x0) ≤ p · (x− x0) + t, p ∈ ∂u(x0)})

they showed that the solution of (detD2Ψ)(D2Ψ)−1
ij Diju = 0 satisfies a Harnack inequality on the

sections of Ψ and subsequently is Cα. The assumptions required for this result are thus non-satisfied
here since
1- we don’t know if the condition (199) is satisfied, and in fact this condition is sufficient to carry
out the arguments of [19], and then to prove C1,α regularity. Here the solution of the Monge-Ampère
equation is not even required to be C1.
2- our right hand side would be the time derivative of ρ and is not supposed to be in any Lp. It will
actually be only in W−1,∞ the dual of W 1,1.

4. Proof of Theorem 4.2

4.1. Preliminary results. First we need the following regularity results concerning smooth
solutions of Monge-Ampère equation :
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Proposition 4.3. Let Ω be as above, let ρ(t, x) be a probability measure supported in BR for
every t ∈ I, belong to C1,α(I × BR) and satisfy 0 < λ ≤ ρ(t, x) ≤ Λ, then there exists a unique
solution to

detD2Ψ(t, x) = ρ(t, x)(200)

∇Ψ(t, .) maps BR into Ω(201)

moreover , D2Ψ ∈ C1,α′
(I ×BR) for any α′ < α.

Remark : The system (200, 201) is understood in the sense of (192).
Proof : The regularity in the space variable follows from the regularity theory of the Monge-Ampère
equation, for which the reader can refer to [18]-[21], [29], [61]. Now if we consider u = ∂tΨ,

[aij] (t, x) = ρ(t, x) [D2Ψ(t, x)]
−1

then ∀t, u(t, ·) is solution of :

∂tρ(t, x) =
∑

i,j

aij∂iju(t, x) in BR(202)

∇u(x) · ~n1(∇Ψ(x)) = 0 x ∈ ∂BR(203)

with ~n1 the outer unit normal to ∂Ω. this problem is uniformly elliptic with coefficients in Cα and
right hand side in Cα. Let us say a word about the boundary condition : if ~n2 is the outer unit normal
to ∂BR, we know that uniformly we have then ~n2 · ~n1(∇Ψ) ≥ C > 0, (see [21] and [61], [29]) and
thus the boundary condition is strictly oblique.
Thus we conclude that ∂tΨ belongs to C2,α(BR).

�

The next proposition can be found in [18], [20].

Proposition 4.4. Let ρ be supported in Ω′, 0 < λ ≤ ρ ≤ Λ, and Ψ satisfy

detD2Ψ = ρ

in the sense of (192) with Ω convex. Then for some α ∈]0, 1[, Ψ ∈ C1,α
loc (Ω′) moreover if Ω′ is also

convex then Ψ (resp. its Legendre transform Φ) is in C1,α(Ω̄′) (resp. in C1,α(Ω̄)).

Then we need the following classical lemma :

Lemma 4.5. Let ϕ be a convex function from R
d to R, globally Lipschitz with Lipschitz constant

L. Then we have

‖D2ϕ‖M(BR) ≤ C(R, d)L.

Proof : we have

‖D2ϕ‖M(BR) ≤ C

∫

BR

∆ϕ

=

∫

∂BR

∇ϕ · n

≤ Hd−1(∂BR)L

�

Finally we need three useful identities :
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Lemma 4.6. Let Φ(t, ·),Ψ(t, ·) be for any t smooth convex functions Legendre transforms of each
other then :

Φ(t, x) + Ψ(t,∇Φ(t, x)) = x · ∇Φ(t, x)(204)

∂tΦ + ∂tΨ(∇Φ) = 0(205)

∂t∇Φ +D2Φ∂t∇Ψ(∇Φ) = 0(206)

Proof : the first identity expresses just the fact that Φ(t, ·),Ψ(t, ·) are Legendre transforms of each
other (see (190)), then the two other come by differentiating with respect to time and then to space,
and noticing that ∇Φ(∇Ψ(x)) = x. �

4.1.1. Idea of the proof. The key point of the estimates comes from the fact that the equation
(195) is satisfied in divergence form, i.e.

∂tρ = ∂i (aij∂j∂tΨ)

with summation over repeated indices. This comes from a property of the comatrix, and is hidden in
the identity (193). Then using that ∂tρ = −∇·(ρv) and using some integrability on aij ( the comatrix
of D2Ψ) we will obtain Theorem 4.2.

4.2. Estimates and proof of Theorem 4.2. Now from Proposition 4.3 we can perform the
following computations. We have from (191)

∫

Rd

∂tΨρ =

∫

Ω

∂tΨ(∇Φ)

Then we use the continuity equation :

∂tρ+ ∇ · (ρv) = 0

which implies for any smooth f
∫

Rd

f∂tρ =

∫

Rd

ρv · ∇f.

We thus obtain
∫

Rd

∂tΨ∂tρ =

∫

Rd

∂t∇Ψ · ρv

=

∫

Ω

∂t∇Ψ(∇Φ) · ∂t∇Φ

= −
∫

Ω

∂t∇tΨ(∇Φ) ·D2Φ · ∂t∇Ψ(∇Φ)

where we have used (206). Since we can write
√
D2Φ because this is a positive symmetric matrix, we

have

‖
√
D2Φ ∂t∇Ψ(∇Φ)‖2

L2(Ω) = −
∫

Rd

ρ∂t∇Ψ · v

= −
∫

Ω

∂t∇Ψ(∇Φ) · v(∇Φ)

= −
∫

Ω

∂t∇tΨ(∇Φ) ·
√
D2Φ

√
D2Φ

−1 · v(∇Φ)
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using this with (206) we get

‖
√
D2Φ

−1
∂t∇Φ‖L2(Ω) = ‖

√
D2Φ∂t∇Ψ(∇Φ)‖L2(Ω)

≤ ‖
√
D2Φ

−1
v(∇Φ)‖L2(Ω).

The right hand side of this inequality satisfies

(
∫

Ω

vt(∇Φ) · (D2Φ)−1 · v(∇Φ)

)1/2

=

(
∫

Rd

ρvt · (D2Φ(∇Ψ))−1 · v
)1/2

=

(
∫

Rd

ρvt ·D2Ψ · v
)1/2

≤
(

‖D2Ψ‖Lr(BR)‖ρv2‖Lr′(BR)

)1/2

.

In the second line we have used D2Φ(∇Ψ) = (D2Ψ)−1. Writing

∂t∇Φ =
√
D2Φ

−1√
D2Φ∂t∇Φ,

we obtain

‖∂t∇Φ‖Lq(Ω) ≤ ‖
√
D2Φ

−1
∂t∇Φ‖L2(Ω)‖

√
D2Φ‖Ls(Ω)

≤
(

‖ρv2‖Lr(BR)‖D2Ψ‖Lr′(BR)‖D2Φ‖Ls/2(Ω)

)1/2

with q = 2s
2+s

. By taking p := s/2 we have

‖∂t∇Φ‖Lq(Ω) ≤
(

‖ρv2‖Lr(BR)‖D2Ψ‖Lr′(BR)‖D2Φ‖Lp(Ω)

)1/2

and q = 2p
1+p

. The first part of Theorem 4.2 is obtained.

To obtain a bound on ∂tΨ we proceed as follows : from what has been done above, we have
∫

Rd

ρ
∣

∣

∣

√

D2Φ(∇Ψ)∂t∇Ψ
∣

∣

∣

2

=

∫

Rd

ρ∂t∇tΨ ·D2Φ(∇Ψ) · ∂t∇Ψ

=

∫

Ω

∂t∇tΨ(∇Φ) ·D2Φ · ∂t∇Ψ(∇Φ)

≤
[

‖D2Ψ‖Lr(BR)‖ρv2‖Lr′(BR)

]1/2

then using Hölder’s inequality, with q = 2p
2+p

[
∫

Rd

ρ|∂t∇Ψ|q
]1/q

≤
[
∫

Rd

ρ
∣

∣

∣

√

D2Φ(∇Ψ)∂t∇Ψ
∣

∣

∣

2
]1/2 [∫

Rd

ρ
∣

∣[D2Φ(∇Ψ)]−1
∣

∣

p/2
]1/p
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the first factor of the right hand product has been treated above, and the second is equal to
[
∫

ρ|D2Ψ|p/2]1/p and we conclude that
[
∫

Rd

ρ|∂t∇Ψ|q
]1/q

≤
[

‖D2Ψ‖Lr(BR)‖ρv2‖Lr′(BR)

]1/2
[
∫

Rd

ρ|D2Ψ|s/2
]1/s

.

Taking again p := s/2, Theorem 4.2 is proved.

5. Proof of Theorem 4.1

5.0.1. Construction of smooth solutions. The density ρ and ∂tρ are constructed from X, ∂tX
respectively by the following procedure :

∀f ∈ C1(Rd),

∫

Rd

ρ(t, x)f(x)dx =

∫

Ω

f(X(t, a)) da

∫

Rd

∂tρ(t, x)f(x)dx =

∫

Ω

∇f(X(t, a)) · ∂tX(t, a) da.

To define v such that ∂tρ+ ∇ · (ρv) = 0, we define the product ρv as follows

∀φ ∈ C0(I × R
d, Rd),

∫

I×Rd

ρv · φ dtdx =

∫

I×Ω

φ(X(t, a)) · ∂tX(t, a) dtda.

One sees that for any 1 ≤ p ≤ ∞,

‖v‖Lp(Rd,dρ(t)) = ‖∂tX(t, .)‖Lp(Ω).

Now we construct ρn, vn a smooth approximating sequence for ρ, v as follows : (remember that we
have taken ρ(t, ·) to be supported in BR at any time t ∈ I). We take η a standard mollifier, of integral
1, supported in B(0, 1) and positive. ηn = ndη(nx). We also note χR+1/n the characteristic function
of the ball B(0, R+ 1/n). Let

ρn = (
1

n
χR+1/n + ηn ∗ ρ)cn

vn = cn
ηn ∗ (ρv)

ρn

with cn chosen such that ρn remains a probability measure. (Note that cn is close to 1 for n large).
The purpose of this construction is to have the following properties :

(1) ‖ρn, vn‖L∞ ≤ ‖ρ, v‖L∞,

(2) ρn, vn are smooth and still satisfy the continuity equation (196),

(3) ρn is supported and strictly positive in B(0, R + 1/n).

We can therefore apply Theorem 4.2 to ρn, vn.

5.1. Proof of the bounds. Proof of the bound on ∂t∇Φ
First we take the estimate (197) in the case where r′ = 1, p = 2 and combine it with Lemma 4.5. To

see why we indeed have lim inf ‖ρn|vn|2‖L∞ ≤ ‖ρ|v|2‖L∞ notice that F (ρ, v) = ρ|v|2/2 = (ρ|v|)2

2ρ
is a

convex functional in ρv, ρ since it is expressed as :

(ρ|v|)2

2ρ
= sup

c+|m|2/2≤0

{ρc+ ρv ·m}.
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Then since ρnvn = cnηn ∗ (ρv)), ρn = cn(
1
n

+ ηn ∗ ρ) we get that

F (ρn, ρnvn) ≤ cnηn ∗ F (ρ, ρv) ≤ ‖ρ |v|
2

2
‖L∞

and letting n→ ∞ :

‖∂t∇Φ‖M(Ω) ≤
(

‖ρ|v|2‖L∞

)
1
2 C(R, d)

≤ ‖ρ‖
1
2

L∞(BR)‖v‖L∞(Br)C(R, d).

By Gagliardo-Nirenberg inequality we get also a bound on ‖∂tΦn‖L1∗(Ω). Then we obtain that Φ ∈
Cα(I, C0(Ω)) from the following lemma :

Lemma 4.7. Let φ1 and φ2 be two R−Lipschitz convex functions on Ω convex. Then there exists
C, β depending on Ω, R, d such that

‖φ1 − φ2‖L∞(Ω) ≤ C‖φ1 − φ2‖βLp(Ω).

Moreover if φ1 ∈ C1,α for some 0 < α < 1 then there exists 0 < β ′ < 1 depending also on α such that
if Ωδ = {x ∈ Ω, d(x, ∂Ω) ≥ δ} with δ going to 0 with ‖φ1 − φ2‖Lp(Ω),

‖∇φ1 −∇φ2‖L∞(Ωδ) ≤ C‖φ1 − φ2‖β
′

Lp(Ω).

Proof : Suppose that
∫

Ω
|φ1−φ2|p ≤ εp then pick a point inside Ω (say 0) such that |φ1(0)−φ2(0)| =

M . φ1 and φ2 are globally Lipschitz with Lipschitz constant bounded by R. On BM/2R(x) ∩ Ω we
have |φ1 − φ2|(x) ≥M/2 and thus

∫

Br

|φ1 − φ2|p ≥ vol(Ω ∩BM/2R(x))(M/2)p.

Next note that for Ω convex, M small enough, for any x ∈ Ω, vol(Ω∩BM/2R(x)) ≥ CΩvol(BM/2R(x)).
Finally we have

εp ≥
∫

Ω

|φ1 − φ2|p ≥ C(Ω, R, d)Mp+d,(207)

and thus

M ≤ C ′(Ω, R, d)

[∫

Br

|φ1 − φ2|p
]

1
p

p
p+d

,

which gives the first part of the lemma.
Now suppose that |∇φ1(0) − ∇φ2(0)| = M . One can also set φ1(0) = 0,∇φ1(0) = 0. We know

that φ1 is C1,α thus φ1(x) ≤ C|x|1+α. It follows that going in the direction of ∇φ2 one will have

φ2(x) − φ1(x) ≥ M |x| − C|x|1+α + φ2(0).

Keeping in mind that |φ1(x) − φ2(x)| ≤ Cεβ yields M | − C|x|1+α ≤ Cεβ. The maximum of the right

hand side is attained for |x| =
(

M
(1+α)C

)1/α

, and is equal to
(

M
(1+α)C

)1/α
α

1+α
M . Therefore we have

M ≤ Cεβ
′
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in Ωδ with δ = δ(ε) going to 0 as ε goes to 0 and with β ′ = αβ
1+α

. �

Remark : Suppose, as it is the case for Ψ, that we only know that
∫

ρ|Ψ1 − Ψ2|p ≤ εp then we have
instead of (207),

εp ≥
∫

Br

ρ|Ψ1 − Ψ2|p ≥ ρ(BM/2R(x))Mp+d.

Thus if ρ ≥ C > 0 on some open set Ω′ the same conclusion holds. Now the results combined with
Proposition 4.4 give the point 4 and 4’ of Theorem 4.1.

Proof of the bound on ∂tg
Recall from Theorem 4.2 :

∫

Rd

ρn|∂t∇Ψn| ≤ C(d, R)‖ρ‖
1
2

L∞(BR)‖ρv2‖
1
2

L∞(BR)

We have g(t, a) = ∇Ψ(t, X(t, a)) and thus formally

∂tg(t, a) = ∂t∇Ψ(t, X(t, a)) +D2Ψ(t, X(t, a))∂tX(t, a).

Since ρn converges strongly (actually weakly would be enough) to ρ, we know that ∇Ψn converges
almost everywhere to ∇Ψ. (See [10] for a proof of this fact, which relies on the convexity of Ψn and
on the uniqueness of the polar factorization). Now consider

gn(t, a) =

∫

Rd

∇Ψn(t, y)ηn(y −X(t, a))dy = (ηn ∗ ∇Ψn)(t, X(t, a))

then gn converges almost everywhere to g. For f ∈ C0(I × Ω, Rd), let us compute

∫

I

∫

Ω

∂tgn(t, a) · f(t, a) dtda = T1 + T2,

with

T1 =

∫

I

∫

Ω

∫

Rd

ηn(y −X(t, a))∂t∇Ψn(t, y) · f(t, a) dydadt

T2 = −
∫

I

∫

Ω

∫

Rd

∇Ψn(t, y) · f(t, a) ∂tX(T, a) · ∇ηn(y −X(t, a)) dydadt

Let us evaluate T1 and T2.

|T1| ≤
∫

I

‖f(t, .)‖L∞(Ω)

∫

Rd×Rd

ρ(x)ηn(y − x)|∂t∇Ψn(t, y)| dxdydt

≤
∫

I

‖f(t, .)‖L∞(Ω)dn

∫

Rd×Rd

ρn(y)|∂t∇Ψn(t, y)| dxdy

≤
∫

I

‖f(t, .)‖L∞(Ω)C(R, d)‖ρn‖L∞(I×Rd)‖vn‖L∞(I×Rd)
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with dn = 1/cn and from Theorem 4.2. For T2 we have :

|T2| =

∣

∣

∣

∣

∫

I

∫

Ω

∫

Rd

∇Ψn(t, y) · f(t, a) ∂tX(T, a) · ∇ηn(y −X(t, a)) dydadt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

I

∫

Ω

∫

Rd

∂tX
t(T, a) · (D2Ψn ∗ ηn)(t, X(t, a)) · f(t, a) dydadt

∣

∣

∣

∣

≤
∫

I

‖|f(t, .)||∂tX(t, .)|‖L∞(Ω)

∫

Rd

ρ(t, x)(∆Ψn ∗ ηn)(x)dx dt

≤
∫

I

‖|f(t, .)||∂tX(t, .)|‖L∞(Ω)‖ρ(t, .)‖L∞(Rd)C(R, d) dt

thus we conclude that

‖∂tg‖L∞(I,M(Ω)) ≤ C(R, d)‖ρ‖L∞(I×BR)‖∂tX‖L∞(I×Ω)

6. Counter-examples

Here we show through some examples that the bounds obtained in Theorem 4.1 are sharp under
our present assumptions.

Example 1 : ∂t∇Φ /∈ L1
loc and ∂tΦ /∈ C0.

Consider in Ω = B(0, 1) in R2, and X(t, ·) : B(0, 1) → R2 defined with complex notations X = x+ iy
by

on y > 0,

X(t, (x, y)) = eit(x+ iy) + it,

on y < 0,

X(t, (x, y)) = eit(x+ iy) + t2.

We check that X#dx has a density bounded by 1, that ∂tX ∈ L∞(Ω × R+). If X = ∇Φ ◦ g is the
polar factorization of X then up to a constant, Φ is defined for t > 0, (x, y) ∈ Ω by :

Φ(t, (x, y)) = sup{1

2
(x2 + y2) + t2x,

1

2
(x2 + y2) + ty}

On {y > tx} we have

Φ(t, (x, y)) =
1

2
(x2 + y2) + ty

∇Φ(t, (x, y)) = (x, y) + (0, t)

and on {y < tx}

Φ(t, (x, y)) =
1

2
(x2 + y2) + t2x

∇Φ(t, (x, y)) = (x, y) + (t2, 0).

Thus

∂tΦ(t, (x, y)) = yχ{y>tx} + 2txχ{y<tx} /∈ C0,

∂t∇Φ(t, (x, y)) = (0, 1)χ{y>tx} + (2t, 0)χ{y,tx} + (t2,−t)Hd−1{y = tx} /∈ L1
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Example 2 : Here we adapt a counterexample of Wang to build an example of a solution where
∂tΨ /∈ C0.
In Rd, let x = (xi)1≤i≤d and

X(0, x) = ∇Φ0(x)

Φ0(x) convex Lipschitz on Ω, Φ = +∞ outside, such that ρ = ∇Φ0(x)#dx has a density in L∞(R2).
Let

X(t, x) = ∇Φ0(x) + tv

for some fixed v ∈ R
d. X is Lipschitz with respect to time. Then

Φ(t, x) = Φ(x) + tx · v
∇Φ(t, x) = ∇Φ0(x) + tv

Then if Ψ0 is the Legendre transform of Φ0, the Legendre transform of Φ(t, ·) is given by

Ψ(t, x) = Ψ0(x− tv)

∇Ψ(t, x) = ∇Ψ0(x− tv)

thus

∂tΨ(t, x) = v · ∇Ψ0(x− tv)

∂t∇Ψ(t, x) = D2Ψ0(x− tv) · v
Wang has shown in [63] some counterexamples to the regularity of solutions of Monge-Ampère
equations : namely, for d ≥ 3 he has exhibited a solution u of

detD2u = f

with f only bounded by above, such that u /∈ C1. By taking Φ0 = u∗ one has an example of time
dependent map such that

∂tΨ(t, x) = v · ∇Ψ0(x− tv) /∈ C0

Note that this shows that the Cα result for ∂tΦ obtained by [22] does not extend to our less restrictive
assumptions.

7. Application : the semi-geostrophic equations.

The semi-geostrophic equations are used in meteorology to model frontogenesis, see [27]. Their
formulation is the following : We look for a time dependent probability measure on R2 satisfying the
following evolution equation :

∂tρ+ ∇ · (ρv) = 0(208)

v(t, x) = (∇Ψ(t, x) − x)⊥(209)

detD2Ψ(t, x) = ρ(t, x)(210)

where equation (210) is understood in the sense of (192), where an open set Ω of total mass 1 has
been fixed before. The set Ω is here called the physical space. Existence of global weak solutions
with initial data in L1 has been proved in [6], [25] and [47]. See also the chapter 5 for the existence
of measure valued solutions and smooth solutions for finite time. Nevertheless uniqueness is still
unproven. If one considers for simplicity the periodic case, one can construct using the procedure
of [6] weak solutions that satisfy the condition 0 < λ1 ≤ ρ ≤ λ2 for all time. The problem being
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two-dimensional, it follows that Ψ ∈ W 2,p for some p > 1 depending on λ1/λ2, (see [53]). The velocity
field is divergence free, and then Di-Perna Lions ([30]) theory applies : the transport equation admits
renormalized solutions and the trajectories are well defined. Moreover the flow being incompressible,
all the Lp norms of ρ are conserved.

7.1. The associated ODE. The characteristics of the equation (208) are given by the following
ODE :

∂tX(t, a) = (∇Ψ(t, X(t, a)) −X(t, a))⊥(211)

and if at t = 0, X(t, a) satisfies X|t=0#da = ρ|t=0 one has dρ(t, ·) = X(t, ·)#da. Moreover if Ω is
bounded and ρ is compactly supported, the velocity is bounded. Thus the hypothesis of Theorem 4.1
are satisfied. If ρ ≥ α > 0 (this can be easily enforced in the periodic case) we can have a uniform
C1,α bound in space for Ψ. The Cβ bound with respect to time for ∇Ψ thus follows. Note also that
the velocity along characteristics defined by (211) is thus Cβ with respect to time.

Finally let us notice that if g = ∇Ψ(X) then g defines the trajectories in the physical space and
the Theorem 4.1 tells us that their velocity remains bounded as a measure.
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Measure-valued and classical solutions for the semi-geostrophic equations.

Grégoire Loeper1

Résumé. We show existence of solutions to the semi-geostrophic equations in the case of measure
valued initial density, and existence of a continuous solution when the initial density is continuous.
We also show uniqueness of solutions with Lipschitz continuous density.

1. Introduction

The semi-geostrophic equations (212, 213, 214) are used in meteorology to model frontogenesis.
Their Eulerian formulation is

∂tρ + ∇ · (ρv) = 0

v = ∇φ(x)⊥

det(I +D2φ) = ρ

ρ(t = 0) = ρ0

where ρ0 is a probability measure on R2 and the velocity field is given at each time by solving a
Monge-Ampère equation in a sense that will be precised later on.

This formulation can be viewed as a non-linear version of the 2-d incompressible Euler equation :
indeed if one replaces the equation

det(I +D2φ) = ρ

by the equation

∆φ = ρ− 1

one obtains the vorticity formulation of the 2d incompressible Euler equation.
This model arises in a hierarchy of approximations of the equation of motion in meteorology. We

shall give a brief idea of the derivation of the model, and the reader can refer to [27] for a more
accurate derivation.

1.1. The semi-geostrophic equations.
1.1.1. Their lagrangian formulation. We start from the 2d incompressible Euler equations with

the Coriolis force in a domain Ω :

Dv

Dt
+ fv⊥ = ∇p

∇ · v = 0

v · ∂Ω = 0

where D·
Dt

stands for ∂t + v · ∇ and the suffix ⊥ means “rotated of π/2”. fv⊥ is the Coriolis force due

to rotation of the Earth, it turns out that for large scale flows, this term dominates the term Dv
Dt

.
Thus the geostrophic approximation consists in stating that the geostrophic balance holds :

v = vg = −f−1∇⊥p.

1Laboratoire J.A.Dieudonné, Université de Nice-Sophia-Antipolis, Parc Valrose, 06108 NICE Cedex 2.
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The semi-geostrophic equation consists in saying that if one decomposes v = vg + vag where the
second component means small departures from the geostrophic balance, then one has

Dvg
Dt

+ fv⊥ = ∇p
∇ · v = 0

Setting the new variables

X = x + f−1∇p = ∇P (x)

P =
1

2
|x|2 + f−1p

one obtains for X(t) the following

DX(t)

Dt
= (x(t) −X(t))⊥

Here X(t) and x(t) have to be seen as functions of the time and the initial position of x, say x0.
x→ x(t, x0) will be the flow corresponding to the velocity field v(t, x).

As stated the system looks under determined : indeed P is unknown ; however we have the condi-
tion X(t) = ∇P (x(t)). Now we must remember that the dynamic in the x space being incompressible
and contained in Ω, the map x(t, ·) must be measure preserving in Ω for each t, i.e.

L(x(t)−1(B)) = L(B)

for each B ⊂ Ω measurable with L the Lebesgue measure. Then Hoskins stability criteria asserts on
physical basis that P should be a convex function for the system to be stable to small displacements
of particles in the x space. Thus for each t, P must be a convex function such that

X(t, ·) = ∇P (t, x(t, ·))
with x(t, ·) a measure preserving mapping on Ω. We shall see under very mild assumptions on X
that this can only happen for a unique choice of x and ∇P . Now if P ∗ is the Legendre transform of
P , then ∇P and ∇P ∗ are inverse maps of each other, and the semi-geostrophic system then reads

DX

Dt
= (∇P ∗(X(t)) −X(t))⊥ .

The existence and uniqueness of the gradients ∇P,∇P ∗ is given by the polar factorization theo-
rem.

1.2. The polar factorization of vector valued maps. The polar factorization of maps has
been discovered by Brenier in [10]. It has later been extended to the case of general Riemannian
manifolds by [49]. Let us state the results :

1.2.1. The Euclidean case. Let Ω be a fixed bounded domain of Rd (for our purpose we will
only consider d = 2) of Lebesgue measure 1 and satisfying the condition L(∂Ω) = 0 . We consider
a mapping X ∈ L2(Ω,Rd). We will also consider the push-forward of the Lebesgue measure of Ω
(referred to as dx) by X, that we will denote by X#dx = dρ and which is defined by

∀f ∈ C0(Rd),

∫

Rd

f(x) dρ(x) =

∫

Ω

f(X(x)) dx.
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Let P2
a be the set of probability measures ρ on Rd that are absolutely continuous with respect to the

Lebesgue measure (or equivalently that have a density in L1(Rd)), and with finite second moment.
(i.e. such that

∫

Rd

|x|2dρ(x) < +∞.)

Then the condition X ∈ L2(Ω,Rd) is equivalent to the condition ρ = X#dx has a finite second
moment. For any ρ ∈ P2

a we have the following definition :

Definition 5.1. Given ρ such that ρ ∈ P2
a , there exists a unique up to a constant convex function

that we denote Φ[ρ] satisfying :

∀f ∈ C0(Rd),

∫

Ω

f(∇Φ[ρ](x)) dx =

∫

Rd

f(x)dρ(x).

Ψ[ρ], the Legendre transform of Φ[ρ], is the unique up to a constant convex function satisfying

∀f ∈ C0(Rd),

∫

Rd

f(∇Ψ[ρ](x)) dρ(x) =

∫

Ω

f(x)dx.

Finally if X : Ω → Rd is such that ρ = X#dx ∈ P2
a then X admits the following unique polar

factorization :

X = ∇Φ[ρ] ◦ g
with g measure preserving in Ω.

Then Ψ[ρ],Φ[ρ] are weak solutions (in some special sense) respectively on Rd and Ω of

detD2Ψ = ρ

ρ(∇Φ) detD2Φ = 1.

When Ψ and Φ are not in C2
loc these equations can be understood in the viscosity (or Alexandrov)

sense or in the the sense of Definition 5.1. For the regularity of those solutions and the consistency
of the different weak formulations the reader can refer to [21].

1.2.2. The periodic case. In the case of a probability measure defined on Td = Rd/Zd and still in
L1(Td) we define Ψ[ρ],Φ[ρ] by the following :

Definition 5.2. Φ[ρ] is the unique up to a constant convex function over R
d satisfying :

Φ[ρ](x) − x2/2 is Zd periodic (and thus ∇Φ[ρ](x) − x is Zd periodic), and

∀f ∈ C0(Td),

∫

Td

f(∇Φ[ρ](x)) dx =

∫

Td

f(x) dρ(x).

Ψ[ρ] is the Legendre transform of Φ[ρ], the unique up to a constant convex function satisfying
Ψ[ρ](x) − x2/2 is Zd periodic (and thus ∇Ψ[ρ](x) − x is Zd periodic), and

∀f ∈ C0(Td),

∫

Td

f(∇Ψ[ρ](x)) dρ(x) =

∫

Td

f(x) dx.

If X : Td → Td is such that ρ = X#dx ∈ L1(Td) then X admits the following unique polar factoriza-
tion :

X = ∇Φ[ρ] ◦ g
with g measure preserving from Td into itself, and Φ[ρ] convex, Φ[ρ] − |x|2/2 periodic.
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Remark 1 : from the periodicity of ∇Φ[ρ](x)−x,∇Ψ[ρ](x)−x, for every f Zd periodic, f(∇Ψ[ρ]), f(∇Φ[ρ])
are well defined on Rd/Zd.
Remark 2 : the definitions of Ψ[ρ] and Φ[ρ] make sense if ρ is absolutely continuous with respect to
the Lebesgue measure. If not, the definition and uniqueness of Φ[ρ] is still valid, and the definition of
Ψ[ρ] as the Legendre transform of Φ[ρ] is still valid also, but then the product

∫

f(∇Ψ[ρ](x)) dρ(x)
does not necessarily make sense since ∇Ψ is not necessarily continuous. Moreover the polar factori-
zation does not hold any more.
Remark 3 : The Lagrangian equation becomes

DX

Dt
= [∇Ψ(t, X) −X]⊥

Ψ = Ψ[ρ(t)]

ρ(t) = X#dx

where Ψ[ρ] is meant as in the definition above.

1.3. Eulerian formulation in dual variables. The reason of these manipulations is that
things should be easier in the dual space (the space where X lives), where we look for the equation
followed by the measure ρ = X#dx. In both cases ( periodic and non periodic) we thus investigate
the following system that will be referred to as (S-G) : we look for a time dependent probability
measure t→ ρ(t, ·) satisfying

∂tρ + ∇ · (ρv) = 0(212)

v(t, x) = (∇Ψ[ρ(t)](x) − x)⊥(213)

ρ(t = 0) = ρ0(214)

with ρ0 a probability measure. Weak solutions (which are defined below) of this system with Lp initial
data for p ≥ 1 have been found, see [6], [26], [47].

2. Results

We will show (Theorem 5.3) using an appropriate weak formulation that measure-valued solutions
exist, are weakly stable and consistent with L1 solutions.
In a second part (Theorems 5.4, 5.5, 5.6)of the paper we will also show that classical solutions exist
locally in time at least for the spatially periodic case, and are unique. More precisely we will show
existence of solutions that are only continuous, of strong solutions (i.e.with ρ ∈ W 1,p, p > 2), and
existence and uniqueness of solutions with ρ Lipschitz.

Theorem 5.3. Let ρ0 be a probability measure compactly supported. There exists a weak measure
solution to the system (S-G) in the sense of Definition 5.7. Moreover, if ρn0 is a sequence of probability
measures uniformly compactly supported that converge weakly-∗ to ρ0, if ρn are weak measure solutions
of (S-G) with initial datas ρn0 , also uniformly compactly supported, then any converging subsequence
ρnk

converges in C([0, T ],P − w∗) to a a weak measure solution of (S-G) with ρ0 as initial data.

Remark : the uniqueness of weak solutions is still an open question.
We state the existence of strong solutions on the periodic case :

Theorem 5.4. If ρ0 ∈ W 1,p(T2) for 2 < p ≤ ∞ and satisfies 0 < α ≤ ρ0 ≤ β. then there
exists T > 0 such that there is on [0, T ] a solution ρ to (S-G) periodic such that (∂tρ,∇xρ) ∈
L∞([0, T ], Lp(T2)).
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Theorem 5.5. Let ρ0 be strictly positive and satisfy the continuity condition (219). Then there
exists T > 0 such that on [0, T ] w(t, r) the modulus of continuity of ρ(t, .) solution of (S-G) satisfies
(219) and the velocity field v(t, x) = (∇Ψ(t, x) − x)⊥ remains Lipschitz.

Condition (219) : w the modulus of continuity of ρ satisfies

∫ 1

0

w(r)

r
dr < +∞.

Theorem 5.6. Suppose that ρ0 ∈ C0,1(T2) with 0 < α ≤ ρ0 ≤ β. From Theorem 5.4, for
some T > 0 there exists ρ̄ in L∞([0, T ], C0,1(T2)) solution to SG . Then every solution of SG in
L∞([0, T ′], C0,1(T2)) for T ′ > 0 with same initial data coincides with ρ̄ on [0, inf{T, T ′}].

3. Measure solutions

3.0.1. Definition of weak solutions. We have first the following classical weak formulation of
equation (212) :

∀ϕ ∈ C∞
c (R+ × R

n),

∫

∂tϕρ+ ∇ϕ · ρv dtdx =

∫

ϕ(0, x)ρ(0, x)dx

where v is given by (213). The problematic part in the case of measure valued solutions is to give
sense to the product ρ∇Ψ[ρ] since at a point where ρ is singular ∇Ψ[ρ] is unlikely to be continuous.
Therefore we use the definition (5.1) to write for any ρ ∈ Pa(R

2)

∀ϕ ∈ C∞
c (R2),

∫

R2

ρ∇Ψ[ρ]⊥ · ∇ϕ =

∫

Ω

x⊥ · ∇ϕ(∇Φ[ρ])

(the integrals would be performed over T2 in the periodic case). We see then that the right hand side
formulation extends unambiguously to the case where ρ /∈ L1(R2).

3.0.2. Geometric interpretation. This weak formulation allows a nice geometric interpretation :
at a point where Ψ[ρ] is not differentiable, and thus where ∂Ψ[ρ] is not reduced to a single point,
∇Ψ[ρ] should be replaced by ∂̄Ψ[ρ] the center of mass of the (convex) set ∂Ψ[ρ]. This new vector field
is defined everywhere and one can check that if ρn converges weakly to ρ, then for all F ∈ C0(Rd×Rd)
we have

∫

Rd

F (∇Ψ[ρn], x) dρn(x) →
∫

Rd

F (∂̄Ψ[ρ], x) dρ(x).

This motivates the following definition of weak solutions

Definition 5.7. ρ is said to be a weak solution to (S-G) if

(1) ρ belongs to C([0, T ],P − w∗)
(2) there exists T → R(T ) non decreasing and finite for every T ≥ 0 such that for all t ∈ [0, T ],

ρ(t, ·) is supported in B(0, R(T ))
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(3) for all T > 0 we have

∀ϕ ∈ C∞
c ([0, T ] × R

2),
∫

[0,T ]×R2

∂tϕ(t, x) dρ(dt, x)

+

∫

[0,T ]×Ω

∇ϕ(t,∇Φ[ρ(t)](x)) · x⊥ dtdx−
∫

[0,T ]×R2

∇ϕ(t, x) · x⊥ dρ(dt, x)

=

∫

ϕ(T, x)dρ(T, x) dx−
∫

ϕ(0, x)dρ(0, x) dx(215)

This definition is consistent with the classical definition of weak solutions if for all t ρ(t, ·) is
absolutely continuous w.r.t. the Lebesgue measure.

3.1. Proof of Theorem 5.3.
3.1.1. Weak stability of solutions. Let us check a priori the weak stability of such solutions.

Therefore we consider a sequence ρn of solutions of (S-G) in the sense of Definition 5.7. First note
that Ω is bounded by hypothesis and that also by the Definition of weak solutions, the sequence we
consider is uniformly compactly supported, thus

∣

∣

∣

∣

−
∫

[0,T ]×R2

∇ϕ(t, x) · x⊥ dρ(dt, x) +

∫

[0,T ]×Ω

∇ϕ(t,∇Φ[ρ(t)](x)) · x⊥ dtdx

∣

∣

∣

∣

≤ C(T )‖ϕ‖L∞([0,T ],C1(BR(T ))

Thus from Definition 5.7 equation (215) we know that for any time t ≥ 0, ∂tρn(t, ·) is bounded in the
dual of L∞([0, T ], C1(R2)) and thus in the dual of L∞([0, T ],W 2,p(R2)) for p large enough by Sobolev
embedding Theorem. Thus for some p > 1 we have

∂tρn ∈ L∞([0, T ],W−2,p(R2))

Moreover by hypothesis for every 0 < t < T the sequence of probability measures ρn(t, ·) is compactly
supported in some ball B(0, R(T )). Thus it is weakly-∗ precompact. Using classical arguments, it
follows that the sequence is relatively compact in C([0, T ],P−w∗) and one can thus extract a conver-
ging subsequence that we still denote by ρn. Since for every t, ρn(t, ·) converges to ρ(t, ·) weakly-∗,
using Theorem 5.8 cited below , we obtain that ∇Φ[ρn] converge strongly in L1

loc(Ω) to ∇Φ[ρ]. Note
also that since ρn is uniformly compactly supported, ∇Φ[ρn] is uniformly bounded in L∞(Ω). Thus
one can pass to the limit in the formulation of Definition 5.7 and the limit of the sequence ρn is still
solution of (S-G) in the sense of Definition 5.7.

Here we cite the following stability Theorem taken from [10] that was used in the proof above :

Theorem 5.8. Let ρn be a sequence of bounded positive measures on Rd, of total mass |Ω| such
that ∀n,

∫

(1 + |x|2)dρn ≤ C, let Φn = Φ[ρn] and Ψn = Ψ[ρn] be as in definition 5.1. If for any
f ∈ C0(Rd) such that |f(x)| ≤ C(1 + |x|2),

∫

fρn →
∫

ρf ,then Φn → Φ[ρ] uniformly on each
compact set of Ω and strongly in W 1,1(Ω; Rd), and Ψn → Ψ[ρ] uniformly on each compact set of Rd

and strongly in W 1,1
loc (R

d).
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3.2. Existence of solutions. We show briefly the existence of a solution to the Cauchy problem
in the sense of Definition 5.7. Indeed given ρ0 the initial data for the problem that we want to solve,
we can take a sequence ρ0

n of initial datas belonging to L1(R2), uniformly compactly supported and
converging weakly to ρ0.

We know already from [6], [26], [47] that for every such initial data we can build a solution of
(212, 213, 214), that will be uniformly compactly supported on [0, T ] for all T ≥ 0. This sequence
will also be solution in the sense of Definition 5.7. We then use the stability result.
This achieves the proof of Theorem 5.3. �.

4. Classical solutions

We prove here existence of classical solutions. We do this in the periodic case in order to be
able to guarantee the condition ρ ≥ α for all time. Our proof here is much inspired of the one in
[16]. It uses the following regularity result for solutions of the Monge-Ampère equation which is an
adaptation of [18] and uses the result of [24] and [49] :

Theorem 5.9. Let ρ be the density of a probability measure on T
d such that ρ ∈ Cα(Td) and

0 < m ≤ ρ ≤M for some numbers m,M . Then Ψ = Ψ[ρ] is a classical solution of

detD2Ψ = ρ(216)

and satisfies :

‖∇Ψ(x) − x‖L∞ ≤ C(d) =
√
d/2(217)

‖D2Ψ‖Cα ≤ K(α,m,M, ‖ρ‖Cα)(218)

Then if ρ ∈ Ck,α for k ∈ N, Ψ ∈ Ck+2,α.

4.1. A priori estimates. Here we suppose that we have a smooth solution, and get a bound
on the time evolution of its derivatives. Then the existence of such a classical solution follows by
constructing approximate solution as in ([16]) or even ([6]), and using the uniform bounds that
provide convergence of the sequence.

Recall first that the flow being incompressible, the condition 0 < m ≤ ρ ≤M is preserved for all
times. Then by differentiating (212) one gets :

∂t∇ρ+ [(∇Ψ(x) − x)⊥ · ∇] ∇ρ− [D2Ψ − I] · ∇ρ⊥ = 0

Noticing that (∇Ψ(x) − x)⊥ is divergence-free, this implies that

d

dt
‖∇ρ(t, ·)‖Lp(T2) ≤ C‖D2Ψ − I‖L∞(T2)‖∇ρ‖Lp(T2).

If ∇ρ ∈ Lp(T2) for p > 2, from the Sobolev embedding Theorem, ρ ∈ Cα(T2) and thusD2Ψ ∈ Cα(T2).
Take G large , and K = K(α,m,M,G). As long as ‖ρ0‖Cα ≤ G which is true as long as ‖∇ρ‖Lp ≤ G′

for some G′, one has

d

dt
‖∇ρ‖Lp ≤ K‖∇ρ‖Lp .

Thus as long as ‖∇ρ0‖Lp(T2) exp(Kt) ≤ G′, the condition ‖∇ρ‖Lp ≤ G′ is preserved. This gives the a
priori bound sufficient to conclude the existence of local strong solutions. Note that we could have
taken p = +∞ and thus ρ Lipschitz.
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4.2. Continuous initial data. Wang in [63] has shown the following :

Theorem 5.10. Let u be a strictly convex solution of

detD2u = ρ

If w(r) the modulus of continuity of ρ satisfies
∫ 1

0

w(r)

r
dr <∞(219)

then u is in C2
loc.

From [21] we know that a solution of 0 < m ≤ detD2u ≤M in all of Rd has to be strictly convex
for if not it would contain a whole line and thus be affine.
Proof of Theorem 5.5 :

The proof is quite simple : if Ψ ∈ C2, then the flow t → X(t, x) generated by the velocity field
[∇Ψ(x)− x]⊥ is Lipschitz in space. Since the flow is incompressible, we have ρ(t, x) = ρ0(X

−1(t, x)).
Now we use the following property : If two functions f, g have modulus of continuity respectively
wf , wg then g ◦ f has modulus wg ◦ wf .
Thus if X−1(t) is Lipschitz, we have wρ0◦X−1(t) ≤ wρ0(L ·) with L the Lipschitz constant of X−1(t)
and condition (219) remains satisfied. �

Remark 1 : Note that Hölder continuous functions satisfy the condition (219).
Remark 2 : Note also that we do not need any information on ∇ρ and the solution has still to be
understood in the distribution sense.

5. Uniqueness of strong solutions

Here we prove Theorem 5.6. Take two solutions of SG periodic ρ1, ρ2 that coincide at time 0, and
such that ρ1, ρ2 satisfy the regularity hypothesis of the Theorem5.6 . Then

∂t(ρ1 − ρ2) + (∇Ψ2 − x)⊥ · ∇(ρ1 − ρ2) = ∇ρ1 · (∇Ψ2 −∇Ψ1)
⊥

From the assumptions of Theorem 5.6, we have ∇ρ1 ∈ L∞([0, T ] × T
2), thus we see that we can

conclude our argument if we can show that

‖∇Ψ1 −∇Ψ2‖(t)L∞(T2) ≤ C‖ρ1 − ρ2‖(t)L∞(T2).

We will show this using the a-priori C0,1(T2)) bound on ρ1, ρ2.
For this we consider for t ∈ [0, T [, θ ∈ [0, 1] Ψθ solution of

detD2Ψθ = θρ2(t) + (1 − θ)ρ1(t)

we have supposed that ρ1 and ρ2 are C0,1. Then D2Ψθ ∈ Cα for some α > 0 thanks to Theorem 5.9.
Moreover using that 0 < m ≤ ρ1, ρ2 ≤ M for all times we get that m∗I ≤ D2Ψθ ≤ M∗I for some
strictly positive constants m∗,M∗.

Differentiating with respect to θ we get the following equation :
∑

i,j

aij∂xi,xj
∂θΨ = ρ2 − ρ1

∂θΨ is periodic over T
2.

where the matrix aij is the comatrix of D2Ψθ given by

aij = (θρ2 + (1 − θ)ρ1)
[

D2Ψθ

]−1
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Since we a priori know that D2Ψθ ∈ Cα uniformly in θ, and that D2Ψθ is uniformly elliptic, its
comatrix has the same properties. Using standard elliptic regularity and the periodic boundary
condition, we obtain that

‖∂θΨ‖W 2,p(T2) ≤ C‖ρ1 − ρ2‖(t)Lp(T2)

and this implies using Sobolev embedding Theorem that

‖∇∂θΨ‖L∞(T2) ≤ C‖ρ1 − ρ2‖L∞(T2)

where the constant C depends on m,M, ‖ρ1, ρ2‖C0,1 . Thus we conclude that

‖∇Ψ2 −∇Ψ1‖(t)L∞(T2) ≤ C‖ρ1 − ρ2‖L∞(T2)

uniformly on [0, T ].
δ = ρ1 − ρ2 satisfies an inequation of the form :

|∂tδ + u · ∇δ| ≤ C|δ|
δ(0, ·) = 0

thus δ ≡ 0 and the uniqueness is proved. �.
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Grégoire Loeper1

Résumé. The motion of a continuum of matter subject to gravitational interaction is classically
described by the Euler-Poisson system. Prescribing the density of matter at initial and final times,
we are able to obtain weak solutions for this equation by minimizing the action of the Lagrangian
which is a convex functional. Then we see that such minimizing solutions are consistent with smooth
solutions of the Euler-Poisson system and enjoy some special regularity properties.

1. Introduction

The Euler-Poisson system describes the motion of a self-gravitating fluid. It is used in cosmology,
to model the evolution of the primitive universe. In the classical (non-relativistic) description, the
gravitational field generated by a continuum of matter with density ρ, is the gradient of a potential
p satisfying the Poisson equation

∆p = ρ− ρm

with ρm the uniform average background mass density. In this paper we will restrict ourselves to the
flat torus Td = Rd/Zd with ρm = 1. In this framework the Euler-Poisson system hereafter referred to
as (E − P ) takes the following form :

∂tρ+ ∇ · (ρv) = 0(220)

∂t(ρv) + ∇ · (ρv ⊗ v) = −ρ∇p(221)

∆p = ρ− 1(222)

with the additional constraint
∫

Td

ρ(., x)dx ≡ 1.

Note that this form is the cosmological one, i.e. that the potential is attractive. In the case of a
repulsive potential (used for the description of a plasma) the associated Poisson equation would be
∆p = −[ρ− ρm].

1.1. Definition of the two point boundary problem. Given the (E − P ) system , one can
try to solve the Cauchy problem, i.e. given ρ and v at time t = 0 find a solution to (220, 221, 222) on
a time interval [0, T [. Another approach is to look for a solution over the time interval [0, T ] satisfying
the two conditions :

ρ|t=0 = ρ0(223)

ρ|t=T = ρT .(224)

This approach has been used by Brenier in [11],[12] for the incompressible Euler equation and
allows to introduce variational techniques. Indeed the system (220, 221, 222) is hamiltonian, with
hamiltonian (or energy) given by :

H(ρ, v) =
1

2

∫

Td

ρ(t, x)|v(t, x)|2 − |∇p(t, x)|2dx.

1Laboratoire J.A.Dieudonné, Université de Nice-Sophia-Antipolis, Parc Valrose, 06108 NICE Cedex 2.
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Solutions of hamiltonian systems are critical points for the action of the Lagrangian here defined by

I = I(ρ, v, p) =
1

2

∫ T

0

∫

Td

ρ(t, x)|v(t, x)|2 + |∇p(t, x)|2 dxdt.

under the constraints (220,222,223,224).
In this particular case, it will be shown that the Lagrangian is a convex functional in some new

variables, and this allows to use duality techniques to find the critical point (which will necessarily
be a minimum of I). Our goal in then to solve the following minimization problem :

Problem 6.1. Find ρ̄, v̄, p̄ such that

I(ρ̄, v̄, p̄) = inf I(ρ, v, p)

over all the ρ, v, p satisfying

∂tρ + ∇ · (ρv) = 0,

∆p = ρ− 1

ρ|t=0 = ρ0

ρ|t=T = ρT .

The problem is here formulated in a very vague way : we do not mention in what space lie ρ and
v. This will be precised in the next subsection.

1.2. Motivations. The practical interest of studying this boundary problem is twofold. First it
is studied in cosmology for the reconstruction of the early universe. For this we refer for example to the
PhD thesis of J.Bec ([4], p.11,12) and to [37] and [15]. On the other hand it has been observed first
by Brenier in [12] in the case of the Euler incompressible equation and by Evans and Gomes in [33] in
the smooth finite dimensional case that solutions of Hamiltonian flows that minimize the action of the
Lagrangian are somehow better than other solutions. Some aspects of the present work can be seen
as a continuation of their contribution in one special case of infinite dimensional Hamiltonian system.
Another interest of this study is to generalize the approach developed in [7], in which the authors
gave a continuum mechanics interpretation of the Monge-Kantorovitch problem involving the concept
of interpolation between two measures, induced by the Wasserstein distance. This interpolation was
introduced earlier by [48] to develop the useful concept of displacement convexity. [54] also used it to
endow the set of probability measures with a formal Riemannian metric, in which the interpolation
plays the role of geodesic, then allowing rich interpretations of some dissipative equations in terms of
gradient flows. Here our variational problem induces an interpolation that has more regularity than
the one of [7] where the Lagrangian is only

1

2

∫ T

0

∫

Td

ρ(t, x)|v(t, x)|2 dtdx.

Indeed we will see that the additional Dirichlet term forces the intermediate densities to be in L∞(Td)
independently of the initial and final densities. Some interesting displacement convexity properties
will also appear.

We finally mention that the first steps of this study had been already done in E. Camalet’s PhD
[23] under supervision of Y.Brenier.
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1.3. Precise definition of Problem 6.1. We introduce the domain D = [0, T ] × Td. We also
define the flux of matter J by J = ρ v. Given J ∈ Rd, ρ ∈ R+ we use the fact that

sup
c∈R,m∈Rd,c+|m|2/2≤0

{ρc+ J ·m} =







+∞ if ρ = 0, J 6= 0
0 if J = 0
J2/2ρ if ρ > 0

Notice that as a supremum of affine functions, this is a (possibly infinite) convex functional in (ρ, J).
Given ρ0, ρT as in Theorem 6.4, the functional I can thus be formulated as

Ĩ(ρ, J, p) =

sup
c+|m|2/2≤0

{
∫

D

c(t, x)dρ(t, x) +m(t, x) · dJ(t, x)} +
1

2

∫

D

|∇p(t, x)|2 dtdx

where the supremum is taken over all (c,m) ∈ C(D)×C(D)d. This formulation is consistent with the
former one in the case where v ∈ L2([0, T ], L2(Td, dρ)) and well defined (although leading to possibly
infinite value) for ρ ∈ C([0, T ],P(Td) − w∗), J ∈ (M(D))d, ∇p ∈ L2(D) where M(D) denotes the
set of bounded measures on D and P(Td) the set of probability measures on Td.
The new formulation of the Problem 6.1 is then :

Problem 6.2. Minimize

Ĩ(ρ, J, p) = sup
c+|m|2/2≤0

{
∫

D

c(t, x)dρ(t, x) +m(t, x) · dJ(t, x)}

+
1

2

∫

D

|∇p(t, x)|2 dtdx

among all ρ, J, p that satisfy ρ ∈ C([0, T ],P(Td) − w∗), J ∈ (M(D))d, ∇p ∈ L2(D) and satisfy in
the distribution sense

∂tρ+ ∇ · J = 0(225)

∆p = ρ− 1(226)

ρ(t = 0) = ρ0(227)

ρ(t = T ) = ρT .(228)

We denote

K = inf
ρ,J,p

Ĩ(ρ, J, p)

among all such ρ, J, p.

1.4. Cosmological form of the problem. In cosmology, new variables are used in order to
take into account the expansion of the universe. The velocity is decomposed into a sum of two terms :
v = u + v where the first describes the global expansion and the second called the peculiar velocity
describes fluctuations around the global expansion. The density µ is also decomposed as µ = r + ρ
where r is the isotropic background density and depends only on time. With some change of variables
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the system can then be put under the form

∂tρ + ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρv ⊗ v) = −2
ȧ

a
ρv − 1

a
ρ∇p

∆p =
4πGc0
a

(ρ− 1)

The function of time a(t) is called the expansion factor and is supposed to be known as well as the
constant c0. The solutions of such a system can be sought as critical points for the following action :

Ia =
1

2

∫ T

0

∫

Td

a2(t)

[

ρ(t, x)|v(t, x)|2 +
4πGc0
a(t)

|∇p(t, x)|2
]

dxdt.

Then the same technique as in the following gives the same results. For more details on the cosmo-
logical aspects of the problem the reader can refer to [15]. 1

1If we look at the Lagrangian

Ĩ =
1

2

∫ T

t0

∫

Td

ρ|v|2 +
1

2
K(t, x,∇p)(∇p,∇p) dxdt

where K is a symmetric matrix such that
∫

K(t, x,∇p)(∇p,∇p) dxdt is a convex functional in p then we may obtain
weak solutions of

∂tv + (v · ∇)v = −K∇p − 1

2

∂K

∂∇p
(∇p,∇p)

and thus solve non-linear Euler-Poisson systems.
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2. Results

We give here the definition of a weak solution of (E − P ) :

Definition 6.3. (ρ, v, p) is said to be a weak solution of (E − P ) if :

1- ρ ∈ L2([0, T ], H−1(Td)) ∩ C([0, T ],P(Td) − w∗), v ∈ L2([0, T ], L2(Td, dρ)),

2- for any ϕ ∈
(

C∞
c (]0, T [×Td)

)d
one has

∫

[0,T ]×Td

∂tϕ · v dρ+Dϕ : v ⊗ v dρ− ϕ · ∇p(229)

+Dϕ : ∇p⊗∇p− 1

2
(∇ · ϕ)|∇p|2 = 0,(230)

3- for any ϕ ∈ C∞([0, T ] × Td) :
∫

[0,T ]×Td

∂tϕdρ+ ∇ϕ · vdρ =

∫

Td

ρTϕ|t=T −
∫

Td

ρ0ϕ|t=0

∫

[0,T ]×Td

(dρ− 1)ϕ+ ∇p · ∇ϕ = 0.

Equation (229) is equivalent to equation (221) for smooth p using the fact that for any smooth p

(1 + ∆p)∇p = ∇ · (∇p⊗∇p) − 1

2
∇|∇p|2 + ∇p.

The right hand side of this identity is well defined in the sense of distribution if we only know that
∇p ∈ L2([0, T ] × Td).

Our results are the following :

Theorem 6.4. Let ρ0, ρ1 be two probability measures in L
2d

d+2 (Td), then there exists a unique
(ρ, J, p) ∈ (M×Md×L2([0, T ], H1(Td))) with ∆p = ρ− 1inD′ minimizer of the Problem 6.2. J has
a density v with respect to ρ, (ρ, v, p) is a weak solution of the Euler Poisson system (E − P ) in the
sense of Definition 6.3 and coincides with any smooth solution of (E−P ) satisfying (227,228) which
therefore must be unique. Moreover

1- There exists φ ∈ L2
loc(]0, T [, H1(Td)) such that v = ∇φ dρ a.e. and we can thus extend the definition

of v to all of Td as a function belonging to L2
loc(]0, T [, L2(Td)),

2- any such extension satisfies
∫

Td

∫ T−τ

τ

ρ(t, x) |v(t, x+ y) − v(t, x)|2 dtdx ≤ Cτ |y|2(231)

for all τ in ]0, T/2], y in Rd,

3- φ satisfies in the sense of distribution ∂tφ+ 1
2
|∇φ|2 + p ≤ 0, and φ ∈ L∞

loc(]0, T [,Td),

4- for any ε > 0 small enough, ρ ∈ L2
loc(]0, T [, L2(Td)) ∩ C(]0, T [, L3/2−ε).

Then we have the regularity result :
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Theorem 6.5. If ρ0 and ρT are in L
2d

d+2 then there exists a unique solution ρ, v, p of Problem 6.2
that has the following regularity properties :

1- The density ρ is is in L∞
loc(]0, T [, L∞(Td)) ∩ C(]0, T [, Lk(Td)) for every 1 ≤ k < ∞. For every

τ ∈]0, T/2[ there exists Cτ such that for every t in [τ, T − τ ]

‖ρ(t, ·)‖L∞(Td) ≤ Cτ .

There exists C such that

−C(1 +
1

t
) ≤ d

dt
‖ρ(t, ·)‖Lk(Td) ≤ C(1 +

1

T − t
).

and the constants Cτ , C are independent of the choice of ρ0 and ρT .

2- The velocity v = ∇φ can be chosen in L∞
loc(]0, T [×Td) , this bound is also independent of the choice

of ρ0 and ρT .

3- The functions
∫

Td [ρ]
k(t, x)dx, k ≥ 1,

∫

Td [ρ log ρ](t, x)dx are convex with respect to time.

4- φ can be chosen in W 1,∞
loc (]0, T [×Td) and to be viscosity solution of ∂tφ+ 1

2
|∇φ|2 + p = 0 on every

[s, t] ⊂]0, T [.

5- If ρT is in Lp(Td) with p > d then point 4 extends up to t = T .

6- One can also choose φ such that (ψ, q)(t, x) = −φ(T − t, x), q(T − t, x) is a viscosity solution of
∂tφ+ 1

2
|∇φ|2 + p = 0 on every [s, t] ⊂]0, T [ and point 5 applies.

The reader can refer to the books of Evans [32] and Barles [3] for the definition of viscosity
solution of ∂tφ+ 1

2
|∇φ|2 + p = 0.

Remark 1 : the assumption that the final and initial densities are in L
2d

d+2 (Td) is technical : it allows
us to show that there exists at least one admissible flow with finite action transporting ρ0 on ρT , see
section 3.0.1. Actually all the results are true assuming that there exists a (ρ, v, p) satisfying all the
constraints (225,..,228) such that Ĩ(ρ, v, p) is finite.
Remark 2 : (231) is a finite difference version of the formal (but non rigorous since ρ has no regularity )
assertion

∫

[τ,T−τ ]×Td ρ|∇v|2dtdx < +∞. See [8] where the authors look at an appropriate definition

of the tangent space related to a measure.
Remark 3 : one may observe that the time regularity obtained for ρ is stronger in the second theorem
than in the first. The third point of Theorem 6.4 is obtained just by using the regularity result
of v (point 2 of Theorem 6.4), while in the second theorem we use in a crucial way the fact that
∆p = ρ− 1 ≥ −1. The techniques are thus different.
Remark 4 : the consistency with smooth solutions is detailed in Theorem 6.14.
Remark 5 : in many assertions we only state that “φ can be chosen in such a way that...”; this is
because φ is uniquely determined only in the dρ a.e. sense.
The paper is organized as follows : in section 3 we introduce the variational techniques and obtain
existence and uniqueness of the solution of Problem 6.2. In section 4 we show that this minimizer is
a weak solution of (E − P ). In section 5 we show some regularity properties of this solution. This
is the first theorem. In the section 6 we introduce a time discretization that enables us to obtain
additional regularity properties, which give the second theorem.
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3. Existence and uniqueness for Problem 6.2

This section is devoted to the proof of

Proposition 6.6. Under the assumption that ρ0 and ρT are in L
2d

d+2 there exists a unique mini-
mizer (ρ, J,∇p) in C([0, T ],P(Td)−w∗)×M(D)×L2(D) for the Problem 6.2 under the constraints
(225,226,227,228).

3.0.1. Existence of an admissible solution. We are now going to prove that the infimum of Problem
6.2 is finite.

Lemma 6.7. Under the assumption that ρ0, ρT are in L
2d

d+2 (Td) there exists (ρ, J = ρv, p) satisfying

(225, 226, 227, 228) and such that Ĩ(ρ, J, p) is finite. Moreover ρ ∈ L∞([0, T ], L
2d

d+2 (Td)) and v ∈
L∞(D, dρdt).

Proof : We use the following result that combines [7] and [48] (See also [54]).

Proposition 6.8. Let ρ0 and ρ1 belong to P(Td) ∩ Lk for some 1 ≤ k ≤ ∞. There exists a
unique pair (ρ̄(t, x), J̄ = ρ̄v̄(t, x)) with v̄ ∈ L∞([0, T ] × Td, dρ̄dt)) that minimizes the action

A(ρ, ρv) =

∫

[0,1]×Td

ρ(t, x)|v(t, x)|2dtdx

among all (ρ, J) that satisfy ρ ∈ C([0, 1],P(Td) − w∗), J ∈ (M([0, 1] × Td))d and

∂tρ+ ∇ · J = 0

ρ(t = 0) = ρ0

ρ(t = 1) = ρ1.

A(ρ̄, ρ̄v̄) is finite and for k ≥ 1− 1/n the function t→ ‖ρ̄(t, .)‖kLk is convex on [0, 1] thus bounded by
max{‖ρ0‖kLk , ‖ρ1‖kLk}. Finally v̄ ∈ L∞([0, 1] × Td, dρ̄dt).

Using the Sobolev imbedding theorem and classical elliptic regularity, if k = 2d
d+2

we have

‖∇∆−1(ρ̄(t, ·))‖L2(Td) ≤ C‖ρ̄(t, ·)‖Lk(Td).

Then considering (ρ(s, ·), v(s, ·)) := (ρ̄(s/T, ·), 1
T
v̄(s/T, ·)) we get an admissible pair for which I is

finite. This completes the proof of lemma 6.7. �

3.1. Proof of Proposition 6.6. We use here standard convex analysis arguments that can be
found in [17] and the proof is an adaptation of the one found in [12]. As we will show later on the
optimal density ρ is in L∞

loc(]0, T [×Td). Thus to simplify the notations we will often denote ρ dxdt
instead of dρ even if our optimization covers a broader class of probability measures than those that
are in L1. The constraints (225,226,227,228) can be formulated in the following weak way :

∀φ ∈ C∞(D),

∫

D

∂tφ(ρ− ρ̄) + ∇φ · (J − J̄) dtdx = 0(232)

∀p ∈ C∞(D),

∫

D

(ρ− ρ̄)q dtdx = −
∫

D

(∇p−∇p̄) · ∇q dtdx(233)
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where (ρ̄, J̄) is the admissible solution of subsection 3.0.1. Minimize Ĩ under the constraints
(225,226,227,228) is thus equivalent to find

K = inf
ρ,J,p

sup
φ,q,c,m

∫

D

ρc + J ·m− ∂tφ(ρ− ρ̄) −∇φ · (J − J̄)

+
1

2
|∇p|2 −∇q · (∇p−∇p̄) − q(ρ− ρ̄) dtdx

with the supremum taken over all the continuous functions c,m with c : D → R and m : D → Rd

satisfying c+ |m|2/2 ≤ 0.

C(D) is the space of continuous functions on D and C#(D) is defined by the additional constraint
that the integral over Td vanishes for all t ∈ [0, T ] . On C(D) we have the usual duality bracket

< f, g > denoted by

∫

D

f dg with g ∈ M(D) the set of bounded measures on D. The dual space of

C# is reduced to the set of bounded measures g on D whose total mass at any time is zero (i.e. for all
g ∈ C ′

#, for all z ∈ C0[0, T ],
∫

D
z(t)dg = 0) and denoted by M#(D). We introduce the functionals α

and β defined on (c,m, r) ∈ C(D) × (C(D))d × C#(D). It will be convenient to denote r = ∆q, and
this is possible since the mean value of r is zero.

α(c,m, r) =
1

2

∫

D

|∇∆−1r|2 dtdx =
1

2

∫

D

|∇q|2 dtdx

if c+ |m|2/2 ≤ 0,

α(c,m, r) = +∞ otherwise;

β(c,m, r) =

∫

D

ρ̄c+ J̄ ·m+ p̄r dtdx

if ∃ φ ∈ C1(D) such that c+ ∂tφ+ q = 0, m + ∇xφ = 0,

β(c,m, r) = +∞ otherwise

with (ρ̄, J̄ , p̄) as above.

We compute α∗ and β∗ the Legendre-Fenchel transform (see [17] for definition) of respectively α and
β, They are defined on (ρ, J, p) ∈ M(D) ×M(D)d ×M#(D) the dual space of C(D) × (C(D))d ×
C#(D)

α∗(ρ, J, p) = sup
c+|m|2/2≤0, r=∆q

{
∫

D

ρc+ J ·m + rp− |∇q|2/2 dtdx}

We have then

α∗(ρ, J, p) =
1

2

∫

D

|J |2
ρ

+ |∇p|2 dtdx.

Note that this can possibly be +∞. Then for β we have :

β∗(ρ, J, p) = sup
c,m,r

{
∫

D

(ρ− ρ̄)c+ (J − J̄) ·m + (p− p̄)r dtdx}

the supremum being restricted to all the c,m, r = ∆q such that there exists φ satisfying :

c+ ∂tφ+ q = 0

m+ ∇xφ = 0
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Thus in terms of φ, q we have

β∗(ρ, J, p) =

sup
φ,q

{
∫

D

(ρ− ρ̄)(−∂tφ− q) − (J − J̄) · ∇xφ−∇q · (∇p−∇p̄) dtdx}.

Using the fact that ρ̄, p̄ satisfy (225,226) we find that β∗(ρ, J, p) = 0 if ρ, J, p satisfies (232,233) and
β∗(ρ, J, p) = +∞ otherwise. It follows then that

I = inf
ρ,J,p

{α∗(ρ, J, p) + β∗(ρ, J, p)}

where we now compute the infimum over all ρ, J, p. We have just relaxed the constraints (225,226,227,228)
by adding the functional β∗ which is +∞ if they are not satisfied and 0 if they are satisfied.

3.1.1. The duality theorem. Functions α, β are convex with values in ] − ∞,+∞] At point c =
−1, m = 0, r = 0, α(−1, 0, 0) = 0, α is continuous with respect to the norm of C(D) × (C(D))d ×
C#(D), and β(−1, 0, 0) = −

∫

D
ρ̄ = −1 is finite. The conditions to apply Fenchel-Rockafellar duality

Theorem (see [17] ch. 1) are thus fulfilled that

inf{α∗(ρ, J, ϕ) + β∗(ρ, J, ϕ)}
= sup{−α(−c,−m,−r) − β(c,m, r)}
= K

and the infimum is attained. So we have

K = sup
c,m,r=∆q

{
∫

D

−|∇q|2/2 − ρ̄c− J̄ ·m+ ∇p̄ · ∇q dtdx}

c = −∂tφ− q,

m = −∇φ,
−c + |m|2/2 ≤ 0

which is also

K = sup
φ,q

{
∫

D

−|∇q|2/2 + ρ̄(∂tφ+ q) + J̄ · ∇φ+ ∇p̄ · ∇q dtdx}

with

∂tφ+ q + |∇φ|2/2 ≤ 0

If we choose ρ̄ = ρ = 1 + ∆p and J̄ = ρv to be any optimal solution (i.e. any minimizing solution).
Note that necessarily J has a density v with respect to ρ and v ∈ L2(D, dρ dt). This justifies the
notation J = ρv. Then for all ε > 0 there exists φε, pε ∈ C1(D) with ∂tφε + pε + |∇φε|2/2 ≤ 0 such
that :

I =
1

2

∫

D

ρ|v|2 + |∇p|2 dtdx

≤
∫

D

−|∇pε|2/2 + ρ(∂tφε + pε) + J · ∇φε + ∇p · ∇pε dtdx+ ε2,(234)



4. OPTIMALITY EQUATION. 105

thus

1

2

∫

D

ρ|v −∇φε|2 + |∇p−∇pε|2 dtdx

≤
∫

D

ρ(∂tφε + pε + |∇φ|2/2) dtdx+ ε2,

and we obtain
∫

D

1

2
ρ|v −∇φε|2 +

1

2
|∇p−∇pε|2 + ρ

∣

∣∂tφε + pε + |∇φε|2/2
∣

∣ dtdx ≤ ε2.

It follows that as ε→ 0,
– ∇φε converges to v in L2(D, dtdρ),
– ∇pε converges to ∇p in L2(D, dtdx),
– ∂tφε + pε + |∇φ|2/2 converges to 0 in L1(D, dtdρ).
3.1.2. Uniqueness of the minimizer. Notice that the sequence (φε, pε) does not depend on the

optimal solution (ρ, v) we have chosen, thus if we have ∇p1 and ∇p2 two optimal solutions, then ∇pε
converges to both ∇p1 and ∇p2, and they are equal Lebesgue a.e. It follows then that two optimal
solutions have the same ρ. Then since ∇φε converges to both v1 and v2 in L2(dρ), v1 and v2 are equal
dρ a.e. and the uniqueness of the optimal solution is proved. This ends the proof of Proposition 6.6.
�

4. Optimality equation.

In this section we prove the following :

Proposition 6.9. The solution of Problem 6.2 is a weak solution of the Euler-Poisson system
(E − P ) in the sense of definition 6.3. The energy of the system defined for a.e. t ∈ [0, T ] by

E(t) =
1

2

∫

Td

ρ(t, x)|v(t, x)|2 − |∇p(t, x)|2dx

does not depend on time.

Remark : the energy is a priori well defined in L1(0, T ) since I(ρ, v, p) is finite.

4.1. Proof of Proposition 6.9.
4.1.1. Derivation of equation (221). Let δ and η be two small parameters and take τ ∈ [0, T

2
[.

Let ζ(t) be a smooth function compactly supported for 0 < t < T . We choose η small enough such
that t → t + ηζ(t) is a diffeomorphism from [0, T ] to [0, T ]. Let x → w(x) be a smooth vector field
and x→ esw(x) the flow associated to w(x) defined by

∂se
sw(x) = w(esw(x)) and e0w(x) = x,

we can thus define eδζ(t)w(x). We introduce, as in [12], the following measures :

ρη(t, x) = ρ(t + ηζ(t), x), vη(t, x) = v(t+ ηζ(t), x)(1 + ηζ̇(t)).

We check that the pair (ρη, ρηvη) satisfies the continuity equation (232). Then we define the measures
(ρη,δ, Jη,δ) so that for every f ∈ C(D) and g ∈ (C(D))d we have

∫

D

f(t, x)ρη,δ(t, x) dtdx =

∫

D

f(t, eδζ(t)w(x))ρη(t, x) dtdx,



106 6. THE INVERSE PROBLEM FOR THE EULER-POISSON SYSTEM IN COSMOLOGY

and

∫

D

g(t, x) · Jη,δ(t, x) dtdx

=

∫

D

g(t, eδζ(t)w(x)) · [(∂t + vη(t, x) · ∇)eδζ(t)w(x)]ρη(t, x) dtdx.

We check that the pair (ρη,δ, Jη,δ) satisfies also the continuity equation (232). η, δ being fixed we will
use the following notation :

vη,δ(t, x) = (∂t + vη(t, x) · ∇x) · eδζ(t)w(x).

We have

ρη(t, x)(∂tφε +
|∇φε|2

2
+ pε)(t, e

δζ(t)w(x)) ≤ 0,

and using (234) we can write :

1

2

∫

D

ρ|v|2 + |∇p|2

≤ ε2 +

∫

D

ρ(∂tφε + pε) + ρv · ∇φε + ∇p · ∇pε − |∇pε|2/2

−
∫

D

ρη,δ(∂tφε +
|∇φε|2

2
+ pε).

Then using (232) we have

1

2

∫

D

ρ|v|2 + |∇p|2 ≤ ε2 +

∫

D

ρη
(

vη,δ · ∇φε(eδζw) − 1

2
|∇φε|2(eδζw)

)

+

∫

D

ρpε − ρηpε(e
δζw) + ∇p · ∇pε − |∇pε|2/2,

which yields

1

2

∫

D

ρ|v|2 + |∇p|2 ≤ ε2 − 1

2

∫

D

ρη
∣

∣vη,δ −∇φε(eδζw)
∣

∣

2
+

1

2

∫

D

ρη|vη,δ|2

+

∫

D

pε − pε(e
δζw)

+

∫

D

D(eδζw) : ∇pη ⊗∇pε(eδζw) − |∇pε|2/2,
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and we obtain the complete formula :

1

2

∫

D

ρη
∣

∣vη,δ −∇φε(eδζw)
∣

∣

2
+

1

2

∫

D

∣

∣∇pη −D(eδζw)∇pε(eδζw)
∣

∣

2

≤ ε2 +
1

2

∫

D

ρη|vη,δ|2 − 1

2

∫

D

ρ|v|2

+
1

2

∫

D

|D(eδζw)∇pε(eδζw)|2 − 1

2

∫

D

|∇pε|2

+
1

2

∫

D

|∇pη|2 − 1

2

∫

D

|∇p|2

+

∫

D

pε − pε(e
δζw).(235)

First taking η = 0, bounding the L.H.S. from below by 0 and letting ε go to 0 we get :

0 ≤ 1

2

∫

D

ρ|v0,δ|2 − 1

2

∫

D

ρ|v|2

+
1

2

∫

D

|D(eδζw)∇p(eδζw)|2 − 1

2

∫

D

|∇p|2

+

∫

D

p− p(eδζw)

Taking the first order terms in δ, with eδζ(t)w(x) = x + δζ(t)w(x) +O(δ2) we get

1

2

∫

D

|D(eδζw)∇p(eδζw)|2

=
1

2

∫

D

∣

∣(I + δζDw)(e−δζw)∇p
∣

∣

2
J(e−δζw) +O(δ2)

with I the identity matrix of order d and J(e−δζ(t)w) the jacobian determinant of the mapping
x→ e−δζ(t)w(x). Using that J(e−δζ(t)w) = 1 − δζ(t)∇ · w +O(δ2), this is equal to

1

2

∫

D

(|∇p|2 + 2δζDw : ∇p⊗∇p− δζ|∇p|2∇ · w) +O(δ2).

Then for v we have

1

2

∫

D

ρ|vδ|2 − 1

2

∫

D

ρ|v|2

=

∫

D

ρv · (∂t + v · ∇)δζw +O(δ2)

and
∫

D

−p(eδζw) = −
∫

D

p−
∫

D

∇p · δζw +O(δ2).
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This yields finally

0 ≤ δ

[∫

D

ρv · (∂t + v · ∇)ζw + ζDw : ∇p⊗∇p

−1

2
|∇p|2∇ · ζw−∇p · ζw dtdx

]

+O(δ2)

Thus for every w smooth vector field on Td we have

0 =

∫

D

ρv · (∂t + v · ∇)(ζw) + ζDw : ∇p⊗∇p

−1

2
|∇p|2∇ · ζw −∇p · ζw dtdx

and thus (ρ, v, p) is a weak solution of the Euler-Poisson system in the sense of Definition 6.3. �

4.1.2. Conservation of energy. Here using inequality (235) we are going to show conservation of
energy ; we take δ = 0 in (235), minorize the LHS by 0 and let ε go to 0 to obtain

0 ≤ 1

2

∫

D

ρ(t + ηζ(t), x)(1 + ηζ̇(t))2|v(t+ ηζ(t), x))|2 dtdx

− 1

2

∫

D

|∇p(t+ ηζ(t), x)|2

+
1

2

∫

D

ρ(t, x)|v(t, x)|2 dtdx− 1

2

∫

D

|∇p(t, x)|2 dtdx

Changing variable in time t := t + ηζ(t), dt := dt(1 + ηζ̇(t)) we get

0 ≤ 1

2

∫

D

ρ(t, x)|v(t, x)|2ηζ̇(t) + |∇p(t, x)|2( 1

1 + ηζ̇(t)
− 1)

Taking the first order term in η we get

1

2

∫

D

[

ρ(t, x)|v(t, x)|2 − |∇p(t, x)|2
]

ζ̇(t) dtdx = 0

for any ζ ∈ C∞
c (0, T ) which gives the conservation of energy, with

E =
1

2

∫

Td

ρ(t, x)|v(t, x)|2 − |∇p(t, x)|2 dx.

this ends the proof of Proposition 6.9. �

5. Regularity

In this section we obtain several regularity properties of solutions of Problem 6.1. Those properties
come from the fact that the solution is a minimizer of the action of the Lagrangian and not only
a critical point. For points 1 and 2 we follow closely the method of [12] where similar results were
obtained in the case of the Euler incompressible equation. For the third point we use the first two
points and a method close to the one used in [30]. Similar results have also been obtained in [33]
for finite dimensional hamiltonian systems, using properties of a special Hamilton-Jacobi equation
related to the Hamiltonian flow.
In this section we prove the following :
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Proposition 6.10. The optimal solution ρ, ρv of Problem 6.2 satisfies :
– ρ ∈ L2

loc(]0, T [, L2(Td)),
– v can be extended to all of Td to a function of L2

loc(]0, T [, L2(Td)), in such a way that for all τ
in ]0, T/2], for all y in Rd,
∫

Td

∫ T−τ

τ

ρ(t, x) |v(t, x+ y) − v(t, x)|2 dtdx ≤ Cτ |y|2.
– φ can be chosen in L∞

loc(]0, T [×Td).
– ρ belongs to C(]0, T [, Lp(Td)) for any p ∈ [1, 3/2[.

5.1. Proof of Proposition 6.10.
5.1.1. Spatial regularity. We are going to use inequality (235) in the special case where η = 0,

ζ ≡ 1 in [τ, T − τ ], w(x) = y fixed. In this case vδ(t, x) = v(t, x) + δζ̇(t)y, and D(eδζw) = I. Since
the first order terms of the R.H.S of inequality (235) cancel, we now obtain :

1

2

∫

D

ρ(t, x)|vδ(t, x) −∇φε(t, x+ δζ(t)y)|2 dtdx

+
1

2

∫

D

|∇p(t, x) −∇pε(t, x+ δζ(t)y)|2 dtdx

≤ ε2 +

∫

D

ρ|δζ̇y|2.

Then we have
∫

D

ρ|vδ − v|2 =

∫

D

ρ|δζ̇y|2 ≤ C

τ
δ2|y|2

and thus
∫

Td

∫ T−τ

τ

ρ(t, x) |∇φε(t, x+ y) − v(t, x)|2(236)

+ |∇pε(t, x+ y) −∇p(t, x)|2 dtdx

≤ ε2 +
C

τ
|y|2.

We let ε go to 0 and obtain
∫

Td

∫ T−τ

τ

|∇p(t, x+ y) −∇p(t, x)|2 dtdx ≤ C

τ
|y|2

thus D2p, and ρ = 1 + ∆p are in L2
loc(]0, T [, L2(Td)).

We will also obtain that ∇φε is bounded in L2
loc(]0, T [, L2(Td)). Indeed, we get first from (236) that

∫

Td

∫ T−τ

τ

ρ(t, x) |∇φε(t, x+ y)|2 dxdt ≤ C(1 +
1

τ
)

for ε ≤ 1 and then integrating this over y ∈ Td we get
∫

y∈Td

∫

x∈Td

∫ T−τ

τ

ρ(t, x+ y) |∇φε(t, x)|2 dxdydt

=

∫

x∈Td

∫ T−τ

τ

|∇φε(t, x)|2 dxdt ≤ C(1 +
1

τ
)
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thus we can up to extraction of a subsequence define a limit, as ε goes to 0, v = ∇φ ∈ L2
loc(]0, T [, L2(dx)∩

L2(dρ)). However v will be uniquely defined only in the dρ a.e. sense. Note also that (t, x) → v(t, x+y)
will be in L2

loc(]0, T [, L2(dx) ∩ L2(dρ)) for any y ∈ Td. Then we obtain
∫

Td

∫ T−τ

τ

ρ(t, x) |v(t, x+ y) − v(t, x)|2 dtdx(237)

This proves the first two points of Proposition 6.10.

5.2. L∞ bound for the potential φ. The bound we obtain here on the potential will allow
us in the next section to obtain an unconditional L∞ bound for the velocity. We assume here that
d ≤ 3. Then since ρ ∈ L2

loc(]0, T [, L2(Td)) we have p ∈ L2
loc(]0, T [, H2(Td)) which is continuously

embedded in L2
loc(]0, T [, C

1
2 (Td)) and thus ‖p(t, .)‖L∞ ∈ L2

loc(]0, T [). (We will see after that ρ is in
L∞
loc(]0, T [×T

d) and we will be able to remove this assumption on the dimension).
Then take a regularization in t, x of φ, p : on ]τ, T − τ [,

φε(t, x) = ηε ∗ φ,
pε(t, x) = ηε ∗ p,

ηε(t, x) =
1

εd+1
η1(

t

ε
,
x

ε
),

with η1 compactly supported in [0, 1] ×B(0, 1) , and 0 < ε < τ/2. Check first that

∂tφε +
1

2
|∇φε|2 + pε ≤ 0.(238)

Considering σ → φε(σ, γ(σ)) with γ ∈ C1([0, T ]; Td) we have

d

dσ
(φε(σ, γ(σ))) = ∂tφε(σ, γ(σ)) + γ̇ · ∇φε(σ, γ(σ))

≤ ∂tφε(σ, γ(σ)) +
1

2
|∇φε|2(σ, γ(σ)) +

1

2
|γ̇(σ)|2

≤ −pε(σ, γ(σ)) +
1

2
|γ̇(σ)|2

using (238), and we get that

φε(t+ s, x) ≤ inf
γ∈Γ

{φε(t, γ(t)) +

∫ t+s

t

−pε(σ, γ(σ)) +
1

2
|γ̇|2(σ) dσ}

with Γ the set of all continuous paths going from [t, t+s] to Td such that γ(t+s) = x. Then restricting
the infimum to paths of the form γ(σ) = γ(t) + σ−t

s
(x − γ(0)) and noticing that ‖pε(t, .)‖L∞ ∈

L2
loc(]0, T [) (uniformly in ε) implies that

∫ t+s

t
|pε(σ, γ(σ))|dσ ≤ C

√
s one obtains the following upper

bound :

φε(t + s, x) ≤ inf
z∈Td

{φε(t, z)} + C(
1

s
+
√
s).(239)

A simple computation shows that
∫

Td

ρ(t2, x)φε(t2, x) dx−
∫

Td

ρ(t1, x)φε(t1, x) dx

→
∫ t2

t1

∫

Td

1

2
ρ|∇φ|2 + |∇p|2 dtdx ≤ 2K



5. REGULARITY 111

as ε goes to 0, withK the infimum of Problem 6.2. Thus if we normalize φ so that
∫

Td ρ(
1
2
T, x)φ(1

2
T, x) dx =

0, there exists for any ε small enough x1
ε , x

2
ε such that

φε(τ/2, x
1
ε) ≤ (2K + 1),

φε(T − τ/2, x2
ε) ≥ −(2K + 1).

Using (239) we get that

‖φε‖L∞([τ,T−τ ]×Td) ≤ C(K, τ).(240)

and using the fact that φε converges dtdx a.e to φ we conclude.
5.2.1. Time regularity. First let us notice that in inequality (235) if we do not set η = 0 we obtain

the mixed derivative estimate :
∫ T−τ

t=τ

ρ(t, x) |v(t+ η, x+ y) − v(t, x)|2(241)

+ |∇pε(t+ η, x+ y) −∇p(t, x)|2 dtdx
≤ Cτ(|y|2 + |η|2)

Setting y = 0 we get that ∂t∇p ∈ L2
loc(]0, T [, L2(Td)). Thus we have

Lemma 6.11. ∇p is in C
1
2
loc(]0, T [, L2(Td)).

Now we prove the last part of Proposition 6.10. The technique is somehow analog to the one used
by DiPerna and Lions in [30] : we obtain that the density is strongly continuous with respect to time
by showing some renormalization property, that gives the continuity of some Lp norm, with p > 1.
So we will prove :

Lemma 6.12. Let α ∈ [1, 3/2[ and Gα(t) =
∫

Td ρ
α(x) dx.

Then G ∈ C(]0, T [,R).

We postpone the proof of the lemma after the proof of proposition 6.10.

Proof of Proposition 6.10 : First we check the weak time continuity of ρ : We have
∫

Td ρv
2

uniformly bounded on [τ, T − τ ] from the conservation of energy and from lemma 6.11. Thus ρ|v| =√
ρ
√

ρ|v|2 ∈ L∞([τ, T − τ ], Lp) for some p > 1 thanks to lemma 6.12. It follows that from equation
(220) ∂tρ is bounded in L∞([τ, T − τ ], H−s) for some s. Using classical arguments of functional
analysis, we can deduce that

ρ ∈ C(]0, T [, Lp − w)

for some p > 1.
Then lemma 6.12 implies that ρ ∈ C(]0, T [, Lp) for any p ∈ [1, 3/2[ : indeed it is a classical fact

that for a sequence un converging weakly to u in LP , 1 < p > ∞, if ‖un‖Lp converges to ‖u‖Lp then
the sequence converges strongly.

The last point of Proposition 6.10 is proved. �

Proof of lemma 6.12 : Let us prove the renormalization property when the density and the
velocity field are smooth : we use the identity

∂t[ρF (ρ)] + ∇ · [ρF (ρ)v] = −ρ2F ′(ρ)∇ · v
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integrating over Td we get that
∫

Td ρF (ρ)) is continuous with respect to time as long as ρ2F ′(ρ)∇ · v
is in L1

loc([0, T ]×Td). We will see that this is true for F (ρ) = ρβ, β ≤ 1
2

from the regularity property
(237).

We introduce η(x) = C exp(− |x|2√
1+|x|2

) with C such that
∫

Rd η(x)dx = 1. Then as usual ηε(x) = 1
εd
η(x

ε
),

and ρε(x) = ρ ∗ ηε(x) =
∫

Rd ρ(x− y)ηε(y)dy, ρ being naturally extended to a Zd periodic function on

all of Rd. With ρ, v as before, we consider the pair (ρε, vε) defined by

ρε = ηε ? ρ

vε = ηε ? (ρv)/ρε

We check that the pair ρε, vε still satisfies equation (220). Then we have the crucial property :

Lemma 6.13. For any α ∈ [0, 2]
∫ T−τ

τ

∫

Td

ρε|∇vε|α ≤ C(τ, α)

This lemma means that the spatial regularity property (237) is conserved through the regulari-
zation. Before proving this lemma, we conclude the proof of lemma 6.12 : we have

d

dt

∫

ρεF (ρε) = −
∫

ρ2
εF

′(ρε)∇ · vε
d

dt

∫

ραε = (1 − α)

∫

ραε∇ · vε.

Then using lemma 6.13 with α = 2 and the fact that ρε ∈ L2
loc(]0, T [×Td) we get that

∫ T−τ

τ

ρ3/2
ε |∇ · vε| ≤ C(τ)

and also that for any α ∈ [0, 3/2[, the sequence ραε |∇ · vε| is equiintegrable on [τ, T − τ ] × Td. Thus
the sequence of functions of time t →

∫

Td ρ
3/2−ε(t, x)dx is equicontinuous and the limit function is

thus continuous. �

Proof of lemma 6.13 :
We have

∇ · vε = −∇ρε
ρ2
ε

· (ρv) ? ηε +
1

ρε
(ρv) ?∇ηε

= −∇ρε
ρ2
ε

·
∫

Rd

ρ(x− y)(v(x− y) − v(x))ηε(y) −
∇ρε
ρε

· v

+
∇ρε
ρε

· v +
1

ρε

∫

Rd

ρ(x− y)(v(x− y) − v(x)) · ∇ηε(y)

and we use the special shape of the regularization kernel : there exists C > 0 such that for all x ∈ Rd,
|∇η(x)| ≤ Cη(x) and thus we have :

∣

∣

∣

∣

∇ρε
ρε

∣

∣

∣

∣

≤ C

ε
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and we also have
∫

|y||∇ηε(y)|dy ≤ C,
∫

|y|ηε(y)dy ≤ Cε. We define

A(x) =
∇ρε
ρ2
ε

∫

Rd

ρ(x− y)(v(x− y) − v(x))ηε(y)dy

Then for α ≤ 2

Aα(x) ≤ C

∣

∣

∣

∣

∫

Rd

ρ(x− y)ηε(y)

ρε(x)

|v(x− y) − v(x)|
ε

dy

∣

∣

∣

∣

α

and this by Jensen’s inequality is less than

C

∫

Rd

ρ(x− y)ηε(y)

ρε(x)

|v(x− y) − v(x)|α
εα

dy

thus we obtain :
∫

Td

ρε(x)A
α(x)dx ≤

∫

Td

∫

Rd

ρ(x)ηε(y)
|v(x+ y) − v(x)|α

εα
dydx

Then for the next term

B(x) =
1

ρε

∫

ρ(x− y)(v(x− y) − v(x))∇ηε(y) dy

we proceed by the same method. Thus we are able to obtain
∫ T−τ

τ

∫

Td

∫

Rd

ρε|∇vε|α(x) dxdydt

≤ C

∫ T−τ

τ

∫

Td

∫

Rd

ρ(t, x)
1

|y|α |v(t, x+ y) − v(t, x)|αηε(y) dxdydt ≤ C(τ)

using the spatial regularity property (237). The proof of lemma 6.13 is thus complete. �

5.3. Consistency with smooth solutions of Euler-Poisson system. Here we show that the
solution of the minimization problem coincides with a smooth solution of the Euler-Poisson system.

Theorem 6.14. Let (∇φ, ρ, p) be the solution of Problem 6.2, let (∇ψ, r, q) be such that ψ ∈
W 1,∞([0, T ]×T

d), r ∈ L2([0, T ], H−1(Td))∩L∞([0, T ], L1(Td)) and q ∈ L∞([0, T ]×T
d). Suppose that

(∇ψ, r, q) is solution to

∂tψ +
1

2
|∇ψ|2 + q ≤ 0(242)

r(∂tψ +
1

2
|∇ψ|2 + q) = 0(243)

∂tr + ∇ · (r∇ψ) = 0 in D′(244)

r|t=0 = ρ0, r|t=1 = ρ1(245)

∆q = r − 1 in D′(246)

Then ρ = r and ∇φ = ∇ψ dρ a.e.

Proof : Using the fact that (ρ,∇φ) satisfies the continuity equation (220) we get that
∫

D

ρ∇φ · ∇ψ +

∫

D

ρ∂tψ =

∫

Td

ρTψ(T ) −
∫

Td

ρ0ψ(0)
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combining with (242) we get
∫

D

ρ∇φ · ∇ψ −
∫

D

ρ(
1

2
|∇ψ|2 + q) ≥

∫

Td

ρTψ(T ) −
∫

Td

ρ0ψ(0)

thus using (222)

1

2

∫

D

ρ(−|∇φ−∇ψ|2 + |∇φ|2) +

∫

D

∇p · ∇q − q

≥
∫

Td

ρTψ(T ) −
∫

Td

ρ0ψ(0)

and using (244, 245)

1

2

∫

D

ρ(−|∇φ−∇ψ|2 + |∇φ|2) +

∫

D

∇p · ∇q − q

≥
∫

D

r∇ψ · ∇ψ +

∫

D

r∂tψ

≥ −
∫

D

qr +
1

2

∫

D

r|∇ψ|2

≥
∫

D

|∇q|2 − r +
1

2

∫

D

r|∇ψ|2

where we have used (243) in the second line and (246) in the third line, and finally we get
∫

D

ρ|∇φ−∇ψ|2 +

∫

D

|∇p−∇q|2

≤
∫

D

ρ|∇φ|2 + |∇p|2 −
∫

D

r|∇ψ|2 + |∇q|2.

Since ρ,∇φ, p is solution of the minimization problem, the RHS is non positive, and thus we obtain
the desired result.
Remark 1 : This is true in particular if ψ, q is a C1(D) × C0(D) solution of ∂tψ + 1

2
|∇ψ|2 + q = 0

and thus shows the consistency with smooth solutions of the (E − P ) system.
Remark 2 : From the results of Theorem 6.5 depending on ρ0 and ρT the assumptions on ψ, r, q can
be weakened. For instance if ρ0 and ρT are in L∞ then ρ,∇φ,∇p are in L∞([0, T ]×Td) and one only
needs (1+ r)|∇ψ|2, (1 + r)|∂tψ|, |∇q|2 to be integrable to perform our computation. (Note that these
assumptions imply that ψ ∈ C([0, T ], L1(Td)) and thus

∫

Td ρTψ(T ) −
∫

Td ρ0ψ(0) is well defined).
This ends the proof of the Theorem 6.14. �

6. Proof of Theorem 6.5

In this section we prove several additional regularity properties for the variational solution. The
problems that we will treat are closely related to viscosity solutions of Hamilton Jacobi equation. In
the remainder we will denote by HJ1, HJ2 the following operators :

HJ1 (φ) = ∂tφ+
1

2
|∇φ|2,

HJ2 (φ, p) = ∂tφ+
1

2
|∇φ|2 + p,
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and we will precise in what sense they must be understood. See [32] for references about Hamilton
Jacobi equations.

6.1. Formal bounds. Solutions of our variational problem satisfy

∂tφ+
1

2
|∇φ|2 + p = 0 dρ a.e.(247)

∂tφ+
1

2
|∇φ|2 + p ≤ 0(248)

∂tρ + ∇(ρ∇φ) = 0(249)

ρ = 1 + ∆p(250)

If some C2(Td) function Z satisfies Z(x0) = 0 and Z ≤ 0 in Td then D2(Z)(x0) ≤ 0 in the sense of
matrices and in particular this implies that ∆Z(x0) ≤ 0. Using (247,248) and applying this result to
Z = ∂tφ+ 1

2
|∇φ|2 + p one formally obtains

∂t∆φ + (∇φ · ∇)∆φ+
∑

ij

|∂ijφ|2 + ∆p ≤ 0 dρ a.e.

which combined with the inequality |∆φ|2 ≤ d
∑

i,j |∂ijφ|2 and with (250) gives the inequality

d

dt
∆φ ≤ 1 − ρ− 1

d
|∆φ|2(251)

where d
dt

= ∂t+
∑d

i=1 ∂iφ ∂i denotes the convective derivative along the flow generated by the velocity
field ∇φ(t, x). We first deduce of this an interior upper bound for ∆φ dρ a.e. :

∆φ ≤ C(d)(1 +
1

t
)

obtained by looking at the behavior of the differential inequality

ḟ ≤ 1 − C(d)f 2

for large f . This bound is well known for viscosity solutions of HJ2=0 provided that p (as is the case
here) satisfies ∆p ≥ C. However we don’t know a priori that our solution is a viscosity solution, and
moreover this bound is true in the sense of distributions. Here a complication is added by the fact
that the solution φ, p satisfies HJ2(φ, p) = 0 only dρ a.e.

Now notice that our variational solution exists on t ∈ [0, T ] and thus (ψ, q)(t) = (−φ, p)(T − t) is
also a solution to equations (247) to (250). Therefore we can obtain by the same way that

∆ψ(t) ≤ C(d)(1 +
1

t
),(252)

∆φ(T − t) ≥ −C(d)(1 +
1

t
).(253)

This gives the following uniform bound

‖∆φ‖L∞([τ,1−τ ]×Td, dρ) ≤ C(d)(1 +
1

τ
).

Here the constant is universal, and it is only supposed that the solution exists from t = 0 to t = T .
This surprising (in the sense that it is not true for viscosity solutions) result comes from the fact
that the transformation (φ, p) → (−φ, p)(T − t) does not necessarily transform a viscosity solution
of (247) into another viscosity solution but transforms a variational solution into another variational
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solution. Actually it will be proved that one can choose the variational solution to be a viscosity
solution in one time direction, but it may only be a subsolution when reversing the time.
Now ∆φ is the divergence of the velocity field, and thus we have ∆φ = − d

dt
log ρ and from (251) we

have the following control on the second time derivative of ρ along the flow :

d2

dt2
log ρ ≥ ρ+

1

d
| d
dt

log ρ|2 − 1(254)

Following the path of a “particle”, the ordinary differential inequation satisfied by Θ = log ρ is :

Θ̈ ≥ exp Θ − 1 +
1

d
|Θ̇|2

Now we look for solutions of this equation that do not become infinite before t = T . One will check
that this condition implies that Θ(t) ≤ C(τ) for τ ≤ t ≤ T − τ , independently of the initial and final
values of Θ. Thus we have an interior unconditional bound for the L∞ norm of ρ, namely that

‖ρ‖L∞([τ,T−τ ]×Td) ≤ C(τ).

The above differential inequality will also yield that some functionals of ρ are convex along the
displacement induced by our variational problem : indeed a formal computation gives the following :

∂tt

∫

Td

ρ log ρ ≥ 0

∂tt

∫

Td

|ρ|k ≥ 0 for every k ≥ 1

Remark : This displacement convexity property is analog to the one found in [48] which was true for
k ≥ 1− 1/d, however, our the analogy stops here since our displacement does not induce a distance :
indeed take ρ0 = ρT 6≡ 1 and check that the cost of the transportation of ρ0 on ρT following the
Euler-Poisson flow is not 0.

In the next section we give a rigorous sense to the computations made above in order to obtain
the Theorem 6.5.

6.2. Rigorous proof of Theorem 6.5. We prove the theorem using a time discretization of
the problem.

6.2.1. Construction of a sequence of approximate solutions. We introduce the following times
ti = T i/N, i = 1..N − 1, and we consider the functional

IN (ρ, v) =
1

2

∫

D

ρ(t, x)|v(t, x)|2 dtdx+
T

2N

N−1
∑

1=1

∫

Td

|∇p(ti, x)|2 dx

We are now interested in solving the following variational problem :
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Problem 6.15. Minimize

ĨN (ρ, J, p) =
T

2N

N−1
∑

1=1

∫

Td

|∇p(ti, x)|2 dx

+ sup
c,m∈C0(Td)×(C0(Td))d

c+|m|2/2≤0

{1

2

∫

D

c(t, x)ρ(t, x) +m(t, x) · J(t, x) dtdx}

among all ρ, J, p that satisfy ρ ∈ C([0, T ],P(Td) − w∗), J ∈ (M(D)d), ∇p(ti) ∈ L2(D) for all
1 ≤ i ≤ N − 1 and

∂tρ+ ∇ · J = 0

∆p = ρ− 1

ρ(t = 0) = ρ0

ρ(t = T ) = ρT .

We denote KN the value of this infimum.

The interest of studying this problem is both to make rigorous the arguments of the previous
section and to give a possible numerical discretization of the Problem 6.1. It will also let appear some
interesting links between optimal transportation, viscosity solutions of Hamilton-Jacobi equations,
and transport equations.

6.2.2. Basic facts on optimal transportation. We first recall the definition of the pushforward of
a measure by a mapping :

Definition 6.16. Let ρ0 and ρ1 be two probability measures on Td and let X be a dρ0 measurable
mapping from Td into itself. We say that ρ1 is the pushforward of ρ0 by X and we denote it by
ρ1 = X#ρ0 if we following holds :

∀f ∈ C0(Td),

∫

f(X(x))dρ0(x) =

∫

f(y)dρ1(y).

The effect of the time discretization is that between two ti having chosen ρ(ti) and ρ(ti+1) the
problem becomes the following :

Problem 6.17. Minimize

C̃(ρ, J) = sup
c,m∈C0(Td)×(C0(Td))d

c+|m|2/2≤0

{1

2

∫

D

ρc + J ·m dtdx}

among all ρ, J that satisfy ρ ∈ C([ti, ti+1],P(Td) − w∗), J ∈ (M(D))d and

∂tρ + ∇ · J = 0

ρ(t = ti) = ρi

ρ(t = ti+1) = ρi+1.

The infimum is denoted C(ρi, ρi+1, |ti − ti+1|).
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Remark : performing a dilatation in the time variable we see that
C(ρi, ρi+1, t) = 1

t
C(ρi, ρi+1, 1).

Then the Wasserstein distance between ρi and ρi+1 is given by

(W2)
2(ρi, ρi+1) = C(ρi, ρi+1, 1)

This problem has been solved in [7], [10] where it is shown that there exists a unique solution
ρ, J = ρv (v is only unique dρ a.e.) that satisfies :

v(t = ti, x) =
1

ti+1 − ti
(∇ϕ(x) − x) dρi a.e.

∂t(ρv) + ∇ · (ρv ⊗ v) = 0

detD2ϕ(x)ρi+1(∇ϕ(x)) = ρi(x)

with ϕ a convex function. The second equation means that the particle move with constant speed.
The third equation is the Monge-Ampère equation that is verified in the following weak sense :

∀f ∈ C0(Td),

∫

f(∇ϕ(x))dρi(x) =

∫

f(y)dρi+1(y).

This means that ∇ϕ pushes forward ρi on ρi+1. The Wasserstein distance between two probability
measures can be defined equivalently in the following ways :

W 2
2 (ρ0, ρ1) = inf

ρ,v

∫

[0,1]×Td

dρ|v|2/2

= sup
φ(x)+ψ(y)≥x·y

∫

Td

dρ1(x)(|x|2/2 − φ(x)) + dρ2(y)(|y|2/2 − ψ(y))

= inf
m#dρ0=dρ1

∫

Td

1

2
|x− m(x)|2dρ0

where the first infimum is taken over all the pair (ρ, v) satisfying
∂tρ+ ∇ · [ρv] = 0 and ρ|t=0 = ρ0, ρ|t=1 = ρ1.

Those three problems have a unique solution. For the first it has been already mentioned above.
Then the optimal m is equal to ∇ϕ, the optimal pair (φ, ψ) is equal (up to a constant) to (ϕ, ϕ∗)
with ϕ∗ the Legendre transform of ϕ (see the definition (259) below). For additional references about
the Wasserstein distance the reader can refer to [48], [54], or [62] .

6.2.3. Existence of a minimizer for the approximate problem. Following exactly the same method
as in the first problem we can show the existence of a unique minimizer to the Problem 6.15. In this
way we obtain the following :

Proposition 6.18. There exists a unique ρN and a dρN a.e. unique vN = ∇φN solution of
Problem 6.15. Moreover it satisfies :

1- There exists C such that for any 0 < τ < T/2,
T
N

∑

τ≤ti≤T−τ
‖ρ(ti, .)‖L2(Td) ≤ C

τ
.

2- There exists C such that for any 0 < η < τ/2,
T
N

∑

τ≤ti≤T−τ
‖∇p(ti, .) −∇p(ti + η, .)‖2

L2(Td) ≤ C
τ
η2.
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4- The solution ρN , vN = ∇φN is a weak solution of

∂t(ρNvN ) + ∇ · (ρNvN ⊗ vN ) = −ρN
T

N

N−1
∑

i=1

δt=ti∇p(ti)

∂tρN + ∇ · (ρNvN) = 0

∆pN = ρN − 1

the pair φN , pN satisfies ∂tφN + 1
2
|∇φN |2 + + T

N

∑N−1
i=1 δt=tip ≤ 0 and also satisfies for any ti, 1 ≤ i ≤

N − 1

φ(t+i , x) − φ(t−i , x) ≤ − T

N
p(ti, x) dx a.e.

φ(t+i , x) − φ(t−i , x) = − T

N
p(ti, x) dρ(ti) a.e.

∇φ(t+i , x) −∇φ(t−i , x) = − T

N
∇p(ti, x) dρ(ti) a.e.

4- The energy of the solution defined by

EN (ti) =
1

2

∫

Td

[ρN |vN |2 − |∇pN |2](ti)

is independent of i.

Proof : The proof is the same as the time continuous version therefore we will briefly sketch it.
Concerning the existence of an admissible solutions for Problem 6.15 note that we don’t need that
ρ0 neither ρT are in any Lp since two probability measures on Td are always at finite Wasserstein
distance and thus one can exhibit an admissible solution by transporting ρ0 on ρ(T/N) = 1 between
t = 0 and t = T/N , then letting ρ(ti) = 1 for i ≤ N − 1 and transporting ρ(N−1

N
T ) on ρT .

Then having chosen an admissible solution ρ̄, v̄ = ∇φ̄, p̄, to the primal problem of finding the infimum
of IN we associate the following dual problem : find the supremum over all pairs (ψ, q) such that

∂tψ + 1
2
|∇ψ|2 + T

N

∑N−1
i=1 δt=tiq(ti) ≤ 0 of

DN(ψ, q) =

∫

[0,T ]×Td

ρ̄∂tψ + ρ̄v̄ · ∇ψ dtdx

+
T

N

N−1
∑

i=1

∫

Td

−|∇q(ti)|2/2 + ρ̄(ti)q(ti) + ∇p̄(ti) · ∇q(ti) dx

From the Rockafellar duality Theorem we have inf IN = supDN and the infimum is attained. Then
taking (ρ̄, φ̄, p̄) = (ρN , φN , pN) the optimal solution, for any ε > 0 we find ψε, qε such thatDN(ψε, qε) ≥
KN − ε2 and we obtain :

1

2

∫

D

ρN |∇φN −∇ψε|2 +
1

2

T

N

N−1
∑

i=1

∫

Td

|∇pN(ti) −∇qε(ti)|2(255)

+

∫

D

ρN

∣

∣

∣

∣

∂tψε +
1

2
|∇ψε|2 +

T

N

N−1
∑

i=1

δt=tiqε(ti)

∣

∣

∣

∣

≤ ε2.
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Then perturbing ρN , vN as we did in the time continuous problem, we find the optimality equation
and the regularity properties.

6.2.4. Regularity properties of solutions of Problem 6.15. Here we state the main result of this
section, from which will be deduced Theorem 6.5.

Proposition 6.19. Let (t, x) → (φN(t, x), ρN(t, x)) be solution of Problem 6.15.

1- There exists C depending only on T and on the dimension such that for all t in [0, T ], φN(t) is
dρN(t) a.e. twice differentiable and satisfies

−C(1 +
1

T − t
) ≤ ∆φN(t, .) ≤ C(1 +

1

t
) dρ(t) a.e.

2- The density ρN is bounded in L∞
loc(]0, T [, L∞(Td)) uniformly with respect to N and belongs to

⋂

k>1C(]0, T [, Lk(Td)).

3- There exists C such that for any 1 ≤ k ≤ ∞

−C(1 +
1

t
) ≤ d

dt
‖ρN (t, ·)‖Lk(Td) ≤ C(1 +

1

T − t
)

4- The functions

∫

Td

[ρN(t, x)]k dx,

∫

Td

ρN log ρN(t, x) dx are uniformly Lipschitz with respect to time

in every interval [τ, T − τ ], with 0 < τ < T/2 and converge as N → ∞ to convex functions on [0, T ].

5- The velocity ∇φN can be chosen in L∞
loc(]0, T [×Td).

6- φN can be chosen to be the viscosity solution of
∂tφN + 1

2
|∇φN |2 +

∑N−1
i=1 δt=tip = 0 in the sense of (270).

6- All these results and bounds do not depend on ρ0 neither on ρT .

The proof of this proposition is postponed to the end of the paper. First we use it to show the
convergence of solutions of Problem 6.15 toward the solution of Problem 6.1 :

6.2.5. Convergence of the solutions of Problem 6.15 to the solution of Problem 6.2.

Proposition 6.20. Let ρN , vN be as before, and ρ, v, p be solution of the minimization Problem

6.1 with same initial and final densities in L
2d

d+2 , then

lim
N→∞

1

2

∫ T

t=0

∫

Td

(

ρ|vN − v|2 + |∇pN −∇p|2
)

(t, x) dxdt = 0,

and ρN∇φN converges strongly in L1([0, T ] × Td) to ρ∇φ.
Then the last two proposition combined will yield the Theorem 6.5 when passing to the limit.

Proof of Proposition 6.20
Here we prove a slightly weaker version of proposition 6.20 that allows us to pass to the limit in
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proposition 6.19 and obtain Theorem 6.5. Then we can get the exact proposition 6.20.
We first choose τ ∈ [0, T/2[ and k such that 0 < tk−1 ≤ τ ≤ tk < .. < tN−k ≤ T − τ . We set

F τ (ρ, v) =
1

2

∫ T

0

∫

Td

ρ|v|2 dtdx +
1

2

∫ T−τ

τ

∫

Td

|∇p|2 dxdt

F τ
N (ρ, v) =

1

2

∫ T

0

∫

Td

ρ|v|2 dtdx+
T

2N

N−k
∑

i=k

∫

Td

|∇p(ti, x)|2dx

(understood that p satisfies ∆p = ρ − 1). We need to introduce these truncated functionals since
we don’t know a priori that the potential energy remains bounded near the boundary of the time
interval and thus the convergence of the Riemann sum to the integral is not clear. We shall see after

having proved the Theorem 6.5 that this is the case when ρ0 and ρT are in L
2d

d+2 .
It follows from proposition 6.18 that there exists a unique minimizer that we will denote ρN , vN =
∇φN , pN for the functional F τ

N under the constraints of Problem 6.15. It can also be checked later in
the proof that the regularity results of proposition 6.19 remain uniformly valid for τ ≤ τ0.
We consider ρ, v solution of Problem 6.2. From lemma 6.11, ‖∇p(t, ·)‖2

L2(Td) is continuous in ]0, T [

thus

∀τ > 0, F τ
N(ρ, v) → F τ (ρ, v) as N → ∞.

Then F τ (ρ, v) − F (ρ, v) → 0 when τ goes to 0, and there exists a sequence τp, Np such that

F
τp
Np

(ρ, v) → F (ρ, v).

In the remainder of this proof set F
τp
Np

= FN (therefore τ, k will both depend on N) and ρN , vN the
associated minimizer. Thus

FN (ρ, v) → F (ρ, v).

Then we have FN (ρN , vN) ≤ FN(ρ, v) and thus lim inf FN(ρN , vN) ≤ F (ρ, v).
Now we claim that lim |FN(ρN , vN) − F (ρN , vN)| = 0 and this will imply that limFN(ρN , vN) =
F (ρ, v). From the second point of proposition 6.18 we get that for any fixed τ ′,

∣

∣

∣

∣

∣

∫ T−τ ′

τ ′

∫

Td

|∇pN(t, x)|2 dtdx− T

N

∑

τ ′<ti<T−τ ′

∫

Td

|∇pN(ti, x)|2 dx
∣

∣

∣

∣

∣

≤ C(τ ′)

N

Since ρ0 and ρT are in L
2d

d+2 , point 4 in proposition 6.19 implies that ρN is in L∞([0, T ], L
2d

d+2 ). It
follows that the sequence ∇pN is uniformly bounded in L∞([0, T ], L2) since ∆pN = ρN − 1 and from
Sobolev embedding. Thus

lim
N→∞

∫ T

0

∫

Td

|∇pN(t, x)|2dtdx− T

N

N−k
∑

1=k

∫

Td

|∇pN(ti, x)|2 dx = 0.(256)

We can conclude that limFN(ρN , vN) = limFN(ρ, v) = F (ρ, v) as N → ∞.
We show now that this implies that ρN , vN and ρ, v are close to each other. Remember that we have
shown that FN(ρ, v) → F (ρ, v). Using the dual formulation of the Problem 6.15 as in the proof of
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proposition 6.18 we have

∫

[0,T ]×Td

1

2
ρN |vN |2 +

T

2N

N−k
∑

i=k

∫

Td

|∇pN(ti)|2

= sup
ψ,q

{
∫

[0,T ]×Td

ρ∂tψ + ρv · ∇ψ

+
T

N

N−k
∑

i=k

∫

Td

−|∇q(ti)|2/2 + ρ(ti)q(ti) + ∇p(ti) · ∇q(ti)}

the supremum being taken over all pairs (ψ, p) ∈ C1(D) such that

∂tψ +
1

2
|∇ψ|2 +

T

N

N−k
∑

i=k

δt=tiq ≤ 0.

Note that in the RHS we can use any admissible solution (i.e satisfying (225,226,227,228)), and that
we have taken ρ, v, p the solution of Problem 6.2 which is admissible for Problem 6.15, and not
ρN , vN , pN . Using the fact that FN(ρ, v) is close to FN(ρN , vN) for N large, for any ε, δ > 0 there
exists N,ψεN , q

ε
N (with N = N(δ)) such that

1

2

∫

D

ρ|v|2 +
T

2N

N−k
∑

i=k

∫

Td

|∇p(ti)|2

≤ 1

2

∫

D

ρN |vN |2 +
T

2N

N−k
∑

i=k

∫

Td

|∇pN(ti)|2 + δ

≤ ε+ δ +

∫

D

ρ∂tψ
ε
N + ρv · ∇ψεN

+
T

N

N−k
∑

i=k

∫

Td

−|∇qεN(ti)|2/2 + ρ(ti)q
ε
N(ti) + ∇p(ti) · ∇qεN (ti)

This eventually yields

∫

D

1

2
ρ|v −∇ψεN |2 +

T

2N

N−k
∑

i=k

∫

Td

1

2
|∇p(ti) −∇qεN(ti)|2 ≤ ε + δ.

At N fixed, being a maximizing sequence for the dual problem, ∇ψεN , qεN will converge to vN , pN as
ε→ 0 (see (255)), therefore we obtain

1

2

∫

D

ρ|v − vN |2 +
T

2N

N−k
∑

i=k

∫

Td

|∇p(ti) −∇pN(ti)|2/2 ≤ δ

and combining with (256) we obtain

1

2

∫

D

ρ|v − vN |2 + |∇pN −∇p|2dtdx→ 0 as N → ∞.
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Using the same procedure we can also get that

1

2

∫

D

ρN |v − vN |2 + |∇pN −∇p|2dtdx→ 0 as N → ∞.

Now we show that ρNvN converges to ρv : using the equicontinuity property of the sequence ‖ρN (t, .)‖Lk

in [τ, T − τ ] for any τ ≤ T/2 and any 1 ≤ k <∞, (see proposition 6.19), the sequence ρN converges
strongly in Lk([τ, T − τ ] × Td) for any 1 ≤ k < ∞. Moreover remember that from Theorem 6.4
v ∈ L2([τ, T − τ ] × Td) Then

∫

[τ,T−τ ]×Td

|ρv − ρNvN |

≤
∫

[τ,T−τ ]×Td

ρN |vN − v| + v|ρN − ρ| → 0

and ρNvN converges strongly to ρv in Lploc(]0, T [×Td) for any 1 ≤ p < ∞. This implies that one can
pass to the limit in equation (221).

Proof of Theorem 6.5 : The theorem is obtained passing to the limit in the proposition 6.19. The
point 2,3,4,5 remain true when letting N go ∞.
Concerning the fact that we can choose φ viscosity solution of HJ2(φ, p) = 0 this will be proved at
the end of the paper. �

Then from Theorem 6.5 if ρ0, ρT ∈ L
2d

d+2 (Td) we have ρ ∈ L∞([0, T ], L
2d

d+2 (Td)) and using
∆p = ρ− 1 and Sobolev embeddings ∇p ∈ L∞([0, T ], L2(Td)). This bound shows that the Riemann

sum T
N

∑N−1
i=1

∫

Td |∇p(ti, x)|2dx converges to
∫

D
|∇p|2 dtdx and this allows us to take τ = 0 in the

previous proof and to conclude the proof of proposition 6.20. �.

6.3. Proof of Proposition 6.19. In this part N is fixed and for sake of simplicity we drop the
suffix N . We consider ρ = ∆p + 1, φ, v = ∇φ solution of the Problem (6.15).

6.3.1. Preliminary : Construction of a special solution. First we begin to show the consistency
with Problem 6.17 : let ti ≤ s, t ≤ ti+1. We denote

Φs,t(x) = (t− s)φ(s, x) + |x|2/2.(257)

Φs,t is thus a function going from R
d to R if we extend φ to a periodic function on all of R

d. Note
also that for any ~p ∈ Zd, ∇Φs,t(. + ~p) = ∇Φs,t(.) + ~p. If s = ti and t = ti+1 we denote Φi,i+1 (resp.
Φi+1,i) instead of Φs,t (resp. Φt,s). Note that φ is discontinuous at times ti and thus

Φi,i+1(x) = |x|2/2 +
T

N
φ(t+i , x)

Φi,i−1(x) = |x|2/2 − T

N
φ(t−i , x).

We also have

v(s, x) = ∇φ(s, x) =
1

t− s
(∇Φs,t(x) − x)(258)

which is well defined on Rd/Zd.
In the first lemma, we will see that ∇Φs,t pushes forward ρ(s) on ρ(t) minimizing the cost
∫

Td ρ(s, x)|m(x)−x|2dx among all m pushing forward ρ(s) on ρ(t) (that we denote hereafter m#ρ(s) =
ρ(t)) and that Φs,t coincides with its convex hull dρ(s) a.e.
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Then in the second lemma we will show that we can consider a solution for which every Φs,t is convex.
This point that may seem to be a direct consequence of optimal transport (the fact that the optimal
transport is given by the gradient of a convex function) needs from our point of view a careful proof :
indeed we only know that the gradient of Φs,t will coincide dρ(s) a.e. with the gradient of a convex
function, but since the optimality equation links Φi−1,i, Φi,i+1 and p(ti) it must be checked that Φi,i+1

can consistently be taken convex. The convexity will then allow us to consider the second derivative
of Φi,i+1 since a convex function is almost everywhere twice differentiable, and then to make rigorous
the inequality (251) and its consequences.

First for any f : R
d → R we denote f ∗ its Legendre transform defined by

f ∗(y) = sup
x∈Rd

y · x− f(x).(259)

then we have the following lemma :

Lemma 6.21. Let ti ≤ s, t ≤ ti+1 and Φt,s,Φs,t be defined as above. Then

Φs,t ≥ Φ∗
t,s with equality dρ(s) a.e.

Φs,t = Φ∗∗
s,t dρ(s) a.e.

∇Φs,t = ∇Φ∗∗
s,t dρ(s) a.e.

∇Φ∗∗
s,t#dρ(s) = dρ(t).

Proof : We know that φ is the limit of a smooth sequence φε satisfying the the constraint :

∂tφε +
1

2
|∇φε|2 +

1

N

N
∑

i=1

δt=tipε(ti) ≤ 0.

Between ti and ti+1 we have

∂tφε +
1

2
|∇φε|2 ≤ 0.(260)

Thus if t > s considering γ(σ) = x + (σ − t)
y − x

t− s
and using (260) we find

d

dσ
[φε(σ, γ(σ))] = (∂tφε(σ, γ(σ)) +

y − x

t− s
· ∇φε(σ, γ(σ)))

≤ (∂tφε(σ, γ(σ)) +
1

2
(
|y − x|2
|t− s|2 + |∇φε(σ, γ(σ))|2))

≤ 1

2

|y − x|2
|t− s|2 ,

and integrating from t to s we find

φε(t, y) ≤ inf
x
φε(s, x) +

|y − x|2
2(t− s)

φε(s, x) ≥ sup
y
φε(t, y) −

|y − x|2
2(t− s)

.
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Letting ε go to 0, it follows from (257) that

Φt,s(y) ≥ sup
x
x · y − Φs,t(x) = Φ∗

s,t(y)(261)

and similarly Φs,t(x) ≥ Φ∗
t,s(x).(262)

This is the first point of the lemma. The crucial point is the following : for dρ(t) a.e y we have

φ(t, y) = inf
x
φ(s, x) +

|y − x|2
t− s

or equivalently

Φt,s(y) = sup
x
x · y − Φs,t(x) dρ(t) a.e.

Indeed take a smooth sequence φε, pε such that

∂tφε +
1

2
|∇φε|2 +

1

N

N
∑

i=1

δt=tipε(ti) ≤ 0

that maximizes the dual problem, i.e. such that
∫ T

0

∫

Td

ρ∂tφε + ρ∇φ · ∇φε dtdx

+
T

N

N−1
∑

i=1

∫

Td

ρpε(ti, x) + ∇p · ∇pε(ti, x) −
1

2
|∇pε|2(ti, x)dx

≥ KN − ε2.

Being a maximizing sequence of the dual problem implies the following :
∫

D

ρ|∂tφε +
1

2
|∇φε|2 +

1

N

N
∑

i=1

δt=tipε(ti)| dtdx→ 0 as ε→ 0,

which in turn implies that
∫ t

s

∫

Td

ρ∂tφε + ρ∇φ · ∇φε dt′dx

=

∫

Td

ρ(t, x)φε(t, x) − ρ(s, x)φε(s, x) dx

→ 1

2

∫ t

s

∫

Td

ρ|∇φ|2 dt′dx =
1

t− s
W 2

2 (ρ(s), ρ(t)) as ε→ 0.

where the first line comes from the continuity equation (220) and the last identity comes the fact
that between t and s the problem coincides with the problem 6.17.

If m is a mapping realizing the optimal transport of ρ(s) on ρ(t) then m#ρ(s) = ρ(t) implies
∫

Td

ρ(t, x)φε(t, x) − ρ(s, x)φε(s, x) dx =

∫

Td

ρ(s, x)(φε(t,m(x)) − φε(s, x)) dx.

Using that

φε(t, x) − φε(s, y) ≤
|x− y|2
2(t− s)

.
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and that from the optimality of m we have

1

2(t− s)

∫

Td

ρ(s, x)|x− m(x)|2 dx =
1

t− s
W 2

2 (ρ(s), ρ(t))

we obtain by taking the limit ε→ 0 that

φ(t,m(x)) = φ(s, x) +
|x− m(x)|2

2(t− s)
dρ(s) a.e

which is equivalent to

φ(t, y) = φ(s, x) +
|y − m−1(y)|2

2(t− s)
dρ(t) a.e

we remind that m is only invertible dρ(t) a.e and m−1 can be defined as the (dρ(t) a.e unique)
mapping realizing the optimal transport of ρ(t) on ρ(s).
This implies that if t > s, we have :

φ(t, x) = inf
y

|y − x|2
2(t− s)

+ φ(s, y) dρ(t) a.e.

Φt,s = (Φs,t)
∗ dρ(t) a.e.

the two lines being equivalent through equation (257). Then since any Legendre transform as a
supremum of affine functions is convex, Φt,s coincides with a convex function dρ(t) a.e and is above
this function dx a.e. from (261). Thus since Φ∗∗

t,s is the convex hull of Φt,s it follows that

Φ∗∗
t,s = Φt,s dρ(t) a.e.

of which can be deduced that
∫

Td

(|x|2/2 − Φ∗∗
t,s)ρ(s, x) dx+

∫

Td

(|y|2/2 − Φ∗
t,s(y))ρ(t, y) dy

= (t− s)

∫

Td

ρ(s, x)φ(s, x) − ρ(t, x)φ(t, x) dx

= W 2
2 (ρ(s), ρ(t)).

This implies that ∇Φ∗∗
s,t#ρ(s) = ρ(t) (See [14]). Then if we set

φ̃(s, x) =
1

t− s
((| · |2/2 + (t− s)φ(s, ·))∗∗(x) − |x|2/2)

we obtain that
∫

Td

ρ(t, x)|∇φ−∇φ̃|2(t, x)dx = 0

for a.e. t and this ends the proof of lemma 6.21. �

We are going to use the previous lemma to construct a new sequence of solutions for which the
potentials Φi,i+1 are convex. This will allow us to define dρ(ti) a.e. the second derivative of Φi,i+1.
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This special solution will turn out to be the viscosity solution of ∂tψ + 1
2
|∇ψ|2 +

T

N

N−1
∑

i=1

δt=tip = 0.

Remind that from proposition 6.18 φ(t+i ) is defined from the optimality equations by

φ(t+i , x) − φ(t−i , x) ≤ − T

N
p(ti, x) dx a.e.(263)

φ(t+i , x) − φ(t−i , x) = − T

N
p(ti, x) dρ(ti) a.e.(264)

∇φ(t+i , x) −∇φ(t−i , x) = − T

N
∇p(ti, x) dρ(ti) a.e.(265)

consider the new solution ψ defined by

ψ(t = 0, x) =
N

T

[( | · |2
2

+
T

N
φ(t = 0, ·)

)∗∗

(x) − |x|2/2
]

(266)

on ]ti, ti+1[, ψ(t, x) = inf
y
{ |x− y|2
2(t− ti)

+ ψ(t+i , y)}(267)

ψ(t+i , x) =
N

T

[( | · |2
2

+
T

N
ψ(t−i , ·) −

T 2p(ti, ·)
N2

)∗∗

(x) − |x|2/2
]

(268)

Lemma 6.22. 1-For almost every t ∈ [0, T ], ψ(t, .) coincides with φ(t, .) dρ(t) a.e. and (ψ, ρ, p) is
a solution of the Problem 6.15.

2- ∀i ∈ [0..N − 1], (t, x) → ψ(t, x) and (t, x) → −ψ(ti+1 + ti − t, x) are both viscosity solutions (and
subsolutions) of ∂tψ + 1

2
|∇ψ|2 = 0 in ]ti, ti+1[.

3- Ψ is a viscosity solution of ∂tψ + 1
2
|∇ψ|2 +

T

N

N−1
∑

i=1

δt=tip = 0 on [0, T ] in the sense of (270).

Proof : We denote

Ψs,t(x) = |x|2/2 + (t− s)ψ(s, x) for s, t ∈ [ti−1, ti+1](269)

and Ψi,i+1,Ψi+1,i as well.
Let us now prove by induction that for all 1 ≤ i ≤ N − 1, ψ(t−i , x) ≥ φ(t−i , x) with equality dρ(ti)
a.e.
(266) implies that Ψ0,1 = Φ∗∗

0,1. Then (267) implies that Ψ1,0 = Ψ∗
0,1 = Φ∗∗∗

0,1 = Φ∗
0,1 ≤ Φ1,0 with

equality dρ(t1) a.e. from lemma 6.21. The equality Φ∗∗∗
0,1 = Φ∗

0,1 comes from the fact that Φ∗
0,1 is

convex as a Legendre transform and that the the Legendre transform is an involution on convex
functions. Thus from (269) we get that ψ(t−1 ) ≥ φ(t−1 ) with equality dρ(t1) a.e.
Suppose that ψ(t−i ) ≥ φ(t−i ) with equality dρ(ti) a.e. Then we have

|x|2/2 +
T

N
ψ(t−i , x) −

T 2

N2
p(ti, x) ≥ |x|2/2 +

T

N
φ(t−i , x) −

T 2

N2
p(ti, x)

with equality dρ(ti) a.e. Thus Ψi,i+1 ≥ Φ∗∗
i,i+1 with equality dρ(ti) a.e. from (263) and (268). Then

Ψi+1,i = Ψ∗
i,i+1 ≤ Φ∗∗∗

i,i+1 = Φ∗
i,i+1 ≤ Φi+1,i
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where we have used that the Legendre transform is decreasing with respect to functions, is an
involution on convex functions and from lemma 6.21 for the last inequality. This implies that
ψ(t−i+1) ≥ φ(t−i+1). Moreover we check that if Ψi,i+1 = Φ∗∗

i,i+1 dρ(ti) a.e., and ∇Ψi,i+1#ρ(ti) =
∇Φ∗∗

i,i+1#ρ(ti) = ρ(ti+1) then Ψ∗
i,i+1 = (Φ∗∗

i,i+1)
∗ dρ(ti+1) a.e. using the identity

c(x) + c∗(∇c(x)) = x · ∇c(x)
that holds for any Lipschitz convex function c and the fact that ∇Ψi,i+1 and ∇Φ∗∗

i,i+1 coincide dρ(ti)

a.e. We thus have proved that φ ≡ ψ dρ a.e. It follows that φ(t−i+1) = ψ(t−i+1) dρ(ti+1) a.e. Moreover
we check that

ψ(t+i+1, x) =
N

T
[(| · |2/2 +

T

N
ψ(t−i+1, ·) −

T 2p(ti, ·)
N2

)∗∗(x) − |x|2/2]

≤ ψ(t−i+1, x) −
Tp(ti, x)

N

with equality ρN (ti + 1) a.e. and that on ]ti, ti+1[ from (267) we have ∂tψ + 1
2
|∇ψ|2 = 0 satisfied in

the viscosity sense from the Hopf-Lax formula (267). To see that −ψ(ti+1 − t, .) is also a viscosity
solution to this equation, first note Ψi,i+1 = |x|2/2 + ψ(ti, x) is convex. Then we have

ψ(t, x) = inf
y
{ψ(ti, y) +

|x− y|2
2(t− ti)

}

= inf
y
{φ(ti, y) +

|x− y|2
2(ti+1 − ti)

+ γ
|x− y|2

2(ti+1 − t)
}

for some γ > 0. No see that α(y) = φ(ti, y) + |x−y|2

2(ti+1−ti)
is convex as well as β(y)γ |x−y|2

2(ti+1−t)
and thus we

can apply the Rockafeller duality Theorem that says that if α, β are convex continuous we have

inf
y
{α(y) + β(y)} = sup

x
{−α∗(x) − β∗(−x)}

but computing α∗ gives 1
ti+1−t

Ψi+1,i and thus one is able to check that :

ψ(t, x) = sup
y
{ψ(t−i+1, y) −

|x− y|2
2(ti+1 − t)

}

which says exactly that t→ −ψ(ti+1 + ti − t) is a viscosity solution of ∂tψ + 1
2
|∇ψ|2 = 0.

Then to see that ψ is a viscosity solution of

∂tψ +
1

2
|∇ψ|2 +

T

N

N−1
∑

i=1

δt=tip = 0

just notice that our definition of ψ is the following :

|x|2/2 − T

N
ψ(t−i+1, x) = (| · |2/2 +

T

N
ψ(t+i , ·))∗

= (| · |2/2 +
T

N
ψ(t−i , ·) −

T 2

N2
p(ti, ·))∗

thus

ψ(t−i+1, x) = inf
y
{ψ(t−i , y) −

T

N
p(ti, y) +

|x− y|2
2 T
N

}
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and one gets that

ψ(t−i+p, x) =

inf
γ∈Γ

{ψ(t−i , γ(t
−
i )) +

∫ t−i+p

ti

[

− T

N

N−1
∑

i=1

δσ=tip(σ, γ(σ)) +
1

2
|γ̇|2(σ)

]

dσ}

where Γ is the set of all continuous paths with γ(ti+p) = x, and more generally that

ψ(t, x) =(270)

inf
γ(t)=x

{ψ(s, γ(s)) +

∫ t

s

[

− T

N

N−1
∑

i=1

δσ=tip(σ, γ(σ)) +
1

2
|γ̇|2(σ)

]

dσ}

and this is a definition of viscosity solutions. This achieves the proof of lemma 6.22. �

Remark : the time reversibility property is not valid for any viscosity solution. Actually this is true

before occurrence of shocks. This is what one says when we decompose φ(0, y)+ |x−y|2

2(t−ti)
as the sum of

two convex functions : this means that one can continue the rays further without developing shocks.
Thus we see that our variational solution can not develop shocks on the support of ρ in the interior
of the time interval.

6.3.2. Proof of the bound on ∆φ : ψ satisfies

∂tψ +
1

2
|∇ψ|2 +

T

N

∑

δt=tip(ti) ≤ 0,

∂tρN + ∇ · (ρN∇ψ) = 0

From now we consider that φ := ψ and thus Φt,s is convex for any ti ≤ s, t ≤ ti+1. We are going to
prove the following lemma :

Lemma 6.23. Φi,i+1,Φi,i−1 are C1,1 at every density point of ρ(ti) with C1,1 norm bounded by
C(d). Moreover there exists a set Ei of full measure for ρ(ti) such that everywhere in Ei, φ(t+i ) and
φ(t−i ) are twice differentiable and the following holds

∆φ(t+i , x) − ∆φ(t−i , x) ≤
T

N
(1 − ρ(ti, x)).(271)

Proof : Using (264, 263) we get that

Φi,i+1(x) + Φi,i−1(x) = |x|2 − T 2

N2
p(ti, x) dρ(ti) a.e.(272)

Φi,i+1(x) + Φi,i−1(x) ≤ |x|2 − T 2

N2
p(ti, x) dx a.e.(273)

Thus dρ(ti) almost everywhere the convex function Φi,i+1+Φi,i−1 is tangent by below to |·|2− T 2

N2 p(ti, ·).
The Poisson equation satisfied by p(ti) being only true in the distribution sense we need to introduce
a finite difference version of the Laplacian :
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Lemma 6.24. Let cd be the volume of the unit ball of Rd and bd be the d−1 dimensional Hausdorff
measure of the unit sphere. Let p be continuous and

∆hp(x) =
kd
h2

[

1

bdhd−1

∫

∂B(x,h)

p(y)dy − p(x)

]

∆∗
hp(x) =

ld
h2

[

1

cdhd

∫

B(x,h)

p(y)dy − p(x)

]

with the constants kd, ld chosen so that both operators converge to the Laplacian for smooth functions
as h→ 0. Then
1 - if ∆p ≥ C in Td in the distribution sense then ∆hp ≥ C and ∆∗

hp ≥ C everywhere in Td.
2 - if ∆p ∈ L2(Td), up to extraction of a subsequence in h, then ∆∗

hp→ ∆p dx almost everywhere.

Proof of claim 1 : look at f solution of

f − p|∂B(x,h) = 0

∆f = C ≤ ∆p

we mention that the boundary condition has a meaning since p is continuous. Then from the maximum
principle f(x) ≥ p(x) and thus ∆hf ≤ ∆hp since f = p on ∂B(x, h). But f(x) = C|x|2/2d+ h with
∆h = 0 and then using the fact that the average on a sphere of an harmonic function equals its value
at the center of the sphere, we get that ∆hf = C. To obtain the inequality for ∆∗

h just integrate over
h.
Proof of claim 2 : If suffices to show that ∆∗

hp converges strongly in L1 to ∆p if ∆p ∈ L2(Td). The
Taylor formula gives :

∆∗
hp(x) =

1

cdhd
ld
h2

[
∫

|y|≤h

∫ 1

σ=0

(1 − σ)yt · [D2p(x + σy) −D2p(x)] · y dσ dy

+

∫

|y|≤h

1

2
yt ·D2p(x) · y dy

]

= Σ1(x) + Σ2(x)

Then Σ2(x) is equal dx almost everywhere to ∆p(x) and Σ1 converges strongly to 0 in L2 since
p ∈ W 2,2 from elliptic regularity. �

Now since ∆p(ti) = ρ(ti) − 1 ∈ L2(Td) (from proposition 6.18), up to extraction of a subsequence in
h, for almost every x ∈ Td ∆∗

hp(ti, x) converges to ρ(ti, x) − 1.
Then applying ∆∗

h to (272, 273) at a point where equality (272) holds we get that

∆∗
hΦi,i+1 + ∆∗

hΦi,i−1 ≤ 2d− T 2

N2
∆∗
hp(ti)(274)

But since ∆p(ti) = ρ(ti) − 1 ≥ −1 in the distribution sense, we have that ∆∗
hp(ti) ≥ −1 pointwise.

We can thus have for any h > 0 and for any point such that (272) holds

∆∗
hΦi,i+1 + ∆∗

hΦi,i−1 ≤ 2d+
T

N2
.

Now for a convex function to have ∆∗
h(x) bounded as h goes to 0 implies being C1,1 at x. The bound

on the second derivative comes from the fact that the trace controls the norm of a positive matrix.
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To see that this holds at every density point on ρ(ti), note that when d ≤ 3 we have p(ti) in C
1
2 (Td)

for every 1 ≤ i ≤ N − 1. Thus since convex functions are continuous and p(ti) is continuous equality
(272) holds on a closed set of full measure for ρ(ti) and thus at every density point of ρ(ti). Now
convex functions are derivable almost everywhere and thus almost everywhere ∆∗

hΦi,i+1 → ∆Φi,i+1

and ∆∗
hΦi,i−1 → ∆Φi,i−1. We recall that ρ(ti) is in L2 which implies that negligible sets for the

Lebesgue measure are also negligible for ρ(ti).
We define Ei to be the set of all points x such that
1- x is a point of Lebesgue differentiability for ρ(ti) where ρ(ti, x) > 0,
2- ∆∗

hp(ti, x) → ρ(ti, x) − 1 as h→ 0,
3- Φi,i+1 and Φi,i−1 are twice differentiable,
4- equality (272) holds,
Ei is a set of full measure for ρ(ti) and by removing sets of 0 measure to Ei one can impose the
condition ∇Φi,i+1(Ei) = Ei+1. Then at every point of Ei we have

∆Φi,i+1(x) + ∆Φi,i−1(x) ≤ 2d+
T 2

N2
(1 − ρ(ti, x))(275)

∆φ(t+i , x) − ∆φ(t−i , x) ≤
T

N
(1 − ρ(ti, x)).(276)

This implies the following bound for ρ, φ :

‖ρ(ti)‖L∞ ≤ C(d)N2

for every x ∈ Ei, ‖φ(ti, x)‖C1,1
x

≤ C(d)N.

This achieves the proof of lemma 6.23. �

Construction of the characteristics. Remember that Φi,i+1 is given by :

Φi,i+1(x) = |x|2/2 +
T

N
φ(t+i , x),

and that for s ∈ [ti, ti+1] (resp. s ∈ [ti − 1, ti]) , Φti,s is given by

Φti,s(x) = |x|2/2 + (s− ti)φ(t+i , x)

( resp. Φti,s(x) = |x|2/2 + (s− ti)φ(t−i , x))

We know that in Ei, Φi,i+1,Φi,i−1 are convex and twice differentiable. Thus for any s ∈]ti−1, ti+1[, Φti,s

is twice differentiable and D2Φti,s is invertible. This implies (see the Appendix on convex functions
of [48]) that D2Φs,ti exists at point ∇Φti,s(x) for x ∈ Ei. Thus we can define Es = ∇Φti,s(Ei),
this definition makes sense pointwise on Ei and pointwise in Es φs is twice differentiable. Note also
that from lemma 6.22 the definition Es = ∇Φti,s(Ei) and Es = ∇Φti+1,s(Ei+1) are consistent since
∇Φi,i+1(Ei) = Ei+1. Then we can define a trajectory xs, s ∈]0, T [ as follows : starting from Xs0 ∈ Es0
for any s0 ∈]0, T [, we define xs = ∇Φs0,s for any s in the same interval [ti, ti+1] as s0, and we proceed
similarly in other intervals. Thus we define a flow Ξ(s, t, x) that gives at time s the position of the
particle located in x at time t. This flow Ξ(s, t, x) is defined everywhere on Et, and Ξ(s, t, Et) = Es.
We may denote xs, s ∈ [0, T ] a trajectory and it will be understood that xt ∈ Et, ∀t ∈]0, T [.
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Conclusion of the proof. Now we bound ∆φ along a trajectory :

(t− s) (∆φ(t)(xt) − ∆φ(s)(xs))

= (t− s) (∆φ(t,∇Φs,t(xs)) − ∆φ(s, xs))

= 2d− ∆Φs,t(x) − ∆Φt,s(∇Φs,t(xs))

but this is negative since we have the relation

D2Φs,t(x) = [D2Φt,s]
−1(∇Φs,t(x))

and therefore

2d− ∆Φs,t(x) − ∆Φt,s(∇Φs,t(xs)) = 2d−
∑

(λi + 1/λi)

where the λi are the eigenvalues of D2Φs,t(xs) defined dρ(s). Thus we conclude first that for every
xs ∈ Es and xt = ∇Φs,t(xs)

(∆φ(t, xt) − ∆φ(s, xs)) · (t− s) ≤ 0 for ti ≤ s, t ≤ ti+1.(277)

Then we obtain a quantitative estimate of the decay of ∆φ, between ti and ti+1 : we take s = ti, t = ti+1

in the previous inequality, from the convexity of x→ x + 1/x we have

d
∑

i=1

(λi + 1/λi) ≥ d(∆/d+ d/∆) where ∆ =
d
∑

i=1

λi = ∆Φi,i+1

=
1

∆
(∆ − d)2 + 2d

=
( T
N

∆φ(t+i , xi))
2

T
N

∆φ(t+i , xi) + d
+ 2d

since T
N

∆φ(t+i ) + d = ∆Φi,i+1. Thus

∆φ(t−i+1, xi+1) − ∆φ(t+i , xi) ≤ − T

N

(∆φ(t+i , xi))
2

T
N

∆φ(t+i , xi) + d

Using (271) we obtain

∆φ(t+i+1, xi+1) ≤ ∆φ(t+i , xi) +
T

N

(

1 − (∆φ(t+i , xi))
2

d+ T
N

∆φ(t+i , xi)

)

.

We know from (275) that ∆Φi,i+1 ≤ 2d+ T 2/N2 thus
∆φ(t+i , xi) ≤ N

T
(d+ T 2/N2). It follows that

d + T
N

∆φ(t+i , xi) ≤ 2d + T 2

N2 ≤ 3d for N large enough. We finally obtain the following for N large
enough :

∆φ(t+i+1, xi+1) ≤ ∆φ(t+i , xi) +
T

N

(

1 − (∆φ(t+i , xi))
2

3d

)

.

This is a discrete version of the differential inequation Θ̇ ≤ 1 − 1
3d

Θ2 and we conclude that

∆φ(ti) ≤ C(d)(1+ 1
ti
) in Ei for any 1 ≤ i ≤ N−1. Then using the transformation φ(t, x) → −φ(−t, x)

that transforms the solution of Problem 6.15 in another solution of 6.15 interverting ρ0 and ρT we
get that
∆φN(ti) ≥ −C(d)(1+ 1

T−ti
) in Ei for any 1 ≤ i ≤ N−1. Since we know from (277) that t→ ∆φ(t, xt)
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is decreasing between ti and ti+1 we can conclude that there exists for each t a set of full measure for
dρ(t) on which φ(t, .) is twice differentiable and where the following equality holds :

−C(d)(1 +
1

T − t
) ≤ ∆φN(t, x) ≤ C(d)(1 +

1

t
).(278)

The first part of Proposition 6.19 is proved.
6.3.3. Proof of the L∞

loc(]0, T [×Td) bound on ρ. We begin by writing the Monge-Ampère equation
that links ρ(ti) to ρ(ti+1) (which makes sense because of the second differentiability of φ proved in
lemma 6.23). :

ρ(ti+2, xi+2) det(I +
T

N
D2φ(t+i+1, xi+1)) = ρ(ti+1, xi+1),

ρ(ti, xi) det(I − T

N
D2φ(t−i+1, xi+1)) = ρ(ti+1, xi+1).

Now using the domination of the geometric mean by the arithmetic mean we have

det(I +
T

N
D2φ(t+i+1)) ≤ (1 +

T

dN
∆φ(t+i+1))

d

thus

ρ(ti+1, xi+1)

ρ(ti+2, xi+2)
≤ (1 +

T

dN
∆φ(t+i+1, xi+1))

d(279)

ρ(ti+1, xi+1)

ρ(ti, xi)
≤ (1 − T

dN
∆φ(t−i+1, xi+1))

d.(280)

We deduce first the following :

1

(1 + T
dN

∆φ(t+i , xi))
d
≤ ρ(ti+1, xi+1)

ρ(ti, xi)
≤ (1 − T

dN
∆φ(t−i+1, xi+1))

d

Note that we also have

1

(1 + t−s
d

∆φ(s, xs))d
≤ ρ(t, xt)

ρ(s, xs)
≤ (1 − t− s

d
∆φ(t, xt))

d(281)

for ti < s, t < ti+1, xs ∈ Es, and this implies using (278) that along a trajectory s→ xs, log(ρ(s, xs))
is Lipschitz :

| log(ρ(t1, xt1) − log(ρ(t2, xt2)| ≤
C

τ
|t2 − t1|(282)

for t1, t2 ∈ [τ, T − τ ]. Taking the logarithm of (279,280) we get that

log(ρ(ti+2, xi+2)) + log(ρ(ti, xi)) − 2 log(ρ(ti+1, xi+1))

≥ −d log(1 +
T

dN
∆φ(t+i+1, xi+1)) − d log(1 − T

dN
∆φ(t−i+1, xi+1))

≥ − T

N
(∆φ(t+i+1, xi+1) − ∆φ(t−i+1, xi+1))

≥ T 2

N2
(ρ(ti+1, xi+1) − 1)(283)
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where at the third line we have used the concavity of the log and at the last line we have used (271) :

∆φ(t+i+1, x) − ∆φ(t−i+1, x) ≤
T

N
(1 − ρi+1(x)).

We fix τ ∈]0, T/2[. For any trajectory xs, s ∈]0, T [ with xs ∈ Es for all s ∈ [τ, T − τ ], log(ρ(s, xs))
is Lipschitz with respect to s in [τ, T − τ ] from (282) and log(ρ(s, xs)) remains finite in [τ, T − τ ].
Moreover (283) holds at every time ti. Using this we claim an unconditional bound for ρ(s, xs) for
τ ≤ s ≤ T − τ .
Proof of claim : The sequence (log ρ(ti, xi))1≤i≤N−1 satisfies a discretization of the differential inequa-
tion

Θ̈ ≥ exp Θ − 1.(284)

with the condition Θ̇ bounded by C(τ) in [τ, T − τ ]. We argue by contradiction : take 0 < τ <
T/4 and suppose Θ(τ) ≥ M . We have |Θ̇| ≤ C(τ) in [τ, T − τ ]. Then choose M so large that

M −C(τ)(T − 2τ) ≥ M/2. Thus, on [τ, T − τ ] we have Θ ≥M/2 and thus Θ̈ ≥ exp(M/2)− 1. Thus
we have in [τ, T − τ ] Θ̇(t) ≥ −C(τ) + (t− τ)(exp(M/2) − 1). Choosing M large enough will lead to

Θ̇(T/2) ≥ C(τ) and therefore to a contradiction. Note that this proof does not depend on the initial
and final values of Θ.

6.3.4. Time continuity of ρ. Remember that in Theorem 6.4 we have proved that ρ ∈ C(]0, T [, Lp(Td))
for any p ∈ [1, 3

2
[. Now we have an unconditional bound on ρ in

L∞
loc(]0, T [, L∞(Td)). Thus the strong time continuity in every Lp(Td), 1 ≤ p < ∞ follows and the

point 2 of Proposition 6.19 is proved.
6.3.5. Lipschitz bound for ‖ρ(t, ·)‖Lk(Td). Using that

ρ(t, xt) det(I + (t− s)D2φ(s, xs)) = ρ(s, xs)

using that φ is twice differentiable at xs ∈ Es, the following holds

d

dt

∫

Td

[ρ(t, x)]k dx = −(k − 1)

∫

Td

[ρ(t, x)]k∆φ(t, x) dx

and using point 1 of Proposition 6.19 we get that

−C(1 +
1

t
) ≤ d

dt
‖ρ(t, ·)‖Lk(Td) ≤ C(1 +

1

T − t
)

and this proves the point 3.
6.3.6. Displacement convexity of functionals of ρ. Here we show that given ρN (t, x) solution of

Problem 6.15, the functions
∫

Td ρN(t, x) log(ρN(t, x)) dx ,
∫

Td [ρN(t, x)]k dx, k ∈ [1,+∞[ converge to

convex functions of t ∈ [0, T ]. We drop suffix N . Let us denote d
dt

the convective derivative ∂t.+∇φ·∇.
and d2

dt2
= ( d

dt
)2. The density ρ satisfies (283) which is the finite difference version of

d2

dt2
log ρ(t, x) ≥ ρ(t, x) − 1.
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Then using this with the following identities :

d2

dt2
ρ(t, x) =

1

ρ(t, x)
| d
dt
ρ(t, x)|2 + ρ(t, x)

d2

dt2
log ρ(t, x)

d2

dt2
[ρ(t, x)]k = k(k − 1)[ρ(t, x)]k−2| d

dt
ρ(t, x)|2 + k[ρ(t, x)]k−1 d

2

dt2
ρ(t, x)

we obtain :

d2

dt2
[ρ(t, x)]k ≥ k2[ρ(t, x)]k−2| d

dt
ρ(t, x)|2 + k[ρ(t, x)]k(ρ(t, x) − 1)

for k ≥ 0. Noticing that

d2

dt2

[
∫

Td

ρ(t, x)F (ρ(t, x)) dx

]

=

∫

Td

ρ(t, x)
d2

dt2
(F (ρ(t, x))) dx

and applying this to F (ρ(t, x)) = [ρ(t, x)]k, k ≥ 0 we get

d2

dt2

∫

Td

[ρ(t, x)]k+1 dx ≥
∫

Td

k([ρ(t, x)]k+2 − [ρ(t, x)]k+1) dx ≥ 0.

Indeed by Jensen’s inequality we have
∫

Td

[ρ(t, x)]k+1 dx ≥
(
∫

Td

[ρ(t, x)]k dx

)
k+1

k

≥
∫

Td

[ρ(t, x)]k dx

(
∫

Td

[ρ(t, x)]k dx

)
1
k

.

Using again Jensen’s inequality we have also that
∫

Td

[ρ(t, x)]k dx ≥
(
∫

Td

ρ(t, x) dx

)k

= 1

for k ≥ 1, and we conclude.
This convexity property combined with the unconditional bound for ρ in L∞([τ, T−τ ]×T

d) yields
a uniform Lipschitz bound for ‖ρ(t, ·)‖Lk in [τ, T − τ ] for any 1 ≤ k ≤ ∞. (For the case k = +∞ this
is because of (282)).

6.3.7. Proof of the W 1,∞([τ, T − τ ] × Td) bound for φ. From lemma 6.22, φ can be given by the
Hopf-Lax formula (270) that we recall here :

φ(t, x) =(285)

inf
γ(t)=x

{φ(s, γ(s)) +

∫ t

s

[

− T

N

N−1
∑

i=1

δσ=tip(σ, γ(σ)) +
1

2
|γ̇|2(σ)

]

dσ}.

This formula is valid for any 0 ≤ s ≤ t ≤ T . We are going to prove the following lemma that will
yield the result when letting N go to +∞.

Lemma 6.25. Let φ be viscosity solution on [0, T ] × T
d of

∂tφ(t, x) +
1

2
|∇φ(t, x)|2 +

T

N

N−1
∑

i=1

δt=tip(ti, x) = 0
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with ti = T i
N

. If |∇p(ti, ·)| ≤ l(τ) for any ti ∈ [τ, T − τ ] with l(τ) < +∞ for τ > 0 then |∇φ(t, ·)| ≤
C(τ) and |φ(t, x) − φ(s, x)| ≤ C(τ) T

N
E(N(t−s)

T
) for any t, s ≥ τ > 0 where E is the integer part.

Proof : For a given pair s, t with 0 < τ ≤ s ≤ t, take γk, k ∈ N be a minimizing sequence in the
infimum (285). We can restrict ourselves to the set of path such that γ̇ remains bounded in L2([s, t])
by a large constant CN . Set γ̃k(σ) = γk(σ) + σ−s

t−s
(z − x). Then

φ(t, z) ≤ φ(s, γ̃k(s)) +

∫ t

s

[

− T

N

N−1
∑

i=1

δσ=tip(σ, γ̃k(σ)) +
1

2
| ˙̃γk|2(σ)

]

dσ

≤ φ(s, γk(s)) +

∫ t

s

[

− T

N

N−1
∑

i=1

δσ=tip(σ, γk(σ)) +
1

2
γ̇k

2(σ)

]

dσ

+

∫ t

s

|γ̇k(σ)| · |z − x|
|t− s| +

|z − x|2
2|t− s|2 dσ +

T

N
E(

N(t− s)

T
)l|x− z|

The first line converges to φ(t, x) and the second line is bounded by

C(τ) |z−x|
t−s

and thus we get that

‖∇φ‖L∞([τ,T−τ ]×Td) ≤ C(τ).

Then φ(t, x) ≤ φ(s, x)+C(τ) T
N
E(N(t−s)

T
) taking γ(σ) ≡ x in (285). Using that ∇φ is bounded we get

φ(t, x) − φ(s, x)

≥ inf
y∈Td

{φ(s, y)− φ(s, x) − T

N
E(

N(t− s)

T
)‖p‖L∞([s,t]×Td) +

|y − x|2
2(t− s)

}

≥ −C(τ)
T

N
E(

N(t− s)

T
).

This proves the lemma. �

We can use this lemma to conclude since we know already that
|ρ(t, x)| ≤ C(τ) for t ∈ [τ, T −τ ] and from Sobolev embeddings we have ‖p‖L∞([τ,T−τ ],C1,α(Td)) ≤ C(τ).
Then we let N go to +∞ so that
T
N
E(N(t−s)

T
) → t− s.

6.3.8. Convergence to viscosity solutions. For a given smooth γ : [s, t] → Td compute

φγN(t, x) = φN(s, γ(s)) +

∫ t

s

[

− T

N

N−1
∑

i=1

δσ=tipN(σ, γ(σ)) +
1

2
|γ̇|2(σ)

]

dσ,

φγN(t, x) = φ(s, γ(s)) +

∫ t

s

[

−p(σ, γ(σ)) +
1

2
|γ̇|2(σ)

]

dσ

(Here we use again the suffix N for the solution of Problem 6.15 while φ is the solution of Problem
6.2). From the continuity equation (220) the bounds on ρN ,∇φN , and elliptic regularity we get that
for any d < p <∞

∂tp(t, .) ∈ W 1,p(Td) ⊂ Cα(Td), α = 1 − d

p
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uniformly for t ∈ [τ, T − τ ]. Then we see that φγN(t, x) → φγ(t, x) since φN , pN converge uniformly to
φ, p in every compact set of ]0, T [×Td and from the bound just obtained on p. Since we can choose

γ̇ to remain bounded in L2([s, t]) and thus γ bounded in C
1
2 ([s, t]) we thus conclude that

inf
‖γ̇‖L2[s,t]≤C,γ(t)=x

{φγN(t, x)} − inf
‖γ̇‖L2[s,t]≤C,γ(t)=x

{φγ(t, x)} → 0

as N → ∞. Thus we get that

φ(t, x) = inf
γ(t)=x

{φ(s, γ(s)) +

∫ t

s

[

−p(σ, γ(σ)) +
1

2
|γ̇|2(σ)

]

dσ}(286)

and φ is the viscosity solution of ∂tφ+ 1
2
|∇φ|2 + p = 0 on every [s, t] ⊂]0, T [.

6.3.9. Estimates up to the boundary. If ρT ∈ Lp(Td) with p > d then p remains Lipschitz in space
up to t = T . Thus one can choose φ ∈ W 1,∞([τ, T ] × Td). Now note that instead of (286) one can
have φ defined by

φ(s, x) = sup
γ(s)=x

{φ(t, γ(t)) −
∫ t

s

[

−p(σ, γ(σ)) +
1

2
|γ̇|2(σ)

]

dσ}(287)

for any 0 ≤ s ≤ t ≤ T . Both definitions will coincide only dρ a.e. This amounts to take t→ −φ(T−t, ·)
the viscosity solution of ∂tϕ+ 1

2
|∇ϕ|2 + q = 0 with q(t, ·) = p(T − t, ·). Thus if ρ0 ∈ Lp(Td), one can

choose φ ∈ W 1,∞([0, T − τ ] × Td).

If ρ0 and ρT are both in Lp(Td), with p > d then, using (285) (or (286) in the times conti-
nuous case) one can choose first φ such that φ(T, ·) ∈ W 1,∞(Td). Then using (287) we obtain that
φ ∈ W 1,∞([0, T ] × T

d) using the following result that can be found in [32] :

Proposition 6.26. Let φ be solution on [0, T ] × Td of

∂tφ+
1

2
|∇φ|2 + p = 0

φ(t = 0, ·) = φ0

with p ∈ L∞([0, T ],W 1,∞(Td)) and φ0 ∈ W 1,∞(Td). Then φ ∈ W 1,∞([0, T ] × Td).

This last result ends the proof of Theorem 6.5.
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G. Loeper12 A. Vasseur12

Résumé. We consider in this paper a plasma subject to a strong deterministic magnetic field and we
investigate the effect on this plasma of a stochastic electric field. We show that the limit behavior, which
corresponds to the transfer of energy from the electric wave to the particles (Landau phenomena), is
described by a Spherical Harmonics Expansion (SHE) model.

1. Introduction

This paper is concerned with the effect of a stochastic electric field on a plasma subject to a strong
magnetic field. This is motivated by the study of the electric turbulence in a fusion machine as a
Tokamak. Tokamaks are used to confine high energy plasmas in order to obtain the conditions needed
for nuclear fusion reactions to take place. The plasma evolves in a toroidal reactor and is confined
in the heart of the torus by the the mean of a strong magnetic field. A classical approximation is to
suppose the ions to be at rest. Then only the electrons are moving. Another classical approximation
argument in this type of study is the following : we are here interested only in interactions of particles
over short distances of the order of the Larmor radius, moreover we suppose that at this scale the
curvature of the magnetic field-lines can be neglected and that the plasma can be considered to
be homogeneous along these field-lines. Thus we can restrict ourselves to a bidimensional problem.
In this approach, the Vlasov equation describing the evolution of the repartition function f of the
electrons is :

(288) m

(

∂f

∂t
+ v · ∇xf

)

+ q
(

Bv⊥ + ∇V turb(t, x)
)

· ∇vf = 0,

m stands for the electron’s mass, q its electric charge, f the distribution function on (t, x, v) ∈
R

+ × R
2 × R

2, with t the time variable, x the space variable and v the velocity variable. B is the
(constant) norm of the transverse magnetic field, ∇V turb is the turbulent electric field, v⊥ is the
velocity vector after a rotation of π/2. We denote

1/ε =
qB

m

the cyclotronic frequency, and we want to study the effect of ∇V turb in the limit ε going to zero. In
the deterministic case, the limits of related problems have been studied by several authors. In the
case of the Vlasov-Poisson system (when the electric field is coupled with the density

∫

f dv), the
limit has been studied, even in the 3D framework, by Frénod and Sonnendrucker [35]. In the 2D
framework, using a slow time scale adapted to the problem, the convergence of the averaged motion,
∫

R2 f(t, x, v) dv to the 2D Euler system of equations has been performed simultaneously by Brenier
[17], Golse and Saint-Raymond [40] and Frénod and Sonnendrucker [36]. A general result in 3D
taking into account the two effects has been performed by Saint-Raymond in [59].

In our case we neglect the Poisson non linear effect, concentrating on the stochastic behavior
of the equation. Hamiltonian chaos method suggest that the modes of the turbulent electric field

1Laboratoire J.A.Dieudonné, Université de Nice-Sophia-Antipolis, Parc Valrose, 06108 NICE Cedex 2.
Supported by

2Work supported by the European Atomic Energy Community EURATOM in the Research Laboratory Agremen-
ted by CEA no 01-24 UMR no 6621 CNRS-Universite de Nice.
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interacting with the electrons are those having a frequency of ωn = 2πnε with n an integer. This
is roughly speaking the Landau resonance. Then the quasi-linear theory, (see Garbet [38]) predicts
a diffusive behavior with respect to the velocity variable. The diffusion coefficient obtained by this
method being constant, it can not take into account the abnormal diffusion phenomena. In this paper
we are interested in turbulent electric fields whose spectrum is spread around the Landau frequency
and whose spatial fluctuations are of the scale of the Larmor radius (of order ε). We will show that
the limit system is then governed by the following equation :

(289) ∂tρ− ∂e(a(e)∂eρ) = 0

where e = |v|2/2, ρ is the average of f over a sphere |v|2 = 2e and the diffusion parameter a(e) is
an explicit function of the correlation of V turb, the turbulent electric potential, and of the energy,
thus allowing abnormal diffusion. This diffusion parameter is undimensionally defined by (292). This
equation is similar to the so-called Spherical Harmonics Expansion (SHE) model in high field li-
mit modeling microelectronics semiconductor devices (see P.Degond [28] or Ben Abdallah, Degond,
Markowich and Schmeiser [5]). It describes the Landau phenomena of transfer of energy from the
electric wave to the particles. This work uses the techniques introduced by Poupaud and Vasseur
[57] to derive diffusive equation from transport in random media. This method works directly on the
equation and, for this reason, is different from the method used in previous works (see Kesten and
Papanicolaou [44], [43] and Fannjiang, Ryzhik and Papanicolaou [34]). The paper is organized as
follows : the precise result is stated in Section 2. In Section 3 we show how we can compute explicitly
the diffusion coefficients. Finally we give the proof of the theorem in Section 4.

2. Results

In the remainder of the paper we fix n and we denote

(290) ∇V ε(t, x) =
√
ε∇V turb(2πnεt, εx)

for the stochastic potential. Equation (288) takes then the following undimensional form :

∂fε
∂t

+ v · ∇xfε +

(

v⊥

ε
+

1√
ε
∇V ε(

t

2πnε
,
x

ε
)

)

· ∇vfε = 0.(291)

we denote E the expectation value of any variable and make the following assumptions on the
electrostatic potential :

(H1) V ε ∈ L∞(R+;W 3,∞(R2)) and N(ε) := E
(

(

‖V ε‖L∞(W 3,∞)

)3
)

< ∞,

(H2) EV ε(t, x) = 0, for all t ∈ R
+, x ∈ R

2,

(H3) V ε(t, x), V ε(s, y) are uncorrelated as soon as |t− s| ≥ 1,

(H4) E(V ε(t, x)V ε(s, y)) = A(t− s, x− y) + gε(t, s, x, y),

with :
∂|α|

∂xα
A ∈ L∞(R × R

2), for α ∈ N
2, |α| ≤ 3,

‖ |∇2
x,yg

ε| + |∇3
x,y,yg

ε| ‖L∞((R+)2×R4)
ε→0−→ 0,

where ∇2
x,yg

ε is the matrix
(

∂xi
∂yj
gε
)

i,j
and ∇3

x,y,yg
ε is

(

∂xi
∂yj
∂yk

gε
)

i,j,k
.

Those assumptions are the same than in [57]. Hypothesis (H1) is an assumption on the regularity
of V ε for ε fixed. Indeed the norm N(ε) can go to infinity when ε goes to 0. Hypothesis (H2) fixes
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the averaged potential at 0 which is not restrictive. In view of (290), Hypothesis (H3) determines
2πnε as the decorrelated lapse of time for the turbulent electric field. Namely, it is the bigger lapse
of time t − s such that the electric fields at time t and at time s can be dependent on each other.
Finally Hypothesis (H4), which is very classical, can be seen as an homogeneity property which takes
place at the local scale ε, since a quadratic quantity which depends on four variables (t, x, s, y), at
the limit, depends only on two variables (t− s, x− y).

We denote Rs(v) the rotation of angle s with center 0 of v. We consider the angular average of
A :

Ã(t, x) =
1

2π

∫ 2π

0

A(t, Rθx) dθ.

We then have the following result :

Theorem 7.1. Let V ε be a stochastic potential satisfying assumptions (H) and independent of
the initial data f 0

ε ∈ L2(R4). Let a(e) be the function defined by :

(292) a(e) =
1

2πn2

∫ +∞

0

(−∂2
ttÃ)(− s

2πn
, 2
√

2e| sin s
2
|) ds.

This function is non negative. Assume that there is a constant C0 such that ‖f 0
ε ‖L2(R4) ≤ C0 and :

(293) ε(1 +N(ε)2) → 0.

Let ρε be the gyro-average of fε defined by :

(294) ρε(t, x, e) =
1

2π

∫ 2π

0

fε(t, x, Rθv) dθ,

for every v such that |v|2/2 = e. Then up to extraction of a subsequence, Ef 0
ε converges weakly in

L2(R4) to a function f 0 ∈ L2(R4), Efε converges weakly in L2 to a function f ∈ L∞(R+, L2(R4)),
Eρε converges in C0([0, T ], L2(R2)−w) for all T > 0 toward a function ρ ∈ L∞(R+;L2(R2 ×R+))∩
C0(R+;L2(R2 × R+) −W ) with ρ(t = 0, x, e) =

∫

|v|2=2e
f 0 dv. This function ρ is solution to :

∂tρ− ∂e(a(e)∂eρ) = 0 t > 0, x ∈ R
2, e ∈ R

+,(295)

in the distribution sense. Finally Efε converges weakly in L2(R+ × R4) toward ρ(t, x, |v|2/2).

Remark : depending on the regularity of the function a(e) the solution of the Cauchy problem for
equation (295) may be unique. In this case, the whole sequence ρε converges to ρ the unique solution
of (295).

3. Explicit computation of the diffusion parameter

In order to explicit the behavior of a(e) we must need the correlation function A. We assume that
it follows a “Richardson-like” law

A(t, x) = f(t)|x|α.
Then we have

a(e) = − 1

2πn2

∫ +∞

0

∂2
ttÃ(

−s
2πn

, 2
√

2e| sin s
2
|) ds

= −2
3
2
αeα/2

2πn2

∫ +∞

0

f ′′(
−s
2πn

)| sin s
2
|α ds

= Keα/2.
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A necessary condition for a function of the form

ρ(t, e) = γ(t)ρ0(e/t
β)

to be an auto-similar solution of (289) is that

β =
2

4 − α
.

we then have an abnormal diffusion in

e = t
2

4−α .

For example if α = 4/3 we find a(e) = Ke2/3 and an abnormal diffusion in e = t3/4.

4. Proof of the result

We denote S(R4) the Schwartz space and S ′(R4) its dual. We denote 〈·; ·〉 the duality brackets
between those two spaces. We recall that L2(R4) ⊂ S ′(R4) and by extension we will denote 〈·; ·〉 as
well for the scalar product on L2(R4). For every linear operator P on S(R4) we will denote in the
same way P its extension on S ′(R4) defined for every ψ ∈ S(R4) by :

〈Pψ; η〉 = 〈ψ;P ∗η〉, η ∈ S(R4).

Finally we will say that ψn ∈ S ′(R4) converges to ψ ∈ S ′(R4) in S ′(R4) if for every η ∈ S(R4), 〈ψn; η〉
converges to 〈ψ; η〉. (This is the weak convergence for S ′(R4).)

Let us rewrite equation (291) in the following way :

(296)







∂tfε + Cfε +
Bfε
ε

= −θεtfε
fε|t=0 = f 0

ε

where C,B, θεt are linear operators on S(R4) defined by :

C = v · ∇x

B = v⊥ · ∇v

θεt =
1√
ε
∇V ε(

t

2πnε
,
x

ε
) · ∇v.

Notice that C and B are deterministic and non dependent on ε nor on t unlike θεt .
We introduce the projection operator J defined on S(R4) which averages the values of the function

on the spheres |v|2/2 = e. Namely, for η ∈ S(R4) :

Jη(x, v) =
1

2π

∫ 2π

0

η(x,Rθv) dθ.

We call J the ”gyroaverage operator”. This operator is self adjoint for the L2 scalar product. Applying
the projection operator J on (296) and taking its expectation value leads to :

∂tE(Jfε) + E(JCfε) +
E(JBfε)

ε
= −E(Jθεtfε).

We first study some properties of the operators in order to pass to the limit in the left hand side of
this equation. Then we investigate the limit of E(Jθεtfε) following the procedure of [57]. Finally we
derive the SHE equation giving the explicit form of the diffusion coefficient a(e).
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4.1. Properties of the operators. We have the following properties on the operators C, B,
θεt and J :

Lemma 7.2. Operators C,B and θεt are skew adjoint for the L2 scalar product. Operators C, B,
and J commute with the expectation operator E. The operator J is the restriction on S(R4) of the
orthogonal projector of L2(R4) into KerB. In particular :

‖J‖L(L2(R4)) = 1,

J2 = J,

KerB = ImJ.

In addition :
JB = JCJ = 0.

Proof.
–Operators C,B and θεt can be rewritten as b.D, where D is a gradient operator and b a regular
function verifying D · b = 0. For every functions η1, η2 ∈ S(R4) we have :

〈b ·Dη1; η2〉 = −〈η1;D(bη2)〉
= −〈η1; b ·Dη2〉.

Hence they are skew adjoint operators for the L2 scalar product.

–The operator J is clearly the L2 projection on L2 functions which depends only on |v|2/2 with
respect to v. In polar coordinates v = (r sin θ, r cos θ), we have B = ∂/∂θ. So J is the projection on
KerB.

–Operator J is the projector on KerB, hence BJ = 0. Since B is skew adjoint and J is self adjoint,
we have (BJ)∗ = −JB = 0.

–Let us fix η ∈ S(R4). We denote : Jη(x, v) = ρη(x,
|v|2

2
). Hence

JCJη(x, v) = ∇x ·
(

ρη(x,
|v|2
2

)
1

2π

∫ 2π

0

Rθv dθ

)

= 0.

Finally JCJ = 0.

–Since C, B and J are linear and deterministic, they commute with E. �.

From those properties we deduce the following proposition :

Proposition 7.3. For every ε and every t ∈ R+ we have :

‖fε(t)‖L2(R4) = ‖f 0
ε ‖L2(R4).

There exists a function f 0 ∈ L2(R4) and a function f ∈ L∞(R+;L2(R4))such that, up to a subse-
quence, Ef 0

ε converges weakly in L2(R4) to f 0, Efε converges weakly in L2([0, T ]×R4) to f for every
T > 0. For every t > 0, f verifies Jf(t) = f(t). The function JEfε is solution to :

(297)

{

∂tJEfε + E(Jθεtfε) = wε

JEfε|t=0 = JEf 0
ε ,

where wε converges to 0 in S ′.
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Proof. Since C, B and θεt are skew adjoint operators, we have :

∂t〈fε(t); fε(t)〉 = 0,

which gives the first equality. By weak compactness there exists two functions f 0 ∈ L2(R4) and
f ∈ L∞(R+;L2(R4)) such that, up to a subsequence, Ef 0

ε converges weakly in L2(R4) to f 0, Efε
converges weakly in L2([0, T ] × R4) to f for every T > 0. Notice that εθεt converges to 0 in S ′(R4).
Multiplying Equation (296) by ε, taking its expectation value, and letting ε go to 0, we find :

Bf(t) = 0 on R
+,

since B and E commute. Thanks to Lemma 7.2 f(t) ∈ ImJ , and since J 2 = J , we have Jf(t) = f(t)
for almost every t > 0. Since JB = 0, applying the operator J on equation (296) and taking its
expectation value gives :

∂tJEfε + E(Jθεtfε) = wε,

with wε = −EJCfε. This converges in S ′ to −JCf = −JCJf = 0, thanks to Lemma 7.2. �

Hence we are now concerned by the limit in S ′ of E(Jθεtfε).

4.2. Computation of E(Jθεtfε). Let us denote Sεt t ∈ R the group on S(R4) generated by the
operator C +B/ε. Namely, for every h ∈ S, Sεth is the unique solution on R to :

(298)

{

∂tg + Cg +
Bg

ε
= 0

g|t=0 = h.

The operator Sεt can be explicitly given by :

Sεth(x, v) = h(Tε(t)(x, v)),

where

Tε(t)(x, v) = (x + εv⊥ − εR−t/εv
⊥, R−t/εv).

The function Tε(t)(x, v) gives the position at −t of the particle being in x with speed v at time 0 and
moving at constant speed |v| on a circle of radius ε|v|. In particular Sεt is 2πε periodic. Notice that
the adjoint of Sεt is Sε−t.

Following the procedure of [57], we use a 2 times iterated Duhamel formula. The first iteration
gives :

fε(t) = Sε2πnεfε(t− 2πnε) −
∫ 2πnε

0

(Sεσθ
ε
t−σS

ε
−σ)S

ε
σfε(t− σ) dσ

and then we write the Duhamel formula for the fε(t− σ) in the integral, and this yields :

fε(t) = Sε2πnεfε(t− 2πnε) −
∫ 2πnε

0

(Sεσθ
ε
t−σS

ε
−σ)S

ε
4πnεfε(t− 4πnε) dσ

+

∫ 2πnε

0

∫ 4πnε−σ

0

(Sεσθ
ε
t−σS

ε
−σ)(S

ε
s+σθ

ε
t−σ−sS

ε
−s−σ)S

ε
s+σfε(t− σ − s) ds dσ.

We obtain :

E(Jθεtfε(t)) = JE (θεtS
ε
2πnεfε(t− 2πnε))

−
∫ 2πnε

0

E
(

Jθεt(S
ε
σθ

ε
t−σS

ε
−σ)S

ε
4πnεfε(t− 4πnε)

)

dσ + rεt(299)
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with

rεt =

∫ 2πnε

0

∫ 4πnε−σ

0

JE
(

θεt(S
ε
σθ

ε
t−σS

ε
−σ)(S

ε
s+σθ

ε
t−σ−sS

ε
−s−σ)S

ε
s+σfε(t− σ − s)

)

ds dσ.

The function f 0
ε is independent of the operators θεt , t ∈ R. In particular, in view of the assumption

(H3), θεt and fε(t− s) are independent as soon as t ≥ s+ 2πnε and s ≥ 0.

Combining this fact with (H2), Equation (299) becomes for t ≥ 4πnε

E(Jθεtfε) = JE(θεt)E(Sε2πnεfε(t− 2πnε))

−
∫ 2πnε

0

E(Jθεt(S
ε
σθ

ε
t−σS

ε
−σ))E(Sε4πnεfε(t− 4πnε)) dσ + rεt ,

E(Jθεtfε) = −
∫ 2πnε

0

E(Jθεt(S
ε
σθ

ε
t−σS

ε
−σ))Efε(t) dσ + rεt + eεt,(300)

with eεt = −
∫ 2πnε

0

E(Jθεt(S
ε
σθ

ε
t−σS

ε
−σ))(ES

ε
4πnεfε(t− 4πnε) − Efε(t)) dσ.

Since Sεt is 2πε periodic, Sε4πnεfε(t− 4πnε) = fε(t− 4πnε). We have :

Sεsθ
ε
t−sS

ε
−s =

1√
ε
(SεsE

ε(t− s)) ·Dε
s

where we denote

Eε(t, x) = ∇V ε(
t

2πnε
,
x

ε
),

and we define the differential operator Dε
s by

Dε
s = R−s/ε∇v + εR−s/ε∇⊥

x − ε∇⊥
x .

Note that Dε
s is skew adjoint. Let us introduce the operator Lεt on S(R4) (extended on S ′(R4)) defined

for every η ∈ S(R4) by :

Lεtη = −
∫ 2πnε

0

E(θεt(S
ε
σθ

ε
t−σS

ε
−σ))η dσ.

We can gather those results in the following way :

Lemma 7.4. We have the following equality :

E(Jθεtfε) = JLεtEfε + rεt + eεt,

where the operator Lεt is defined for every η ∈ S(R4) by :

(301) Lεtη(x, v) = −1

ε

∫ 2πnε

0

∇v · (E(SεσE
ε(t− σ) ⊗ Eε(t)) ·Dε

ση(x, v)) dσ,

and the remainders are defined by :

eεt = JLεt(Efε(t− 4πnε) − Efε(t)),

rεt =
1

ε
√
ε

∫ 2πnε

0

∫ 4πnε−σ

0

JE
(

Eε(t) · ∇v(S
ε
σE

ε(t− σ) ·Dε
σ(S

ε
s+σE

ε(t− s− σ)

·Dε
s+σ(S

ε
s+σfε(t− σ − s))))

)

ds dσ.

We can now show the following lemma :
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Lemma 7.5. For every η ∈ S(R4), the remainder rεt verifies :

|〈rεt ; η〉| ≤ C(η)
√
εN(ε),

and (Lεt)
∗η converges in L2(R4) to :

∫ 2πn

0

R−s∇v ·
(

∇2
xxA(

−s
2πn

, v⊥ − R−sv
⊥)∇vη

)

ds.

Proof. We have :

(Lεt)
∗η = −1

ε

∫ 2πnε

0

Dε
σ · (E(SεσE

ε(t− σ) ⊗ Eε(t)) · ∇vη) dσ

= −
∫ 2πn

0

Dε
εσ · (E(SεεσE

ε(t− εσ) ⊗ Eε(t)) · ∇v)η dσ.

But thanks to the definition to Tε(s), E
ε and Hypothesis (H3), the term

E(SεεσE
ε(t− εσ) ⊗ Eε(t)) = E(∇V ε(

t− εσ

2πnε
, x/ε + v⊥ −R−σv

⊥) ⊗∇V ε(
t

2πnε
, x/ε))

converges strongly to (−∇2
xxA)(−σ/(2πn), v⊥ − R−σv

⊥) in L∞((R+)2;W 1,∞(R2)). Hence thanks to
the definition of Dε

s, (Lεt)
∗η converges strongly to :
∫ 2πn

0

R−s∇v ·
(

∇2
xxA(

−s
2πn

, v⊥ − R−sv
⊥)∇vη

)

ds

in L∞(R+ × R4). We recall that we have Dε
εs = R−s∇v + εR−s∇⊥

x − ε∇⊥
x thus

‖Dε
εs′Φ‖L2(R+×R4) ≤ C‖Φ‖W 1,2(R+×R4),

‖Dε
εs′DεsΦ‖L2(R+×R4) ≤ C‖Φ‖W 2,2(R+×R4),

hence

|〈rεt ; η〉| ≤ C(n)
√
ε‖Φ‖W 3,2‖fε‖L2

sup
s,s′

{E(|Eε(T (εs′))| (|Eε(T (εs))| + |Dε
εs′[E

ε(T (εs))]|)

(|Eε(t, x)| + |Dε
εsE

ε(t, x)| + |Dε
εs′E

ε(t, x)| + |Dε
εs′D

ε
εsE

ε(t, x)|))} .
We then use the following bounds : (recall that Eε(t, x) = ∇V ε( t

2πnε
, x
ε
).)

|Eε| ≤ ‖∇xV
ε‖L∞(R+×R2))

|Dε
εsE

ε(t, x)| ≤ ‖∇2
xxV

ε‖L∞(R+×R2))

|Dε
εs′D

ε
εsE

ε(t, x)| ≤ ‖∇3
xxxV

ε‖L∞(R+×R2))

|Dε
εs′[E

ε(T (εs))]| ≤ Cε|∇xE
ε|(T (εs)) ≤ C‖∇2

xxV
ε‖L∞(R+×R2)).

Then Hypothesis (H1) ensures that

|〈rεt ; η〉| ≤ C
√
ε‖f ε0‖L2N(ε)‖Φ‖W 3,2 ,

which ends the proof of the lemma. �

We can now state the following proposition :
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Proposition 7.6. Assume that ε(N(ε))2 converges to 0 when ε goes to 0. Then the convergence
(up to a subsequence) of JEfε to f holds in C0(R+;L2(R4) − w), and f is solution to :

(302) ∂tf + JL0
tJf = 0,

where the operator L0
t is defined for every η ∈ S(R4) by :

(L0
t )

∗η =

∫ 2πn

0

R−s∇v ·
(

∇2
xxA(

−s
2πn

, v⊥ − R−sv
⊥)∇vη

)

ds.

Proof. Thanks to the previous lemma, for every test function η ∈ S(R4) :

|〈rεt ; η〉|
ε→0−→ 0,

and (Lεt)
∗η converges strongly in L2(R4) to (L0

t )
∗η. But, thanks to Proposition 7.3, fε converges

weakly to f in L2 − w. So
〈JLεtEfε; η〉 = 〈Efε; (Lεt)∗Jη〉

converges to :
〈f ; (L0

t )
∗Jη〉 = 〈JL0

t f ; η〉.
The function fε(t) − S2πnεfε(t − 2πnε) converges to 0 in L2 − w as well. So eεt converges to 0 in
S ′(R4). Passing to the limit in equation (297) gives equation (302). This shows that ∂tfε is uniformly
bounded in time in a negative Sobolev space. Hence fε converges to f in the space of continuous
function in time with values in this Sobolev space. Finally since fε is bounded in L∞(R+;L2(R4)),
the convergence holds in C0([0, T ];L2(R4) − w) for every T > 0. �

4.3. Convergence to the SHE model. Since Jf = f , we can introduce the gyroaverage
function defined by :

ρ(t, x, e) = f(t, x, v),

for every v such that 2e = |v|2. This subsection is devoted to the proof of the following lemma :

Lemma 7.7. The function ρ lies in C0(R+;L2(R2×R+)−w)∩L∞(R+;L2(R2×R+)). It is solution
to :











∂tρ− ∂e(a(e)∂eρ) = 0

ρ|t=0 =
1

2π

∫ 2π

0

f 0(t, x, Rθv) dθ

where the diffusion parameter is defined by :

a(e) =

∫ 2πn

0

∫ 2π

0

Rθv · (−∇2
xxA)(− s

2πn
,Rθv

⊥ −R−s+θv
⊥) ·R−sRθv ds dθ,

for every v such that e = |v|2/2.
Proof. Let us first compute the operator JL0

tJ . Let η1, η1 be two test functions in S(R4). We have :

〈η1; JL
0
tJη2〉 = 〈(L0

t )
∗Jη1; Jη2〉

=

∫

R4

∫ 2πn

0

∇vJη1(−∇2
xxA)(

−s
2πn

, v⊥ − R−sv
⊥)R−s∇vJη2 ds dx dv.

Let us denote ρηi
for i = 1, 2 the functions defined by :

ρηi
(x,

|v|2
2

) = Jηi(x, v).
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Using polar coordinates and noticing that dv = dθ de we find :

〈η1; JL
0
tJη2〉 =

∫

R2

∫ ∞

0

∂eρη1(x, e)∂eρη2(x, e)

∫ 2πn

0

∫ 2π

0

Rθ~e ·

(−∇2
xxA)(

−s
2πn

,−R−s+θ+ π
2
~e +Rθ+ π

2
~e) ·R−s+θ~e ds dθ de dx

=

∫

R2

∫ ∞

0

∂eρη1(x, e)∂eρη2(x, e)a(e) de dx,

where ~e = (
√

2e, 0). Hence for every test function ρη, let us multiply it by Equation (302) and
integrate with respect to x, v. Since de dθ = dv we find :

∂t

∫

R2

∫ ∞

0

ρ(t, x, e)ρη(x, e) dx de =

∫

R2

∫ ∞

0

ρ(t, x, e)∂e(a(e)∂eρη(x, e)) de dx.

This, with Proposition 7.6 gives the desired result. �

Remark : we have a family of equations parametrized by x ∈ R2, and the solutions of two equations
at two distinct x do not interact.

4.4. Explicit computation of the diffusion coefficient. We derive in the following a suitable
form to the diffusion coefficient a(e). We will show, in particular, that a(e) is non negative. From
(H4) the correlation function A(t, x) is even with respect to t and x. This with (H3) gives :

Lemma 7.8. The correlation function A satisfies :

SuppA ⊂ [−2πn, 2πn] × R
2,

∇xA(0, 0) = 0,

∂sA(0, 0) = 0.

This last subsection is devoted to the following proposition. Theorem 7.1 follows from this pro-
position, Proposition 7.3 and Proposition 7.6.

Proposition 7.9. Let us denote

Ã(t, x) =
1

2π

∫ 2π

0

A(Rθx, t) dθ.

Then a(e) is non negative and equal to :

1

2πn2

∫ ∞

0

(−∂2
ttÃ)(

−s
2πn

, 2
√
e
√

1 − cos s) ds.

Proof. Thanks to Lemma 7.7 and lemma 7.8, we have

a(e) =

∫ ∞

s=0

∫ 2π

0

Rθv · (−∇2
xxA)(− s

2πn
,Rθv

⊥ −R−sRθv
⊥) ·R−sRθv ds dθ.

Since

−∇2
xxA(− s

2πn
, v⊥ − R−sv

⊥) ·R−sv

=
1

2πn
∇x∂sA(− s

2πn
, v⊥ −R−sv

⊥) + ∂s(∇xA(− s

2πn
, v⊥ − R−sv

⊥)),
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we find

a(e) =
1

2πn

∫ ∞

s=0

∫ 2π

0

Rθv · ∇x∂sA(− s

2πn
,Rθv

⊥ − Rθ−sv
⊥) ds dθ

−
∫ 2π

0

Rθv · ∇xA(0, 0) dθ

=
1

2πn

∫ ∞

s=0

∫ 2π

0

Rθ~e · ∇x∂sA(− s

2πn
,Rθ+π/2~e− R−s+θ+π/2~e) ds dθ

where ~e = (
√

2e, 0). Let us do the change of variables s′ = θ − s to get

a(e) =
1

2πn

∫ 2π

0

∫

R

1{s≤θ}Rθ~e · ∇x∂sA(
s− θ

2πn
,Rθ+π/2~e− Rs+π/2~e) dθ ds.

Next we have

Rθ~e · ∇x∂sA(
s− θ

2πn
,Rθ+π/2~e− Rs+π/2~e) = − 1

2πn
∂2
ssA(

s− θ

2πn
,Rθ+π/2~e− Rs+π/2~e)

−∂θ
{

∂sA(
s− θ

2πn
,Rθ+π/2~e−Rs+π/2~e)

}

.

Integrating by parts the second term of the RHS gives

1

2πn

∫ 2π

0

∫

R

1{s≤θ}∂θ

{

∂sA(
s− θ

2πn
,Rθ+π/2~e− Rs+π/2~e)

}

ds dθ

=
1

2πn

∫ 2π

0

∂θ

∫

R

1{s≤θ}∂sA(
s− θ

2πn
,Rθ+π/2~e−Rs+π/2~e) ds dθ

− 1

2πn

∫ 2π

0

∫

R

δs=θ∂sA(
s− θ

2πn
,Rθ+π/2~e− Rs+π/2~e) ds dθ

=
1

2πn

∫ 2π

−∞

∂sA(
s− 2π

2πn
,Rπ/2~e− Rs+π/2~e) ds

− 1

2πn

∫ 0

−∞

∂sA(
s

2πn
,Rπ/2~e− Rs+π/2~e) ds

− 1

2πn

∫ 2π

0

∂sA(0, 0) ds

The first two lines cancel by doing the change of variables s′ = s − 2π and the third line vanishes
thanks to Lemma 7.8, thus

a(e) =
1

(2πn)2

∫ 2π

0

∫

R

1{s≤θ}(−∂2
ssA)(

s− θ

2πn
,Rθ+π/2~e−Rs+π/2~e) dθ ds

Doing the change of variables s′ = θ − s gives

a(e) =
1

(2πn)2

∫ 2π

0

∫ ∞

0

(−∂2
ssA)(− s

2πn
,Rθ+π/2((I − R−s)~e)) dθ ds

=
1

2πn2

∫ ∞

0

(−∂2
ssÃ)(− s

2πn
, |(I −R−s)~e|) ds.
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Finally

|(I −Rs)~e| =
√

(|1 − cos s|2 + sin2 s)
√

2e

=
√

2(1 − cos s)
√

2e

= 2
√
e
√

1 − cos s

= 2
√

2e| sin(s/2)|
which ends the proof of the second assertion. �

Computation of the sign of the diffusion coefficient.
Here we check the non-negativity of the diffusion coefficient by expressing it in another form. Thanks
to lemma 7.7 and to hypothesis (H3), (H4) we have

a(e) =
1

2N

∫ +∞

s=0

∫ 2πN

−2πN

Rθv · (−∇2
xxA)(− s

2πn
,Rθv

⊥ −Rθ−sv
⊥) ·Rθ−sv ds dθ

for all N . Then doing the change of variable s := θ − s we find :

a(e) =
1

2N

∫

s∈R

∫ 2πN

−2πN

1{θ≥s}Rθv · (−∇2
xxA)(

s− θ

2πn
,Rθv

⊥ − Rsv
⊥) ·Rsvdsdθ

But we remind that thanks to hypothesis (H4)

−∇2
xxA(

s− θ

2πn
,Rθv

⊥ − Rsv
⊥) = lim

ε→0
E

(

∇xV
ε(− s

2πn
,−Rsv

⊥) ⊗∇xV
ε(− θ

2πn
,−Rθv

⊥)

)

Thus

a(e) = lim
ε,N

1

2N
·

∫ ∫ 2πN

−2πN

1{θ≥s}E

(

[∇xV
ε(− s

2πn
,−Rsv

⊥) ·Rsv][∇xV
ε(− θ

2πn
,−Rθv

⊥) ·Rθv]

)

dsdθ

Interverting s and θ we see that we can replace 1{θ−s≥0} by 1{s−θ≥0} and finally by adding both we
obtain :

a(e) = lim
ε,N

1

4N
E

(

[∫ 2πN

−2πN

∇xV
ε(− s

2πn
,−Rsv

⊥) ·Rsvds

]2
)

which is a positive quantity. �
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ABSTRACT

We show that the deterministic past history of the Universe can be uniquely recon-
structed from the knowledge of the present mass density field, the latter being inferred
from the 3D distribution of luminous matter, assumed to be tracing the distribution
of dark matter up to a known bias. Reconstruction ceases to be unique below those
scales – a few Mpc – where multi-streaming becomes significant. Above 6 h−1 Mpc we
propose and implement an effective Monge–Ampère–Kantorovich method of unique
reconstruction. At such scales the Zel’dovich approximation is well satisfied and re-
construction becomes an instance of optimal mass transportation, a problem which
goes back to Monge (1781). After discretization into N point masses one obtains an
assignment problem that can be handled by effective algorithms with not more than
O(N3) time complexity and reasonable CPU time requirements. Testing against N -
body cosmological simulations gives over 60% of exactly reconstructed points.

We apply several interrelated tools from optimization theory that were not used in
cosmological reconstruction before, such as the Monge–Ampère equation, its relation to
the mass transportation problem, the Kantorovich duality and the auction algorithm
for optimal assignment. Self-contained discussion of relevant notions and techniques
is provided.

Key words: cosmology: theory – large-scale structure of the Universe – hydrody-
namics

1 INTRODUCTION

Can one follow back in time to initial locations the highly
structured present distribution of mass in the Universe, as
mapped by redshift catalogues of galaxies? At first this
seems an ill-posed problem since little is known about the
peculiar velocities of galaxies, so that equations governing
the dynamics cannot just be integrated back in time. In
fact, it is precisely one of the goals of reconstruction to de-
termine the peculiar velocities. Since the pioneering work of
Peebles (1989), a number of reconstruction techniques have
been proposed, which frequently provided non-unique an-
swers.1

? E-mail: uriel@obs-nice.fr
1 The reader will find a detailed discussion of several important
existing techniques in Section 7.

Cosmological reconstruction should however take ad-
vantage of our knowledge that the initial mass distribu-
tion was quasi-uniform at baryon-photon decoupling, about
14 billion years ago (see, e.g., Susperregi & Binney 1994).
In a recent Letter to Nature (Frisch et al. 2002), four of us
have shown that, with suitable assumptions, this a priori

knowledge of the initial density field makes reconstruction a
well-posed instance of what is called the optimal mass trans-
portation problem.

A well-known fact is that, in an expanding universe with
self-gravitating matter, the initial velocity field is ‘slaved’ to
the initial gravitational field, which is potential; both fields
thus depend on a single scalar function. Hence the number
of unknowns matches the number of constraints, namely the
single density function characterising the present distribu-
tion of mass.

This observation alone, of course, does not ensure

c© 0000 RAS
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déblais remblais

Figure 1. A sketch of Monge’s mass transportation problem in
which one searches the optimal way of transporting earth from
cuts (déblais) to fills (remblais), each of prescribed shape; the
cost of transporting a molecule of earth is a given function of the
distance. The MAK method of reconstructing the early Universe
described in this paper corresponds to a quadratic cost.

uniqueness of the reconstruction. For this, two restrictions
will turn out to be crucial. First, from standard redshift cat-
alogues it is impossible to resolve individual streams of mat-
ter with different velocities if they occupy the same space
volume. This ‘multi-streaming’ is typically confined to rela-
tively small scales of a few megaparsecs (Mpc), below which
reconstruction is hardly feasible. Second, to reconstruct a
given finite patch of the present Universe, we need to know
its initial shape at least approximately.

It is our purpose in the present paper to clarify the phys-
ical nature of the factors permitting a unique reconstruction
and of obstacles limiting it, and to give a detailed account
of the way some recent developments in the optimal mass
transportation theory are applicable. (Fig. 1 may give the
reader some feeling of what mass transportation is about.)

The paper is organized as follows. In Section 2 we for-
mulate the reconstruction problem in an expanding universe
and state the main result about uniqueness of the solution.

In the next three sections we devise and test a re-
construction technique called MAK (for Monge–Ampère–
Kantorovich) within a restricted framework where the La-
grangian map from initial to present mass locations is taken
potential. In Section 3 we discuss the validity of the poten-
tiality assumption and its relation to various approximations
used in cosmology; then we derive the Monge–Ampère equa-
tion, a simple consequence of mass conservation, introduce
its modern reformulation as a Monge–Kantorovich problem
of optimal mass transportation and finally discuss different
limitations on uniqueness of the reconstruction. In Section 4
we show how discretization turns optimization into an in-
stance of the standard assignment problem; we then present
effective algorithms for its solution, foremost the ‘auction’
algorithm of D. Bertsekas. Section 5 is devoted to testing
the MAK reconstruction against N -body cosmological sim-
ulations.

In Section 6, we show how the general case, without the
potentiality assumption, can also be recast as an optimiza-
tion problem with a unique solution and indicate a possible
numerical strategy for such reconstruction. In Section 7 we
compare our reconstruction method with other approaches
in the literature. In Section 8 we discuss perspectives and
open problems.

A number of topics are left for appendices. In Ap-
pendix A we derive the Eulerian and Lagrangian equa-
tions in the form used throughout the paper (and provide
some background for non-cosmologists). Appendix B is de-

voted to the history of optimal mass transportation the-
ory, a subject more than two centuries old (Monge 1781),
which has undergone significant progress within the last two
decades. Appendix C is a brief elementary introduction to
the technique of duality in optimization, which we use sev-
eral times throughout the paper. Appendix D gives details
of the uniqueness proof that is only outlined in Section 6.

Finally, a word about notation (see also Appendix A).
We are using comoving coordinates denoted by x in a frame
following expansion of the Universe. Our time variable is not
the cosmic time but the so-called linear growth factor, here
denoted by τ , whose use gives to certain equations the same
form as for compressible fluid dynamics in a non-expanding
medium. The subscript 0 refers to the present time (redshift
z = 0), while the quantities evaluated at the initial epoch
take the subscript or superscript ‘in.’ Following cosmological
usage, the Lagrangian coordinate is denoted q.

2 RECONSTRUCTION IN AN EXPANDING

UNIVERSE

The most widely accepted explanation of the large-scale
structure seen in galaxy surveys is that it results from small
primordial fluctuations that grew under gravitational self-
interaction of collisionless cold dark matter (CDM) particles
in an expanding universe (see, e.g., Bernardeau et al. (2002)
and references therein). The relevant equations of motion,
derived in Appendix A, are the Euler–Poisson equations2

written here for a flat, matter-dominated Einstein–de Sitter
universe (for more general case see, e.g., Catelan et al. 1995):

∂τv + (v · ∇x)v = − 3

2τ
(v + ∇xϕg), (1)

∂τρ+ ∇x · (ρv) = 0, (2)

∇2
xϕg =

ρ− 1

τ
. (3)

Here v denotes the velocity, ρ denotes the density (normal-
ized by the background density %̄) and ϕg is a rescaled grav-
itational potential. All quantities are expressed in comoving
spatial coordinates x and linear growth factor τ , which is
used as the time variable; in particular, v is the Lagrangian
τ -time derivative of the comoving coordinate of a fluid ele-
ment.

2.1 Slaving in early-time dynamics and its fossils

The right-hand sides of the momentum and Poisson equa-
tions (1) and (3) contain denominators proportional to τ .
Hence, a necessary condition for the problem not to be sin-
gular as τ → 0 is

vin(x) + ∇xϕ
in
g = 0, ρin(x) = 1. (4)

In other words, (i) the initial velocity must be equal to (mi-
nus) the gradient of the initial gravitational potential and
(ii) the initial normalized mass distribution is uniform. We
shall refer to these conditions as slaving. Note that the den-
sity contrast ρ−1 vanishes initially, but the rescaled gravita-
tional potential and the velocity, as defined here, stay finite

2 Also often called the Euler equations.
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Reconstruction of the early Universe as a convex optimization problem 3

thanks to our choice of the linear growth factor as time vari-
able. Therefore we refer to the initial mass distribution as
‘quasi-uniform.’

In the sequel, when we mention the Euler–Poisson
initial-value problem, it is always understood that we start at
τ = 0 and assume slaving. Hence we are extending the New-
tonian matter-dominated post-decoupling description back
to τ = 0. By examination of the Lagrangian equations for
x(q, τ ) near τ = 0, which can be linearized because the
displacement x − q is small, it is easily shown that slaving
implies the absence of the ‘decaying mode,’ which behaves as
τ−3/2 in an Einstein–de Sitter universe and is thus singular
at τ = 0 (for details see Appendix A).

Slaving is also a sufficient condition for the initial prob-
lem to be well posed. It is indeed easily shown recursively
that (1)–(3) admit a solution in the form of a formal Tay-
lor series in τ (a related expansion involving only potentials
may be found in Catelan et al. 1995):

v(x, τ ) = v
(0)(x) + τv(1)(x) + τ 2

v
(2)(x) + · · · , (5)

ϕg(x, τ ) = ϕ(0)
g (x) + τϕ(1)

g (x) + τ 2ϕ(2)
g (x) + · · · , (6)

ρ(x, τ ) = 1 + τρ(1)(x) + τ 2ρ(2)(x) + · · · . (7)

Furthermore, v(n)(x) is easily shown to be curl-free for
any n.

We conjecture that a stronger result holds: if the initial
gravitational potential is analytic in the space variable (as is
likely in the cosmological problem because high-order spatial
harmonics are mollified by various damping and dissipation
processes), analyticity in both space and τ -time is preserved
up to the time of formation of caustics (also called time of
first shell-crossing).

Several important consequences of slaving extend to
later times as ‘fossils’ of the earliest dynamics. First, as al-
ready stressed in the Introduction, the whole dynamics is
determined by only one scalar field (e.g., the initial gravita-
tional potential) which we can hope to determine from the
knowledge of the present density field.

Second, slaving trivially rules out multi-streaming up
to the time of formation of caustics. Since we are work-
ing with collisionless matter, the dynamics should in prin-
ciple be governed by the Vlassov–Poisson3 kinetic equation
which allows at each (x, τ ) point a non-trivial distribution
function f(x,v, τ ). Slaving selects a particular class of so-
lutions for which the distribution function is concentrated
on a single-speed manifold, thereby justifying the use of the
Euler–Poisson equation without having to invoke any hydro-
dynamical limit (see, e.g., Vergassola et al. 1994; Catelan
et al. 1995).

Third, it is easily checked from (1) that the initial slaved
velocity, which is obviously curl-free, remains so for all later
times (up to formation of caustics). Note that this vanishing
of the curl holds in Eulerian coordinates. A similar property
in Lagrangian coordinates can only hold approximately but
will play an important role in the sequel (Section 3).

3 Actually written for the first time by Jeans (1919).

2.2 Formulation of the reconstruction problem

The present Universe is replete with high-density structures:
clusters (point-like objects), filaments (line-like objects) and
perhaps sheets or walls.4

The internal structure of such mass concentrations cer-
tainly displays multi-streaming and cannot be described in
terms of a single-speed solution to the Euler–Poisson equa-
tions. In N -body simulations, multi-stream regions are usu-
ally found to be of relatively small extension in one or several
space directions, typically not more than a few Mpc, and
hence have a small volume, although they contain a signifi-
cant fraction of the total mass (see, e.g. Weinberg & Gunn
1990).

In order not to have to deal with tiny multi-stream re-
gions, we replace the true mass distribution by a ‘macro-
scopic’ one which has a regular part and a singular (col-
lapsed) part, the latter concentrated on objects of dimension
less than three, such as points or lines.

The general problem of reconstruction is to find as much
information as possible on the history of the evolution that
carries the initial uniform density into the present macro-
scopic mass distribution, including the evolution of the ve-
locities. In principle we would like to find a solution of the
Euler–Poisson initial-value problem leading to the present
density field ρ0(x).

A more restricted problem, which we call the ‘dis-
placement reconstruction,’ is to find the Lagrangian map
q 7→ x(q) and its inverse x 7→ q(x), or in other words to
answer the question: where does a given ‘Monge molecule’5

of matter originate from? Of course, the inverse Lagrangian
map will not be single-valued on mass concentrations. Fur-
thermore, for practical cosmological applications, we define
a ‘full reconstruction problem’ as (i) displacement recon-
struction and (ii) obtaining the initial and present peculiar
velocity fields, vin(q) and v0(x).

We shall show in this paper that the displacement re-
construction problem is uniquely solvable and that the full
reconstruction problem has a unique solution outside of mass
concentrations; as to the latter, they are traced back to col-

lapsed regions in the Lagrangian space whose shape and po-
sitions are well defined but the inner structure of density
and velocity fluctuations is irretrievably lost.

3 POTENTIAL LAGRANGIAN MAPS: THE

MAK RECONSTRUCTION

In this and the next two sections we shall assume that the
Lagrangian map from initial positions to present ones is po-
tential

x = ∇qΦ(q), (8)

and furthermore that the potential Φ(q) is convex, which is,
as we shall see, related to the absence of multi-streaming.

4 Whether the Great Wall and the Sculptor Wall are sheet-like
or filament-like is a moot point (Sathyaprakash et al. 1998).
5 For Monge and his contemporaries, the word ‘molecule’ meant
a Leibniz infinitesimal element of mass; see Appendix B.
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3.1 Approximations leading to maps with convex

potentials

The motivation for the potential assumption, first used by
Bertschinger & Dekel (1989),6 comes from the Zel’dovich
approximation (Zel’dovich 1970), denoted here by ZA, and
its refinements. To recall how the ZA comes about, let us
start from the equations for the Lagrangian map x(q, τ ),
written in the Lagrangian coordinate q (Appendix A)

D2
τx = − 3

2τ
(Dτx + ∇xϕg), (9)

∇2
xϕg =

1

τ

[
(det∇qx)−1 − 1

]
, (10)

where Dτ is the Lagrangian time derivative and ∇xi
≡

(∂qj/∂xi)∇qj
is the Eulerian gradient rewritten in La-

grangian coordinates. As shown in Appendix A, in one space
dimension the Hubble drag term Dτx and the gravitational
acceleration term ∇xϕg cancel exactly. Slaving, discussed
in Section 2.1, means that the same cancellation holds to
leading order in any dimension for small τ . The ZA extends
this as an approximation without the restriction of small τ .
Within the ZA, the acceleration D2

τx vanishes. Hence the
Lagrangian map has the form

x(q, τ ) = q + τ (Dτx)in(q) = q − τ∇qϕ
in
g (q) (11)

= ∇qΦ(q, τ )

with the potential

Φ(q, τ ) ≡ |q|2
2

− τϕin
g (q). (12)

Furthermore, taking the time derivative of (11), we see that
the velocity Dτx(q, τ ) is curl-free with respect to the La-
grangian coordinate q.

It is noteworthy that the ZA can be formulated as the
first order of a systematic Lagrangian perturbation theory
(Buchert 1992). Up to second order, the Lagrangian map is
still potential under slaving (Moutarde et al. 1991; Buchert
& Ehlers 1993; Munshi, Sahni & Starobinsky 1994; Catelan
1995).

It is well known that the ZA map defined by (11) ceases
in general to be invertible due to the formation of multi-
stream regions bounded by caustics. Since particles move
along straight lines in the ZA, the formation of caustics pro-
ceeds just as in ordinary optics in a uniform medium in which
light rays are also straight.7 One of the problems with the
ZA is that caustics, which start as localized objects, quickly
grow in size and give unrealistically large multi-stream re-
gions.

A modification of the ZA that has no multi-streaming
at all, but sharp mass concentrations in the form of shocks
and other singularities, has been introduced by Gurbatov
& Saichev (1984; see also Gurbatov et al. 1989; Shandarin
& Zel’dovich 1989). It is known as the adhesion model. In
Eulerian coordinates it amounts to using a multidimensional
Burgers equation (see, e.g., Frisch & Bec 2002)

6 In connection with what was called later the Lagrangian PO-
TENT method (Dekel, Bertschinger & Faber 1990).
7 Catastrophe theory has been used to classify the different types
of singularities thus obtained (Arnol’d, Shandarin & Zel’dovich
1982).

∂τv + (v · ∇x)v = ν∇2
xv, v = −∇xϕv, (13)

taken in the limit where the viscosity ν tends to zero. In La-
grangian coordinates, the adhesion model is obtained from
the ZA by replacing the velocity potential Φ(q, t) given by
(12) by its convex hull Φc(q, t) in the q variable (Vergassola
et al. 1994).

Convexity is a concept which plays an important role
in this paper, and a few words on it are in order here (see
also Appendix C1). A body in the three-dimensional space
is said to be convex if, whenever it contains two points, it
contains also the whole segment joining them. A function
f(q) is said to be convex if the set of all points lying above
its graph is convex. The convex hull of the function Φ(q)
is defined as the largest convex function whose graph lies
below that of Φ(q). In two dimensions it can be visualized
by wrapping the graph of Φ(q) tightly from below with an
elastic sheet.

Note that Φ(q, τ ) given by (12) is obviously convex for
small enough τ since it is then very close to the parabolic
function |q|2/2. After caustics form, convexity is lost in the
ZA but recovered with the adhesion model. It may then
be shown that those regions in the Lagrangian space where
Φ(q, t) does not coincide with its convex hull will be mapped
in the Eulerian space to sheets, lines and points, each of
which contains a finite amount of mass. At these locations
the Lagrangian map does not have a uniquely defined La-
grangian antecedent but such points form a set of vanishing
volume. Everywhere else, there is a unique antecedent and
hence no multi-streaming.

Although the adhesion model has a number of known
shortcomings, such as non-conservation of momentum in
more than one dimension, it has been found to be in better
agreement with N -body simulations than the ZA (Weinberg
& Gunn 1990). Other single-speed approximations to multi-
stream flow, overcoming difficulties of the adhesion model,
are given by Buchert & Dominguez (1998). In such mod-
els, multi-streaming is completely suppressed by a mecha-
nism of momentum exchange between neighbouring streams
with different velocities. This is of course a common phe-
nomenon in ordinary fluids, where it is due to viscous dif-
fusion; dark matter is however essentially collisionless and
the usual mechanism for generating viscosity does not oper-
ate, so that a non-collisional mechanism must be invoked. A
qualitative explanation using the modification of the gravi-
tational forces after the formation of caustics has been pro-
posed by Shandarin & Zel’dovich (1989). In our opinion the
mechanism limiting multi-streaming to rather narrow re-
gions is poorly understood and deserves considerable further
investigation.

3.2 The Monge–Ampère equation: a consequence

of mass conservation

We now show that the assumption that the Lagrangian map
is derived from a convex potential leads to a pair of non-
linear partial differential equations, one for this potential
and another for its Legendre transform.

Let us first assume that the present distribution of
mass has no singular part, an assumption which we shall
relax later. Since in our notation the initial quasi-uniform
mass distribution has unit density, mass conservation im-
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plies ρ0(x) d3x = d3q, which can be rewritten in terms of
the Jacobian matrix ∇qx as

det∇qx =
1

ρ0(x(q))
. (14)

Under the potential assumption (8), this takes the form

det(∇qi
∇qj

Φ(q)) =
1

ρ0

(
∇qΦ(q)

) . (15)

A similar equation follows also from Eqs. (1) and (2) of
Bertschinger & Dekel (1989).

A simpler equation, in which the unknown appears only
in the left-hand side, viz Eq. (19) below, is obtained for the
potential of the inverse Lagrangian map q(x). Key is the
observation that the inverse of a map with a convex poten-
tial has also a convex potential, and that the two potentials
are Legendre transforms of each other.8 A purely local proof
of this statement is to observe that potentiality of q(x) is
equivalent to the symmetry of the inverse Jacobian matrix

∇xq which follows because it is the inverse of the symmet-
rical matrix ∇qx; convexity is equivalent to the positive-
definiteness of these matrices. Obviously the function

Θ(x) ≡ x · q(x) − Φ(q(x)), (16)

which is the Legendre transform of Φ(q), is the potential
for the inverse Lagrangian map. The modern definition of
the Legendre transformation (see Appendix C1), needed for
generalization to non-smooth mass distributions, is

Θ(x) = max
q

x · q − Φ(q), (17)

Φ(q) = max
x

x · q − Θ(x). (18)

In terms of the potential Θ, mass conservation is imme-
diately written as

det(∇xi
∇xj

Θ(x)) = ρ0(x). (19)

This equation, which has the determinant of the second
derivatives of the unknown in the left-hand side and a pre-
scribed (positive) function in the right-hand side, is called
the (elliptic) Monge–Ampère equation (see Appendix B for
a historical perspective).

Notice that our Monge–Ampère equation may be
viewed as a non-linear generalization of the Poisson equa-
tion (used for reconstruction by Nusser & Dekel (1992); see
also Section 7.1), to which it reduces if particles have moved
very little from their initial positions.

In actual reconstructions we have to deal with mass con-
centration in the present distribution of matter. Thus the
density in the right-hand side of (19) has a singular com-
ponent (a Dirac distribution concentrated on sets carrying
the concentrated mass) and the potential Θ ceases to be
smooth. As we now show, a generalized meaning can never-
theless be given to the Monge–Ampère equation by using the

8 Besides our problem, this fact prominently appears in two
other fields of physics: in classical mechanics, the Lagrangian and
Hamiltonian functions are Legendre transforms of each other –
their gradients relate the generalized velocity and momentum –
and so are, in thermodynamics, the internal energy and the Gibbs
potential, implying the same relation between extensive and in-
tensive parameters of state.

key ingredient in its derivation, namely mass conservation,
in integrated form.

For a nonsmooth convex potential Θ, taking the gra-
dient ∇xΘ(x) still makes sense if one allows it to be mul-
tivalued at points where the potential is not differentiable.
The gradient at such a point x is then the set of all pos-
sible slopes of planes touching the graph of Θ at (x,Θ(x))
(this idea is given a precise mathematical formulation in Ap-
pendix C1). As x varies over an arbitrary domain DE in the
Eulerian space, its image q(x) sweeps a domain q(DE) in
the Lagrangian space, and mass conservation requires that
∫

DE

ρ0(x) d3
x =

∫

∇xΘ(DE)

d3
q, (20)

where we take into account that q(x) = ∇xΘ(x). Eq. (20)
must hold for any Eulerian domain DE; this requirement
is known as the weak formulation of the Monge–Ampère
equation (19). A symmetric formulation may be written for
(15) in terms of x(q) = ∇qΦ(q). For further material on the
weak formulation see, e.g., Pogorelov (1978).

Considerable literature has been devoted to the Monge–
Ampère equation in recent years (see, e.g., Caffarelli 1999;
Caffarelli & Milman 1999). We mention now a few results
which are of direct relevance for the reconstruction problem.

In a nutshell, one can prove that when the domains oc-
cupied by the mass initially and at present are bounded and
convex, the Monge–Ampère equation – in its weak formu-
lation – is guaranteed to have a unique solution, which is
smooth unless one or both of the mass distributions is non-
smooth. The actual construction of this solution can be done
by a variational method discussed in the next section.

A similar result holds also when the present density field
is periodic and the same periodicity is assumed for the map.

Also relevant, as we shall see in Section 3.4, is a recent
result of Caffarelli & Li (2001): if the Monge–Ampère equa-
tion is considered in the whole space, but the present density
contrast δ = ρ − 1 vanishes outside of a bounded set, then
the solution Θ(x) is determined uniquely up to prescription
of its asymptotic behaviour at infinity, which is specified by
a quadratic function of the form

θ(x) ≡ 〈x, Ax〉 + 〈b,x〉 + c, (21)

for some positive definite symmetric matrix A with unit de-
terminant, vector b and constant c.

3.3 Optimal mass transportation

As we are going to see now, the Monge–Ampère equation
(19) is equivalent to an instance of what is called the ‘opti-
mal mass transportation problem.’ Suppose we are given two
distributions ρin(q) and ρ0(x) of the same amount of mass
in two three-dimensional convex bounded domains Din and
D0. The optimal mass transportation problem is then to find
the most cost-effective way of rearranging by a suitable map
one distribution into the other, the cost of transporting a
unit of mass from a position q ∈ Din to x ∈ D0 being a
prescribed function c(q,x).

Denoting the map by x(q) and its inverse q(x), we can
write the problem as the requirement that the cost

I ≡
∫

Din

c(q,x(q))ρin(q) d3
q =

∫

D0

c(q(x),x)ρ0(x) d3
x (22)
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be minimum, with the constraints of prescribed ‘terminal’
densities ρin and ρ0 and of mass conservation ρin(q) d3q =
ρ0(x) d3x.9

This problem goes back to Monge (1781) who consid-
ered the case of a linear cost function c(q,x) = |x − q| (see
Appendix B and Fig. 1).

For our purposes, the central result (Brenier 1987, 1991)
is that, when the cost is a quadratic function of the distance,
so that

I =

∫

Din

|x(q) − q|2
2

ρin(q) d3
q =

∫

D0

|x − q(x)|2
2

ρ0(x) d3
x, (23)

the solution q(x) to the optimal mass transportation prob-
lem is the gradient of a convex function, which then must
satisfy the Monge–Ampère equation (19) by mass conserva-
tion.

A particularly simple variational proof can be given for
the smooth case, when the two mutually inverse maps x(q)
and q(x) are both well defined.

Performing a variation of the map x(q), we cause a
mass element in the Eulerian space that was located at
x(q) to move to x(q) + δx(q). This variation is constrained
not to change the density field ρ0. To express this con-
straint it is convenient to rewrite the displacement in Eu-
lerian coordinate δxE(x) ≡ δx(q(x)). Noting that the point
x gets displaced into y = x + δx, we thus require that
ρ0(x) d3x = ρ0(y) d3y or

ρ0(x) = ρ0(x + δxE(x)) det
(
∇x(x + δxE(x))

)
. (24)

Expanding this equation, we find that, to the leading order,

∇x · (ρ0(x) δxE(x)) = 0, (25)

an equation which just expresses the physically obvious fact
that the mass flux ρ0(x) δxE(x) should have zero divergence.
Performing the variation on the functional I given by (23),
we get

δI =

∫

Din

(x(q) − q) · δx(q) ρin(q) d3
q

=

∫

D0

(x − q(x)) ·
(
ρ0(x) δxE(x)

)
d3

x = 0, (26)

which has to hold under the constraint (25). In other words,
the displacement x − q(x) has to be orthogonal (in the
L2 functional sense) to all divergence-less vector fields and,
thus, must be a gradient. Since x is obviously a gradient, it
follows that q(x) = ∇xΘ(x) for a suitable potential Θ.

It remains to prove the convexity of Θ. First we prove
that the map x 7→ q(x) = ∇xΘ(x) is monotone, i.e., by
definition, that for any x1 and x2

(x2 − x1) · (q(x2) − q(x1)) > 0. (27)

Indeed, should this inequality be violated for some x1,x2,
the continuity of q(x) would imply that for all x1,x2 close
enough to x1,x2

|q(x1) − x1|2 + |q(x2) − x2|2

> |q(x2) − x1|2 + |q(x1) − x2|2.
(28)

9 Note that x(q) = q does not solve the above problem as it vio-
lates the latter constraint unless the terminal densities are iden-
tical.

This in turn means that if we interchange the destinations
of small patches around x1 and x2, sending them not to
the corresponding patches around q(x1) and q(x2) but vice
versa, then the value of the functional I will decrease by a
small yet positive quantity, and therefore it cannot be min-
imum for the original map.10

To complete the argument, observe that convexity of
a smooth function Θ(x) follows if the matrix of its second
derivatives ∇xi

∇xj
Θ(x) is positive definite for all x. Substi-

tuting q(x) = ∇xΘ(x) into (27), assuming that x2 is close
to x1 and Taylor expanding, we find that

(x2 − x1) · (∇xi
∇xj

Θ(x1) (x2 − x1)) > 0. (29)

As x2 is arbitrary, this proves the desired positive definite-
ness and thus establishes the equivalence of the Monge–
Ampère equation (19) and of the mass transportation prob-
lem with quadratic cost.

This equivalence is actually proved under much weaker
conditions, not requiring any smoothness (Brenier 1987,
1991). The proof makes use of the ‘relaxed’ reformulation of
the mass transportation problem due to Kantorovich (1942).
Instead of solving the highly non-linear problem of finding
a map q(x) minimizing the cost (22) with prescribed ter-
minal densities, Kantorovich considered the linear program-

ming problem of minimizing

Ĩ ≡
∫

Din

∫

D0

c(q,x) ρ(q,x) d3
q d3

x, (30)

under the constraint that the joint distribution ρ(q,x) is
nonnegative and has marginals ρin(q) and ρ0(x), the latter
being equivalent to
∫

D0

ρ(q,x) d3
x = ρin(q),

∫

Din

ρ(q,x) d3
q = ρ0(x). (31)

Note that if we assume any of the two following forms for
the joint distribution

ρ(q,x) = ρ0(x) δ
(
q − q(x)

)

ρ(q,x) = ρin(q) δ
(
x − x(q)

)
,

(32)

we find that Ĩ reduces to the cost I as defined in (22). This
relaxed formulation allowed Kantorovich to establish the ex-
istence of a mimimizing joint distribution.

The relaxed formulation can be used to show that the
minimizing solution actually defines a map, which need not
be smooth if one or both of the terminal distribution have a
singular component (in our case, when mass concentrations
are present). The derivation (Brenier 1987, 1991) makes use
of the technique of duality (Appendix C2), which will also
appear in discussing algorithms (Section 4.2) and recon-
struction beyond the potential hypothesis (Section 6).

We have thus shown that the Monge–Kantorovich op-
timal mass transportation problem can be applied to solv-
ing the Monge–Ampère equation. The actual implementa-
tion (Section 4), done for a suitable discretization, will be
henceforth called Monge–Ampère–Kantorovich (MAK).

10 As we shall see in Section 4.1, the converse is not true: mono-
tonicity alone does not imply that the integral I is a minimum;
the minimizing map must also be potential.
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Figure 2. A one-dimensional example of non-unique reconstruc-
tion of the Lagrangian map in the presence of multi-streaming.
The density distribution (upper graph) is generated by a multi-
streaming Lagrangian map (thick line of lower graph) but may
also be generated by a spurious single-stream Lagrangian map
(dashed line).

3.4 Sources of uncertainty in reconstruction

In this section we discuss various sources of non-uniqueness
of the MAK reconstruction: multi-streaming, collapsed re-
gions, reconstruction from a finite patch of the Universe.

We have stated before that our uniqueness result applies
only in so far as we can treat present-epoch high-density
multi-stream regions as if they were truly collapsed, ignor-
ing their width. We now give a simple one-dimensional ex-
ample of non-uniqueness in which a thick region of multi-
streaming is present. Fig. 2 shows a multi-stream Lagrangian
map x(q) and the associated density distribution; the inverse
map q(x) is clearly multi-valued. The same density distribu-
tion may however be generated by a spurious single-stream
Lagrangian map shown on the same figure. There is no way
to distinguish between the two inverse Lagrangian maps if
the various streams cannot be disentangled.

Suppose now that the present density has a singular
part, i.e. there are mass concentrations present which have
vanishing (Eulerian) volumes but possess finite masses. Ob-
viously any such object originates from a domain in the
Lagrangian space which occupies a finite volume. A one-
dimensional example is again helpful. Fig. 3 shows a La-
grangian map in which a whole Lagrangian shock interval
[q1, q2] has collapsed into a single point of the x axis. Out-
side of this point the Lagrangian map is uniquely invertible
but the point itself has many antecedents. Note that the
graph of the Lagrangian map may be inverted by just inter-
changing the q and x axes, but its inverse contains a piece
of vertical line. The position of the Lagrangian shock in-
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Figure 3. Two initial velocity profiles vin(q) (bottom, solid and
dashed lines) leading to the same Lagrangian map x = q+τvin(q)
(top, solid line) in the adhesion approximation. The Zel’dovich
approximation would give multistreaming (top, dashed line).
Hatched areas (bottom) are equal in the adhesion dynamics.

terval which has collapsed by the present epoch is uniquely
defined by the present mass field but the initial velocity fluc-
tuations in this interval cannot be uniquely reconstructed.
In particular there is no way to know if collapse has started
before the present epoch. We can of course arbitrarily as-
sume that collapse has just happened at the present epoch;
if we also suppose that particles have travelled with a con-
stant speed, i.e. use the Zel’dovich/adhesion approximation,
then the initial velocity profile within the Lagrangian shock
interval will be linear (Fig. 3). Any other smooth velocity
profile joining the same end points would have points where
its slope (velocity gradient) is more negative than that of the
linear profile (Fig. 3) and thus would have started collapse
before the present epoch (in one dimension caustics appear
at the time which is minus the inverse of the most negative
initial velocity gradient).

All this carries over to more than one dimension. The
MAK reconstruction gives a unique antecedent for any
Eulerian position outside mass concentrations. Each mass
concentration in the Eulerian space, taken globally, has a
uniquely defined Lagrangian antecedent region but the ini-
tial velocity field inside the latter is unknown. In other
words, displacement reconstruction is well defined but full
reconstruction, based on the Zel’dovich/adhesion approxi-
mation for velocities, is possible only outside of mass concen-
trations (note however that velocities in the Eulerian space
are still reconstructed at almost all points). We call the cor-
responding initial Lagrangian domains collapsed regions.

Finally, we consider a uniqueness problem arising from
knowing the present mass distribution only over a finite
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Eulerian domain D0, as is necessarily the case when work-
ing with a real catalogue. If we also know the correspond-
ing Lagrangian domain Din and both domains are bounded
and convex, then uniqueness is guaranteed (see Section 3.2).
What we know for sure about Din is its volume, which (in
our units) is equal to the total mass contained in D0. Its
shape and position may however be constrained by further
information. For example, if we know that the typical dis-
placement of mass elements since decoupling is about ten
Mpc in comoving coordinates (see Section 5) and our data
extend over a patch of typical size one hundred Mpc, then
there is not more than a ten percent uncertainty on the shape
of Din. Additional information about peculiar velocities may
also be used to constrain Din.

Note also that a finite-size patch D0 with unknown an-
tecedent Din will give rise to a unique reconstruction (up to
a translation) if we assume that it is surrounded by a uni-
form background extending to infinity. This is a consequence
of the result of Caffarelli & Li mentioned at the end of Sec-
tion 3.2. The arbitrary linear term in (21) corresponds to
a translation; as to the quadratic term, it is constrained by
the cosmological principle of isotropy to be exactly |q|2/2.

4 THE MAK METHOD: DISCRETIZATION

AND ALGORITHMICS

In this section we show how to compute the solution to the
Monge–Ampère–Kantorovich (MAK) problem the known
present density field. First the problem is discretized into
an assignment problem (Section 4.1), then we present some
general tools which make the assignment problem computa-
tionally tractable (Section 4.2) and finally we present, to the
best of our knowledge, the most effective method for solving
our particular assignment problem, based on the auction
algorithm of D. Bertsekas (Section 4.3), and details of its
implementation for the MAK reconstruction (Section 4.4).

4.1 Reduction to an assignment problem

Perhaps the most natural way of discretizing a spatial mass
distribution is to approximate it by a finite system of identi-
cal Dirac point masses, with possibly more than one mass at
a given location. This is compatible both with N -body simu-
lations and with the intrinsically discrete nature of observed
luminous matter. Assuming that we have N unit masses
both in the Lagrangian and the Eulerian space, we may write

ρ0(x) =

N∑

i=1

δ(x − xi), ρin(q) =

N∑

j=1

δ(q − qj). (33)

For discrete densities of this form, the mass conservation
constraint in the optimal mass transportation problem (Sec-
tion 3.3) requires that the map q(x) induce a one-to-one
pairing between positions of the unit masses in the x and q

spaces, which may be written as a permutation of indices
that sends xi to qj(i). Substituting this into the quadratic
cost functional (23), we get

I =

N∑

i=1

|xi − qj(i)|2

2
. (34)

We thus reduced the problem to the purely combinatorial
one of finding a permutation j(i) (or its inverse i(j)) that
minimizes the quadratic cost function (34).

This problem is an instance of the general assignment

problem in combinatorial optimization: for a cost matrix cij ,
find a permutation j(i) that minimizes the cost function

I =

N∑

i=1

ci j(i). (35)

As we shall see in the next sections, there exist effective
algorithms for finding minimizing permutations.

Before proceeding with the assignment problem, we
should mention an alternative approach in which discretiza-
tion is performed only in the Eulerian space and the ini-
tial mass distribution is kept continuous and uniform. Min-
imization of the quadratic cost function will then give rise
to a tesselation of the Lagrangian space into polyhedric re-
gions which end up collapsed into the discrete Eulerian Dirac
masses. Basically, the reason why these regions are poly-
hedra is that the convex potential Φ(q) of the Lagrangian
map has a gradient which takes only finitely many values.
This problem, which has been studied by Aleksandrov and
Pogorelov (see, e.g., Pogorelov 1978), is closely related to
Minkowski’s (1897) famous problem of constructing a con-
vex polyhedron with prescribed areas and orientations of
its faces (in our setting, areas and orientations correspond
to masses and values of the gradient). Uniqueness in the
Minkowski problem is guaranteed up to a translation. Start-
ing with Minkowski’s own very elegant solution, various
methods of constructing solutions to such geometrical ques-
tions have been devised. So far, we have not been able to
make use of such ideas in a way truly competitive with dis-
cretization in both spaces and solving then the assignment
problem.

The solution to our assignment problem (with quadratic
cost) has the important property that it is monotone: for
any two Lagrangian positions q1 and q2, the corresponding
Eulerian positions x1 and x2 are such that

(x1 − x2) · (q1 − q2) > 0. (36)

This is of course the discrete counterpart of (27). In one di-
mension, when all the Dirac masses are on the same line,
monotonicity implies that the leftmost Lagrangian position
goes to the leftmost Eulerian position, the second leftmost
Lagrangian position to the second leftmost Eulerian posi-
tion, etc. It is easily checked that this correspondence mini-
mizes the cost (34).

In more than one dimension, a correspondence between
Lagrangian and Eulerian positions that is just monotone
will usually not minimize the cost (a simple two-dimensional
counterexample is given in Fig. 4).11 Actually, a much
stronger condition, called cyclic monotonicity, is needed in
order to minimize the cost. It requires k-monotonicity for
any k between 2 and N ; the latter is defined by taking any
k Eulerian positions with their corresponding Lagrangian
antecedents and requiring that the cost (34) should not de-
crease under an arbitrary reassignment of the Lagrangian

11 Note that in one dimension, in the continuous case, any map
is a gradient and we have already observed in Section 3.3 that if a
gradient map is monotone it is the gradient of a convex function.
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Figure 4. Two monotone assignments sending white points to
black ones: (a) an assignment that is vastly non-optimal in terms
of quadratic cost but cannot be improved by any pair interchange;
(b) the optimal assignment, shown for comparison.

positions within the set of Eulerian positions taken. Note
that the usual monotonicity corresponds to 2-monotonicity
(stability with respect to pair exchanges).

A strategy called PIZA (Path Interchange Zel’dovich
Approximation) for constructing monotone correspondences
between Lagrangian and Eulerian positions has been pro-
posed by Croft & Gaztañaga (1997). In PIZA, a randomly
chosen tentative correspondence between initial and final
positions is successively improved by swapping randomly
selected pairs of initial particles whenever (36) is not sat-
isfied. After the cost (34) ceases to decrease between iter-
ations, an approximation to a monotone correspondence is
established, which is generally neither unique, as already
observed by Valentine, Saunders & Taylor (2000) in testing
PIZA reconstruction, nor optimal. We shall come back to
this in Sections 5 and 7.3.

4.2 Nuts and bolts of solving the assignment

problem

For a general set of N unit masses, the assignment prob-
lem with the cost function (34) has a single solution which
can obviously be found by examining all N ! permutations.
However, unlike computationally hard problems, such as the
travelling salesman’s, the assignment problem can be han-
dled in ‘polynomial time’ – actually in not more than O(N 3)
operations. All methods achieving this use a so-called dual
formulation of the problem, based on a relaxation similar to
that applied by Kantorovich to the optimal mass transporta-
tion (Section 3.3; a brief introduction to duality is given in
Appendix C2). In this section we explain the basics of this
technique, using a variant of a simple mechanical model in-
troduced in a more general setting by Hénon (1995, 2002).

Consider the general assignment problem of minimizing
the cost (35) over all permutations j(i). We replace it by a
‘relaxed,’ linear programming problem of minimizing

Ĩ =

N∑

i,j=1

cijfij , (37)

where auxiliary variables fij satisfy

fij > 0,

N∑

k=1

fkj =

N∑

k=1

fik = 1 (38)

for all i, j, an obvious discrete analogue of (31). We show

4A

A2

A1

A3

B1

B2

B4

z

x y

rows

columnsB3

Figure 5. An analogue computer solving the assignment problem
for N = 4.

now that it is possible to build a simple mechanical device
(Fig. 5) which solves this relaxed problem and that the solu-
tion will in fact determine a minimizing permutation in the
original assignment problem (i.e., for any i or j fixed, only
one fij will be unit and all other zero). The device acts as
an analogue computer : the numbers involved in the problem
are represented by physical quantities, and the equations are
replaced by physical laws.

Define coordinate axes x, y, z in space, with the z axis
vertical. We take two systems of N horizontal rods, parallel
to the x and y axes respectively, and call them columns and
rows, referring to columns and rows of the cost matrix. Each
rod is constrained to move in a corresponding vertical plane
while preserving the horizontal orientation in space. For a
row rod Ai, we denote the z coordinate of its bottom face
by αi and for a column rod Bj , we denote the z coordinate
of its top face βj . Row rods are placed above column rods,
therefore αi > βj for all i, j (see Fig. 5).

Upper (row) rods are assumed to have unit weight,
and lower (column) rods to have negative unit weight, or
unit ‘buoyancy.’ Therefore both groups of rods are subject
to gravitational forces pulling them together. However, this
movement is obstructed by N2 small vertical studs of negli-
gible weight put on column rods just below row rods. A stud
placed at projected intersection of column Bj and row Ai
has length C − cij with a suitably large positive constant C
and thus constrains the quantities αi and βj to satisfy the
stronger inequality

αi − βj > C − cij . (39)

The potential energy of the system is, up to a constant,

U =

N∑

i=1

αi −
N∑

j=1

βj . (40)

In linear programming, the problem of minimizing (40) un-
der the set of constraints given by (39) is called the dual
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problem to the ‘relaxed’ one (37)–(38) (see Appendix C2);
the α and β variables are called the dual variables.

The analogue computer does in fact solve the dual prob-
lem. Indeed, first hold the two groups of rods separated from
each other and then release them, so that the system starts
to evolve. Rows will go down, columns will come up, and
contacts will be made with the studs. Aggregates of rows
and columns will be progressively formed and modified as
new contacts are made, giving rise to a complex evolution.
Eventually the system reaches an equilibrium, in which its
potential energy (40) is minimum and all constraints (39)
are satisfied (Hénon 2002). Moreover, it may be shown that
the solution to the original problem (37)–(38) is expressible
in terms of the forces exerted by the rods on each other
at equilibrium and is typically a one-to-one correspondence
between the Ais and the Bjs (for details, see Appendix C3).

The common feature of many existing algorithms for
solving the assignment problem, which makes them more ef-
fective computationally than the simple enumeration of all
N ! permutations, is the use of the intrinsically continuous,
geometric formulation in terms of the pair of linear pro-
gramming problems (37)–(38) and (40)–(39). The mechan-
ical device provides a concrete model for this formulation;
in fact, assignment algorithms can be regarded as descrip-
tions of specific procedures to make the machine reach its
equilibrium state. An introduction into algorithmic aspects
of solving the assignment problem, including a proof of the
O(N3) theoretical bound on the number of operations, based
on the Hungarian method of Kuhn (1955), may be found in
Papadimitriou & Steiglitz (1982).

In spite of the general O(N3) theoretical bound, various
algorithms may show very different performance when ap-
plied to a specific optimization problem. During the prepa-
ration of the earlier publication (Frisch et al. 2002) the dual
simplex method of Balinski (1986) was used, with some mod-
ifications inspired by algorithm B of Hénon (2002). Several
other algorithms were tried subsequently, including an adap-
tation of algorithm A of the latter reference and the algo-
rithm of Burkard & Derigs (1980), itself based on the earlier
work of Tomizawa (1971). For the time being, the fastest
running code by far is based on the auction algorithm of
Bertsekas (1992, 2001), arguably the most effective of ex-
isting ones, which is discussed in the next section. Needless
to say, all these algorithms arrive at the same solution to
the assignment problem with given data but can differ by
several orders of magnitude in the time it takes to complete
the computation.

4.3 The auction algorithm

We explain here the auction algorithm in terms of our me-
chanical device. Note that the original presentation of this
algorithm (Bertsekas 1981, 1992, 2001) is based on a dif-
ferent perspective, that of an auction, in which the optimal
assignment appears as an economic rather than a mechani-
cal equilibrium; the interested reader will benefit much from
reading these papers.

Put initially the column rods at zero height and all row
rods well above them, so that no contacts are made and
constraints (39) are satisfied. To decrease the potential en-
ergy, let now the row rods descend until they all meet studs

placed on column rods. Some column rods may then come
in contact with multiple row rods.

To distribute row rods between column rods more uni-
formly, one may try the following procedure. Take a column
rod Bj that is in contact with more than one row rod and
let it descend while keeping other column rods fixed. As Bj
goes down, row rods touching it will follow its motion un-
til they meet studs of other column rods and stay behind.
When the last of the row rods touching Bj is about to lose
its contact, we stop Bj , which is thus left in contact with
only one row rod. Then the next column rod having more
than one contact is taken and this procedure is repeated.

This general step can be viewed as an auction in which
row rods bid for the descending column rod, offering prices
equal to decreases in their potential energy as they follow
its way down. As the column rod descends, thereby increas-
ing its price, the auction is won by the row rod able to
offer the largest bidding increment, i.e., to decrease its po-
tential energy by the largest amount while not violating the
constraints posed by studs of the rest of column rods. For
computational purposes it suffices to compute bidding in-
crements for all competing row rods from the dual α and β
variables and assign the descending column rod Bj to the
highest bidder Ai, decreasing their heights βj and αi corre-
spondingly.

Observe that, at each step, the total potential energy
U defined by (40) decreases by the largest amount that can
be achieved by moving the descending column rod. Since
(40) is obviously nonnegative, the descent cannot proceed
indefinitely, and the process may be expected to converge
quite fast to a one-to-one pairing that solves the assignment
problem.

However, as observed by Bertsekas (1981, 1992, 2001),
this ‘naive’ auction algorithm may end up in an infinite cycle
if several row rods bid for a few equally favourable column
rods, having thus zero bidding increments. To break such
cycles, a perturbation mechanism is introduced in the algo-
rithm. Namely, the constraints (39) are replaced by weaker
ones

αi − βj > C − cij − ε (41)

for a small positive quantity ε, and in each auction the de-
scending column rod is pushed down by ε in addition to
decreasing its height by the bidding increment. It can be
shown that this reformulated process terminates in a finite
number or rounds; moreover, if all stud lengths are integer
and ε is smaller than 1/N , then the algorithm terminates at
an assignment that is optimal in the unperturbed problem
(Bertsekas 1992).

The third ingredient in the Bertsekas algorithm is the
idea of ε-scaling. When the values of dual variables are al-
ready close to the solution of the dual problem, it usually
takes relatively few rounds of auction to converge to a solu-
tion. Thus one can start with large ε to compute a rough ap-
proximation for dual variables fast, without worrying about
the quality of the assignment, and then proceed reducing ε
in geometric progression until it passes the 1/N threshold,
assuring that the assignment thus achieved solves the initial
problem.

Bertsekas’ algorithm is especially fast for sparse assign-

ment problems, in which rods Ai and Bj can be matched
only if the pair (i, j) belongs to a given subset A of the set
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of N2 possible pairs. We call such pairs valid and define the
filling factor to be the proportion of valid pairs f = |A|/N 2.
When this factor is small, computation can be considerably
faster: to find the bidding increment for a rod Ai, we need
only to run over the list of rods Bj such that (i, j) is a valid
pair.

Note also that the decentralized structure of the algo-
rithm facilitates its parallelization (see references in Bert-
sekas 1992, 2001).

4.4 The auction algorithm for the MAK

reconstruction

We now describe the adaptation of the auction algorithm
to the MAK reconstruction. Experiments with various
programs contained in Bertsekas’ publicly available package
(http://web.mit.edu/dimitrib/www/auction.txt) showed
that the most effective for our problem is auction_flp. It
assumes integer costs cij , which in our case requires proper
scaling of the cost matrix. To achieve this, the unit of length
is adjusted so that the size of the reconstruction patch
equals 100, and then the square of the distance between an
initial and a final position is rounded off to an integer. In
our application, row and column rods correspond to Eule-
rian and Lagrangian positions, respectively. As the MAK
reconstruction is planned for application to catalogues of
105 and more galaxies, we do not store the cost matrix,
which would require an O(N2) storage space, but rather
compute its elements on demand from the coordinates,
which requires only O(N) space.

Our problem is naturally adapted for a sparse descrip-
tion if galaxies travel only a short distance compared to the
dimensions of the reconstruction patch. For instance, in the
simulation discussed in Section 5, the r.m.s. distance trav-
eled is only about 10h−1 Mpc, or 5% of the size of the sim-
ulation box, and the largest distance traveled is about 15%
of this size. So we may assume that in the optimal assign-
ment distances between paired positions will be limited. We
define then a critical distance dcrit and specify that a final
position xi and an initial position qj form a valid pair only
if they are within less than dcrit from each other. This crit-
ical distance must be adjusted carefully: if it is too small,
we risk excluding the optimal assignment; if it is taken too
large, the benefit of the sparse description is lost.

However, the saving in computing time achieved by
sparse description has to be paid for in storage space: to
store the set A of valid pairs, storage of size |A| = fN 2 is
needed, which takes us back to the O(N2) storage require-
ment. We have explored two solutions to this problem.

1. Use a dense description nevertheless, i.e. the one
where all pairs (i, j) are valid and there is no need to store
the set A. The auction program is easily adapted to this
case (in fact this simplifies the code). However, we forfeit
the saving in time provided by the sparse structure.

2. The sparse description can be preserved if the set
of valid pairs is computed on demand rather than stored.
This is easy if initial positions fill a uniform cubic grid, the
simplest discrete approximation to the initial quasi-uniform
distribution of matter in the reconstruction problem. Thus,
for a given final position xi, the valid pairs correspond to
points of the cubic lattice that lie inside a sphere of radius

10 31

Figure 6. Computing time for different algorithms as a function
of the number N of points (divided by N3 for normalization).

Asterisks, the Burkard & Derigs (1980) algorithm (BD); crosses
and points, the dense and sparse versions of the auction algorithm
(described in the text).

dcrit centered at xi, so their list can be generated at run
time.

Fig. 6 gives the computing time as a function of the
number of points N used in the assignment problem. Shown
are the dense and sparse versions of the auction algorithm
(in the latter, the critical distance squared was taken equal
to 200) and the Burkard & Derigs (1980) algorithm, which
ranked the next fastest in our experiments. TheN initial and
final positions are chosen from the file generated by an N -
body simulation described in Section 5; the choice is random
except for the sparse algorithm, in which the initial positions
are required to fill a cubic lattice. Hence, the performance
of the sparse auction algorithm shown in the figure is not
completely comparable to that of the two other algorithms.

It is evident that the difference in computing time be-
tween the dense auction and the Burkard & Derigs algo-
rithms steadily increases. In the vicinity of N = 105, the
dense auction algorithm is about 10 times faster than the
other one. For the sparse version, the decrease in computing
time is spectacular: as could be expected, the ratio of com-
puting times for the two versions of the auction algorithm
is of the order of f . For large N , the O(N3) asymptotic of
the computing time is quite clear for the sparse auction al-
gorithm. For two other algorithms, similar asymptotic was
found for larger N in other experiments (not shown).

In all three cases shown, the initial positions fill a con-
stant volume whileN is varied. This is what we call constant-

volume computations. In the sparse case, this results in a
constant filling factor, equal to the ratio of the volume of the
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sphere with radius dcrit to the volume occupied by the initial
positions. Here this filling factor is about f = 0.019. Another
choice, not shown in the figure, is that of constant-density

computations, when the initial positions are taken from a
volume whose size increases with N . In this case the time
dependence of algorithms for large N is close to O(N 1.5).

We finally observe that the sparse auction algorithm ap-
plied to the MAK reconstruction requires 5 hours of single-
processor CPU time on a 667 MHz COMPAQ/DEC Alpha
machine for 216,000 points.

5 TESTING THE MAK RECONSTRUCTION

In this section we present results of our testing the MAK
reconstruction against data of cosmological N -body simu-
lations. In a typical simulation of this kind, the dark mat-
ter distribution is approximated by N particles of identical
mass. Initially the particles are put on a uniform cubic grid
and given velocities that form a realization of the primor-
dial velocity field whose statistics is prescribed by a cer-
tain cosmological model. Trajectories of particles are then
computed according to the Newtonian dynamics in a co-
moving frame, using periodic boundary conditions. The re-
construction problem is therefore to recover the pairing be-
tween the initial (Lagrangian) positions of the particles and
their present (Eulerian) positions in the N -body simulation,
knowing only the set of computed Eulerian positions in the
physical space.

We test our reconstruction against a simulation of 1283

particles in a box of 200 h−1 Mpc size (where h is the Hubble
parameter in units of 100 km s−1 Mpc−1) performed using
the adaptive P3M code HYDRA (Couchman, Thomas &
Pearce 1995).12 A ΛCDM cosmological model is used with
parameters Ωm = 0.3, ΩΛ = 0.7, h = 0.65, σ8 = 0.9.13

The value of these parameters within the model are deter-
mined by fitting the observed cosmic microwave background
(CMB) spectrum.14 The output of the N -body simulation
is illustrated in Fig. 7 by a projection onto the x-y plane of
a 10% slice of the simulation box.

Since the simulation assumes periodic boundary condi-
tions, some Eulerian positions situated near boundaries may
have their Lagrangian antecedents at the opposite side of the
simulation box. Suppressing the resulting spurious large dis-
placements is crucial for successful reconstruction. Indeed,
for a typical particle displacement of 1/20 the box size, spu-
rious box-wide leaps of 1% of the particles will generate a

12 In a flavour of N-body codes called particle-mesh (PM) codes,
Newtonian forces acting on particles are interpolated from the
gravitational field computed on a uniform mesh. In very dense
regions, precision is increased by adaptively refining the mesh and
by direct calculation of local particle-particle (PP) interactions;
codes of this type are correspondingly called adaptive P3M.
13 The use of a ΛCDM model instead of the model without a
cosmological constant (Appendix A) leads to some modifications
in basic equations but does not change formulas used for the MAK
reconstruction.
14 Data of the first year Wilkinson Microwave Anisotropy Probe
(Spergel et al. 2003; see also Bridle et al. 2003) suggest a value
σ8 = 0.84±0.04, marginally smaller than the one used here. This
may slightly extend the range of scales favourable for the MAK
reconstruction.

Figure 7. N-body simulation output in the Eulerian space used
for testing our reconstruction method (shown is a projection
onto the x-y plane of a 10% slice of the simulation box of size
200h−1 Mpc). Points are highlighted in yellow when reconstruc-
tion fails by more than 6.25 h−1 Mpc, which happens mostly in
high-density regions.

contribution to the quadratic cost (34) four times larger than
that of the rest. To suppress such leaps, for each Eulerian
position that has its antecedent Lagrangian position at the
other side of the simulation box, we add or subtract the box
size from coordinates of the latter (in other words, we are
considering the distance on a torus). In what follows we refer
to this procedure as the periodicity correction.

We first present reconstructions for three samples of
particles initially situated on Lagrangian subgrids with
meshes given by ∆x = 6.25 h−1 Mpc, ∆x/2 and ∆x/4. To
further reduce possible effects of the unphysical periodic
boundary condition, we discard those points whose Eulerian
positions are not within the sphere of radius 16∆x placed
at the centre of the simulation box (for the largest ∆x its
diameter coincides with the box size). The problem is then
confined to finding the pairing between the remaining Eule-
rian positions and the set of their periodicity-corrected La-
grangian antecedents in the N -body simulation.

The results are shown in Figs. 8–11. The main plots
show the scatter of reconstructed vs. simulation Lagrangian
positions for the same Eulerian positions. For these diagrams
we introduce a ‘quasi-periodic projection’

q̃ ≡ (q1 +
√

2q2 +
√

3q3)/(1 +
√

2 +
√

3) (42)

of the vector q, which ensures a one-to-one correspondence
between q̃-values and points on the regular Lagrangian grid.
The insets are histograms (by percentage) of distances, in
reconstruction mesh units, between the reconstructed and
simulation Lagrangian positions; the first darker bin, slightly
less than one mesh in width, corresponds to perfect recon-
struction (thereby allowing a good determination of the pe-
culiar velocities of galaxies).

With the mesh size ∆x, Lagrangian positions of 62% of
the sample of 17,178 points are reconstructed perfectly and
about 75% are placed within not more than one mesh. With
the ∆x/2 grid, we still have 35% of exact reconstruction out
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Figure 8. Test of the MAK reconstruction for a sample of
N ′ = 17, 178 points initially situated on a cubic grid with mesh
∆x = 6.25 h−1 Mpc. The scatter diagram plots true versus recon-
structed initial positions using a quasi-periodic projection which
ensures one-to-one correspondence with points on the cubic grid.
The histogram inset gives the distribution (in percentages) of dis-
tances between true and reconstructed initial positions; the hori-
zontal unit is the sample mesh. The width of the first bin is less
than unity to ensure that only exactly reconstructed points fall
in it. Note that more than sixty percent of the points are exactly
reconstructed.
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Figure 9. Same as Fig. 8 but with N ′ = 19, 187 and a sample
mesh of ∆x/2 = 3.125 h−1 Mpc. Exact reconstruction is down to
35%.

of 19,187 points, but only 14% for the ∆x/4 grid with 23,111
points.

We also performed a reconstruction on a random sample
of 100,000 Eulerian positions taken with their periodicity-
corrected Lagrangian antecedents out of the whole set of
1283 particles, without any restrictions. This reconstruction,
with the effective mesh size (average distance between neigh-
bouring points) of 4.35h−1Mpc, gives 51% of perfect recon-
struction (Fig. 11).

We compared these results with those of the PIZA re-
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Figure 10. Same as Fig. 8 but with N ′ = 23, 111 and a sample
mesh of ∆x/4 = 1.56 h−1 Mpc. Exact reconstruction is down to
14%.
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Figure 11. Same as Fig. 8 with N ′ = 105 points selected at
random, neighbouring points being typically 4.35 h−1 Mpc apart.
Exact reconstruction is in excess of 50%.

construction method (see Section 4.1 and Croft & Gaz-
tañaga 1997), which gives a 2-monotone but not necessar-
ily optimal pairing between Lagrangian and Eulerian posi-
tions. We applied the PIZA method on the ∆x grid and
obtained typically 30–40% exactly reconstructed positions,
but severe non-uniqueness: for two different seeds of the ran-
dom generator used to set up the initial tentative assign-
ment, only about half of the exactly reconstructed positions
were the same (see figs. 3 and 7 of Mohayaee et al. (2003)
for an illustration). We also implemented a modification of
the PIZA method establishing 3-monotonicity (monotonic-
ity with respect to interchanges of 3 points instead of pairs)
and checked that it does not give a significant improvement
over the original PIZA.

In comoving coordinates, the typical displacement of
a mass element is about 1/20 the box size, that is about
10h−1 Mpc. This is not much larger than the coarsest grid
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of 6.25 h−1 Mpc used in testing MAK which gave 62% of
exact reconstruction. Nevertheless there are 18 other grid
points within 10 h−1 Mpc of any given grid point, so that
this high percentage cannot be trivially explained by the
smallness of the displacement. Note that without the peri-
odicity correction, the percentage of exact reconstruction for
the coarsest grid degraded significantly (from 62% to 45%)
and the resulting cost was far from the true minimum.

For real catalogues, reconstruction has to be performed
for galaxies whose positions are specified in the redshift

space, where they appear to be displaced radially (along the
line of sight) by an amount proportional to the radial com-
ponent of the peculiar velocity. Thus, at the present epoch,
the redshift position s of a mass element situated at the
point x in the physical space is given by

s = x + x̂β (v · x̂) , (43)

where v is the peculiar velocity in the comoving coordi-
nates x and the linear growth factor time τ , x̂ denotes the
unit normal in the direction of x, and the parameter β equals
0.486 in our ΛCDM model.

Following Valentine et al. (2000; see also Monaco & Efs-
tathiou 1999), we use the Zel’dovich approximation (ZA) to
render our MAK quadratric cost function in the s variable.
As follows from (11), in this approximation the peculiar ve-
locity is given by

v =
1

τ
(x − q). (44)

At the present time, since τ0 = 1, this together with (43)
gives

(s − q) · x̂ = (1 + β)(x − q) · x̂, (45)

|s − q|2 = |x − q|2 + β(β + 2)
(
(x − q) · x̂

)2
. (46)

Combining now these two equations and using the fact that,
by (43), the vectors x and s are collinear and therefore x̂ =
±ŝ, we may write the quadratic cost function as

1

2
|x − q|2 =

1

2
|s − q|2 − β(β + 2)

2(β + 1)2

(
(s − q) · ŝ

)2
. (47)

The redshift-space reconstruction is then in principle re-
duced to the physical-space reconstruction. Note however
that the redshift transformation of Eulerian positions may
fail to be one-to-one if the peculiar component of velocity
field in the proper space coordinates exceeds the Hubble ex-
pansion component. This undermines the simple reduction
outlined above for catalogues confined to small distances.

We have performed a MAK reconstruction with the
redshift-modified cost function (47). The redshift positions
were computed for the simulation data with peculiar veloc-
ities smoothed over a sphere with radius of 1/100 the box
size (2h−1 Mpc). This reconstruction led to 43% of exactly
reconstructed positions and 60% which are within not more
than one ∆x mesh from their correct positions (see Fig. 12;
a scatter diagram is omitted because it is quite similar to
that in Fig. 8). A comparison of the redshift-space MAK
reconstruction with the physical-space MAK reconstruction
shows that almost 50% of exactly reconstructed positions
correspond to the same points. This test shows that the
MAK method is robust with respect to systematic errors
introduced by the redshift transformation.

Our results demonstrate the essentially potential char-

Figure 12. Test of the redshift-space variant of the MAK recon-
struction based on the same data as Fig. 8. The circular redshift
map (violet points) corresponds to the same physical-space slice
as displayed in Fig. 7 (the observer is taken at the center of the
simulation box). Points are highlighted in red when reconstruc-
tion fails by more than one mesh.

acter of the Lagrangian map above ∼ 6 h−1 Mpc (within the
ΛCDM model) and perhaps at somewhat smaller scales.

Although it is not our intention in this paper to actually
implement the MAK reconstruction on real catalogues, a few
remarks are in order. The effect of the catalogue selection
function can be handled by standard techniques; for instance
one can assign each galaxy a ‘mass’ inversely proportional
to the catalog selection function (Nusser & Branchini 2000;
Valentine et al. 2000; Branchini et al. 2002). Biasing can be
taken into account in a similar manner (Nusser & Branchini
2000). Both these modifications and the natural scatter of
masses in the observational catalogues require that massive
objects be represented by clusters of multiple Eulerian points
of unit mass (with the correspondingly increased number
of points on a finer grid in the Lagrangian space), which
reduces the problem to the usual assignment.

In the redshift-space modification, more accurate de-
termination of peculiar velocities can be done using second-
order Lagrangian perturbation theory. Note also that, for
the observational catalogues, the motion of the local group
itself should also be accounted for (Taylor & Valentine 1999).

6 RECONSTRUCTION OF THE FULL

SELF-GRAVITATING DYNAMICS

The MAK reconstruction discussed in Sections 3 and 4 was
performed under the assumption of a potential Lagrangian
map and of the absence of multi-streaming. The tests done
in Section 5 indicate that potentiality works well at scales
above 6 h−1 Mpc, whereas multi-streaming is mostly be-
lieved to be unimportant above a few megaparsecs. There
could thus remain a substantial range of scales over which
the quality of the reconstruction can be improved by re-
laxing the potentiality assumption and using the full self-
gravitating dynamics. Here we show that, as long as the dy-
namics can be described by a solution to the Euler–Poisson
equations, the prescription of the present density field still
determines a unique solution to the full reconstruction prob-
lem. We give only the main ideas, technical details being
left for Appendix D (a mathematically rigorous proof may
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be found in Loeper (2003)). In order to make the exposition
self-contained, we also give in Appendix C an elementary
introduction to convexity and duality which are used for the
derivation (and also elsewhere in this paper).

We shall start from an Eulerian variational formulation
of the Euler–Poisson equations in an Einstein–de Sitter uni-
verse, which is an adaptation of a variational principle given
by Giavalisco et al. (1993). We minimize the action

I =
1

2

∫ τ0

0

dτ

∫
d3

x τ 3/2
(
ρ|v|2 +

3

2
|∇xϕg|2

)
, (48)

under the following four constraints: the Poisson equation
(3), the mass conservation equation (2) and the boundary
conditions that the density field be unity at τ = 0 and pre-
scribed at the present time τ = τ0. The constraints can
be handled by the standard method of Lagrange multipliers
(here functions of space and time), which allows to vary inde-
pendently the fields ρ, ϕg and v. The vanishing of the varia-
tion in v gives v = τ−3/2∇xθ, where θ(x, τ ) is the Lagrange
multiplier for the mass conservation constraint. Hence, the
velocity is curl-free. The vanishing of the variation in ρ gives
then

∂τθ +
1

2τ 3/2
|∇xθ|2 +

3

2τ
ψ = 0. (49)

By taking the gradient, this equation goes over into the mo-
mentum equation (1), repeated here for convenience:

∂τv + (v · ∇x)v = − 3

2τ
(v + ∇xϕg). (50)

It is noteworthy that, if in the action we replace 3/2
both in the exponent of τ and in the gravitational energy
term by 3α/2, we obtain (50) but also with a 3α/(2τ ) factor
in the right-hand side. The Zel’dovich approximation and
the associated MAK reconstruciton amount clearly to set-
ting α = 0, so as to recover the ‘free-streaming action’

I =
1

2

∫ τ0

0

dτ

∫
d3

x ρ|v|2. (51)

Assuming the action (48) to be finite, existence of a min-
imum is mostly a consequence of the action being manifest-
edly non-negative. Here it is interesting to observe that the
Lagrangian, which is the difference between the kinetic en-
ergy and the potential energy, is positive whereas the Hamil-
tonian which is their sum does not have a definite sign. As
a consequence, our two-point boundary problem is, as we
shall see, well posed but the initial-value problem for the
Euler–Poisson system is not well posed since formation of
caustics after a finite time cannot be ruled out.15

Does the variational formulation imply uniqueness of
the solution? This would be the case if the action were a
strictly convex functional (see Appendix C1), which is guar-
anteed to have one and only one minimum. The action as
written in (48) is not convex in the ρ and v variables, but
can be rendered so by introducing the mass flux J = ρv;
the kinetic energy term becomes then |J |2/(2ρ), which is
convex in the J and ρ variables.

Strict convexity is particularly cumbersome to estab-
lish, but there is an alternative way, known as duality: by

15 If we had considered electrostatic repulsive interactions the
conclusions would be reversed.

a Legendre-like transformation the variational problem is
carried into a dual problem written in terms of dual vari-
ables; the minimum value for the original problem is the
maximum for the dual problem. It turns out that the dif-
ference of these equal values can be rewritten as a sum of
non-negative terms, each of which must thus vanish. This is
then used to prove (i) that the difference between any two
solutions to the variational problem vanishes and (ii) that
any curl-free solution to the Euler–Poisson equations with
the prescribed boundary conditions for the density also min-
imizes the action. All this together establishes uniqueness.
For details see Appendix D.

Several of the issues raised in connection with the MAK
reconstruction appear in almost the same form for the Euler–
Poisson reconstruction. First, we are faced again with the
problem that, when reconstructing from a finite patch of
the present universe, we need either to know the shape of
the initial domain or to make some hypothesis as to the
present distribution of matter outside this patch. Second,
just as for the MAK reconstruction, the proof of uniqueness
still holds when the present density ρ0(x) has a singular
part, that is, when some matter is concentrated. Again, we
shall have full information on the initial shape of collapsed
regions but not on the initial fluctuations inside them. The
particular solution obtained from the variational formulation
is the only solution which stays smooth for all times prior
to τ0.

We also note that, at this moment and probably for
quite some time, 3D catalogues sufficiently dense to allow
reconstruction will be limited to fairly small redshifts. Even-
tually, it will however become of interest to perform recon-
struction ‘along our past light-cone’ with data not all at
τ0. The variational approach can in principle be adapted to
handle such reconstruction.

In previous sections we have seen how to implement re-
construction using MAK, which is equivalent to using the
simplified action (51). Implementation using the full Euler–
Poisson action (48) is mostly beyond the scope of this paper,
but we shall indicate some possible directions. In principle
it should be possible to adapt to the Euler–Poisson recon-
struction the method of the augmented Lagrangian which
has been applied to the two-dimensional Monge–Ampère
equation (Benamou & Brenier 2000). An alternative strat-
egy, which allows reduction to MAK-type problems, uses the
idea of ‘kicked burgulence’ (Bec, Frisch & Khanin 2000) in
which, in order to solve the one or multi-dimensional Burg-
ers equation

∂τv + (v · ∇x)v = f (x, τ ), v = −∇xϕv, (52)

one approximates the force by a sum of delta-functions in
time:

f(x, τ ) ≈
∑

i

δ(τ − τi)gi(x). (53)

In the present case, the gi(x) are proportional to the right-
hand side of (50) evaluated at the kicking times τi. The ac-
tion becomes then a sum of free-streaming Zel’dovich-type
actions plus discrete gravitational contributions stemming
from the kicking times. Between kicks one can use our MAK
solution. At kicking times the velocity undergoes a discon-
tinuous change which is related to the gravitational poten-
tial (and thus to the density) at those times. The densities
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at kicking times can be determined by an iterative proce-
dure. The kicking strategy also allows to do redshift-space
reconstruction by applying the redshift-space modified cost
(Section 5) at the last kick.

7 COMPARISON WITH OTHER

RECONSTRUCTION METHODS

Reconstruction started with Peebles’ (1989) work, in which
he compared reconstructed and measured peculiar veloci-
ties for a small number of Local Group galaxies, situated
within a few Mpc. The focus of reconstruction work has
now moved to tackling the rapidly growing large 3D surveys
(see, e.g. Frieman & Szalay 2000). It is not our intention
here to review all the work on reconstruction;16 rather we
shall discuss how some of the previously used methods can
be reinterpreted in the light of the optimization approach
to reconstruction. For convenience we shall divide methods
into perturbative (Section 7.1), probabilistic (Section 7.2),
and variational (Section 7.3). Methods such as POTENT
(Dekel et al. 1990), whose purpose is to obtain the full pecu-
liar velocity field from its radial components using the (Eu-
lerian) curl-free property, are not directly within our scope.
Note that in its original Lagrangian form (Bertschinger &
Dekel 1989; Dekel et al. 1990) POTENT was assuming a
curl-free velocity in Lagrangian coordinates, an assumption
closely related to the potential assumption made for MAK,
as already pointed out in Section 3.1.

7.1 Perturbative methods

Nusser & Dekel (1992) have proposed using the Zel’dovich
approximation backwards in time to obtain the initial ve-
locity fluctuations and thus (by slaving) the density fluc-
tuations. Schematically, their procedure involves two steps:
(i) obtaining the present potential velocity field and (ii) in-
tegrating the Zel’dovich–Bernouilli equation back in time.
Using the equality (in our notation) of the velocity and grav-
itational potentials, they point out that the velocity poten-
tial can be computed from the present density fluctuation
field by solving the Poisson equation. This is a perturba-
tive approximation to reconstruction in so far as it replaces
the Monge–Ampère equation (19) by a linearized form. In-
deed, when using the Zel’dovich approximation we have
q = x − τv = x + τ∇xϕv(x). We know that q = ∇xΘ(x)
with Θ satisfying the Monge–Ampère equation. The latter
can thus be rewritten as

det
(
δij + τ∇xi

∇xj
ϕv(x)

)
= ρ(x), (54)

where δij denotes the identity matrix. If we now use the
relation det(δij + εAij) = 1 + ε

∑
i
Aii +O(ε2) and truncate

the expansion at order ε, we obtain the Poisson equation

τ∇2
xϕv(x) = ρ(x) − 1 = δ(x). (55)

Of course, in one dimension no approximation is needed.
From a physical point of view, equating the velocity and

16 For a comparison of six different techniques, see Narayanan &
Croft (1999).

gravitational potentials at the present epoch amounts to us-
ing the Zel’dovich approximation in reverse and is actually
inconsistent with the forward Zel’dovich approximation: the
slaving which makes the two potentials equal initially does
not hold in this approximation at later epochs. Replacing
the Monge–Ampère equation by the Poisson equation is not
consistent with a uniform initial distribution of matter and
will in general lead to spurious multi-streaming in the ini-
tial distribution. Of course, if the present-epoch velocity field
happens to be known one can try applying the Zel’dovich ap-
proximation in reverse. Nusser and Dekel observe that calcu-
lating the inverse Lagrangian map by q = x − τv does not
work well (spurious multi-streaming appears) and instead
integrate back in time the Zel’dovich–Bernouilli equation17

∂tϕv =
1

2
(∇xϕv)

2 , (56)

which is obviously equivalent to the Burgers equation (13)
with the viscosity ν = 0. One way of performing this re-
verse integration, which guarantees the absence of multi-
streaming, is to use the Legendre transformation (18) to
calculate Φ(q) from Θ(x) = |x|2/2 − τϕv(x) and then ob-
tain the reconstructed initial velocity field as

vin(q) = v0 (∇qΦ(q)) . (57)

This procedure can however lead to spurious shocks in the
reconstructed initial conditions, due to inaccuracies in the
present-epoch velocity data, unless the data are suitably
smoothed. Finally, the improved reconstruction method of
Gramann (1993) can be viewed as an approximation to
the Monge–Ampère equation beyond the Poisson equation
which captures part of the nonlinearity.

7.2 Probabilistic methods

Weinberg (1992) presents an original approach to recon-
struction, which turns out to have hidden connections to
optimal mass transportation. The key observations in his
‘Gaussianization’ technique are the following: (i) the initial
density fluctuations are assumed to be Gaussian, (ii) the
rank order of density values is hardly changed between initial
and present states, (iii) the bulk displacement of large-scale
features during dynamical evolution can be neglected. As-
sumption (i) is part of the standard cosmological paradigm.
Assumption (iii) can of course be tested in N -body sim-
ulations. As we have seen in Section 5, a displacement of
10h−1Mpc is typical and can indeed be considered small
compared to the size of the simulation boxes (64 h−1Mpc in
Weinberg’s simulations and 200 h−1Mpc in ours). Assump-
tion (ii) means that the correspondence between initial and
present values of the density ρ (or of the contrast δ = ρ− 1)
is monotone. This map, which can be determined from the
empirical present data, can then be applied to all the data to
produce a reconstructed initial density field. Finally, by run-
ning an N -body simulation initialized on the reconstructed
field one can test the validity of the procedure, which turns

17 In the non-cosmological literature this equation is usually
called Hamilton–Jacobi in the context of analytical mechanics
(Landau & Lifshitz 1960) and Kardar–Parisi–Zhang (1986) in
condensed matter physics.
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out to be quite good and can be improved further by hy-
brid methods (Narayanan & Weinberg 1998; Kolatt et al.
1996) combining Gaussianization with the perturbative ap-
proaches of Nusser & Dekel (1992) or Gramann (1993).

This technique is actually connected with mass trans-
portation: starting with the work of Fréchet (1957a; 1957b;
see also Rachev 1984), probabilists have been asking the
following question: given two random variables m1 and m2

with two laws, say PDFs p1 and p2, can one find a joint
distribution of (m1, m2) with PDF p12(m1,m2) having the
following properties: (i) p1 and p2 are the marginals, i.e.
when p12 is integrated over m2 (respectively, m1) one re-
covers p1 (respectively, p2), (ii) the correlation 〈m1m2〉 is
maximum? Since 〈m2

1〉 and 〈m2
2〉 are obviously prescribed

by the constraint that we know p1 and p2, maximizing the
correlation is the same as minimizing the quadratic distance
〈(m1−m2)

2〉. This is precisely an instance of the mass trans-
portation problem with quadratic cost, as we defined it in
Section 3.3. As we know, the optimal solution is obtained
by a map from the space of m1 values to that of m2 val-
ues which is the gradient of a convex function. If m1 and
m2 are scalar variables, the map is just monotone, as in the
Gaussianization method (in the discrete setting this was al-
ready observed in Section 4.1). Hence Weinberg’s method
may be viewed as requiring maximum correlation (or mini-
mum quadratic distance in the above sense) between initial
and present distributions of density fluctuations.

In principle the Gaussianization method can be ex-
tended to multipoint distributions, leading to a difficult mul-
tidimensional mass transportation problem which can be
discretized into an assignment problem just as in Section 4.1.
The contact of the maximum correlation assumption to the
true dynamics is probably too flimsy to justify using such
heavy machinery.

7.3 Variational methods

All variational approaches to reconstruction, starting with
that of Peebles (1989), have common features: one uses a
suitable Lagrangian and poses a two-point variational prob-
lem with boundary conditions prescribed at the present
epoch by the observed density field, and at early times by
requiring a quasi-uniform distribution of matter (more pre-
cisely, as we have seen in Section 2.1, by requiring that the
solutions not be singular as τ → 0).

The Path Interchange Zel’dovich Approximation
(PIZA) method of Croft & Gaztañaga (1997) and our MAK
reconstruction techniques use a free-streaming Lagrangian in
linear growth rate time. As we have seen in Section 3.1, this
amounts to assuming adhesion dynamics. Once discretized
for numerical purposes, the variational problem becomes
an instance of the assignment problem. Croft & Gaztañaga
(1997) have proposed a restricted procedure for solving it,
which yields non-unique approximate solutions. As we have
seen in Sections 4 and 5, the exact and unique solution can
be found with reasonable CPU resources.

Turning now to the Peebles least action method, let
us first describe it schematically, using our notation. In its
original formulation it is applied to a discrete set of galaxies
(assumed of course to trace mass) in an Einstein–de Sitter

universe. The action, in our notation, can be written as

I =

∫ τ0

0

dτ
3

2τ 1/2

(
∑

i

miτ
2

3

∣∣∣dxi
dτ

∣∣∣
2

+
3G

2

∑

i6=j

mimj

|xi − xj |
+ πG%̄0

∑

i

mi|xi|2
)
, (58)

where mi is the mass and xi the comoving coordinate of ith
galaxy (see also Nusser & Branchini 2000). This is supple-
mented by the boundary condition that the present positions
of the galaxies are known and that the early-time velocities
satisfy18

τ 3/2 dxi
dτ

→ 0 for τ → 0. (59)

This particle approach was extended by Giavalisco et al.
(1993) to a continuous distribution in Eulerian coordinates
and leads then to the action analogous to (48) which we have
used in Section 6. The procedure also involves a ‘Galerkin
truncation’ of the particle trajectories to finite sums of trial
functions of the form

xµi (τ ) = xµi (τ0) +

N−1∑

n=0

Cµi,nfn(τ ), (60)

fn(τ ) = τn(τ0 − τ ), n = 0, 1, . . . , N − 1. (61)

The reconstructed peculiar velocities for the Local Group
were used by Peebles to calibrate the Hubble and den-
sity parameters, which turned out to differ from the previ-
ously assumed values. However the peculiar velocity of one
dwarf galaxy, N6822, failed to match the observed value (see
Fig. 13). This led Peebles (1990) to partially relax the as-
sumption of minimum action, allowing also for saddle points
in the action. Somewhat better agreement with observations
is then obtained, but at the expense of lack of uniqueness.

In the context of the present approach, various remarks
can be made. The boundary condition (59) is trivially sat-
isfied if the velocities dx/dτ remain bounded. Actually, we
have seen in Section 2.1 that, as a consequence of slaving,
the velocity has a regular expansion in powers of τ , which
implies its boundedness as τ → 0. The important point is
that the function fn(τ ) appearing in (60) should be expand-
able in powers of τ , as is the case with the ansatz (61).

In Section 6 we have established uniqueness of the re-
construction with a prescribed present density and under the
assumption of absence of multi-streaming (but we allow for
mass concentrations). This restriction is meaningful only in
the continuous case: in the discrete case, unless the particles
are rather closely packed, the concept of multi-streaming is
not clear but there have been attempts to relate uniqueness
to absence of ‘orbit crossing’ (see, e.g., Giavalisco et al. 1993;
Whiting 2000). Of course, at the level of the underlying dark
matter, multi-streaming is certainly not ruled out at suffi-
ciently small scales; at such scales unique reconstruction is
not possible.

In the truly discrete case, e.g. when considering a dwarf

18 This condition, which is written a2dxi/dt → 0 in Peebles’
notation, ensures the vanishing of the corresponding boundary
term after an integration by parts in the time variable.
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Figure 13. A schematic demonstration of Peebles’ reconstruc-
tion of the trajectories of the members of the local neighbourhood
using a variational approach based on the minimization of Euler–
Lagrange action. The arrows go back in time, starting from the
present and pointing towards the initial positions of the sources.
In most cases there is more than one allowed trajectory due to
orbit crossing (closely related to the multi-streaming of the under-
lying dark matter fluid). The pink (darker) orbits correspond to
taking the minimum of the action whereas the yellow (brighter)
orbits were obtained by taking the saddle-point solution. Of par-
ticular interest is the orbit of N6822 which in the former solution

is on its first approach towards us and in the second solution is in
its passing orbit. A better agreement between the evaluated and
observed velocities was shown to correspond to the saddle-point
solution.

galaxy, there is no reason to prefer the true minimum action
solution over any other stationary action solution.

8 CONCLUSION

The main theoretical result of this paper is that reconstruc-
tion of the past dynamical history of the Universe, know-
ing only the present spatial distribution of mass, is a well-
posed problem with a unique solution. More precisely, re-
construction is uniquely defined down to those scales, a
few megaparsecs, where multi-streaming becomes impor-
tant. The presence of concentrated mass in the form of
clusters, filaments, etc is not an obstacle to a unique dis-
placement reconstruction; the mass within each such struc-
ture originates from a collapsed region of known shape but
with unknown initial density and velocity fluctuations in-
side. There are of course practical limitations to reconstruc-
tion stemming from the knowledge of the present mass dis-
tribution over only a limited patch of the Universe; these
were discussed in Section 3.4.

In this paper we have also presented in detail and tested
a reconstruction method called MAK which reduces recon-
struction to an assignment problem with quadratic cost, for
which effective algorithms are available. MAK, which is ex-
act for dynamics governed by the adhesion model, works
very well above 6h−1 Mpc and can in principle be adapted
to full Euler–Poisson reconstruction.

We note that a very common method for testing ideas

about the early Universe is to take some model of early den-
sity fluctuations and then run an N -body simulations with
assumed cosmological parameters until the present epoch.
Confrontation with the observed statistical properties of the
present Universe helps then in selecting plausible models and
in narrowing the choice of cosmological parameters. This for-

ward method is conceptually very different from reconstruc-
tion; the latter not only works backward but, more impor-
tantly, it is a deterministic method which gives us a detailed
map of the early Universe and how it relates to the present
one. Reconstruction thus allows us to obtain the peculiar
velocities of galaxies and is probably the only method which
can hope to do this for a large number of galaxies. In those
instances were we have partial information on peculiar ve-
locities (from independent distance measurements), e.g. for
the NearBy Galaxies (NBG) catalogue of Tully (1988), such
information can be used to calibrate cosmological parame-
ters or to provide additional constraints, which are in prin-
ciple redundant but can improve the quality. The detailed
reconstruction of early density fluctuations, which will be-
come possible using large 3D surveys such as 2dF and SDSS
(see, e.g., Frieman & Szalay 2000), will allow us to test such
assumptions as the Gaussianity of density fluctuations at
decoupling.

Finally we have no reason to hide the pleasure we ex-
perience in seeing this heavenly problem bring together and
indeed depend crucially on so many different areas of math-
ematics and physics, from fluid dynamics to Monge–Ampère
equations, mass transportation, convex geometry and com-
binatorial optimization. Probably this is the first time that
one tackles the three-dimensional Monge–Ampère equation
numerically for practical purposes. As usual, we can ex-
pect that the techniques, here applied to cosmic reconstruc-
tion, will find many applications, for example to the optimal
matching of two holographic or tomographic images or to the
correction of images in multi-dimensional colour space.
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APPENDIX A: EQUATIONS OF MOTION IN

AN EXPANDING UNIVERSE

On distances covered by present and forthcoming redshift
galaxy catalogues, the Newtonian description constitutes a
realistic approximation to the dynamics of self-gravitating
cold dark matter filling the Universe (Peebles 1980; Coles
& Lucchin 2002). This description gives, in proper space
coordinates denoted here by r and cosmic time t, the familiar
Euler–Poisson system for the density %(r, t), velocity U(r, t)
and the gravitational potential φ(r, t):

∂tU + (U · ∇r)U = −∇rφg, (A.1)

∂t%+ ∇r · (%U) = 0, (A.2)

∇2
rφg = 4πG%, (A.3)

where G is the gravitation constant.
In a homogeneous isotropic universe, the density and

velocity fields take the form

%(r, t) = %̄(t), U (r, t) = H(t)r =
ȧ(t)

a(t)
r. (A.4)

Here the coefficient H(t) is the Hubble parameter, and a(t) is
the expansion scale factor defined so that integration of the
velocity field ṙ = U (r, t) = H(t)r yields r = a(t)x, where
x is called the comoving coordinate.

The background density %̄(t) gives rise to the back-
ground gravitational potential φ̄g, which by (A.1) and (A.4)
satisfies

−∇rφ̄g =
ä

a
r. (A.5)

For the background density, mass conservation (A.2) gives
then

%̄a3 = %̄0, (A.6)

where %̄0 = %̄(t0) with t0 the present epoch and a(t0) nor-
malized to unity. Eqs. (A.5), (A.6), and (A.3) imply the
Friedmann equation for a(t):

ä = −4

3
πG%̄0

1

a2
(A.7)

with conditions posed at t = t0:

a(t0) = 1, ȧ(t0) = H0 > 0, (A.8)

where H0 is the present value of the Hubble parameter, pos-
itive for an expanding universe.

For simplicity we restrict ourselves to the case of the
critical density, corresponding to the flat, matter-dominated
Einstein-de Sitter universe (without a cosmological con-
stant):

%̄0 =
3H2

0

8πG
(A.9)

and adjust the origin of the time axis such that the solution
takes the form of a power law

a(t) =
(
t

t0

)2/3

(A.10)

with H0 = 2/(3t0) and %̄0 = 1/(6πGt20).
The observed Hubble expansion of the Universe sug-

gests that the density, velocity and gravitational fields may
be decomposed into a sum of terms describing the uniform
expansion and fluctuations against the background:

% = %̄(t) ρ, U =
ȧ(t)

a(t)
r + a(t)u, φg = φ̄g + ϕ̃g. (A.11)

The term a(t)u is called the peculiar velocity. In cosmology,
one also often employs the density contrast defined as δ =
ρ − 1, which gives the fluctuation against the normalized
background density. Taking ρ, u, and ϕ̃g as functions of the
comoving coordinate x = r/a(t) and using (A.5), (A.6) and
(A.7), we rewrite the Euler–Poisson system in the form

∂tu + (u · ∇x)u = −2
ȧ

a
u − 1

a
∇xϕ̃g, (A.12)

∂tρ+ ∇x · (ρu) = 0, (A.13)

∇2
xϕ̃g =

4πG%̄0

a
(ρ− 1). (A.14)

Note the Hubble drag term −2(ȧ/a)u in the right-hand side
of (A.12) representing the relative slowdown of peculiar ve-
locities due to the uniform expansion.

Formally linearizing (A.12)–(A.14) around the trivial
zero solution, one obtains the following ODE for the linear

growth factor τ (t) of density fluctuations:

d

dt
(a2τ̇ ) = 4πG%̄0

τ

a
. (A.15)

The only solution of this equation that stays bounded (in-
deed, vanishes) at small times is usually referred to as the
growing mode. As we shall shortly see, it is convenient to
choose the amplitude factor τ of the growing mode to be
a new ‘time variable,’ which in an Einstein–de Sitter uni-
verse is proportional to t2/3. It is normalized such that
τ0 = τ (t0) = 1. Rescaling the peculiar velocity and the grav-
itational potential according to

u = τ̇v, ϕ̃g =
4πG%̄0τ

a
ϕg (A.16)

and using the fact that in an Einstein–de Sitter universe
d ln(a2τ̇ )/dτ = 3/(2τ ), we arrive at the following form of the
Euler–Poisson system, which we use throughout this paper:

∂τv + (v · ∇x)v = − 3

2τ
(v + ∇xϕg), (A.17)

∂τρ+ ∇x · (ρv) = 0, (A.18)

∇2
xϕg =

ρ− 1

τ
. (A.19)

Suppose initially, i.e. at τ = 0, a mass element is located
at a point with the comoving coordinate q. Transported by
the peculiar velocity field in the comoving coordinates, this
element describes a trajectory x(q, τ ). Using the Lagrangian

coordinate q to parametrize the whole continuum of mass
elements, we recast (A.17) and (A.19) in the form

D2
τx = − 3

2τ
(Dτx + ∇xϕg) , (A.20)

∇2
xϕg =

1

τ

[
(det∇qx)−1 − 1

]
. (A.21)

The density and peculiar velocity in Lagrangian variables
are given by

ρ(x(q, τ ), τ ) = (det∇qx)−1 ,

v(x(q, τ ), τ ) = Dτx(q, τ ),
(A.22)

which automatically satisfy the mass conservation
law (A.18). Here Dτ is the operator of Lagrangian
time derivative, which in Lagrangian variables is the usual
partial time derivative at constant q and in Eulerian
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variables coincides with the material derivative ∂τ + v · ∇x.
The notation ∇x in Lagrangian variables stands for the
x(q, τ )-dependent differential operator with components
∇xi

≡ (∂qj/∂xi)∇qj
, which expresses the Eulerian gradient

rewritten in Lagrangian coordinates, using the inverse
Jacobian matrix. Note that ∇x and Dτ do not commute
and that terms with ∇x in the Lagrangian equations are
implicitly non-linear.

In one dimension, (A.21) has an interesting conse-
quence:

∇xϕg = −x− q

τ
. (A.23)

Indeed, in one dimension (A.21) takes the form

∇2
xϕg =

1

τ

[
(∇qx)

−1 − 1
]
. (A.24)

Multiplying this equation by ∇qx and expressing the first
of the two x-derivatives acting on ϕg as a q-derivative, we
obtain

∇q (∇xϕg) = ∇q
q − x

τ
. (A.25)

Eq. (A.23) is obtained from (A.25) by integrating in q. The
absence of an arbitrary τ -dependent constant is established
either by assuming vanishing at large distances of both ϕg

and of the displacement x− q or, in the space-periodic case,
by assuming the vanishing of period averages.

Using (A.23) to eliminate the ϕg term in (A.20) and
introducing the notation ξ for the displacement x − q, we
obtain

D2
τξ = − 3

2τ

(
Dτξ − ξ

τ

)
. (A.26)

The only solution to this equation that remains well-behaved
for τ → 0 is the linear one ξ ∝ τ . This solution has the two
terms on the right-hand side of the one-dimensional version
of (A.20) cancelling each other and hence gives a vanishing
‘acceleration’ D2

τx.

An approximate vanishing of acceleration takes place in
higher dimensions as well. For early times, the Lagrangian

map x(q, τ ) stays close to the identity, with displacements
ξ(q, τ ) = x(q, τ ) − q small. Linearizing (A.20) and (A.21)
around zero displacement, we get the system

D2
τξ = − 3

2τ
(Dτξ + ∇qϕg), (A.27)

∇2
qϕg = − 1

τ
∇q · ξ. (A.28)

Here we use the fact that ∇x ' ∇q and det∇qx '
1 + ∇q · ξ. Using (A.28) to eliminate ϕg in (A.27), we get
for θ ≡ ∇q · ξ an equation that coincides with (A.26) up
to the change of variable ξ 7→ θ. Choosing the well-behaved
linear solution for θ, solving for ξ and using the above ar-
gument to eliminate a τ -dependent constant, we see that,
in the linearized equations, terms in the right-hand side of
(A.27) cancel each other and the acceleration vanishes. This
simplification justifies using the linear growth factor τ as a
time variable.

APPENDIX B: HISTORY OF MASS

TRANSPORTATION

The subject of mass transportation was started by Gaspard
Monge (1781) in a paper19 entitled Théorie des déblais et

des remblais (Theory of cuts and fills) whose preamble is
worth quoting entirely (our translation):

When earth is to be moved from one place to another, the
usage is to call cuts the volumes of earth to be transported and
fills the space to be occupied after transportation.

The cost of transporting one molecule being, all things other-
wise equal, proportional to its weight and to the distance [espace]
travelled and consequently the total cost being proportional to
the sum of products of molecules each multiplied by the distance
travelled, it follows that for given shapes and positions of the cuts
and fills, it is not indifferent that any given molecule of the cuts
be transported to this or that place in the fills, but there ought
to be a certain distribution of molecules of the former into the
latter, according to which the sum of these products will be the
least possible, and the cost of transportation will be a minimum.

Although clearly posed, the ‘mass transportation prob-
lem’ was not solved, in more than one dimension, until
Leonid Kantorovich (1942) formulated a ‘relaxed’ version,
now called the Monge–Kantorovich problem: instead of a
‘distribution of molecules of the former into the latter,’ he
allowed a distribution in the product space where more than
one position in the fills could be associated with a position
in the cuts and where the initial and final distributions are
prescribed marginals (see Section 3.3). In cosmospeak, he
allowed multi-streaming with given initial and final mass
distributions. Using the techniques of duality and of lin-
ear programming that he had invented (see Appendix C2),
Kantorovich was then able to solve the mass transporta-
tion problem in this relaxed formulation. The techniques
developed by Kantorovich found many applications, notably
in economics, which in fact was his original motivation (he
was awarded, together with T.C. Koopmans, the 1975 Nobel
prize in this field).

Before turning to more recent developments we must
say a few words about the history of the Monge–Ampère
equation. To the best of our knowledge the equation, in its
two-dimensional form, appears for the first time in Ampère
(1820), a huge (188 pages) mathematical memoir in which
the equation is to be found on p. 65. Ampère also pointed
out the way the equation changes under Legendre transfor-
mations but there is no physical interpretation in terms of
Lagrangian coordinates.20 Again, to the best of our knowl-
edge, Monge had nothing to do with the particular equation
(19). In his 1820 paper Ampère mentions a number of other
non-linear partial differential equations which he attributes
to Monge and, certainly, Monge was the first to develop gen-
eral geometrical techniques for partial differential equations.
The name Monge–Ampère for (19) appears already in the

19 The author’s name appears in this paper as ‘M. Monge,’ where
the ‘M.’ stands for ‘Monsieur.’
20 According to the biography of Ampère by L. Pearce Williams
in the Dictionary of Scientific Biography, Ampère’s paper was
written – after he had switched from mathematics to chemistry
and physics – with the purpose of facilitating his election to the
Paris Academy of Science; one can then speculate that his men-
tion of the Legendre transformation was influenced by Legendre’s
presence in this academy.
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f *(x)
subgradient

q

x

f(q)

Figure C1. A convex function f(q) and the geometrical con-
struction of its Legendre transform f∗(x). Also illustrated is the
subgradient of f(q) at a non-smooth point.

early twentieth century on pp. 581–582 of Goursat (1905).
It may be that in the 19th century it has designated a larger
class of non-linear second-order partial differential equations
in two independent variables, but more historical research
would be needed to ascertain this.

The subjects of mass transportation and of the Monge–
Ampère equation came together when one of us (YB) showed
the equivalence of the elliptic Monge–Ampère equation and
of the mass transportation problem with quadratic cost:
when initial and final distributions are non-singular, the op-
timal solution is actually one-to-one, so that nothing is lost
by the Kantorovich relaxation trick (Brenier 1987, 1991).
For an extension of this result to general convex costs and a
review of the many recent papers on the subject, see Gangbo
& McCann (1996).

APPENDIX C: BASICS OF CONVEXITY AND

DUALITY

C1 Convexity and the Legendre transformation

A convex body may be defined by the condition that it co-
incides with the intersection of all half-spaces containing it.
Obviously, it is sufficient to take only those half-spaces lim-
ited by planes that touch the body; such planes are called
supporting.

Take now a convex function f(q), so that the set of
points in the (3+1)-dimensional (q, f) space lying above its
graph is convex. It follows that we can write

f(q) = max
x

x · q − f∗(x), (C.1)

where the expression x · q − f∗(x) specifies a supporting
plane with the slope x for the set of points lying above the
graph of f (see Fig. C1 for the one-dimensional case). The
function f∗(x), which specifies how high one should place a

supporting plane to touch the graph, is called the Legendre

transform of f(q).21

From Eq. (C.1) follows the inequality (known as the
Young inequality)

f(q) + f∗(x) > x · q for all x, q, (C.2)

where both sides coincide if and only if the supporting plane
with the slope x touches the graph of f at q. This fact, to-
gether with the obvious symmetry of this inequality, implies
that

f∗(x) = max
q

x · q − f(q). (C.3)

Thus, the Legendre transform of a convex function is itself
convex and the Legendre transform of the Legendre trans-
form recovers the initial convex function.

If however we apply (C.1) to a nonconvex function f , we
obtain a convex function f∗, whose own Legendre transform
will give the convex hull of f , the largest convex function
whose graph lies below that of f .

When f is both convex and differentiable, (C.2) be-
comes an equality for x = ∇qf(q). If f∗ is also differen-
tiable, then one also has q = ∇xf

∗(x). This is actually
Legendre’s original definition of the transformation, which
is thus limited to smooth functions. Furthermore, if the orig-
inal function is not convex and thus has the same gradient at
separated locations, Legendre’s purely local definition will
give a multivalued Legendre transform. (In the context of
the present paper this corresponds to multi-streaming.)

Not all convex functions are differentiable (e.g. f(q) =
|q|). But the Young inequality can be employed to define
a useful generalization of the gradient: the subgradient of f
at q is the set of all x for which the equality in (C.2) holds
(see Fig. C1). If f is smooth at q, then ∇qf(q) will be the
only such point; otherwise, there will be a (convex) set of
them.

If a convex function has the same subgradient at more
than one point, the function is said to lack strict convexity.
In fact, strict convexity and smoothness are complementary:
lack of one in a convex function implies lack of the other in
the Legendre transform.

For further background on convex analysis and geome-
try, see Rockafellar (1970).

C2 Duality in optimization

Suppose we want to minimize a convex function Φ(q) subject
to a set of linear constraints that may be written in matrix
notation as Aq = b (vectors q satisfying this constraint are
called admissible in optimization parlance). We now observe
that

inf
Aq=b

Φ(q) = inf
q

sup
x

Φ(q) − x · (Aq − b). (C.4)

Indeed, should Aq not equal b, the sup operation in x will
give infinity, so such q will not contribute to minimization.
Here we use the inf/sup notation instead of min/max be-
cause the extremal values may not be reached, e.g., when
they are infinite.

21 It was introduced in the one-dimensional case by Mandelbrojt
(1939) and then generalized by Fenchel (1949).
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Using (C.1), we rewrite this in the form

inf
q

sup
x,y

y · q − Φ∗(y) − x · (Aq − b)

= inf
q

sup
x,y

(y −ATx) · q − Φ∗(y) + x · b, (C.5)

where Φ∗(y) is the Legendre transform of Φ(q) and AT is
the transpose of A. Taking inf in q first, we see that the
expression in the right-hand side will be infinite unless y =
ATx. We then obtain the optimization problem of finding

sup
x

x · b − Φ∗(ATx), (C.6)

which is called dual to the original one. Note that there are
no constraints on the dual variable x: any value is admissi-
ble.

Denoting solutions of problems (C.4) and (C.6) by q∗

and x∗, we see that

Φ(q∗) + Φ∗(ATx
∗) − x

∗ · b = 0, (C.7)

because the optimal values of both problems are given
by (C.5) and thus coincide. Furthermore, for any admissi-
ble q and x

Φ(q) + Φ∗(ATx) − x · b > 0, (C.8)

because the right-hand sides of (C.4) and (C.6) cannot pass
beyond their optimal values.

Moreover, let equality (C.7) be satisfied for some admis-
sible q∗ and x∗; then such q∗ and x∗ must solve the problems
(C.4) and (C.6). Indeed, taking e.g. x∗ for x in (C.8) and
using (C.7), we see that for any other admissible q

Φ(q∗) 6 Φ(q), (C.9)

i.e., that q∗ solves the original optimization problem (C.4).
Convex optimization problems with linear constraints

considered in this section are called convex programs. Their
close relatives are linear programs, namely optimization
problems of the form

inf
Aq=b, q>0

c · q = inf
q>0

sup
x

c · q − x · (Aq − b), (C.10)

where notation q > 0 means that all components of the
vector q are nonnegative. Proceeding essentially as above
with c · q instead of Φ(q), we observe that in order not to
obtain infinity when minimizing in q in (C.5), we have now
to require that ATx 6 c (i.e. c − ATx > 0). The dual
problem thus takes the form

sup
AT x6c

x · b (C.11)

with an admissibility constraint on x. Instead of (C.7)
and (C.8) we obtain

x
∗ · b = c · q∗ or (ATx

∗ − c) · q∗ = 0 (C.12)

and

x · b 6 c · q or (ATx − c) · q 6 0, (C.13)

the latter inequality being automatically satisfied for any
admissible x, q. Note that for linear programs, the fact that
(C.12) holds for some admissible q∗,x∗ also implies that q∗

and x∗ solve their respective optimization problems.
For further background on optimization and duality,

see, e.g., Papadimitriou & Steiglitz (1982).

C3 Why the analogue computer of Section 4.2

solves the assignment problem

We suppose that the analogue computer described in Sec-
tion 4.2 has settled into equilibrium, which minimizes its
potential energy

U =

N∑

i=1

αi −
N∑

j=1

βj , (C.14)

under the set of constraints

αi − βj > C − cij , (C.15)

for all i, j. Our goal is here is to show that the set of equi-
librium forces fij , acting on studs between row and column
rods, solves the original linear programming problem of min-
imizing

Ĩ =

N∑

i,j=1

cijfij (C.16)

under constraints

fij > 0,

N∑

k=1

fkj =

N∑

k=1

fik = 1, (C.17)

for all i, j and that in fact forces fij take only zero and
unit values, thus providing the solution to the assignment
problem.

Note first that if a row rod Ai and a column rod Bj
are not in contact at equilibrium, then the corresponding
force vanishes (fij = 0); if they are, then fij > 0. Take
now a particular pair of rods Ai and Bj that are in contact.
At equilibrium, the force fij must equal forces exerted on
the corresponding stud by Ai and Bj . We claim that both
these forces must be integer. To see this, let us compute
the force exerted by Ai. This rod contributes its weight,
+1, possibly decreased by the force that it feels from other
column rods that are in contact with Ai. Each of these takes
−1 (its ‘buoyancy’) out of the total force, but we may have
to add the force it feels in turn from other row rods with
which it might be in contact. Proceeding this way from one
rod to another, we see that all contributions, positive or
negative, are unity, so their sum fij must be integer. The
same argument applies to rod Bj .

Does this process indeed finish or, at some stage, do we
come back at an already visited stud and thus end up in an
infinite cycle? In fact, for general set of stud lengths C− cij ,
the latter cannot happen, because otherwise an alternating
sum of some subset of stud lengths would give exactly zero –
a zero probability event for a set of arbitrary real numbers.

Consider now a row rod Ai. It is in contact with one
or more column rods, whose combined upward push must
equilibrate the unit weight of Ai. Since any of the latter rods
exerts a nonnegative integer force, it follows that exactly one
of these forces is unity, and all the other ones are zero. A
similar argument holds for any column rod Bj .

We have thus shown that all fij in the equilibrium equal
1 or 0. One can of course ignore the vanishing forces. Then
each row rod Ai is supported by exactly one column rod Bj ,
and each Bj supports exactly one Ai. This defines a one-
to-one pairing, and we are only left with a check that this
pairing minimizes (C.16).
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Observe that pushing a column rod down by some dis-
tance ∆ and simultaneously increasing by ∆ the length of
all studs attached to this rod will have no effect on positions
and constraints of all other rods, hence on the equilibrium
network of contacts. Moreover, due to constraints (C.17),
the corresponding change in coefficients cij will not change
the cost function (C.16) in any essential way, except of just
subtracting ∆.

We can use this observation to put all column rods at
the same level, say at z = 0, adjusting cij to some new
values c′ij . Thus, for every i, the row rod Ai rests on the stud
with the largest height C − c′ij , so the equilibrium pairing
maximizes the sum

N∑

i,j=1

(C − c′ij)fij (C.18)

and thus minimizes (C.16).22

APPENDIX D: DETAILS OF THE

VARIATIONAL TECHNIQUE FOR THE

EULER–POISSON SYSTEM

In this appendix, we explain details of the variational pro-
cedure outlined in Section 6, which proves that prescription
of the density fields at terminal epochs τ = 0 and τ = τ0
uniquely determines a regular and thus curl-free solution to
the Euler–Poisson system (A.17)–(A.19).

The variational problem is posed for the functional

I =
1

2

∫ τ0

0

dτ

∫
d3

x τ 3/2
(
ρ|v|2 +

3

2
|∇xϕg|2

)
(D.1)

with four constraints: the Poisson equation (A.19), which we
repeat here for convenience,

∇2
xϕg =

ρ− 1

τ
, (D.2)

the mass conservation (A.18), also repeated here,

∂τρ+ ∇x · (ρv) = 0, (D.3)

and the two boundary conditions

ρ(x, 0) = 1 and ρ(x, τ0) = ρ0(x). (D.4)

In the sequel, we shall always denote by
∫∫

the double in-
tegration over 0 6 τ 6 τ0 and over the whole space domain
in x provided that the integrand vanishes at infinity suffi-
ciently fast, or over the periodicity box in the case of periodic
boundary conditions. A single integral sign

∫
will always de-

note the integration over the relevant space domain in x.
First, we make this problem convex by rewriting the

functional and constraints in a new set of variables with the
mass flux J(x, t) = ρ(x, t)v(x, t) instead of the velocity v.
The mass conservation constraint, which was the only non-
linear one in the old variables, becomes now linear:

22 Those readers familiar with linear programming will recognize
that the proof just presented is based on two ideas: (i) the total
unimodularity of the matrix of constraints in terms of which the
equalities in (C.17) can be written and (ii) the complementary
slackness (see, e.g., Papadimitriou & Steiglitz 1982, sections 3.2
and 13.2).

∂τρ+ ∇x · J = 0, (D.5)

and one can check that the density of kinetic energy takes
the form

1

2
ρ|v|2 =

1

2ρ
|J |2 = max

c,m: c+|m|2/260
(ρc+ J · m)

or

|J |2
2ρ

= max
c,m

(ρc+ J · m − F (c,m)), (D.6)

where

F (c,m) =
{

0 if c + |m|2/2 6 0
+∞ otherwise.

(D.7)

Note that in (D.6) the variables c,m, as well as ρ,J , are
functions of (x, τ ). The action functional may now be writ-
ten as

I =
1

2

∫ ∫ (
1

ρ
|J |2 +

3

2
|∇xφ|2

)
τ 3/2 d3

x dτ, (D.8)

and turns out to be convex.
To see this, first note that the operation of integration

is linear and thus preserves convexity of the integrand. The
integrand is a positive quadratic function of ∇xφ and there-
fore is convex in φ; furthermore, (D.6) implies that it is also
convex in (ρ,J), since the kinetic energy density |J |2/2ρ is
the Legendre transform of the function F (c,m), which itself
is convex.

Note also that by representing the kinetic energy density
in the form (D.6), we may safely allow ρ to take negative
values: the right-hand side being in that case +∞, it will
not contribute to minimizing (D.1).

We now derive the dual optimization problem. We intro-
duce the scalar Lagrange multipliers ψ(x, t), ϑin(x), ϑ0(x)
and θ(x, t) for the Poisson equation (D.2), the boundary
conditions (D.4), and the constraints of mass conservation
(D.5), respectively, and observe that the variational problem
may now be written in the form

inf

ρ,J,φ

sup
c,m,θ,ψ,ϑ0,ϑT :

c+|m|2/260

∫ ∫
d3

x dτ
[
3

2
ψ
(
∇2

xφ− ρ− 1

τ

)

+θ(∂τρ+ ∇x · J) + τ 3/2
(
ρc+ J · m +

3

4
|∇xφ|2

)]

+

∫
ϑin(x)(ρ(x, 0) − 1) d3

x

−
∫
ϑ0(x)(ρ(x, τ0) − ρ0(x)) d3

x.

(D.9)

To see that (D.9) is indeed equivalent to minimizing (D.1)
under the constraints (D.3) or (D.5), (D.2), and (D.4), ob-
serve that for those ρ,J , φ that do not satisfy the con-
straints, the sup operation over θ, ψ, ϑin, ϑ0 will give posi-
tive infinity; the sup will be finite (and thus contribute to
the subsequent minimization) only if all constraints are sat-
isfied. (This argument is the functional version of what is
explained in Appendix C2 for the finite-dimensional case.)

Performing an integration by parts in the τ variable in
(D.9) and using the boundary conditions on the mass density
(D.4), we find that ϑin(x) = θ(x, 0) and ϑ0(x) = θ(x, τ0).
Integrating further by parts in the x variable, assuming that
boundary terms at infinity vanish (or that we have periodic
boundary conditions in space) and rearranging terms, we get
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inf

ρ,J,φ

sup
c,m,θ,ψ:

c+|m|2/260

∫ ∫
d3

xdτ
(
ρ (cτ 3/2 − ∂τθ −

3

2τ
ψ)

+J · (mτ 3/2 −∇xθ) +
3

4τ 3/2
|∇xψ − τ 3/2∇xϕg|2

− 3

4τ 3/2
|∇xψ|2 +

3

2τ
ψ
)

−
∫
θ(x, 0) d3

x +

∫
θ(x, τ0) ρ0(x) d3

x.

(D.10)

Performing minimization with respect to ρ,J , φ first, as in
(C.5) of Appendix C2, we see that the following two equali-
ties must hold (remember that ρ need not be positive at this
stage):

c =
1

τ 3/2

(
∂τθ +

3ψ

2τ

)
, m =

1

τ 3/2
∇xθ, (D.11)

so that terms linear in ρ and J vanish in (D.10). It follows
that c and m are determined by θ and ψ and that the con-
straint c+ |m|2/2 6 0 can be written

∂τθ +
1

2τ 3/2
|∇xθ|2 +

3

2τ
ψ 6 0. (D.12)

Also, the inf with respect to φ is straightforward and gives

τ 3/2∇xϕg = ∇xψ. (D.13)

Using (D.11) and (D.13) in (D.10), we arrive at the opti-
mization problem of maximizing

J =

∫ ∫ (
3

2τ
ψ − 3

4τ 3/2
|∇xψ|2

)
d3

xdτ

+

∫
θ(x, τ0) ρ0(x) d3

x −
∫
θ(x, 0) d3

x

(D.14)

under constraint (D.12). Eqs. (D.14) and (D.12) constitute
a variational problem dual to the original one.

As both the original and the dual variational problems
have the same saddle-point formulation (D.9) or (D.10), the
optimal values of the two functionals (D.1) and (D.14) are
equal. Let (ρ,J , ϕg) be a solution to the original variational
problem and θ, ψ be a solution to the dual one. Subtracting
the (equal) optimal values from each other, we may now
write, similarly to (C.7),

∫ ∫ (
τ 3/2

2ρ
|J |2 +

3τ 3/2

4
|∇xϕg|2

+
3

4τ 3/2
|∇xψ|2 − 3

2τ
ψ

)
d3

xdτ

+

∫
θ(x, 0) d3

x −
∫
θ(x, τ0) ρ0(x) d3

x = 0.

(D.15)

We are going to show that the left-hand side of (D.15) may
be given the form of a sum of three nonnegative terms, each
of which will therefore have to vanish. First, we rewrite the
last two integrals, using the mass conservation constraint
(D.5) and integrations by parts, in the form

−
∫ ∫

∂τ (θρ) d3
x dτ = −

∫ ∫
(∂τθ ρ+ ∇xθ · J) d3

x dτ.

Second, we note that

∫ ∫ (
3τ 3/2

4
|∇xϕg|2 +

3

4τ 3/2
|∇xψ|2

)
d3

xdτ

=

∫ ∫ (
3

4τ 3/2
|τ 3/2∇xϕg −∇xψ)|2 − 3

2τ
ψ(ρ− 1)

)
d3

xdτ,

which follows from the Poisson constraint (D.2). Taking all
this into account in (D.15), we get, after a rearrangement of
terms,
∫ ∫

ρ

2τ 3/2

∣∣∣∣
τ 3/2

ρ
J −∇xθ

∣∣∣∣
2

d3
xdτ

+

∫ ∫
−ρ
(
∂τθ +

1

2τ 3/2
|∇xθ|2 +

3

2τ
ψ
)

d3
xdτ

+

∫ ∫
3

4τ 3/2
|τ 3/2∇xϕg −∇xψ)|2 d3

xdτ = 0.

(D.16)

The left-hand side is a sum of three nonnegative terms (the
second is so by (D.12)), all of which must thus vanish. This
gives

v =
1

ρ
J =

1

τ 3/2
∇xθ, ∇xϕg =

1

τ 3/2
∇xψ (D.17)

and

∂τθ +
1

2τ 3/2
|∇xθ|2 +

3

2τ
ψ = 0, (D.18)

wherever ρ is non-vanishing (otherwise the left-hand-side is
non-positive by (D.12)). The last equality turns into the
Euler equation

∂τv + (v · ∇x)v = − 3

2τ
(v + ∇xϕg) (D.19)

by taking the gradient and using (D.17).
By (D.17) and (D.18), any two hypothetically different

minimizing solutions for either variational problem give rise
to the same velocity potential and to the same gravitational
potential (up to insignificant constants) and thus define the
same solution (ρ,v, ϕg) to the Euler–Poisson equations with
the boundary conditions (D.4) and the condition of curl-free
velocity.

Moreover, for any such solution (ρ,v, ϕg), one can
use (D.17) to define θ and ψ that satisfy (D.18) and
thus (D.12). By (D.16), the values of functionals I and Ī
evaluated at these functions will coincide; together with con-
vexity this implies, by an argument similar to that given
in Appendix C2 concerning (C.9), that such (ρ,v, ϕg) and
(θ, ψ) in fact minimize both functionals under the corre-
sponding constraints.

This means that a (curl-free) velocity field, a gravita-
tional field and a density fields (v, ϕg, ρ) will satisfy the
Euler–Poisson equations (A.17)–(A.19) (repeated as (D.19),
(D.3), and (D.2) in this Appendix) and the boundary con-
ditions (D.4) if and only if they minimize (D.1) under the
corresponding constraints. This establishes uniqueness.
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Fréchet M., 1957b, Publ. Inst. Statist. Univ. Paris, 6, 183
Frieman J. A., Szalay A. S., 2000, Phys. Rep., 333, 215
Frisch U., Bec J., 2002, in Lesieur M., Yaglom A., David
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Hénon M., 2002, A mechanical model for the transportation
problem, preprint (arXiv:math.OC/0209047)

Jeans J. H., 1919, Problems of Cosmogony and Stellar Dy-
namics. Cambridge University Press, Cambridge

Kantorovich L. V., 1942, C. R. (Doklady) Acad. Sci. USSR,
321, 199

Kardar M., Parisi G., Zhang Y., 1986, Phys. Rev. Lett., 56,
889

Kolatt T., Dekel A., Ganon G., Willick J. A., 1996, ApJ,
458, 419

Kuhn H. W., 1955, Naval Res. Logist. Quart., 2, 83
Landau L. D., Lifshitz E. M., 1960, Mechanics. Vol. 1 of
Course of Theoretical Physics, Pergamon Press, Oxford

Loeper G., 2003, The inverse problem for the Euler–
Poisson system in cosmology, preprint, Laboratoire
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