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Abstract

In this note, we show uniqueness of weak solutions to the Vlasov-
Poisson system on the only condition that the macroscopic density ρ
defined by ρ(t, x) =

∫
Rd f(t, x, ξ)dξ is bounded in L∞. Our proof is

based on optimal transportation.

Résumé Français

Dans ce papier, on montre l’unicité des solutions faibles du système Vlasov-Poisson
sous la seule condition que la densité macroscopique ρ définie par
ρ(t, x) =

∫
Rd f(t, x, ξ)dξ reste bornée dans L∞. Notre preuve est basée sur le

transport optimal. Elle fournit également une preuve alternative du Théorème de
Youdovich pour l’unicité des solutions du système Euler 2-d incompressible avec
vorticité dans L∞.

key words: Vlasov-Poisson system, Optimal transportation, Transport
equations.

1 Introduction

The Vlasov-Poisson system (hereafter (VP)) describes the evolution of a
cloud of electrons or gravitational matter through the equations

∂tf + ξ · ∇xf −∇Ψ · ∇ξf = 0, (1)

−∆Ψ = ερ, (2)
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where ρ(t, x) =
∫

f(t, x, ξ)dξ, and ε > 0 in the electrostatic (repulsive) case,
ε < 0 in the gravitational (attractive) case. Here f(t, x, ξ) ≥ 0 denotes the
density of electrons (or matter) at time t ∈ R+, position x ∈ R3, velocity
ξ ∈ R3. Equation (2) is understood in the following sense:

Ψ(t, x) = ε

∫
R3

ρ(t, y)
1

4π|x− y|
dy. (3)

We denote by M(R6) (resp. M+(R6)) the set of bounded (resp. bounded
and positive) measures on R6. Given an initial datum f 0 ∈M+(R6), we look
for solutions to (1, 2) such that

f |t=0 = f 0. (4)

Definition 1.1 (Weak solutions to (VP)). For T > 0, we will call f a
solution to (1, 2, 4) in D′([0, T )× R6), if

- f ∈ C([0, T ),M+(R6)− w∗),

- ∀ϕ ∈ C∞
c ([0, T )× R6),∫

[0,T )×R6

f(∂tϕ + ξ · ∇xϕ−∇xΨ · ∇ξϕ)dtdxdξ = −
∫

R6

f 0ϕ|t=0dxdξ, (5)

- for all t ∈ [0, T [, Ψ(t) is given by (3).

We will not discuss the conditions needed on Ψ, f to give sense to the
product f∇xΨ or to the singular integral (3), since we will only consider
the case where ρ ∈ L1 ∩ L∞. In this case, ∇xΨ will be continuous, and the
product f∇xΨ will be well defined for f a bounded measure.

Our main result is the following:

Theorem 1.2. Given f 0 in M+(R6), given T > 0, there exists at most one
weak solution to (1, 2, 4) in D′([0, T )× R6) such that

‖ρ‖L∞([0,T )×Rd) < +∞. (6)

Remark 1. Note that we do not ask for any bound on the moments of
f , and also that we do not ask the energy, given by

E(t) =

∫
R6

f(t, x, ξ)
|ξ|2

2
+ ε

|∇Ψ(t, x)|2

2
dxdξ (7)

to be finite.
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Remark 2. To establish the existence of a solution to (VP) satisfying the
bound (6) might require much more assumptions on the initial datum than
what we need here ! This question is treated in [5]. From their results, one
can build solutions with bounded density ρ, and as corollary of our result,
such solution will be unique.

Theorem 1.3 (Lions & Perthame [5]). Let f 0 ∈ L∞(R6) satisfy∫
R6

f 0(t, x, ξ)|ξ|m0dxdξ < +∞ for some m0 > 6.

Assume that

∀R > 0,∀T > 0, ess sup {f 0(y + tξ, w), |y − x| ≤ Rt2, |ξ − w| ≤ Rt}
∈ L∞([0, T )× R3

x; L
1(R3

ξ)), (8)

then there exist a weak solution to (1, 2, 4) such that ρ ∈ L∞loc(R+; L∞(R3)).

Remark. Note that condition (8) is satisfied for f 0(x, ξ) ≤ C(1+ |ξ|p)−1,
p > 3.

A sufficient condition for uniqueness had been given by Lions and Perthame
in [5], relying on Lipschitz bounds on the initial data f 0, but they expected
a uniqueness result without this assumption. The Lipschitz condition had
indeed later been relaxed by Robert in [9] down to f ∈ L∞ compactly sup-
ported in x and ξ for t ∈ [0, T ]. Here we relax the bound on the support
of f , and we do not ask either f to be bounded in L∞. We only need a
L∞([0, T ) × R3) bound on ρ(t, x). Hence our result applies also to monoki-
netic solutions of (1, 2). In that case, we have f(t, x, ξ) = ρ(t, x)δ(ξ−v(t, x))
for some vector field v, and this gives formally a solution to the Euler-Poisson
system

∂tρ +∇ · (ρv) = 0, (9)

∂t(ρv) +∇ · (ρv ⊗ v) = −ρ∇Ψ, (10)

−∆Ψ = ερ. (11)

Our proof will rely on optimal transportation, and the next section is
devoted to recall some facts concerning this subject. The reader can find a
complete reference on this topic in [10]. The technique we will use adapts to
many similar problems, where a transport equation and an elliptic equation
are coupled. The velocity field is the gradient of a potential satisfying an
elliptic equation whose right hand side depends smoothly on the density. A
typical example of such a system is the 2-d incompressible Euler equations,
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for which we present an alternate proof of Youdovich’s theorem in section 4.
This technique will be used in a forthcoming paper [6] on the semi-geostrophic
equations.

Our result is based on a new functional inequality that relates the Wasser-
stein distance between two measures, the H−1 norm of their difference, and
the L∞ norm of their densities, see Theorem 2.7.

It is interesting to notice that our technique yields a new proof of Youdovich’s
Theorem [11] (section 4), while the technique used by Robert in [9] was and
adaptation of Youdovich’s original proof.

2 Preliminary results on optimal transporta-

tion and Wasserstein distances

2.1 Definitions

Definition 2.1. Let ρ1, ρ2 be two Borel probability measures on Rd. We
define the Wasserstein distance of order 2 between ρ1 and ρ2, that we denote
W2(ρ1, ρ2), by

W2(ρ1, ρ2) =

(
inf
γ

∫
Rd×Rd

dγ(x, y)|x− y|2
) 1

2

,

where the infimum runs over probability measures γ on Rd×Rd with marginals
Pxγ and Pyγ equal respectively to ρ1 and ρ2.

(The Wasserstein distance of order p ≥ 1 would have been defined in the
same way, replacing |x− y|2 by |x− y|p.)

We now show why this distance is related to optimal transportation. Let
us first recall the definition of the push-forward of a measure by a mapping:

Definition 2.2. Let ρ1 be a Borel measure on Rd and T : Rd → Rd be a
measurable mapping. The push-forward of ρ1 by T is the measure ρ2 defined
by

∀B ⊂ Rd Borel , ρ2(B) = ρ1(T
−1(B)).

We will use the notation ρ2 = T#ρ1.

Remark. Let (Ω, µ) be a probability space, and consider X1, X2 map-
pings from (Ω, µ) to Rd. Assume that X1#dµ = ρ1, X2#dµ = ρ2, then
γ = (X1, X2)#dµ has marginals ρ1 and ρ2, and one deduces that∫

Ω

|X1 −X2|2dµ =

∫
Rd×Rd

dγ(x, y)|x− y|2 ≤ W 2
2 (ρ1, ρ2).
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This remark will be useful later on.
Then we have the fundamental theorem of existence/characterization of

the minimizer in Definition (2.1). This result is due to Brenier in [2]. We
state it in a version due to McCann and Gangbo, [4, Theorem 1.2], that does
not require that ρ1 and ρ2 have finite moments of order 2. In this case of
course, their Wasserstein distance might be infinite.

Theorem 2.3. Assume that in Definition 2.1, ρ1 is absolutely continuous
with respect to the Lebesgue measure. Then

W2(ρ1, ρ2) =

(
inf

T#ρ1=ρ2

∫
Rd

|T (x)− x|2ρ1(x)dx

) 1
2

,

where the infimum runs over all measurable mappings T : Rd → Rd that push
forward ρ1 onto ρ2. Moreover, the infimum is reached by a dρ1 a.e. unique
mapping T , and there exists a convex function φ such that T = ∇φ.

Remark. One sees immediately that if ρ2 = T#ρ1, then the joint measure
γ(x, y) = ρ1(x)δ(y = T (x)) has marginals ρ1 and ρ2. Hence it is not difficult
to see that the infimum of Definition 2.1 is lower than the infimum in the
above theorem. To prove the converse is more difficult.

2.2 Wasserstein distance and H−1 norm

In this paragraph we establish an inequality between the Wasserstein dis-
tance and the H−1 norm. The fact that those two quantities are somehow
comparable had also been noticed in the asymptotic case where we consider
perturbation of a given measure. In fact, it can be shown that (see [10,
Theorem 7.26]) given µ ∈ P2(Rd) (i.e. with finite second moment), for all
ν ∈ L∞(Rd) such that

∫
Rd hdµ = 0,

‖ν‖H−1(dµ) ≤ lim inf
ε→0

W2(µ, µ(1 + εν))

ε
,

where

‖ν‖H−1(dµ) = sup
{∫

νfdµ; f ∈ C∞
c (Rd),

∫
|∇f |2dµ ≤ 1

}
.

This result can be compared with the one that we are going to show below
(Theorem 2.7).

Optimal transportation induces a natural interpolation between two mea-
sures ρ1 and ρ2: indeed consider for θ ∈ [1, 2],

ρθ = ((θ − 1)T + (2− θ)x)#ρ1, (12)
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where T is the optimal transport map between ρ1 and ρ2. This path ρθ

has some interesting properties, the following one being now refered to as
displacement convexity.

Theorem 2.4 (McCann, [8]). Let ρ1, ρ2 be two probability measures on
Rd, with ρ1 absolutely continuous with respect to the Lebesgue measure. Let
ρθ,θ∈[1,2] be the interpolant betwen ρ1 and ρ2 defined above. Then
θ → log (‖ρθ‖Lp) is convex on [1, 2] for all p ≥ 1.

Using the well known fact that for any L1 function f , lim supp→∞ ‖f‖Lp =
‖f‖L∞ , we deduce immediatly the following corollary:

Corollary 2.5. Under the previous notations, we have

∀θ ∈ [1, 2], ‖ρθ‖L∞ ≤ max{‖ρ1‖L∞ , ‖ρ2‖L∞}. (13)

We now establish an estimate concerning the θ derivative of the path ρθ.
We will obtain this estimate in the following H−1 norm:

‖f‖H−1(Rd) = sup
{∫

Rd

fg, g ∈ C∞
c (Rd),

∫
|∇g|2(x)dx ≤ 1

}
. (14)

We suppose hereafter that W2(ρ1, ρ2) < +∞ otherwise there is nothing
to prove.

Proposition 2.6. We take ρ1, ρ2 in P(Rd) ∩ L∞(Rd), and ρθ,θ∈[1,2] the in-
terpolant between ρ1 and ρ2 defined in (12). Then

∂θρθ ∈ L∞([1, 2]; H−1(Rd))

and

‖∂θρθ‖L∞([1,2];H−1(Rd)) ≤ max{‖ρ1‖L∞ , ‖ρ2‖L∞}1/2W2(ρ1, ρ2).

Consequently we have

‖ρ1 − ρ2‖H−1(Rd) ≤ max{‖ρ1‖L∞ , ‖ρ2‖L∞}1/2W2(ρ1, ρ2).

Proof. By definition of ρθ we have, for all f ∈ C∞
c (Rd),∫

ρθ(x)f(x) dx =

∫
ρ1(x)f((θ − 1)∇φ(x) + (2− θ)x) dx,

where∇φ#ρ1 = ρ2, φ is the convex potential such that T = ∇φ is the optimal
map between ρ1 and ρ2. We can differentiate this expression with respect to
θ and obtain

d

dθ

∫
ρθ(x)f(x) dx =

∫
ρ1(x)∇f((θ − 1)∇φ(x) + (2− θ)x) · (∇φ(x)− x) dx.
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Using Cauchy-Schwartz inequality, we then have

d

dθ

∫
ρθ(x)f(x) dx ≤

(∫
ρ1(x)|∇φ(x)− x|2 dx

)1/2 (∫
ρθ(x)|∇f(x)|2 dx

)1/2

.

In the first term of the right hand side, we recognize the Wasserstein distance
between ρ1 and ρ2, and we then use the bound (13) for the second term.

�
We now deduce the following estimate at the core of our result:

Theorem 2.7. Let ρ1, ρ2 be two probability measures on Rd with L∞ densities
with respect to the Lebesgue measure. Let Ψi, i = 1, 2 solve

−∆Ψi = ρi in Rd,

Ψi(x) → 0 as |x| → ∞,

i.e. in the sense of (3). Then

‖∇Ψ1 −∇Ψ2‖L2(Rd) ≤
[
max{‖ρ1‖L∞ , ‖ρ2‖L∞}

] 1
2 W2(ρ1, ρ2), (15)

where W2(ρ1, ρ2) is the Wasserstein distance between ρ1 and ρ2 given in Def-
inition 2.1.

Proof of Theorem 2.7. The proof is an immediate consequence of
Proposition 2.6, and of the following lemma:

Lemma 2.8. Let f belong to L1 ∩ L∞(Rd), and F satisfy −∆F = f in the
sense of (3). We have (with possibly infinite values) ‖f‖H−1(Rd) = ‖∇F‖L2(Rd).

Remark. In particular, ‖f‖H−1 is infinite when d = 2 and
∫

R2 f 6= 0.

Applying this lemma to f = ρ1 − ρ2 leads to the conclusion of the Theo-
rem. �

Proof of Lemma 2.8.
We have, for all g ∈ C∞

c (Rd),∫
f(x)g(x)dx = −

∫
∆F (x)g(x)dx

=

∫
∇F (x) · ∇g(x)dx.

Taking the supremum of the last line on the set {g ∈ C∞
c (Rd), ‖∇g‖L2 ≤ 1},

we reach the desired conclusion. �
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3 Proof of Theorem 1.2

From now on, we assume for simplicity that
∫

R6 f 0(x, ξ) = 1, ε = 1, and the
reader can check that this choice does not play any role in the proof. In
particular, the result of the previous section adapt with minor changes to the
case of two positive measures of equal total mass.

3.1 Lagrangian formulation of the Vlasov-Poisson sys-
tem

Given a solution of (VP) with bounded density ρ on [0, T ) , we consider for
t ∈ [0, T ) the characteristics of equation (1), that solve the ODE

Ẋ = Ξ, (16)

Ξ̇ = −∇Ψ(t,X). (17)

Since we assume an L1 ∩ L∞([0, T ) × R3) bound on the density ρ, the field
∇Ψ classically satisfies the following (see [7, Chapter 8]):

Lemma 3.1. Let Ψ be obtained from ρ through (3). Then there exists C∆

that depends on ‖ρ‖L∞ + ‖ρ‖L1 such that

‖∇Ψ‖L∞ ≤ C∆, (18)

∀t ∈ [0, T ), ∀(x, y) ∈ R3 × R3, |x− y| ≤ 1

2
,

|∇Ψ(t, x)−∇Ψ(t, y)| ≤ C∆|x− y| log
1

|x− y|
. (19)

This condition is enough to define a Hölder continuous flow (see [7, Chap-
ter 8])

Y (t, x, ξ) = (X, Ξ)(t, x, ξ)

for the ODE (16,17), where (X, Ξ) is the pair (velocity, position) at time t
of the trajectory having (velocity, position) equal to (x, ξ) at time 0. Note
that Yt will be Hölder continuous with respect to (x, ξ), with Hölder index
decaying exponentially to 0 as t → +∞.

Then we use the following Theorem, proved in [1]:

Theorem 3.2. Let u(t, x) be a vector field on Rd. Consider the ODE

γ̇(t) = u(t, γ(t)),

and the PDE
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∂tµ(t, x) +∇ · (µ(t, x)u(t, x)) = 0.

Let B ⊂ Rd be a Borel set. The following are equivalent:

(a) For all x in B, there exists a unique solution to the ODE starting at x.

(b) Non negative measure-valued solutions to the PDE with initial data µ0

concentrated in B are unique.

From this result, we deduce the following corollary:

Corollary 3.3. The potential Ψ being held fixed, and satisfying
∆Ψ ∈ L∞([0, T ] × R3), for any f 0 ∈ M+(R6) there exists a unique weak
solution to (1) (i.e. in the sense of (5)) with initial datum f 0 which is given
by

f(t) = Y (t, ·, ·)#f 0, (20)

where Y = (X, Ξ) solves (16, 17). Note also that we will have

ρ(t) = X(t, ·, ·)#f 0. (21)

We remind the reader that the measure f(t) = Y (t, ·, ·)#f 0 is defined by
f(t)(B) = f 0(Y −1(t)(B)) for all Borel subsets B of R6.

Remark. This corollary does not solve the uiqueness problem, but says
that when one considers the linear problem, there is a unique weak measure-
valued solution to the transport equation (1), that we can represent with the
help of characteristics.

3.2 Final estimate

Given an initial distribution f 0(x, ξ) ∈ M+(R6) with
∫

R6 f 0 = 1, we take
two solutions (f1, f2) to (VP) with bounded density ρi and initial datum
f 0. We have −∆Ψ = ρi, i = 1, 2 in the sense of (3). We then consider the
associated characteristics Y1 and Y2, where for i = 1, 2, Yi = (Xi, Ξi)(t, x, ξ)
and Xi, Ξi solve (16, 17) with force field ∇Ψi. From Corollary 3.3, we will
have fi(t) = Yi(t)#f 0, i = 1, 2. We then consider

Q(t) =
1

2

∫
R6

f 0(x, ξ) |Y1(t, x, ξ)− Y2(t, x, ξ)|2 . (22)

Remark. Notice that (Y1(t), Y2(t))#f 0 is a probability measure on R6×
R6, with marginals f1(t) and f2(t), hence by Definition 2.1, we have the
following important observation:



Uniqueness for Vlasov-Poisson 10

Lemma 3.4. Let Q be defined through (22), then

W 2
2 (f1(t), f2(t)) ≤ 2Q(t)

and

W 2
2 (ρ1(t), ρ2(t)) ≤ 2Q(t).

In particular, Q(t) = 0 implies f1(t) = f2(t).

Proof. The proof follows immediately from Definition 2.1 and (20, 21)
by noticing that Π = (Y1(t), Y2(t))#f 0 is a probability measure on R6 × R6

with marginals f1(t) and f2(t) and that π = (X1(t), X2(t))#f 0 is a probability
measure on R3 × R3 with marginals ρ1(t) and ρ2(t).

�
Our proof will rely on an estimate on the Wasserstein distance between

f1 and f2, while the proof of [9] was obtained by estimating the H−1 norm
of f1 − f2.

Of course Q(0) = 0, and since Yi, ∂tYi(t, x, ξ) belong to L∞([0, T ]; C0(R6))
(see Lemma 3.1), one can differentiate Q with respect to time. We thus have:

d

dt
Q(t) =

∫
R6

f 0(x, ξ)(Y1(t, x, ξ)− Y2(t, x, ξ)) · ∂t(Y1(t, x, ξ)− Y2(t, x, ξ))

=

∫
R6

f 0(x, ξ) [(X1(t, x, ξ)−X2(t, x, ξ)) · (Ξ1(t, x, ξ)− Ξ2(t, x, ξ))]

−
∫

R6

f 0(x, ξ)
[
(Ξ1(t, x, ξ)− Ξ2(t, x, ξ)) ·

(∇Ψ1(t,X1(t, x, ξ))−∇Ψ2(t,X2(t, x, ξ)))
]
.

The second line is bounded by Q(t), and using Cauchy-Schwartz inequality,
the third line is bounded by

(2Q)1/2(t)

(∫
R6

f 0(x, ξ) |∇Ψ1(t,X1(t, x, ξ))−∇Ψ2(t,X2(t, x, ξ))|2
)1/2

≤ (2Q)1/2(t)

(∫
R6

f 0(x, ξ) |∇Ψ2(t,X1(t, x, ξ))−∇Ψ2(t,X2(t, x, ξ))|2
)1/2

+ (2Q)1/2(t)

(∫
R6

f 0(x, ξ) |∇Ψ2(t,X1(t, x, ξ))−∇Ψ1(t,X1(t, x, ξ))|2
)1/2

= (2Q)1/2(t)
(
[T1(t)]

1/2 + [T2(t)]
1/2

)
,
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where

T1(t) =

∫
R6

f 0(x, ξ) |∇Ψ2(t,X1(t, x, ξ))−∇Ψ2(t,X2(t, x, ξ))|2

T2(t) =

∫
R6

f 0(x, ξ) |∇Ψ2(t,X1(t, x, ξ))−∇Ψ1(t,X1(t, x, ξ))|2 .

Hence we have

d

dt
Q(t) ≤ Q(t) + (2Q)1/2(t)

(
[T1(t)]

1/2 + [T2(t)]
1/2

)
, (23)

and we will now estimate T2 and then T1.

For T2 we have, using (21) and Theorem 2.7,

T2(t) =

∫
R3

ρ1(t, x) |∇Ψ1(t, x)−∇Ψ2(t, x)|2

≤ max{‖ρ1‖L∞ , ‖ρ2‖L∞}2W 2
2 (ρ1(t), ρ2(t)),

Hence, in view of Lemma 3.4, we conclude that

T2(t) ≤ 2 max{‖ρ1‖L∞ , ‖ρ2‖L∞}2Q(t).

Now, we evaluate T1 by standard arguments. We first recall Lemma 3.1 to
see that∇Ψi are uniformly bounded in L∞ by a constant C∆ that depends on
‖ρi‖L∞ + ‖ρi‖L1 . (Of course here we have ‖ρi(t)‖L1 ≡ 1.) Since at time t = 0
we have Y1(t, x, ξ) ≡ Y2(t, x, ξ) ≡ (x, ξ), for any C > 0, we can take T small
enough such that ‖Y1−Y2‖L∞([0,T ]×R6) ≤ C. Thus using again Lemma 3.1, we
have, for C∆ depending on ‖ρi‖L∞ , i = 1, 2, and as long as ‖Y1 − Y2‖L∞ ≤ 1

2
,

T1 =

∫
R6

f 0(x, ξ) |∇Ψ2(t,X1(t, x, ξ))−∇Ψ2(t,X2(t, x, ξ))|2

≤ C2
∆

∫
R6

f 0(x, ξ)

(
|X1 −X2|2 log2 1

|X1 −X2|

)
(t, x, ξ)

=
C2

∆

4

∫
R6

f 0(x, ξ)
(
|X1 −X2|2 log2(|X1 −X2|2)

)
(t, x, ξ).

Then we use that x 7→ x log2 x is concave for 0 ≤ x ≤ 1/e, and we can
assume (taking T small enough) that ‖Y1 − Y2‖L∞([0,T ]×R6) ≤ 1/e, therefore
by Jensen’s inequality we have

T1(t)

≤ C2
∆

4

[∫
R6

f 0(x, ξ)|X1 −X2|2(t, x, ξ)

]
log2

[∫
R6

f 0(x, ξ)|X1 −X2|2(t, x, ξ)

]
=

C2
∆

2
Q(t) log2(2Q(t)). (24)
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Combining all these bounds in (23), we obtain that, as long as ‖Y1−Y2‖L∞ ≤
1/e,

d

dt
Q(t) ≤ CQ(t)(1 + log

1

Q(t)
),

where C depends only on ‖ρi‖L∞([0,T )×R3). We can now conclude by standard
arguments that if Q(0) = 0, Q ≡ 0 on [0, T ), which achieves the proof of
Theorem 1.2. �

4 Adaptation of this proof to the 2-d Euler

incompressible equations

As mentioned above, this proof adapts naturally to the case of the Euler
2-d equation in its vorticity form (see [7] for a complete reference on Euler
equations). Hence we consider the following system:

∂tω +∇ · (ω∇⊥Ψ) = 0, (25)

−∆Ψ = ω, (26)

ω|t=0 = ω0, (27)

where ∇⊥Ψ means (∂x2φ,−∂x1φ), and ω is thus the rotational of the velocity
field. The domain considered here will be R2 (in which case equation (26) is
solved in the sense of (3) with ε = 1). We will consider the flow X(t, x) asso-
ciated to the velocity field ∇⊥Ψ, and in the case where ω ∈ L∞ ∩L1, thanks
to Lemma 3.1, ∇Ψ will be log-Lipschitz, hence X(t, x) will be continuous
with respect to (t, x), and we will have ω(t) = X(t)#ω0.

The main modification is that we deal with a measure ω which is not pos-
itive anymore. However, we can make the following observation (see Lemma
4.6): if ω0 has positive and negative parts ω+

0 , ω−0 , then for any solution ω(t),
one will have

ω+(t) = X(t)#ω+
0 ,

ω−(t) = X(t)#ω−0 .

In particular TM(ω+(t)) (resp. TM(ω−(t))), the total mass of ω+(t) (resp. of
ω−(t)) remains equal to TM(ω+

0 ) (resp. TM(ω−0 )) the total mass of ω+
0 (resp.

of ω−0 ). With a slight generalization, we can define the Wasserstein distance
between signed measures of same total mass, without requiring that they are
probability measures. The object of the next paragraph is to generalize to
the present situation the objects and results of paragraph 2.
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4.1 Generalization of Theorem 2.7 to non probabilistic
measures

Definition 4.1. Let ω1, ω2 be two positive measures on Rd of same total mass
TM(ω1) = TM(ω2) = M . We define

W2(ω1, ω2) = inf
γ

(∫
Rd×Rd

|x− y|2dγ(x, y)

)1/2

where γ runs on all positive measures on Rd×Rd with marginals ω1 and ω2.

Remark. One can check that this definition is consitent with the Defi-
nition 2.1 when one considers probability measures.

As a trivial adaptation of Theorem 2.3, we have the following

Theorem 4.2. Assume that in Definition 4.1 ω1 is absolutely continuous
with respect to the Lebesgue measure, the the infimim in Definition 4.1 is
reached by γopt = ω1(x)δ(y = ∇φ(x)), for some convex function φ.

Proof. Apply Theorem 2.3 to ρ1, ρ2, where ρi = ωiM
−1 are probability

measures. �.
We then observe that with this generalized definition of the Wasserstein

distance, Theorem 2.7 still holds with no modification:

Theorem 4.3. Let ω1, ω2 be two positive measures on Rd of same finite total
mass M , and with densities in L∞ with respect to the Lebesgue measure. Let
Ψi, i = 1, 2 solve −∆Ψi = ωi in the sense of (3). Then

‖∇Ψ1 −∇Ψ2‖L2(Rd) ≤
[
max{‖ω1‖L∞ , ‖ω2‖L∞}

] 1
2 W2(ω1, ω2), (28)

where W2(ω1, ω2) is now given by Definition 4.1.

Proof. Consider the probability measures ρi = ωiM
−1, i = 1, 2. Apply

Theorem 4.3 to ρ1, ρ2. Then check that W2(ω1, ω2) = M1/2W2(ρ1, ρ2), and
conclude. �

We can then use this result to estimate the H−1 norm of the difference of
two measures on the condition that the total masses of their positive (resp.
negative) parts cöıncide.

Theorem 4.4. Let ω1 and ω2 be two bounded measures on Rd, with positive
(resp. negative) parts ω+

i , i = 1, 2 (resp. ω−i , i = 1, 2) such that

TM(ω+
1 ) = TM(ω+

2 ),

TM(ω−1 ) = TM(ω−2 ).
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Assume that ω1 and ω2 have densities in L∞ with respect to the Lebesgue
measure, and define Ψ1, Ψ2 the solutions of −∆Ψi = ωi in the sense of (3).
Then

‖∇Ψ1 −∇Ψ2‖L2(Rd) ≤
[
max{‖ω+

1 ‖L∞ , ‖ω+
2 ‖L∞}

]1/2
W2(ω

+
1 , ω+

2 )

+
[
max{‖ω−1 ‖L∞ , ‖ω−2 ‖L∞}

]1/2
W2(ω

−
1 , ω−2 ),

where W2 is now given by Definition 4.1.

Proof. We consider, for i = 1, 2, Ψ+
i (resp. Ψ−

i ) to be solution of
−∆Ψ+

i = ω+
i (resp. −∆Ψ−

i = ω−i ). Of course Ψi = Ψ+
i −Ψ−

i , and

‖∇Ψ1 −∇Ψ2‖L2 ≤ ‖∇Ψ+
1 −∇Ψ+

2 ‖L2 + ‖∇Ψ−
1 −∇Ψ−

2 ‖L2 .

Then, by Theorem 4.3, we have

‖∇Ψ+
1 −∇Ψ+

2 ‖L2 ≤
[
max{‖ω+

1 ‖L∞ , ‖ω+
2 ‖L∞}

]1/2
W2(ω

+
1 , ω+

2 ).

Doing the same way for Ψ−
i , we conclude the proof. �

4.2 Conclusion of the proof

Then one can reprove the following result, due to Youdovich ([11]):

Theorem 4.5. Let ω0 belong to L1∩L∞(R2). There exists a unique solution
to (25, 26, 27) in R2, such that ω(t) ∈ L∞(R+ × R2).

Proof. The proof of this result is a straighforward adaptation of the
proof for Vlasov-Poisson. For two solutions (ω1, ω2) of (25, 26) with same
initial condition ω0 ∈ L∞ ∩ L1(R2), and both satisfying ω ∈ L∞(R+ × R2),
we consider the characteristics Xi, i = 1, 2 that are solution to

∂tXi(t, x) = ∇⊥Ψi(t,Xi(t, x)),

∆Ψi = ωi,

X(0, x) = x.

Those characteristics are well defined thanks to the L∞ ∩ L1 bound on ωi

that yields a Log-Lipschitz continuity of the velocity fields (see Lemma 3.1
and [7, Chapter 8]). Here we do not consider measure-valued solutions to
the transport equation (25), hence we do not need such a sophisticated re-
sult as Theorem 3.2. We consider solutions with bounded density, hence
from Di-Perna Lions theory (see [3]), it is enough that ∇Ψ ∈ W 1,1 to have
uniqueness of L∞ solutions to the Cauchy problem for the linear (i.e. with
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a given velocity field ∇⊥Ψ) transport equation (25). This unique solution
can be represented as ωi(t) = Xi(t)#ω0. Note also that still thanks to the
regularity of the velocity field, solutions that satisfy ω(t) ∈ L∞(R+×R2) will
automatically satisfy ‖ω(t)‖L∞(R2) ≡ ‖ω0‖L∞(R2).

We then consider

Q(t) =
1

2

∫
R2

|ω0(x)| |X2(t, x)−X1(t, x)|2dx.

We first have a straightforward adaptation of Lemma 3.4 to our present
case:

Lemma 4.6. Let Q,X1, X2, ω1 = X1#ω0, ω2 = X2#ω0 be defined as above
for all t ∈ R+. Then, for all t

TM(ω+
1 ) = TM(ω+

2 ),

TM(ω−1 ) = TM(ω−2 ),

moreover

W 2
2 (ω+

1 (t), ω+
2 (t)) + W 2

2 (ω−1 (t), ω−2 (t)) ≤ 2Q(t),

where W2 is given in Definition 4.1.

Proof. The equality of the total masses come from the observation that
the mappings Xi are homeomorphism from R2 to itself for all t ∈ R+, hence
ω±i = Xi(t)#ω±0 .

Then since γ+(t) = (X1(t), X2(t))#ω+
0 has marginals ω+

1 (t), ω+
2 (t), we

have by Definition 4.1

W 2
2 (ω+

1 (t), ω+
2 (t)) ≤

∫
ω+

0 (x)|X1(t, x)−X2(t, x)|2dx.

Doing the same for the negative part, we conclude. �
We now differentiate Q, this yields

dQ

dt
=

∫
R2

|ω0(x)|(X1 −X2) · (∇⊥Ψ1(X1)−∇⊥Ψ2(X2))(t, x)dx.

Again we bound this integral by the sum of two terms

dQ

dt
≤

∫
R2

|ω0(x)||X1 −X2||∇Ψ1(t,X1)−∇Ψ2(t,X1)|(t, x)dx

+

∫
R2

|ω0(x)||X1 −X2||∇Ψ2(t,X1)−∇Ψ2(t,X2)|(t, x)dx.
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By Cauchy-Schwartz’s inequality we have

dQ

dt
≤ [Q(t)]1/2([T1(t)]

1/2 + [T2(t)]
1/2),

where

T2(t) =

∫
R2

|ω1(t, x)||∇Ψ1(t, x)−∇Ψ2(t, x)|2dx,

T1(t) =

∫
R2

|ω0(x)| |∇Ψ2(t,X1(t, x))−∇Ψ2(t,X2(t, x))|2dx.

The terms T1, T2 are then evaluated in the same way as in the proof for
Vlasov-Poisson. We get, thanks to Theorem 4.4, and using that ‖ω1(t)‖L∞ ≡
‖ω0‖L∞ ,

T2 ≤ ‖w0‖2
L∞

(
W2(ω

+
1 , ω+

2 ) + W2(ω
−
1 , ω−2 )

)2

.

We then use Lemma 4.6, to obtain finally that T2 ≤ 4‖w0‖2
L∞Q(t).

For T1, we proceed exactly as for the term T1 of the proof for Vlasov-
Poisson: we take T > 0 small enough so that ‖X1−X2‖L∞([0,T ]×R2) ≤ 1

e
, and

we obtain as in (24) that for t ∈ [0, T ],

T1(t) ≤
C2

∆

2
Q(t) log2(2Q(t)),

where C∆ comes from Lemma 3.1 and depends only on ‖ω0‖L∞ + ‖ω0‖L1 .
Finally, we obtain that, as long as ‖X1(t)−X2(t)‖L∞(R2) ≤ 1

e

d

dt
Q(t) ≤ CQ(t)(1 + log

1

Q(t)
),

where C depends only on ‖ω0‖L∞ + ‖ω0‖L1 .
We can now conclude by standard arguments that if Q(0) = 0, Q ≡ 0 on

R+, which achieves the proof of Theorem 4.5. �
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de Vlasov-Poisson. C. R. Acad. Sci. Paris Sér. I Math., 324(8):873–877,
1997.

[10] C. Villani. Topics in optimal transportation, volume 58 of Graduate
Studies in Mathematics. American Mathematical Society, Providence,
RI, 2003.

[11] V. Youdovitch. Non-stationary flows of an ideal incompressible fluid.
Zh. Vych. Mat., 3:1032–1066, 1963.

G. Loeper
Institut Camille Jordan
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