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Abstract

This paper studies the Vlasov-Monge-Ampère system (V MA), a fully
non-linear version of the Vlasov-Poisson system (V P) where the (real) Monge-
Ampère equation det ∂2Ψ

∂xi∂x j
= ρ substitutes for the usual Poisson equation.

This system can be derived as a geometric approximation of the Euler equa-
tions of incompressible fluid mechanics in the spirit of Arnold and Ebin.
Global existence of weak solutions and local existence of smooth solutions
are obtained. Links between the V MA system, the VP system and the Euler
equations are established through rigorous asymptotic analysis.

1 Introduction

The classical Vlasov-Poisson (V P) system describes the evolution of an electronic
cloud in a neutralizing uniform background through the following equations

∂ f
∂t

+ξ ·∇x f +∇xϕ ·∇ξ f = 0(1)

ε2∆ϕ = ρ−1,(2)

where f (t,x,ξ) ≥ 0 denotes the electronic density at time t ≥ 0, point x ∈ R
d ,

velocity ξ ∈ R
d (usually d = 3), ρ(t,x)≥ 0 denotes the ’macroscopic’ density

ρ(t,x) =
Z

Rd
f (t,x,ξ)dξ,(3)

and ϕ(t,x) denotes the electric potential at time t and point x generated, through
the Poisson equation (2), where ε is a coupling constant, by the difference between
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the electronic density ρ(t,x) and the neutralizing background density, which is
supposed to be uniform and normalized to unity. Standard notations ∇ = (∂1, ...,∂d)
and ∆ = ∂2

1 + ...+∂2
d have been used and · stands for the inner product in R

d . The
mathematical theory of the VP system is now well understood. In particular, ex-
istence of global smooth solutions in three space dimensions has been proved in
[24] (see also [18], [26]). In the present paper, a fully nonlinear version of the VP
system is addressed :

∂ f
∂t

+ξ ·∇x f +∇xϕ ·∇ξ f = 0(4)

det(I+ ε2D2ϕ) = ρ,(5)

where the (real) Monge-Ampère equation (5) substitutes for the Poisson equation
(2). Here, D2ϕ(t,x) stands for the d ×d symmetric matrix made of all second or-
der x−partial derivatives of ϕ, I stands for the d×d identity matrix and det for the
determinant of a square matrix. The occurrence of the Monge-Ampère equation
in mathematical modeling is not very common. Notice, however, that a very simi-
lar system can be found in meteorology with Hoskins’ semi-geostrophic equations
(cf. [3], [13] and the included references). In a simplified two dimensional setting,
the semi-geostrophic equations read

∂ρ
∂t

+{ϕ,ρ} = 0(6)

det(I+ ε2D2ϕ) = ρ,(7)

where {·, ·} denotes the usual Poisson bracket.
Formally, as the coupling constant ε is small, the V P and VMA equations asymp-
totically approach each other up to order O(ε4). Indeed, linearizing the determi-
nant about the identity matrix leads to

det(I+ ε2D2ϕ) = 1+ ε2∆ϕ+O(ε4).(8)

The formal limit, as ε = 0, reads

∂ f
∂t

+ξ ·∇x f +∇xϕ ·∇ξ f = 0(9)

ρ = 1,(10)

where constraint (10) substitutes for both the Poisson and the Monge-Ampère
equations. The limit system (9,10), that we call constrained Vlasov system, can
be seen as a ’kinetic’ extension of the Euler equations of classical incompressible
fluid mechanics,

∂tv+(v ·∇)v = −∇p(11)

∇ · v = 0,(12)
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where v(t,x) ∈ R
d and p(t,x) ∈ R respectively are the velocity and the pressure

of the fluid at time t and position x. Indeed, any smooth solution (v, p) provides a
’monokinetic’ solution to the constrained Vlasov system (9,10), defined by

f (t,x,ξ) = δ(ξ− v(t,x)), ϕ = −p.

Here a monokinetic solution means a delta-valued solution in the ξ variable. In
addition, the constrained Vlasov system (9,10) turns out to be a natural extension
(or Γ limit) of the Euler equations from both geometrical and variational reasons,
as explained in section 2
In a similar way, there is a monokinetic version of the V P system, the so-called
(pressureless) Euler-Poisson (EP) system, which reads

∂tv+(v ·∇)v = ∇ϕ(13)

∂tρ+∇ · (ρv) = 0(14)

ε2∆ϕ = ρ−1.(15)

A rigorous asymptotic analysis of the V MA system as ε → 0 will be provided
(sections 5.1 and 5.2), in the case when the initial electronic density

f (t = 0,x,ξ) = f 0(x,ξ)(16)

is asymptotically monokinetic, namely approaching δ(ξ−v0(x)), for some smooth
divergence free velocity field v0, as ε tends to zero. Before this asymptotic anal-
ysis, we want to explain the geometric origin of the VMA system. It has been
known, since Arnold’s celebrated work (cf. [2]), that the Euler equations (for-
mally) describe geodesics curves along a suitable group of volume preserving
maps, lengths being measured in the L2 sense. We will show (section 2) that the
V MA system just describes approximate geodesics obtained through a very natu-
ral penalty method, where ε stands for the penalty parameter. For this geometric
interpretation to be valid, the Monge-Ampère equation (5) must be understood in
the following weak sense: for each fixed t, ϕ(t, ·) is the unique (up to an additive
constant) function such that Ψ(x) = x2/2+ ε2ϕ(t,x) is convex in x and

∀g ∈C0(Rd),

Z

Rd
g(∇Ψ(x))ρ(t,x)dx =

Z

Ω
g(y)dy,(17)

where Ω is a fixed bounded open convex set where the neutralizing background of
the electrons is assumed to be located. (This definition is made precise in section
2.3.) Notice that, by construction, ∇Ψ must be valued in the closure of Ω and,
therefore, the potential ϕ enjoys the following property

|x+ ε2∇xϕ(t,x)| ≤ sup
y∈Ω

|y| < +∞.
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There is no similar bound for the electrostatic potential of the classical VP sys-
tem. Thus, in some sense, the V MA system can be seen as a nonlinearly saturated
version of the VP system.
Beyond the geometric derivation of the V MA system, our main analytic results are
as follows:

• The V MA system admits global energy preserving weak solutions.

• The V MA system admits local strong solutions in periodic domains.

• For well prepared, nearly monokinetic initial data, the solutions of the VMA
system converge when ε goes to 0 to those of the Euler equations.

• In this asymptotic, the EP system is a higher order approximation of the
V MA system.

The paper is organized as follows: in section 2, we first recall the geometric nature
of the Euler equations, then we explain why the constrained Vlasov system (9,10)
is a natural extension of the Euler equations from a variational point of view,
finally we introduce the concept of approximate geodesics for volume preserving
maps, and derive the VMA system. Section 3 is devoted to the proof of existence
of global energy preserving weak solutions. In section 4, we prove existence of
local strong solutions, in the case of a periodic domain. Finally, in section 5, we
study the asymptotic behavior of the V MA system as ε goes to 0.

2 The geometric origin of the Vlasov-Monge-Ampère
system

2.1 The Euler equations

The motion of an incompressible fluid in a domain Ω⊂R
d is classically described

by the Euler equations (E):

∂tv+(v ·∇)v = −∇p(18)

∇ · v = 0,(19)

with t ∈ R, x ∈ Ω, where v = v(t,x) stands for the velocity field and p = p(t,x)
for the scalar pressure field. These equations have a nice geometrical interpreta-
tion going back to Arnold (see [2]). Introducing G(Ω) the group of all volume
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preserving diffeomorphisms of Ω with jacobian determinant equal to 1, and mea-
suring lengths in the L2 sense, we may define (at least formally) geodesic curves
along G(Ω). It turns out that the Euler equations just describe these curves. For
the same reasons, the Euler equations can be seen as the optimality equations for
the corresponding minimization problem: given two maps chosen in G(Ω), find
an L2−shortest path between them along G(Ω). It was shown by Shnirelman [27]
(see also [2] and [28]) that, in the case when Ω is the unit cube in R

3, there are
many maps for which there are no such shortest paths. Beyond this negative re-
sult, [6] established that minimizing paths are more appropriately described by
doubly stochastic measures. These measures (also called polymorphisms) gener-
alize volume preserving maps in the following way: a doubly stochastic measure
µ(dx,dy) is a (Borel) probability measure on Ω×Ω with two projections on each
copy of Ω both equal to the (normalized) Lebesgue measure. It is known -see
[22], for instance- that any such µ can be weakly approximated by a sequence
µn(dx,dy) = δ(x− gn(y))dy where each gn is a volume preserving map of Ω. In
[6] it was shown that, in the case considered by Shnirelman for which there is no
classical shortest path, minimizing paths along G(Ω) converge to paths of doubly
stochastic measures t → µ(t;dx,dy) governed by the following extension of the
Euler equations

∂tµ+∇x · (µv) = 0,(20)

∂t(vµ)+∇x · (µv⊗ v)+µ∇x p = 0,(21)

where v = v(t;x,y) and p = p(t,x) can be respectively seen as the velocity field
and the pressure field attached to µ. (Notice that the velocity field v generally de-
pends on the extra variable y and is not a classical but rather a multivalued velocity
field.) These equations are just a reformulation of the constrained Vlasov system
(9,10). Indeed, it can be checked, under appropriate regularity assumptions, that
the kinetic measure f defined by

f (t;dx,dξ) =

Z

y∈Ω
δ(ξ− v(t;x,y))µ(t;dx,dy)(22)

solves (9,10) when (µ,v, p) solves (20,21). Thus we conclude that the constrained
Vlasov system (9,10) is a natural variational extension of the Euler equations.

2.2 Approximate geodesics

A general strategy to define approximate geodesics along a manifold M (in our
case M = G(Ω)) embedded in a Hilbert space H (here H = L2(Ω,Rd)) is to in-
troduce a penalty parameter ε > 0 and the following unconstrained dynamical
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system in H

∂ttX +
1

2ε2 ∇X
(

d2(X ,M))
)

= 0.(23)

In this equation, the unknown t → X(t) is a curve in H, d(X ,M) is the distance
(in H) of X to the manifold M, i.e. in our case as M = G(Ω),

d(X ,G(Ω)) = inf
g∈G(Ω)

‖X −g‖H ,(24)

and, finally, ∇X denotes the gradient operator in H. This penalty approach has
been used for the Euler equations by the first author in [7]. It is similar-but not
identical- to Ebin’s slightly compressible flow theory [15], and is a natural exten-
sion of the theory of constrained finite dimensional mechanical systems [25]. The
penalized system is formally hamiltonian in variables (X ,∂tX) with Hamiltonian
(or energy) given by:

E =
1
2
‖∂tX‖2

H +
1

2ε2 d2(X ,G(Ω)).

(Multiplying equation (23) by ∂tX , we formally get that the energy is conserved.)
Therefore it is plausible that the map X(t) will remain close to G(Ω) if properly
initialized at t = 0. A formal computation shows that, given a point X for which
there is a unique closest point πX to X in the H closure of G(Ω), we have:

∇X (d(X ,G)) =
1

d(X ,G)
(X −πX).(25)

Thus the equation (23) formally becomes:

∂ttX +
1
ε2 (X −πX) = 0.(26)

To understand why solutions to such a system may approach geodesics along
G(Ω) as ε goes to 0, just recall that, in the simple framework of a surface S em-
bedded in the 3 dimensional Euclidean space, a geodesic t → s(t) along S is char-
acterized by the fact that for every t, the plane defined by {ṡ(t), s̈(t)} is orthogonal
to S. In our case, ∂ttX(t) is nearly orthogonal to G(Ω) thanks to (26), meanwhile
X(t) remains close to G(Ω).
The approximate geodesic equation was introduced in [7] in order to allow a spa-
tial approximation of G(Ω) by the group of permutations of N points A j chosen
to form a discrete grid on Ω. On such a discrete group, the concept of geodesics
becomes unclear meanwhile approximate geodesics still make sense. They can
be interpreted as trajectories of a cloud of N particles Xi moving in the Euclidean
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space R
dN , which substitutes for H. These particles solve the following coupled

system of harmonic oscillators

ε2 d2Xi

dt2 +Xi −Aσi = 0,

where σ is a time dependent permutation minimizing, at each fixed time t, Σ
∣

∣Xi−Aσ(i)

∣

∣

2

among all other permutations of the first N integers. The convergence of this dis-
crete model to the incompressible Euler equations for well prepared initial data
was proved in [7]. In order to study the continuous version (26), a specific study
of the projection problem (24) is needed.

2.3 The polar decomposition Theorem

Let us first recall a general measure theoretic definition:

Definition 2.1 Let A and B be two topological spaces, let ρ be a Borel finite mea-
sure of A and X a Borel map A → B, we call the push-forward of ρ by X and note
X#dρ the Borel measure η on B defined by

∀ f ∈C0(B),
Z

B
f (y)dη(y) =

Z

A
f (X(x))dρ(x).

Let us now consider the case of a bounded open subset Ω of the Euclidean space
R

d equipped with the Lebesgue measure that we denote dx. We say that a Borel
map s : Ω → Ω is volume (or Lebesgue measure) preserving if s#dx = dx, i.e. if
for all g ∈C0(Ω) one has

R

Ω g(x)dx =
R

Ω g(s(x))dx, or equivalently, for any Borel
subset B of Ω one has |s−1(B)| = |B|. The set of all measure preserving maps of
Ω is a closed subset of the Hilbert space H = L2(Ω,Rd) and will be denoted by
S(Ω). Notice that S(Ω) is only a semi-group for the composition rule and contains
the group of volume preserving diffeomorphisms G(Ω). It is known [23] that, at
least in the case when Ω is convex and d ≥ 2, S(Ω) is exactly the closure of G(Ω)
in L2(Ω,Rd), which implies d(.,G(Ω)) = d(.,S(Ω)).
The polar decomposition Theorem for maps [5] (extended to Riemannian mani-
folds in [21]) will be crucial for our analysis of the V MA system:

Theorem 2.2 Let Ω be a bounded convex open subset of R
d , let X ∈ L2(Ω;Rd)

and ρX = X#dx, where dx is the Lebesgue measure on Ω. Assume ρX to be a
Lebesgue integrable function, or, equivalently, X to satisfy the non-degeneracy
condition:

∀E ⊂ R
d Borel , |E| = 0 ⇒ |X−1(E)| = 0.(27)
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Then there exists a unique pair (∇ΦX ,πX) where ΦX is a convex function and
πX ∈ S(Ω), such that

X = ∇ΦX ◦πX .(28)

In this ’polar decomposition’, πX is also characterized as the unique closest point
to X on S(Ω) in the L2 sense and ΦX is characterized to be (up to an additive
constant) the unique convex function on Ω satisfying

Z

Rd
g(x)dρX =

Z

Ω
g(X(y))dy =

Z

Ω
g(∇ΦX(y))dy,(29)

for any g ∈C0(Rd) such that |g(x)| ≤C(1+ |x|2).
In addition, the Legendre-Fenchel transform ΨX of ΦX defined by

ΨX(x) = sup
y∈Ω

{x · y−ΦX(y)}(30)

is Lipschitz continuous on R
d , with Lipschitz constant bounded by supx∈Ω |x| and

has the following properties :
∇ΨX(x) ∈ Ω holds true for ρX a.e. x,

Z

Rd
g(∇ΨX)ρX(x)dx =

Z

Ω
g(∇ΨX(X(x)))dx =

Z

Ω
g(x)dx(31)

for any g ∈C0(Ω), and

∇ΦX(∇ΨX(x)) = x ρX(x)dx a.e,(32)

∇ΨX(∇ΦX(y)) = y dy a.e,(33)

πX(y) = ∇ΨX(X(y)) dy a.e.(34)

We make here several remarks on Theorem 2.2:

Link with the Monge-Ampère equation We can interpret (29) as a weak version
of the Monge-Ampère equation:

ρX(∇Φ)detD2Φ = 1

and (31) can be seen as a weak version of another Monge-Ampère equation:

detD2Ψ = ρX

∇Ψ maps supp(ρX) in Ω.

The pair (ΦX ,ΨX) depends in fact only of Ω and the measure ρX = X#dx, and if
condition (27) fails, then existence and uniqueness of the projection πX may fail,
but existence and uniqueness of ∇ΦX remain true.

Theorem 2.2 and the subsequent remarks allow us to introduce the following
notation that will be used throughout the paper:
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Definition 2.3 Let Ω be a fixed bounded convex open set of R
d , let ρ be a positive

measure on R
d of total mass |Ω|, absolutely continuous w.r.t the Lebesgue mea-

sure and such that
R

(1+ |x|2)dρ(x) < +∞. We call Φ[Ω,ρ], or, in short, Φ[ρ], the
unique up to a constant convex function on Ω satisfying

∀g ∈C0(Rd)∩L1(dρ),

Z

Rd
g(x)dρ(x) =

Z

Ω
g(∇Φ[Ω,ρ](y))dy.(35)

We call Ψ[Ω,ρ] its Legendre-Fenchel transform satisfying

∀g ∈C0(Rd)∩L1(Ω,dy),
Z

Rd
g(∇Ψ[Ω,ρ](x))dρ(x) =

Z

Ω
g(y)dy.(36)

If no confusion is possible we may write Φ (resp. Ψ) instead of Φ[Ω,ρ] (resp.
Ψ[Ω,ρ]).

We will use some additional results from [5]. The first one establishes the conti-
nuity of the polar decomposition:

Theorem 2.4 Let ρ be a Lebesgue integrable positive measure on R
d , with total

mass Ω, such that
R

(1 + |x|2)dρ < +∞. Let ρn be a sequence of Lebesgue inte-
grable positive measures on R

d , with total mass Ω, such that ∀n,
R

(1+ |x|2)dρn < +∞.
Let Φn = Φ[Ω,ρn] and Ψn = Ψ[Ω,ρn] be as in Definition 2.3. If for any f ∈
C0(Rd) such that | f (x)| ≤C(1+ |x|2), R

f dρn converges to
R

f dρ , then

• Φn converges to Φ[Ω,ρ] uniformly on each compact set of Ω and strongly
in W 1,1(Ω),

• Ψn converges to Ψ[Ω,ρ] uniformly on each compact set of R
d and strongly

in W 1,1(K) for every K compact in R
d .

The second one provides a ’dual’ definition of the distance between a map X and
the semi-group S(Ω):

Theorem 2.5 Let X ∈ L2(Ω;Rd) and ρ = X#dx, where dx is the Lebesgue mea-
sure on Ω. Assume ρ to be a Lebesgue integrable function. Then

1
2

d2(X ,S(Ω)) =
Z

(

|x|2/2−Ψ[Ω,ρ](x)
)

ρ(x)dx+
Z

Ω

(

|y|2/2−Φ[Ω,ρ](y)
)

dy

= sup
u,v

Z

(

|x|2/2−u(x)
)

ρ(x)dx+
Z

Ω

(

|y|2/2− v(y)
)

dy,

where the supremum if performed over all pairs (u,v) of continuous functions on
R

d such that u(x)+ v(y) ≥ x · y pointwise.
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2.4 The Vlasov-Monge-Ampère system

Let us now derive the VMA system as the kinetic formulation of the approximate
geodesic equation (26). First, from the polar decomposition Theorem 2.2, equa-
tion (26) reads

∂ttX(t,x) = ∇ϕ(t,X(t,x)),(37)

where

∇ϕ(t,x) =
∇Ψ[Ω,ρ(t, ·)](x)− x

ε2(38)

and Ψ[Ω,ρ] is as in Definition (2.3). This means that ∇ϕ satisfies (5) in a weak
form with the additional condition that the range of x→ x+ε2∇ϕ(t,x) is contained
in Ω.

Next, let f 0 ≥ 0 be a given initial density function, that we assume to be in
L∞(Rd ×R

d), compactly supported and satisfying the compatibility condition
Z

f 0(x,ξ)dxdξ = |Ω|.(39)

For each t ≥ 0, let us define (x,ξ) → f (t,x,ξ) to be f 0 pushed forward by the
following ODE

∂tX(t,x,ξ) = Ξ(t,x,ξ)(40)

∂tΞ(t,x,ξ) = (∇ϕ)(X(t,x,ξ))(41)

(X ,Ξ)(t = 0,x,ξ) = (x,ξ).(42)

Then f satisfies the following kinetic (or Liouville) equation

∂ f
∂t

+∇x · (ξ f )+∇ξ · (∇ϕ f ) = 0(43)

f (0, ·, ·) = f 0,(44)

which must be understood in the following weak sense

∀g ∈C∞
c ([0,+∞)×R

d ×R
d),

Z ∞

0
dt

Z

Rd×Rd

(

∂g
∂t

+ξ ·∇xg+∇ϕ ·∇ξg

)

f dxdξ

= −
Z

Rd×Rd
f0(x,ξ)g(t = 0,x,ξ)dxdξ.(45)

This linear Liouville equation is nonlinearly coupled to equation (38), where ρ
is linked to f by equation (3). Finally, we have defined, through (38,43,44), the
weak formulation of the V MA initial value problem.
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The energy of the system is defined by

E(t) =
1
2

Z

Rd×Rd
f (t,x,ξ)|ξ|2dxdξ

+
1

2ε2

Z

Rd
ρ(t,x) |∇Ψ[Ω,ρ](t,x)− x|2 dx.(46)

3 Existence of global renormalized weak solutions

The main result of this section is as follows:

Theorem 3.1 Let (x,ξ)→ f 0(x,ξ)≥ 0 be in L∞(Rd ×R
d), with compact support

in both x and ξ, satisfying condition (39).
Then the V MA system (38,43,44) admits a global weak solution ( f ,ρ,Ψ), with
f ∈ L∞(R+×R

d ×R
d) and (ρ,∇ψ) ∈ L∞([0,T ]×R

d) for all T > 0. In addition,
each such weak solution enjoys the following properties:

• f is a continuous function of t, valued in Lp(Rd ×R
d), for every 1 ≤ p < ∞

• the density ρ is a continuous function of t, valued in Lp(Rd), for every
1 ≤ p < ∞,

• the support of f (t, ·, ·) in (x,ξ) is compact, with a diameter growing no more
than linearly in t.

• the total energy defined by (46) is conserved,

• the ’renormalization’ property (in the sense of [14])

∂g( f )
∂t

+∇x · (ξg( f ))+∇ξ · (∇ϕg( f )) = 0

holds true for all g ∈C1(R),

• the trajectories of (41,42) are uniquely defined for almost every initial con-
dition (x,ξ),

• t → f (t, ·, ·) is just f 0 pushed forward along the trajectories of (41,42).

Proof of Theorem 3.1:
We build a sequence of approximate solutions ( fh,Ψh)h>0 by time discretization
and let the time step h go to zero. To handle the limiting process, the non-linear
terms will be treated with the help of Theorem 2.4. More precisely if one can
extract a subsequence such that, for every t, fh(t, ·, ·) converges weakly, then we
can deduce from Theorem 2.4 that the corresponding sequence ∇Ψh(t, ·) will con-
verge strongly, and this will allow us pass to the limit in the nonlinear term.
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3.1 Construction of a sequence of approximate solutions

We consider η ∈ C∞
c (Rd) such that η ≥ 0,

R

Rd η = 1 and ηh = 1
hd η( ·

h). We then
seek approximate solutions as solutions of the approximate problem

∂ fh

∂t
+ξ ·∇x fh +

∇Ψh(x)− x
ε2 ·∇ξ fh = 0(47)

fh(0,x,ξ) = f 0
h (x,ξ) = f0 ∗x,ξ ηh ⊗ηh(48)

Ψh(t) = ηh ∗Ψ[Ω,ρ(t = nh)] for t ∈ [nh,(n+1)h[.(49)

∇Ψh being a smooth function of space this regularized equation admits a unique
solution that one builds by the method of characteristics. Since the flow is divergence-
free in the phase space, the solution fh satisfies

∀p ∈ [1,+∞], ‖ fh(t)‖Lp(Rd×Rd) = ‖ fh(0)‖Lp(Rd×Rd).(50)

By construction (through Theorem 2.2), ∇Ψh is valued in the convex bounded set
Ω. Suppose that f 0(x,ξ) vanishes outside of the set {x2 + ε2ξ2 ≤ C2} for some
constant C > 0 fixed and denote R = supy∈Ω |y|. Then we have

Lemma 3.2 ∀t ≥ 0, fh(t, ·, ·) is supported in {
√

x2 + ε2ξ2 ≤C +Rt/ε}.

Proof : We just write
ε2∂ttX +X = ∇Ψh(X)

in complex notation −iε∂tZ + Z = F , where Z = X + iε∂tX and F = ∇Ψh(X),
which is bounded by R. This leads to

Z(t) = Z(0)exp(−it/ε)+ iε−1
Z t

0
exp(−i(t − s)/ε)F(s)ds

ant the desired bound easily follows. Notice here a sharp contrast with the classi-
cal VP system, for which the ξ−support of the solutions cannot be controlled so
easily (except in the one dimensional case). �

Convergence of the sequence of approximate solutions
Using (50) and Lemma 3.2 there exists, for any 1 < p < ∞, up to the extraction
of a subsequence, f ∈ Lp([0,T ]×R

d ×R
d) such that fh converges weakly to f as

h → 0.
It remains to show that the product fh∇Ψh converges to the good limit. For this

we need strong convergence of ∇Ψh. We already know that ∇Ψh ∈ L∞([0,T ]×
R

d). We claim that for all t > 0, ∇Ψh(t, ·) converges strongly to ∇Ψ(t, ·) in
Lq

loc(R
d), ∀q ∈ [1,+∞[. Indeed, such a strong convergence of ∇Ψh follows from

Theorem 2.4 provided that we have for all t > 0,
Z

Rd
g(x)ρh(t,x)dx →

Z

Rd
g(x)ρ(t,x)dx,(51)
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for any g∈C0(Rd) such that
R

(1+ |x|2)g(x)dx < +∞. Note first that from Lemma
3.2, we can restrict ourselves here to test functions g that are compactly supported.
Then we show that the sequence ρh is relatively compact in C([0,T ],Lp(Rd)−w).
This is done by the following lemma:

Lemma 3.3 For all T > 0, for all p with 1 ≤ p < ∞ the sequence fh (resp. ρh)
satisfies

• fh (resp. ρh) is a bounded sequence in L∞([0,T ];Lp(Rd ×R
d)) (resp. in

L∞([0,T ];Lp(Rd)),

• ∂t fh (resp. ∂tρh) is a bounded sequence in L∞([0,T ];W−1,p(Rd ×R
d))),

(resp. in L∞([0,T ];W−1,p(Rd)),

and one can extract from fh (resp. from ρh) a subsequence converging in C([0,T ],Lp(Rd×
R

d)−w) (resp. in C([0,T ],Lp(Rd)−w)).

Proof: the first point uses equation (50) and Lemma 3.2. The second point uses
equation (43) and the identity:

∂tρh = −∇x ·
Z

Rd
ξ fhdξ,

with the fact that the fh are uniformly compactly supported in x and ξ (Lemma
3.2); the last point is a classical result of functional analysis (see [17] for example).
�

This lemma and Lemma 3.2 yield (51). Then using Theorem 2.4, with ρ the limit
of a subsequence of ρh, we have convergence of the sequence ∇Ψh to ∇Ψ[Ω,ρ]
in C([0,T ],Lp(Rd)). We have extracted a subsequence fh such that

• fh converges in C([0,T ],Lp(Rd ×R
d)−w) for every 1 ≤ p < ∞.

• ρh converges in C([0,T ],Lp(Rd)−w) for every 1 ≤ p < ∞.

• ∇Ψh(t, ·) converges in Lp(Rd) for every t and for every 1 ≤ p < ∞.

Thus the limit ( f ,∇Ψ) satisfies equations (43-44) and the first part of Theorem
3.1 is proved.
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3.2 Conservation of energy

We now give a rigorous proof of the conservation of energy following an argument
going back to F. Otto (in an unpublished work on the semi-geostrophic equations).
We recall the definition of the energy as

E(t) =
1
2

Z

Rd×Rd
f (t,x,ξ)|ξ|2dxdξ+

1
2ε2

Z

Rd
ρ(t,x)|∇Ψ(t,x)− x|2dx.

We call the first term the kinetic energy Ec and the second term, multiplied by ε2,
the (normalized) potential energy Ep. We have

Proposition 3.4 Let f be any solution of (43) such that on every interval [0,T ],
f (t, ·, ·) is uniformly compactly supported in |x|, |ξ| ≤ R(T ) for some function
R(T ). Then the energy of the solution f is conserved.

Proof: From Theorem 2.5, we know that

Ep(t) =

Z

(

|x|2/2−Ψ(t,x)
)

ρ(t,x)dx+

Z

Ω

(

|y|2/2−Φ(t,y)
)

dy

= sup
u,v

Z

(

|x|2/2−u(x)
)

ρ(t,x)dx+
Z

Ω

(

|y|2/2− v(y)
)

dy,

where the supremum if performed over all pairs (u,v) of continuous functions on
R

d such that u(x)+ v(y) ≥ x · y pointwise. Thus for each t, t0 ∈ R+, we have

Ep(t) ≥
Z

(

|x|2/2−Ψ(t0,x)
)

ρ(t,x)dx+

Z

Ω

(

|y|2/2−Φ(t0,y)
)

dy,

and this implies

Ep(t)−Ep(t0) ≥
Z

Rd

(

|x|2/2−Ψ(t0,x)
)

(ρ(t,x)−ρ(t0,x))dx

=

Z t

t0

Z

Rd
∂tρ(s,x)

(

|x|2/2−Ψ(t0,x)
)

dxds

=

Z t

t0

Z

Rd×Rd
ξ f (s,x,ξ)(x−∇Ψ(t0,x))dxdξds.

Notice that the product in the second line is licit since ∂tρ is in W−1,p for any 1 ≤
p < ∞, f (t, ·, ·) and therefore ρ(t, ·) are compactly supported in space uniformly
on [0,T ], and Ψ−|x|2/2 is in W 1,∞

loc . Exchanging t0 and t we would have found

Ep(t0)−Ep(t) ≥
Z t0

t

Z

Rd×Rd
ξ f (s,x,ξ)(x−∇Ψ(t,x))dxdξds,
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moreover we have for the kinetic energy

ε2(Ec(t)−Ec(t0)) =

Z t

t0

Z

Rd×Rd
ξ f (t,x,ξ) · (∇Ψ(s,x)− x)dxdξds.

Dividing by t − t0, t > t0 we find

ε2 E(t)−E(t0)
t − t0

≥ 1
t − t0

Z t

t0

Z

Rd×Rd
ξ f (s,x,ξ) · (∇Ψ(s,x)−∇Ψ(t0,x))dxdξds

and

ε2 E(t)−E(t0)
t − t0

≤ 1
t − t0

Z t

t0

Z

Rd×Rd
ξ f (s,x,ξ) · (∇Ψ(t,x)−∇Ψ(s,x))dxdξds.

We know from 3.1 that ∇Ψ(t, .) converges strongly in Lp
loc(R

d),1 ≤ p < ∞ to
∇Ψ(t0, .) as t goes to t0, and so the right hand sides of the above inequalities
converges to 0 and we conclude that

lim
t>t0

E(t)−E(t0)
t − t0

= 0.

We could take t < t0 and find the same result. Finally we conclude that

dE
dt

≡ 0.

�

3.3 Renormalized solutions and existence of characteristics

The study of renormalized solutions for transport equations has been introduced
in [14] for vector fields in W 1,1 with bounded divergence. These results have been
extended by Bouchut [4] to the case of Vlasov-type equations with acceleration
field in BV (A recent result of L. Ambrosio, [1], has extended the existence of
renormalized solutions to transport equations with vector fields in BV and with
bounded divergence). The fact that solutions of (43, 44) are renormalized solu-
tions is an immediate consequence of the following theorem:
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Theorem 3.5 (F. Bouchut)
Let f ∈ L∞(]0,T [,L∞

loc(R
d ×R

d)) satisfy

∂ f
∂t

+∇x · (ξ f )+∇ξ · (E(t,x) f ) = 0,

with E(t,x) ∈ L1(]0,T [;L1
loc(R

d))∩L1(]0,T [;BVloc(R
d)),

then, for any g ∈C1(R),

∂g( f )
∂t

+∇x · (ξg( f ))+∇ξ · (E(t,x)g( f )) = 0,

and for every 1 ≤ p < ∞, f belongs to C(]0,T [,Lp
loc(R

d ×R
d)).

In our case the BV bound on the acceleration ∇Ψ is a direct consequence of
the fact that Ψ is a globally Lipschitz convex function. This result implies the
strong time continuity results for f and ρ in Theorem 3.1. Finally, as in [14], it
can be deduced from the renormalization property that
1) for almost every initial condition (x,ξ), there is a unique trajectory solving
(41,42),
2) t → f (t) is just f 0 pushed forward along these trajectories.

A complete proof is given in appendix.
Remark: From the renormalization property it follows that, once the potential

Ψ(t,x) is known, there exists a unique solution to (43) in L∞
t,x,ξ. Of course, this

does not imply at all the uniqueness of weak solutions to the Vlasov-Monge-
Ampère system! This paragraph ends the proof of Theorem 3.1.

4 Strong solutions

In this section we show existence of strong solutions over a finite time intervall. To
do so, we need regularity estimates for solutions of Monge-Ampère equation. We
will get rid of the difficulties that may arise at the free boundary of the set {ρ >
0} by considering the periodic case. Note that for the Vlasov-Poisson system,
existence of global smooth solutions has been proved (see [24]); in the present
case, due to the non-linearity of the Monge-Ampère equation, we were only able
to obtain a result for finite time.

4.1 The periodic Vlasov-Monge-Ampère system

Polar factorization of maps in a periodic domain

The polar decomposition Theorem has been generalized in [21] to general Rie-
mannian manifolds, while the particular case of the flat torus T

d = R
d/Z

d had
been addressed in [11].
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Definition 4.1 We say that a mapping Y : R
d → R

d is Z
d additive if the mapping

x → Y (x)− x is Z
d periodic. The set of all measurable Z

d additive mappings is
denoted by P . For each x ∈ R

d we call x̂ the class of x in R
d/Z

d , and for any
X ∈ P , X̂ the mapping of T

d into itself defined by

∀x ∈ R
d, X̂(x̂) = ˆX(x).

We may say if no confusion is possible additive instead of Z
d additive. Then the

following theorem can be deduced from the results of [11] and [21]:

Theorem 4.2 Let X : R
d → R

d be additive and assume that ρX = X#dx has a
density in L1([0,1]d). Then there exists a unique pair (∇ΦX ,πX) such that

X = ∇ΦX ◦πX

where ΦX is a convex function and ΦX(x)−|x|2/2 is Z
d periodic, πX : R

d → R
d

is additive and π̂X is Lebesgue measure preserving in T
d . Moreover we have

‖X −πX‖L2([0,1]d) = ‖X̂ − π̂X‖L2(Td)

and, ΨX denoting the Legendre transform of ΦX , we have

πX = ∇ΨX ◦X .

Remark : The pair (ΦX ,ΨX) is uniquely defined by the density ρX = X#dx.

Notice that the periodicity of ΦX(x)−|x|2/2 implies that ∇ΦX and ∇ΨX are Z
d

additive, and that ΨX − |x|2/2 is also Z
d periodic. As in the previous case, we

introduce the following notation:

Definition 4.3 Let ρ be a probability measure on T
d , with density in L1(Td). We

denote Φ[ρ] (resp. Ψ[ρ]) the unique up to a constant convex function such that

Φ[ρ]−|x|2/2 is Z
d periodic ,(52)

∀ f ∈C0(Td),
Z

Td
f (∇̂Φ[ρ](x))dx =

Z

f dρ(53)

(resp. its Legendre fenchel transform).

Ψ[ρ] will thus be a generalized solution of the Monge-Ampère equation
detD2Ψ = ρ.
Next the results of Caffarelli ([8], [9], [10]) on the regularity of solutions of the
Monge-Ampère equation yield the following theorem:
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Theorem 4.4 Let ρ > 0 be a Cα(Td) probability density on T
d , for some α∈]0,1[.

Then Ψ = Ψ[ρ] (see Definition 4.3) is a classical solution of

detD2Ψ = ρ

and satisfies:

‖∇Ψ(x)− x‖L∞ ≤C(d) =
√

d/2

‖D2Ψ‖Cα ≤ K(m,M,‖ρ‖Cα)

where m = infρ and M = supρ.

This theorem is an adaptation of the regularity results stated above, whose com-
plete proof is given in appendix.

The periodic Vlasov-Monge-Ampère system

We now seek f : (t,x,ξ) ∈ (Td ×R
d × [0,T ]) → f (t,x,ξ) ∈ R

+, for some T >
0, solution of the initial value problem for the periodic Vlasov-Monge-Ampère
(V MAp) system

∂ f
∂t

+∇x · (ξ f )+
1
ε2 ∇ξ · ((∇Ψ[ρ](x)− x) f ) = 0(54)

f (0, ·, ·) = f 0,(55)

for a given f 0 satisfying the compatibility condition
Z

f 0(x,ξ)dxdξ = 1.(56)

The macroscopic density ρ is still related to f by equation (3), and Ψ[ρ] is as in
Definition 4.3.

4.2 Existence of local strong solutions

We mention first that the proof of existence of global weak solutions adapts with
minor changes to the periodic case, and that the obtain for the periodic (V MAp)
system the same result as Theorem 3.1.

Our result in this section is the following:

Theorem 4.5 Let f0 ∈W 1,∞(Td ×R
d), be such that:

∃C0 > 0 : f0 ≡ 0 for |ξ| ≥C0,(57)

∃m > 0 : ρ0(x) =
Z

Rd
f0(x,ξ)dξ ≥ m ∀x ∈ T

d ,(58)

then there exists T > 0 and a solution f to the V MAp system (54,55), in the space
W 1,∞([0,T ]×T

d ×R
d).
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Proof of Theorem 4.5: First we deduce from Theorem 4.4:

Corollary 4.6 Let ρ,Ψ = Ψ[ρ] be as in Theorem 4.4. Then, we have

‖D2Ψ‖L∞(Td) ≤C(m,M,‖∇ρ‖L∞(Td)),

and we can define

K(m,M, l) = sup{‖D2Ψ[ρ]‖L∞(Td); ‖∇ρ‖L∞(Td) ≤ l, m ≤ ρ ≤ M} < ∞.

We see that in order to use Theorem 4.4 we need ρ to be bounded away from 0. In
the following lemma, we show that under suitable assumptions on the initial data,
it is possible to enforce locally in time the condition 0 < m ≤ ρ ≤ M.

Lemma 4.7 Let f ∈ L∞([0,T ]×T
d ×R

d) satisfy

∂ f
∂t

+∇x · (ξ f )+∇ξ · (E(t,x) f ) = 0

f (0, ., .) = f 0,

with E ∈ L1([0,T ],BV(Td)) and

‖E‖L∞([0,T ]×Td) ≤ F,

let the initial condition f0 be such that

a(x,ξ) ≤ f (0,x,ξ) ≤ b(x,ξ),

with ρa(x) =
R

a(x,ξ)dξ ≥ m > 0 and ρb(x) =
R

b(x,ξ)dξ ≤ M < ∞ and a,b sat-
isfying

|∇x,ξ(a,b)| ≤ c
1+ |ξ|d+2 .

Then there exists a constant R > 0 depending on m,M,c,F, such that

(ρa(x)−Rt)≤ ρ(t,x)≤ (ρb(x)+Rt).

The proof of the lemma is given in appendix.
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4.2.1 Construction of approximate solutions

Let us consider (t,x) → E(t,x) a smooth vector-field on T
d , and write

TE( f ) =
∂ f
∂t

+∇x · (ξ f )+∇ξ · (E f ) .

If f satisfies TE( f ) = 0, we have

TE∇x f = −(∇xE) ·∇ξ f

TE∇ξ f = −∇x f

TE∂t f = −∂tE ·∇ξ f ,

and therefore

d
dt
‖∇x,ξ f‖L∞ ≤ ‖∇x,ξ f‖L∞(1+‖∇xE‖L∞)(59)

which implies

‖∇x,ξ f (t)‖L∞ ≤ ‖∇x,ξ f (t = 0)‖L∞ exp

(

Z t

0
(1+‖∇xE(s)‖L∞)ds

)

.

Now let f0 be given as in Theorem 4.5, satisfying (57,58). Thanks to Lemma 4.7
it is possible to find t1,m,M such that for any f satisfying

TE( f ) = 0

f (t = 0) = f0,

for any field E ∈ L1([0, t1],BV (Td)) satisfying ‖E‖L∞([0,t1]×Td) ≤
√

d/(2ε2), we
have

m ≤ ρ(t, ·)≤ M, ∀t ∈ [0, t1](60)

|ξ|max ≤C1 = 10C0,(61)

with f supported in {|ξ| ≤ |ξ|max} and with C0 as in Theorem 4.5, so that we have
for 0 ≤ t ≤ t1:

‖∇ρ‖L∞ ≤ ωdCd
1‖∇x f‖L∞ ,(62)

ωd being the volume of the unit ball of R
d . Then we construct a family of approx-

imate solutions ( fh,Ψh) to (54), in the same spirit as we did for weak solutions,
by solving

∂ fh

∂t
+ξ ·∇x fh +

∇Ψh(x)− x
ε2 ·∇ξ fh = 0

fh(t = 0) = f0

Ψh(t) = Ψ[ρ(t = nh)] for t ∈ [nh,(n+1)h[.
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Note that we have neither mollified the term ∇Ψ nor the initial condition and that
‖∇Ψh − x‖L∞ ≤ C(d) =

√
d/2. Now choose l = 10‖∇x,ξ f0‖L∞ωdCd

1 , if for some
t = nh ≤ t1 −h we have

‖∇x,ξ f h(t = nh)‖L∞ ≤ l

ωdCd
1

this implies, thanks to (62), that

‖∇xρh(t = nh)‖L∞ ≤ l,

and conditions (60,61) are satisfied because t ≤ t1. Then if we denote K = K(m,M, l)
as in Corollary 4.6, we have for nh ≤ t < nh+h,

d
dt
‖∇x,ξ f h‖L∞ ≤ (K +1)‖∇x,ξ f h‖L∞ ,

and then

‖∇x,ξ f h(t = nh+h)‖L∞ ≤ ‖∇x,ξ f h(t = nh+h)‖L∞ exp(K +1)h.

So if we define T as

T = min{t1, t2},

with exp((K +1)t2) = 10, we have for 0 ≤ t ≤ T ,

‖∇x,ξ f h‖L∞ ≤ 10‖∇x,ξ f0‖L∞

‖∇ρh‖L∞ ≤ l

m ≤ ρ ≤ M

‖D2Ψh‖L∞ ≤ K.

Thus we can extract a subsequence converging to a strong solution of (54,55).
Then we argue as in section 2 to show that all terms converge to the correct limit.
This ends the proof of Theorem 4.5.

�

5 Asymptotic analysis

5.1 Convergence to the Euler equation

In this section we justify that the Vlasov-Monge-Ampère system describes ap-
proximate geodesics on volume preserving transformations: indeed we will show
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that weak solutions of this system converge to a solution of the incompressible
Euler equations (E) as the parameter ε goes to 0, at least for well prepared initial
data. We restrict ourselves to the space periodic case, the macroscopic density ρ
is still defined by (3) and the convex potentials Φ[ρ],Ψ[ρ] are still as in Definition
4.3.

For sake of simplicity, we slightly modify our notations and introduce the
following rescaled potentials

ϕ̃[ρ] =
|x|2/2−Ψ[ρ]

ε
,

ϕ[ρ] =
Φ[ρ]−|x|2/2

ε
,

so that

∇ϕ[ρ] = ∇ϕ̃[ρ]◦∇Φ[ρ],

and the VMAp system takes the following form:

∂ f
∂t

+ξ ·∇x f − ∇ϕ̃[ρ]

ε
·∇ξ f = 0(63)

f (0, ·, ·) = f0.(64)

The energy is given by

E(t) =
1
2

Z

f (t,x,ξ)|ξ|2dxdξ+
1
2

Z

|∇ϕ|2dx(65)

=
1
2

Z

f (t,x,ξ)|ξ|2dxdξ+
1
2

Z

ρ|∇ϕ̃|2dx.

It has been shown in section 3.2 that the energy is conserved. The Euler equations
for incompressible fluids (E) reads:

∂tv+ v ·∇v = −∇p(66)

∇ · v = 0.(67)

We shall here consider a smooth solution of E and a weak solution of V MAp, with
‘well prepared initial data’, meaning that the initial data of both systems are close
a time 0. Then we will show that as time evolves, both solutions stay close to each
other.

Theorem 5.1 Let f be a weak solution of (63, 64) with finite energy, let (t,x) →
v(t,x) be a smooth C2([0,T ]×T

d) solution of (66,67) for t ∈ [0,T ], and p(t,x)
the corresponding pressure, let

Hε(t) =
1
2

Z

f (t,x,ξ)|ξ− v(t,x)|2dxdξ+
1
2

Z

|∇ϕ(t,x)|2dx,
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then

Hε(t) ≤C exp(Ct)(Hε(0)+ ε2), ∀t ∈ [0,T ].

C depends only on T,sup0≤s≤T

{

‖v(s, .), p(s, .),∂t p(s, .),∇p(s, .)‖W1,∞(Td)

}

.

Remark 1: This estimate is enough to compare the weak solutions f to the VMAp

system (for well prepared initial data) and the smooth solutions v of the Euler
equations. For instance,

R

f (t = 0,x,ξ)dξ ≡ 1 implies ϕ(t = 0,x) ≡ 0 and there-
fore,

Z

|ξ− v(t = 0,x)|2 f (t = 0,x,ξ)dxdξ ≤C0ε2

implies

sup
t∈[0,T ]

Z

|ξ− v(t,x)|2 f (t,x,ξ)dxdξ ≤CT ε2,

where CT depends only on C0, T and v.
Remark 2: We see that we consider nearly monokinetic initial data for the VMAp

system.

Proof of Theorem 5.1

We shall show that

d
dt

Hε = −
Z

f (t,x,ξ)(ξ− v)∇v(ξ− v)

+

Z

f (t,x,ξ)
1
ε

v ·∇ϕ̃

−
Z

f (t,x,ξ)(v−ξ) ·∇p,(68)

where we will use the notation

u ∇v w =
d

∑
i, j=1

ui∂iv
jw j.

The proof of this identity is postponed to the end of the section.
Now we look at all terms of the right hand side. All the constants that we

denote by C are controlled as in Theorem 5.1. We set

T1 = −
Z

f (t,x,ξ)(ξ− v)∇v(ξ− v),

T2 =

Z

f (t,x,ξ)
1
ε

v ·∇ϕ̃,

T3 = −
Z

f (t,x,ξ)(v−ξ) ·∇p.
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First we have T1 ≤CHε. For T2 we have

T2 =
1
ε

Z

ρv ·∇ϕ̃ =
1
ε

Z

v(∇Φ[ρ]) ·∇ϕ̃(∇Φ[ρ])

=
1
ε

Z

v(x+ ε∇ϕ) ·∇ϕ

=
1
ε

Z

v ·∇ϕ+(v(x+ ε∇ϕ)− v(x)) ·∇ϕ

≤ 0+C
Z

|∇ϕ|2 ≤CHε,

we have used that v is divergence-free thus its integral against any gradient is zero.
Next we have the following lemma:

Lemma 5.2 Let G : T
d →R be Lipschitz continuous such that

Z

Td
G = 0, then for

all R > 0, one has

|
Z

ρG| ≤ 1
2
‖∇G‖L∞(

1
R

ε2 +RHε).

Proof: We just write a Taylor expansion of G:
∣

∣

∣

∣

Z

(ρ−1)G

∣

∣

∣

∣

=

∣

∣

∣

∣

Z

(G(x+ ε∇ϕ)−G(x)

∣

∣

∣

∣

≤ ε‖∇G‖L∞‖∇ϕ‖L1 ≤ ε‖∇G‖L∞H1/2
ε ≤ 1

2
‖∇G‖L∞(

1
R

ε2 +RHε).

�

Again, since v is divergence-free,
R

v ·∇p = 0, thus from Lemma 5.2 we have

−
Z

ρv ·∇p ≤C(ε2 +Hε).

We remind that
∂tρ(t,x) = −∇x ·

Z

f (t,x,ξ)ξdξ.

Since it costs no generality to suppose that for all t ∈ [0,T ],
R

p(t,x)dx ≡ 0, we
obtain that

Z

f (t,x,ξ)ξ ·∇p =
Z ∂ρ

∂t
p

=
d
dt

Z

ρp−
Z

ρ
∂p
∂t

≤ C(ε2 +Hε)−
dQ
dt
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again using Lemma 5.2, where Q(t) = −
Z

ρp. Thus

T3 ≤C(Hε + ε2)− dQ
dt

and we have the following inequality:

d
dt

(Hε +Q) ≤CHε +O(ε2).(69)

Moreover, using Lemma 5.2,

|Q(t)| ≤Cε2 +Hε(t)/2,(70)

thus

Hε +Q ≥ Hε/2−Cε2,(71)

and we can transform (69) in

d
dt

(Hε +Q) ≤C(Hε +Q)+Cε2.(72)

Gronwall’s lemma then yields

Hε(t)+Q(t)≤ (Hε(0)+Q(0)+Ctε2)exp(Ct).

Using again (70) we obtain

Hε(t)≤C(Hε(0)+ ε2)exp(Ct),(73)

which achieves the proof of Theorem 5.1.
�

Proof of identity (68):
We first notice that, for all g ∈C1(R×T

d) , we have:

d
dt

Z

ρ(t,x)g(t,x)dx =
Z Z

f (t,x,ξ)(∂tg(t,x)+ξ ·∇g(t,x))dξdx.

We also use the conservation of energy defined by (65). Then we get

d
dt

Hε =
d
dt

1
2

Z

f (t,x,ξ)(|v|2−2ξ · v)dxdξ

=
Z

f (t,x,ξ)(∂tv · v−∂tv ·ξ)− 1
2

Z

∇x · ( f (t,x,ξ)ξ)(|v|2−2ξ · v)

+
1
2

Z

∇ξ · (
1
ε

∇ϕ̃ f (t,x,ξ))(|v|2−2ξ · v).
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Integrating by part, we get

d
dt

Hε =
Z

f (t,x,ξ)(∂tv · v−∂tv ·ξ)+
Z

f (t,x,ξ)ξ∇v(v−ξ)

+

Z

f (t,x,ξ)
1
ε

∇ϕ̃ · v.

The first two terms can be rewritten as
Z

f (t,x,ξ)(∂tv · v−∂tv ·ξ)+

Z

f (t,x,ξ)ξ∇v(v−ξ)

= −
Z

f (t,x,ξ)(v−ξ)∇v(v−ξ)+
Z

f (t,x,ξ)∂tv · (v−ξ)

+
Z

f (t,x,ξ)v∇v(v−ξ)

= −
Z

f (t,x,ξ)(v−ξ)∇v(v−ξ)+

Z

f (t,x,ξ)(v−ξ) · (∂tv+ v ·∇v),

and finally using equation (66) we conclude.
�

5.2 Comparison with the Euler-Poisson system

Here we show that, as mentioned in the introduction, the Euler-Poisson (EP) sys-
tem is a more accurate approximation to the Vlasov Monge-Ampère system than
the Euler equations, as ε goes to zero.

The EP system Let us recall that the (pressureless) Euler-Poisson system de-
scribes the motion of a continuum of electrons on a neutralizing background of
ions through electrostatic interaction. Let v̄ andρ̄ be the velocity and density of
electrons. Let ϕ̄ be the (rescaled) electric potential. Under proper scaling, these
functions of x ∈ R

d and t > 0 satisfy the Euler-Poisson system:

∂t v̄+ v̄ ·∇ v̄ = −1
ε

∇ϕ̄(74)

∂t ρ̄+∇ · (ρ̄ v̄) = 0(75)

1− ε∆ϕ̄ = ρ̄.(76)

The so-called ’quasi-neutral’ limit ε → 0 of similar systems has been studied for
example in [16] and [12], and convergence results have been established using
pseudo-differentials energy estimates. For well-prepared initial data, solutions of
EP are expected to behave as solutions of Euler incompressible equations. This
fact is proved by the second author in his PhD thesis ([20], Chap 2), see also [19].
We give here the complete result that we will use herafter. We will denote by v̄ε

(resp. f ε) the solutions of the EP (resp. VMAp) system with parameter ε.
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Theorem 5.3 Let v be a solution of (66,67) on [0,T ]×T
d , with initial data v0,

and satisfying v ∈ L∞([0,T ],Hs(Td)) for some s ≥ s0(d). There for some s′ > 0,
s′ < s, if ( v̄ε0, ρ̄

ε
0) is such that the sequences

v̄ε0 − v0

ε
,

ρ̄ε
0 −1

ε2

are bounded in Hs′(Td), then there exists Tε > 0 with liminfε→0 Tε ≥ T and a
sequence ( v̄ε, ρ̄ε) of solutions to the EP system on [0,Tε[ with initial data ( v̄ε0, ρ̄

ε
0),

belonging to L∞([0,Tε],Hs′(Td)). Moreover, for ε small enough, the sequences

v̄ε − v
ε

,
ρ̄ε−1

ε2

are bounded in L∞([0,T ],Hs′(Td)). Finally, s′ goes to +∞ as s goes to +∞.

Assumptions

Here we consider v a solution to E (66, 67) with initial data v0, a sequence f ε of
solutions of V MAp (63,64) with initial data f ε

0 , and a sequence ( v̄ε, ρ̄ε) solutions
of EP (74, 75, 76) with initial data ( v̄ε0, ρ̄

ε
0). We still define Hε as in Theorem 5.1:

Hε(t) =
1
2

Z

f ε(t,x,ξ)|ξ− v(t,x)|2dxdξ+
1
2

Z

|∇ϕε|2dx.

We introduce the following assumptions:

H0 v solution of E satisfies, for some C0 > 0, ‖v‖L∞([0,T ]Hs(Td)) ≤ C0, and s is

large enough so that s′ in Theorem 5.3 satisfies s ≥ s′ > [
d
2
]+2.

H1 The sequence ( v̄ε0, ρ̄
ε
0) of initial data of EP is such that, for some C1 > 0,

sup
ε>0

{

1
ε
‖ v̄ε0 − v‖Hs′ (Td),

1
ε2 ‖ρ̄ε−1‖Hs′(Td)

}

≤C1.

H2 The sequence f ε
0 satisfies Hε(0) ≤C2ε2 for some C2 > 0.

H0, H1, H2 imply that

1. There exists C̃0 such that

‖v‖L∞([0,T ],W 2,∞(Td)) ≤ C̃0.(77)

27



2. From Theorem 5.1, there exists C̃1 such that

Hε(t) ≤ C̃1ε2 for t ∈ [0,T ].(78)

3. From Theorem 5.4 and Sobolev imbeddings, there exists C̃2 such that

sup
ε<ε0

{

∥

∥

∥

∥

v̄ε − v
ε

,
ρ̄ε −1

ε2

∥

∥

∥

∥

L∞([0,T ],W 2,∞(Td))

}

≤ C̃2.(79)

We are now ready to prove the following result:

Theorem 5.4 Let f ε
0 , v̄ε0, ρ̄

ε
0,v,T be as above, satisfying assumptions H0, H1, H2.

Define

Gε(t) =
1
2

Z

f ε(t,x,ξ)|ξ− v̄ε(x)|2dxdξ+
1
2

Z

|∇ϕε −∇ϕ̄ε|2dx.

Then there exists C > 0 such that

Gε(t) ≤C exp(Ct)(Gε(0)+ ε3), ∀t ∈ [0,T ]

where C depends on s′,C0,C1,C2,T .

Remark: the theorem shows that the distance between solutions of the (EP) sys-
tem and the V MAp system measured with Gε is like O(ε3) whereas Theorem 5.1
showed that the distance between the solution of the Euler equation and the VMAp

system was like O(ε2). Note also that Gε and Hε can both be interpreted as the
square of a distance.

Proof of Theorem 5.4: For notational simplicity, we drop most ε’s. Proceeding
as in (68) and noticing that:

d
dt

Z

Td
|∇ϕ̄|2 =

1
ε

Z

Td
ρ̄ v̄ · ∇̄ϕ

we obtain the following identity:

d
dt

Gε = −
Z

f (t,x,ξ)(ξ− v̄)∇ v̄(ξ− v̄)

+
Z

f (t,x,ξ)
1
ε

v̄ · ∇̃ϕ−
Z

f (t,x,ξ)
1
ε

v̄ · ∇̄ϕ

+
Z

f (t,x,ξ)
1
ε

ξ ·∇ϕ̄+
Z

1
ε

ρ̄ v̄ · ∇̄ϕ

− d
dt

Z

∇ϕ̄ ·∇ϕ.(80)
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Then we notice
Z

f (t,x,ξ)
1
ε

ξ ·∇ϕ̄ =
d
dt

(

Z

1
ε

ρϕ̄
)

− 1
ε

Z

ρ∂t ϕ̄.

Next, we have the following lemma:

Lemma 5.5 Define for any θ ∈C2(Td)

< ∇θ > (x) =
Z 1

0
∇θ(x+ sε∇ϕ(x))ds,

< ∇2θ > (x) =

Z 1

0
(1− s)∇2θ(x+ sε∇ϕ(x))ds.

Then
Z

ρθ =
Z

θ+ ε
Z

< ∇θ > ·∇ϕ

=

Z

θ+ ε
Z

∇θ ·∇ϕ+ ε2
Z

< ∇2θ > ∇ϕ∇ϕ.

Proof: The proof just uses the Taylor expansion and the identity
R

ρθ =
R

θ(x+ ε∇ϕ).
�

Using Lemma 5.5, we get

1
ε

Z

ρ∂t ϕ̄

=
1
ε

Z

∂t ϕ̄+
Z

∂t∇ϕ̄ ·∇ϕ+ ε
Z

< ∂t∇2ϕ̄ > ∇ϕ∇ϕ.

We claim that, under our assumptions, we have

‖∂t∇2ϕ̄‖L∞([0,T ′]×Td) ≤C.

Proof: from (75), we have

∂t ρ̄ = −ρ̄∇ · v̄− v̄ · ∇̄ρ.

Using (79), we obtain that ‖∂t ρ̄‖Hs′−1 ≤ Cε. Since Hs′(Td) is continuously em-

bedded in W 2,∞(Td), Hs′−1(Td) is continuously embedded in L∞(Td).
Then, using (76) and classical elliptic regularity, we have

ε‖∂t∇2ϕ̄‖Hs′−1 ≤C‖∂t ρ̄‖Hs′−1,

29



and the desired result follows.
�

This implies, using (78), that
∣

∣

∣

∣

ε
Z

< ∂t∇2ϕ̄ > ∇ϕ∇ϕ
∣

∣

∣

∣

≤Cε3.

Next,
Z

∂t∇ϕ̄ ·∇ϕ = −
Z

∂t∆ϕ̄ϕ

=
1
ε

Z

∂t ρ̄ϕ =
1
ε

Z

ρ̄ v̄ ·∇ϕ.

Using again Lemma 5.5, we get

d
dt

Z

∇ϕ̄ ·∇ϕ

=
1
ε

d
dt

(

Z

ρϕ̄− ε2
Z

< ∇2ϕ̄ > ∇ϕ∇ϕ
)

and for the same reasons we have ‖∇2ϕ̄‖L∞([0,T ]×Td)) ≤Cε. This yields

Q(t) = ε
Z

< ∇2ϕ̄ > ∇ϕ∇ϕ = O(ε4).

Moreover, it does not cost to set
R

ϕ̄ ≡ 0 and deduce

Z

f (t,x,ξ)
1
ε

ξ ·∇ϕ̄− d
dt

Z

∇ϕ̄ ·∇ϕ = −1
ε

Z

ρ̄ v̄ ·∇ϕ+O(ε3)+
d
dt

Q.

Thus the remaining terms are

R =
1
ε

Z

[ρ∇ϕ̃−ρ∇ϕ̄+ ρ̄∇ϕ̄− ρ̄∇ϕ] · v̄.

Calculations that we postpone to the end of the proof show that

R ≤
Z

(∇ϕ−∇ϕ̄)∇ v̄(∇ϕ− ∇̄ϕ)+C
Z

|∇ϕ−∇ϕ̄|2

−1
2

Z

∇ · v̄(|∇̄ϕ|2 −2∇ϕ ·∇ϕ̄)+Cε3.(81)
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with C depending on ‖∇2 v̄‖L∞([0,T ]×Td) and ε−1‖∇3ϕ̄‖L∞([0,T ]×Td), therefore uni-
formly bounded thanks to (79). Finally we obtain

d
dt

Gε ≤ −
Z

f (t,x,ξ)(ξ− v̄)∇ v̄(ξ− v̄)+(∇ϕ− ∇̄ϕ)∇ v̄(∇ϕ− ∇̄ϕ)

−1
2

Z

(∇ · v̄)(|∇̄ϕ|2 −2∇ϕ̄ ·∇ϕ)+C
Z

|∇ϕ−∇ϕ̄|2

+Cε3 +
d
dt

Q

with |Q(t)| ≤ Cε4 for t ∈ [0,T ]. From (79) we have ‖∇ · v‖L∞([0,T ]×Td) ≤ Cε and

‖∇ϕ̄‖L∞([0,T ]×Td) ≤ Cε, whereas (78) yields
Z

|∇ϕ|2 ≤ Cε2. Note that we also

have

−
Z

f (t,x,ξ)(ξ− v̄)∇ v̄(ξ− v̄)+(∇ϕ− ∇̄ϕ)∇ v̄(∇ϕ− ∇̄ϕ)

+C
Z

|∇ϕ−∇ϕ̄|2 ≤CGε.

We conclude that

d
dt

(Gε −Q) ≤C((Gε−Q)+ ε3),

and the conclusion of Theorem 5.4 follows by Gronwall’s lemma.
�

Proof of identity (81): Here we have to compute:

R =
1
ε

Z

v̄(x+ ε∇ϕ) ·∇ϕ− ( v̄∇̄ϕ)(x+ ε∇ϕ)+(1− ε∆ϕ̄)( v̄ · ∇̄ϕ− v̄ ·∇ϕ)

Using Lemma 5.5 we have:

R =
1
ε

Z

v̄ ·∇ϕ− v̄ · ∇̄ϕ+ v̄ · ∇̄ϕ− v̄ ·∇ϕ

+
Z

∇ v̄ ·∇ϕ∇ϕ−∇( v̄∇̄ϕ)∇ϕ− v̄∇̄ϕ∆ϕ̄+ v̄∇ϕ∆̄ϕ

+
Z

(< ∇ v̄ > −∇ v̄)∇ϕ∇ϕ− ε < ∇2( v̄∇̄ϕ) > ∇ϕ∇ϕ.

We see that the first line cancels. Then we show that the last line is bounded by
Cε3.
This is obvious for the last term since from (77, 78) we have ‖ v̄‖W 2,∞ ≤ C, and
‖∇ϕ̄‖W 2,∞ ≤Cε.
Then for the first term we have the following lemma:
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Lemma 5.6 We define

∆ =
Z

(< ∇ v̄ > (x)−∇ v̄(x))∇ϕ∇ϕdx,

then one has:
|∆| ≤Cε10/3 +C

Z

|∇ϕ−∇ϕ̄|2dx.

Proof: First we show that if Θ(R) =
R

{|∇ϕ|≥R} |∇ϕ|2,

Θ(R) ≤C
Z

|∇ϕ−∇ϕ̄|2 +
Cε4

R2 .

Proof:
R

|∇ϕ|2 ≤Cε2, implies that

meas{|∇ϕ| ≥ R} ≤C(
ε
R

)2.

Since |∇ϕ̄(t,x)| ≤ ε for (t,x) ∈ [0,T ′x]×T
d

Θ(R) ≤
Z

{|∇ϕ|≥R}
|∇ϕ̄|2 +

Z

{|∇ϕ|≥R}
|∇ϕ−∇ϕ̄|2

≤ Cε4

R2 +
Z

|∇ϕ−∇ϕ̄|2 .

Then we have

∆ ≤CΘ(R)+
Z

|∇ϕ|≤R
|< ∇ v̄ > (x)−∇ v̄(x)|∇ϕ∇ϕ

with |< ∇ v̄ > (x)−∇ v̄(x)| ≤Cε |∇ϕ|
thus ∆ ≤Cε

Z

|∇ϕ|≤R
|∇ϕ|3 +CΘ(R)

≤C

(

εR
Z

|∇ϕ|2 +
ε4

R2 +
Z

|∇ϕ−∇ϕ̄|2
)

≤C

(

ε3R++
ε4

R2 +

Z

|∇ϕ−∇ϕ̄|2
)

for all R, so for R = ε(1/3) one obtains:

∆ ≤Cε10/3 +C
Z

|∇ϕ−∇ϕ̄|2 .

�
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Thus we have shown that R = S + O(ε3), and S = Σ6
k=1Tk where each Tk is given

by:

T1 = ∂ j v̄i∂ jϕ∂iϕ
T2 = −∂ j v̄i∂ jϕ∂iϕ̄
T3 = − v̄i∂i jϕ̄∂ jϕ
T4 = ∂ j v̄i∂ jϕ̄∂iϕ̄
T5 = v̄i∂i jϕ̄∂ jϕ̄
T6 = v̄i∂ j jϕ̄∂iϕ

where we have used Einstein’s convention for repeated indices. First we have

T5 = −1
2

Z

(∇ · v̄) |∇̄ϕ|2

T1 +T2 +T4 =
Z

∂ j v̄i(∂ jϕ−∂ jϕ̄)(∂iϕ−∂iϕ̄)+T7

with T7 =
R

∂ j v̄i∂ jϕ̄∂iϕ.

T6 = −
Z

∂i v̄i∂ j jϕ̄ϕ+ v̄i∂i j jϕ̄ϕ

and

−
Z

v̄i∂i j jϕ̄ϕ =

Z

∂ j v̄i∂i jϕ̄ϕ+ v̄i∂i jϕ̄∂ jϕ

thus

T6 =
Z

−(∇ · v̄)∆̄ϕ ϕ+T8 −T3

with T8 =
R

∂ j v̄i∂i jϕ̄ϕ. Then

T8 = −
Z

∂ j v̄i∂ jϕ̄∂iϕ+∂i j v̄i∂ jϕ̄ϕ

= −T7 +
Z

∇ · v̄(∆̄ϕϕ+∇ϕ̄∇ϕ)

and finally we obtain

S(t) =
Z

∇ v̄(∇̄ϕ−∇ϕ)(∇ϕ̄−∇ϕ)− 1
2
(∇ · v̄) |∇̄ϕ−∇ϕ|2

+
1
2

Z

(∇ · v̄) |∇ϕ|2

and the identity (81) is proved.
�
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6 Appendix

Existence and uniqueness of solutions to second order ODE’s
with BV field

In this section we prove existence and a.e. uniqueness for ordinary differential
equations of the form:

d
dt

(

X
V

)

=

(

V
E(t,X)

)

(82)

for X ∈T
d , Y ∈T

d , and where the field E belongs to L∞(]0,T [×T
d)∩L1(]0,T [,BV (Td)).

We work in the flat torus for simplicity, but our results are still valid in an open
subset of R

d . This result is an adaptation of the proof of [14] that uses the result
of [4] on renormalized solutions of transport equations.
Remark: After this proof was written, the authors learned of a result by L. Am-
brosio ([1]) that extends the results of [14] to transport equations when the vector
field is in BV with bounded divergence.

Renormalized solutions for Vlasov equations with BV field

Theorem 3.4 in [4] adapted to the periodic case sates that if f ∈ L∞(]0,T [×T
d ×

R
d) satisfies:

∂ f
∂t

+∇x · (ξ f )+∇ξ · (E(t,x) f ) = 0,(83)

with E(t,x) ∈ L1(]0,T [×T
d)∩L1(]0,T [,BV (Td)), then for all g Lipschitz contin-

uous we have

∂g( f )
∂t

+∇x · (ξg( f ))+∇ξ · (E(t,x)g( f )) = 0.

The property of renormalization implies that

• solutions to (83) with initial data in L∞
loc(T

d ×R
d) belong to

C(]0,T [,Lp
loc(T

d ×R
d)) for any 1 ≤ p < ∞,

• solutions to (83) with prescribed initial data in L∞(Td ×R
d) are a.e. unique,

• if En converges to E in L1(]0,T [×T
d) then the solutions of (83) with En

instead of E converge to the solution of (83).
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We notice that equation (54) satisfies the assumptions of the Theorem, and thus
will have the renormalization property. This renormalization property was used in
[14] to obtain a.e. uniqueness for solutions of the corresponding ODE’s. Indeed,
the ODE

∂tX(t,s,x) = b(t,X)

X(s,s,x) = x

is associated to the transport equation:

∂tu+b(t,x).∇u = 0

whose solutions satisfy for all (t,s) ∈]0,T [

u(t,X(t,s,x)) = u(s,x).

We extend this consequence to the case of second order equations, with BV accel-
eration field. To the kinetic equation

∂t f +ξ ·∇x f +E(t,x) ·∇ξ f = 0(84)

we associate the second order ODE (82) which can rewritten as ∂ttX = E(t,X).
The result is then the following:

Theorem 6.1 Let E(t,x) ∈ L∞(]0,T [×T
d)∩L1(]0,T [,BV (Td)),

then the ODE

∂ttX(t,s,x,ξ) = E(t,X)(85)

(X(s,s,x,ξ),∂tX(s,s,x,ξ)) = (x,ξ)(86)

admits an a.e. unique solution.

Remark: Here almost everywhere must be understood for the Lebesgue measure
of R

6.
Proof of Theorem 6.1: We know that through equation (82) equation (85) can
be considered as a first order differential equation. Let us first consider the case
where E is smooth. Note Y ∈ T

d ×R
d (resp. y) for (X ,V) (resp. for (x,ξ)) and

B ∈ R
d ×R

d for (ξ,E). Then for all s ∈]0,T [, Y solves:

∂tY (t,s,y) = B(t,Y (t,s,y))(87)

Y (s,s,y) = y(88)
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Then for all t, t1, t2, t3 ∈]0,T [ we have the following:

Y (t3, t2,Y (t2, t1,y)) = Y (t3, t1,y)

Y (t, t,y) = y

Y (t1, t2,Y (t2, t1,y)) = y.

Differentiating the last equation with respect to t2 yields:

∂sY (t,s,y)+∇yY (t,s,y) ·B(s,y) = 0(89)

Y (t, t,y) = y.(90)

Yt(s,y) = Y (t,s,y) thus solves a transport equation which is nothing but equation
(84). Using Theorem 3.5 we know that for all g : R

2d → R Lipschitz continuous,
g(t,s,y) = g0(Y (t,s,y)) is the unique solution of

∂sg(t,s,y)+∇yg(t,s,y) ·B(s,y) = 0(91)

g(t, t,y) = g0(y).(92)

Now we show existence and uniqueness for solutions of (87,88). Let t and s be
fixed. Let us consider a regularization En of the the field E and set Bn = (ξ,En).
We have

• t → Y1,n(t,s,y) that satisfies (87,88)

• s → Y2,n(t,s,y) that satisfies (89,90).

From the stability Theorem 2.4 in [14] we know that the whole sequence
t → Y2,n(t,s, .) converges in C(]0,T [,Lp

loc(R
d ×T

d)) to t → Y2(t,s, .), the unique
renormalized solution of (89,90). Thus for fixed t the whole sequence Y2,n(t,s, .)
converges strongly in Lp

loc(R
d ×T

d). Now since for every n we have Y1,n(t,s,y) =
Y2,n(t,s,y) the same property holds for Y1,n(s, t, .). Now we can pass to the limit
in the term Bn(t,Y1,n(t,s,y)). Indeed, by density of C∞

c functions in L1, if we have
Es ∈C∞

c approximating E then

‖B(t,Yn(t,s,y))−B(t,Y(t,s,y))‖L1

≤ ‖B(t,Yn(t,s,y))−Bs(t,Yn(t,s,y))‖L1

+ ‖Bs(t,Yn(t,s,y))−Bs(t,Y(t,s,y))‖L1

+ ‖B(t,Y (t,s,y))−Bs(t,Y(t,s,y))‖L1

The second term goes to 0 because of the strong convergence of Yn, the first and
the third go to 0 because Y and Yn are measure preserving mappings, and so for
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example ‖B(t,Y(t,s,y))− Bs(t,Y(t,s,y))‖L1 = ‖B(t,y)−Bs(t,y)‖L1. So finally
we have

‖Bn(t,Yn(t,s,y))−B(t,Y(t,s,y))‖L1

≤ ‖Bn(t,Yn(t,s,y))−B(t,Yn(t,s,y))‖L1

+‖B(t,Yn(t,s,y))−B(t,Y(t,s,y))‖L1

that goes to 0 and we can pass to the limit in the equation (87,88) and the existence
of a solution to (87,88) is proved.

To obtain uniqueness, we argue as in [14]. Any function of the form g0(Y (t,s,y))
is a solution of (91,92), thus by uniqueness of the solution of the transport equation
we obtain uniqueness of the ODE.

�

A remark on ODE’s of second order

In this section, we want to solve the Cauchy problem for:

∂ttX(t,x) = E(t,X)

(X(0,x) ,∂tX(0,x)) = (x,v(x))

with E as above. We are thus interested in monokinetic initial data.

Theorem 6.2 for all v0(x) vector field on T
d , and for Lebesgue almost every δv ∈

R
d , there exists an a.e. unique solution to

∂ttX(t,x) = E(t,X(t,x))

(X(0,x) ,∂tX(0,x)) = (x,v0(x)+δv)

Proof: Let g(x,ξ) be the indicator function of the set of those (x;ξ) such that the
trajectory coming from x is not well defined. We just have to prove that for a.e.
δv ∈ R

d we have
R

g(x,v0(x)+δv)dx = 0, which is true because
Z

g(x,v0(x)+ξ)dxdξ =

Z

g(x,ξ)dxdξ = 0.

Stability Using the fact that for En converging to E in L1 with
E ∈ L1(]0,T [,BV (Td)), we have Xn(t,x,v) → X(t,x,v) in C([0,T ],Lp), we have
then, for all t, for almost every δv, Xn(t,x,v0(x)+δv) → X(t,x,v0(x)+δv) in Lp.
Thus we have
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Theorem 6.3 If En converges to E in L1 let Xn be solution of

∂ttXn(t,x) = En(t,Xn(t,x))

(Xn(0,x),∂tXn(0,x)) = (x,v0(x)+δv)

then for all t, for almost every δv, Xn converges in Lp(R3)−s to a solution (unique
for almost every δv) of

∂ttX(t,x) = E(t,X)

(X(0,x),∂tX(0,x)) = (x,v0(x)+δv).

Control of macroscopic density in kinetic
equations

We prove here Lemma 4.7:

Lemma 6.4 Let f ∈ L∞([0,T ]×T
d ×R

d) satisfy

∂ f
∂t

+∇x · (ξ f )+∇ξ · (E(t,x) f ) = 0(93)

f (0, ., .) = f 0(94)

with E ∈ L1([0,T ];BV(Td)) and

‖E‖L∞([0,T ]×Td) ≤ F.(95)

Let the initial condition f0 be such that:

a(x,ξ) ≤ f (0,x,ξ) ≤ b(x,ξ),

with ρa(x) =
R

a(x,ξ)dξ ≥ m > 0 and ρb(x) =
R

b(x,ξ)dξ ≤ M < ∞ and a,b sat-
isfying

|∇x,ξa,b| ≤ c
1+ |ξ|d+2 .(96)

Then there exists a constant R > 0 such that

(ρa(x)−Rt)≤ ρ(t,x)≤ (ρb(x)+Rt).

Proof: First suppose that the force field and the initial data are smooth. For equa-
tion (93,94) we can exhibit characteristics (x,ξ)(t; t0,x0,ξ0), giving the evolution
of the particles in the phase space. We have f (t,x,ξ) = f (t0,x0,ξ0). Since the

38



initial data is compactly supported and the force field is bounded in the L∞ norm,
we have

|ξ−ξ0| ≤ F|t − t0|,

|x− x0| ≤ (|ξ0|+
F
2
|t − t0|)|t − t0|.

If for t = 0 we have a(x,ξ) ≤ f (0,x,ξ) ≤ b(x,ξ) then

A(t,x,ξ)≤ f (t,x,ξ)≤ B(t,x,ξ)

A(t,x,ξ) = inf
|σ1|,|σ2|≤1

a(x+ |t − t0|(ξ+
F
2
|t − t0|)σ1,ξ+F|t − t0|σ2)

B(t,x,ξ) = sup
|σ1|,|σ2|≤1

b(x+ |t − t0|(ξ+
F
2
|t − t0|)σ1,ξ+F|t − t0|σ2).

Using (96) and integrating in ξ we find thus a constant R = R(F,C,d) such that
for t − t0 ≤ 1 we have:

ρa(x)−R|t − t0| ≤ ρ(t,x)≤ ρb(x)+R|t − t0|.

Next we need to show that the solution of the regularized equation converges to
the solution we are studying: this result comes from the uniqueness of the solution
to (93,94) which is a consequence of the renormalization property. Indeed since
E is bounded in BV the system (93,94) admits a unique renormalized solution and
the sequence of approximate solutions converge in C([0,T ],Lp

x,ξ) for 1 ≤ p < ∞
thus the bounds obtained above are preserved.

�

Regularity of the polar factorization on the flat torus

Here we deduce from [21], [11] and [8], [9], [10] the Theorem 4.4.

Theorem 6.5 If ρ ∈Cα(Td) with 0 < m ≤ ρ ≤ M is a probability measure on T
d

then Ψ = Ψ[ρ] (see Definition 4.3) is a classical solution of

detD2Ψ = ρ(97)

and satisfies:

‖∇Ψ(x)− x‖L∞ ≤C(d) =
√

d/2(98)

‖D2Ψ‖Cα ≤ K(m,M,‖ρ‖Cα)(99)
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Proof of Theorem 6.5: Consider ρ a Z
d periodic probability measure, satisfying

0 < m ≤ ρ ≤ M,(100)

and Φ[ρ] as in Definition 4.3. First it is shown in [11] that

|∇Φ[ρ](x)− x| ≤C(d).(101)

It follows that the strict convexity argument of [8] applies: indeed if Φ = Φ[ρ] is
not strictly convex its graph contains a line and this contradicts (101). Moreover
since Φ− |x|2/2 is globally Lipschitz and periodic there exists N(d) such that
‖Φ− |x|2/2‖L∞ ≤ N(d). It follows then that there exists 0 < r(d) ≤ R(d) and
M(d) such that

B(r(d))⊂ {Φ−Φ(0) ≤ M(d)} ⊂ B(R(d))(102)

It remains to show that our solution is a solution in the Aleksandrov sense of the
Monge-Ampère equation

m ≤ detD2Φ ≤ M.

This is a direct consequence with minor changes (to adapt to the periodic case) of
Lemma 2 of [10]. Then, normalizing Φ to Φ̃ = Φ−Φ(0)−M(d) it follows that
Φ̃ is a solution of

ρ(∇Φ̃)detD2Φ̃ = 1

Φ̃ = 0 on ∂Ω
B(r(d)) ⊂ Ω ⊂ B(R(d))

Thus the interior regularity results of [9] apply uniformly to all Φ[ρ] with ρ satis-
fying (100) and ‖ρ‖Cα(Td) bounded and Theorem 4.4 follows.

�
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