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Motivation

Theorem (Feferman & Vaught, 1959)

Let L be a first order language, I a nonempty set, and for each
i ∈ I, let Ai be an L-structure and Bi be an elementary
equivalent to (resp. extension of) Ai. Then

∏
i∈I Bi is an

elementary equivalent to (resp. extension of)
∏

i∈I Ai.

Corollary

Let H1 and H2 be groups in the language {·, e,−1 } and H̃1 be an
elementary extension of H1. Then H̃1 × H2 is an elementary
extension of H1 × H2.
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Motivation

Corollary
Let G be a group and H and K be infinite definable subgroups
of G such that G = H × K. Then G is not ℵ1-categorical.

Proof.

Let H̃ be an elementary extension of H having a cardinality
larger than cardK. Then G̃ := H̃ × K is an elementary extension
of G and (G, G̃) is a Vaughtian pair for K.
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Motivation

Theorem
Let G be a group of finite Morley rank. If G◦ = HK where:

H,K ⊴ G not necessarily definable;
[H,K] = 1;
H ∩ K is finite;
H is abelian and K is not,

then G is not ℵ1-categorical.
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Recalling some notions

Let G be a group of finite Morley rank.

Proposition (Lascar, 1985)
G doesn’t have the finite cover property.

Definition
We say that two strongly miminal sets X and Y are analogous
if there is a strongly minimal set U and two interpretable maps
U → X and U → Y with cofinite images. This is an equivalence
relation.
An interpretable set N is said to be harmonious of type X if
every strongly minimal set interpretable in N is analogous to X.
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A fundamental lemma

Lemma
Let H0 = 1 ≤ H1 ≤ · · · ≤ Hn = G be definable subgroups of G.
Then for each interpretable strongly minimal set X, there exists
i ∈ {0, . . . ,n − 1} such that X is analogous to a strongly minimal
set interpretable in Hi+1/Hi.

Corollary
If X is an interpretable strongly minimal set and
H0 = 1 ≤ H1 ≤ · · · ≤ Hn = G are definable subgroups of G
such that Hi+1/Hi is harmonious of type X for each
i ∈ {0, . . . ,n − 1}, then G is harmonious of type X.

Harmonious Groups - Part 2



Motivation
The maximal harmonious subgroups MG(X)

The WG(X) subgroups
Towards another possible decomposition

Maximal harmonious subgroups

Definition
Let X be an interpretable strongly minimal set. We define
MG(X) to be the maximal normal connected definable
subgroup of G which is harmonious of type X.

Proposition

MG(X) is definably characteristic in G.
cardMG(X) ∈ {1, cardX}.
Every harmonious subset E ⊆ G of type X is contained in
finitely many cosets of MG(X).
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Maximal harmonious subgroups

Corollary
There exists a strongly minimal subset X of G such that
MG(X) ̸= 1.

Proof.
Let X be a strongly minimal subset of G. It is harmonious of
type X, thus contained in finitely many cosets of MG(X).

Corollary

If E is an infinite subset of G of type X, then MG(X) ̸= 1.
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Maximal harmonious subgroups

Lemma
Let H be a definable subgroup of finite index in G. If H is
harmonious of type X, so is G.

Corollary
Let H be an interpretable group and let M be a normal
connected interpretable subgroup of H of infinite index maximal
for these conditions. Then H/M is harmonious.

Proof.
Let X be a strongly minimal subset of H/M. Then MH/M(X) is
not trivial, and by maximality of M, it has finite index in H/M.
Therefore H/M is harmonious of type X.
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Finitely many equivalence classes

Theorem
There are finitely many strongly minimal sets X1, . . . ,Xn such
that every interpretable strongly minimal set X of G is
analogous to Xi for some i ∈ {1, . . . ,n}.

Proof.
Let (Hi)i∈{0,...,n} be definable subgroups of G defined as follows:
H0 = 1, Hn = G and Hi is a maximal proper normal definable
subgroup of infinite index in Hi+1 for each i ∈ {1, . . . ,n − 1}.
Each Hi/Hi−1 is harmonious of type Xi for some Xi. By the
fundamental lemma, every interpretable strongly minimal set X
is analogous to Xi for some i ∈ {1, . . . ,n}.
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Notation

Fix X1, . . . ,Xn be representatives of the different equivalence
classes under the "analogous" relation, and X be an arbitrary
interpretable strongly minimal set.

Harmonious Groups - Part 2



Motivation
The maximal harmonious subgroups MG(X)

The WG(X) subgroups
Towards another possible decomposition

Outline

1 Motivation

2 The maximal harmonious subgroups MG(X)

3 The WG(X) subgroups

4 Towards another possible decomposition

Harmonious Groups - Part 2



Motivation
The maximal harmonious subgroups MG(X)

The WG(X) subgroups
Towards another possible decomposition

Defining WG(X)

Definition

An interpretable set N in G is said to be of type X⊥ if none of its
interpretable strongly minimal sets is analogous to X.
Let WG(X) be the intersection of the definable subgroups W of
G for which G/W is of type X⊥.
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Properties

Proposition

WG(X) is a definable subgroup definably characteristic in G,
and G/WG(X) is of type X⊥.

Proof.
There exists W1, . . . ,Wk definable subgroups of G such that
WG(X) =

⋂n
i=1 Wi. Define Hi :=

(⋂k−i
j=1 Wj

)
/WG(X) for each

i ∈ {0, . . . , k − 1} and Hk = G/WG(X). Then Hi+1/Hi is of type
X⊥ for each i ∈ {0, . . . , k − 1}, and so is G/WG(X) according to
the fundamental lemma.
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W_(X) as an operator

Corollary

WWG(X)(X) = WG(X).

Proof.
Let H0 := 1, H1 := WG(X)/WWG(X)(X) and H2 := G/WWG(X)(X).
Then Hi+1/Hi is of type X⊥ for each i ∈ {0, 1}, and so is
G/WWG(X)(X). Therefore WG(X) ≤ WWG(X)(X).
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W_(X) as an operator

Corollary

If H is a definable subgroup of G, then WH(X) ≤ WG(X) ∩ H.

Proof.
The quotient group
WH(X)WG(X)/WG(X) ∼= WH(X)/(WH(X) ∩ WG(X)) is of type
X⊥, thus WH(X) = WWH(X)(X) ≤ WH(X) ∩ WG(X).
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Properties

Corollary

WG(X) is connected.

Proof.

WG(X)/WG(X)◦ is finite, thus of type X⊥. Therefore
WG(X) = WWG(X)(X) ≤ WG(X)◦.
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Relation to harmonious groups

Proposition

MG(X) ≤ WG(X).

Proof.
MG(X)/(MG(X) ∩ WG(X)) ∼= MG(X)WG(X)/WG(X) is
harmonious of type X and is also of type X⊥, thus it is a finite
group. Since MG(X) is connected, we must have
MG(X) ∩ WG(X) = MG(X).
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Relation to harmonious groups

Lemma
If G is harmonious of type X then WG(X) = G◦.

Proof.

Let W ≤ G◦ definable such that G◦/W is of type X⊥. We also
know that G◦/W is harmonious of type X. Thus G◦/W is finite,
which entails W = G◦.
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Towards a decomposition

Lemma
Let N be a definable subgroup of infinite index in WG(X). If
WG(X)/N is harmonious, then it is harmonious of type X.

Proof.
Assume WG(X)/N is harmonious of type Y. If Y is not
analogous to X, then WG(X)/N is of type X⊥, thus
WG(X) = WWG(X)(X) ≤ N.

Proposition
If X and Y are two nonanalogous interpretable strongly minimal
sets of G, then [WG(X),WG(Y)] = 1.
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Proof

We procede by induction on the Morley rank of G. Let N be a
minimal infinite definable connected subgroup of G. By
minimality of N, it is harmonious of type Z for some Z. By
induction hypothesis,
[WG(X),WG(Y)]N/N = [WG/N(X),WG/N(Y)] = 1, thus
[WG(X),WG(Y)] ≤ N.
Suppose that there exists u ∈ WG(X) and v ∈ WG(Y) such that
[u, v] ̸= 1. Then the adjoint maps adu : WG(Y) → N and
adv : WG(X) → N induce interpretable embeddings of
WG(Y)/CWG(Y)(u) and WG(X)/CWG(X)(v) into N. These quotient
groups are thus harmonious of type Z, and according to the
previous lemma, Z is analogous to both X and Y.
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The main theorem

Theorem
The connected component of G is the central product of the
(WG(Xi))i∈{1,...,n}. In particular, we have

G◦/Z(G◦) ∼=
n∏

i=1

WG(Xi)

where WG(Xi) = WG(Xi)Z(G)/Z(G) for each i ∈ {1, . . . ,n}.
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Proof

Since the different WG(Xi) commute with each other, it’s
enough to show that they generate G◦. Let H be a maximal
proper definable normal subgroup of G. Then G/H is
harmonious of fingerprint Xi for some i ∈ {1, . . . ,n}. Thus
WG(Xi)H/H = WG/H(Xi) = G/H, which shows that no proper
definable subgroup contains all the (WG(Xi))i∈{1,...,n}. Hence G◦

is their central product.
The remaining follows from the fact that every element of
WG(Xi)Z(G) ∩

∏
j̸=i(WG(Xj)Z(G) is central in G for each

i ∈ {1, . . . ,n}.
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A harmonious quotient of WG(X)

Proposition

If G is connected, then WG(X)Z(G)/Z(G) is harmonious of type
X.

Proof.
Let Y not analogous to X. Then
[WG(X),WWG(X)(Y)] = [WWG(X)(X),WWG(X)(Y)] = 1, thus
WWG(X)(Y) is central in WG(X), thus WG(X)/Z(WG(X)) is of
type Y⊥, and we have Z(WG(X)) = WG(X) ∩ Z(G).

Fact
Harmonious groups are ℵ1-categorical.
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About the commutator subgroup

Corollary

If G is connected, then [G,WG(X)] ≤ MG(X).
In particular, if MG(X) = 1, then WG(X) is abelian.

Theorem
If G is connected, then G′ is contained in the central product of
the (MG(Xi))i∈{1,...,n}.
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Some terminology

Definition
A definable section of G is a quotient group U/V for some
definable V ⊴ U ≤ G.
Let H be a (not necessarily definable) subgroup of G. Consider
the section (H ∩ U)V/V. If it is equal to U/V, we say that H
covers U/V. If it is finite, we say that H almost avoids U/V.
A definable section of type X (resp. X⊥) is called an X-section
(resp. X⊥-section).
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A property of interest

Definition
Let K be an interpretable group in G, and H ≤ K not necessarily
interpretable. We say that H has the (*) property for X in K if H
covers all the definable connected X-sections and almost
avoids all the connected X⊥-sections.

Lemma
We get an equivalent definition if we consider minimal
connected sections.

Harmonious Groups - Part 2



Motivation
The maximal harmonious subgroups MG(X)

The WG(X) subgroups
Towards another possible decomposition

WG(X) covers the X-sections

Proposition

WG(X) covers the X-sections.

Proof.
The quotient (U/V)/((WG(X) ∩ U)V/V) ∼= U/(WG(X) ∩ U) is
both of type X and X⊥.
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Searching for (*) inside WG(X)

Lemma
Let W be a definable subgroup of G which covers the
X-sections of G and H a subgroup of W. Then H has the (*)
property for X in G if and only if it has the (*) property for X in
W.
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A possible decomposition

Conjecture

Assume G is connected. Then, for each i ∈ {1, . . . ,n}, there
exists Hi ≤ WG(Xi) which has the (*) property for Xi in G.
This entails that G is the central product of the (Hi)i∈{1,...,n}, and
that

G/F =

n∏
i=1

HiF/F

for some finite central subgroup F of G.
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Questions

Is Xi interpretable in Hi?
If this is the case, is Hi harmonious of type Xi?
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Thank you for your attention.
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