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Foreword

@ Joint work with Alexandre Borovik.
@ Outline of the talk

@ (Standard) transitive group actions
@ Generically multiply transitive group actions on elementary
abelian p groups, for odd p
@ Generic Identification Theorem for simple groups (2004, 2011)
@ Groups with a pseudoreflection subgroup (2012)
o Generically sharply multiply transitive actions (2018)
@ Generically multiply transitive group actions (2021)

© Actions on solvable groups

@ Special thanks to Liitfiye Bozdag.



Part I: Some Group Theory

s

Balikesir, July 2019



Standard Transitivity

Assume that G is a group acting on a set X.

If for every x,y € X, there exists a (unique) g € G satisfying
gx =y, then we say that the action is (sharply) transitive.

Note that G has an induced action on X" for all n > 1. Set
A ={(x1,...,xn) € X" | x; = x; for some i # j}.

If for every (x1,...,X%n), (V1,---,¥n) € X"\ A, there exists some
g € G satisfying gx; = y; for every i, then we say that the action is
n-transitive. Sharpness is similarly defined.




Examples of Sharp Transitivity

@ For any field K, K* x KT acts sharply 2-transitively on K.

@ S, acts sharply n and (n — 1)-transitively, and A, acts sharply
(n — 2)-transitively on {1,2,..., n}.

@ GLy(K) acts sharply 2-transitively on the set of pairs of
linearly independent vectors in K2 x K2.

@ PGLy(K) acts sharply 3-transitively on P;1(K).

Note that the action GLa(K) ~ K? respects the group structure of
K2.



Classification

For a group, possesing a large sharp transitivity degree is a highly
restrictive condition.

Theorem (Jordan, 1872)

If G is a finite group with a sharply n-transitive action for some
n > 4, then the possibilities are as follows.

For n = 4; 54, 55, A6, Mll-

For n =5: S5, Sg, A7, M.

For n > 6; S,, Sp+1, Anta.

Theorem (Tits, 1952, and Hall, 1954)

There is no infinite group with a sharp n-transitive action, for
n > 4.




Algebraic Actions

Let G be a reductive algebraic group acting algebraically on an
irreducible variety V.

Theorem (Knop, 1983)

For n > 2, if G acts n-transitively on V/, then either n = 2, and the
action is PGL,+1 on Pp; or n = 3 and the action is PGL; on P;.

Note that the action is not assumed to be sharp.
If the induced action of G on V" is transitive on an open subset,
then Popov calles it a generically n-transitive action.

Theorem (Popov, 2007)

If characteristic is 0, among simple algebraic groups, only those of
type A, have generically 5-transitive or higher actions. To be more
precise, A, has n+ 2; Eg has 4; other types have 2 or 3.
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Genericity in Model Theory

Form now on, all structures have finite Morley rank, all subgroups
and actions are definable, rk means Morley rank.

Definitions

@ A definable subset A C X is called strongly generic in X, if
rk(X \ A) < rk(X).
o If rk(A) = rk(X), then we say A is weakly generic in X.

@ When X has Morley degree 1, these two notions coincide.

In this talk, generic means strongly generic.



Some Examples of Generic Subsets

@ All cofinite sets are generic in an infinite set.

@ For n>2, X"\ A is generic in X", where
A= {(Xl,...,xn) € X" | x; = x; for some i # j}.
o If K is an infinite field, then the set of all linearly independent
pairs of vectors is generic in K? x K2 = K*.
@ Similarly, the set of all linearly independent vectors is generic
in K" x - x K" = K™
~—_—————

n times
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Generic Transitivity

Assume that G is a group acting on a set X.

Definition

If G is (sharply) transitive on a generic subset of X, then we say G
acts generically (sharply) transitively on X.

Example

Let K be a field, then K* acts generically sharply transitively on
K™, but not sharply transitively. In fact, for all n > 1, (K*)" acts
generically sharply transitively on (K™)".
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Generic Multiple Transitivity

Let G be a group acting on a set X and n > 2. Then G acts
n-transitively on X iff G acts transitively on X"\ A, where
A = {(x1,...,xn) € X" | x; = x; for some i # j}.

Note that A is ‘small’, compared to X". Therefore, the idea is to
relax the condition on X\ A while keeping it large, and obtain
new and natural examples.

Definition

If the induced action of G on X" is generically transitive, then we
say G acts generically n-transitively on X. That is, X" has a
generic subset on which G acts transitively.
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Generic Multiple Transitivity

For every n > 1, the natural action of:

@ GL,(K) on K" is generically sharply n-transitive.
@ AGL,(K) on K" is generically sharply (n + 1)-transitive.
@ PGL,11(K) on P,(K) is generically sharply (n + 2)-transitive.

Only in the first action X has a group structure respected by G.
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A Motivating Problem

(Borovik, Cherlin, 2008)

Let G be a connected group
acting on a set X definably,
faithfully and generically sharply
(n + 2)-transitively, where

n = rk(X). Show that

(G, X) = (PGLy1+1(K), Pa(K)),
for some algebraically closed
field K.

A Partial Answer

Tuna Altinel and Joshua Wiscons solved this problem for n = 2
(2018) and gave a partial result for n > 3 (2019).
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More Motivating Problems

Problem (Borovik, Cherlin, 2008)

Let G be a connected group acting on a connected abelian group
V' definably, faithfully and generically n-transitively. If n = rk(V),
then is it true that V has a vector space structure of dimension n
over an algebraically closed field, and G = GL(V) acts on V
naturally?

Problem (Borovik, Cherlin, 2008)

Let G be a connected group of finite Morley rank acting faithfully,
definably, and generically m-transitively on an abelian group V' of
Morley rank n. Then show that m < n.
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An Affirmative Answer

Answer (B.— Borovik, 2021)

Let G be a connected group acting on a connected abelian group
V definably, faithfully and generically m-transitively, where

m = rk(V). Then m =rk(V) and G ~ V is equivalent to
GLy(K) ~ K™ for some algebraically closed field K.

Comments
@ Connectedness assumptions are not needed.

@ V/ can be solvable.

4

Corollary

Generically m-transitive and generically sharply m-transitive actions
on solvable groups of rank at most m coincide.
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Full Statement

Theorem (B.— Borovik, 2021)

Let G be a group acting definably, faithfully and generically
m-transitively on a solvable group V where m > rk(V). Then

m = rk(V) and G ~ V is equivalent to GL,,(K) ~ K™ for some
algebraically closed field K.

Known Cases

Let n = rk(V).
@ n =1 follows from Poizat/Zilber, also from Hrushovski,
@ n =2 from Deloro (2009),
@ n = 3 from Borovik, Deloro (2016), Frécon (2018).
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Small Rank

Theorem (Deloro, 2009)

Let G be a connected non-solvable group acting faithfully on a
connected abelian group V of rank 2. Then G ~ V is equivalent
to GLa(K) ~ K2 or SLp(K) ~ K2, for some algebraically closed
field K.

Theorem (Borovik, Deloro, 2016) + (Frécon, 2018)

Let G be a connected non-solvable group acting faithfully and
minimally on an abelian group V of rank 3. Then G ~ V is
equivalent to either the adjoint action PSLy(K) x Z(G) ~ K3, or
the natural action SL3(K) * Z(G) ~ K3 for some algebraically

closed field K, erG—is—a-simple-bad-group-efrank-3.
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Large Rank

Setting

G is a connected group, V is a connected elementary abelian
p-group, where p is an odd prime, G acts on V definably, faithfully
and generically n-transitively, and n > rk( V).

4

Observation

Let A be the generic subset of V" on which G acts transitively.
Then A is closed under taking inverses and permuting coordinates.

Vn
A A
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Hyperoctahedral Group

@ Pick some 3 = (al, ...,an) € A. Then (+ay,...,+a,) and
0(3) = (ag(1)s - - - » 30(n)) lie in Afor o € S,

o By transitivity, there exist an element ¢; € G which maps 3 to
(a1,...,—ai,...,an) and g, € G which maps 3 to o(3) for
oces,.

@ Set H to be the setwise and N be the pointwise stabilizer in G
of the set {£a1,...,%a,}. Then N < H and the images of ¢;'s
and g,'s in H/N generate a subgroup isomorphic to S, x Z3.

@ A version of Maschke's Theorem and structural analysis of N

shows that it is trivial. )
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Generically sharply n-transitive actions

Theorem (B.— Borovik, 2018)

Let G be a connected group acting on a connected abelian group
V definably, faithfully and generically sharply n-transitively, where
n = rk(V). If V has no involutions, then n =rk(V) and G ~ V' is
equivalent to GL,(K) ~ K" for some algebraically closed field K.

| \

Sketch of Proof

@ In this case, G contains copies of the hyperoctahedral group
Sp X Z3.

@ Set U; = [V, &i] and assume without loss of generality that
rk(U;) =1, then V = ®7_, U; and hence rk(V) = n.

@ Do induction on n; a subgroup of Cg(e1) acts generically
sharply (n — 1)-transitively on @&7_,U; hence we have
GL,—1(K) in G.

@ Obtain a torus (K*)" of full rank in G where K is an
algebraically closed field of odd or zero characteristic.

v,
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Pseudoreflection Subgroups

Theorem (B.— Borovik, 2012)

Let G be a connected group acting on a connected abelian group
V faithfully and irreducibly. If G contains a pseudoreflection
subgroup R such that rk[V, R] =1, and psrk(G) = rk(V/), then
G ~ V is equivalent to GL,(K) ~ K" for some algebraically
closed field K, where n = rk(V).

Definitions

A connected definable abelian subgroup R is called a
pseudoreflection subgroup if V = [V, R] @ Cy(R), and R acts
transitively on the nonzero elements of [V, R]. Moreover, psrk(G)
is the maximal number of pairwise commuting pseudoreflection
subgroups in G.
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Pseudoreflection Subgroups (Cont'd)

Theorem (B.— Borovik, 2012)

Let G be a connected group acting on a connected abelian group
V faithfully and irreducibly. If G contains a pseudoreflection
subgroup R such that rk[V, R] =1, and psrk(G) = rk(V), then
G ~ V is equivalent to GL,(K) ~ K" for some algebraically
closed field K, where n = rk(V).

Sketch of Proof
Let G be a counter example of minimal Morley rank.
@ Centralizers of non-central involutions in G are direct sums of
general linear groups.

@ G/Z is simple and the Generic ldentification Theorem applies,
hence G is a Chevalley group of Lie rank at least 3.

@ We get a contradiction.

This finishes the proofs of three theorems.
23 /36



Part Ill: Actions on Solvable Groups
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Two Useful Observations

For remaining cases, the following is useful.

Observation 1

In the inductive setting, if V has properties that pass to quotients
(such as being abelian, solvable, or divisible) then G acts minimally
on V/; that is, no infinite definable proper subgroup of V is left
invariant under the action of G.

Assume U < V is G-invariant, then G acts generically
n-transitively on V/ /U. By induction hypothesis, rk(V /U) = n.
Since rk(V) < n, we get rk(U) = 0. O

Observation 2

Since G acts generically n-transitively on V/, we have
rk(G) = rk(A) = rk(V") = nrk(V).
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V is Divisible

Theorem (B.— Borovik, 2021)

Let G be a connected group acting on a connected divisible
abelian group V definably, faithfully and generically n-transitively,
where n > rk(V). Then n=rk(V) and (G, V) = (GL,(K), K") for
some algebraically closed field K of characteristic 0.

Sketch of Proof

@ The action is G-minimal and rk(V) = n, thanks to the first
useful observation.

@ Hence Loveys—Wagner (1993) applies and we get
(G,V)=(H,K™) and a subgroup H < GL,,(K) for some
algebraically closed field K of characteristic 0 and m < n.

@ Since rk(V) = n, rk(G) > n?, necessarily G = GL,(K). O
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V is of Exponent 2

Theorem (B.— Borovik, 2021)

Let G be a connected group acting on a connected elementary
abelian 2-group V definably, faithfully and generically
n-transitively, where n > rk(V). Then n = rk(V) and

(G, V) = (GL,(K), K™) for some algebraically closed field K of
characteristic 2.

First Observations

@ G has involutions.

@ G has no non-trivial 2-torus, hence G is of even type; that is,
its Sylow® 2-subgroups are definable and 2-unipotent.
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Groups of Even Type

Reference

Tuna Altinel, Alexandre
Borovik, Gregory Cherlin;
Simple Groups of Finite Morley
Rank, AMS, 2008. (xx+556

pp.)

Even Type Theorem

Infinite simple groups of finite
Morley rank and even type are
algebraic groups over ‘
algebraically closed fields. -1 .

Istanbul Airport, June 2021
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Groups of Even Type

Corollary

Let G be a connected group of finite Morley rank containing no
nontrivial 2-torus. Then O2(G) = O5(G) and it is a definable
unipotent subgroup of G. The quotient G/O5(G) has the form
® xS with S a central product of quasisimple algebraic groups
over algebraically closed fields of characteristic 2, and Q a
connected group without involutions.
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Linearization Theorems of Borovik (2021)

Corollary

Let V be a connected elementary abelian p-group and G a
connected group which acts on V faithfully, and irreducibly.
Assume that G contains a normal subgroup L < G, which is a
quasisimple algebraic group over an algebraically closed field F of
characteristic p. Then V has a structure of a finite dimensional
F-vector space, the action of G on V is F-linear, and G is a
Zariski closed subgroup in GL£(V).

Idea of the Proof

We can express G = L« Cg(L). By Clifford, V = @V}, where V;'s
are isomorphic irreducible L-modules. Let R be the enveloping
algebra of L over V (that is, the subring generated by L in

E = End(V)). Then F = Cg(L) is an algebraically closed field,
Vi's and hence V are vector spaces over F. Moreover, R ~ V; and

hence G ~ V respect the vector space structure. For Zariski
closure, use Poizat (2001) and Mustafin (2004).




V is of Exponent 2

Proof of the exp(V) = 2 case

In our case O2(G)° = 1 since otherwise it centralizes an infinite
subgroup in V/, contradicting the useful observation above. By the
Corollary, G = Q * S, where S = 51 % --- % S) a central product of
quasisimple algebraic groups. By the first useful observation, G
acts irreducibly on V = V//Cg(V), and S; is a normal subgroup
which is quasisimple algebraic. Therefore, Borovik's Linearization
Theorem applies, and again by comparing ranks we get the result.
O
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V is Solvable

Main Theorem (B.— Borovik, 2021)

Let G be a connected group acting on a connected solvable group
V definably, faithfully and generically n-transitively, where

n > rk(V). Then n=rk(V) and (G, V) = (GL,(K), K") for some
algebraically closed field K.

Sketch of Proof
@ V is abelian, because otherwise use the first useful
observation on V/V'.
@ V is divisible or of bounded exponent. Recall V =D @ B. If
V is neither divisible nor of bounded exponent, then use the
same trick with V//D.
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V is Solvable

Sketch of Proof (Cont'd)

o If V is divisible, we are done by a former theorem.

o If exp(V) = k < oo, then k is prime. Otherwise the
homomorphism V — V| v — pv has a finite kernel
Vp, ={v €V |pv =0} and a finite image V.

@ If V is abelian and exp(V) = p is prime, then V is an
elementary abelian p-group, hence we use the above
theorems. 0
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Connectedness is Superfluous

Sketch of Proof

@ When a group acts on a group generically m-transitively, then
the set has Morley degree 1. (For m > 1, Borovik—Cherlin,
2008; m =1 is easy.)

@ When a group G acts on a set of Morley degree 1 generically
m-transitively, then G° acts on the same set generically
m-transitively. (Altinel-Wiscons, 2018)

@ Let G be a group acting on an elementary abelian p-group V
of Morley rank n, where p is an odd prime. Assume that there
exists an algebraically closed field F such that V is definably
isomorphic to the additive group of the F-vector space F”,
GL,(F) < G, and the action is the natural action. Then
G = GL,(F). (B.— Borovik, 2021)
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Some Related Questions

Question 1 (B.— Borovik, 2021)

Can the finite Morley rank condition be relaxed in this argument?
For example, finite chains of centralizers?

Question 2 (B.— Borovik, 2021)

Let G be a connected group acting on a (not necessarily abelian)
connected group H definably, faithfully and generically
2-transitively. Is H abelian? What else can we say about H?
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Antalya Algebra Days, May 2019

“This photo contains four of Tuna's favourite things: friendship,
solidarity, mathematics and freedom” — Evren Altinel
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