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Dedicated to Tuna Altınel

In this talk:

Results which emphasise close connections and analogies between

▶ ω-stable groups of finite Morley rank, and

▶ finite groups and algebraic groups.

Also:

▶ various comments on development of the theory of groups of
fMr,

▶ on possible generalisations,

▶ and some memories of Lyon.
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Setup

V : a connected abelian group of finite Morley rank.

G : a finite set of definable isomorphisms V −→ V
closed under composition and inversion.

We say : the group G acts on V definably.
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Size and complexity of finite groups

H : finite group

p : a prime number.

We introduce:

dp(H) : the minimal degree of a faithful linear
representation of H over the a.c. field Fp.

rp(H) : the minimal Morley rank of a connected infinite
elementary abelian p-group V of finite Morley rank
such that H acts on V faithfully and definably.
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The first result

dp(H) : the minimal degree of a faithful linear
representation of H over the a.c. field Fp.

rp(H) : the minimal Morley rank of a connected infinite
elementary abelian p-group V of finite Morley rank
such that H acts on V faithfully and definably.

Theorem
In this notation,

dp(H) = rp(H).
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Corollary

Corollary via Larsen-Pink (2011). There is a function

J : N −→ N

with the following property:
If H is a finite simple group which acts definably and faith-
fully on a connected elementary abelian p-group of Morley
rank n > 0 then either

▶ |H| ⩽ J(n), or
▶ H is a group of Lie type in characteristic p.
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Jordan type theorems, history

Camille Jordan, 1878:
There is a function

J : N −→ N

with the following property: every finite subgroup of GLn over a
field of characteristic zero possesses an abelian normal subgroup of
index ⩽ J(n).
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Jordan type theorems, today

Guld 2020: an impressive survey of theorems of Jordan type for
finite groups in algebraic (in characteristic 0) and differential
geometries.
Guld 2020: For every group G of birational automorphisms of a
variety over a field of characteristic zero there exists a constant
J ∈ N such that every finite subgroup X of G contains a normal
subgroup Y , s.t.

▶ Y is nilpotent of class at most two,

▶ |X : Y | < J.

There should be some model theory behind that.
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Principal tool: enveloping algebras

V : a connected abelian group of finite Morley rank.

G : a finite set of definable isomorphisms V −→ V
closed under composition and inversion.

E = E (G ) : the ring generated by G in EndV , the enveloping
algebra of G .

Observe

▶ E = { a1g1 + · · · angn, n = |G |, ai ∈ Fp }.
▶ Elements of E act on V definably.
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Wedderburn-Maltsev Theorem

Let R be a finite-dimensional associative algebra over a finite field
Fp of prime order p and J its radical. Then

(a) R = J + S where S is a semisimple algebra, J ∩ S = 0 and S
is the direct sum of matrix algebras

S = S1 ⊕ · · · ⊕ Sk , Si ≃ Mdi×di (Fpmi ), i = 1, 2, . . . , k .

(b) Let Q = 1 + J. Then Q is a normal p-subgroup in the
multiplicative group R∗ of R. Moreover, R∗ is a semidirect
product R∗ = Q ⋊ S∗ of Q and the multiplicative group S∗ of
S . In particular,

S∗ ≃ GLd1(Fpm1 )× · · · ×GLdk (Fpmk ).
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Smoothly irreducible actions
G is smoothly irreducible on V if every connected definable
G -invariant subgroup of V equals 0 or V .

Theorem
If a finite group G is smoothly irreducible on V then

E (G ) ≃ Mn(F ),

the full matrix algebra of n × n matrices over some finite field F of
characteristic p.

Comment
▶ The model-theoretic assumptions in the Theorem can perhaps

be relaxed.

▶ Motivated by research on permutation groups of finite Morley
rank by Tuna Altınel, Adrien Deloro, Josh Wiscons.
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Linearisation of actions of simple algebraic groups.

Theorem
Let G = G1 × · · · × Gm where each Gi is the group of points over
some algebraically closed field Ki of characteristic p > 0. a simple
algebraic group defined over Ki .

Assume that G acts faithfully, definably and irreducibly on a
connected elementary abelian p-group V of finite Morley rank.

Then all Ki are definably isomorphic to the same field K and V has
a structure of a finite dimensional K-vector space compatible with
the action of G, and G is a Zariski closed subgroup of GLK (V ).

This theorem started as Question B.38 in the book with Ali Nesin
of 1994.
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Surprisingly this was not known. . .

Corollary

G is a simple algebraic group over an algebraically
closed field K of characteristic p > 0

V a unipotent group of exponent p

H = V ⋊ G is also an algebraic group over K

V does not have closed G-invariant subgroups other
than 0 and V .

Then
V has a structure of a finite dimensional vector space over
K invariant under the action of G.
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Idea of proof
K0 algebraic closure of the prime field in K

K1 < K2 < . . . finite fields,
⋃∞

i=1 Ki = K0.

Gi = G (Ki ) finite groups.

G0 = G (K0)

Ei = E (Gi ) enveloping algebras.

E =
⋃∞

i=1 Ei locally finite algebra.

E = E (G0)

▶ Analysis of E yields

E ≃ Mn(K0), the full matrix algebra over K0

▶ Then we show that if Z = Z (E )∗ then

M = CG (Z)) = G , that is, [Z ,G ] = 1.
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Last step

Macpherson–Pillay 1995, and Deloro–Wagner 2020:
Let D be the ring of all definable endomorphisms of V and
Z = CD(G ). Assume that Z is infinite. Then

1. Z is an a.c. field definable in V ⋊G and the action of Z on V
gives V a structure of a finite dimensional Z -vector space
(with a Z -linear action of G ).

2. G is a Zariski closed subgroup in GLZ (V ).

3. The enveloping algebra (over Z ) R = R(G ) is the full matrix
algebra EndZ (V ) and is definable in V ⋊ G .
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Intermediate subgroups.

Fact:
If in previous notation (G ,M) is a structure of finite Morley rank
with M a subgroup of G containing G0 then M = G .

Proof follows from Poizat 2001 and Mustafin 2004.
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Bruno Poizat

This result plays crucial role in the proof:

Poizat 2001:

V : a finite dimensional vector space over an
algebraically closed field K of characteristic p > 0

H < GL(V ) an infinite simple group such that the structure
(GL(V ),H) has finite Morley rank.

Then H is a simple algebraic group over K .

It is a great pleasure for me to recall:

B 2008, Logicum Lugdunensis: Removed the use of
Classification of Finite Simple Groups.
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Improvement

Theorem (B-Berkman 2021)

Let V be a connected elementary abelian p-group of finite Morley
rank and G a connected group of finite Morley which acts on V
faithfully, definably, and smoothly irreducibly.

Assume that G contains a normal definable subgroup L◁G, where
L is a simple algebraic group over an algebraically closed field F of
characteristic p.

Then V has a structure of a finite dimensional F -vector space, the
action of G on V is F -linear, and G is a Zariski closed subgroup in
GLF (V ).
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Many thanks for your attention!


