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Relational complexity—origins

Lachlan: Homogeneous structures in finite relational
languages.

Finite → Parametrized families → Stable

Hypotheses:
Mk/Aut(M) homogeneous (fixed relational complexity)
Mk/Aut(M) small (few k -types)

Requires CFSG. (M,Aut M) as permutation group.
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Relational complexity—origins

Lachlan: Homogeneous structures in finite relational
languages.

Finite → Parametrized families → Stable

Example
Finite homogeneous graphs.

Graphs [C5] [K3 ⊗ K3] [m · Kn] [Kn[m]]
Groups [D5] [Sym3 ≀Sym2] [Symn ≀Sym m] Same

Family F1 F2 F3 F4 = Fc
3

Hypotheses:
Mk/Aut(M) homogeneous (fixed relational complexity)
Mk/Aut(M) small (few k -types)

Requires CFSG. (M,Aut M) as permutation group.



Finite
Primitive
Binary

Permutation
Groups

In memoriam,
Chat Ho,

1946–2005

Gregory
Cherlin

Relational complexity—origins

Lachlan: Homogeneous structures in finite relational
languages.

Finite → Parametrized families → Stable

Hypotheses:
Mk/Aut(M) homogeneous (fixed relational complexity)
Mk/Aut(M) small (few k -types)

Requires CFSG. (M,Aut M) as permutation group.



Finite
Primitive
Binary

Permutation
Groups

In memoriam,
Chat Ho,

1946–2005

Gregory
Cherlin

Relational complexity—origins

Lachlan: Homogeneous structures in finite relational
languages.

Finite → Parametrized families → Stable

Hypotheses:
Mk/Aut(M) homogeneous (fixed relational complexity)
Mk/Aut(M) small (few k -types)

Requires CFSG. (M,Aut M) as permutation group.



Finite
Primitive
Binary

Permutation
Groups

In memoriam,
Chat Ho,

1946–2005

Gregory
Cherlin

Problems

Estimate (or compute) relational complexity of
interesting structures (combinatorics, linear algebra,
group theory).

— E.g., actions of Sym(n) on partitions of fixed shape;
natural action of AΓL(1,q); wreath products (Saracino)

Describe all structures of low (or, possibly, high)
relational complexity.

— Beginning with relational complexity 2.

Conjecture (Now, theorem)
The finite primitive binary structures are the following.

Structures with no relations (Sym(n) acting naturally);
Oriented p-cycles (cyclic groups acting regularly),
s2 = p − 1;
Affine space with an anisotropic quadratic form
Q(b − a) (dim 1 or 2), s2 := ⌊(p − 1)/2⌋ or q − 1
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The binarity theorem

Conjecture—-1989, computations in Cayley (Sims
library); 2000, mentioned in a survey on Lachlan’s work.
2016: reduction to the almost simple case via
O’Nan-Scott theory (Cherlin; Wiscons).
2016–2021: almost simple case
Dalla Volta, Gill, Liebeck, Spiga, concluding with
exceptional and classical groups; Aschbacher theory
and a variety of machine computations.

Of interest in the algebraic case as well—a natural approach
is via ranked groups with the Algebraicity Conjecture.
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1989

Figure: Data, page 1, top. T: minutes
(Sims library, 406 groups)

Figure: Closing remarks
(Colored and annotated)
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1989

Figure: Closing remarks
(Colored and annotated)
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Why primitive?

All regular actions are binary.
All transitive actions are quotients of regular actions.
We have O’Nan-Scott theory and can hope to reduce to
the almost simple case.

However, we may certainly ask about transitive actions, in
the following way.

1 What are the “indecomposable actions” of relational
complexity k?

2 What operations of composition preserve relational
complexity?
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Indecomposable: First definition

Definition
The binary structure is minimal if it has no non-trivial proper
binary quotient.

The known minimal binary structures:
Primitive
SL(2,q) on non-zero vectors.
Potentially: Regular actions of many simple groups,
excluding PSL(2,q), q even. (??)

Non-minimal: binary quotient, binary equivalence classes,
some sort of composition?
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Indecomposable: second definition

Definition
A structure is quasi-primitive if it carries no definable
equivalence relation such that the group of automorphisms
acting trivially on the quotient acts transitively on the
classes.

• Cheryl Praeger: O’Nan-Scott theorem for quasi-primitive
groups.

Problem
Does the quasi-primitive binary case reduce to the almost
simple case?

In the almost simple case we have very few such examples
so far—mainly primitive actions, SL2(q) on non-zero
vectors, regular actions of some simple groups, and orbits in
products of such.
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Methods

O’Nan-Scott
Aschbacher
Tests for non-binarity
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O’Nan-Scott

Fact
A primitive group is one of the following.

1 Regular socle: affine (abelian) or exotic (non-abelian);
2 Regular non-abelian socle (exotic);
3 Diagonal: socle T k with the diagonal fixing a point;
4 Almost simple;
5 Product action (e.g. wreath product) of types (3) or (4).

Remark
O’Nan-Scott in ranked groups: Macpherson-Pillay. No
exotic type except possibly in the almost simple case!

Problem
O’Nan-Scott in the quasi-primitive case for ranked groups?
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Elimination of affine case

Lemma
If a,b are conjugate then they are conjugate by an involution
in the linear group.

Basic step.

(0,a,−ag) ∼ (0,ag ,−a) by binarity (and translation by
ag − a). This gives an element swapping a,ag . This can be
iterated . . .

Odd characteristic
EG = (1);
OG is cyclic;
F2G is cyclic or dihedral.

For the first point one resorts to CFSG—exclude Q8 and
Alt4 and consider what remains.

Characteristic 2
CFSG again.
Preliminaries: no element of order 4, FG = 1 (or done); and
G is generated by involutions.
Bender: G is a product of simple groups of type PSL2(q)
(q = 2d ), J1, or 2G2(32n+1)—and in our case, just one.
. . . Now what?

E.g. for PSL2(q), force the action on the projective line to be
realized inside A; binarity forces Symq+1 into the group, #.
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Chat Ho, Tübingen, 1978-79

Of the various awards Chat acquired, he was
probably proudest of his Alexander von Humboldt
fellowship and his Senior Men’s Table Tennis Cham-
pionship. . . . We always knew of Professor Ho’s
presence in the department because we could hear
his unique laughter when he talked in the corri-
dors. He was a lovable individual whose presence
will be sorely missed. https://math.ufl.edu/
alumni/in-memory-of-chat-yin-ho/

https://math.ufl.edu/alumni/in-memory-of-chat-yin-ho/
https://math.ufl.edu/alumni/in-memory-of-chat-yin-ho/
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Chat Ho, Tübingen, 1978-79

Of the various awards Chat acquired, he was
probably proudest of his Alexander von Humboldt
fellowship and his Senior Men’s Table Tennis Cham-
pionship. . . . We always knew of Professor Ho’s
presence in the department because we could hear
his unique laughter when he talked in the corri-
dors. He was a lovable individual whose presence
will be sorely missed. https://math.ufl.edu/
alumni/in-memory-of-chat-yin-ho/

https://math.ufl.edu/alumni/in-memory-of-chat-yin-ho/
https://math.ufl.edu/alumni/in-memory-of-chat-yin-ho/


Finite
Primitive
Binary

Permutation
Groups

In memoriam,
Chat Ho,

1946–2005

Gregory
Cherlin

Elimination of exotics (Wiscons)

Exotic (regular nonabelian socle): theory relies on the
Schreier conjecture, only known via CFSG.
G := A.H where A is now non-abelian and H acts. In fact
A = T k and H acts faithfully on the k copies of T (in
particular k > 1 here (via Schreier)).
(This case disappears in the context of ranked groups, apart
from the almost simple case with non-algebraic socle.)

A variant of the earlier swapping lemma shows: if a, ah

commute then a,ah can be swapped by H.
This leads (with a little help from Feit-Thompson) to

(t1, . . . , tk ) ∼H (t−1
1 , . . . , t−1

k ) [k -tuples]

with t1 ̸= t−1
1 for a contradiction,

⋆ Diagonal along similar lines, with subtleties
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Reduction of products

(Y ,H) primitive of diagonal or almost simple type and socle
M, G ≤ H ≀ Symm acts on Y m and contains Mm.
Furthermore, the subgroup G1 induced by G on the first
factor is again primitive, with socle M, and no greater
relational complexity. So now diagonal is ruled out and only
almost simple remains.

Finally, if G1 is Sym(n) acting naturally then Alt(n)m acts on
Y m and an explicit construction produces 4-tuples in Y m

which are 2-equivalent but non-conjugate.
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Almost simple case

Sporadics
Alternating and Lie rank 1.
Exceptional
Classical

— Aschbacher theory [does this pass to the ranked
category?]
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Bounds, GLoS 2021

Definition
base—trivial point stabilizer
b(G)—minimal base size
B(G)—maximal size of a minimal base
H(G)—maximal size of an independent set
I(G)—maximal size of an irredundant ordered base

Lemma (Height estimates)

b ≤ B ≤ H ≤ I ≤ b · log deg

RC ≤ H + 1 ≤ 9 log deg with few notable exceptions



Finite
Primitive
Binary

Permutation
Groups

In memoriam,
Chat Ho,

1946–2005

Gregory
Cherlin

Non-binarity tests—structural

Complexity does not increase when restricting to an
equivalence class for a parametrically definable
equivalence relation.
(Pointwise stabilizers; subgroups containing a point
stabilizer).
If some subset can be enumerated by 2-equivalent
tuples which are not conjugate, the group is not binary.
E.g. if the induced action is 2-transitive but not the full
symmetric group.

Example
G, point stabilizer M. Suppose

A ≤ M, A ≃ SLn(q), n ≥ 2;
A ≤ S ≤ G, S a central quotient of SLn+1(q), S ̸≤ M;

Then G contains the natural doubly transitive action of A on
some V (n,q) (orbit of complement to G ∩ A).

Application: forcing Altn to be a section of the socle tends to
bound both q and the dimension, at which point one can
possibly compute in G, or at least in M.
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Some subgroup theoretic criteria

⋆ Elementary abelian subgroups V = ⟨g,h⟩ of order p2:.
If

p divides |Ω|, |M|, p2 does not divide |M| and
⟨g⟩, ⟨h⟩, ⟨gh⟩ are conjugate, and g fixes a point,
or
g,h,gh−1 conjugate with fixed point sets of maximal
size (for p-elements), not all fixed by V .

then G is not binary (by a previous criterion, ultimately).

⋆ Frobenius subgroups:
F ◁ G acting as A ⋊ C on a subset as a Frobenius group
with A cyclic and C not an elementary abelian 2-group.
Then G is not binary (via explicit triples in A of the form
(1,a,at) with a a generator.).
A variant allows a wide range of subgroups under particular
numerical conditions.
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Then what?

Eventually, systematic application of these methods leaves
over a large finite number of groups (some of every kind).
Then there are 6 computational methods.

1 The number of k -types is bounded in terms of 2-types.
The orbit counting can be checked using character
theory numerically.

2 There are standard routines for comparing G to the
automorphism group of the binary structure.

3 Just check everything: all the 3-types, and perhaps all
(or a random sample of) the 4-types.

This takes us up to degree 107.



Finite
Primitive
Binary

Permutation
Groups

In memoriam,
Chat Ho,

1946–2005

Gregory
Cherlin

Then what?

Eventually, systematic application of these methods leaves
over a large finite number of groups (some of every kind).
Then there are 6 computational methods.

1 The number of k -types is bounded in terms of 2-types.
The orbit counting can be checked using character
theory numerically.

2 There are standard routines for comparing G to the
automorphism group of the binary structure.

3 Just check everything: all the 3-types, and perhaps all
(or a random sample of) the 4-types.

This takes us up to degree 107.



Finite
Primitive
Binary

Permutation
Groups

In memoriam,
Chat Ho,

1946–2005

Gregory
Cherlin

Computations: Larger groups

4 Binary actions of the point stabilizer may be few, and
ruled out numerically.
E.g. Sym5 has non-trivial binary actions other than
regular only: ordered k -tuples for 1 ≤ k ≤ 4; on
ordered partitions of type (1,2,2); and the action of
degree 2 (which can be discarded here); so the
relevant degrees are divisible by 5. With the trivial orbit,
this means |Ω| cannot be divisible by 5 (Sym5 contains
the Sylow 5-subgroup).

5 Conjugacy classes of prime elements can be explored
numerically, and prior criteria applied thoroughly.

6 When M is exotically small one tends to find points
a,b, c such that the stabilizer of a,b is trivial and (with
luck) there is a non-trivial intersection Ma ∩ MbMc .This
gives a counterexample to binarity using triples (a,b, c)
and (a,b, cg) for g in the intersection.
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A few problems

The main questions are in the algebraic category—which
perhaps should precede the finite case.
This certainly lends itself to an investigation in the ranked
category if one assumes the Algebraicity Conjecture.
But—

Questions
O’Nan-Scott theory in definably primitive groups . . .
6 problems, Macpherson-Pillay (5.1–5.5, 5.7)

5.1: Aff Absolutely irreducible over finite Fq?
“The only serious obstacle [apart from Al-

gebraicity] to a classification of definably prim-
itive groups of finite Morley rank.”

5.2,5.3: Aff Fine structure when the base field is infinite (cf. Poizat,
Études Wagnériennes re 5.2).

5.4: AS Simple regular normal?

5.5: D,P Diagonal or product actions with algebraic socle

5.7: ? Are there definably primitive groups which are
imprimitive and not affine? [finite point stabilizer]
Similar: Conjugacy theorem? (Frattini).
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A few problems

. . . staying in the ranked category:

Questions
For connected groups, is the relational complexity
bounded as a function of the rank?
Or more directly, is the height bounded?
Binary groups: reduce to almost simple case? (Affine
case in particular.)
Is there an O’Nan-Scott Theory for “quasi-primitive”
groups of finite Morley rank?
What can we say about maximal definable subgroups
of quasisimple algebraic groups?
O’Nan-Scott theory in definably primitive groups . . .
6 problems, Macpherson-Pillay (5.1–5.5, 5.7)

5.1: Aff Absolutely irreducible over finite Fq?
“The only serious obstacle [apart from Al-

gebraicity] to a classification of definably prim-
itive groups of finite Morley rank.”

5.2,5.3: Aff Fine structure when the base field is infinite (cf. Poizat,
Études Wagnériennes re 5.2).

5.4: AS Simple regular normal?

5.5: D,P Diagonal or product actions with algebraic socle

5.7: ? Are there definably primitive groups which are
imprimitive and not affine? [finite point stabilizer]
Similar: Conjugacy theorem? (Frattini).
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