Harmonious groups of finite Morley rank
(first part: Lascar analysis of a group of finite Morley rank revisited)

A work joint with Rachad Bentbib (Université de Poitiers)

Ranked groups - The return

Conference to celebrate the return in France of

Tuna Altınel
Main objective

Better know the structure of \aleph_1-categorical groups.

Definition: a theory T is κ-categorical for an infinite cardinal κ if any two models of T of cardinality κ are isomorphic.

For instance, we would like to obtain a result of the style:

*Let G be a group with no abelian subgroup of finite index. Then G is \aleph_1-categorical if and only if it is of finite Morley rank and no normal subgroup N of finite index in G is a central product $N = HK$ with $H \cap K$ finite and H and K infinite and normal in G.***

Another objective:

What are the groups interpretable in a strongly minimal structure?

Definition: a theory T is strongly minimal if, for any model $M = (M; \cdot \cdot \cdot)$ of T, any definable subset of M is finite or cofinite.
Groups of finite Morley rank and \aleph_1-categoricity

Let T be a complete theory in a countable language.

Morley’s Categoricity Theorem (1965)

If T is κ-categorical for some uncountable κ, then T is κ-categorical for every uncountable κ.

Example: if T is strongly minimal, then T is \aleph_1-categorical.

Theorem (Baldwin, 1973)

If T is \aleph_1-categorical, then it is of finite Morley rank.

Theorem (Zilber, 1977)

The theory of an infinite simple group of finite Morley rank is \aleph_1-categorical.

Remark: a direct product of two nonisomorphic infinite structures of groups of finite Morley rank is not \aleph_1-categorical.
Groups of finite Morley rank: examples

- The main example of a group of finite Morley rank is the group $G(K)$ of rational points of an algebraic group G defined over an algebraically closed field K, where the language is the one of groups with a unary predicate for each constructible subset of $G(K)^n$ (Zilber, early 1970s).

Remark: such a structure is bi-interpretable with a strongly minimal structure, so it is κ-categorical for each cardinal $\kappa > |K|$.

- The pure group $(\mathbb{Q}, +)$ is a group of Morley rank 1, and it is not algebraic.
- The **Baudisch group** is a non-algebraic non-abelian nilpotent group of Morley rank 2.

Remark: $(\mathbb{Q}, +)$ is a strongly minimal structure, so it is \aleph_1-categorical, and the Baudisch group is of Morley rank 2 and it is not abelian-by-finite, so it is \aleph_1-categorical.

Theorem (Tanaka, 1988)

Let G be a group of Morley rank 2. If G is not abelian-by-finite, then G is \aleph_1-categorical.

Theorem (Tsuboi, 1988)

Let G be an infinite solvable group of finite Morley rank. If G has no abelian definable subgroup of Morley rank ≥ 2, then G is \aleph_1-categorical.
What about \(\omega \)-categorical groups?

Theorem (proved independently by Engeler, Ryll-Nardzewski and Svenonius in 1959)

A countable structure \(\mathcal{M} = (M; \cdots) \) is \(\omega \)-categorical iff \(\text{Aut}(\mathcal{M}) \) has only finitely many orbits in its action on \(\mathcal{M}^n \) for each \(n > 0 \).

Corollary

\(\omega \)-categorical groups are uniformly locally finite groups (*i.e.* for each integer \(k \), there is an integer \(n \) such that any subset of cardinal \(k \) generates a subgroup of order at most \(n \)); in particular, they have bounded exponent.

Theorems

- (Wilson, 1981) \(\omega \)-categorical groups are locally-solvable-by-residually-finite.
- (Apps, 1982) Let \(G \) be an \(\omega \)-categorical group. Then \(G \) has a finite characteristic series \(1 = G_0 < G_1 < \cdots < G_n = G \) with \(G_{i+1}/G_i \) an \(\omega \)-categorical characteristically simple group for each \(i \).

Conjectures

- (stated independently by Apps and Wilson in 1981) \(\omega \)-categorical characteristically simple locally nilpotent groups are abelian.
- (Wilson, 1981) \(\omega \)-categorical groups are nilpotent-by-residually-finite.
What about totally categorical groups?

Definition: a theory T is said to be totally categorical if it has exactly one model in each infinite power.

Theorem (Baur-Cherlin-Macintyre, 1977)
Totally categorical groups are abelian-by-finite and have bounded exponent.

Theorem (Baur-Cherlin-Macintyre, 1977)
Let G be a locally finite group of bounded exponent and let A be an abelian normal subgroup of finite index in G. Then G is totally categorical iff A is a direct sum of finite normal subgroups of G of bounded order.
A particular case: torsion-free nilpotent groups

Theorem (Zilber, 1982)

Let G be a nonabelian torsion-free nilpotent group. The theory of the pure group $(G; \cdot)$ is \(\aleph_1 \)-categorical if and only if G satisfies the following two conditions:

- G is isomorphic to a unipotent group over an algebraically closed field of characteristic 0;
- G cannot be decomposed into a direct product of two nontrivial subgroups.

Theorem (Altınel-Wilson, 2008)

Every torsion-free nilpotent group G of finite Morley rank has a faithful linear representation over a field of characteristic zero.

Theorem (Myasnikov-Sohrabi, 2018)

A torsion-free nilpotent group G has finite Morley rank in the language of groups iff $G \cong G_0 \times G_1 \times \cdots G_n$ for a divisible abelian group G_0 and finitely many unipotent algebraic groups G_1, \ldots, G_n over characteristic zero algebraically closed fields.

Remark: these theorems are proved by methods based on the study of nilpotent Lie algebras.
A torsion-free nilpotent group G of finite Morley rank is said to be **homogeneous** if either it is trivial or there is an interpretable algebraically closed field K such that, each nontrivial interpretable quotient group G/H of G contains a copy of K.

Theorem (follows from works by Burdges and F., ~2006)

Let G be a torsion-free nilpotent group. Then $G/Z(G)$ and G' are the direct products of homogeneous subgroups.
II - Harmonious structures

Groups of finite Morley rank: Lascar analysis

Definition

Let T be an ω-stable theory and, let $\varphi(x)$ and $\phi(x)$ be two formulas. We say that φ and ϕ are \sim-equivalent if, for every model M containing the parameters of φ and ϕ, we have $|\varphi(M)| = |\phi(M)|$.

Theorem (Lascar, 1985)

Let T be the theory of a group G of finite Morley rank. We can find strongly minimal formulas $f_1(x), \ldots, f_n(x)$, possibly imaginary, with parameters in the prime model, such that

- for all the infinite cardinalities $\kappa_1, \ldots, \kappa_n$, there exists a model $\mathcal{M} = (M; \cdots)$ of T such that $|f_i(M)| = \kappa_i$ for each i;
- every strongly minimal formula $\varphi(x)$ is \sim-equivalent to one of these formulas.
- every elementary extension of a model of that theory augments at least one of the formulas.
Corollary

A group G of finite Morley rank is \aleph_1-categorical if and only if all the strongly minimal formulas, with parameters in the prime model, are \sim-equivalent (i.e. $n = 1$ in the previous theorem).

Theorem (Lascar, 1985)

Let G be a connected group of finite Morley rank with no infinite normal abelian definable subgroup. Then there are \aleph_1-categorical groups H_1, \ldots, H_n such that G is isomorphic to $(H_1 \times \cdots \times H_n)/F$ for a finite subgroup F.

We would like delete the hypothesis with no infinite normal abelian definable subgroup.
Definition

Let $\mathcal{M} = (M; \cdots)$ be a structure of finite Morley rank. Two interpretable strongly minimal sets X and Y are said to be analogous if there is a strongly minimal set U and two interpretable maps $f_X : U \rightarrow X$ and $f_Y : U \rightarrow Y$ with cofinite images. The structure $\mathcal{M} = (M; \cdots)$ is harmonious of type X if each interpretable strongly minimal set is analogous to X.

Remarks:
- If two interpretable strongly minimal sets X and Y are analogous, their canonical extensions in any elementary extension of \mathcal{M} are analogous too.
- There are integers m and n such that $|f_X^{-1}(\{x\})| \leq m$ and $|f_Y^{-1}(\{y\})| \leq n$ for each $x \in X$ and each $y \in Y$.
- In particular, we have $|X| = |U| = |Y|$.

Questions
- If two strongly minimal sets X and Y are analogous, are X and Y \sim-equivalent? We will show this property for groups, thus any harmonious group of finite Morley rank is \aleph_1-categorical.
- If two strongly minimal sets X and Y are \sim-equivalent, are X and Y analogous?
- In other words, is any \aleph_1-categorical group harmonious?
- If \mathcal{M} is an harmonious structure of finite Morley rank, are its elementary extensions harmonious too? We will show this property for groups.
The finite cover property

Definition (Keisler, 1967)
Let $\mathcal{M} = (M; \cdots)$ be a model of a complete theory T. The structure \mathcal{M} has the **finite cover property** if a formula $\varphi(\bar{x}, \bar{a})$ has the following property:
- for every integer n, there is an inconsistent set of at least n formulas $\{\varphi(\bar{x}, \bar{a}_i) ; i \in I\}$ with parameters in M such that every subset of it is consistent.

Facts
- If $\mathcal{M} \equiv \mathcal{N}$ and \mathcal{M} has the finite cover property, then \mathcal{N} has also this property.
- If a structure \mathcal{M} does not have the finite cover property, then no structure interpretable in \mathcal{M} has the finite cover property.

- Any unstable structure has the finite cover property.
- No \aleph_1-categorical structure has the finite cover property.
- No group of finite Morley rank has the finite cover property.

$\mathcal{M} = (M; \cdots)$ is a structure of finite Morley rank without the finite cover property.

Facts
- Any infinite interpretable set contains a strongly minimal set.
Lemma

The relation “to be analogous to” is an equivalence relation on the family of strongly minimal sets.

Proof: for the transitivity, let Y be a strongly minimal set analogous to X and Z. Let V and W be strongly minimal sets and let $f_X : V \to X$, $f_Y : V \to Y$, $g_Y : W \to Y$ and $g_Z : W \to Z$ be interpretable maps with cofinite images. Then $f_Y(V) \cap g_Y(W)$ is cofinite in Y, so the set $\{(v, w) \in V \times W \mid f_Y(v) = g_Y(w)\}$ is infinite and contains a strongly minimal set U. Let $p_V : U \to V$ and $p_W : U \to W$ be the canonical projection maps. Then we have $f_Y \circ p_V = g_Y \circ p_W$ and the maps $f_X \circ p_V : U \to X$, $f_Y \circ p_V : U \to Y$ and $g_Z \circ p_W : U \to Z$ have cofinite images. □

Corollary

If $(X_i)_{i=1, \ldots, n}$ is a finite family of analogous strongly minimal sets, there exists a strongly minimal set $U \subseteq X_1 \times \cdots \times X_n$ and surjective interpretable maps $f_i : U \to X_i$.

Questions

If $(X_i)_{i \in I}$ is an infinite family of analogous strongly minimal sets,

- are there a strongly minimal set U and interpretable maps $f_i : U \to X_i$ with cofinite images?
- are there a strongly minimal set V and interpretable maps $g_i : X_i \to V$ with cofinite images?
Proposition

Any strongly minimal set is analogous to a strongly minimal set of the form E/R for a definable subset E of M and an equivalence relation R over E.

Corollary

Any strongly minimal structure is harmonious.

Remarks:

- Let $\mathcal{K} = (K; +, \cdot)$ be an algebraically closed field. Then \mathcal{K} is strongly minimal, so it is harmonious. However, the \mathcal{K}-interpretable structure $\mathcal{G} = (K \times K; +, K \times \{0\})$ is not harmonious.

- The last result implies that any structure bi-interpretable with a strongly minimal structure is harmonious.

- The pure group $(\mathbb{Z}/4\mathbb{Z})^\omega$ is harmonious, but it is not bi-interpretable with a strongly minimal structure.
Question

If M is harmonious of type X, is M interpretable in a strongly minimal structure?

Remark: Assaf Hasson proved that, for a theory of finite Morley rank with definable MR, the DMP (definable multiplicity property) is a sufficient condition for such an interpretation. Furthermore, he proved that not to have the finite cover property is a necessary condition, but not a sufficient condition, for a structure to be interpreted in a strongly minimal structure.

Definition: Let T be a theory of finite Morley rank with definable MR. Then T has the DMP if for every model M, formula $\varphi(\bar{x}, \bar{y})$ and integers k and n, the set of tuples \bar{a} in M such that $\varphi(M, \bar{a})$ has Morley rank k and Morley degree n is definable.
We fix a structure $G = (G; \cdot, \cdots)$ of group of finite Morley rank. In particular, no G-interpretable structure has the finite cover property, so each G-interpretable set contains a strongly minimal set.

Definition

An interpretable set N is said to be **harmonious of type X** if, for any interpretable subset E of N^n for an integer n and any interpretable equivalence relation R over E such that E/R is strongly minimal, the set E/R is analogous to X.

Remarks:

- The structure G is harmonious iff the set G is harmonious.
- If a structure $M = (M; \cdots)$ is interpretable in G, then it is harmonious iff the set M is harmonious.

Lemma

Let X be a strongly minimal set. If A_1, \ldots, A_n are harmonious sets of type X, then $A_1 \times \cdots \times A_n$ is harmonious of type X.
Proposition

If \(G = X_1 \cdots X_n \) is a finite product of analogous strongly minimal subsets, then \(G \) is bi-interpretable with a strongly minimal structure. In particular, it is harmonious.

Proof: there is an interpretable strongly minimal set \(U \) and, for each \(i \), a surjective interpretable map \(f_i : U \to X_i \). We consider the surjective interpretable map \(\gamma : U^n \to G \) defined by \(\gamma(x_1, \ldots, x_n) = f_1(x_1) \cdots f_n(x_n) \). We can interpret a strongly minimal structure \(\mathcal{U} \) of base \(U \) such that \(G \) and \(\mathcal{U} \) are bi-interpretable. \(\Box \)

Corollary

Let \(K \triangleleft H \) be normal definable subgroups of \(G \) such that \(H/K \) is infinite and has no nontrivial proper \(G \)-normal definable subgroup. Then \(H/K \) is harmonious. Moreover, if \(X \) is the type of \(H/K \), then \(|H/K| = |X| \).

Proof: it follows from the Zilber Indecomposability theorem that such a quotient group is generated by a finite product of the \(G \)-conjugates of any strongly minimal subset. \(\Box \)
Proposition

Let \(X \) be a \(G \)-interpretable strongly minimal set. We consider finitely many definable subgroups \(1 = H_0 \leq \cdots \leq H_m = G \). Then there is an interpretable subset \(E \) of \(H_{i+1}/H_i \) for some \(i \) and an interpretable equivalence relation \(R \) over \(E \) such that \(E/R \) is strongly minimal and analogous to \(X \).

Theorem (Lascar analysis of a group of finite Morley rank revisited)

There are finitely many strongly minimal sets \(X_1, \ldots, X_n \) such that each interpretable strongly minimal set \(X \) of \(G \), is analogous to some \(X_i \).

Proof: we may suppose that, in the proposition above, the groups \(H_i \) are normal in \(G \) and the quotient groups \(H_{i+1}/H_i \) are infinite and minimal for this condition. In particular, \(H_{i+1}/H_i \) is harmonious for each \(i \). \(\square \)

Remark: at this stage, it is not clear that the integer \(n \) is preserved by elementary equivalence.
IV - Elementary extensions

\(\mathcal{M} = (M; \cdot, \cdots) \) is a structure of finite Morley rank without the finite cover property.

Lemma

Let \(\mathcal{M}^* = (M^*; \cdot, \cdots) \) be an elementary extension of \(\mathcal{M} \). Let \(X \) and \(Y \) be two interpretable strongly minimal sets in \(\mathcal{M} \) and let \(X^* \) and \(Y^* \) be their canonical extensions in \(\mathcal{M}^* \). Then \(X \) and \(Y \) are analogous iff \(X^* \) and \(Y^* \) are analogous.

Proof (for the case where \(X \) and \(Y \) are subsets of \(M \)): We may assume that \(X^* \) and \(Y^* \) are analogous. There is a strongly minimal subset \(V^* \subseteq X^* \times Y^* \) such that the canonical projection maps \(p : V^* \to X^* \) and \(q : V^* \to Y^* \) are sujective. We consider integers \(k \) and \(l \) such that \(|p^{-1}(x)| \leq k \) and \(|q^{-1}(y)| \leq l \) for each \(x \in X^* \) and each \(y \in Y^* \). Let \(\varphi(x, y, \bar{a}) \) be a formula defining \(V^* \) with parameters \(\bar{a} \) in \(M^* \). The set \(V^* \) defined in \(M^* \) by the formula \(\varphi(x, y, \bar{a}) \) has the following properties:

- it is contained in \(X^* \times Y^* \);
- for any \(x \in X^* \), \(\{ y \in Y^* \mid (x, y) \in V^* \} \) is nonempty and has at most \(k \) elements;
- for any \(y \in Y^* \), \(\{ x \in X^* \mid (x, y) \in V^* \} \) is nonempty and has at most \(l \) elements.

Consequently, there exist parameters \(\bar{b} \) in \(M \) such that the set \(V \) defined by \(\varphi(x, y, \bar{b}) \) has the following properties:

- it is contained in \(X \times Y \);
- for any \(x \in X \), \(\{ y \in Y \mid (x, y) \in V \} \) is nonempty and has at most \(k \) elements;
- for any \(y \in Y \), \(\{ x \in X \mid (x, y) \in V \} \) is nonempty and has at most \(l \) elements.

In particular, the set \(V \) is infinite and contains a strongly minimal subset \(\mathcal{W} \), and the last two conditions imply that the canonical projection maps from \(\mathcal{W} \) to \(X \) and \(Y \) have cofinite images. Therefore \(X \) and \(Y \) are analogous. \(\square \)
If two strongly minimal sets X and Y are analogous, they are \sim-equivalent.

Let $\mathcal{G} = (G; \cdot, \cdots)$ be a group of finite Morley rank. We recall the existence of finitely many strongly minimal sets X_1, \ldots, X_n such that each interpretable strongly minimal set X of G, is analogous to some X_i. We may suppose that the sets X_i and X_j are not analogous for $i \neq j$.

Proposition

Let $\mathcal{G}^* = (G^*; \cdot, \cdots)$ be an elementary extension of \mathcal{G} and let X_1^*, \ldots, X_n^* be the canonical extensions of X_1, \ldots, X_n in \mathcal{G}^*. Then each interpretable strongly minimal set of G^*, is analogous to some X_i^* and the sets X_i^* and X_j^* are not analogous for $i \neq j$.

Corollary

We may assume that X_1, \ldots, X_n are the canonical extensions of strongly minimal sets interpretable in the prime model of \mathcal{G}.

In particular, the integer n is preserved by elementary equivalence.

Corollaries

- Any harmonious group of finite Morley rank is \aleph_1-categorical.
- If the structure \mathcal{G} is harmonious, then any structure elementary equivalent to \mathcal{G} is harmonious as well.
Theorem

For each strongly minimal subset X of G, there is a connected definable subgroup $M_G(X)$ satisfying the following properties:

- $M_G(X)$ is harmonious of type X;
- every harmonious subset of type X is contained in finitely many cosets of $M_G(X)$.

In particular,

- $M_G(X)$ contains all the connected harmonious subgroups of G of type X;
- $M_G(X)$ is characteristic in G;
- the cardinal of $M_G(X)$ is $|X|$.
Corollary

The sugroup of G generated by its harmonious subgroups is the central product $M_G = M_G(X_1) \cdots M_G(X_n)$ and the intersection $M_G(X_i) \cap \prod_{j \neq i} M_G(X_j)$ is finite for each i.
Furthermore, each harmonious subset E of G is contained in finitely many cosets of M_G.

Questions

If G is connected,
- is G' contained in M_G?
- is $M_G/Z(G) = G/Z(G)$?

A positive answer would provide a similar result to the torsion-free nilpotent case.

Theorem (Burdges, F.)

If G is a torsion-free nilpotent group, then $G/Z(G)$ and G' are the direct products of homogeneous subgroups.
Questions

- If the structure \mathcal{M} is harmonious, is its theory \aleph_1-categorical?
- If two strongly minimal sets X and Y are \sim-equivalent, are X and Y analogous? *A positive answer would imply that any \aleph_1-categorical group is harmonious.*
- Characterize \aleph_1-categorical pure groups.

Conjecture 1

Any connected group $\mathcal{G} = (G; \cdot)$ of finite Morley rank interprets \aleph_1-categorical groups G_1, \ldots, G_n such that $G \cong (G_1 \times \cdots \times G_n)/F$ for a normal finite subgroup F.

Rachad Bentbib studies this problem.

Remark: if $\mathcal{G} = (G; \cdot, \cdots)$ is a group of finite Morley rank, then \mathcal{G} is bi-interpretable with a structure $\mathcal{G}^\circ = (G^\circ; \cdot, \cdots)$ of base G°.
Conjecture 2

If the theory of a group \((G; \cdot, \cdots)\) is \(\aleph_1\)-categorical then all of its models are interpretable in a strongly minimal structure.

Remark: if all the models of a theory are interpretable in a strongly minimal structure, then the theory has no Vaught pair so it is \(\aleph_1\)-categorical.

Conjecture 3

If the theory of a group \((G; \cdot, \cdots)\) is of finite Morley rank then one of its models is interpretable in a strongly minimal structure.

Remark: if a model of a theory is interpretable in a strongly minimal structure, then the theory is of finite Morley rank.

The second part of this talk will be given by Rachad Bentbib.
Bon retour en France, Tuna !