

Harmonious groups of finite Morley rank

(first part: Lascar analysis of a group of finite Morley rank revisited)

A work joint with Rachad Bentbib (Université de Poitiers)

Ranked groups - The return

Conference to celebrate the return in France of

Tuna Altınel

Main objective

Better know the structure of \aleph_1 -categorical groups.

Definition: a theory T is **κ -categorical** for an infinite cardinal κ if any two models of T of cardinality κ are isomorphic.

For instance, we would like to obtain a result of the style:

Let G be a group with no abelian subgroup of finite index. Then G is \aleph_1 -categorical if and only if it is of finite Morley rank and no normal subgroup N of finite index in G is a central product $N = HK$ with $H \cap K$ finite and H and K infinite and normal in G .

Another objective:

What are the groups interpretable in a strongly minimal structure?

Definition: a theory T is **strongly minimal** if, for any model $\mathcal{M} = (M; \dots)$ of T , any definable subset of M is finite or cofinite.

I - Introduction

Groups of finite Morley rank and \aleph_1 -categoricity

Let T be a complete theory in a countable language.

Morley's Categoricity Theorem (1965)

If T is κ -categorical for some uncountable κ , then T is κ -categorical for every uncountable κ .

Example: if T is strongly minimal, then T is \aleph_1 -categorical.

Theorem (Baldwin, 1973)

If T is \aleph_1 -categorical, then it is of finite Morley rank.

Theorem (Zilber, 1977)

The theory of an infinite simple group of finite Morley rank is \aleph_1 -categorical.

Remark: a direct product of two nonisomorphic infinite structures of groups of finite Morley rank is not \aleph_1 -categorical.

Groups of finite Morley rank: examples

- The main example of a group of finite Morley rank is the group $\mathcal{G}(K)$ of rational points of an algebraic group \mathcal{G} defined over an algebraically closed field K , where the language is the one of groups with a unary predicate for each constructible subset of $\mathcal{G}(K)^n$ (Zilber, early 1970s).

Remark: such a structure is bi-interpretable with a strongly minimal structure, so it is κ -categorical for each cardinal $\kappa > |K|$.

- The pure group $(\mathbb{Q}, +)$ is a group of Morley rank 1, and it is not algebraic.
- The **Baudisch group** is a non-algebraic non-abelian nilpotent group of Morley rank 2.

Remark: $(\mathbb{Q}, +)$ is a strongly minimal structure, so it is \aleph_1 -categorical, and the Baudisch group is of Morley rank 2 and it is not abelian-by-finite, so it is \aleph_1 -categorical.

Theorem (Tanaka, 1988)

Let G be a group of Morley rank 2. If G is not abelian-by finite, then G is \aleph_1 -categorical.

Theorem (Tsuboi, 1988)

Let G be an infinite solvable group of finite Morley rank. If G has no abelian definable subgroup of Morley rank ≥ 2 , then G is \aleph_1 -categorical.

What about ω -categorical groups?

Theorem (proved independently by Engeler, Ryll-Nardzewski and Svenonius in 1959)

A countable structure $\mathcal{M} = (M; \dots)$ is ω -categorical iff $\text{Aut}(\mathcal{M})$ has only finitely many orbits in its action on M^n for each $n > 0$.

Corollary

ω -categorical groups are uniformly locally finite groups (i.e. for each integer k , there is an integer n such that any subset of cardinal k generates a subgroup of order at most n); in particular, they have bounded exponent.

Theorems

- (Wilson, 1981) ω -categorical groups are locally-solvable-by-residually-finite.
- (Apps, 1982) Let G be an ω -categorical group. Then G has a finite characteristic series $1 = G_0 < G_1 < \dots < G_n = G$ with G_{i+1}/G_i an ω -categorical characteristically simple group for each i .

Conjectures

- (stated independently by Apps and Wilson in 1981) ω -categorical characteristically simple locally nilpotent groups are abelian.
- (Wilson, 1981) ω -categorical groups are nilpotent-by-residually-finite.

What about totally categorical groups?

Definition: a theory T is said to be **totally categorical** if it has exactly one model in each infinite power.

Theorem (Baur-Cherlin-Macintyre, 1977)

Totally categorical groups are abelian-by-finite and have bounded exponent.

Theorem (Baur-Cherlin-Macintyre, 1977)

Let G be a locally finite group of bounded exponent and let A be an abelian normal subgroup of finite index in G . Then G is totally categorical iff A is a direct sum of finite normal subgroups of G of bounded order.

A particular case: torsion-free nilpotent groups

Theorem (Zilber, 1982)

Let G be a nonabelian torsion-free nilpotent group. The theory of the pure group $(G; \cdot)$ is \aleph_1 -categorical if and only if G satisfies the following two conditions:

- G is isomorphic to a unipotent group over an algebraically closed field of characteristic 0;
- G cannot be decomposed into a direct product of two nontrivial subgroups.

Theorem (Altinel-Wilson, 2008)

Every torsion-free nilpotent group G of finite Morley rank has a faithful linear representation over a field of characteristic zero.

Theorem (Myasnikov-Sohrabi, 2018)

A torsion-free nilpotent group G has finite Morley rank in the language of groups iff $G \simeq G_0 \times G_1 \times \cdots \times G_n$ for a divisible abelian group G_0 and finitely many unipotent algebraic groups G_1, \dots, G_n over characteristic zero algebraically closed fields.

Remark: these theorems are proved by methods based on the study of nilpotent Lie algebras.

Definition

A torsion-free nilpotent group G of finite Morley rank is said to be **homogeneous** if either it is trivial or there is an interpretable algebraically closed field K such that, each nontrivial interpretable quotient group G/H of G contains a copy of K .

Theorem (follows from works by Burdges and F., ~2006)

Let G be a torsion-free nilpotent group. Then $G/Z(G)$ and G' are the direct products of homogeneous subgroups.

II - Harmonious structures

Groups of finite Morley rank: Lascar analysis

Definition

Let T be an ω -stable theory and, let $\varphi(x)$ and $\phi(x)$ be two formulas. We say that φ and ϕ are **\sim -equivalent** if, for every model M containing the parameters of φ and ϕ , we have $|\varphi(M)| = |\phi(M)|$.

Theorem (Lascar, 1985)

Let T be the theory of a group G of finite Morley rank. We can find strongly minimal formulas $f_1(x), \dots, f_n(x)$, possibly imaginary, with parameters in the prime model, such that

- for all the infinite cardinalities $\kappa_1, \dots, \kappa_n$, there exists a model $\mathcal{M} = (M; \dots)$ of T such that $|f_i(M)| = \kappa_i$ for each i ;
- every strongly minimal formula $\varphi(x)$ is \sim -equivalent to one of these formulas.
- every elementary extension of a model of that theory augments at least one of the formulas.

Corollary

A group G of finite Morley rank is \aleph_1 -categorical if and only if all the strongly minimal formulas, with parameters in the prime model, are \sim -equivalent (i.e. $n = 1$ in the previous theorem).

Theorem (Lascar, 1985)

Let G be a connected group of finite Morley rank with no infinite normal abelian definable subgroup. Then there are \aleph_1 -categorical groups H_1, \dots, H_n such that G is isomorphic to $(H_1 \times \dots \times H_n)/F$ for a finite subgroup F .

We would like delete the hypothesis with no infinite normal abelian definable subgroup.

Definition

Let $\mathcal{M} = (M; \dots)$ be a structure of finite Morley rank. Two interpretable strongly minimal sets X and Y are said to be **analogous** if there is a strongly minimal set U and two interpretable maps $f_X : U \rightarrow X$ and $f_Y : U \rightarrow Y$ with cofinite images.

The structure $\mathcal{M} = (M; \dots)$ is **harmonious of type X** if each interpretable strongly minimal set is analogous to X .

Remarks:

- If two interpretable strongly minimal sets X and Y are analogous, their canonical extensions in any elementary extension of \mathcal{M} are analogous too.
- There are integers m and n such that $|f_X^{-1}(\{x\})| \leq m$ and $|f_Y^{-1}(\{y\})| \leq n$ for each $x \in X$ and each $y \in Y$.
- In particular, we have $|X| = |U| = |Y|$.

Questions

- If two strongly minimal sets X and Y are analogous, are X and Y \sim -equivalent?
We will show this property for groups, thus any harmonious group of finite Morley rank is \aleph_1 -categorical.
- If two strongly minimal sets X and Y are \sim -equivalent, are X and Y analogous?
- In other words, is any \aleph_1 -categorical group harmonious?
- If \mathcal{M} is an harmonious structure of finite Morley rank, are its elementary extensions harmonious too? *We will show this property for groups.*

The finite cover property

Definition (Keisler, 1967)

Let $\mathcal{M} = (M; \dots)$ be a model of a complete theory T . The structure \mathcal{M} has the **finite cover property** if a formula $\varphi(\bar{x}, \bar{a})$ has the following property:

- for every integer n , there is an inconsistent set of at least n formulas $\{\varphi(\bar{x}, \bar{a}_i) ; i \in I\}$ with parameters in M such that every subset of it is consistent.

Facts

- If $\mathcal{M} \equiv \mathcal{N}$ and \mathcal{M} has the finite cover property, then \mathcal{N} has also this property.
- If a structure \mathcal{M} does not have the finite cover property, then no structure interpretable in \mathcal{M} has the finite cover property.

Facts

- Any unstable structure has the finite cover property.
- No \aleph_1 -categorical structure has the finite cover property.
- No group of finite Morley rank has the finite cover property.

$\mathcal{M} = (M; \dots)$ is a structure of finite Morley rank without the finite cover property.

Facts

Any infinite interpretable set contains a strongly minimal set.

Lemma

The relation “to be analogous to” is an equivalence relation on the family of strongly minimal sets.

Proof: for the transitivity, let Y be a strongly minimal set analogous to X and Z . Let V and W be strongly minimal sets and let $f_X : V \rightarrow X$, $f_Y : V \rightarrow Y$ $g_Y : W \rightarrow Y$ and $g_Z : W \rightarrow Z$ be interpretable maps with cofinite images.

Then $f_Y(V) \cap g_Y(W)$ is cofinite in Y , so the set $\{(v, w) \in V \times W \mid f_Y(v) = g_Y(w)\}$ is infinite and contains a strongly minimal set U .

Let $p_V : U \rightarrow V$ and $p_W : U \rightarrow W$ be the canonical projection maps. Then we have $f_Y \circ p_V = g_Y \circ p_W$ and the maps $f_X \circ p_V : U \rightarrow X$, $f_Y \circ p_V : U \rightarrow Y$ and $g_Z \circ p_W : U \rightarrow Z$ have cofinite images. \square

Corollary

If $(X_i)_{i=1, \dots, n}$ is a finite family of analogous strongly minimal sets, there exists a strongly minimal set $U \subseteq X_1 \times \dots \times X_n$ and *surjective* interpretable maps $f_i : U \rightarrow X_i$.

Questions

If $(X_i)_{i \in I}$ is an *infinite* family of analogous strongly minimal sets,

- are there a strongly minimal set U and interpretable maps $f_i : U \rightarrow X_i$ with cofinite images?
- are there a strongly minimal set V and interpretable maps $g_i : X_i \rightarrow V$ with cofinite images?

Proposition

Any strongly minimal set is analogous to a strongly minimal set of the form E/R for a definable subset E of M and an equivalence relation R over E .

Corollary

Any strongly minimal structure is harmonious.

Remarks:

- Let $\mathcal{K} = (K; +, \cdot)$ be an algebraically closed field. Then \mathcal{K} is strongly minimal, so it is harmonious. However, the \mathcal{K} -interpretable structure $\mathcal{G} = (K \times K; +, K \times \{0\})$ is not harmonious.
- The last result implies that any structure bi-interpretable with a strongly minimal structure is harmonious.
- The pure group $(\mathbb{Z}/4\mathbb{Z})^\omega$ is harmonious, but it is not bi-interpretable with a strongly minimal structure.

Question

If \mathcal{M} is harmonious of type X , is \mathcal{M} interpretable in a strongly minimal structure?

Remark: Assaf Hasson proved that, for a theory of finite Morley rank with definable MR, the DMP (definable multiplicity property) is a sufficient condition for such an interpretation.

Furthermore, he proved that not to have the finite cover property is a necessary condition, but not a sufficient condition, for a structure to be interpreted in a strongly minimal structure.

Definition: Let T be a theory of finite Morley rank with definable MR. Then T **has the DMP** if for every model M , formula $\varphi(\bar{x}, \bar{y})$ and integers k and n , the set of tuples \bar{a} in M such that $\varphi(M, \bar{a})$ has Morley rank k and Morley degree n is definable.

III - Harmonious sets

We fix a structure $\mathcal{G} = (G; \cdot, \dots)$ of group of finite Morley rank.

In particular, no \mathcal{G} -interpretable structure has the finite cover property, so each \mathcal{G} -interpretable set contains a strongly minimal set.

Definition

An interpretable set N is said to be **harmonious of type X** if, for any interpretable subset E of N^n for an integer n and any interpretable equivalence relation R over E such that E/R is strongly minimal, the set E/R is analogous to X .

Remarks:

- The structure \mathcal{G} is harmonious iff the set G is harmonious.
- If a structure $\mathcal{M} = (M; \dots)$ is interpretable in \mathcal{G} , then it is harmonious iff the set M is harmonious.

Lemma

Let X be a strongly minimal set. If A_1, \dots, A_n are harmonious sets of type X , then $A_1 \times \dots \times A_n$ is harmonious of type X .

Proposition

If $G = X_1 \cdots X_n$ is a finite product of analogous strongly minimal subsets, then \mathcal{G} is bi-interpretable with a strongly minimal structure.
In particular, it is harmonious.

Proof: there is an interpretable strongly minimal set U and, for each i , a surjective interpretable map $f_i : U \rightarrow X_i$. We consider the surjective interpretable map $\gamma : U^n \rightarrow G$ defined by $\gamma(x_1, \dots, x_n) = f_1(x_1) \cdots f_n(x_n)$. We can interpret a strongly minimal structure \mathcal{U} of base U such that \mathcal{G} and \mathcal{U} are bi-interpretable. \square

Corollary

Let $K \triangleleft H$ be normal definable subgroups of G such that H/K is infinite and has no nontrivial proper G -normal definable subgroup. Then H/K is harmonious.
Moreover, if X is the type of H/K , then $|H/K| = |X|$.

Proof: it follows from the Zilber Indecomposability theorem that such a quotient group is generated by a finite product of the G -conjugates of any strongly minimal subset. \square

Proposition

Let X be a \mathcal{G} -interpretable strongly minimal set. We consider finitely many definable subgroups $1 = H_0 \leqslant \cdots \leqslant H_m = G$. Then there is an interpretable subset \overline{E} of H_{i+1}/H_i for some i and an interpretable equivalence relation R over \overline{E} such that \overline{E}/R is strongly minimal and analogous to X .

Theorem (Lascar analysis of a group of finite Morley rank revisited)

There are finitely many strongly minimal sets X_1, \dots, X_n such that each interpretable strongly minimal set X of G , is analogous to some X_i .

Proof: we may suppose that, in the proposition above, the groups H_i are normal in G and the quotient groups H_{i+1}/H_i are infinite and minimal for this condition. In particular, H_{i+1}/H_i is harmonious for each i . \square

Remark: at this stage, it is not clear that the integer n is preserved by elementary equivalence.

IV - Elementary extensions

$\mathcal{M} = (M; \cdot, \dots)$ is a structure of finite Morley rank without the finite cover property.

Lemma

Let $\mathcal{M}^* = (M^*; \cdot, \dots)$ be an elementary extension of \mathcal{M} . Let X and Y be two interpretable strongly minimal sets in \mathcal{M} and let X^* and Y^* be their canonical extensions in \mathcal{M}^* . Then X and Y are analogous iff X^* and Y^* are analogous.

Proof (for the case where X and Y are subsets of M): We may assume that X^* and Y^* are analogous. There is a strongly minimal subset $V^* \subseteq X^* \times Y^*$ such that the canonical projection maps $p : V^* \rightarrow X^*$ and $q : V^* \rightarrow Y^*$ are sujective. We consider integers k and l such that $|p^{-1}(x)| \leq k$ and $|q^{-1}(y)| \leq l$ for each $x \in X^*$ and each $y \in Y^*$. Let $\varphi(x, y, \bar{a})$ be a formula defining V^* with parameters \bar{a} in M^* . The set V^* defined in \mathcal{M}^* by the formula $\varphi(x, y, \bar{a})$ has the following properties:

- it is contained in $X^* \times Y^*$;
- for any $x \in X^*$, $\{y \in Y^* \mid (x, y) \in V^*\}$ is nonempty and has at most k elements;
- for any $y \in Y^*$, $\{x \in X^* \mid (x, y) \in V^*\}$ is nonempty and has at most l elements.

Consequently, there exist parameters \bar{b} in M such that the set V defined by $\varphi(x, y, \bar{b})$ has the following properties:

- it is contained in $X \times Y$;
- for any $x \in X$, $\{y \in Y \mid (x, y) \in V\}$ is nonempty and has at most k elements;
- for any $y \in Y$, $\{x \in X \mid (x, y) \in V\}$ is nonempty and has at most l elements.

In particular, the set V is infinite and contains a strongly minimal subset W , and the last two conditions imply that the canonical projection maps from W to X and Y have cofinite images. Therefore X and Y are analogous.

Corollary

If two strongly minimal sets X and Y are analogous, they are \sim -equivalent.

Let $\mathcal{G} = (G; \cdot, \dots)$ be a group of finite Morley rank. We recall the existence of finitely many strongly minimal sets X_1, \dots, X_n such that each interpretable strongly minimal set X of G , is analogous to some X_i . We may suppose that the sets X_i and X_j are not analogous for $i \neq j$.

Proposition

Let $\mathcal{G}^* = (G^*; \cdot, \dots)$ be an elementary extension of \mathcal{G} and let X_1^*, \dots, X_n^* be the canonical extensions of X_1, \dots, X_n in \mathcal{G}^* . Then each interpretable strongly minimal set of G^* , is analogous to some X_i^* and the sets X_i^* and X_j^* are not analogous for $i \neq j$.

Corollary

We may assume that X_1, \dots, X_n are the canonical extensions of strongly minimal sets interpretable in the prime model of \mathcal{G} .

In particular, the integer n is preserved by elementary equivalence.

Corollaries

- Any harmonious group of finite Morley rank is \aleph_1 -categorical.
- If the structure \mathcal{G} is harmonious, then any structure elementary equivalent to \mathcal{G} is harmonious as well.

Theorem

For each strongly minimal subset X of G , there is a connected definable subgroup $M_G(X)$ satisfying the following properties:

- $M_G(X)$ is harmonious of type X ;
- every harmonious subset of type X is contained in finitely many cosets of $M_G(X)$.

In particular,

- $M_G(X)$ contains all the connected harmonious subgroups of G of type X ;
- $M_G(X)$ is characteristic in G ;
- the cardinal of $M_G(X)$ is $|X|$.

Corollary

The subgroup of G generated by its harmonious subgroups is the central product $M_G = M_G(X_1) \cdots M_G(X_n)$ and the intersection $M_G(X_i) \cap \prod_{j \neq i} M_G(X_j)$ is finite for each i .

Furthermore, each harmonious subset E of G is contained in finitely many cosets of M_G .

Questions

If G is connected,

- is G' contained in M_G ?
- is $M_{G/Z(G)} = G/Z(G)$?

A positive answer would provide a similar result to the torsion-free nilpotent case.

Theorem (Burdges, F.)

If G is a torsion-free nilpotent group, then $G/Z(G)$ and G' are the direct products of homogeneous subgroups.

V - Questions

Questions

- If the structure \mathcal{M} is harmonious, is its theory \aleph_1 -categorical?
- If two strongly minimal sets X and Y are \sim -equivalent, are X and Y analogous?
A positive answer would imply that any \aleph_1 -categorical group is harmonious.
- Characterize \aleph_1 -categorical pure groups.

Conjecture 1

Any connected group $\mathcal{G} = (G; \cdot)$ of finite Morley rank interprets \aleph_1 -categorical groups G_1, \dots, G_n such that $G \simeq (G_1 \times \dots \times G_n)/F$ for a normal finite subgroup F .

Rachad Bentbib studies this problem.

Remark: if $\mathcal{G} = (G; \cdot, \dots)$ is a group of finite Morley rank, then \mathcal{G} is bi-interpretable with a structure $\mathcal{G}^\circ = (G^\circ; \cdot, \dots)$ of base G° .

Conjecture 2

If the theory of a group $(G; \cdot, \dots)$ is \aleph_1 -categorical then all of its models are interpretable in a strongly minimal structure.

Remark: if all the models of a theory are interpretable in a strongly minimal structure, then the theory has no Vaught pair so it is \aleph_1 -categorical.

Conjecture 3

If the theory of a group $(G; \cdot, \dots)$ is of finite Morley rank then one of its models is interpretable in a strongly minimal structure.

Remark: if a model of a theory is interpretable in a strongly minimal structure, then the theory is of finite Morley rank.

The second part of this talk will be given by Rachad Bentbib.

Bon retour en France, Tuna !

