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Main objective

Better know the structure of ℵ1-categorical groups.

Definition: a theory T is κ-categorical for an infinite cardinal κ if any two models of
T of cardinality κ are isomorphic.

For instance, we would like to obtain a result of the style:

Let G be a group with no abelian subgroup of finite index. Then G is ℵ1-categorical if
and only if it is of finite Morley rank and no normal subgroup N of finite index in G is
a central product N = HK with H ∩ K finite and H and K infinite and normal in G.

Another objective:

What are the groups interpretable in a strongly minimal structure?

Definition: a theory T is strongly minimal if, for any model M = (M; · · · ) of T , any
definable subset of M is finite or cofinite.
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I - Introduction

Groups of finite Morley rank and ℵ1-categoricity

Let T be a complete theory in a countable language.

Morley’s Categoricity Theorem (1965)

If T is κ-categorical for some uncountable κ, then T is κ-categorical for every
uncountable κ.

Example: if T is strongly minimal, then T is ℵ1-categorical.

Theorem (Baldwin, 1973)

If T is ℵ1-categorical, then it is of finite Morley rank.

Theorem (Zilber, 1977)

The theory of an infinite simple group of finite Morley rank is ℵ1-categorical.

Remark: a direct product of two nonisomorphic infinite structures of groups of finite
Morley rank is not ℵ1-categorical.
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Groups of finite Morley rank: examples

The main example of a group of finite Morley rank is the group G(K) of rational
points of an algebraic group G defined over an algebraically closed field K , where
the language is the one of groups with a unary predicate for each constructible
subset of G(K)n (Zilber, early 1970s).

Remark: such a structure is bi-interpretable with a strongly minimal structure, so it is
κ-categorical for each cardinal κ > |K |.

The pure group (Q,+) is a group of Morley rank 1, and it is not algebraic.

The Baudisch group is a non-algebraic non-abelian nilpotent group of Morley
rank 2.

Remark: (Q,+) is a strongly minimal structure, so it is ℵ1-categorical, and the
Baudisch group is of Morley rank 2 and it is not abelian-by-finite, so it is
ℵ1-categorical.

Theorem (Tanaka, 1988)

Let G be a group of Morley rank 2. If G is not abelian-by finite, then G is
ℵ1-categorical.

Theorem (Tsuboi, 1988)

Let G be an infinite solvable group of finite Morley rank. If G has no abelian definable
subgroup of Morley rank > 2, then G is ℵ1-categorical.
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What about ω-categorical groups?

Theorem (proved independently by Engeler, Ryll-Nardzewski and Svenonius in 1959)

A countable structure M = (M; · · · ) is ω-categorical iff Aut(M ) has only finitely
many orbits in its action on Mn for each n > 0.

Corollary

ω-categorical groups are uniformly locally finite groups (i.e. for each integer k, there is
an integer n such that any subset of cardinal k generates a subgroup of order at most
n); in particular, they have bounded exponent.

Theorems

(Wilson, 1981) ω-categorical groups are locally-solvable-by-residually-finite.

(Apps, 1982) Let G be an ω-categorical group. Then G has a finite characterstic
series 1 = G0 < G1 < · · · < Gn = G with Gi+1/Gi an ω-categorical
characteristically simple group for each i .

Conjectures

(stated independently by Apps and Wilson in 1981) ω-categorical
characteristically simple locally nilpotent groups are abelian.

(Wilson, 1981) ω-categorical groups are nilpotent-by-residually-finite.
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What about totally categorical groups?

Definition: a theory T is said to be totally categorical if it has exactly one model in
each infinite power.

Theorem (Baur-Cherlin-Macintyre, 1977)

Totally categorical groups are abelian-by-finite and have bounded exponent.

Theorem (Baur-Cherlin-Macintyre, 1977)

Let G be a locally finite group of bounded exponent and let A be an abelian normal
subgroup of finite index in G . Then G is totally categorical iff A is a direct sum of
finite normal subgroups of G of bounded order.
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A particular case: torsion-free nilpotent groups

Theorem (Zilber, 1982)

Let G be a nonabelian torsion-free nilpotent group. The theory of the pure group
(G ; · ) is ℵ1-catogorical if and only if G satisfies the following two conditions:

G is isomorphic to a unipotent group over an algebraically closed field of
characteristic 0;

G cannot be decomposed into a direct product of two nontrivial subgroups.

Theorem (Altınel-Wilson, 2008)

Every torsion-free nilpotent group G of finite Morley rank has a faithful linear
representation over a field of characteristic zero.

Theorem (Myasnikov-Sohrabi, 2018)

A torsion-free nilpotent group G has finite Morley rank in the language of groups iff
G ' G0 × G1 × · · ·Gn for a divisible abelian group G0 and finitely many unipotent
algebraic groups G1, . . . ,Gn over characteristic zero algebraically closed fields.

Remark: these theorems are proved by methods based on the study of nilpotent Lie
algebras.
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Definition

A torsion-free nilpotent group G of finite Morley rank is said to be homogeneous if
either it is trivial or there is an interpretable algebraically closed field K such that,
each nontrivial interpretable quotient group G/H of G contains a copy of K .

Theorem (follows from works by Burdges and F., ∼2006)

Let G be a torsion-free nilpotent group. Then G/Z(G) and G ′ are the direct products
of homogeneous subgroups.
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II - Harmonious structures

Groups of finite Morley rank: Lascar analysis

Definition

Let T be an ω-stable theory and, let ϕ(x) and φ(x) be two formulas. We say that ϕ
and φ are ∼-equivalent if, for every model M containing the parameters of ϕ and φ,
we have |ϕ(M)| = |φ(M)|.

Theorem (Lascar, 1985)

Let T be the theory of a group G of finite Morley rank. We can find strongly minimal
formulas f1(x), . . . , fn(x), possibly imaginary, with parameters in the prime model,
such that

for all the infinite cardinalities κ1, . . . , κn, there exists a model M = (M; · · · ) of
T such that |fi (M)| = κi for each i ;

every strongly minimal formula ϕ(x) is ∼-equivalent to one of these formulas.

every elementary extension of a model of that theory augments at least one of
the formulas.
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Corollary

A group G of finite Morley rank is ℵ1-categorical if and only if all the strongly minimal
formulas, with parameters in the prime model, are ∼-equivalent (i.e. n = 1 in the
previous theorem).

Theorem (Lascar, 1985)

Let G be a connected group of finite Morley rank with no infinite normal abelian
definable subgroup. Then there are ℵ1-categorical groups H1, . . . ,Hn such that G is
isomorphic to (H1 × · · · × Hn)/F for a finite subgroup F .

We would like delete the hypothesis with no infinite normal abelian definable subgroup.
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Definition

Let M = (M; · · · ) be a structure of finite Morley rank. Two interpretable strongly
minimal sets X and Y are said to be analogous if there is a strongly minimal set U
and two interpretable maps fX : U → X and fY : U → Y with cofinite images.
The structure M = (M; · · · ) is harmonious of type X if each interpretable strongly
minimal set is analogous to X .

Remarks:

If two interpretable strongly minimal sets X and Y are analogous, their canonical
extensions in any elementary extension of M are analogous too.

There are integers m and n such that |f −1
X ({x})| 6 m and |f −1

Y ({y})| 6 n for
each x ∈ X and each y ∈ Y .

In particular, we have |X | = |U| = |Y |.

Questions

If two strongly minimal sets X and Y are analogous, are X and Y ∼-equivalent?
We will show this property for groups, thus any harmonious group of finite
Morley rank is ℵ1-categorical.

If two strongly minimal sets X and Y are ∼-equivalent, are X and Y analogous?

In other words, is any ℵ1-categorical group harmonious?

If M is an harmonious structure of finite Morley rank, are its elementary
extensions harmonious too? We will show this property for groups.
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The finite cover property

Definition (Keisler, 1967)

Let M = (M; · · · ) be a model of a complete theory T . The structure M has the
finite cover property if a formula ϕ(x , a) has the following property:

for every integer n, there is an inconsistent set of at least n formulas
{ϕ(x , ai ) ; i ∈ I} with parameters in M such that every subset of it is consistent.

Facts

If M ≡ N and M has the finite cover property, then N has also this property.

If a structure M does not have the finite cover property, then no structure
interpretable in M has the finite cover property.

Facts

Any unstable structure has the finite cover property.

No ℵ1-categorical structure has the finite cover property.

No group of finite Morley rank has the finite cover property.

M = (M; · · · ) is a structure of finite Morley rank without the finite cover property.

Facts

Any infinite interpretable set contains a strongly minimal set.
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Lemma

The relation “to be analogous to” is an equivalence relation on the family of strongly
minimal sets.

Proof: for the transitivity, let Y be a strongly minimal set analogous to X and Z . Let
V and W be strongly minimal sets and let fX : V → X , fY : V → Y gY : W → Y
and gZ : W → Z be interpretable maps with cofinite images.
Then fY (V ) ∩ gY (W ) is cofinite in Y , so the set {(v ,w) ∈ V ×W | fY (v) = gY (w)}
is infinite and contains a strongly minimal set U.
Let pV : U → V and pW : U →W be the canonical projection maps. Then we have
fY ◦ pV = gY ◦ pW and the maps fX ◦ pV : U → X , fY ◦ pV : U → Y and
gZ ◦ pW : U → Z have cofinite images. �

Corollary

If (Xi )i=1,...,n is a finite family of analogous strongly minimal sets, there exists a
strongly minimal set U ⊆ X1 × · · · × Xn and surjective interpretable maps fi : U → Xi .

Questions

If (Xi )i∈I is an infinite family of analogous strongly minimal sets,

are there a strongly minimal set U and interpretable maps fi : U → Xi with
cofinite images?

are there a strongly minimal set V and interpretable maps gi : Xi → V with
cofinite images?
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Proposition

Any strongly minimal set is analogous to a strongly minimal set of the form E/R for a
definable subset E of M and an equivalence relation R over E .

Corollary

Any strongly minimal structure is harmonious.

Remarks:

Let K = (K ; +, · ) be an algebraically closed field. Then K is strongly minimal,
so it is harmonious. However, the K -interpretable structure
G = (K × K ; +,K × {0}) is not harmonious.

The last result implies that any structure bi-interpretable with a strongly minimal
structure is harmonious.

The pure group (Z/4Z)ω is harmonious, but it is not bi-interpretable with a
strongly minimal structure.
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Question

If M is harmonious of type X , is M interpretable in a strongly minimal structure?

Remark: Assaf Hasson proved that, for a theory of finite Morley rank with definable
MR, the DMP (definable multiplicity property) is a sufficient condition for such an
interpretation.
Furthermore, he proved that not to have the finite cover property is a necessary
condition, but not a sufficient condition, for a structure to be interpreted in a strongly
minimal structure.

Definition: Let T be a theory of finite Morley rank with definable MR. Then T has
the DMP if for every model M, formula ϕ(x , y) and integers k and n, the set of
tuples a in M such that ϕ(M, a) has Morley rank k and Morley degree n is definable.
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III - Harmonious sets

We fix a structure G = (G ; · , · · · ) of group of finite Morley rank.
In particular, no G -interpretable structure has the finite cover property, so each
G -interpretable set contains a strongly minimal set.

Definition

An interpretable set N is said to be harmonious of type X if, for any interpretable
subset E of Nn for an integer n and any interpretable equivalence relation R over E
such that E/R is strongly minimal, the set E/R is analogous to X .

Remarks:

The structure G is harmonious iff the set G is harmonious.

If a structure M = (M; · · · ) is interpretable in G , then it is harmonious iff the set
M is harmonious.

Lemma

Let X be a strongly minimal set. If A1, . . . ,An are harmonious sets of type X , then
A1 × · · · × An is harmonious of type X .
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Proposition

If G = X1 · · ·Xn is a finite product of analogous strongly minimal subsets, then G is
bi-interpretable with a strongly minimal structure.
In particular, it is harmonious.

Proof: there is an interpretable strongly minimal set U and, for each i , a surjective
interpretable map fi : U → Xi . We consider the surjective interpretable map
γ : Un → G defined by γ(x1, . . . , xn) = f1(x1) · · · fn(xn). We can interpret a strongly
minimal structure U of base U such that G and U are bi-interpretable. �

Corollary

Let K / H be normal definable subgroups of G such that H/K is infinite and has no
nontrivial proper G -normal definable subgroup. Then H/K is harmonious.
Moreover, if X is the type of H/K , then |H/K | = |X |.

Proof: it follows from the Zilber Indecomposability theorem that such a quotient group
is generated by a finite product of the G -conjugates of any strongly minimal subset. �
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Proposition

Let X be a G -interpretable strongly minimal set. We consider finitely many definable
subgroups 1 = H0 6 · · · 6 Hm = G . Then there is an interpretable subset E of
Hi+1/Hi for some i and an interpretable equivalence relation R over E such that E/R
is strongly minimal and analogous to X .

Theorem (Lascar analysis of a group of finite Morley rank revisited)

There are finitely many strongly minimal sets X1, . . . ,Xn such that each interpretable
strongly minimal set X of G , is analogous to some Xi .

Proof: we may suppose that, in the proposition above, the groups Hi are normal in G
and the quotient groups Hi+1/Hi are infinite and minimal for this condition. In
particular, Hi+1/Hi is harmonious for each i . �

Remark: at this stage, it is not clear that the integer n is preserved by elementary
equivalence.
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IV - Elementary extensions

M = (M; · , · · · ) is a structure of finite Morley rank without the finite cover property.

Lemma

Let M ∗ = (M∗; · , · · · ) be an elementary extension of M . Let X and Y be two
interpretable strongly minimal sets in M and let X∗ and Y ∗ be their canonical
extensions in M ∗. Then X and Y are analogous iff X∗ and Y ∗ are analogous.

Proof (for the case where X and Y are subsets of M): We may assume that X∗ and
Y ∗ are analogous. There is a strongly minimal subset V ∗ ⊆ X∗ × Y ∗ such that the
canonical projection maps p : V ∗ → X∗ and q : V ∗ → Y ∗ are sujective. We consider
integers k and l such that |p−1(x)| 6 k and |q−1(y)| 6 l for each x ∈ X∗ and each
y ∈ Y ∗. Let ϕ(x , y , a) be a formula defining V ∗ with parameters a in M∗. The set
V ∗ defined in M ∗ by the formula ϕ(x , y , a) has the following properties:

it is contained in X∗ × Y ∗;
for any x ∈ X∗, {y ∈ Y ∗ | (x , y) ∈ V ∗} is nonempty and has at most k elements;
for any y ∈ Y ∗, {x ∈ X∗ | (x , y) ∈ V ∗} is nonempty and has at most l elements.

Consequently, there exist parameters b in M such that the set V defined by ϕ(x , y , b)
has the following properties:

it is contained in X × Y ;
for any x ∈ X , {y ∈ Y | (x , y) ∈ V } is nonempty and has at most k elements;
for any y ∈ Y , {x ∈ X | (x , y) ∈ V } is nonempty and has at most l elements.

In particular, the set V is infinite and contains a strongly minimal subset W , and the
last two conditions imply that the canonical projection maps from W to X and Y
have cofinite images. Therefore X and Y are analogous. �
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Corollary

If two strongly minimal sets X and Y are analogous, they are ∼-equivalent.

Let G = (G ; · , · · · ) be a group of finite Morley rank. We recall the existence of
finitely many strongly minimal sets X1, . . . ,Xn such that each interpretable strongly
minimal set X of G, is analogous to some Xi . We may suppose that the sets Xi and
Xj are not analogous for i 6= j .

Proposition

Let G ∗ = (G∗; · , · · · ) be an elementary extension of G and let X∗1 , . . . ,X
∗
n be the

canonical extensions of X1, . . . ,Xn in G ∗. Then each interpretable strongly minimal set
of G∗, is analogous to some X∗i and the sets X∗i and X∗j are not analogous for i 6= j .

Corollary

We may assume that X1, . . . ,Xn are the canonical extensions of strongly minimal sets
interpretable in the prime model of G .
In particular, the integer n is preserved by elementary equivalence.

Corollaries

Any harmonious group of finite Morley rank is ℵ1-categorical.

If the structure G is harmonious, then any structure elementary equivalent to G is
harmonious as well.
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Theorem

For each strongly minimal subset X of G , there is a connected definable subgroup
MG (X ) satisfying the following properties:

MG (X ) is harmonious of type X ;

every harmonious subset of type X is contained in finitely many cosets of MG (X ).

In particular,

MG (X ) contains all the connected harmonious subgroups of G of type X ;

MG (X ) is characteristic in G ;

the cardinal of MG (X ) is |X |.

Harmonious groups of finite Morley rank (first part)



I - II - III - IV - V - Elementary extensions

Corollary

The sugroup of G generated by its harmonious subgroups is the central product
MG = MG (X1) · · ·MG (Xn) and the intersection MG (Xi ) ∩

∏
j 6=i MG (Xj ) is finite for

each i .
Furthermore, each harmonious subset E of G is contained in finitely many cosets of
MG .

Questions

If G is connected,

is G ′ contained in MG ?

is MG/Z(G) = G/Z(G)?

A positive answer would provide a similar result to the torsion-free nilpotent case.

Theorem (Burdges, F.)

If G is a torsion-free nilpotent group, then G/Z(G) and G ′ are the direct products of
homogeneous subgroups.
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V - Questions

Questions

If the structure M is harmonious, is its theory ℵ1-categorical?

If two strongly minimal sets X and Y are ∼-equivalent, are X and Y analogous?
A positive answer would imply that any ℵ1-categorical group is harmonious.

Characterize ℵ1-categorical pure groups.

Conjecture 1

Any connected group G = (G ; · ) of finite Morley rank interprets ℵ1-categorical groups
G1, . . . ,Gn such that G ' (G1 × · · · × Gn)/F for a normal finite subgroup F .

Rachad Bentbib studies this problem.

Remark: if G = (G ; · , · · · ) is a group of finite Morley rank, then G is bi-interpretable
with a structure G ◦ = (G◦; · , · · · ) of base G◦.
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Conjecture 2

If the theory of a group (G ; · , · · · ) is ℵ1-categorical then all of its models are
interpretable in a strongly minimal structure.

Remark: if all the models of a theory are interpretable in a strongly minimal structure,
then the theory has no Vaught pair so it is ℵ1-categorical.

Conjecture 3

If the theory of a group (G ; · , · · · ) is of finite Morley rank then one of its models is
interpretable in a strongly minimal structure.

Remark: if a model of a theory is interpretable in a strongly minimal structure, then
the theory is of finite Morley rank.

The second part of this talk will be given by Rachad Bentbib.
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Bon retour en France, Tuna !
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