Small groups of finite Morley rank with a tight automorphism

Ulla Karhumäki

Joint work with Pinar Uğurlu

Ranked Groups: The Return 23-24 September 2021 at Université Claude Bernard Lyon 1

Ulla Karhumäki

Small groups of finite Morley rank with a tight automorphism

09/2021 1/14

SQ (V

Э÷

The Cherlin-Zilber conjecture (Cherlin 1979 and Zilber 1977)

Infinite simple groups of finite Morley rank are isomorphic to Chevalley groups over an algebraically closed fields.

09/2021 2 / 14

SQ (V

<ロト < 団ト < 団ト < 団ト = 三日

The Cherlin-Zilber conjecture (Cherlin 1979 and Zilber 1977)

Infinite simple groups of finite Morley rank are isomorphic to Chevalley groups over an algebraically closed fields.

The current state of (C-Z) stated in terms of the Sylow 2-subgroups:

In any group *G* of fRM, the Sylow 2-subgroups are conjugate[Borovik, Poizat 2007] and their structure is well-understood:

$$\overline{\operatorname{Syl}_{G}}^{\circ} \cap \operatorname{Syl}_{G} = \operatorname{Syl}_{G}^{\circ} = U * T,$$

where U is 2-unipotent and T is 2-divisible. If the ambient group G is infinite simple then:

SQ (V

<ロト < 団ト < 団ト < 団ト = 三日

The Cherlin-Zilber conjecture (Cherlin 1979 and Zilber 1977)

Infinite simple groups of finite Morley rank are isomorphic to Chevalley groups over an algebraically closed fields.

The current state of (C-Z) stated in terms of the Sylow 2-subgroups:

In any group *G* of fRM, the Sylow 2-subgroups are conjugate[Borovik, Poizat 2007] and their structure is well-understood:

$$\overline{\operatorname{Syl}_{G}}^{\circ} \cap \operatorname{Syl}_{G} = \operatorname{Syl}_{G}^{\circ} = U * T,$$

where U is 2-unipotent and T is 2-divisible. If the ambient group G is infinite simple then:

- Either $Syl_G = 1$ (*degenerated type*) or Syl_G° is infinite.[Borovik, Burdges, Cherlin 2007]
- Either U = 1 (odd type) or T = 1 (even type). (No *mixed* type groups exist.)[Altınel, Borovik, Cherlin 2008]
- If $1 \neq Syl_G^\circ = U$ then (C-Z) holds. Namely, $G \cong X(K)$ for an a.c. field K of char(K) = 2.[Altinel, Borovik and Cherlin 2008]

JQ P

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let H = X(K) be a Chevalley group for K a.c. with $char(K) \neq 2$, and T be a maximal algebraic torus of H. The 'size' of H can be described in different ways, e.g. by $\dim_{Zar}(H)$ or by

 $\dim_{Zar}(T) = \operatorname{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2^{\infty}} := \{x \in \mathbb{C}^{\times} : x^{2^n} = 1, n \in \mathbb{N}\}.$

SQ (V

Let H = X(K) be a Chevalley group for K a.c. with $char(K) \neq 2$, and T be a maximal algebraic torus of H. The 'size' of H can be described in different ways, e.g. by $\dim_{Zar}(H)$ or by

 $\dim_{Zar}(T) = \operatorname{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2^{\infty}} := \{ x \in \mathbb{C}^{\times} : x^{2^n} = 1, n \in \mathbb{N} \}.$

The only simple Chevalley group of $pr_2(H) = 1$ is $H = PSL_2(K)$; it is also the only simple Chevalley group of $\dim_{Zar}(H) = 3$.

SQ (V

Let H = X(K) be a Chevalley group for K a.c. with $char(K) \neq 2$, and T be a maximal algebraic torus of H. The 'size' of H can be described in different ways, e.g. by $\dim_{Zar}(H)$ or by

 $\dim_{Zar}(T) = \operatorname{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2^{\infty}} := \{ x \in \mathbb{C}^{\times} : x^{2^n} = 1, n \in \mathbb{N} \}.$

The only simple Chevalley group of $pr_2(H) = 1$ is $H = PSL_2(K)$; it is also the only simple Chevalley group of $\dim_{Zar}(H) = 3$.

Let G be an infinite simple group of fRM. How to describe the 'size' of G?

SQ (V

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □

Let H = X(K) be a Chevalley group for K a.c. with $char(K) \neq 2$, and T be a maximal algebraic torus of H. The 'size' of H can be described in different ways, e.g. by $\dim_{Zar}(H)$ or by

 $\dim_{Zar}(T) = \operatorname{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2^{\infty}} := \{ x \in \mathbb{C}^{\times} : x^{2^n} = 1, n \in \mathbb{N} \}.$

The only simple Chevalley group of $pr_2(H) = 1$ is $H = PSL_2(K)$; it is also the only simple Chevalley group of $\dim_{Zar}(H) = 3$.

Let G be an infinite simple group of fRM. How to describe the 'size' of G?

• By the RM? No real hope for inductive arguments on the RM (however we know that if RM(G) = 3 then $G \cong PSL(K)$ for K a.c!).[Frécon 2018]

SQ (V

(日)

Let H = X(K) be a Chevalley group for K a.c. with $char(K) \neq 2$, and T be a maximal algebraic torus of H. The 'size' of H can be described in different ways, e.g. by $\dim_{Zar}(H)$ or by

 $\dim_{Zar}(T) = \operatorname{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2^{\infty}} := \{ x \in \mathbb{C}^{\times} : x^{2^n} = 1, n \in \mathbb{N} \}.$

The only simple Chevalley group of $pr_2(H) = 1$ is $H = PSL_2(K)$; it is also the only simple Chevalley group of $\dim_{Zar}(H) = 3$.

Let G be an infinite simple group of fRM. How to describe the 'size' of G?

- By the RM? No real hope for inductive arguments on the RM (however we know that if RM(G) = 3 then $G \cong PSL(K)$ for K a.c!).[Frécon 2018]
- By $pr_2(G)$? Makes sense...but we still don't know how to prove that if $pr_2(G) = 1$ then $G \cong PSL(K)$ for K a.c. So, one needs further assumptions to the identification of 'small' G. For example:

SQ (V

Let H = X(K) be a Chevalley group for K a.c. with $char(K) \neq 2$, and T be a maximal algebraic torus of H. The 'size' of H can be described in different ways, e.g. by $\dim_{Zar}(H)$ or by

 $\dim_{Zar}(T) = \operatorname{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2^{\infty}} := \{ x \in \mathbb{C}^{\times} : x^{2^n} = 1, n \in \mathbb{N} \}.$

The only simple Chevalley group of $pr_2(H) = 1$ is $H = PSL_2(K)$; it is also the only simple Chevalley group of $\dim_{Zar}(H) = 3$.

Let G be an infinite simple group of fRM. How to describe the 'size' of G?

- By the RM? No real hope for inductive arguments on the RM (however we know that if RM(G) = 3 then $G \cong PSL(K)$ for K a.c!).[Frécon 2018]
- By $pr_2(G)$? Makes sense...but we still don't know how to prove that if $pr_2(G) = 1$ then $G \cong PSL(K)$ for K a.c. So, one needs further assumptions to the identification of 'small' G. For example:
 - Minimal simple groups: every proper definable connected subgroup is solvable.[Jaligot, Cherlin, Deloro, Altinel, Frécon, Burdges...]

SQ (V

Let H = X(K) be a Chevalley group for K a.c. with $char(K) \neq 2$, and T be a maximal algebraic torus of H. The 'size' of H can be described in different ways, e.g. by $\dim_{Zar}(H)$ or by

 $\dim_{Zar}(T) = \operatorname{pr}_2(H) = \# \text{ of copies of } \mathbb{Z}_{2^{\infty}} := \{x \in \mathbb{C}^{\times} : x^{2^n} = 1, n \in \mathbb{N}\}.$

The only simple Chevalley group of $pr_2(H) = 1$ is $H = PSL_2(K)$; it is also the only simple Chevalley group of $\dim_{Zar}(H) = 3$.

Let G be an infinite simple group of fRM. How to describe the 'size' of G?

- By the RM? No real hope for inductive arguments on the RM (however we know that if RM(G) = 3 then $G \cong PSL(K)$ for K a.c!).[Frécon 2018]
- By $pr_2(G)$? Makes sense...but we still don't know how to prove that if $pr_2(G) = 1$ then $G \cong PSL(K)$ for K a.c. So, one needs further assumptions to the identification of 'small' G. For example:
 - Minimal simple groups: every proper definable connected subgroup is solvable.[Jaligot, Cherlin, Deloro, Altinel, Frécon, Burdges...]
 - The presence of a *tight* automorphism whose fixed-point subgroup is pseudofinite—this is our framework.

Pseudofinite fields and simple pseudofinite groups

Definition: An infinite structure is called *pseudofinite* if every first-order sentence true in it also holds in some finite structure or, equivalently, if it is elementarily equivalent to a non-principal ultraproduct of finite structures.

Э÷

SQ P

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Pseudofinite fields and simple pseudofinite groups

Definition: An infinite structure is called *pseudofinite* if every first-order sentence true in it also holds in some finite structure or, equivalently, if it is elementarily equivalent to a non-principal ultraproduct of finite structures.

- $(\mathbb{Z}, +)$ is not pseudofinite.
- $(\mathbb{Q}, +) \equiv \prod_{p \in P} C_p / U$ is pseudofinite.
- A (twisted) Chevalley group X(F) is pseudofinite iff F is pseudofinite.
- Algebraically closed fields are not pseudofinite.
- $F \equiv \prod_{p \in P} \mathbb{F}_p / \mathcal{U}$ is pseudofinite of char(F) = 0.

SQA

(日)

Pseudofinite fields and simple pseudofinite groups

Definition: An infinite structure is called *pseudofinite* if every first-order sentence true in it also holds in some finite structure or, equivalently, if it is elementarily equivalent to a non-principal ultraproduct of finite structures.

- $(\mathbb{Z}, +)$ is not pseudofinite.
- $(\mathbb{Q}, +) \equiv \prod_{p \in P} C_p / U$ is pseudofinite.
- A (twisted) Chevalley group X(F) is pseudofinite iff F is pseudofinite.
- Algebraically closed fields are not pseudofinite.
- $F \equiv \prod_{p \in P} \mathbb{F}_p / \mathcal{U}$ is pseudofinite of char(F) = 0.

Theorem (Ax 1968)

An infinite field is pseudofinite iff it is perfect, quasi-finite and PAC.

Theorem (Wilson 1995 and Ryten 2007)

A simple group is pseudofinite iff it is isomorphic to a (twisted) Chevalley group over a pseudofinite field.

Ulla Karhumäki

Small groups of finite Morley rank with a tight automorphism

09/2021 4 / 14

The Principal conjecture

The theory ACFA of algebraically closed fields with generic automorphism is axiomatised[Chatzidakis, Hrushovski 1999] as follows: $(K, \sigma) \models ACFA$ iff:

- $K \models ACF \text{ and } \sigma \in Aut(F)$.
- Let V be an irreducible variety and let S be an irreducible subvariety of V × σ(V) s.t. both π₁ : S → V and π₂ : S → σ(V) are dominant. Then there exists a ∈ V(K) s.t. (a, σ(a)) ∈ S.

If $(K, \sigma) \models \text{ACFA}$ then $\text{Fix}_{K}(\sigma)$ is pseudofinite.[Macintyre1997/Chatzidakis, Hrushovski 1999]

JQ P

The Principal conjecture

The theory ACFA of algebraically closed fields with generic automorphism is axiomatised[Chatzidakis, Hrushovski 1999] as follows: $(K, \sigma) \models ACFA$ iff:

- $K \models ACF \text{ and } \sigma \in Aut(F)$.
- Let V be an irreducible variety and let S be an irreducible subvariety of V × σ(V) s.t. both π₁ : S → V and π₂ : S → σ(V) are dominant. Then there exists a ∈ V(K) s.t. (a, σ(a)) ∈ S.

If $(K, \sigma) \models \text{ACFA}$ then $\text{Fix}_{K}(\sigma)$ is pseudofinite.[Macintyre1997/Chatzidakis, Hrushovski 1999]

Fixed point subgroups of generic automorphisms of 'structures with certain nice model-theoretic properties' resemble pseudofinite groups.[Hrushovski 2002]

The Principal conjecture (Hrushovski 2002/Uğurlu 2009)

Let *G* be an infinite simple group of finite Morley rank with a generic automorphism α . Then the fixed point subgroup $C_G(\alpha)$ is pseudofinite.

09/2021 5 / 14

SQ (V

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Principal conjecture

The theory ACFA of algebraically closed fields with generic automorphism is axiomatised[Chatzidakis, Hrushovski 1999] as follows: $(K, \sigma) \models ACFA$ iff:

- $K \models ACF \text{ and } \sigma \in Aut(F)$.
- Let V be an irreducible variety and let S be an irreducible subvariety of V × σ(V) s.t. both π₁ : S → V and π₂ : S → σ(V) are dominant. Then there exists a ∈ V(K) s.t. (a, σ(a)) ∈ S.

If $(K, \sigma) \models \text{ACFA}$ then $\text{Fix}_{K}(\sigma)$ is pseudofinite.[Macintyre1997/Chatzidakis, Hrushovski 1999]

Fixed point subgroups of generic automorphisms of 'structures with certain nice model-theoretic properties' resemble pseudofinite groups.[Hrushovski 2002]

The Principal conjecture (Hrushovski 2002/Uğurlu 2009)

Let *G* be an infinite simple group of finite Morley rank with a generic automorphism α . Then the fixed point subgroup $C_G(\alpha)$ is pseudofinite.

- $(C-Z) \Rightarrow (PC)$.[Chatzidkis and Hrushovski 1999]
- We aim to prove that $(PC) \Rightarrow (C-Z)$.

09/2021 5 / 14

SQ (~

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A tight automorphism $\boldsymbol{\alpha}$

From now on:

- 1. Groups (resp. fields) are considered in pure group (resp. field) language.
- 2. Given a subset X of a group of fRM G, \overline{X} is the definable closure of X in G.

SQA

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A tight automorphism α

From now on:

1. Groups (resp. fields) are considered in pure group (resp. field) language.

2. Given a subset X of a group of fRM G, \overline{X} is the definable closure of X in G.

Definition (Uğurlu 2009)

An automorphism α of an infinite simple group of fRM *G* is called *tight* if, for any connected definable and α -invariant subgroup $H \leq G$, $\overline{C_H(\alpha)} = H$.

SOR

A tight automorphism α

From now on:

1. Groups (resp. fields) are considered in pure group (resp. field) language.

2. Given a subset X of a group of fRM G, \overline{X} is the definable closure of X in G.

Definition (Uğurlu 2009)

An automorphism α of an infinite simple group of fRM *G* is called *tight* if, for any connected definable and α -invariant subgroup $H \leq G$, $\overline{C_H(\alpha)} = H$.

Example: We have $(K, \phi_{\mathcal{U}}) \models \text{ACFA}_{[Hrushovski 1996]}$, where

$$\phi_{\mathcal{U}}: \mathcal{K} = \prod_{p_i \in P} \mathbb{F}_{p_i}^{alg} / \mathcal{U} \longrightarrow \prod_{p_i \in P} \mathbb{F}_{p_i}^{alg} / \mathcal{U}, \quad [\mathbf{x}_i]_{\mathcal{U}} \mapsto [\mathbf{x}_i^{p_i}]_{\mathcal{U}}$$

is the *non-standard Frobenius automorphism* of *K*.

Let G = X(K) be a simple Chevalley group and H be a definable, connected and $\phi_{\mathcal{U}}$ -invariant subgroup of G. Then $\phi_{\mathcal{U}}$ induces an automorphism on G s.t.

• $X(\operatorname{Fix}_{\mathcal{K}}(\phi_{\mathcal{U}})) = X(\prod_{p_i \in P} \mathbb{F}_{p_i} / \mathcal{U}) \cong \prod_{p_i \in P} X(\mathbb{F}_{p_i}) / \mathcal{U}$ is pseudofinite.

• $C_H(\phi_U) = H(k)$, with *k* pseudofinite. So, $\overline{C_H(\phi_U)}^{Zar} = H$.

▲ ■ ▶ ■
●

Tight α with pseudofinite fixed-point subgroup

The socle Soc(H) of a group H is the subgroup generated by all minimal normal non-trivial subgroups of a group H.

Theorem (Uğurlu 2009)

Let G be an infinite simple group of fRM and α be a tight automorphism of G s.t. $C_G(\alpha) = P \equiv \prod_{i \in I} P_i / \mathcal{U}$ is pseudofinite. Then there is a definable normal S of P s.t.

$$X(F) \cong \prod_{i \in I} \operatorname{Soc}(P_i) / \mathcal{U} \equiv S \trianglelefteq P \leqslant \operatorname{Aut}(S),$$

where F is a pseudofinite field. Moreover, $\overline{S} = G$.

09/2021 7 / 14

SQA

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Tight α with pseudofinite fixed-point subgroup

The socle Soc(H) of a group H is the subgroup generated by all minimal normal non-trivial subgroups of a group H.

Theorem (Uğurlu 2009)

Let G be an infinite simple group of fRM and α be a tight automorphism of G s.t. $C_G(\alpha) = P \equiv \prod_{i \in I} P_i / \mathcal{U}$ is pseudofinite. Then there is a definable normal S of P s.t.

$$X(F) \cong \prod_{i \in I} \operatorname{Soc}(P_i) / \mathcal{U} \equiv S \trianglelefteq P \leqslant \operatorname{Aut}(S),$$

where F is a pseudofinite field. Moreover, $\overline{S} = G$.

Remarks:

- \bigcirc G has involutions as the simple pseudofinite group S has involutions.
- 2 For almost all *i*, The socle $Soc(P_i)$ is uniformly definable normal subgroup of P_i . So $P/S \equiv \prod_{i \in I} (P_i/Soc(P_i))/U$.

09/2021 7 / 14

SQ P

イロト イ理ト イヨト イヨト 三日

Summary: the approach towards $(C-Z) \Leftrightarrow (PC)$

Let *G* be an infinite simple group of fRM with a tight automorphism α whose fixed point subgroup $P = C_G(\alpha)$ is pseudofinite. We have $pr_2(G) = n \ge 1$. To prove that (C-Z) \Leftrightarrow (PC) we need to prove the following two steps:

09/2021 8 / 14

SQA

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary: the approach towards $(C-Z) \Leftrightarrow (PC)$

Let *G* be an infinite simple group of fRM with a tight automorphism α whose fixed point subgroup $P = C_G(\alpha)$ is pseudofinite. We have $pr_2(G) = n \ge 1$. To prove that (C-Z) \Leftrightarrow (PC) we need to prove the following two steps:

- 1
- Algebraic identification step: We know that there is a pseudofinite (twisted) Chevalley group S = X(F) s.t. $\overline{S} = G$.
 - Show that S is of untwisted Lie type X and of Lie rank n, and, that char(F) ≠ 2.
 - Then prove that this forces *G* to be isomorphic to a Chevalley group X(K), of the same untwisted Lie type *X* and the same Lie rank *n* as *S*, over an a.c. field *K* of char(K) \neq 2.

SQ P

Summary: the approach towards $(C-Z) \Leftrightarrow (PC)$

Let *G* be an infinite simple group of fRM with a tight automorphism α whose fixed point subgroup $P = C_G(\alpha)$ is pseudofinite. We have $pr_2(G) = n \ge 1$. To prove that (C-Z) \Leftrightarrow (PC) we need to prove the following two steps:

- 1
- Algebraic identification step: We know that there is a pseudofinite (twisted) Chevalley group S = X(F) s.t. $\overline{S} = G$.
 - Show that S is of untwisted Lie type X and of Lie rank n, and, that char(F) ≠ 2.
 - Then prove that this forces *G* to be isomorphic to a Chevalley group X(K), of the same untwisted Lie type *X* and the same Lie rank *n* as *S*, over an a.c. field *K* of char(K) \neq 2.
- 2 *Model-theoretic step*: Prove that a generic automorphism of *G* is tight.

SQ (V

(日)

From now on, *G* is an infinite simple group of fRM with $pr_2(G) = 1$ admitting a tight automorphism α whose fixed-point subgroup $C_G(\alpha) = P \equiv \prod_{i \in I} P_i / \mathcal{U}$ is pseudofinite and $S \cong X(F) \cong \prod_{i \in I} Soc(P_i) / \mathcal{U}$.

09/2021 9 / 14

SQ (V

From now on, *G* is an infinite simple group of fRM with $pr_2(G) = 1$ admitting a tight automorphism α whose fixed-point subgroup $C_G(\alpha) = P \equiv \prod_{i \in I} P_i / \mathcal{U}$ is pseudofinite and $S \cong X(F) \cong \prod_{i \in I} Soc(P_i) / \mathcal{U}$.

Proposition

 $S \cong PSL_2(F)$, where F is a pseudofinite field of char(F) $\neq 2$.

SQA

From now on, *G* is an infinite simple group of fRM with $pr_2(G) = 1$ admitting a tight automorphism α whose fixed-point subgroup $C_G(\alpha) = P \equiv \prod_{i \in I} P_i / \mathcal{U}$ is pseudofinite and $S \cong X(F) \cong \prod_{i \in I} Soc(P_i) / \mathcal{U}$.

Proposition

 $S \cong PSL_2(F)$, where F is a pseudofinite field of char(F) $\neq 2$.

Theorem (Version 1.)

If -1 is a square in F^{\times} and char(F) > 2, then $G \cong PSL_2(K)$ for K a.c. of char(K) > 2.

09/2021 9 / 14

SQA

From now on, *G* is an infinite simple group of fRM with $pr_2(G) = 1$ admitting a tight automorphism α whose fixed-point subgroup $C_G(\alpha) = P \equiv \prod_{i \in I} P_i / \mathcal{U}$ is pseudofinite and $S \cong X(F) \cong \prod_{i \in I} Soc(P_i) / \mathcal{U}$.

Proposition

 $S \cong PSL_2(F)$, where F is a pseudofinite field of $char(F) \neq 2$.

Theorem (Version 1.)

If -1 is a square in F^{\times} and char(F) > 2, then $G \cong PSL_2(K)$ for K a.c. of char(K) > 2.

Theorem (Version 2.)

If -1 is a square in F^{\times} and the Sylow 2-subgroups of S are not Klein 4-groups, $G \cong PSL_2(K)$ for K a.c. of $char(K) \neq 2$.

09/2021 9 / 14

SQ C

<ロト < 団ト < 団ト < 団ト = 三日

From now on, *G* is an infinite simple group of fRM with $pr_2(G) = 1$ admitting a tight automorphism α whose fixed-point subgroup $C_G(\alpha) = P \equiv \prod_{i \in I} P_i / \mathcal{U}$ is pseudofinite and $S \cong X(F) \cong \prod_{i \in I} Soc(P_i) / \mathcal{U}$.

Proposition

 $S \cong PSL_2(F)$, where F is a pseudofinite field of char(F) \neq 2.

Theorem (Version 1.)

If -1 is a square in F^{\times} and char(F) > 2, then $G \cong PSL_2(K)$ for K a.c. of char(K) > 2.

Theorem (Version 2.)

If -1 is a square in F^{\times} and the Sylow 2-subgroups of S are not Klein 4-groups, $G \cong PSL_2(K)$ for K a.c. of $char(K) \neq 2$.

Almost an theorem

 $G \cong PSL_2(K)$ for K a.c. of char(K) \neq 2.

Sylow 2-subgroups of *S* and *G*, $S \cong PSL_2(F)$

Theorem (Deloro and Jaligot 2010)

Let H be an odd type connected group of fRM with $pr_2(H) = 1$. Then exactly one of the following holds.

- 2 $\operatorname{Syl}_{H} = \operatorname{Syl}_{H}^{\circ} \rtimes \langle \omega \rangle$ for an involution ω which inverts $\operatorname{Syl}_{H}^{\circ}$.
- 3 $\operatorname{Syl}_{H} = \operatorname{Syl}_{H}^{\circ} \cdot \langle \omega \rangle$ for an element ω of order 4 which inverts $\operatorname{Syl}_{H}^{\circ}$.

SQ (V

<ロト < 同ト < 三ト < 三ト 三 三

Sylow 2-subgroups of *S* and *G*, $S \cong PSL_2(F)$

Theorem (Deloro and Jaligot 2010)

Let H be an odd type connected group of fRM with $pr_2(H) = 1$. Then exactly one of the following holds.

$$1 Syl_H = Syl_H^\circ \cong \mathbb{Z}_{2^\infty}.$$

2 $\operatorname{Syl}_{H} = \operatorname{Syl}_{H}^{\circ} \rtimes \langle \omega \rangle$ for an involution ω which inverts $\operatorname{Syl}_{H}^{\circ}$.

3 $\operatorname{Syl}_{H} = \operatorname{Syl}_{H}^{\circ} \cdot \langle \omega \rangle$ for an element ω of order 4 which inverts $\operatorname{Syl}_{H}^{\circ}$.

Any Sylow 2-subgroup Syl_G of G must be of type (2) as for otherwise S satisfies the FO-expressible statement 'Every subgroup of order 4 is cyclic'.

Sylow 2-subgroups of S are either conjugate dihedral groups or as Syl_G.
 In particular, the finite simple groups in the ultraproduct S has dihedral
 Sylow 2-subgroups.

SQ (V

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sylow 2-subgroups of *S* and *G*, $S \cong PSL_2(F)$

Theorem (Deloro and Jaligot 2010)

Let H be an odd type connected group of fRM with $pr_2(H) = 1$. Then exactly one of the following holds.

$$1 Syl_H = Syl_H^\circ \cong \mathbb{Z}_{2^\infty}.$$

2 $\operatorname{Syl}_{H} = \operatorname{Syl}_{H}^{\circ} \rtimes \langle \omega \rangle$ for an involution ω which inverts $\operatorname{Syl}_{H}^{\circ}$.

3 $\operatorname{Syl}_{H} = \operatorname{Syl}_{H}^{\circ} \cdot \langle \omega \rangle$ for an element ω of order 4 which inverts $\operatorname{Syl}_{H}^{\circ}$.

Any Sylow 2-subgroup Syl_G of G must be of type (2) as for otherwise S satisfies the FO-expressible statement 'Every subgroup of order 4 is cyclic'.

Sylow 2-subgroups of S are either conjugate dihedral groups or as Syl_G.
 In particular, the finite simple groups in the ultraproduct S has dihedral
 Sylow 2-subgroups.

Theorem (Gorenstein and Walter 1962)

Let *H* be a finite simple group with dihedral Sylow 2-subgroups. Then either $H \cong PSL_2(q)$, $q \ge 5$ or $H \cong A_7$.

Structures of $S \cong PSL_2(F)$, $PGL_2(F)$ and P

• PSL₂(F) \cong $S \leq C_G(\alpha) = P \leq G$, for F pseudofinite of char(F) \neq 2.

 $P \leq \operatorname{PGL}_2(F) \rtimes \operatorname{Aut}(F).$

$$\frac{\text{Subgrps of S [images of T: GL(F) \rightarrow PGL(F) \cap SL(F)]}{\text{U} \cong F^{+}} \xrightarrow{\text{Subgrps of PGL(F)} = H} \frac{\text{Subgrps of PGL(F)} = H}{\text{U} \cong F^{+}} \xrightarrow{\text{T} \cong [F^{X}]^{2}} : i \in T \neq \gg -1 \text{ is a square in } F^{X}} \xrightarrow{\text{II} \cong F^{X}} : has unique inv. i \\ B = Q \times T = NS(Q) \\NS(T) = (T, Wo), wo an involution inverting T \\NS(T) = (T, Wo), wo an involution inverting T \\NH(T) = NH(T) = NH(T) = (T_{I} w,) \\Let P = \frac{TPi}{ieT} U. Then P/S \equiv TT \frac{Pi}{Soc}(Pi) M = T[\frac{Pi}{Pi}(PSL(2i))/U. \\i \in T \\i$$

$$X \in P \implies X = Sat_1 Ses, a \in Durg(S), (CHULCC)! Conjectionsinvariant $U \cong F^+$ and $T \cong (F^X)^2 \implies P/S \cong Np(T)/N_{S(T)} \cong Np(U)/B$$$

Ulla Karhumäki

09/2021 11 / 14

3

SQ (V

How to identify G

Aim: $\overline{S} = G$ is a split Zassenhaus group, acting on the set of left cosets of \overline{B} in *G*, with a one-point stabiliser \overline{B} and a two-point stabiliser \overline{T} . This implies that $G \cong PSL_2(K) = PGL_2(K)$ for *K* a.c. and of $char(K) \neq 2$.[Delahan, Nesin 1995]

SQ (V

How to identify G

Aim: $\overline{S} = G$ is a split Zassenhaus group, acting on the set of left cosets of \overline{B} in G, with a one-point stabiliser \overline{B} and a two-point stabiliser \overline{T} . This implies that $G \cong PSL_2(K) = PGL_2(K)$ for K a.c. and of $char(K) \neq 2$.[Delahan, Nesin 1995]

For above, we need to observe things as

- $G = \overline{B} \sqcup \overline{U} \omega_0 \overline{B}.$
- $\overline{B}^g \cap \overline{U} = 1$ for all $g \in G \setminus \overline{B}$ (in particular, $N_G(\overline{U}) = N_G(\overline{B}) = \overline{B}$).

•
$$C^\circ_G(u)=C^\circ_G(\overline{U})=\overline{U}$$
 for all $u\in\overline{U}^*.$

- $N_G(\overline{T}) = C_G(i) = \langle \overline{T}, \omega_0 \rangle.$
- $\overline{B} = \overline{U} \rtimes \overline{T}$ is a split Frobenius group.

SQ C

How to identify G

Aim: $\overline{S} = G$ is a split Zassenhaus group, acting on the set of left cosets of \overline{B} in G, with a one-point stabiliser \overline{B} and a two-point stabiliser \overline{T} . This implies that $G \cong PSL_2(K) = PGL_2(K)$ for K a.c. and of $char(K) \neq 2$.[Delahan, Nesin 1995]

For above, we need to observe things as

- $G = \overline{B} \sqcup \overline{U} \omega_0 \overline{B}.$
- $\overline{B}^g \cap \overline{U} = 1$ for all $g \in G \setminus \overline{B}$ (in particular, $N_G(\overline{U}) = N_G(\overline{B}) = \overline{B}$).

•
$$C^\circ_G(u)=C^\circ_G(\overline{U})=\overline{U}$$
 for all $u\in\overline{U}^*.$

•
$$N_G(\overline{T}) = C_G(i) = \langle \overline{T}, \omega_0 \rangle.$$

• $\overline{B} = \overline{U} \rtimes \overline{T}$ is a split Frobenius group.

(1.) Prove that $[P:S]<\infty$ and use that to get intermetion up to connected components: For $u \in U^*$: $C_{C_G}(u)^{(a)} \leq (C_G(u)^{(d)} = (C_G(u)^{(u)}) \leq (C_G(u)^{(a)}) = (C_G$

d.) Prove that there is an involution
$$i \in \mathbb{T}^{\circ}$$
. Then, for $\mathbb{Z}_{2^{\circ}} \neq i$, $(G(\mathbb{Z}_{2^{\circ}}) \in \mathbb{T}$.

09/2021 12 / 14

$[P:S] < \infty$

We know that $P/S \cong N_P(U)/B$ and $P/S \cong N_P(T)/N_S(T)$ is abelian-by-finite. To prove that $[P:S] < \infty$, we observe the following things.

09/2021 13 / 14

590

<ロト < 回 ト < 三 ト < 三 ト 三 三

$[P:S] < \infty$

We know that $P/S \cong N_P(U)/B$ and $P/S \cong N_P(T)/N_S(T)$ is abelian-by-finite. To prove that $[P:S] < \infty$, we observe the following things.

- $(N_P^{\circ}(U))' \leq U \text{ and } (N_P^{\circ}(T))' \leq N_S(T).$
- $2 [N_P(T):N_P(T)\cap N_P(U)]<\infty.$
- $[C_P(T):T] < \infty.$

SQ P

$[P:S] < \infty$

We know that $P/S \cong N_P(U)/B$ and $P/S \cong N_P(T)/N_S(T)$ is abelian-by-finite. To prove that $[P:S] < \infty$, we observe the following things.

$$(N_P^{\circ}(U))' \leq U \text{ and } (N_P^{\circ}(T))' \leq N_S(T).$$

$$2 [N_P(T):N_P(T)\cap N_P(U)]<\infty.$$

Sketch of proof of (1).

Clearly $(N_P^{\circ}(U))' \leq B$. As $\overline{N_P^{\circ}(U)}$ is connected and solvable, $\overline{N_P^{\circ}(U)}'$ is nilpotent[Nesin 1990]. As $\overline{B}^{\circ} \leq \overline{N_P^{\circ}(U)}$ we have $\overline{N_P^{\circ}(U)}' \leq F(\overline{B}^{\circ})$. It can be proven that $F(\overline{B}^{\circ}) = \overline{U}$ which gives us $(N_P^{\circ}(U))' \leq U$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 部 > < き > < き > … き

With assumptions in Theorem (Version 2):

• For the unique involution $i \in T$, we have

$$C_{G}^{\circ}(i) = \overline{C_{C_{G}^{\circ}(i)}(\alpha)}^{\circ} = \overline{C_{C_{G}(i)}(\alpha)}^{\circ} = \overline{C_{C_{G}^{\circ}(\alpha)}(i)}^{\circ} = \overline{C_{S}(i)}^{\circ} = \overline{C_{S}(i)}^{\circ} = \overline{T}^{\circ}$$

JQ (P

(口)

With assumptions in Theorem (Version 2):

• For the unique involution $i \in T$, we have

$$C^{\circ}_{G}(i) = \overline{C_{C^{\circ}_{G}(i)}(\alpha)}^{\circ} = \overline{C_{C_{G}(i)}(\alpha)}^{\circ} = \overline{C_{C^{\circ}_{G}(\alpha)}(i)}^{\circ} = \overline{C_{S}(i)}^{\circ} = \overline{\langle T, \omega_{0} \rangle}^{\circ} = \overline{T}^{\circ}$$

• Since $i \in T$, we know that a Sylow 2-subgroup Syl_S of S is in $N_S(T)$. Let Syl_G be a Sylow 2-subgroup of G containing the Klein 4-group $\langle i \rangle \times \langle \omega_0 \rangle$. As Syl_S is not a Klein 4-group, ω_0 inverts Syl_G° . So $i \in Syl_G^{\circ}$.

SQA

With assumptions in Theorem (Version 2):

• For the unique involution $i \in T$, we have

$$C^{\circ}_{G}(i) = \overline{C_{C^{\circ}_{G}(i)}(\alpha)}^{\circ} = \overline{C_{C_{G}(i)}(\alpha)}^{\circ} = \overline{C_{C^{\circ}_{G}(\alpha)}(i)}^{\circ} = \overline{C_{S}(i)}^{\circ} = \overline{\langle T, \omega_{0} \rangle}^{\circ} = \overline{T}^{\circ}$$

Since *i* ∈ *T*, we know that a Sylow 2-subgroup Syl_S of *S* is in *N_S*(*T*). Let Syl_G be a Sylow 2-subgroup of *G* containing the Klein 4-group ⟨*i*⟩ × ⟨ω₀⟩. As Syl_S is not a Klein 4-group, ω₀ inverts Syl_G^o. So *i* ∈ Syl_G^o.

Without extra assumptions:

• Enough to prove that $C^{\circ}_{G}(t) = \overline{T}^{\circ}$ for all $t \in \overline{T}^{\circ}$: Then \overline{T} is generous in G and so there is $1 \neq x \in \overline{T} \cap C_{G}(H)$ for some maximal decent torus of H of G. So $\mathbb{Z}_{2^{\infty}} \leq H \leq C^{\circ}_{G}(x) = \overline{T}^{\circ}$.

(日)

09/2021

SQA

14/14

With assumptions in Theorem (Version 2):

• For the unique involution $i \in T$, we have

$$C^{\circ}_{G}(i) = \overline{C_{C^{\circ}_{G}(i)}(\alpha)}^{\circ} = \overline{C_{C_{G}(i)}(\alpha)}^{\circ} = \overline{C_{C^{\circ}_{G}(\alpha)}(i)}^{\circ} = \overline{C_{S}(i)}^{\circ} = \overline{\langle T, \omega_{0} \rangle}^{\circ} = \overline{T}^{\circ}$$

Since *i* ∈ *T*, we know that a Sylow 2-subgroup Syl_S of *S* is in *N_S*(*T*). Let Syl_G be a Sylow 2-subgroup of *G* containing the Klein 4-group ⟨*i*⟩ × ⟨ω₀⟩. As Syl_S is not a Klein 4-group, ω₀ inverts Syl_G^o. So *i* ∈ Syl_G^o.

Without extra assumptions:

• Enough to prove that $C^{\circ}_{G}(t) = \overline{T}^{\circ}$ for all $t \in \overline{T}^{\circ}$: Then \overline{T} is generous in G and so there is $1 \neq x \in \overline{T} \cap C_{G}(H)$ for some maximal decent torus of H of G. So $\mathbb{Z}_{2^{\infty}} \leq H \leq C^{\circ}_{G}(x) = \overline{T}^{\circ}$.

Idea for doing above: Prove that $\overline{\bigcup_{t\in\overline{T}^*} C^{\circ}_G(t) \cup \omega_0}^{\circ}$ is abelian by considering its intersection with the maximal subgroups of *S*.

SQA