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The Cherlin-Zilber conjecture (Cherlin 1979 and Zilber 1977)

Infinite simple groups of finite Morley rank are isomorphic to Chevalley groups
over an algebraically closed fields.
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The Cherlin-Zilber conjecture (Cherlin 1979 and Zilber 1977)

Infinite simple groups of finite Morley rank are isomorphic to Chevalley groups
over an algebraically closed fields.

The current state of (C-Z) stated in terms of the Sylow 2-subgroups:

In any group G of fRM, the Sylow 2-subgroups are conjugategorovik, Poizat 2007]
and their structure is well-understood:

SylGO NSylg=Sylg=UxT,

where U is 2-unipotent and T is 2-divisible. |f the ambient group G is infinite
simple then:

Ulla Karhumaki Small groups of finite Morley rank with a tight automorphism 09/2021 2/14



The Cherlin-Zilber conjecture (Cherlin 1979 and Zilber 1977)

Infinite simple groups of finite Morley rank are isomorphic to Chevalley groups
over an algebraically closed fields.

The current state of (C-Z) stated in terms of the Sylow 2-subgroups:

In any group G of fRM, the Sylow 2-subgroups are conjugategorovik, Poizat 2007]
and their structure is well-understood:

SylGO NSylg=Sylg=UxT,
where U is 2-unipotent and T is 2-divisible. |f the ambient group G is infinite
simple then:
@ Either Syl; = 1 (degenerated type) or Syl is infinite.gorovik, Burdges, Cheriin 2007]

@ Either U =1 (odd type) or T = 1 (even type). (No mixed type groups

eXist.)[Aitinel, Borovik, Cherlin 2008]

@ If 1 = Syl = U then (C-Z) holds. Namely, G = X(K) for an a.c. field K

of char(K') = 2.[Altnel, Borovik and Cherlin 2008]
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Small groups

Let H = X(K) be a Chevalley group for K a.c. with char(K) # 2, and T be a
maximal algebraic torus of H. The ‘size’ of H can be described in different
ways, e.g. by dimz,-(H) or by

dimza(T) = pro(H) = # of copies of Zpx 1= {x € C* : x*" =1,ne N}
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Small groups

Let H = X(K) be a Chevalley group for K a.c. with char(K) # 2, and T be a
maximal algebraic torus of H. The ‘size’ of H can be described in different
ways, e.g. by dimz,-(H) or by

dimza(T) = pro(H) = # of copies of Zpx 1= {x € C* : x*" =1,ne N}

The only simple Chevalley group of pr,(H) = 1 is H = PSL»(K); it is also the
only simple Chevalley group of dimz,(H) = 3.
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Small groups
Let H = X(K) be a Chevalley group for K a.c. with char(K) # 2, and T be a
maximal algebraic torus of H. The ‘size’ of H can be described in different

ways, e.g. by dimz,(H) or by
dimzar(T) = pro(H) = # of copies of Zow 1= {x € C* : x> =1,n e N}.

The only simple Chevalley group of pr,(H) = 1 is H = PSL»(K); it is also the
only simple Chevalley group of dimz,(H) = 3.

Let G be an infinite simple group of fRM. How to describe the ‘size’ of G?
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Small groups
Let H = X(K) be a Chevalley group for K a.c. with char(K) # 2, and T be a
maximal algebraic torus of H. The ‘size’ of H can be described in different

ways, e.g. by dimz,(H) or by
dimzar(T) = pro(H) = # of copies of Zow 1= {x € C* : x> =1,n e N}.

The only simple Chevalley group of pr,(H) = 1 is H = PSL»(K); it is also the
only simple Chevalley group of dimz,(H) = 3.

Let G be an infinite simple group of fRM. How to describe the ‘size’ of G?

@ By the RM? No real hope for inductive arguments on the RM (however
we know that if RM(G) = 3 then G = PSL(K) for K a.c!).irrécon 2018
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Small groups

Let H = X(K) be a Chevalley group for K a.c. with char(K) # 2, and T be a
maximal algebraic torus of H. The ‘size’ of H can be described in different
ways, e.g. by dimz,(H) or by

dimzar(T) = pro(H) = # of copies of Zow 1= {x € C* : x> =1,n e N}.
The only simple Chevalley group of pr,(H) = 1 is H = PSL»(K); it is also the
only simple Chevalley group of dimz,(H) = 3.

Let G be an infinite simple group of fRM. How to describe the ‘size’ of G?

@ By the RM? No real hope for inductive arguments on the RM (however
we know that if RM(G) = 3 then G = PSL(K) for K a.c!).irrécon 2018

@ By pr,(G)? Makes sense...but we still don’t know how to prove that if
pro(G) = 1 then G = PSL(K) for K a.c. So, one needs further
assumptions to the identification of ‘small’ G. For example:
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Let H = X(K) be a Chevalley group for K a.c. with char(K) # 2, and T be a
maximal algebraic torus of H. The ‘size’ of H can be described in different
ways, e.g. by dimz,(H) or by

dimzar(T) = pro(H) = # of copies of Zow 1= {x € C* : x> =1,n e N}.
The only simple Chevalley group of pr,(H) = 1 is H = PSL»(K); it is also the
only simple Chevalley group of dimz,(H) = 3.

Let G be an infinite simple group of fRM. How to describe the ‘size’ of G?

@ By the RM? No real hope for inductive arguments on the RM (however
we know that if RM(G) = 3 then G = PSL(K) for K a.c!).irrécon 2018

@ By pr,(G)? Makes sense...but we still don’t know how to prove that if
pro(G) = 1 then G = PSL(K) for K a.c. So, one needs further
assumptions to the identification of ‘small’ G. For example:

» Minimal simple groups: every proper definable connected subgroup
IS solvable.aiigot, Cheriin, Deloro, Altinel, Frécon, Burdges.. ]
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Small groups

Let H = X(K) be a Chevalley group for K a.c. with char(K) # 2, and T be a
maximal algebraic torus of H. The ‘size’ of H can be described in different
ways, e.g. by dimz,(H) or by

dimzar(T) = pro(H) = # of copies of Zow 1= {x € C* : x> =1,n e N}.
The only simple Chevalley group of pr,(H) = 1 is H = PSL»(K); it is also the
only simple Chevalley group of dimz,(H) = 3.

Let G be an infinite simple group of fRM. How to describe the ‘size’ of G?

@ By the RM? No real hope for inductive arguments on the RM (however
we know that if RM(G) = 3 then G = PSL(K) for K a.c!).irrécon 2018

@ By pr,(G)? Makes sense...but we still don’t know how to prove that if
pro(G) = 1 then G = PSL(K) for K a.c. So, one needs further
assumptions to the identification of ‘small’ G. For example:

» Minimal simple groups: every proper definable connected subgroup
IS solvable.aligot, Cherlin, Deloro, Altinel, Frécon, Burdges...]

» The presence of a tight automorphism whose fixed-point subgroup
is pseudofinite—this is our framework.
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Pseudofinite fields and simple pseudofinite groups
Definition: An infinite structure is called pseudofinite if every first-order
sentence true in it also holds in some finite structure or, equivalently, if it is
elementarily equivalent to a non-principal ultraproduct of finite structures.
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Pseudofinite fields and simple pseudofinite groups
Definition: An infinite structure is called pseudofinite if every first-order
sentence true in it also holds in some finite structure or, equivalently, if it is
elementarily equivalent to a non-principal ultraproduct of finite structures.

@ (Z,+) is not pseudofinite.
@ (Q,+) = [Ipep Cp/U is pseudofinite.
@ A (twisted) Chevalley group X(F) is pseudofinite iff F is pseudofinite.

@ Algebraically closed fields are not pseudofinite.
@ F =][],.pFp/U is pseudofinite of char(F) = 0.
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Pseudofinite fields and simple pseudofinite groups
Definition: An infinite structure is called pseudofinite if every first-order
sentence true in it also holds in some finite structure or, equivalently, if it is
elementarily equivalent to a non-principal ultraproduct of finite structures.

@ (Z,+) is not pseudofinite.

@ (Q,+) =TIl ep Cp/U is pseudofinite.

@ A (twisted) Chevalley group X(F) is pseudofinite iff F is pseudofinite.
@ Algebraically closed fields are not pseudofinite.

@ F =][],.pFp/U is pseudofinite of char(F) = 0.

Theorem (Ax 1968)
An infinite field is pseudofinite iff it is perfect, quasi-finite and PAC.

Theorem (Wilson 1995 and Ryten 2007)

A simple group is pseudofinite iff it is isomorphic to a (twisted) Chevalley
group over a pseudofinite field.
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The Principal conjecture
The theory ACFA of algebraically closed fields with generic automorphism is
axiomatisedicnatzidaxis, Hrushovski 1999] a8 follows: (K, o) = ACFA iff:

@ K = ACF and o € Aut(F).

@ Let V be an irreducible variety and let S be an irreducible subvariety of
V xo(V)st bothm :S— Vandm : S — o(V) are dominant. Then
there exists a € V(K) s.t. (a,0(a)) € S.

If (K, O') }: ACFA then FiXK(O') IS pseUdOfinite.[Macintyre1997/Chatzidakis, Hrushovski 1999]
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The Principal conjecture
The theory ACFA of algebraically closed fields with generic automorphism is
axiomatisedichatzidaxis, Hrushovski 1999] @S follows: (K, o) = ACFA iff:

@ K = ACF and o € Aut(F).

@ Let V be an irreducible variety and let S be an irreducible subvariety of
V xo(V)st bothm :S— Vandm : S — o(V) are dominant. Then
there exists a € V(K) s.t. (a,0(a)) € S.

If (K, 0') }: ACFA then FiXK(O') IS pseUdOfinite.[Macintyre1997/Chatzidakis, Hrushovski 1999]

Fixed point subgroups of generic automorphisms of ‘structures with certain
nice model-theoretic properties’ resemble pseudofinite groups.Hrushovski 2002]

The Principal conjecture (Hrushovski 2002/Ugurlu 2009)

Let G be an infinite simple group of finite Morley rank with a generic
automorphism «. Then the fixed point subgroup Cgs(«) is pseudofinite.
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The Principal conjecture
The theory ACFA of algebraically closed fields with generic automorphism is
axiomatisedichatzidaxis, Hrushovski 1999] @S follows: (K, o) = ACFA iff:

@ K = ACF and o € Aut(F).

@ Let V be an irreducible variety and let S be an irreducible subvariety of
V xo(V)st bothm :S— Vandm : S — o(V) are dominant. Then
there exists a € V(K) s.t. (a,0(a)) € S.

If (K, 0') }: ACFA then FiXK(O') IS pSGUdOfinite.[Macintyrm997/Chatzidakis, Hrushovski 1999]

Fixed point subgroups of generic automorphisms of ‘structures with certain
nice model-theoretic properties’ resemble pseudofinite groups.Hrushovski 2002]

The Principal conjecture (Hrushovski 2002/Ugurlu 2009)

Let G be an infinite simple group of finite Morley rank with a generic
automorphism «. Then the fixed point subgroup Cgs(«) is pseudofinite.

@ (C-2) = (PC).[chatzidkis and Hrushovski 1999]
@ We aim to prove that (PC) = (C-2).
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A tight automorphism «

From now on:

1. Groups (resp. fields) are considered in pure group (resp. field) language.
2. Given a subset X of a group of fRM G, X is the definable closure of X in G.
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A tight automorphism «

From now on:
1. Groups (resp. fields) are considered in pure group (resp. field) language.
2. Given a subset X of a group of fRM G, X is the definable closure of X in G.

Definition (Ugurlu 2009)

An automorphism « of an infinite simple group of fRM G is called tight if, for
any connected definable and a-invariant subgroup H < G, Cx(«a) = H.
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A tight automorphism «

From now on:
1. Groups (resp. fields) are considered in pure group (resp. field) language.
2. Given a subset X of a group of fRM G, X is the definable closure of X in G.

Definition (Ugurlu 2009)

An automorphism « of an infinite simple group of fRM G is called tight if, for
any connected definable and a-invariant subgroup H < G, Cx(«a) = H.

Example: We have (K, ¢y/) = ACFA{Hrushovski 19961, Where
ou:K=T]Fee/u— T]Fo/U, [xlu— XN
pieP pieP
is the non-standard Frobenius automorphism of K.

Let G = X(K) be a simple Chevalley group and H be a definable, connected
and ¢y.-invariant subgroup of G. Then ¢;, induces an automorphism on G s.t.

® X(Fixg(¢u)) = X([Tpep Fo/U) = [T, cp X(Fp) /U is pseudofinite.

® Cu(dy) = H(k), with k pseudofinite. So, Cr(dy) " = H.
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Tight o with pseudofinite fixed-point subgroup

The socle Soc(H) of a group H is the subgroup generated by all minimal
normal non-trivial subgroups of a group H.

Theorem (Ugurlu 2009)

Let G be an infinite simple group of fRM and o be a tight automorphism of G

s.t. Cg(a) = P =[], Pi/U is pseudofinite. Then there is a definable normal
S of P s.t.

X(F) = [ [ Soc(P)) /U = 8§ < P < Aug(S),

icl

where F is a pseudofinite field. Moreover, S = G.

Ulla Karhumaki Small groups of finite Morley rank with a tight automorphism 09/2021 7/14




Tight o with pseudofinite fixed-point subgroup

The socle Soc(H) of a group H is the subgroup generated by all minimal
normal non-trivial subgroups of a group H.

Theorem (Ugurlu 2009)

Let G be an infinite simple group of fRM and o be a tight automorphism of G

s.t. Cg(a) = P =[], Pi/U is pseudofinite. Then there is a definable normal
S of P s.t.

X(F) = [ [ Soc(P)) /U = 8§ < P < Aug(S),

icl

where F is a pseudofinite field. Moreover, S = G.

Remarks:

@ G has involutions as the simple pseudofinite group S has involutions.

@ For almost all i, The socle Soc(FP;) is uniformly definable normal
subgroup of P;. So P/S = [];.,(Pi/Soc(P;))/U.
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Summary: the approach towards (C-Z) < (PC)

Let G be an infinite simple group of fRM with a tight automorphism o whose
fixed point subgroup P = Cg(«) is pseudofinite. We have pr,(G) =n > 1. To
prove that (C-Z) < (PC) we need to prove the following two steps:
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Summary: the approach towards (C-Z) < (PC)

Let G be an infinite simple group of fRM with a tight automorphism o whose
fixed point subgroup P = Cg(«) is pseudofinite. We have pr,(G) =n> 1. To
prove that (C-Z) < (PC) we need to prove the following two steps:

@ Algebraic identification step: We know that there is a pseudofinite
(twisted) Chevalley group S = X(F) s.t. S = G.

» Show that S is of untwisted Lie type X and of Lie rank n, and, that
char(F) # 2.

» Then prove that this forces G to be isomorphic to a Chevalley group
X(K), of the same untwisted Lie type X and the same Lie rank n as
S, over an a.c. field K of char(K) # 2.
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Summary: the approach towards (C-Z) < (PC)

Let G be an infinite simple group of fRM with a tight automorphism o whose
fixed point subgroup P = Cg(«) is pseudofinite. We have pr,(G) =n> 1. To
prove that (C-Z) < (PC) we need to prove the following two steps:

@ Algebraic identification step: We know that there is a pseudofinite
(twisted) Chevalley group S = X(F) s.t. S = G.

» Show that S is of untwisted Lie type X and of Lie rank n, and, that
char(F) # 2.

» Then prove that this forces G to be isomorphic to a Chevalley group
X(K), of the same untwisted Lie type X and the same Lie rank n as
S, over an a.c. field K of char(K) # 2.

@ Model-theoretic step: Prove that a generic automorphism of G is tight.
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Our results (K. and Ugurlu 2021)

From now on, G is an infinite simple group of fRM with pr,(G) = 1 admitting
a tight automorphism a whose fixed-point subgroup Cg(a) = P =[], Pi/U
is pseudofinite and S = X(F) = [, Soc(P;)/U.
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Our results (K. and Ugurlu 2021)

From now on, G is an infinite simple group of fRM with pr,(G) = 1 admitting
a tight automorphism a whose fixed-point subgroup Cg(a) = P =[], Pi/U
is pseudofinite and S = X(F) = [, Soc(P;)/U.

Proposition
S = PSL,(F), where F is a pseudofinite field of char(F) # 2. J
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Our results (K. and Ugurlu 2021)

From now on, G is an infinite simple group of fRM with pr,(G) = 1 admitting

a tight automorphism a whose fixed-point subgroup Cg(a) = P =[], Pi/U

is pseudofinite and S = X(F) = [, Soc(P;)/U.

Proposition

S = PSL,(F), where F is a pseudofinite field of char(F) # 2. J

Theorem (Version 1.)

If —1 is a square in F* and char(F) > 2, then G = PSLy(K) for K a.c. of
char(K) > 2.
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Our results (K. and Ugurlu 2021)

From now on, G is an infinite simple group of fRM with pr,(G) = 1 admitting

a tight automorphism a whose fixed-point subgroup Cg(a) = P =[], Pi/U

is pseudofinite and S = X(F) = [, Soc(P;)/U.

Proposition

S = PSL,(F), where F is a pseudofinite field of char(F) # 2. J

Theorem (Version 1.)

If —1 is a square in F* and char(F) > 2, then G = PSLy(K) for K a.c. of
char(K) > 2.

Theorem (Version 2.)

If —1 is a square in F* and the Sylow 2-subgroups of S are not Klein
4-groups, G = PSLy(K) for K a.c. of char(K) # 2.
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Our results (K. and Ugurlu 2021)

From now on, G is an infinite simple group of fRM with pr,(G) = 1 admitting
a tight automorphism a whose fixed-point subgroup Cg(a) = P =[], Pi/U
is pseudofinite and S = X(F) = [, Soc(P;)/U.

Proposition

S = PSL,(F), where F is a pseudofinite field of char(F) # 2.

If —1 is a square in F* and char(F) > 2, then G = PSLy(K) for K a.c. of
char(K) > 2.

Theorem (Version 2.)

If —1 is a square in F* and the Sylow 2-subgroups of S are not Klein
4-groups, G = PSLy(K) for K a.c. of char(K) # 2.

Almost an theorem
G = PSLy(K) for K a.c. of char(K) # 2.

|
Theorem (Version 1.) J
J

Ulla Karhumaki Small groups of finite Morley rank with a tight automorphism 09/2021 9/14



Sylow 2-subgroups of S and G, S = PSLy(F)
Theorem (Deloro and Jaligot 2010)

Let H be an odd type connected group of fRM with pro(H) = 1. Then exactly
one of the following holds.

@ Syl, = Sylg, x (w) for an involution w which inverts Syl,.

@ Syl = Syl§, - (w) for an element w of order 4 which inverts Syl3,.
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Sylow 2-subgroups of S and G, S = PSLy(F)
Theorem (Deloro and Jaligot 2010)

Let H be an odd type connected group of fRM with pro(H) = 1. Then exactly
one of the following holds.

@ Syl, = Syly, x (w) for an involution w which inverts Syls,.

@ Syl = Syl§, - (w) for an element w of order 4 which inverts Syl3,.

Any Sylow 2-subgroup Syl of G must be of type (2) as for otherwise S
satisfies the FO-expressible statement ‘Every subgroup of order 4 is cyclic’.

@ Sylow 2-subgroups of S are either conjugate dihedral groups or as Syl.
In particular, the finite simple groups in the ultraproduct S has dihedral
Sylow 2-subgroups.
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Sylow 2-subgroups of S and G, S = PSLy(F)
Theorem (Deloro and Jaligot 2010)

Let H be an odd type connected group of fRM with pro(H) = 1. Then exactly
one of the following holds.

@ Syl, = Syly, x (w) for an involution w which inverts Syls,.

@ Syl = Syl§, - (w) for an element w of order 4 which inverts Syl3,.

Any Sylow 2-subgroup Syl of G must be of type (2) as for otherwise S
satisfies the FO-expressible statement ‘Every subgroup of order 4 is cyclic’.

@ Sylow 2-subgroups of S are either conjugate dihedral groups or as Syl.
In particular, the finite simple groups in the ultraproduct S has dihedral
Sylow 2-subgroups.

Theorem (Gorenstein and Walter 1962)

Let H be a finite simple group with dihedral Sylow 2-subgroups. Then either
H=PS1,(q),qg>5o0rH=A;.
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Structures of S = PSLy(F), PGLy(F) and P

@ PSLy(F) =2 S < Cg(a) = P < G, for F pseudofinite of char(F) # 2
@ P < PGLy(F) x Aut(F).

,V_—S:\,,a,rs’—o‘f S {imvs ot T QUIF) D PaLiLe) S%(Fq S"bﬁﬁ_ & PG LE)= H

’L{;F+ ,ugf-l'
T;’LFK\‘L ©vET L A g a Squore. in £ 'l\-?f’c_x . s unigue inv. C
B=UnT = Ns(¥) B=Un T

: b inverhing U <
\NsL'Y) = LT W), wo an dolel 3 Ny m = Nt = <Tow )

Lt P=Telq Twa Pls= T\""/SMP) Ja = (\T(?‘(Psucm)/u'

€T
o= pc\\n,[%)" h“'{'("ﬁ“) = rd/m‘%(%‘) hot an oheltan ?v.loﬁue of index 2 .

Zy PUs Qs sketionregethit

Xe p = x=3% seS, delug(S) Femd(F). Dian(S)2AX(F) Leae.
{nvartant NEFEY omol T&’(FXJ’L- = P/S = NP(T)/N,SI'T): Npl’u)/B
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How to identify G

Aim: S = G is a split Zassenhaus group, acting on the set of left cosets of B
in G, with a one-point stabiliser B and a two-point stabiliser T. This implies
that G = PSLQ(K) = PGLQ(K) for K a.c. and of char(K) 75 2.[Delahan, Nesin 1995]
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How to identify G

Aim: S = G is a split Zassenhaus group, acting on the set of left cosets of B
in G, with a one-point stabiliser B and a two-point stabiliser T. This implies
that G = PSLy(K) = PGL»(K) for K a.c. and of char(K) # 2.[pelahan, Nesin 1995]

For above, we need to observe things as
@ G=BU UCUOB.
@ B nU=1forallg € G\ B (in particular, Ng(U) = Ng(B) = B)
@ Cy(u)=Cy(U)=Uforallue U
@ Ng(T) = Ca(f) = (T, wo).

@ B = U x T is a split Frobenius group.
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How to identify G

Aim: S = G is a split Zassenhaus group, acting on the set of left cosets of B
in G, with a one-point stabiliser B and a two-point stabiliser T. This implies
that G = PSLy(K) = PGL»(K) for K a.c. and of char(K) # 2.[pelahan, Nesin 1995]

For above, we need to observe things as
@ G=BU UuwB.
@ B°nU=1forall g € G\ B (in particular, Ng(U) = Ng(B) = B)
@ Cy(u)=Cy(U)=Uforallue U
@ Ng(T) = Cg(i) = (T,wo).
@ B = U x T is a split Frobenius group.

Prove that [0:SJ4P® avd uR twed 4o ot w&bfmu\‘vov\ wp o cwected components:
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[P:S] <o

We know that P/S = Np(U)/B and P/S = Np(T)/Ns(T) is abelian-by-finite.
To prove that [P : S] < oo, we observe the following things.
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[P:S] <o

We know that P/S = Np(U)/B and P/S = Np(T)/Ns(T) is abelian-by-finite.
To prove that [P : S] < oo, we observe the following things.

@ (N3(U))' < Uand (N3(T))' < Ns(T).
e [NP(T) : NP(T) M NP(U)] < 0Q.

Q [Ch(T): T] < cx.
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[P:S] <o

We know that P/S = Np(U)/B and P/S = Np(T)/Ns(T) is abelian-by-finite.
To prove that [P : S] < oo, we observe the following things.

Q@ (Np(U)) < Uand (N3(T)) < Ns(T).
Q [Np(T): Np(T) N Np(U)] < 0.
Q [Ch(T): T] < .

Sketch of proof of (1).

Clearly (Np(U))' < B.

As N5(U) is connected and solvable, N3(U)' is nilpotentiesi 19so.
As B® < N5(U) we have N3(U)' < F(B").

It can be proven that F(B") = U which gives us (Np(U)) < U.
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=0

e T
With assumptions in Theorem (Version 2):

@ For the unique involution j € T, we have

—)O e} O —=0

C&(i) = Cosiy(a) = Cogiy(a) = Coge)() = Cs(i) = (T,wo) =T .
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=0

e T
With assumptions in Theorem (Version 2):

@ For the unique involution j € T, we have

——————° —)O —)O e} o} ——=0

Ca(i) = Cesiy(a) = Cegiy(a) = Coy(a)(i) = Cs(i) =(T,wo) =T .

@ Since i € T, we know that a Sylow 2-subgroup Sylg of Siisin Ng(T). Let
Syl be a Sylow 2-subgroup of G containing the Klein 4-group (i) x (wo).
As Syl is not a Klein 4-group, wp inverts Sylz. So i € Sylg.
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—=0

e T
With assumptions in Theorem (Version 2):

@ For the unique involution j € T, we have

——————° —)O —)O e} o} ——=0

C?;(I) = ch(,')(a) CCG(,-)(a = ch(a)(ll = Cs(l) = <T, w0> = T .
@ Since i € T, we know that a Sylow 2-subgroup Sylg of Siisin Ng(T). Let

Syl be a Sylow 2-subgroup of G containing the Klein 4-group (i) x (wo).
As Syl is not a Klein 4-group, wp inverts Sylz. So i € Sylg.

Without extra assumptions:

@ Enough to prove that C3(t) =T forallt € T : Then T is generous in G
and so there is 1 # x € T N Cg(H) for some maximal decent torus of H

—=0

of G. SO Zpe < H< C(x) =T .
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=0

e T
With assumptions in Theorem (Version 2):

@ For the unique involution j € T, we have

——————° —)O —)O e} o} ——=0

C?;(I) = ch(,')(a) CCG(i)(CV = ch(a)(i = Cs(l) = <T, w0> = T .

@ Since i € T, we know that a Sylow 2-subgroup Sylg of Siisin Ng(T). Let
Syl be a Sylow 2-subgroup of G containing the Klein 4-group (i) x (wo).
As Syl is not a Klein 4-group, wp inverts Sylz. So i € Sylg.

Without extra assumptions:

@ Enough to prove that C3(t) =T forallt € T : Then T is generous in G
and so there is 1 # x € T N Cg(H) for some maximal decent torus of H

—=0

of G. SO Zpe < H< C(x) =T .

Idea for doing above: Prove that | J, .7+ Cg(t) U wo is abelian by considering
its intersection with the maximal subgroups of S.
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