

From Borovik-Cherlin to bounding nonminimality

Rahim Moosa

University of Waterloo

Groupes rangés: le retour
Lyon, September 2021

In several recent applications of the model theory of differential fields one has a specific algebraic differential equation

$$P(x, \delta x, \delta^2 x, \delta^3 x) = 0$$

over a differential field (k, δ) , and one wants to show that the set of solutions in a model of DCF_0 is strongly minimal.

A key difficulty in verifying strong minimality is that one must consider subsets definable over extensions of the base differential field k .

The goal of this joint work with James Freitag is to restrict how big an extension of k needs to be considered, and thereby make the problem more tractable to algebraic/computational methods in specific low order cases.

An abstract setting for the problem

T a complete totally transcendental theory, $\mathcal{U} \models T$ saturated, $p \in S(A)$ stationary type of finite rank.

Recall that p is *minimal* if $U(p) = 1$.

Equivalently, p is nonalgebraic but every forking extension is algebraic.

Fact

If $U(p) > 1$ then there are $a_1, \dots, a_d \models p$ and a nonalgebraic forking extension of p to $Aa_1 \dots a_d$.

Definition

Let $\text{nmdeg}(p)$ be the least such d .

Problem

Can we bound $\text{nmdeg}(p)$ when p is of finite rank?

Consequences of $\text{nmdeg} > 1$

If $\text{nmdeg}(p) > 1$ then p has no *proper fibrations*:

if $a \models p$ and $b \in \text{dcl}(Aa) \setminus \text{acl}(A)$ then $a \in \text{acl}(Ab)$.

Indeed, a proper fibration would yield a definable function on p whose fibres are infinite but of lower rank than p .

Fact (M., Pillay 2014)

If p admits no proper fibrations then it is semiminimal. If, moreover, every type interalgebraic with p has no proper fibrations, then p is interalgebraic with a type that is internal to some non locally modular minimal type.

Recall that *internal to X* means that $p(\mathcal{U}) \subseteq \text{dcl}(B, X)$ for some $B \supseteq A$.

As nmdeg is an interalgebraic-invariant, we reduce to studying types that are **internal to a non locally modular minimal type**.

The internal case: permutation groups arise

In DCF_0 internal to a non locally modular minimal type means internal to the field of constants.

More generally, suppose that p is internal to an A -(type-)definable minimal set X with:

- X_{ind} admits elimination of imaginaries
- $\text{acl}(A) \cap X$ is infinite.

Because of X -internality, the theory of binding groups comes into play:

$G := \text{Aut}_A(p/X)$ acts definably and faithfully on $S := p(\mathcal{U})$.

No proper fibrations implies p is also *weakly orthogonal* to X , namely if $a \models p$ then $a \perp_A X$. It follows that (G, S) is transitive and p is isolated.

So (G, S) is a definable homogeneous space of finite rank!

Proposition

(G, S) is *generically d -transitive*, where $d = \text{nmdeg}(p)$.

Proof.

Let $r > 0$ be least such that $p^{(r)}$ is not weakly orthogonal to X .

Let $\bar{a} \models p^{(r-1)}$ and $q := p \upharpoonright_{A\bar{a}}$.

Non weak orthogonality gives an $A\bar{a}$ -definable proper fibration $f : q(\mathcal{U}) \rightarrow X$.

As the generic fibre of f is infinite but of lower rank than p , there are cofinitely many such fibres, and hence one over $\text{acl}(A)$. Such a fibre yields a nonalgebraic forking extension of p over $A\bar{a}$.

So $d \leq r - 1$ and $p^{(d)}$ is weakly orthogonal to X .

Hence $G = \text{Aut}_A(p^{(d)})/X$ acts transitively on $p^{(d)}$, as desired. □

Theorem (Freitag, M.)

If the Borovik-Cherlin conjecture holds in X_{ind} then $\text{nmdeg}(p) \leq U(p) + 1$.

Proof.

Suppose $d \geq n + 2$ where $d = \text{nmdeg}(p)$ and $n = U(p) = \text{RM}(S)$.

So (G, S) , the binding group action, which is definable in X_{ind} , is generically $(n + 2)$ -transitive.

By Borovik-Cherlin, $(G, S) = (\text{PGL}_{n+1}(F), \mathbb{P}^n(F))$.

Fixing distinct $a, b \in S$ we have that $H := \text{Stab}_G(a, b)$ must have an infinite orbit \mathcal{O} on S of rank $< n$; namely, either the line on which a, b lie or its complement.

Writing $\mathcal{O} = Hc$ for some $c \in S$ we get a nonalgebraic forking extension of p over $Aabc$ implying $d \leq 3$. This forces $n = 1$ contradicting the fact that p is not minimal. □

The rank 2 case

Altınel-Wiscons have established the BC conjecture in rank 2. So:

Corollary

If T is such that every non locally modular minimal type is nonorthogonal to a 0-(type-)definable minimal set X that admits elimination of imaginaries and has infinitely many algebraic points, then every rank 2 type in T has degree of nonminimality at most 3.

The case of DCF_0 .

Let's repeat:

Theorem

If the Borovik-Cherlin conjecture holds in X_{ind} then $\text{nmdeg}(p) \leq U(p) + 1$.

In many theories of interest (DCF_0 , $\text{DCF}_{0,m}$, CCM) we know that X_{ind} is a pure algebraically closed field.

Hence the truth of Borovik-Cherlin **in ACF_0** implies the bound $\text{nmdeg}(p) \leq U(p) + 1$ in these theories.

But the Borovik-Cherlin conjecture is true in ACF_0 , by results of Popov on the generic transitivity of simple algebraic group actions, and the work of Macpherson-Pillay reducing to the simple case (a strategy suggested by Borovik and Cherlin). Hence:

Corollary

In DCF_0 (and in $\text{DCF}_{0,m}$ and CCM) the nonminimality degree is at most the U -rank plus 1.

Questions:

- Is there an absolute bound on degree of nonminimality? (All examples constructed so far have $\text{nmdeg} \leq 2$.) A more careful study of Popov's classification suggests that this should be the case.
This is the subject of ongoing work with Freitag.
- Is the BC conjecture true in DCF_0 ? Not just for binding groups (which reduce to ACF_0).
This is the subject of ongoing work with Freitag and Jiminez.
- What about the infinite rank setting. So “degree of nonregularity”?
- What about ACFA, with a view toward algebraic *difference* equations?